SentenceTransformer based on FacebookAI/roberta-large
This is a sentence-transformers model finetuned from FacebookAI/roberta-large on the all-nli dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: FacebookAI/roberta-large
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6579, 0.3481],
# [0.6579, 1.0000, 0.5411],
# [0.3481, 0.5411, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts-devandsts-test - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | sts-dev | sts-test |
|---|---|---|
| pearson_cosine | 0.7745 | 0.7441 |
| spearman_cosine | 0.7806 | 0.7525 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.38 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 12.8 tokens
- max: 39 tokens
- min: 6 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.A person is at a diner, ordering an omelette.Children smiling and waving at cameraThere are children presentThe kids are frowningA boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.The boy skates down the sidewalk. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 18.02 tokens
- max: 66 tokens
- min: 5 tokens
- mean: 9.81 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.37 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.Two woman are holding packages.The men are fighting outside a deli.Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.Two kids in numbered jerseys wash their hands.Two kids in jackets walk to school.A man selling donuts to a customer during a world exhibition event held in the city of AngelesA man selling donuts to a customer.A woman drinks her coffee in a small cafe. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 15warmup_ratio: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 15max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.5730 | - |
| 0.0287 | 500 | 10.2711 | 3.3325 | 0.8185 | - |
| 0.0574 | 1000 | 4.1395 | 1.8744 | 0.8648 | - |
| 0.0860 | 1500 | 3.2579 | 1.5506 | 0.8684 | - |
| 0.1147 | 2000 | 2.9091 | 1.3770 | 0.8712 | - |
| 0.1434 | 2500 | 2.6568 | 1.3085 | 0.8713 | - |
| 0.1721 | 3000 | 2.4983 | 1.2535 | 0.8814 | - |
| 0.2008 | 3500 | 2.3645 | 1.1715 | 0.8724 | - |
| 0.2294 | 4000 | 2.2675 | 1.1691 | 0.8724 | - |
| 0.2581 | 4500 | 2.2197 | 1.1681 | 0.8793 | - |
| 0.2868 | 5000 | 2.1473 | 1.1175 | 0.8780 | - |
| 0.3155 | 5500 | 2.0275 | 1.0656 | 0.8779 | - |
| 0.3442 | 6000 | 2.0927 | 1.0879 | 0.8791 | - |
| 0.3729 | 6500 | 2.1037 | 1.0664 | 0.8702 | - |
| 0.4015 | 7000 | 2.0268 | 1.0565 | 0.8714 | - |
| 0.4302 | 7500 | 1.9499 | 1.1268 | 0.8660 | - |
| 0.4589 | 8000 | 1.8692 | 1.0884 | 0.8712 | - |
| 0.4876 | 8500 | 1.9749 | 1.1014 | 0.8681 | - |
| 0.5163 | 9000 | 1.9716 | 1.0833 | 0.8555 | - |
| 0.5449 | 9500 | 1.9051 | 1.1391 | 0.8690 | - |
| 0.5736 | 10000 | 1.8493 | 1.1056 | 0.8708 | - |
| 0.6023 | 10500 | 2.0184 | 1.0989 | 0.8686 | - |
| 0.6310 | 11000 | 1.7868 | 1.1040 | 0.8620 | - |
| 0.6597 | 11500 | 1.8045 | 1.0677 | 0.8643 | - |
| 0.6883 | 12000 | 1.7946 | 1.0693 | 0.8624 | - |
| 0.7170 | 12500 | 1.8075 | 1.1100 | 0.8651 | - |
| 0.7457 | 13000 | 1.7923 | 1.1331 | 0.8577 | - |
| 0.7744 | 13500 | 1.7866 | 1.1204 | 0.8552 | - |
| 0.8031 | 14000 | 1.7495 | 1.1104 | 0.8542 | - |
| 0.8318 | 14500 | 1.7729 | 1.1599 | 0.8647 | - |
| 0.8604 | 15000 | 1.7413 | 1.0973 | 0.8587 | - |
| 0.8891 | 15500 | 1.7937 | 1.1443 | 0.8572 | - |
| 0.9178 | 16000 | 1.7489 | 1.1553 | 0.8566 | - |
| 0.9465 | 16500 | 1.7695 | 1.1249 | 0.8518 | - |
| 0.9752 | 17000 | 1.6964 | 1.1616 | 0.8564 | - |
| 1.0038 | 17500 | 1.7009 | 1.2108 | 0.8419 | - |
| 1.0325 | 18000 | 1.496 | 1.1526 | 0.8572 | - |
| 1.0612 | 18500 | 1.5363 | 1.2081 | 0.8393 | - |
| 1.0899 | 19000 | 1.5324 | 1.2091 | 0.8421 | - |
| 1.1186 | 19500 | 1.532 | 1.2015 | 0.8478 | - |
| 1.1472 | 20000 | 1.6217 | 1.1716 | 0.8537 | - |
| 1.1759 | 20500 | 1.6181 | 1.2310 | 0.8553 | - |
| 1.2046 | 21000 | 1.6387 | 1.2562 | 0.8513 | - |
| 1.2333 | 21500 | 1.738 | 1.2336 | 0.8432 | - |
| 1.2620 | 22000 | 1.6215 | 1.2923 | 0.8507 | - |
| 1.2907 | 22500 | 1.6923 | 1.2786 | 0.8431 | - |
| 1.3193 | 23000 | 1.6976 | 1.2908 | 0.8410 | - |
| 1.3480 | 23500 | 1.7603 | 1.3793 | 0.8438 | - |
| 1.3767 | 24000 | 1.7386 | 1.3162 | 0.8399 | - |
| 1.4054 | 24500 | 1.6719 | 1.3176 | 0.8375 | - |
| 1.4341 | 25000 | 1.6746 | 1.4208 | 0.8358 | - |
| 1.4627 | 25500 | 1.7317 | 1.4188 | 0.8323 | - |
| 1.4914 | 26000 | 1.7185 | 1.3929 | 0.8395 | - |
| 1.5201 | 26500 | 1.6974 | 1.4667 | 0.8359 | - |
| 1.5488 | 27000 | 1.7197 | 1.4712 | 0.8325 | - |
| 1.5775 | 27500 | 1.8755 | 1.4054 | 0.8395 | - |
| 1.6061 | 28000 | 1.7886 | 1.4135 | 0.8417 | - |
| 1.6348 | 28500 | 1.8037 | 1.4044 | 0.8387 | - |
| 1.6635 | 29000 | 1.7862 | 1.4599 | 0.8344 | - |
| 1.6922 | 29500 | 1.7436 | 1.3778 | 0.8413 | - |
| 1.7209 | 30000 | 1.7524 | 1.3536 | 0.8354 | - |
| 1.7496 | 30500 | 1.7209 | 1.4169 | 0.8272 | - |
| 1.7782 | 31000 | 2.1612 | 13.8218 | 0.5311 | - |
| 1.8069 | 31500 | 2.1815 | 1.5036 | 0.8357 | - |
| 1.8356 | 32000 | 1.7241 | 1.4602 | 0.8326 | - |
| 1.8643 | 32500 | 1.6982 | 1.4521 | 0.8369 | - |
| 1.8930 | 33000 | 1.7243 | 1.4545 | 0.8428 | - |
| 1.9216 | 33500 | 1.7885 | 1.6161 | 0.8385 | - |
| 1.9503 | 34000 | 1.8334 | 1.5186 | 0.8347 | - |
| 1.9790 | 34500 | 1.8216 | 1.4084 | 0.8409 | - |
| 2.0077 | 35000 | 1.6731 | 1.4777 | 0.8364 | - |
| 2.0364 | 35500 | 1.4519 | 1.5688 | 0.8307 | - |
| 2.0650 | 36000 | 1.6391 | 1.4630 | 0.8377 | - |
| 2.0937 | 36500 | 1.5565 | 1.5380 | 0.8343 | - |
| 2.1224 | 37000 | 1.5275 | 1.4737 | 0.8244 | - |
| 2.1511 | 37500 | 1.4889 | 1.5225 | 0.8269 | - |
| 2.1798 | 38000 | 1.5439 | 1.4909 | 0.8378 | - |
| 2.2085 | 38500 | 1.4539 | 1.4877 | 0.8348 | - |
| 2.2371 | 39000 | 1.4442 | 1.4533 | 0.8321 | - |
| 2.2658 | 39500 | 1.5136 | 1.4661 | 0.8285 | - |
| 2.2945 | 40000 | 1.439 | 1.4510 | 0.8277 | - |
| 2.3232 | 40500 | 1.4663 | 1.4299 | 0.8380 | - |
| 2.3519 | 41000 | 1.4443 | 1.4788 | 0.8320 | - |
| 2.3805 | 41500 | 1.5818 | 1.4900 | 0.8261 | - |
| 2.4092 | 42000 | 1.4851 | 1.4582 | 0.8354 | - |
| 2.4379 | 42500 | 1.4569 | 1.4838 | 0.8309 | - |
| 2.4666 | 43000 | 1.4194 | 1.5216 | 0.8163 | - |
| 2.4953 | 43500 | 1.4702 | 1.4703 | 0.8196 | - |
| 2.5239 | 44000 | 1.5365 | 1.4784 | 0.8214 | - |
| 2.5526 | 44500 | 1.5114 | 1.4578 | 0.8217 | - |
| 2.5813 | 45000 | 1.5356 | 1.4729 | 0.8115 | - |
| 2.6100 | 45500 | 1.4716 | 1.4299 | 0.8309 | - |
| 2.6387 | 46000 | 1.4557 | 1.4769 | 0.8227 | - |
| 2.6674 | 46500 | 1.4415 | 1.5078 | 0.8177 | - |
| 2.6960 | 47000 | 1.4528 | 1.4463 | 0.8257 | - |
| 2.7247 | 47500 | 1.4631 | 1.5136 | 0.8232 | - |
| 2.7534 | 48000 | 1.5284 | 1.4869 | 0.8206 | - |
| 2.7821 | 48500 | 1.442 | 1.4322 | 0.8273 | - |
| 2.8108 | 49000 | 1.4305 | 1.4383 | 0.8292 | - |
| 2.8394 | 49500 | 1.4571 | 1.4309 | 0.8201 | - |
| 2.8681 | 50000 | 1.4359 | 1.4952 | 0.8178 | - |
| 2.8968 | 50500 | 1.4558 | 1.4832 | 0.8233 | - |
| 2.9255 | 51000 | 1.4631 | 1.5744 | 0.8227 | - |
| 2.9542 | 51500 | 1.4368 | 1.4477 | 0.8279 | - |
| 2.9828 | 52000 | 1.4329 | 1.8528 | 0.8233 | - |
| 3.0115 | 52500 | 1.4 | 1.5122 | 0.8238 | - |
| 3.0402 | 53000 | 1.2241 | 1.4225 | 0.8280 | - |
| 3.0689 | 53500 | 1.2561 | 1.5065 | 0.8204 | - |
| 3.0976 | 54000 | 1.3201 | 1.6042 | 0.8190 | - |
| 3.1263 | 54500 | 1.311 | 1.5385 | 0.8235 | - |
| 3.1549 | 55000 | 1.2471 | 1.4826 | 0.8256 | - |
| 3.1836 | 55500 | 1.2535 | 1.4369 | 0.8259 | - |
| 3.2123 | 56000 | 1.2698 | 1.6402 | 0.8045 | - |
| 3.2410 | 56500 | 1.2355 | 1.4863 | 0.8220 | - |
| 3.2697 | 57000 | 1.2081 | 1.4576 | 0.8195 | - |
| 3.2983 | 57500 | 1.1963 | 1.4918 | 0.8119 | - |
| 3.3270 | 58000 | 1.2593 | 1.4623 | 0.8246 | - |
| 3.3557 | 58500 | 1.282 | 1.4623 | 0.8090 | - |
| 3.3844 | 59000 | 1.2635 | 1.5247 | 0.8166 | - |
| 3.4131 | 59500 | 1.2815 | 1.5402 | 0.8202 | - |
| 3.4417 | 60000 | 1.1852 | 1.5276 | 0.8279 | - |
| 3.4704 | 60500 | 1.2092 | 1.3838 | 0.8203 | - |
| 3.4991 | 61000 | 1.216 | 1.4860 | 0.8148 | - |
| 3.5278 | 61500 | 1.2038 | 1.5535 | 0.8265 | - |
| 3.5565 | 62000 | 1.2619 | 1.4893 | 0.8213 | - |
| 3.5852 | 62500 | 1.2023 | 1.5940 | 0.8192 | - |
| 3.6138 | 63000 | 1.2061 | 1.5166 | 0.8166 | - |
| 3.6425 | 63500 | 1.3908 | 1.5104 | 0.8243 | - |
| 3.6712 | 64000 | 1.2893 | 1.8377 | 0.8200 | - |
| 3.6999 | 64500 | 1.2521 | 1.6505 | 0.8215 | - |
| 3.7286 | 65000 | 1.2866 | 1.5029 | 0.8145 | - |
| 3.7572 | 65500 | 1.4913 | 1.5370 | 0.8217 | - |
| 3.7859 | 66000 | 1.3785 | 1.5048 | 0.8168 | - |
| 3.8146 | 66500 | 1.3013 | 1.6031 | 0.8086 | - |
| 3.8433 | 67000 | 1.3738 | 1.6297 | 0.8115 | - |
| 3.8720 | 67500 | 1.2946 | 1.5696 | 0.8228 | - |
| 3.9006 | 68000 | 1.3555 | 1.5255 | 0.8089 | - |
| 3.9293 | 68500 | 1.2593 | 1.5023 | 0.8200 | - |
| 3.9580 | 69000 | 1.2875 | 1.5658 | 0.8173 | - |
| 3.9867 | 69500 | 1.2582 | 1.4963 | 0.8145 | - |
| 4.0154 | 70000 | 1.1927 | 1.5811 | 0.8084 | - |
| 4.0441 | 70500 | 1.103 | 1.7786 | 0.8005 | - |
| 4.0727 | 71000 | 1.1006 | 1.5336 | 0.8172 | - |
| 4.1014 | 71500 | 1.0872 | 1.6159 | 0.8271 | - |
| 4.1301 | 72000 | 1.1406 | 1.5320 | 0.8102 | - |
| 4.1588 | 72500 | 1.1652 | 1.5708 | 0.8213 | - |
| 4.1875 | 73000 | 1.1123 | 1.6201 | 0.8140 | - |
| 4.2161 | 73500 | 1.0834 | 1.5985 | 0.8213 | - |
| 4.2448 | 74000 | 1.0813 | 1.5889 | 0.8106 | - |
| 4.2735 | 74500 | 1.0598 | 1.5266 | 0.8152 | - |
| 4.3022 | 75000 | 1.0794 | 1.5154 | 0.8234 | - |
| 4.3309 | 75500 | 1.1016 | 1.6363 | 0.8189 | - |
| 4.3595 | 76000 | 1.1203 | 1.5820 | 0.8245 | - |
| 4.3882 | 76500 | 1.1166 | 1.5379 | 0.8197 | - |
| 4.4169 | 77000 | 1.1056 | 1.5454 | 0.8109 | - |
| 4.4456 | 77500 | 1.0499 | 1.4709 | 0.8128 | - |
| 4.4743 | 78000 | 1.0752 | 1.5489 | 0.8111 | - |
| 4.5030 | 78500 | 1.1039 | 1.5323 | 0.8238 | - |
| 4.5316 | 79000 | 1.0726 | 1.4388 | 0.8175 | - |
| 4.5603 | 79500 | 1.0873 | 1.5391 | 0.8165 | - |
| 4.5890 | 80000 | 1.1028 | 1.4887 | 0.8118 | - |
| 4.6177 | 80500 | 1.122 | 1.4914 | 0.8160 | - |
| 4.6464 | 81000 | 1.0842 | 1.5051 | 0.8167 | - |
| 4.6750 | 81500 | 1.0631 | 1.5653 | 0.8132 | - |
| 4.7037 | 82000 | 1.0724 | 1.5228 | 0.8120 | - |
| 4.7324 | 82500 | 1.0515 | 1.5087 | 0.8110 | - |
| 4.7611 | 83000 | 1.0537 | 1.5241 | 0.8120 | - |
| 4.7898 | 83500 | 1.0941 | 1.5083 | 0.8153 | - |
| 4.8184 | 84000 | 1.0812 | 1.5091 | 0.8001 | - |
| 4.8471 | 84500 | 1.0707 | 1.4898 | 0.8109 | - |
| 4.8758 | 85000 | 1.0467 | 1.4924 | 0.8184 | - |
| 4.9045 | 85500 | 1.0737 | 1.4708 | 0.8133 | - |
| 4.9332 | 86000 | 1.047 | 1.5657 | 0.8165 | - |
| 4.9619 | 86500 | 1.0175 | 1.5067 | 0.8086 | - |
| 4.9905 | 87000 | 1.0771 | 1.4804 | 0.8080 | - |
| 5.0192 | 87500 | 0.9551 | 1.5010 | 0.8059 | - |
| 5.0479 | 88000 | 0.9157 | 1.4884 | 0.8077 | - |
| 5.0766 | 88500 | 0.8326 | 1.4966 | 0.8090 | - |
| 5.1053 | 89000 | 0.8485 | 1.5071 | 0.8102 | - |
| 5.1339 | 89500 | 0.8998 | 1.5126 | 0.8049 | - |
| 5.1626 | 90000 | 0.9012 | 1.4982 | 0.8144 | - |
| 5.1913 | 90500 | 0.9354 | 1.4888 | 0.8066 | - |
| 5.2200 | 91000 | 0.9198 | 1.5137 | 0.8022 | - |
| 5.2487 | 91500 | 0.9074 | 1.4852 | 0.7977 | - |
| 5.2773 | 92000 | 0.9429 | 1.5120 | 0.8027 | - |
| 5.3060 | 92500 | 0.8891 | 1.5665 | 0.8002 | - |
| 5.3347 | 93000 | 1.054 | 1.5305 | 0.7982 | - |
| 5.3634 | 93500 | 0.9508 | 1.4608 | 0.8079 | - |
| 5.3921 | 94000 | 0.9275 | 1.5325 | 0.8086 | - |
| 5.4208 | 94500 | 0.9123 | 1.5041 | 0.8056 | - |
| 5.4494 | 95000 | 0.9666 | 1.5362 | 0.8005 | - |
| 5.4781 | 95500 | 0.9468 | 1.4727 | 0.7992 | - |
| 5.5068 | 96000 | 0.9501 | 1.4381 | 0.8078 | - |
| 5.5355 | 96500 | 0.9527 | 1.5504 | 0.8014 | - |
| 5.5642 | 97000 | 0.8989 | 1.4986 | 0.8082 | - |
| 5.5928 | 97500 | 0.9034 | 1.5549 | 0.8021 | - |
| 5.6215 | 98000 | 0.8865 | 1.6116 | 0.8084 | - |
| 5.6502 | 98500 | 1.5304 | 1.8928 | 0.7981 | - |
| 5.6789 | 99000 | 0.9919 | 1.4798 | 0.8050 | - |
| 5.7076 | 99500 | 0.9651 | 1.5517 | 0.8031 | - |
| 5.7362 | 100000 | 0.9372 | 1.5297 | 0.8010 | - |
| 5.7649 | 100500 | 0.9263 | 1.5323 | 0.8049 | - |
| 5.7936 | 101000 | 0.9242 | 1.5694 | 0.8080 | - |
| 5.8223 | 101500 | 1.0484 | 1.4544 | 0.8042 | - |
| 5.8510 | 102000 | 0.9351 | 1.5167 | 0.8114 | - |
| 5.8797 | 102500 | 0.9757 | 1.4759 | 0.7895 | - |
| 5.9083 | 103000 | 1.0185 | 1.4510 | 0.8017 | - |
| 5.9370 | 103500 | 0.8798 | 1.5102 | 0.8097 | - |
| 5.9657 | 104000 | 0.9518 | 1.4321 | 0.7969 | - |
| 5.9944 | 104500 | 0.978 | 1.5526 | 0.7946 | - |
| 6.0231 | 105000 | 0.818 | 1.5133 | 0.7992 | - |
| 6.0517 | 105500 | 0.7463 | 1.4665 | 0.8081 | - |
| 6.0804 | 106000 | 0.7313 | 1.5566 | 0.8032 | - |
| 6.1091 | 106500 | 0.7363 | 1.5826 | 0.8086 | - |
| 6.1378 | 107000 | 0.7184 | 1.5082 | 0.8091 | - |
| 6.1665 | 107500 | 0.7543 | 1.5200 | 0.8047 | - |
| 6.1951 | 108000 | 0.7492 | 1.4958 | 0.8050 | - |
| 6.2238 | 108500 | 0.7868 | 1.5206 | 0.8073 | - |
| 6.2525 | 109000 | 0.7714 | 1.5073 | 0.7990 | - |
| 6.2812 | 109500 | 0.7931 | 1.5886 | 0.8007 | - |
| 6.3099 | 110000 | 0.7768 | 1.4684 | 0.7970 | - |
| 6.3386 | 110500 | 0.7972 | 1.4479 | 0.8049 | - |
| 6.3672 | 111000 | 0.7286 | 1.4873 | 0.8109 | - |
| 6.3959 | 111500 | 0.7462 | 1.5758 | 0.8115 | - |
| 6.4246 | 112000 | 0.737 | 1.4757 | 0.8024 | - |
| 6.4533 | 112500 | 0.7437 | 1.4728 | 0.7962 | - |
| 6.4820 | 113000 | 0.7644 | 1.4875 | 0.7970 | - |
| 6.5106 | 113500 | 0.7563 | 1.5626 | 0.7925 | - |
| 6.5393 | 114000 | 0.7704 | 1.4859 | 0.8042 | - |
| 6.5680 | 114500 | 0.7455 | 1.5227 | 0.8017 | - |
| 6.5967 | 115000 | 0.7916 | 1.5085 | 0.8057 | - |
| 6.6254 | 115500 | 0.7804 | 1.4348 | 0.8029 | - |
| 6.6540 | 116000 | 0.797 | 1.4953 | 0.8025 | - |
| 6.6827 | 116500 | 0.7731 | 1.4998 | 0.8045 | - |
| 6.7114 | 117000 | 0.7324 | 1.5095 | 0.7936 | - |
| 6.7401 | 117500 | 0.7371 | 1.5010 | 0.8037 | - |
| 6.7688 | 118000 | 0.7596 | 1.5101 | 0.8008 | - |
| 6.7975 | 118500 | 0.7763 | 1.5442 | 0.8030 | - |
| 6.8261 | 119000 | 0.7941 | 1.4985 | 0.7879 | - |
| 6.8548 | 119500 | 0.7408 | 1.5652 | 0.7827 | - |
| 6.8835 | 120000 | 0.7568 | 1.5540 | 0.7862 | - |
| 6.9122 | 120500 | 0.7537 | 1.5316 | 0.7979 | - |
| 6.9409 | 121000 | 0.7741 | 1.5125 | 0.7983 | - |
| 6.9695 | 121500 | 0.7369 | 1.5109 | 0.7948 | - |
| 6.9982 | 122000 | 0.7617 | 1.4832 | 0.7926 | - |
| 7.0269 | 122500 | 0.652 | 1.4793 | 0.7923 | - |
| 7.0556 | 123000 | 0.6824 | 1.5213 | 0.7927 | - |
| 7.0843 | 123500 | 0.6285 | 1.5025 | 0.7954 | - |
| 7.1129 | 124000 | 0.6691 | 1.5328 | 0.7946 | - |
| 7.1416 | 124500 | 0.6422 | 1.6047 | 0.7942 | - |
| 7.1703 | 125000 | 0.6618 | 1.5424 | 0.7916 | - |
| 7.1990 | 125500 | 0.6601 | 1.5324 | 0.7961 | - |
| 7.2277 | 126000 | 0.67 | 1.5564 | 0.7914 | - |
| 7.2564 | 126500 | 0.6223 | 1.5353 | 0.7952 | - |
| 7.2850 | 127000 | 0.6344 | 1.5982 | 0.7944 | - |
| 7.3137 | 127500 | 0.6362 | 1.5258 | 0.8059 | - |
| 7.3424 | 128000 | 0.6254 | 1.5656 | 0.7936 | - |
| 7.3711 | 128500 | 0.6672 | 1.5142 | 0.7951 | - |
| 7.3998 | 129000 | 0.6411 | 1.6154 | 0.7938 | - |
| 7.4284 | 129500 | 0.6307 | 1.4875 | 0.7995 | - |
| 7.4571 | 130000 | 0.6369 | 1.5370 | 0.7943 | - |
| 7.4858 | 130500 | 0.6474 | 1.5084 | 0.7862 | - |
| 7.5145 | 131000 | 0.6475 | 1.4667 | 0.7995 | - |
| 7.5432 | 131500 | 0.6361 | 1.5099 | 0.7919 | - |
| 7.5718 | 132000 | 0.6047 | 1.5205 | 0.7861 | - |
| 7.6005 | 132500 | 0.6435 | 1.4809 | 0.7939 | - |
| 7.6292 | 133000 | 0.6277 | 1.4976 | 0.7934 | - |
| 7.6579 | 133500 | 0.6307 | 1.5139 | 0.7998 | - |
| 7.6866 | 134000 | 0.7114 | 1.5235 | 0.7971 | - |
| 7.7153 | 134500 | 0.728 | 1.4953 | 0.7977 | - |
| 7.7439 | 135000 | 0.6374 | 1.4649 | 0.7986 | - |
| 7.7726 | 135500 | 0.6409 | 1.4866 | 0.7964 | - |
| 7.8013 | 136000 | 0.6364 | 1.4959 | 0.7905 | - |
| 7.8300 | 136500 | 0.6309 | 1.4888 | 0.7968 | - |
| 7.8587 | 137000 | 0.6181 | 1.5176 | 0.7916 | - |
| 7.8873 | 137500 | 0.6002 | 1.5199 | 0.7885 | - |
| 7.9160 | 138000 | 0.6326 | 1.4986 | 0.7915 | - |
| 7.9447 | 138500 | 0.6285 | 1.5224 | 0.7886 | - |
| 7.9734 | 139000 | 0.6019 | 1.4330 | 0.7936 | - |
| 8.0021 | 139500 | 0.6534 | 1.5217 | 0.7820 | - |
| 8.0307 | 140000 | 0.4934 | 1.4483 | 0.7987 | - |
| 8.0594 | 140500 | 0.5176 | 1.4290 | 0.7938 | - |
| 8.0881 | 141000 | 0.5203 | 1.4782 | 0.7987 | - |
| 8.1168 | 141500 | 0.5333 | 1.5755 | 0.7809 | - |
| 8.1455 | 142000 | 0.5262 | 1.4008 | 0.7894 | - |
| 8.1742 | 142500 | 0.488 | 1.4576 | 0.7896 | - |
| 8.2028 | 143000 | 0.4995 | 1.4221 | 0.7850 | - |
| 8.2315 | 143500 | 0.5438 | 1.4670 | 0.7884 | - |
| 8.2602 | 144000 | 0.5358 | 1.5256 | 0.7909 | - |
| 8.2889 | 144500 | 0.5379 | 1.4966 | 0.7977 | - |
| 8.3176 | 145000 | 0.5281 | 1.4566 | 0.7987 | - |
| 8.3462 | 145500 | 0.5059 | 1.4206 | 0.7982 | - |
| 8.3749 | 146000 | 0.4993 | 1.4853 | 0.7994 | - |
| 8.4036 | 146500 | 0.5245 | 1.4286 | 0.8003 | - |
| 8.4323 | 147000 | 0.5277 | 1.4129 | 0.7958 | - |
| 8.4610 | 147500 | 0.5263 | 1.4098 | 0.8035 | - |
| 8.4896 | 148000 | 0.5452 | 1.5002 | 0.7957 | - |
| 8.5183 | 148500 | 0.5334 | 1.4246 | 0.8046 | - |
| 8.5470 | 149000 | 0.5358 | 1.4566 | 0.7905 | - |
| 8.5757 | 149500 | 0.55 | 1.4229 | 0.7950 | - |
| 8.6044 | 150000 | 0.5362 | 1.4068 | 0.7901 | - |
| 8.6331 | 150500 | 0.5321 | 1.3924 | 0.7931 | - |
| 8.6617 | 151000 | 0.5459 | 1.4455 | 0.7896 | - |
| 8.6904 | 151500 | 0.5243 | 1.4604 | 0.7969 | - |
| 8.7191 | 152000 | 0.5067 | 1.4185 | 0.7902 | - |
| 8.7478 | 152500 | 0.5085 | 1.4642 | 0.7919 | - |
| 8.7765 | 153000 | 0.4881 | 1.5082 | 0.7899 | - |
| 8.8051 | 153500 | 0.5203 | 1.5120 | 0.7919 | - |
| 8.8338 | 154000 | 0.5077 | 1.5209 | 0.7880 | - |
| 8.8625 | 154500 | 0.5083 | 1.4354 | 0.7938 | - |
| 8.8912 | 155000 | 0.5085 | 1.4376 | 0.7867 | - |
| 8.9199 | 155500 | 0.4906 | 1.4027 | 0.7922 | - |
| 8.9485 | 156000 | 0.5449 | 1.5246 | 0.7859 | - |
| 8.9772 | 156500 | 0.551 | 1.4236 | 0.7955 | - |
| 9.0059 | 157000 | 0.4974 | 1.4605 | 0.7932 | - |
| 9.0346 | 157500 | 0.4159 | 1.4128 | 0.7868 | - |
| 9.0633 | 158000 | 0.4002 | 1.3823 | 0.7921 | - |
| 9.0920 | 158500 | 0.3814 | 1.4415 | 0.7854 | - |
| 9.1206 | 159000 | 0.3694 | 1.4016 | 0.7885 | - |
| 9.1493 | 159500 | 0.4349 | 1.3871 | 0.7975 | - |
| 9.1780 | 160000 | 0.4258 | 1.3926 | 0.7919 | - |
| 9.2067 | 160500 | 0.4262 | 1.4316 | 0.7858 | - |
| 9.2354 | 161000 | 0.428 | 1.4839 | 0.7870 | - |
| 9.2640 | 161500 | 0.4186 | 1.4305 | 0.7917 | - |
| 9.2927 | 162000 | 0.4306 | 1.4962 | 0.7936 | - |
| 9.3214 | 162500 | 0.3977 | 1.4436 | 0.7971 | - |
| 9.3501 | 163000 | 0.3994 | 1.4661 | 0.7910 | - |
| 9.3788 | 163500 | 0.4227 | 1.5016 | 0.7952 | - |
| 9.4074 | 164000 | 0.4076 | 1.4551 | 0.7983 | - |
| 9.4361 | 164500 | 0.4095 | 1.4699 | 0.7889 | - |
| 9.4648 | 165000 | 0.4054 | 1.4351 | 0.7933 | - |
| 9.4935 | 165500 | 0.455 | 1.4284 | 0.7927 | - |
| 9.5222 | 166000 | 0.42 | 1.4683 | 0.7909 | - |
| 9.5509 | 166500 | 0.4418 | 1.4145 | 0.7965 | - |
| 9.5795 | 167000 | 0.4179 | 1.4001 | 0.7947 | - |
| 9.6082 | 167500 | 0.4094 | 1.4471 | 0.7875 | - |
| 9.6369 | 168000 | 0.4176 | 1.4185 | 0.7909 | - |
| 9.6656 | 168500 | 0.3991 | 1.3788 | 0.7894 | - |
| 9.6943 | 169000 | 0.4019 | 1.3530 | 0.7942 | - |
| 9.7229 | 169500 | 0.4141 | 1.4194 | 0.7848 | - |
| 9.7516 | 170000 | 0.4037 | 1.4556 | 0.7842 | - |
| 9.7803 | 170500 | 0.4298 | 1.3902 | 0.7847 | - |
| 9.8090 | 171000 | 0.4257 | 1.4237 | 0.7879 | - |
| 9.8377 | 171500 | 0.3989 | 1.4484 | 0.7916 | - |
| 9.8663 | 172000 | 0.4164 | 1.4447 | 0.7922 | - |
| 9.8950 | 172500 | 0.4184 | 1.4129 | 0.7876 | - |
| 9.9237 | 173000 | 0.3927 | 1.4382 | 0.7961 | - |
| 9.9524 | 173500 | 0.4355 | 1.4626 | 0.7885 | - |
| 9.9811 | 174000 | 0.4317 | 1.4384 | 0.7838 | - |
| 10.0098 | 174500 | 0.3654 | 1.4397 | 0.7868 | - |
| 10.0384 | 175000 | 0.3319 | 1.4772 | 0.7933 | - |
| 10.0671 | 175500 | 0.3218 | 1.4553 | 0.7862 | - |
| 10.0958 | 176000 | 0.3553 | 1.4422 | 0.7880 | - |
| 10.1245 | 176500 | 0.3572 | 1.4375 | 0.7865 | - |
| 10.1532 | 177000 | 0.3611 | 1.4634 | 0.7915 | - |
| 10.1818 | 177500 | 0.3511 | 1.4557 | 0.7875 | - |
| 10.2105 | 178000 | 0.3475 | 1.4579 | 0.7864 | - |
| 10.2392 | 178500 | 0.3456 | 1.5179 | 0.7839 | - |
| 10.2679 | 179000 | 0.3511 | 1.4576 | 0.7844 | - |
| 10.2966 | 179500 | 0.3336 | 1.4965 | 0.7879 | - |
| 10.3252 | 180000 | 0.3647 | 1.4619 | 0.7827 | - |
| 10.3539 | 180500 | 0.3451 | 1.4585 | 0.7871 | - |
| 10.3826 | 181000 | 0.3585 | 1.4688 | 0.7847 | - |
| 10.4113 | 181500 | 0.3432 | 1.4332 | 0.7922 | - |
| 10.4400 | 182000 | 0.3789 | 1.4236 | 0.7920 | - |
| 10.4687 | 182500 | 0.3313 | 1.3813 | 0.7794 | - |
| 10.4973 | 183000 | 0.3356 | 1.4369 | 0.7881 | - |
| 10.5260 | 183500 | 0.3187 | 1.4230 | 0.7889 | - |
| 10.5547 | 184000 | 0.3255 | 1.4207 | 0.7923 | - |
| 10.5834 | 184500 | 0.3252 | 1.4159 | 0.7924 | - |
| 10.6121 | 185000 | 0.3389 | 1.4502 | 0.7879 | - |
| 10.6407 | 185500 | 0.3407 | 1.4985 | 0.7945 | - |
| 10.6694 | 186000 | 0.3349 | 1.4637 | 0.7928 | - |
| 10.6981 | 186500 | 0.3459 | 1.4799 | 0.7922 | - |
| 10.7268 | 187000 | 0.3352 | 1.4447 | 0.7911 | - |
| 10.7555 | 187500 | 0.3188 | 1.4034 | 0.7908 | - |
| 10.7841 | 188000 | 0.3354 | 1.4559 | 0.7917 | - |
| 10.8128 | 188500 | 0.3087 | 1.4330 | 0.7901 | - |
| 10.8415 | 189000 | 0.3573 | 1.4262 | 0.7884 | - |
| 10.8702 | 189500 | 0.337 | 1.4397 | 0.7861 | - |
| 10.8989 | 190000 | 0.3284 | 1.4719 | 0.7875 | - |
| 10.9276 | 190500 | 0.3452 | 1.4200 | 0.7864 | - |
| 10.9562 | 191000 | 0.3407 | 1.4429 | 0.7909 | - |
| 10.9849 | 191500 | 0.3514 | 1.4511 | 0.7935 | - |
| 11.0136 | 192000 | 0.2932 | 1.4430 | 0.7905 | - |
| 11.0423 | 192500 | 0.2593 | 1.4349 | 0.7891 | - |
| 11.0710 | 193000 | 0.294 | 1.4235 | 0.7839 | - |
| 11.0996 | 193500 | 0.2742 | 1.4248 | 0.7853 | - |
| 11.1283 | 194000 | 0.2969 | 1.4282 | 0.7837 | - |
| 11.1570 | 194500 | 0.2549 | 1.4321 | 0.7812 | - |
| 11.1857 | 195000 | 0.3029 | 1.4152 | 0.7821 | - |
| 11.2144 | 195500 | 0.2948 | 1.4362 | 0.7815 | - |
| 11.2430 | 196000 | 0.2888 | 1.4211 | 0.7850 | - |
| 11.2717 | 196500 | 0.286 | 1.4898 | 0.7857 | - |
| 11.3004 | 197000 | 0.2875 | 1.4354 | 0.7878 | - |
| 11.3291 | 197500 | 0.2876 | 1.4378 | 0.7900 | - |
| 11.3578 | 198000 | 0.3074 | 1.4171 | 0.7861 | - |
| 11.3865 | 198500 | 0.2934 | 1.4582 | 0.7856 | - |
| 11.4151 | 199000 | 0.3017 | 1.4243 | 0.7853 | - |
| 11.4438 | 199500 | 0.2987 | 1.4444 | 0.7855 | - |
| 11.4725 | 200000 | 0.2801 | 1.4089 | 0.7869 | - |
| 11.5012 | 200500 | 0.2891 | 1.4545 | 0.7839 | - |
| 11.5299 | 201000 | 0.275 | 1.4979 | 0.7790 | - |
| 11.5585 | 201500 | 0.3127 | 1.3802 | 0.7888 | - |
| 11.5872 | 202000 | 0.2953 | 1.4369 | 0.7850 | - |
| 11.6159 | 202500 | 0.284 | 1.4590 | 0.7869 | - |
| 11.6446 | 203000 | 0.259 | 1.4573 | 0.7823 | - |
| 11.6733 | 203500 | 0.2787 | 1.4293 | 0.7840 | - |
| 11.7019 | 204000 | 0.2791 | 1.4671 | 0.7814 | - |
| 11.7306 | 204500 | 0.2942 | 1.4423 | 0.7885 | - |
| 11.7593 | 205000 | 0.2788 | 1.4622 | 0.7874 | - |
| 11.7880 | 205500 | 0.2614 | 1.4742 | 0.7846 | - |
| 11.8167 | 206000 | 0.2809 | 1.4380 | 0.7799 | - |
| 11.8454 | 206500 | 0.2933 | 1.4385 | 0.7859 | - |
| 11.8740 | 207000 | 0.2623 | 1.4415 | 0.7833 | - |
| 11.9027 | 207500 | 0.2494 | 1.4490 | 0.7823 | - |
| 11.9314 | 208000 | 0.2904 | 1.4445 | 0.7827 | - |
| 11.9601 | 208500 | 0.2737 | 1.4070 | 0.7764 | - |
| 11.9888 | 209000 | 0.262 | 1.4465 | 0.7811 | - |
| 12.0174 | 209500 | 0.2418 | 1.4411 | 0.7794 | - |
| 12.0461 | 210000 | 0.2315 | 1.4468 | 0.7847 | - |
| 12.0748 | 210500 | 0.2614 | 1.4399 | 0.7867 | - |
| 12.1035 | 211000 | 0.2256 | 1.4226 | 0.7837 | - |
| 12.1322 | 211500 | 0.2487 | 1.4494 | 0.7851 | - |
| 12.1608 | 212000 | 0.2273 | 1.4707 | 0.7821 | - |
| 12.1895 | 212500 | 0.2408 | 1.4935 | 0.7838 | - |
| 12.2182 | 213000 | 0.2299 | 1.4478 | 0.7842 | - |
| 12.2469 | 213500 | 0.2207 | 1.4369 | 0.7854 | - |
| 12.2756 | 214000 | 0.2234 | 1.4400 | 0.7833 | - |
| 12.3043 | 214500 | 0.2356 | 1.4631 | 0.7851 | - |
| 12.3329 | 215000 | 0.2256 | 1.4520 | 0.7827 | - |
| 12.3616 | 215500 | 0.2349 | 1.4680 | 0.7821 | - |
| 12.3903 | 216000 | 0.2253 | 1.4628 | 0.7852 | - |
| 12.4190 | 216500 | 0.2275 | 1.4912 | 0.7851 | - |
| 12.4477 | 217000 | 0.2395 | 1.4483 | 0.7848 | - |
| 12.4763 | 217500 | 0.2419 | 1.4556 | 0.7850 | - |
| 12.5050 | 218000 | 0.2391 | 1.4339 | 0.7841 | - |
| 12.5337 | 218500 | 0.2493 | 1.4502 | 0.7834 | - |
| 12.5624 | 219000 | 0.2197 | 1.4511 | 0.7815 | - |
| 12.5911 | 219500 | 0.2255 | 1.4263 | 0.7816 | - |
| 12.6197 | 220000 | 0.2428 | 1.4315 | 0.7784 | - |
| 12.6484 | 220500 | 0.2252 | 1.4596 | 0.7812 | - |
| 12.6771 | 221000 | 0.2408 | 1.4551 | 0.7852 | - |
| 12.7058 | 221500 | 0.2491 | 1.4858 | 0.7743 | - |
| 12.7345 | 222000 | 0.2378 | 1.4834 | 0.7832 | - |
| 12.7632 | 222500 | 0.227 | 1.4535 | 0.7828 | - |
| 12.7918 | 223000 | 0.2403 | 1.4725 | 0.7811 | - |
| 12.8205 | 223500 | 0.2211 | 1.4726 | 0.7789 | - |
| 12.8492 | 224000 | 0.2296 | 1.4557 | 0.7793 | - |
| 12.8779 | 224500 | 0.2289 | 1.4179 | 0.7819 | - |
| 12.9066 | 225000 | 0.2342 | 1.4385 | 0.7797 | - |
| 12.9352 | 225500 | 0.2378 | 1.4202 | 0.7771 | - |
| 12.9639 | 226000 | 0.2146 | 1.4290 | 0.7817 | - |
| 12.9926 | 226500 | 0.2375 | 1.4171 | 0.7776 | - |
| 13.0213 | 227000 | 0.1939 | 1.4448 | 0.7786 | - |
| 13.0500 | 227500 | 0.1943 | 1.4572 | 0.7795 | - |
| 13.0786 | 228000 | 0.2 | 1.4622 | 0.7833 | - |
| 13.1073 | 228500 | 0.2084 | 1.4683 | 0.7815 | - |
| 13.1360 | 229000 | 0.1927 | 1.4814 | 0.7777 | - |
| 13.1647 | 229500 | 0.2167 | 1.4574 | 0.7806 | - |
| 13.1934 | 230000 | 0.2003 | 1.4806 | 0.7810 | - |
| 13.2221 | 230500 | 0.2175 | 1.4794 | 0.7805 | - |
| 13.2507 | 231000 | 0.2051 | 1.4450 | 0.7820 | - |
| 13.2794 | 231500 | 0.2003 | 1.4658 | 0.7833 | - |
| 13.3081 | 232000 | 0.2025 | 1.4491 | 0.7841 | - |
| 13.3368 | 232500 | 0.2132 | 1.4462 | 0.7809 | - |
| 13.3655 | 233000 | 0.2028 | 1.4458 | 0.7817 | - |
| 13.3941 | 233500 | 0.2056 | 1.4331 | 0.7814 | - |
| 13.4228 | 234000 | 0.1834 | 1.4571 | 0.7790 | - |
| 13.4515 | 234500 | 0.2007 | 1.4393 | 0.7809 | - |
| 13.4802 | 235000 | 0.1882 | 1.4566 | 0.7813 | - |
| 13.5089 | 235500 | 0.1941 | 1.4503 | 0.7807 | - |
| 13.5375 | 236000 | 0.1993 | 1.4622 | 0.7782 | - |
| 13.5662 | 236500 | 0.1994 | 1.4631 | 0.7783 | - |
| 13.5949 | 237000 | 0.206 | 1.4430 | 0.7776 | - |
| 13.6236 | 237500 | 0.1969 | 1.4665 | 0.7810 | - |
| 13.6523 | 238000 | 0.2053 | 1.4888 | 0.7754 | - |
| 13.6809 | 238500 | 0.2034 | 1.4593 | 0.7761 | - |
| 13.7096 | 239000 | 0.1983 | 1.4838 | 0.7776 | - |
| 13.7383 | 239500 | 0.1945 | 1.4714 | 0.7773 | - |
| 13.7670 | 240000 | 0.2055 | 1.4640 | 0.7779 | - |
| 13.7957 | 240500 | 0.2024 | 1.4754 | 0.7787 | - |
| 13.8244 | 241000 | 0.1959 | 1.4552 | 0.7766 | - |
| 13.8530 | 241500 | 0.187 | 1.4456 | 0.7753 | - |
| 13.8817 | 242000 | 0.1906 | 1.4514 | 0.7739 | - |
| 13.9104 | 242500 | 0.1928 | 1.4691 | 0.7771 | - |
| 13.9391 | 243000 | 0.2021 | 1.4537 | 0.7779 | - |
| 13.9678 | 243500 | 0.1855 | 1.4683 | 0.7816 | - |
| 13.9964 | 244000 | 0.1997 | 1.4667 | 0.7802 | - |
| 14.0251 | 244500 | 0.1714 | 1.4906 | 0.7799 | - |
| 14.0538 | 245000 | 0.1878 | 1.4786 | 0.7811 | - |
| 14.0825 | 245500 | 0.1796 | 1.4974 | 0.7794 | - |
| 14.1112 | 246000 | 0.1826 | 1.4833 | 0.7796 | - |
| 14.1398 | 246500 | 0.1731 | 1.4995 | 0.7788 | - |
| 14.1685 | 247000 | 0.167 | 1.4896 | 0.7795 | - |
| 14.1972 | 247500 | 0.1871 | 1.4724 | 0.7797 | - |
| 14.2259 | 248000 | 0.1934 | 1.4777 | 0.7812 | - |
| 14.2546 | 248500 | 0.1764 | 1.4755 | 0.7822 | - |
| 14.2833 | 249000 | 0.1866 | 1.4718 | 0.7812 | - |
| 14.3119 | 249500 | 0.2047 | 1.4668 | 0.7817 | - |
| 14.3406 | 250000 | 0.1643 | 1.4811 | 0.7817 | - |
| 14.3693 | 250500 | 0.1715 | 1.4833 | 0.7790 | - |
| 14.3980 | 251000 | 0.1757 | 1.4786 | 0.7803 | - |
| 14.4267 | 251500 | 0.1844 | 1.4803 | 0.7807 | - |
| 14.4553 | 252000 | 0.1721 | 1.4953 | 0.7808 | - |
| 14.4840 | 252500 | 0.1549 | 1.4872 | 0.7810 | - |
| 14.5127 | 253000 | 0.1599 | 1.4582 | 0.7824 | - |
| 14.5414 | 253500 | 0.1691 | 1.4735 | 0.7813 | - |
| 14.5701 | 254000 | 0.1737 | 1.4741 | 0.7814 | - |
| 14.5987 | 254500 | 0.1612 | 1.4754 | 0.7810 | - |
| 14.6274 | 255000 | 0.1773 | 1.4656 | 0.7821 | - |
| 14.6561 | 255500 | 0.1758 | 1.4690 | 0.7814 | - |
| 14.6848 | 256000 | 0.1791 | 1.4730 | 0.7814 | - |
| 14.7135 | 256500 | 0.1848 | 1.4745 | 0.7810 | - |
| 14.7422 | 257000 | 0.1665 | 1.4855 | 0.7808 | - |
| 14.7708 | 257500 | 0.1827 | 1.4692 | 0.7809 | - |
| 14.7995 | 258000 | 0.1725 | 1.4647 | 0.7812 | - |
| 14.8282 | 258500 | 0.1535 | 1.4680 | 0.7812 | - |
| 14.8569 | 259000 | 0.1645 | 1.4720 | 0.7810 | - |
| 14.8856 | 259500 | 0.1704 | 1.4748 | 0.7807 | - |
| 14.9142 | 260000 | 0.1747 | 1.4699 | 0.7806 | - |
| 14.9429 | 260500 | 0.1893 | 1.4670 | 0.7807 | - |
| 14.9716 | 261000 | 0.1754 | 1.4679 | 0.7806 | - |
| -1 | -1 | - | - | - | 0.7525 |
Framework Versions
- Python: 3.13.0
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.1+cu128
- Accelerate: 1.11.0
- Datasets: 4.4.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 26
Model tree for sobamchan/roberta-large-mrl-768-512-256-128-64
Base model
FacebookAI/roberta-largeDataset used to train sobamchan/roberta-large-mrl-768-512-256-128-64
Evaluation results
- Pearson Cosine on sts devself-reported0.774
- Spearman Cosine on sts devself-reported0.781
- Pearson Cosine on sts testself-reported0.744
- Spearman Cosine on sts testself-reported0.753