Spaces:
Sleeping
Sleeping
| title: CodeMentor AI | |
| emoji: π§ | |
| colorFrom: purple | |
| colorTo: blue | |
| sdk: streamlit | |
| sdk_version: "1.30.0" | |
| app_file: app/app.py | |
| pinned: true | |
| # CodeMentor AI β ChatGPT for Coding Interviews (Fine-Tuned Flan-T5) | |
| CodeMentor AI is a fine-tuned language model specialized for solving **coding interview questions**, built on top of **TinyLlama-1.1B-Chat**, trained with 20K+ prompts, and deployed with a sleek **ChatGPT-style UI using Streamlit**. | |
| --- | |
| ## Features | |
| - Fine-tuned LLM using HuggingFace Transformers | |
| - Trained on 20K+ high-quality coding problems (CodeAlpaca dataset) | |
| - Clean ChatGPT-style frontend built with Streamlit | |
| - Docker-ready for easy deployment | |
| - Optimized for local + cloud usage | |
| - Can run inference via terminal or web UI | |
| --- | |
| ## Tech Stack | |
| - `Flan-T5-small` (HuggingFace) | |
| - `Transformers` + `Datasets` | |
| - `Streamlit` | |
| - `Docker` for packaging | |
| - `Render` or `HuggingFace Spaces` for deployment | |
| --- | |
| ## Training Details | |
| | Config | Value | | |
| |----------------|-------------------------| | |
| | Model | `google/flan-t5-small` | | |
| | Epochs | 6 | | |
| | Batch Size | 1 (with gradient accumulation) | | |
| | Learning Rate | 5e-5 | | |
| | Max Length | 512 tokens | | |
| | GPU | GTX 1650 (4GB VRAM) | | |
| | Total Samples | ~20,000 examples | | |
| | Training Time | ~4 hours | | |
| --- | |
| ## Folder Structure | |
| CodeMentor-AI/ | |
| β | |
| βββ data/ # Raw + Processed Datasets | |
| βββ model/codementor-flan/ # Saved fine-tuned model | |
| βββ train/ # Preprocessing + Training scripts | |
| βββ app/app.py # Streamlit Chat UI | |
| βββ requirements.txt # All dependencies | |
| βββ Dockerfile # Docker config | |
| βββ render.yaml # Optional Render deployment config | |
| --- | |
| ## to Run Locally | |
| ```bash | |
| git clone https://github.com/chetan10510/CodeMentor-AI.git | |
| cd CodeMentor-AI | |
| python -m venv .venv | |
| .venv\Scripts\activate # Windows | |
| pip install -r requirements.txt | |
| streamlit run app/app.py | |