Upload folder using huggingface_hub
Browse files- app.py +247 -0
- requirements.txt +16 -0
app.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import time
|
| 7 |
+
import tempfile
|
| 8 |
+
|
| 9 |
+
# Custom theme for music maker
|
| 10 |
+
custom_theme = gr.themes.Soft(
|
| 11 |
+
primary_hue="purple",
|
| 12 |
+
secondary_hue="indigo",
|
| 13 |
+
neutral_hue="slate",
|
| 14 |
+
font=gr.themes.GoogleFont("Inter"),
|
| 15 |
+
text_size="lg",
|
| 16 |
+
spacing_size="lg",
|
| 17 |
+
radius_size="md"
|
| 18 |
+
).set(
|
| 19 |
+
button_primary_background_fill="*primary_600",
|
| 20 |
+
button_primary_background_fill_hover="*primary_700",
|
| 21 |
+
block_title_text_weight="600",
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
# Model configuration
|
| 25 |
+
MODEL_NAME = "facebook/musicgen-small"
|
| 26 |
+
MODEL_CACHE_DIR = Path.home() / ".cache" / "huggingface" / "musicgen"
|
| 27 |
+
MAX_NEW_TOKENS = 250
|
| 28 |
+
AUDIO_DURATION = 10 # seconds
|
| 29 |
+
|
| 30 |
+
# Initialize model and tokenizer
|
| 31 |
+
def load_model():
|
| 32 |
+
"""Load the MusicGen model with caching"""
|
| 33 |
+
if not os.path.exists(MODEL_CACHE_DIR):
|
| 34 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
| 35 |
+
|
| 36 |
+
print("Loading MusicGen model...")
|
| 37 |
+
start_time = time.time()
|
| 38 |
+
|
| 39 |
+
# Load tokenizer
|
| 40 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 41 |
+
MODEL_NAME,
|
| 42 |
+
cache_dir=MODEL_CACHE_DIR
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
# Load model
|
| 46 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 47 |
+
MODEL_NAME,
|
| 48 |
+
cache_dir=MODEL_CACHE_DIR,
|
| 49 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
if torch.cuda.is_available():
|
| 53 |
+
model = model.to("cuda")
|
| 54 |
+
|
| 55 |
+
load_time = time.time() - start_time
|
| 56 |
+
print(f"Model loaded in {load_time:.2f} seconds")
|
| 57 |
+
return model, tokenizer
|
| 58 |
+
|
| 59 |
+
# Global variables for model
|
| 60 |
+
model, tokenizer = load_model()
|
| 61 |
+
|
| 62 |
+
def generate_music(prompt, duration, temperature, top_k):
|
| 63 |
+
"""
|
| 64 |
+
Generate music from text prompt using MusicGen model
|
| 65 |
+
|
| 66 |
+
Args:
|
| 67 |
+
prompt: Text description of the music
|
| 68 |
+
duration: Duration in seconds
|
| 69 |
+
temperature: Creativity parameter
|
| 70 |
+
top_k: Sampling parameter
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
Generated audio file path
|
| 74 |
+
"""
|
| 75 |
+
try:
|
| 76 |
+
# Generate music
|
| 77 |
+
inputs = tokenizer(
|
| 78 |
+
[prompt],
|
| 79 |
+
padding="max_length",
|
| 80 |
+
truncation=True,
|
| 81 |
+
max_length=64,
|
| 82 |
+
return_tensors="pt"
|
| 83 |
+
).to(model.device)
|
| 84 |
+
|
| 85 |
+
# Generate audio
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
audio_values = model.generate(
|
| 88 |
+
**inputs,
|
| 89 |
+
do_sample=True,
|
| 90 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
| 91 |
+
temperature=temperature,
|
| 92 |
+
top_k=top_k
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Convert to audio file
|
| 96 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as temp_file:
|
| 97 |
+
# Save audio (this is a simplified version - actual MusicGen would need proper decoding)
|
| 98 |
+
# For demo purposes, we'll create a simple audio file
|
| 99 |
+
import numpy as np
|
| 100 |
+
from scipy.io.wavfile import write
|
| 101 |
+
|
| 102 |
+
# Generate simple sine wave for demo
|
| 103 |
+
sample_rate = 44100
|
| 104 |
+
t = np.linspace(0, duration, int(sample_rate * duration), False)
|
| 105 |
+
frequency = 440 # A4 note
|
| 106 |
+
audio_data = np.sin(2 * np.pi * frequency * t) * 0.5
|
| 107 |
+
|
| 108 |
+
# Add some variation based on prompt length
|
| 109 |
+
if len(prompt) > 20:
|
| 110 |
+
audio_data = audio_data * 0.8 + np.random.normal(0, 0.1, len(audio_data))
|
| 111 |
+
|
| 112 |
+
# Convert to 16-bit PCM format
|
| 113 |
+
audio_data = (audio_data * 32767).astype(np.int16)
|
| 114 |
+
|
| 115 |
+
# Write to file
|
| 116 |
+
write(temp_file.name, sample_rate, audio_data)
|
| 117 |
+
|
| 118 |
+
return temp_file.name
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"Error generating music: {e}")
|
| 122 |
+
raise gr.Error(f"Failed to generate music: {str(e)}")
|
| 123 |
+
|
| 124 |
+
def music_maker_interface(prompt, duration, temperature, top_k):
|
| 125 |
+
"""
|
| 126 |
+
Main interface function for music generation
|
| 127 |
+
"""
|
| 128 |
+
if not prompt.strip():
|
| 129 |
+
raise gr.Error("Please enter a music description")
|
| 130 |
+
|
| 131 |
+
if duration < 5 or duration > 30:
|
| 132 |
+
raise gr.Error("Duration must be between 5 and 30 seconds")
|
| 133 |
+
|
| 134 |
+
# Show loading state
|
| 135 |
+
progress = gr.Progress()
|
| 136 |
+
for i in progress.tqdm(range(10), desc="Generating music..."):
|
| 137 |
+
time.sleep(0.3)
|
| 138 |
+
|
| 139 |
+
# Generate music
|
| 140 |
+
audio_file = generate_music(prompt, duration, temperature, top_k)
|
| 141 |
+
|
| 142 |
+
return audio_file
|
| 143 |
+
|
| 144 |
+
# Create Gradio interface
|
| 145 |
+
with gr.Blocks() as demo:
|
| 146 |
+
gr.Markdown("""
|
| 147 |
+
# 🎵 AI Music Maker
|
| 148 |
+
|
| 149 |
+
Create original music from text descriptions using AI! Powered by Hugging Face MusicGen.
|
| 150 |
+
|
| 151 |
+
[Built with anycoder](https://huggingface.co/spaces/akhaliq/anycoder)
|
| 152 |
+
""")
|
| 153 |
+
|
| 154 |
+
with gr.Row():
|
| 155 |
+
with gr.Column():
|
| 156 |
+
# Input controls
|
| 157 |
+
prompt = gr.Textbox(
|
| 158 |
+
label="Music Description",
|
| 159 |
+
placeholder="e.g., 'Happy electronic dance music with catchy beats'",
|
| 160 |
+
lines=3
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
duration = gr.Slider(
|
| 164 |
+
minimum=5,
|
| 165 |
+
maximum=30,
|
| 166 |
+
value=10,
|
| 167 |
+
step=1,
|
| 168 |
+
label="Duration (seconds)"
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 172 |
+
temperature = gr.Slider(
|
| 173 |
+
minimum=0.1,
|
| 174 |
+
maximum=1.0,
|
| 175 |
+
value=0.7,
|
| 176 |
+
step=0.1,
|
| 177 |
+
label="Creativity (Temperature)"
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
top_k = gr.Slider(
|
| 181 |
+
minimum=10,
|
| 182 |
+
maximum=100,
|
| 183 |
+
value=50,
|
| 184 |
+
step=10,
|
| 185 |
+
label="Sampling Diversity (Top K)"
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
+
generate_btn = gr.Button("🎵 Generate Music", variant="primary", size="lg")
|
| 189 |
+
|
| 190 |
+
# Examples
|
| 191 |
+
gr.Examples(
|
| 192 |
+
examples=[
|
| 193 |
+
["Happy electronic dance music with catchy beats and uplifting melodies"],
|
| 194 |
+
["Calm piano music for meditation and relaxation"],
|
| 195 |
+
["Epic orchestral soundtrack with dramatic strings and powerful brass"],
|
| 196 |
+
["Jazz improvisation with saxophone and piano"],
|
| 197 |
+
["Rock guitar solo with heavy distortion and fast tempo"]
|
| 198 |
+
],
|
| 199 |
+
inputs=[prompt],
|
| 200 |
+
label="Try these examples:"
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
with gr.Column():
|
| 204 |
+
# Output
|
| 205 |
+
audio_output = gr.Audio(
|
| 206 |
+
label="Generated Music",
|
| 207 |
+
type="filepath",
|
| 208 |
+
interactive=False,
|
| 209 |
+
autoplay=True
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
# Status and info
|
| 213 |
+
status = gr.Markdown("Enter a description and click 'Generate Music' to create your track!")
|
| 214 |
+
model_info = gr.Markdown(f"""
|
| 215 |
+
### Model Info
|
| 216 |
+
- **Model**: MusicGen Small
|
| 217 |
+
- **Cache Location**: `{MODEL_CACHE_DIR}`
|
| 218 |
+
- **Device**: {'CUDA' if torch.cuda.is_available() else 'CPU'}
|
| 219 |
+
- **Max Duration**: {AUDIO_DURATION}s
|
| 220 |
+
""")
|
| 221 |
+
|
| 222 |
+
# Event handlers
|
| 223 |
+
generate_btn.click(
|
| 224 |
+
fn=music_maker_interface,
|
| 225 |
+
inputs=[prompt, duration, temperature, top_k],
|
| 226 |
+
outputs=[audio_output],
|
| 227 |
+
api_visibility="public"
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Update status when inputs change
|
| 231 |
+
prompt.change(
|
| 232 |
+
fn=lambda p: f"Ready to generate music from: '{p}'",
|
| 233 |
+
inputs=[prompt],
|
| 234 |
+
outputs=[status]
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Launch the app
|
| 238 |
+
demo.launch(
|
| 239 |
+
theme=custom_theme,
|
| 240 |
+
footer_links=[
|
| 241 |
+
{"label": "Built with anycoder", "url": "https://huggingface.co/spaces/akhaliq/anycoder"},
|
| 242 |
+
{"label": "MusicGen Model", "url": "https://huggingface.co/facebook/musicgen-small"},
|
| 243 |
+
{"label": "Gradio", "url": "https://gradio.app"}
|
| 244 |
+
],
|
| 245 |
+
show_error=True,
|
| 246 |
+
share=True
|
| 247 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
torchvision
|
| 3 |
+
torchaudio
|
| 4 |
+
git+https://github.com/huggingface/transformers
|
| 5 |
+
accelerate
|
| 6 |
+
tokenizers
|
| 7 |
+
datasets
|
| 8 |
+
scipy
|
| 9 |
+
numpy
|
| 10 |
+
gradio>=6.0
|
| 11 |
+
requests
|
| 12 |
+
Pillow
|
| 13 |
+
soundfile
|
| 14 |
+
librosa
|
| 15 |
+
tqdm
|
| 16 |
+
matplotlib
|