Flux-Compiled-Graph / optimization.py
sayakpaul's picture
sayakpaul HF Staff
up
f9f24d7
raw
history blame
1.37 kB
from typing import Any
from typing import Callable
from typing import ParamSpec
import spaces
import torch
from torch.utils._pytree import tree_map
P = ParamSpec('P')
TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212)
# Specific to Flux. More about this is available in
# https://huggingface.co/blog/zerogpu-aoti
TRANSFORMER_DYNAMIC_SHAPES = {
'hidden_states': {1: TRANSFORMER_HIDDEN_DIM},
'img_ids': {0: TRANSFORMER_HIDDEN_DIM},
}
INDUCTOR_CONFIGS = {
'conv_1x1_as_mm': True,
'epilogue_fusion': False,
'coordinate_descent_tuning': True,
'coordinate_descent_check_all_directions': True,
'max_autotune': True,
'triton.cudagraphs': True,
}
def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
@spaces.GPU(duration=1500)
def f():
with spaces.aoti_capture(pipeline.transformer) as call:
pipeline(*args, **kwargs)
dynamic_shapes = tree_map(lambda v: None, call.kwargs)
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
exported = torch.export.export(
mod=pipeline.transformer,
args=call.args,
kwargs=call.kwargs,
dynamic_shapes=dynamic_shapes
)
return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
compiled_transformer = f()
return compiled_transformer