from typing import Any from typing import Callable from typing import ParamSpec import spaces import torch from torch.utils._pytree import tree_map P = ParamSpec('P') TRANSFORMER_HIDDEN_DIM = torch.export.Dim('hidden', min=4096, max=8212) # Specific to Flux. More about this is available in # https://huggingface.co/blog/zerogpu-aoti TRANSFORMER_DYNAMIC_SHAPES = { 'hidden_states': {1: TRANSFORMER_HIDDEN_DIM}, 'img_ids': {0: TRANSFORMER_HIDDEN_DIM}, } INDUCTOR_CONFIGS = { 'conv_1x1_as_mm': True, 'epilogue_fusion': False, 'coordinate_descent_tuning': True, 'coordinate_descent_check_all_directions': True, 'max_autotune': True, 'triton.cudagraphs': True, } def compile_transformer(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs): @spaces.GPU(duration=1500) def f(): with spaces.aoti_capture(pipeline.transformer) as call: pipeline(*args, **kwargs) dynamic_shapes = tree_map(lambda v: None, call.kwargs) dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES exported = torch.export.export( mod=pipeline.transformer, args=call.args, kwargs=call.kwargs, dynamic_shapes=dynamic_shapes ) return spaces.aoti_compile(exported, INDUCTOR_CONFIGS) compiled_transformer = f() return compiled_transformer