MorbiusPrime's picture
Upload README.md with huggingface_hub
dcfd1b6 verified
---
language: en
license: apache-2.0
tags:
- aqea
- compression
- embeddings
- similarity-search
- vector-database
datasets:
- mteb/stsbenchmark-sts
base_model: openai/text-embedding-3-large
---
# AQEA: aqea-text-embedding-3-large-29x
OpenAI text-embedding-3-large compressed 29x while preserving 91.9% similarity ranking
## πŸ“Š Performance
| Metric | Value |
|--------|-------|
| **Compression Ratio** | 29.3x |
| **Spearman ρ** | 91.9% |
| **Source Dimension** | 3072D |
| **Compressed Dimension** | 105D |
| **Storage Savings** | 96.6% |
## πŸš€ Usage
```python
from aqea import AQEACompressor
# Load pre-trained compressor
compressor = AQEACompressor.from_pretrained("nextxag/aqea-text-embedding-3-large-29x")
# Compress embeddings
embeddings = model.encode(texts) # 3072D
compressed = compressor.compress(embeddings) # 105D
# Decompress for retrieval
reconstructed = compressor.decompress(compressed) # 3072D
```
## πŸ“ Files
- `weights.aqwt` - Binary weights (AQEA native format)
- `config.json` - Model configuration
## πŸ”¬ How It Works
AQEA (Adaptive Quantized Embedding Architecture) uses learned linear projections
with Pre-Quantify rotation to compress embeddings while maximally preserving
pairwise similarity rankings (measured by Spearman correlation).
## πŸ“š Citation
```bibtex
@software{aqea2024,
title = {AQEA: Adaptive Quantized Embedding Architecture},
author = {AQEA Team},
year = {2024},
url = {https://huggingface.co/nextxag}
}
```
## πŸ“„ License
Apache 2.0