Fine-tuned Llama 3.2 1B for Docker Commands

This model is a fine-tuned version of Cagatayd/llama3.2-1B-Instruct-Egitim on the MattCoddity/dockerNLcommands dataset.

Training Details

  • Base Model: Cagatayd/llama3.2-1B-Instruct-Egitim
  • Dataset: MattCoddity/dockerNLcommands
  • Training Method: LoRA (Low-Rank Adaptation)
  • Quantization: 8-bit
  • LoRA Rank: 32
  • Training Steps: 60
  • Final Accuracy: 80.69%

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("psssd-cat/llm-base")
tokenizer = AutoTokenizer.from_pretrained("psssd-cat/llm-base")

# Example usage
text = "Find all running docker containers"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Training Configuration

  • Learning Rate: 3e-5
  • Batch Size: 2 per device
  • Gradient Accumulation Steps: 4
  • FP16: Enabled
  • Warmup Steps: 5

Model Performance

  • Evaluation Loss: 1.147
  • Mean Token Accuracy: 80.69%
  • Training Loss: 2.094

Generated with Claude Code

Downloads last month
12
Safetensors
Model size
1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for psssd-cat/llm-base

Adapter
(1)
this model

Dataset used to train psssd-cat/llm-base