FastSam-S: Optimized for Mobile Deployment

Generate high quality segmentation mask on device

The Fast Segment Anything Model (FastSAM) is a novel, real-time CNN-based solution for the Segment Anything task. This task is designed to segment any object within an image based on various possible user interaction prompts. The model performs competitively despite significantly reduced computation, making it a practical choice for a variety of vision tasks.

This model is an implementation of FastSam-S found here.

This repository provides scripts to run FastSam-S on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Model_use_case.semantic_segmentation
  • Model Stats:
    • Model checkpoint: fastsam-s.pt
    • Inference latency: RealTime
    • Input resolution: 640x640
    • Number of parameters: 11.8M
    • Model size (float): 45.1 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
FastSam-S float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 37.745 ms 4 - 243 MB NPU FastSam-S.tflite
FastSam-S float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 37.787 ms 5 - 232 MB NPU FastSam-S.dlc
FastSam-S float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 16.036 ms 4 - 215 MB NPU FastSam-S.tflite
FastSam-S float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 16.91 ms 5 - 199 MB NPU FastSam-S.dlc
FastSam-S float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 6.889 ms 4 - 7 MB NPU FastSam-S.tflite
FastSam-S float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 6.889 ms 5 - 7 MB NPU FastSam-S.dlc
FastSam-S float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 8.287 ms 0 - 26 MB NPU FastSam-S.onnx.zip
FastSam-S float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 10.782 ms 4 - 232 MB NPU FastSam-S.tflite
FastSam-S float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 10.761 ms 1 - 233 MB NPU FastSam-S.dlc
FastSam-S float SA7255P ADP Qualcomm® SA7255P TFLITE 37.745 ms 4 - 243 MB NPU FastSam-S.tflite
FastSam-S float SA7255P ADP Qualcomm® SA7255P QNN_DLC 37.787 ms 5 - 232 MB NPU FastSam-S.dlc
FastSam-S float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) TFLITE 6.907 ms 4 - 22 MB NPU FastSam-S.tflite
FastSam-S float SA8255 (Proxy) Qualcomm® SA8255P (Proxy) QNN_DLC 6.828 ms 5 - 7 MB NPU FastSam-S.dlc
FastSam-S float SA8295P ADP Qualcomm® SA8295P TFLITE 12.913 ms 4 - 179 MB NPU FastSam-S.tflite
FastSam-S float SA8295P ADP Qualcomm® SA8295P QNN_DLC 12.842 ms 0 - 162 MB NPU FastSam-S.dlc
FastSam-S float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) TFLITE 6.964 ms 4 - 8 MB NPU FastSam-S.tflite
FastSam-S float SA8650 (Proxy) Qualcomm® SA8650P (Proxy) QNN_DLC 6.837 ms 5 - 7 MB NPU FastSam-S.dlc
FastSam-S float SA8775P ADP Qualcomm® SA8775P TFLITE 10.782 ms 4 - 232 MB NPU FastSam-S.tflite
FastSam-S float SA8775P ADP Qualcomm® SA8775P QNN_DLC 10.761 ms 1 - 233 MB NPU FastSam-S.dlc
FastSam-S float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 5.165 ms 4 - 402 MB NPU FastSam-S.tflite
FastSam-S float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 5.183 ms 5 - 382 MB NPU FastSam-S.dlc
FastSam-S float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 6.031 ms 16 - 219 MB NPU FastSam-S.onnx.zip
FastSam-S float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 3.803 ms 0 - 210 MB NPU FastSam-S.tflite
FastSam-S float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 3.846 ms 5 - 209 MB NPU FastSam-S.dlc
FastSam-S float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 4.81 ms 12 - 184 MB NPU FastSam-S.onnx.zip
FastSam-S float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile TFLITE 2.924 ms 0 - 221 MB NPU FastSam-S.tflite
FastSam-S float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile QNN_DLC 2.97 ms 5 - 203 MB NPU FastSam-S.dlc
FastSam-S float Snapdragon 8 Elite Gen 5 QRD Snapdragon® 8 Elite Gen5 Mobile ONNX 3.6 ms 2 - 155 MB NPU FastSam-S.onnx.zip
FastSam-S float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 7.408 ms 5 - 5 MB NPU FastSam-S.dlc
FastSam-S float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.534 ms 19 - 19 MB NPU FastSam-S.onnx.zip

Installation

Install the package via pip:

# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[fastsam-s]"

Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub Workbench with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.fastsam_s.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.fastsam_s.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.fastsam_s.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.fastsam_s import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.fastsam_s.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.fastsam_s.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on FastSam-S's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of FastSam-S can be found here.

References

Community

Downloads last month
128
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/FastSam-S