Spaces:
Runtime error
Runtime error
| from ._base import EncoderMixin | |
| from timm.models.resnet import ResNet | |
| from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic | |
| import torch.nn as nn | |
| class SkNetEncoder(ResNet, EncoderMixin): | |
| def __init__(self, out_channels, depth=5, **kwargs): | |
| super().__init__(**kwargs) | |
| self._depth = depth | |
| self._out_channels = out_channels | |
| self._in_channels = 3 | |
| del self.fc | |
| del self.global_pool | |
| def get_stages(self): | |
| return [ | |
| nn.Identity(), | |
| nn.Sequential(self.conv1, self.bn1, self.act1), | |
| nn.Sequential(self.maxpool, self.layer1), | |
| self.layer2, | |
| self.layer3, | |
| self.layer4, | |
| ] | |
| def forward(self, x): | |
| stages = self.get_stages() | |
| features = [] | |
| for i in range(self._depth + 1): | |
| x = stages[i](x) | |
| features.append(x) | |
| return features | |
| def load_state_dict(self, state_dict, **kwargs): | |
| state_dict.pop("fc.bias", None) | |
| state_dict.pop("fc.weight", None) | |
| super().load_state_dict(state_dict, **kwargs) | |
| sknet_weights = { | |
| 'timm-skresnet18': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth' | |
| }, | |
| 'timm-skresnet34': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth' | |
| }, | |
| 'timm-skresnext50_32x4d': { | |
| 'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth', | |
| } | |
| } | |
| pretrained_settings = {} | |
| for model_name, sources in sknet_weights.items(): | |
| pretrained_settings[model_name] = {} | |
| for source_name, source_url in sources.items(): | |
| pretrained_settings[model_name][source_name] = { | |
| "url": source_url, | |
| 'input_size': [3, 224, 224], | |
| 'input_range': [0, 1], | |
| 'mean': [0.485, 0.456, 0.406], | |
| 'std': [0.229, 0.224, 0.225], | |
| 'num_classes': 1000 | |
| } | |
| timm_sknet_encoders = { | |
| 'timm-skresnet18': { | |
| 'encoder': SkNetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-skresnet18"], | |
| 'params': { | |
| 'out_channels': (3, 64, 64, 128, 256, 512), | |
| 'block': SelectiveKernelBasic, | |
| 'layers': [2, 2, 2, 2], | |
| 'zero_init_last_bn': False, | |
| 'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} | |
| } | |
| }, | |
| 'timm-skresnet34': { | |
| 'encoder': SkNetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-skresnet34"], | |
| 'params': { | |
| 'out_channels': (3, 64, 64, 128, 256, 512), | |
| 'block': SelectiveKernelBasic, | |
| 'layers': [3, 4, 6, 3], | |
| 'zero_init_last_bn': False, | |
| 'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}} | |
| } | |
| }, | |
| 'timm-skresnext50_32x4d': { | |
| 'encoder': SkNetEncoder, | |
| "pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"], | |
| 'params': { | |
| 'out_channels': (3, 64, 256, 512, 1024, 2048), | |
| 'block': SelectiveKernelBottleneck, | |
| 'layers': [3, 4, 6, 3], | |
| 'zero_init_last_bn': False, | |
| 'cardinality': 32, | |
| 'base_width': 4 | |
| } | |
| } | |
| } | |