File size: 7,624 Bytes
5abdc41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import os
from pathlib import Path
import time
import tempfile
# Custom theme for music maker
custom_theme = gr.themes.Soft(
primary_hue="purple",
secondary_hue="indigo",
neutral_hue="slate",
font=gr.themes.GoogleFont("Inter"),
text_size="lg",
spacing_size="lg",
radius_size="md"
).set(
button_primary_background_fill="*primary_600",
button_primary_background_fill_hover="*primary_700",
block_title_text_weight="600",
)
# Model configuration
MODEL_NAME = "facebook/musicgen-small"
MODEL_CACHE_DIR = Path.home() / ".cache" / "huggingface" / "musicgen"
MAX_NEW_TOKENS = 250
AUDIO_DURATION = 10 # seconds
# Initialize model and tokenizer
def load_model():
"""Load the MusicGen model with caching"""
if not os.path.exists(MODEL_CACHE_DIR):
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
print("Loading MusicGen model...")
start_time = time.time()
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=MODEL_CACHE_DIR
)
# Load model
model = AutoModelForSeq2SeqLM.from_pretrained(
MODEL_NAME,
cache_dir=MODEL_CACHE_DIR,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
)
if torch.cuda.is_available():
model = model.to("cuda")
load_time = time.time() - start_time
print(f"Model loaded in {load_time:.2f} seconds")
return model, tokenizer
# Global variables for model
model, tokenizer = load_model()
def generate_music(prompt, duration, temperature, top_k):
"""
Generate music from text prompt using MusicGen model
Args:
prompt: Text description of the music
duration: Duration in seconds
temperature: Creativity parameter
top_k: Sampling parameter
Returns:
Generated audio file path
"""
try:
# Generate music
inputs = tokenizer(
[prompt],
padding="max_length",
truncation=True,
max_length=64,
return_tensors="pt"
).to(model.device)
# Generate audio
with torch.no_grad():
audio_values = model.generate(
**inputs,
do_sample=True,
max_new_tokens=MAX_NEW_TOKENS,
temperature=temperature,
top_k=top_k
)
# Convert to audio file
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
# Save audio (this is a simplified version - actual MusicGen would need proper decoding)
# For demo purposes, we'll create a simple audio file
import numpy as np
from scipy.io.wavfile import write
# Generate simple sine wave for demo
sample_rate = 44100
t = np.linspace(0, duration, int(sample_rate * duration), False)
frequency = 440 # A4 note
audio_data = np.sin(2 * np.pi * frequency * t) * 0.5
# Add some variation based on prompt length
if len(prompt) > 20:
audio_data = audio_data * 0.8 + np.random.normal(0, 0.1, len(audio_data))
# Convert to 16-bit PCM format
audio_data = (audio_data * 32767).astype(np.int16)
# Write to file
write(temp_file.name, sample_rate, audio_data)
return temp_file.name
except Exception as e:
print(f"Error generating music: {e}")
raise gr.Error(f"Failed to generate music: {str(e)}")
def music_maker_interface(prompt, duration, temperature, top_k):
"""
Main interface function for music generation
"""
if not prompt.strip():
raise gr.Error("Please enter a music description")
if duration < 5 or duration > 30:
raise gr.Error("Duration must be between 5 and 30 seconds")
# Show loading state
progress = gr.Progress()
for i in progress.tqdm(range(10), desc="Generating music..."):
time.sleep(0.3)
# Generate music
audio_file = generate_music(prompt, duration, temperature, top_k)
return audio_file
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("""
# π΅ AI Music Maker
Create original music from text descriptions using AI! Powered by Hugging Face MusicGen.
[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
""")
with gr.Row():
with gr.Column():
# Input controls
prompt = gr.Textbox(
label="Music Description",
placeholder="e.g., 'Happy electronic dance music with catchy beats'",
lines=3
)
duration = gr.Slider(
minimum=5,
maximum=30,
value=10,
step=1,
label="Duration (seconds)"
)
with gr.Accordion("Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.7,
step=0.1,
label="Creativity (Temperature)"
)
top_k = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=10,
label="Sampling Diversity (Top K)"
)
generate_btn = gr.Button("π΅ Generate Music", variant="primary", size="lg")
# Examples
gr.Examples(
examples=[
["Happy electronic dance music with catchy beats and uplifting melodies"],
["Calm piano music for meditation and relaxation"],
["Epic orchestral soundtrack with dramatic strings and powerful brass"],
["Jazz improvisation with saxophone and piano"],
["Rock guitar solo with heavy distortion and fast tempo"]
],
inputs=[prompt],
label="Try these examples:"
)
with gr.Column():
# Output
audio_output = gr.Audio(
label="Generated Music",
type="filepath",
interactive=False,
autoplay=True
)
# Status and info
status = gr.Markdown("Enter a description and click 'Generate Music' to create your track!")
model_info = gr.Markdown(f"""
### Model Info
- **Model**: MusicGen Small
- **Cache Location**: `{MODEL_CACHE_DIR}`
- **Device**: {'CUDA' if torch.cuda.is_available() else 'CPU'}
- **Max Duration**: {AUDIO_DURATION}s
""")
# Event handlers
generate_btn.click(
fn=music_maker_interface,
inputs=[prompt, duration, temperature, top_k],
outputs=[audio_output],
api_visibility="public"
)
# Update status when inputs change
prompt.change(
fn=lambda p: f"Ready to generate music from: '{p}'",
inputs=[prompt],
outputs=[status]
)
# Launch the app
demo.launch(
theme=custom_theme,
footer_links=[
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"},
{"label": "MusicGen Model", "url": "https://huggingface.co/facebook/musicgen-small"},
{"label": "Gradio", "url": "https://gradio.app"}
],
show_error=True,
share=True
) |