assignment2_attempt11

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6058
  • Precision: 0.2642
  • Recall: 0.1186
  • F1: 0.1637
  • Accuracy: 0.9370

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 128 0.3124 0.2308 0.0254 0.0458 0.9401
No log 2.0 256 0.2862 0.1636 0.0763 0.1040 0.9353
No log 3.0 384 0.3899 0.2093 0.0763 0.1118 0.9359
0.1996 4.0 512 0.4161 0.3095 0.1102 0.1625 0.9382
0.1996 5.0 640 0.4845 0.3077 0.1017 0.1529 0.9392
0.1996 6.0 768 0.4841 0.2692 0.1186 0.1647 0.9365
0.1996 7.0 896 0.4987 0.2258 0.1186 0.1556 0.9349
0.0254 8.0 1024 0.5512 0.2766 0.1102 0.1576 0.9370
0.0254 9.0 1152 0.5772 0.3171 0.1102 0.1635 0.9379
0.0254 10.0 1280 0.5764 0.2586 0.1271 0.1705 0.9342
0.0254 11.0 1408 0.5964 0.2917 0.1186 0.1687 0.9380
0.005 12.0 1536 0.5952 0.2642 0.1186 0.1637 0.9368
0.005 13.0 1664 0.5980 0.2593 0.1186 0.1628 0.9367
0.005 14.0 1792 0.6033 0.2642 0.1186 0.1637 0.9370
0.005 15.0 1920 0.6058 0.2642 0.1186 0.1637 0.9370

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mpalaval/assignment2_attempt11

Finetuned
(2758)
this model