Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,71 +4,66 @@ import onnxruntime as rt
|
|
| 4 |
from torchvision import transforms as T
|
| 5 |
from PIL import Image
|
| 6 |
from tokenizer_base import Tokenizer
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# Инициализация модели
|
| 12 |
model_file = "captcha.onnx"
|
| 13 |
img_size = (32,128)
|
| 14 |
charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
|
| 15 |
tokenizer_base = Tokenizer(charset)
|
| 16 |
|
| 17 |
def get_transform(img_size):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
def to_numpy(tensor):
|
| 26 |
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
| 27 |
|
| 28 |
def initialize_model(model_file):
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
return transform, ort_session
|
| 36 |
-
except Exception as e:
|
| 37 |
-
raise RuntimeError(f"Ошибка при инициализации модели: {e}")
|
| 38 |
-
|
| 39 |
-
# Инициализация модели
|
| 40 |
-
transform, ort_session = initialize_model(model_file)
|
| 41 |
-
|
| 42 |
-
# Создаем FastAPI приложение
|
| 43 |
-
app = FastAPI()
|
| 44 |
|
| 45 |
-
# Функция для получения текста
|
| 46 |
def get_text(img_org):
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
logits = ort_session.run(None, ort_inputs)[0]
|
| 51 |
-
probs = torch.tensor(logits).softmax(-1)
|
| 52 |
-
preds, _ = tokenizer_base.decode(probs)
|
| 53 |
-
return preds[0]
|
| 54 |
-
except Exception as e:
|
| 55 |
-
raise RuntimeError(f"Ошибка при обработке изображения: {e}")
|
| 56 |
|
| 57 |
-
#
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
result = get_text(img)
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
#
|
| 74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from torchvision import transforms as T
|
| 5 |
from PIL import Image
|
| 6 |
from tokenizer_base import Tokenizer
|
| 7 |
+
import pathlib
|
| 8 |
+
import os
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from huggingface_hub import Repository
|
| 11 |
+
|
| 12 |
+
|
| 13 |
|
|
|
|
| 14 |
model_file = "captcha.onnx"
|
| 15 |
img_size = (32,128)
|
| 16 |
charset = r"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]^_`{|}~"
|
| 17 |
tokenizer_base = Tokenizer(charset)
|
| 18 |
|
| 19 |
def get_transform(img_size):
|
| 20 |
+
transforms = []
|
| 21 |
+
transforms.extend([
|
| 22 |
+
T.Resize(img_size, T.InterpolationMode.BICUBIC),
|
| 23 |
+
T.ToTensor(),
|
| 24 |
+
T.Normalize(0.5, 0.5)
|
| 25 |
+
])
|
| 26 |
+
return T.Compose(transforms)
|
| 27 |
|
| 28 |
def to_numpy(tensor):
|
| 29 |
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
|
| 30 |
|
| 31 |
def initialize_model(model_file):
|
| 32 |
+
transform = get_transform(img_size)
|
| 33 |
+
# Onnx model loading
|
| 34 |
+
onnx_model = onnx.load(model_file)
|
| 35 |
+
onnx.checker.check_model(onnx_model)
|
| 36 |
+
ort_session = rt.InferenceSession(model_file)
|
| 37 |
+
return transform,ort_session
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
|
|
|
| 39 |
def get_text(img_org):
|
| 40 |
+
# img_org = Image.open(image_path)
|
| 41 |
+
# Preprocess. Model expects a batch of images with shape: (B, C, H, W)
|
| 42 |
+
x = transform(img_org.convert('RGB')).unsqueeze(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# compute ONNX Runtime output prediction
|
| 45 |
+
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(x)}
|
| 46 |
+
logits = ort_session.run(None, ort_inputs)[0]
|
| 47 |
+
probs = torch.tensor(logits).softmax(-1)
|
| 48 |
+
preds, probs = tokenizer_base.decode(probs)
|
| 49 |
+
preds = preds[0]
|
| 50 |
+
print(preds)
|
| 51 |
+
return preds
|
| 52 |
|
| 53 |
+
transform,ort_session = initialize_model(model_file=model_file)
|
|
|
|
| 54 |
|
| 55 |
+
gr.Interface(
|
| 56 |
+
get_text,
|
| 57 |
+
inputs=gr.Image(type="pil"),
|
| 58 |
+
outputs=gr.Textbox(),
|
| 59 |
+
title="Text Captcha Reader",
|
| 60 |
+
examples=["8000.png","11JW29.png","2a8486.jpg","2nbcx.png",
|
| 61 |
+
"000679.png","000HU.png","00Uga.png.jpg","00bAQwhAZU.jpg",
|
| 62 |
+
"00h57kYf.jpg","0EoHdtVb.png","0JS21.png","0p98z.png","10010.png"]
|
| 63 |
+
).launch()
|
| 64 |
|
| 65 |
+
# if __name__ == "__main__":
|
| 66 |
+
# image_path = "8000.png"
|
| 67 |
+
# preds,probs = get_text(image_path)
|
| 68 |
+
# print(preds[0])
|
| 69 |
+
|