Spaces:
Build error
Build error
| import torch | |
| import onnx | |
| import onnxruntime as rt | |
| from torchvision import transforms as T | |
| from PIL import Image | |
| from tokenizer_base import Tokenizer | |
| import pathlib | |
| import os | |
| import gradio as gr | |
| from huggingface_hub import Repository | |
| model_file = "captcha.onnx" | |
| img_size = (32,128) | |
| charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~" | |
| tokenizer_base = Tokenizer(charset) | |
| def get_transform(img_size): | |
| transforms = [] | |
| transforms.extend([ | |
| T.Resize(img_size, T.InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(0.5, 0.5) | |
| ]) | |
| return T.Compose(transforms) | |
| def to_numpy(tensor): | |
| return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() | |
| def initialize_model(model_file): | |
| transform = get_transform(img_size) | |
| # Onnx model loading | |
| onnx_model = onnx.load(model_file) | |
| onnx.checker.check_model(onnx_model) | |
| ort_session = rt.InferenceSession(model_file) | |
| return transform,ort_session | |
| def get_text(img_org): | |
| # img_org = Image.open(image_path) | |
| # Preprocess. Model expects a batch of images with shape: (B, C, H, W) | |
| x = transform(img_org.convert('RGB')).unsqueeze(0) | |
| # compute ONNX Runtime output prediction | |
| ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)} | |
| logits = ort_session.run(None, ort_inputs)[0] | |
| probs = torch.tensor(logits).softmax(-1) | |
| preds, probs = tokenizer_base.decode(probs) | |
| preds = preds[0] | |
| print(preds) | |
| return preds | |
| transform,ort_session = initialize_model(model_file=model_file) | |
| gr.Interface( | |
| get_text, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Textbox(), | |
| title="Text Captcha Reader", | |
| examples=["8000.png","11JW29.png","2a8486.jpg","2nbcx.png", | |
| "000679.png","000HU.png","00Uga.png.jpg","00bAQwhAZU.jpg", | |
| "00h57kYf.jpg","0EoHdtVb.png","0JS21.png","0p98z.png","10010.png"] | |
| ).launch() | |
| # if __name__ == "__main__": | |
| # image_path = "8000.png" | |
| # preds,probs = get_text(image_path) | |
| # print(preds[0]) | |