File size: 31,168 Bytes
a8639ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 |
from collections import Counter
import torchvision.datasets as dset
from torch.utils.data import Dataset
import torch
from torch.utils.data import DataLoader
import glob
import os
from torch.utils.data import Dataset, DataLoader, random_split
from shutil import copyfile
import subprocess
import youtokentome as yttm
import re
import time
from tqdm import trange, tqdm
import numpy as np
import matplotlib.pyplot as plt
import inspect
# Device for dataloading and dataloading only. Dataloading on MPS was slower
DEVICE = "cpu" # "mps" if torch.backends.mps.is_available() else "cpu"
class BPEModelManager:
def __init__(self, root_dir, vocab_size=5000):
self.root_dir = root_dir
self.vocab_size = vocab_size
self.model_path = os.path.join(root_dir, "bpe_model.model")
try:
self.bpe = yttm.BPE(model=self.model_path)
if self.bpe.vocab_size() != vocab_size:
print(
f"Vocab size mismatch: Expected {vocab_size}, got {self.bpe.vocab_size()}. Retraining model."
)
self._backup_model()
raise ValueError
except ValueError:
self._train_bpe_model()
self.bpe = yttm.BPE(model=self.model_path)
def _backup_model(self):
backup_path = os.path.join(self.root_dir, "bpe_model.model.old")
copyfile(self.model_path, backup_path)
def _train_bpe_model(self):
data_path = os.path.join(self.root_dir, "data/corpus.txt")
processed_path = os.path.join(self.root_dir, "data/corpus_processed.txt")
with open(data_path, "r", errors="ignore") as reader:
raw_text = reader.read()
processed_text = self.preprocess_text(raw_text)
with open(processed_path, "w") as writer:
writer.write(processed_text)
yttm.BPE.train(
data=processed_path,
vocab_size=self.vocab_size,
model=self.model_path,
coverage=0.9999,
)
def preprocess_text(self, text):
return text.lower()
def encode(self, text: str):
return self.bpe.encode([text], output_type=yttm.OutputType.ID)
def decode(self, ids):
return self.bpe.decode(ids.tolist())[0]
@staticmethod
def attention_mask(encoded_sequence, mask_token_ids=[0, 1, 2, 3]):
mask_token_tensor = torch.tensor(mask_token_ids, dtype=torch.int).to(
encoded_sequence.device
)
# print(mask_token_tensor)
# print(encoded_sequence)
return (encoded_sequence.unsqueeze(1) != mask_token_tensor).all(dim=1).int()
class CodeBPEModelManager(BPEModelManager):
mapping_dict = {
" ": " <INDENT> ",
"\n": " <NEWLINE> ",
}
def __init__(self, root_dir, vocab_size=5000):
super().__init__(root_dir, vocab_size)
def preprocess_text(self, text):
print("Formatting....")
processed_text = self.format_code(text)
for key, value in CodeBPEModelManager.mapping_dict.items():
processed_text = processed_text.replace(key, value)
return processed_text
def encode(self, text: str):
processed_text = text
for key, value in CodeBPEModelManager.mapping_dict.items():
processed_text = processed_text.replace(key, value)
return self.bpe.encode([processed_text], output_type=yttm.OutputType.ID)[0]
def decode(self, ids):
# print(ids)
# print("ids^^")
l = ids
if isinstance(l, torch.Tensor):
l = ids.tolist()
if isinstance(l, int):
l = [l]
result = self.bpe.decode(l)[0]
# print(result)
for key, value in CodeBPEModelManager.mapping_dict.items():
result = result.replace(value.strip(), key) # value, key
return result
def raw_decode(self, id: int):
return self.bpe.decode([id])[0]
def _train_bpe_model(self):
print("Training (1)....")
data_path = os.path.join(self.root_dir, "data/corpus.txt")
processed_path = os.path.join(self.root_dir, "data/corpus_processed.txt")
if input("Reformat? Will take time [y/N]") == "y":
with open(data_path, "r", errors="ignore", encoding="utf-8") as reader:
raw_text = reader.read()
processed_text = self.preprocess_text(raw_text)
with open(processed_path, "w", encoding="utf-8") as writer:
writer.write(processed_text)
print("removing temp file...")
temp_file = os.path.join(self.root_dir, "temp_code.py") # dont ask
os.remove(temp_file)
print("Training....")
yttm.BPE.train(
data=processed_path,
vocab_size=self.vocab_size,
model=self.model_path,
coverage=1,
# coverage=0.995, # TODO: revert if you want
)
def format_code(self, code):
try:
temp_file = os.path.join(self.root_dir, "temp_code.py")
with open(temp_file, "w") as file:
file.write(
code.replace("\t", " ")
) # Hacky replacement, black freaks out otherwise
subprocess.run(["black", temp_file, "--quiet"], check=True)
subprocess.run(
["autopep8", "--in-place", "--ignore=E402", temp_file], check=True
)
with open(temp_file, "r") as file:
formatted_code = file.read()
return formatted_code
except Exception as e:
print(f"Error during code formatting: {e}.")
return code
class CodeCustomTokenizerManager(BPEModelManager):
reserved_keywords = [
"false",
"await",
"else",
"import",
"pass",
"none",
"break",
"except",
"in",
"raise",
"true",
"class",
"finally",
"is",
"return",
"and",
"continue",
"for",
"lambda",
"try",
"as",
"def",
"from",
"nonlocal",
"while",
"assert",
"del",
"global",
"not",
"with",
"async",
"elif",
"if",
"or",
"yield",
]
symbols = [
"(",
")",
"[",
"]",
"{",
"}",
".",
",",
":",
";",
"+",
"-",
"*",
"/",
"%",
"=",
"<",
">",
"&",
"|",
"^",
"~",
"!",
"==",
"!=",
"<=",
">=",
"**",
"//",
"@",
"#",
"\\",
"'",
'"',
"`",
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"0x",
"0d",
"0o",
]
def __init__(
self,
root_dir,
vocab_size=5000,
cutoff_thresh=0.1,
use_vocab_size_instead=False,
use_whitespace=True, # haha
): # keep 90% with thresh 0.1
self.root_dir = root_dir
self.token_to_id = {"<PAD>": 0}
self.id_to_token = None
self._token_freqs = {}
self.total_num_tokens = 0
print("This is CodeCustomTokenizerManager, vocab size will be disregarded.")
print(f"Cutoff threshold: {cutoff_thresh}")
self.cutoff_thresh = cutoff_thresh
self.use_whitespace = use_whitespace
if not use_whitespace:
print("Not using whitespace! Important I guess")
if use_vocab_size_instead:
print("Nevermind! Using vocab size instead, no cutoff thresh")
self.use_vocab_size_instead = use_vocab_size_instead
self.vocab_size = vocab_size
vocab_path = os.path.join(self.root_dir, "custom_tokens_vocab.txt")
try:
self.load_vocab(vocab_path)
except FileNotFoundError:
print("Making vocab!")
self.make_vocab()
self.save_vocab(vocab_path)
print(f"Vocab size: {len(self.token_to_id)}")
def make_vocab(self):
data_path = os.path.join(self.root_dir, "data/corpus.txt")
processed_path = os.path.join(self.root_dir, "data/corpus_processed.txt")
with open(data_path, "r", errors="ignore") as reader:
raw_text = reader.read()
processed_text = self.preprocess_text(raw_text)
with open(processed_path, "w") as writer:
writer.write(" ".join(processed_text))
for token in processed_text:
if token not in self.token_to_id:
if len(self.token_to_id) == 0:
self.token_to_id = {"<PAD>": 0} # TODO: bad practice or something
self.token_to_id[token] = len(self.token_to_id)
print(f"Number of tokens: {len(self.token_to_id)}")
def make_token_freqs(self):
processed_path = os.path.join(self.root_dir, "data/corpus_processed.txt")
with open(processed_path, "r", errors="ignore") as reader:
raw_text = reader.read()
tokens = raw_text.split(" ")
token_freqs = {"<PAD>": 0}
for token in tqdm(tokens, leave=False):
if token not in token_freqs:
token_freqs[token] = 1
else:
token_freqs[token] += 1
self._token_freqs = token_freqs
self.total_num_tokens = len(tokens)
def preprocess_text(self, code):
print("Preprocessing text...", code[:20])
# print(code[:100])
# comments
code = code.replace("# <FILESEP>", "<FILESEP>")
code = re.sub(r"#.*", "", code)
code = re.sub(r'"""(.*?)"""', "", code, flags=re.DOTALL) # funny usage of re
code = re.sub(r"'''(.*?)'''", "", code, flags=re.DOTALL)
code = re.sub(r" ", " ", code)
print("Filtered comments")
# print(code[:100])
# filter non-ascii
# https://regexr.com/8bmfe
code = re.sub(r"[^ -~\s]+", "", code)
# print(code[:100])
print("Filtered non-ascii")
# # Handle hex/binary/octal sequences
# def split_number_sequence(match):
# prefix, digits = match.group(1), match.group(2)
# return f"{prefix} " + " ".join(digits)
# code = re.sub(r'(0x)([0-9a-f]+)', split_number_sequence, code)
# code = re.sub(r'(0b)([01]+)', split_number_sequence, code)
# code = re.sub(r'(0o)([0-7]+)', split_number_sequence, code)
# print("Coped with hex")
# each reserved word/symbol is a token. We split by space at the end, so this works.
for word in self.reserved_keywords:
code = re.sub(rf"\b{word}\b", f" {word} ", code)
print("Reserved words")
for symbol in self.symbols:
code = code.replace(symbol, f" {symbol} ")
print("Symbols")
# print(code[:100])
# Split identifiers by spaces, underscores, hyphens, or capitalization
def split_token(token):
if token.startswith("<") and token.endswith(
">"
): # preserve ✨special✨ tokens
return [token.lower()]
result = re.sub(r"([a-z])([A-Z])", r"\1 \2", token)
result = re.sub(r"([_-])", r" \1 ", result)
result = re.sub(r"([^a-zA-Z])", r" \1 ", result)
return [part.lower() for part in result.split() if part.strip()]
code = code.replace(" ", " <TAB> ").replace("\n", " <NEWLINE> ")
if not self.use_whitespace:
code = code.replace("<TAB>", "").replace("<NEWLINE>", "")
print("Tabs + newlines")
tokens = []
for token in tqdm(code.split(" "), leave=False):
if token.strip():
tokens.extend(split_token(token))
tokens = [tok.lower() for tok in tokens if tok.strip()]
print("Split tokens")
token_freqs = {"<PAD>": 0}
for token in tqdm(tokens, leave=False):
if token not in token_freqs:
token_freqs[token] = 1
else:
token_freqs[token] += 1
print("Counted freqs")
# what statistics do we want to calculate?
# Number of tokens that appear only once, and percentage.
# Mean number of times any given token appears.
# standard things: mean, std, q1, q3, median, min, max
# Print out topk most frequent and their freqs
total_num_tokens = len(tokens)
counter = Counter(list(token_freqs.values()))
num_ones = counter[1]
print(
f"Number of tokens that appear only once: {num_ones}. Percentage: {num_ones / total_num_tokens}"
)
print(f"Mean token count: {np.mean(list(token_freqs.values()))}")
print(f"Median token count: {np.median(list(token_freqs.values()))}")
print(
f"Standard deviation of token count: {np.std(list(token_freqs.values()))}"
)
print(f"Min token count: {np.min(list(token_freqs.values()))}")
print(f"Max token count: {np.max(list(token_freqs.values()))}")
print(f"Top 30 most frequent tokens:")
sorted_tokens = sorted(token_freqs.items(), key=lambda x: x[1], reverse=True)
for token, freq in sorted_tokens[:30]:
print(f"{token}: {freq}")
print(f"Bottom 30 most frequent tokens:")
for token, freq in sorted_tokens[-30:]:
print(f"{token}: {freq}")
self._token_freqs = token_freqs
self.total_num_tokens = total_num_tokens
# plt.figure(figsize=(15,6))
# plt.bar(np.arange(len(sorted_tokens)), [freq for token, freq in sorted_tokens])
# plt.xlabel("Token")
# plt.ylabel("Frequency")
# plt.title("Token frequency distribution")
# plt.show()
# breakpoint()
# use cutoff thresh to replace tokens with UNK
cutoff_thresh = self.cutoff_thresh
if self.use_vocab_size_instead:
print("Using vocab size instead")
print("deprecated")
print("cope")
exit()
sorted_tokens = sorted(
token_freqs.items(), key=lambda x: x[1], reverse=True
)
allowed_tokens = set(
token for token, _ in sorted_tokens[: self.vocab_size - 1]
) # -1 for PAD
for i in range(len(tokens)):
if tokens[i] not in allowed_tokens and tokens[i] != "<PAD>":
print(f"Replacing token with UNK: {tokens[i]}")
tokens[i] = "<UNK>"
else:
cutoff_amt = (
10 # np.percentile(list(token_freqs.values()), (1-cutoff_thresh) * 100)
)
print(f"Cuttoff amount: {cutoff_amt}") # using threshold {cutoff_thresh}")
# llm-optimized
low_freq_tokens = [
token
for token, freq in token_freqs.items()
if freq < cutoff_amt and token != "<PAD>"
]
low_freq_tokens_set = set(low_freq_tokens)
tokens = [
"<UNK>" if token in low_freq_tokens_set else token
for token in tqdm(tokens)
]
print(tokens[500:700])
print("500-700")
return [tok for tok in tokens if tok.strip()]
def encode(self, code):
tokens = code.split(" ")
ids = []
for token in tokens:
# New token
if token not in self.token_to_id:
self.token_to_id[token] = len(self.token_to_id)
ids.append(self.token_to_id[token])
return ids
def decode(self, ids):
result = ""
for id in ids.tolist():
for token, id_iterator in self.token_to_id.items():
if id_iterator == id:
result += token
result += " "
return result
def raw_decode(self, id: int):
for token, id_iterator in self.token_to_id.items():
if id_iterator == id:
return token
def format_code(self, code):
try:
temp_file = os.path.join(self.root_dir, "temp_code.py")
with open(temp_file, "w") as file:
file.write(
code.replace("\t", " ")
) # Hacky replacement, black freaks out otherwise
subprocess.run(["black", temp_file, "--quiet"], check=True)
subprocess.run(
["autopep8", "--in-place", "--ignore=E402", temp_file], check=True
)
with open(temp_file, "r") as file:
formatted_code = file.read()
return formatted_code
except Exception as e:
print(f"Error during code formatting: {e}.")
return code
def save_vocab(self, file_path):
with open(file_path, "w") as file:
for token, id in self.token_to_id.items():
file.write(f"{token}\t{id}\n")
def load_vocab(self, file_path):
self.token_to_id = {}
with open(file_path, "r") as file:
for line in file.read().split("\n"):
try:
token, id = line.strip().split("\t")
self.token_to_id[token] = int(id)
except ValueError:
# print(line)
# print("^^ is error")
pass # Should be fine, ends up being blank lines
@staticmethod
def attention_mask(encoded_sequence, mask_token_ids=[0]):
mask_token_tensor = torch.tensor(mask_token_ids, dtype=torch.int)
# print(mask_token_tensor)
# print(encoded_sequence)
return (encoded_sequence.unsqueeze(1) != mask_token_tensor).all(dim=1).int()
def get_rarity_score(self, sequence):
scores = np.zeros_like(sequence)
for idx, token in enumerate(sequence):
# get token count in entire corpus
# get TOTAL token count in entire corpus
# divide
# recriprocal
# rarity score for individual token in THIS sequence
# average? max? **median**?
if self._token_freqs == {}:
self.make_token_freqs()
if not self.id_to_token:
self.id_to_token = {v: k for k, v in self.token_to_id.items()}
token_count = self._token_freqs.get(self.id_to_token[token.item()], 0)
rarity_score = self.total_num_tokens / token_count if token_count > 0 else 0
scores[idx] = rarity_score
return np.float32(np.median(scores))
def get_entropy_score(self, sequence):
if len(sequence) == 0:
return 0.0
unique, counts = np.unique(sequence, return_counts=True)
probs = counts / counts.sum()
entropy = -np.sum(probs * np.log2(probs))
if len(unique) > 1:
entropy /= np.log2(len(unique))
return np.float32(entropy)
class DummySequentialDataManager:
def __init__(self, root_dir, vocab_size=5000):
print("init")
self.root_dir = root_dir
self.vocab_size = vocab_size
with open(os.path.join(root_dir, "data/corpus_processed.txt"), "w+") as f:
f.write("dummy")
def encode(self, text: str):
return [list(range(50))]
def decode(self, ids):
l = ids
if isinstance(l, torch.Tensor):
l = ids.tolist()
if isinstance(l, int):
l = [l]
return " ".join([str(id) for id in l])
@staticmethod
def attention_mask(encoded_sequence, mask_token_ids=[]):
mask_token_tensor = torch.tensor(mask_token_ids, dtype=torch.int).to(
encoded_sequence.device
)
# print(mask_token_tensor)
# print(encoded_sequence)
return (encoded_sequence.unsqueeze(1) != mask_token_tensor).all(dim=1).int()
class TextCorpusDataset(Dataset):
def __init__(
self,
root_dir="./test-data",
train=False,
max_length=512,
vocab_size=10000,
IS_DUMMY=False,
IS_CODE=False,
IS_CUSTOM=False,
sliding_window=False,
stride=1,
get_rarity_score=False,
get_entropy_score=False,
):
print(root_dir)
# legendary code
print("[TextCorpusDataset]")
frame = inspect.currentframe()
args, _, _, values = inspect.getargvalues(frame)
print("Arguments passed:")
for arg in args[1:]: # skip 'self'
print(f" {arg} = {values[arg]}")
self.root = root_dir
self.sliding_window = sliding_window
self.window_size = max_length
self.stride = stride
self.get_rarity_score = get_rarity_score
self.get_entropy_score = get_entropy_score
if IS_DUMMY:
self.manager = DummySequentialDataManager(root_dir=root_dir)
elif IS_CODE:
if IS_CUSTOM:
self.manager = CodeCustomTokenizerManager(root_dir=root_dir)
else:
self.manager = CodeBPEModelManager(
root_dir=root_dir, vocab_size=vocab_size
)
else:
self.manager = BPEModelManager(root_dir=root_dir, vocab_size=vocab_size)
self.max_length = max_length
self.cache_file = os.path.join(root_dir, "encoded_chunked.pt")
self.rarity_cache_file = os.path.join(root_dir, "rarity_scores.pt")
self.entropy_cache_file = os.path.join(root_dir, "entropy_scores.pt")
start_t = time.time()
if os.path.exists(self.cache_file):
self.chunks = torch.load(self.cache_file, weights_only=True)
if self.chunks.size(-1) != self.max_length:
if (
input(
"Attempting to fix and re-chunk data to correct length. Continue? [y/N]: "
)
== "y"
):
self._chunk_and_save(torch.flatten(self.chunks).tolist())
print("Re-chunked successfully!")
else:
print("Operation aborted.")
else:
with open(
os.path.join(root_dir, "data/corpus_processed.txt"),
"r",
errors="ignore",
) as file:
text = file.read()
encoded = self.manager.encode(text)
self._chunk_and_save(encoded)
# Load or compute cached scores
self._load_or_compute_scores()
end_t = time.time()
print(f"Dataset loading took {end_t - start_t} seconds.")
# TODO: more "optimization"
self.chunks = self.chunks.to(DEVICE)
if self.get_rarity_score:
self.rarity_scores = self.rarity_scores.to(DEVICE)
if self.get_entropy_score:
self.entropy_scores = self.entropy_scores.to(DEVICE)
self.dummy = torch.tensor([1], device=DEVICE)
def _chunk_and_save(self, encoded):
chunked_data = []
if self.sliding_window:
print("sliding!")
for i in trange(
0, len(encoded) - self.window_size + 1, self.stride, leave=False
):
chunked_data.append(
torch.tensor(encoded[i : i + self.window_size], dtype=torch.int)
)
else:
for i in trange(0, len(encoded), self.max_length, leave=False):
chunked_data.append(
torch.tensor(encoded[i : i + self.max_length], dtype=torch.int)
)
# me when the last item is not necessarily of length self.max_length
padded_chunk = torch.zeros(self.max_length, dtype=torch.int)
padded_chunk[: len(chunked_data[-1])] = chunked_data[-1]
chunked_data[-1] = padded_chunk
self.chunks = torch.stack(chunked_data)
torch.save(self.chunks, self.cache_file)
def _load_or_compute_scores(self):
"""Load cached scores or compute them if not available"""
if self.get_rarity_score:
if os.path.exists(self.rarity_cache_file):
print("Loading cached rarity scores...")
self.rarity_scores = torch.load(self.rarity_cache_file, weights_only=True)
if len(self.rarity_scores) != len(self.chunks):
print("Rarity cache size mismatch, recomputing...")
self._compute_and_cache_rarity_scores()
else:
print("Computing rarity scores...")
self._compute_and_cache_rarity_scores()
if self.get_entropy_score:
if os.path.exists(self.entropy_cache_file):
print("Loading cached entropy scores...")
self.entropy_scores = torch.load(self.entropy_cache_file, weights_only=True)
if len(self.entropy_scores) != len(self.chunks):
print("Entropy cache size mismatch, recomputing...")
self._compute_and_cache_entropy_scores()
else:
print("Computing entropy scores...")
self._compute_and_cache_entropy_scores()
def _compute_and_cache_rarity_scores(self):
"""Compute rarity scores for all chunks and cache them"""
rarity_scores = []
print("Computing rarity scores for all chunks...")
for i in trange(len(self.chunks), desc="Computing rarity scores"):
score = self.manager.get_rarity_score(self.chunks[i])
rarity_scores.append(score)
self.rarity_scores = torch.tensor(rarity_scores, dtype=torch.float32)
torch.save(self.rarity_scores, self.rarity_cache_file)
print(f"Cached rarity scores to {self.rarity_cache_file}")
def _compute_and_cache_entropy_scores(self):
"""Compute entropy scores for all chunks and cache them"""
entropy_scores = []
print("Computing entropy scores for all chunks...")
for i in trange(len(self.chunks), desc="Computing entropy scores"):
score = self.manager.get_entropy_score(self.chunks[i])
entropy_scores.append(score)
self.entropy_scores = torch.tensor(entropy_scores, dtype=torch.float32)
torch.save(self.entropy_scores, self.entropy_cache_file)
print(f"Cached entropy scores to {self.entropy_cache_file}")
# unused
# def _sliding_window(self, sequence, window_size, stride):
# windows = []
# for i in range(0, len(sequence) - window_size + 1, stride):
# windows.append(sequence[i : i + window_size])
# return torch.stack(windows)
def __len__(self):
return len(self.chunks)
def __getitem__(
self, idx
):
seq = self.chunks[idx]
if self.get_rarity_score:
return seq, self.rarity_scores[idx]
if self.get_entropy_score:
return seq, self.entropy_scores[idx]
return seq, self.dummy # self.manager.attention_mask(seq)
class Datasplit_chunker(Dataset):
def __init__(self, root, name, subset, slide=False, stride=1, length=512):
super().__init__()
self.root = root
if os.path.exists(os.path.join(root, f"encoded_chunked_{name}.pt")):
self.items = torch.load(
os.path.join(root, f"encoded_chunked_{name}.pt"), weights_only=True
)
else:
self.items = torch.cat([subset.dataset[idx][0] for idx in subset.indices])
if slide:
self.items = self._sliding_window(
self.items, window_size=length, stride=stride
)
torch.save(self.items, os.path.join(root, f"encoded_chunked_{name}.pt"))
print("saved!")
self.chunks = self.items
self.dummy = torch.tensor([1], device=DEVICE)
def _sliding_window(self, sequence, window_size, stride):
num_windows = (len(sequence) - window_size) // stride + 1
windows = torch.as_strided(
sequence, size=(num_windows, window_size), stride=(stride, 1)
)
return windows
def __len__(self):
return len(self.items)
def __getitem__(self, idx):
return self.chunks[idx], self.dummy
# print("Running....")
dataset = TextCorpusDataset(
root_dir=os.path.expanduser(
# "./dummy-data-dir"
# "./smaller-er-test-data"
# "./smaller-test-data"
# "~/torch_datasets/github-python/all_trains_subset_corpus/all_trains_TRAINSPLIT"
#"~/torch_datasets/github-python/all_trains_subset_corpus"
# "~/torch_datasets/github-python/corpus"
# "~/torch_datasets/github-python/mega_corpus"
"~/torch_datasets/github-python/mega_licensed_corpus"
), # os.path.expanduser("~/torch_datasets/wikitext/train")
vocab_size=33819, # 3645, # edited by me
IS_CODE=True, # Remember to change!
IS_CUSTOM=True,
# IS_DUMMY=True,
max_length=256,
sliding_window=False,
stride=10,
get_rarity_score=True,
)
dset_size = int(len(dataset))
train_size = int(0.8 * dset_size) # int(dset_size - 2)
test_size = int(dset_size - train_size)
if test_size == 2:
print("alert! test size is 2 or whatever. Change this back please.")
torch.manual_seed(3407) # https://arxiv.org/pdf/2109.08203
train_dataset, test_dataset, _ = random_split(
dataset, [train_size, test_size, len(dataset) - train_size - test_size]
)
# train_dataset = Datasplit_chunker(dataset.root,"TRAIN", train_dataset, slide=False, stride=10, length=256)
# test_dataset = Datasplit_chunker(dataset.root,"TEST", test_dataset, slide=False, stride=10, length=256)
# test_dataset = train_dataset # to test if the overfitting is real
# train_dataset = dataset # TODO change
def get_train_dataset():
return train_dataset
def get_test_dataset():
return test_dataset
def get_dataloader(dataset, batch_size=64):
return DataLoader(dataset, batch_size=batch_size, shuffle=True)
def fromDataset(dataset):
dset_size = int(len(dataset))
train_size = int(0.8 * dset_size) # int(dset_size - 2)
test_size = int(dset_size - train_size)
if test_size == 2:
print("alert! test size is 2 or whatever. Change this back please.")
torch.manual_seed(3407) # https://arxiv.org/pdf/2109.08203
train_dataset, test_dataset, _ = random_split(
dataset, [train_size, test_size, len(dataset) - train_size - test_size]
)
return train_dataset, test_dataset
if __name__ == "__main__":
d = get_train_dataset()
print("Number of samples: ", len(d))
for a, b in d:
# a, b = d[-1]
manager = dataset.manager
print(a)
print(manager.decode(a))
# print(a)
print("--- sep batch --- ")
print(f"Number of tokens used: {len(dataset.manager.token_to_id)}")
break # lazy
|