t5_dewata_reconstruct_task

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 80
  • eval_batch_size: 80
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 200
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.9667 1.0 1077 0.8600
0.8636 2.0 2154 0.7781
0.8097 3.0 3231 0.7304
0.7762 4.0 4308 0.6996
0.7448 5.0 5385 0.6728
0.7234 6.0 6462 0.6502
0.7046 7.0 7539 0.6334
0.6907 8.0 8616 0.6204
0.6775 9.0 9693 0.6039
0.6622 10.0 10770 0.5915
0.6496 11.0 11847 0.5800
0.638 12.0 12924 0.5676
0.6275 13.0 14001 0.5576
0.6209 14.0 15078 0.5483
0.6115 15.0 16155 0.5389
0.6017 16.0 17232 0.5322
0.5937 17.0 18309 0.5215
0.5911 18.0 19386 0.5152
0.5842 19.0 20463 0.5086
0.573 20.0 21540 0.5021
0.5699 21.0 22617 0.4941
0.5653 22.0 23694 0.4886
0.5554 23.0 24771 0.4825
0.5476 24.0 25848 0.4782
0.5456 25.0 26925 0.4733
0.5427 26.0 28002 0.4680
0.5369 27.0 29079 0.4639
0.5345 28.0 30156 0.4588
0.5283 29.0 31233 0.4557
0.525 30.0 32310 0.4513
0.5204 31.0 33387 0.4469
0.5179 32.0 34464 0.4431
0.5156 33.0 35541 0.4419
0.5124 34.0 36618 0.4380
0.5101 35.0 37695 0.4339
0.5063 36.0 38772 0.4320
0.5041 37.0 39849 0.4301
0.5018 38.0 40926 0.4262
0.5015 39.0 42003 0.4250
0.4976 40.0 43080 0.4224
0.4954 41.0 44157 0.4200
0.4953 42.0 45234 0.4189
0.4899 43.0 46311 0.4179
0.4919 44.0 47388 0.4161
0.4905 45.0 48465 0.4149
0.4906 46.0 49542 0.4137
0.488 47.0 50619 0.4127
0.4862 48.0 51696 0.4123
0.4858 49.0 52773 0.4120
0.4854 50.0 53850 0.4119
0.4842 51.0 54927 0.4117
0.4873 52.0 56004 0.4107
0.4861 53.0 57081 0.4102
0.485 54.0 58158 0.4100
0.4845 55.0 59235 0.4098
0.4902 56.0 60312 0.4129
0.4891 57.0 61389 0.4089
0.4869 58.0 62466 0.4049
0.4816 59.0 63543 0.4035
0.4799 60.0 64620 0.3989
0.4788 61.0 65697 0.3958
0.4739 62.0 66774 0.3948
0.4715 63.0 67851 0.3897
0.4694 64.0 68928 0.3884
0.4647 65.0 70005 0.3852
0.4653 66.0 71082 0.3848
0.4615 67.0 72159 0.3810
0.4601 68.0 73236 0.3793
0.456 69.0 74313 0.3772
0.4562 70.0 75390 0.3761
0.4545 71.0 76467 0.3736
0.4496 72.0 77544 0.3697
0.4504 73.0 78621 0.3675
0.4481 74.0 79698 0.3662
0.4456 75.0 80775 0.3649
0.4432 76.0 81852 0.3632
0.4426 77.0 82929 0.3629
0.4398 78.0 84006 0.3589
0.4393 79.0 85083 0.3577
0.4372 80.0 86160 0.3566
0.4347 81.0 87237 0.3543
0.4345 82.0 88314 0.3534
0.4357 83.0 89391 0.3529
0.4323 84.0 90468 0.3510
0.4324 85.0 91545 0.3513
0.4305 86.0 92622 0.3500
0.4272 87.0 93699 0.3490
0.4286 88.0 94776 0.3468
0.4262 89.0 95853 0.3469
0.4282 90.0 96930 0.3466
0.4235 91.0 98007 0.3460
0.4251 92.0 99084 0.3446
0.4255 93.0 100161 0.3446
0.4259 94.0 101238 0.3431
0.4252 95.0 102315 0.3426
0.4223 96.0 103392 0.3427
0.4226 97.0 104469 0.3424
0.422 98.0 105546 0.3423
0.4214 99.0 106623 0.3421
0.4226 100.0 107700 0.3420
0.4283 101.0 108777 0.3452
0.4295 102.0 109854 0.3435
0.4289 103.0 110931 0.3413
0.4239 104.0 112008 0.3399
0.4205 105.0 113085 0.3377
0.4198 106.0 114162 0.3344
0.4163 107.0 115239 0.3338
0.4157 108.0 116316 0.3303
0.4119 109.0 117393 0.3275
0.4116 110.0 118470 0.3239
0.4085 111.0 119547 0.3215
0.4055 112.0 120624 0.3192
0.4056 113.0 121701 0.3184
0.4031 114.0 122778 0.3181
0.4 115.0 123855 0.3144
0.3978 116.0 124932 0.3120
0.3949 117.0 126009 0.3108
0.3941 118.0 127086 0.3074
0.3908 119.0 128163 0.3075
0.3888 120.0 129240 0.3038
0.3889 121.0 130317 0.3013
0.3875 122.0 131394 0.2988
0.3849 123.0 132471 0.2983
0.3821 124.0 133548 0.2960
0.3805 125.0 134625 0.2965
0.38 126.0 135702 0.2960
0.3789 127.0 136779 0.2923
0.3768 128.0 137856 0.2921
0.3749 129.0 138933 0.2891
0.3715 130.0 140010 0.2873
0.3716 131.0 141087 0.2862
0.367 132.0 142164 0.2852
0.3674 133.0 143241 0.2822
0.3667 134.0 144318 0.2825
0.3656 135.0 145395 0.2801
0.3645 136.0 146472 0.2777
0.3643 137.0 147549 0.2786
0.3615 138.0 148626 0.2750
0.36 139.0 149703 0.2747
0.3605 140.0 150780 0.2737
0.3558 141.0 151857 0.2726
0.357 142.0 152934 0.2697
0.3553 143.0 154011 0.2699
0.3557 144.0 155088 0.2693
0.3537 145.0 156165 0.2680
0.352 146.0 157242 0.2665
0.3499 147.0 158319 0.2666
0.3511 148.0 159396 0.2637
0.3483 149.0 160473 0.2636
0.3479 150.0 161550 0.2621
0.3466 151.0 162627 0.2600
0.3448 152.0 163704 0.2610
0.345 153.0 164781 0.2594
0.3439 154.0 165858 0.2595
0.3411 155.0 166935 0.2579
0.3414 156.0 168012 0.2583
0.3408 157.0 169089 0.2563
0.3393 158.0 170166 0.2550
0.34 159.0 171243 0.2559
0.3382 160.0 172320 0.2534
0.3379 161.0 173397 0.2520
0.3337 162.0 174474 0.2519
0.3356 163.0 175551 0.2523
0.333 164.0 176628 0.2502
0.3325 165.0 177705 0.2505
0.3326 166.0 178782 0.2497
0.3328 167.0 179859 0.2482
0.3305 168.0 180936 0.2495
0.3312 169.0 182013 0.2472
0.3302 170.0 183090 0.2471
0.3286 171.0 184167 0.2457
0.3288 172.0 185244 0.2456
0.3284 173.0 186321 0.2463
0.3285 174.0 187398 0.2440
0.327 175.0 188475 0.2434
0.3264 176.0 189552 0.2430
0.3264 177.0 190629 0.2435
0.3248 178.0 191706 0.2422
0.3233 179.0 192783 0.2419
0.324 180.0 193860 0.2420
0.3247 181.0 194937 0.2410
0.3235 182.0 196014 0.2405
0.3235 183.0 197091 0.2405
0.3219 184.0 198168 0.2402
0.3219 185.0 199245 0.2397
0.3212 186.0 200322 0.2404
0.3215 187.0 201399 0.2387
0.3203 188.0 202476 0.2393
0.3207 189.0 203553 0.2392
0.3205 190.0 204630 0.2387
0.3188 191.0 205707 0.2382
0.3182 192.0 206784 0.2382
0.3209 193.0 207861 0.2383
0.3199 194.0 208938 0.2379
0.3191 195.0 210015 0.2376
0.3174 196.0 211092 0.2377
0.3158 197.0 212169 0.2376
0.3188 198.0 213246 0.2378
0.3181 199.0 214323 0.2373
0.3181 200.0 215400 0.2374

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
442
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for pijarcandra22/t5_dewata_reconstruct_task

Base model

google-t5/t5-small
Finetuned
(2212)
this model

Evaluation results