|
|
--- |
|
|
language: en |
|
|
license: mit |
|
|
tags: |
|
|
- recommendation-system |
|
|
- collaborative-filtering |
|
|
- matrix-factorization |
|
|
- movielens |
|
|
- svd |
|
|
- internship-task |
|
|
datasets: |
|
|
- movielens |
|
|
model-index: |
|
|
- name: DataSynthis_ML_JobTask |
|
|
results: |
|
|
- task: |
|
|
type: recommendation |
|
|
name: Movie Recommendation |
|
|
dataset: |
|
|
name: MovieLens |
|
|
type: movielens |
|
|
metrics: |
|
|
- type: precision@k |
|
|
value: 0.7460454747522295 |
|
|
- type: recall@k |
|
|
value: 0.5147626084794534 |
|
|
--- |
|
|
|
|
|
# 🎬 Movie Recommendation System (DataSynthis ML Job Task) |
|
|
|
|
|
This model was built using the MovieLens dataset for the **ML Engineer Intern task**. |
|
|
|
|
|
### Features |
|
|
Item-based Collaborative Filtering |
|
|
Matrix Factorization (SVD) |
|
|
Evaluation Metrics: Precision = 0.7460454747522295, Recall = 0.5147626084794534 |
|
|
|
|
|
### How to Use |
|
|
```python |
|
|
from joblib import load |
|
|
model = load("model.joblib") |
|
|
# Use recommend_movies(user_id, N) function |