ConvNext-Tiny: Optimized for Qualcomm Devices

ConvNextTiny is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of ConvNext-Tiny found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit ConvNext-Tiny on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for ConvNext-Tiny on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 28.6M
  • Model size (float): 109 MB
  • Model size (w8a16): 28.9 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
ConvNext-Tiny ONNX float Snapdragon® X Elite 2.871 ms 57 - 57 MB NPU
ConvNext-Tiny ONNX float Snapdragon® 8 Gen 3 Mobile 2.254 ms 0 - 227 MB NPU
ConvNext-Tiny ONNX float Qualcomm® QCS8550 (Proxy) 3.041 ms 0 - 66 MB NPU
ConvNext-Tiny ONNX float Qualcomm® QCS9075 4.152 ms 1 - 4 MB NPU
ConvNext-Tiny ONNX float Snapdragon® 8 Elite For Galaxy Mobile 1.798 ms 0 - 181 MB NPU
ConvNext-Tiny ONNX float Snapdragon® 8 Elite Gen 5 Mobile 1.465 ms 1 - 182 MB NPU
ConvNext-Tiny ONNX w8a16 Snapdragon® X Elite 66.853 ms 62 - 62 MB NPU
ConvNext-Tiny ONNX w8a16 Snapdragon® 8 Gen 3 Mobile 88.472 ms 45 - 194 MB NPU
ConvNext-Tiny ONNX w8a16 Qualcomm® QCS6490 397.835 ms 50 - 69 MB CPU
ConvNext-Tiny ONNX w8a16 Qualcomm® QCS8550 (Proxy) 99.954 ms 42 - 45 MB NPU
ConvNext-Tiny ONNX w8a16 Qualcomm® QCS9075 105.638 ms 48 - 50 MB NPU
ConvNext-Tiny ONNX w8a16 Qualcomm® QCM6690 244.731 ms 59 - 72 MB CPU
ConvNext-Tiny ONNX w8a16 Snapdragon® 8 Elite For Galaxy Mobile 76.665 ms 45 - 162 MB NPU
ConvNext-Tiny ONNX w8a16 Snapdragon® 7 Gen 4 Mobile 231.806 ms 57 - 71 MB CPU
ConvNext-Tiny ONNX w8a16 Snapdragon® 8 Elite Gen 5 Mobile 70.719 ms 42 - 160 MB NPU
ConvNext-Tiny QNN_DLC float Snapdragon® X Elite 3.932 ms 1 - 1 MB NPU
ConvNext-Tiny QNN_DLC float Snapdragon® 8 Gen 3 Mobile 2.665 ms 1 - 170 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® QCS8275 (Proxy) 15.324 ms 1 - 124 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® QCS8550 (Proxy) 3.68 ms 1 - 2 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® SA8775P 5.008 ms 1 - 126 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® QCS9075 4.856 ms 1 - 3 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® QCS8450 (Proxy) 9.628 ms 0 - 168 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® SA7255P 15.324 ms 1 - 124 MB NPU
ConvNext-Tiny QNN_DLC float Qualcomm® SA8295P 8.903 ms 1 - 125 MB NPU
ConvNext-Tiny QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 2.028 ms 0 - 126 MB NPU
ConvNext-Tiny QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 1.614 ms 1 - 127 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Snapdragon® X Elite 3.411 ms 0 - 0 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 2.17 ms 0 - 121 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® QCS6490 9.087 ms 0 - 2 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® QCS8275 (Proxy) 6.814 ms 0 - 96 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 3.135 ms 0 - 2 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® SA8775P 3.46 ms 0 - 97 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® QCS9075 3.331 ms 0 - 2 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® QCM6690 23.577 ms 0 - 250 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 4.17 ms 0 - 124 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® SA7255P 6.814 ms 0 - 96 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Qualcomm® SA8295P 4.656 ms 0 - 97 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 1.591 ms 0 - 101 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 3.428 ms 0 - 108 MB NPU
ConvNext-Tiny QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 1.286 ms 0 - 100 MB NPU
ConvNext-Tiny TFLITE float Snapdragon® 8 Gen 3 Mobile 2.204 ms 0 - 169 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® QCS8275 (Proxy) 14.244 ms 0 - 122 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® QCS8550 (Proxy) 2.913 ms 0 - 2 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® SA8775P 4.271 ms 0 - 123 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® QCS9075 4.082 ms 0 - 59 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® QCS8450 (Proxy) 8.877 ms 0 - 161 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® SA7255P 14.244 ms 0 - 122 MB NPU
ConvNext-Tiny TFLITE float Qualcomm® SA8295P 7.835 ms 0 - 119 MB NPU
ConvNext-Tiny TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 1.643 ms 0 - 127 MB NPU
ConvNext-Tiny TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 1.333 ms 0 - 121 MB NPU

License

  • The license for the original implementation of ConvNext-Tiny can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/ConvNext-Tiny