ConvNext-Tiny: Optimized for Qualcomm Devices
ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This is based on the implementation of ConvNext-Tiny found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit ConvNext-Tiny on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for ConvNext-Tiny on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 28.6M
- Model size (float): 109 MB
- Model size (w8a16): 28.9 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| ConvNext-Tiny | ONNX | float | Snapdragon® X Elite | 2.871 ms | 57 - 57 MB | NPU |
| ConvNext-Tiny | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 2.254 ms | 0 - 227 MB | NPU |
| ConvNext-Tiny | ONNX | float | Qualcomm® QCS8550 (Proxy) | 3.041 ms | 0 - 66 MB | NPU |
| ConvNext-Tiny | ONNX | float | Qualcomm® QCS9075 | 4.152 ms | 1 - 4 MB | NPU |
| ConvNext-Tiny | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 1.798 ms | 0 - 181 MB | NPU |
| ConvNext-Tiny | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 1.465 ms | 1 - 182 MB | NPU |
| ConvNext-Tiny | ONNX | w8a16 | Snapdragon® X Elite | 66.853 ms | 62 - 62 MB | NPU |
| ConvNext-Tiny | ONNX | w8a16 | Snapdragon® 8 Gen 3 Mobile | 88.472 ms | 45 - 194 MB | NPU |
| ConvNext-Tiny | ONNX | w8a16 | Qualcomm® QCS6490 | 397.835 ms | 50 - 69 MB | CPU |
| ConvNext-Tiny | ONNX | w8a16 | Qualcomm® QCS8550 (Proxy) | 99.954 ms | 42 - 45 MB | NPU |
| ConvNext-Tiny | ONNX | w8a16 | Qualcomm® QCS9075 | 105.638 ms | 48 - 50 MB | NPU |
| ConvNext-Tiny | ONNX | w8a16 | Qualcomm® QCM6690 | 244.731 ms | 59 - 72 MB | CPU |
| ConvNext-Tiny | ONNX | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 76.665 ms | 45 - 162 MB | NPU |
| ConvNext-Tiny | ONNX | w8a16 | Snapdragon® 7 Gen 4 Mobile | 231.806 ms | 57 - 71 MB | CPU |
| ConvNext-Tiny | ONNX | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 70.719 ms | 42 - 160 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Snapdragon® X Elite | 3.932 ms | 1 - 1 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 2.665 ms | 1 - 170 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 15.324 ms | 1 - 124 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 3.68 ms | 1 - 2 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® SA8775P | 5.008 ms | 1 - 126 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® QCS9075 | 4.856 ms | 1 - 3 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 9.628 ms | 0 - 168 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® SA7255P | 15.324 ms | 1 - 124 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Qualcomm® SA8295P | 8.903 ms | 1 - 125 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 2.028 ms | 0 - 126 MB | NPU |
| ConvNext-Tiny | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 1.614 ms | 1 - 127 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Snapdragon® X Elite | 3.411 ms | 0 - 0 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Snapdragon® 8 Gen 3 Mobile | 2.17 ms | 0 - 121 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® QCS6490 | 9.087 ms | 0 - 2 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® QCS8275 (Proxy) | 6.814 ms | 0 - 96 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® QCS8550 (Proxy) | 3.135 ms | 0 - 2 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® SA8775P | 3.46 ms | 0 - 97 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® QCS9075 | 3.331 ms | 0 - 2 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® QCM6690 | 23.577 ms | 0 - 250 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® QCS8450 (Proxy) | 4.17 ms | 0 - 124 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® SA7255P | 6.814 ms | 0 - 96 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Qualcomm® SA8295P | 4.656 ms | 0 - 97 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 1.591 ms | 0 - 101 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Snapdragon® 7 Gen 4 Mobile | 3.428 ms | 0 - 108 MB | NPU |
| ConvNext-Tiny | QNN_DLC | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 1.286 ms | 0 - 100 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 2.204 ms | 0 - 169 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 14.244 ms | 0 - 122 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 2.913 ms | 0 - 2 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® SA8775P | 4.271 ms | 0 - 123 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® QCS9075 | 4.082 ms | 0 - 59 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 8.877 ms | 0 - 161 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® SA7255P | 14.244 ms | 0 - 122 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Qualcomm® SA8295P | 7.835 ms | 0 - 119 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 1.643 ms | 0 - 127 MB | NPU |
| ConvNext-Tiny | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 1.333 ms | 0 - 121 MB | NPU |
License
- The license for the original implementation of ConvNext-Tiny can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
