Spaces:
Runtime error
Runtime error
Upload encoders/timm_sknet.py
Browse files- encoders/timm_sknet.py +103 -0
encoders/timm_sknet.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ._base import EncoderMixin
|
| 2 |
+
from timm.models.resnet import ResNet
|
| 3 |
+
from timm.models.sknet import SelectiveKernelBottleneck, SelectiveKernelBasic
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SkNetEncoder(ResNet, EncoderMixin):
|
| 8 |
+
def __init__(self, out_channels, depth=5, **kwargs):
|
| 9 |
+
super().__init__(**kwargs)
|
| 10 |
+
self._depth = depth
|
| 11 |
+
self._out_channels = out_channels
|
| 12 |
+
self._in_channels = 3
|
| 13 |
+
|
| 14 |
+
del self.fc
|
| 15 |
+
del self.global_pool
|
| 16 |
+
|
| 17 |
+
def get_stages(self):
|
| 18 |
+
return [
|
| 19 |
+
nn.Identity(),
|
| 20 |
+
nn.Sequential(self.conv1, self.bn1, self.act1),
|
| 21 |
+
nn.Sequential(self.maxpool, self.layer1),
|
| 22 |
+
self.layer2,
|
| 23 |
+
self.layer3,
|
| 24 |
+
self.layer4,
|
| 25 |
+
]
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
stages = self.get_stages()
|
| 29 |
+
|
| 30 |
+
features = []
|
| 31 |
+
for i in range(self._depth + 1):
|
| 32 |
+
x = stages[i](x)
|
| 33 |
+
features.append(x)
|
| 34 |
+
|
| 35 |
+
return features
|
| 36 |
+
|
| 37 |
+
def load_state_dict(self, state_dict, **kwargs):
|
| 38 |
+
state_dict.pop("fc.bias", None)
|
| 39 |
+
state_dict.pop("fc.weight", None)
|
| 40 |
+
super().load_state_dict(state_dict, **kwargs)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
sknet_weights = {
|
| 44 |
+
'timm-skresnet18': {
|
| 45 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet18_ra-4eec2804.pth'
|
| 46 |
+
},
|
| 47 |
+
'timm-skresnet34': {
|
| 48 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnet34_ra-bdc0ccde.pth'
|
| 49 |
+
},
|
| 50 |
+
'timm-skresnext50_32x4d': {
|
| 51 |
+
'imagenet': 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/skresnext50_ra-f40e40bf.pth',
|
| 52 |
+
}
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
pretrained_settings = {}
|
| 56 |
+
for model_name, sources in sknet_weights.items():
|
| 57 |
+
pretrained_settings[model_name] = {}
|
| 58 |
+
for source_name, source_url in sources.items():
|
| 59 |
+
pretrained_settings[model_name][source_name] = {
|
| 60 |
+
"url": source_url,
|
| 61 |
+
'input_size': [3, 224, 224],
|
| 62 |
+
'input_range': [0, 1],
|
| 63 |
+
'mean': [0.485, 0.456, 0.406],
|
| 64 |
+
'std': [0.229, 0.224, 0.225],
|
| 65 |
+
'num_classes': 1000
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
timm_sknet_encoders = {
|
| 69 |
+
'timm-skresnet18': {
|
| 70 |
+
'encoder': SkNetEncoder,
|
| 71 |
+
"pretrained_settings": pretrained_settings["timm-skresnet18"],
|
| 72 |
+
'params': {
|
| 73 |
+
'out_channels': (3, 64, 64, 128, 256, 512),
|
| 74 |
+
'block': SelectiveKernelBasic,
|
| 75 |
+
'layers': [2, 2, 2, 2],
|
| 76 |
+
'zero_init_last_bn': False,
|
| 77 |
+
'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}}
|
| 78 |
+
}
|
| 79 |
+
},
|
| 80 |
+
'timm-skresnet34': {
|
| 81 |
+
'encoder': SkNetEncoder,
|
| 82 |
+
"pretrained_settings": pretrained_settings["timm-skresnet34"],
|
| 83 |
+
'params': {
|
| 84 |
+
'out_channels': (3, 64, 64, 128, 256, 512),
|
| 85 |
+
'block': SelectiveKernelBasic,
|
| 86 |
+
'layers': [3, 4, 6, 3],
|
| 87 |
+
'zero_init_last_bn': False,
|
| 88 |
+
'block_args': {'sk_kwargs': {'rd_ratio': 1/8, 'split_input': True}}
|
| 89 |
+
}
|
| 90 |
+
},
|
| 91 |
+
'timm-skresnext50_32x4d': {
|
| 92 |
+
'encoder': SkNetEncoder,
|
| 93 |
+
"pretrained_settings": pretrained_settings["timm-skresnext50_32x4d"],
|
| 94 |
+
'params': {
|
| 95 |
+
'out_channels': (3, 64, 256, 512, 1024, 2048),
|
| 96 |
+
'block': SelectiveKernelBottleneck,
|
| 97 |
+
'layers': [3, 4, 6, 3],
|
| 98 |
+
'zero_init_last_bn': False,
|
| 99 |
+
'cardinality': 32,
|
| 100 |
+
'base_width': 4
|
| 101 |
+
}
|
| 102 |
+
}
|
| 103 |
+
}
|