jblitzar commited on
Commit
a8639ac
·
verified ·
1 Parent(s): 880db20

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +289 -35
  2. .gitignore +171 -0
  3. NOTES.md +1079 -0
  4. README.md +57 -0
  5. architecture.py +174 -0
  6. archive-misc/architecture-v1.py +175 -0
  7. archive-misc/ascii_percentage.py +56 -0
  8. archive-misc/bpe_test.py +29 -0
  9. archive-misc/check-memorization.py +20 -0
  10. archive-misc/concatenator.py +19 -0
  11. archive-misc/dataset.py +79 -0
  12. archive-misc/dset_splitter.py +40 -0
  13. archive-misc/entropy_upper_bound.py +57 -0
  14. archive-misc/eval_old.py +91 -0
  15. archive-misc/f1_score.py +19 -0
  16. archive-misc/plot_metrics.py +182 -0
  17. archive-misc/plots/acc_trainstep_plot.png +3 -0
  18. archive-misc/plots/loss_epoch_plot.png +3 -0
  19. archive-misc/plots/perplexityval_epoch_plot.png +3 -0
  20. archive-misc/plots/topkacc_epoch_plot.png +3 -0
  21. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv +803 -0
  22. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv +803 -0
  23. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_curriculum-loss_tensorboard.csv +803 -0
  24. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard (1).csv +803 -0
  25. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard.csv +803 -0
  26. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_hybrid-loss_tensorboard.csv +681 -0
  27. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_hybrid_tensorboard.csv +681 -0
  28. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_noop_tensorboard.csv +931 -0
  29. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_sequential-loss_tensorboard.csv +681 -0
  30. archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_sequential_tensorboard.csv +681 -0
  31. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv +31 -0
  32. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv +31 -0
  33. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_curriculum-loss_tensorboard.csv +31 -0
  34. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard.csv +31 -0
  35. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_hybrid-loss_tensorboard.csv +31 -0
  36. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_hybrid_tensorboard.csv +31 -0
  37. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_noop_tensorboard.csv +31 -0
  38. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_sequential-loss_tensorboard.csv +31 -0
  39. archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_sequential_tensorboard.csv +31 -0
  40. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv +31 -0
  41. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv +31 -0
  42. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_curriculum-loss_tensorboard.csv +31 -0
  43. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard.csv +31 -0
  44. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_hybrid-loss_tensorboard.csv +31 -0
  45. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_hybrid_tensorboard.csv +31 -0
  46. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_noop_tensorboard.csv +31 -0
  47. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_sequential-loss_tensorboard.csv +31 -0
  48. archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_sequential_tensorboard.csv +31 -0
  49. archive-misc/runs_jsons/topkacc_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv +31 -0
  50. archive-misc/runs_jsons/topkacc_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv +31 -0
.gitattributes CHANGED
@@ -1,35 +1,289 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Auto detect text files and perform LF normalization
2
+ * text=auto
3
+ archive-misc/plots/acc_trainstep_plot.png filter=lfs diff=lfs merge=lfs -text
4
+ archive-misc/plots/loss_epoch_plot.png filter=lfs diff=lfs merge=lfs -text
5
+ archive-misc/plots/perplexityval_epoch_plot.png filter=lfs diff=lfs merge=lfs -text
6
+ archive-misc/plots/topkacc_epoch_plot.png filter=lfs diff=lfs merge=lfs -text
7
+ archive-misc/test-data/bpe_model.model filter=lfs diff=lfs merge=lfs -text
8
+ dummy-data-dir/encoded_chunked.pt filter=lfs diff=lfs merge=lfs -text
9
+ readme-imgs/code-decoder-v2-loss-curve-1.png filter=lfs diff=lfs merge=lfs -text
10
+ readme-imgs/code-decoder-v3-loss-curve.png filter=lfs diff=lfs merge=lfs -text
11
+ readme-imgs/comparison.png filter=lfs diff=lfs merge=lfs -text
12
+ readme-imgs/funny-curve.png filter=lfs diff=lfs merge=lfs -text
13
+ readme-imgs/normal-training-curve.png filter=lfs diff=lfs merge=lfs -text
14
+ readme-imgs/shakespeare-test-v2-loss-curve-preliminary.png filter=lfs diff=lfs merge=lfs -text
15
+ readme-imgs/v22-another-run.png filter=lfs diff=lfs merge=lfs -text
16
+ readme-imgs/v30-results.png filter=lfs diff=lfs merge=lfs -text
17
+ readme-imgs/v30-v3-v4-topk.png filter=lfs diff=lfs merge=lfs -text
18
+ readme-imgs/v30-v3-v4.png filter=lfs diff=lfs merge=lfs -text
19
+ readme-imgs/val-loss-v21.png filter=lfs diff=lfs merge=lfs -text
20
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
21
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
22
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum/tensorboard/events.out.tfevents.1750241564.masked_hostname.local.17039.3 filter=lfs diff=lfs merge=lfs -text
23
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum/tensorboard/events.out.tfevents.1750379119.masked_hostname.local.77463.3 filter=lfs diff=lfs merge=lfs -text
24
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum/tensorboard/events.out.tfevents.1750541174.masked_hostname.local.49638.3 filter=lfs diff=lfs merge=lfs -text
25
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum-loss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
26
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum-loss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
27
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum-loss/tensorboard/events.out.tfevents.1750391064.masked_hostname.local.77463.4 filter=lfs diff=lfs merge=lfs -text
28
+ runs/!code-decoder-v31-mega-licensed-1/anticurriculum-loss/tensorboard/events.out.tfevents.1750541176.masked_hostname.local.49638.4 filter=lfs diff=lfs merge=lfs -text
29
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-loss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
30
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-loss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
31
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-loss/tensorboard/events.out.tfevents.1749974866.masked_hostname.local.17039.1 filter=lfs diff=lfs merge=lfs -text
32
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-loss/tensorboard/events.out.tfevents.1750379114.masked_hostname.local.77463.1 filter=lfs diff=lfs merge=lfs -text
33
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-loss/tensorboard/events.out.tfevents.1750541170.masked_hostname.local.49638.1 filter=lfs diff=lfs merge=lfs -text
34
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
35
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
36
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749861906.masked_hostname.local.66051.0 filter=lfs diff=lfs merge=lfs -text
37
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749872246.masked_hostname.local.80667.0 filter=lfs diff=lfs merge=lfs -text
38
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749872428.masked_hostname.local.80898.0 filter=lfs diff=lfs merge=lfs -text
39
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749872685.masked_hostname.local.81245.0 filter=lfs diff=lfs merge=lfs -text
40
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749873458.masked_hostname.local.83857.0 filter=lfs diff=lfs merge=lfs -text
41
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749913774.masked_hostname.local.13022.0 filter=lfs diff=lfs merge=lfs -text
42
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749914351.masked_hostname.local.17039.0 filter=lfs diff=lfs merge=lfs -text
43
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1750379092.masked_hostname.local.77463.0 filter=lfs diff=lfs merge=lfs -text
44
+ runs/!code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1750541167.masked_hostname.local.49638.0 filter=lfs diff=lfs merge=lfs -text
45
+ runs/!code-decoder-v31-mega-licensed-1/hybrid/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
46
+ runs/!code-decoder-v31-mega-licensed-1/hybrid/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
47
+ runs/!code-decoder-v31-mega-licensed-1/hybrid/tensorboard/events.out.tfevents.1750512403.masked_hostname.local.77463.5 filter=lfs diff=lfs merge=lfs -text
48
+ runs/!code-decoder-v31-mega-licensed-1/hybrid/tensorboard/events.out.tfevents.1750541178.masked_hostname.local.49638.5 filter=lfs diff=lfs merge=lfs -text
49
+ runs/!code-decoder-v31-mega-licensed-1/hybrid-loss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
50
+ runs/!code-decoder-v31-mega-licensed-1/hybrid-loss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
51
+ runs/!code-decoder-v31-mega-licensed-1/hybrid-loss/tensorboard/events.out.tfevents.1750630092.masked_hostname.local.49638.6 filter=lfs diff=lfs merge=lfs -text
52
+ runs/!code-decoder-v31-mega-licensed-1/noop/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
53
+ runs/!code-decoder-v31-mega-licensed-1/noop/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
54
+ runs/!code-decoder-v31-mega-licensed-1/noop/tensorboard/events.out.tfevents.1750113611.masked_hostname.local.17039.2 filter=lfs diff=lfs merge=lfs -text
55
+ runs/!code-decoder-v31-mega-licensed-1/noop/tensorboard/events.out.tfevents.1750379116.masked_hostname.local.77463.2 filter=lfs diff=lfs merge=lfs -text
56
+ runs/!code-decoder-v31-mega-licensed-1/noop/tensorboard/events.out.tfevents.1750541172.masked_hostname.local.49638.2 filter=lfs diff=lfs merge=lfs -text
57
+ runs/!code-decoder-v31-mega-licensed-1/sequential/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
58
+ runs/!code-decoder-v31-mega-licensed-1/sequential/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
59
+ runs/!code-decoder-v31-mega-licensed-1/sequential/tensorboard/events.out.tfevents.1750742710.masked_hostname.local.49638.7 filter=lfs diff=lfs merge=lfs -text
60
+ runs/!code-decoder-v31-mega-licensed-1/sequential-loss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
61
+ runs/!code-decoder-v31-mega-licensed-1/sequential-loss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
62
+ runs/!code-decoder-v31-mega-licensed-1/sequential-loss/tensorboard/events.out.tfevents.1750849720.masked_hostname.local.49638.8 filter=lfs diff=lfs merge=lfs -text
63
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-loss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
64
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-loss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
65
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-loss/tensorboard/events.out.tfevents.1749720205.masked_hostname.local.46145.1 filter=lfs diff=lfs merge=lfs -text
66
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
67
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
68
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749608158.masked_hostname.local.96353.0 filter=lfs diff=lfs merge=lfs -text
69
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749652888.masked_hostname.local.19434.0 filter=lfs diff=lfs merge=lfs -text
70
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749653149.masked_hostname.local.22903.0 filter=lfs diff=lfs merge=lfs -text
71
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749653403.masked_hostname.local.25777.0 filter=lfs diff=lfs merge=lfs -text
72
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749653624.masked_hostname.local.28482.0 filter=lfs diff=lfs merge=lfs -text
73
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749653941.masked_hostname.local.32491.0 filter=lfs diff=lfs merge=lfs -text
74
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749654908.masked_hostname.local.45838.0 filter=lfs diff=lfs merge=lfs -text
75
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/curriculum-noloss/tensorboard/events.out.tfevents.1749654948.masked_hostname.local.46145.0 filter=lfs diff=lfs merge=lfs -text
76
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/noop/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
77
+ runs/INTERRUPTED-code-decoder-v31-mega-licensed-1/noop/tensorboard/events.out.tfevents.1749855977.masked_hostname.local.46145.2 filter=lfs diff=lfs merge=lfs -text
78
+ runs/code-decoder-v1/tensorboard/events.out.tfevents.1732335020.masked_hostname.local.31440.0 filter=lfs diff=lfs merge=lfs -text
79
+ runs/code-decoder-v1/tensorboard/events.out.tfevents.1732335097.masked_hostname.local.31440.1 filter=lfs diff=lfs merge=lfs -text
80
+ runs/code-decoder-v10-vanilla-smaller-batchfirst/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
81
+ runs/code-decoder-v10-vanilla-smaller-batchfirst/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
82
+ runs/code-decoder-v10-vanilla-smaller-batchfirst/tensorboard/events.out.tfevents.1734105685.masked_hostname.local.9029.0 filter=lfs diff=lfs merge=lfs -text
83
+ runs/code-decoder-v11-vanilla-alphabet/tensorboard/events.out.tfevents.1734228819.masked_hostname.local.43324.0 filter=lfs diff=lfs merge=lfs -text
84
+ runs/code-decoder-v12-dummy/tensorboard/events.out.tfevents.1734403315.masked_hostname.local.44383.0 filter=lfs diff=lfs merge=lfs -text
85
+ runs/code-decoder-v13-rescaling-smaller/tensorboard/events.out.tfevents.1734484193.masked_hostname.local.53545.0 filter=lfs diff=lfs merge=lfs -text
86
+ runs/code-decoder-v13-rescaling-smaller-retrained/tensorboard/events.out.tfevents.1734484495.masked_hostname.local.53801.0 filter=lfs diff=lfs merge=lfs -text
87
+ runs/code-decoder-v14-tester/tensorboard/events.out.tfevents.1734485671.masked_hostname.local.54813.0 filter=lfs diff=lfs merge=lfs -text
88
+ runs/code-decoder-v15-sliding/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
89
+ runs/code-decoder-v15-sliding/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
90
+ runs/code-decoder-v15-sliding/tensorboard/events.out.tfevents.1734747885.masked_hostname.local.29752.0 filter=lfs diff=lfs merge=lfs -text
91
+ runs/code-decoder-v15-sliding/tensorboard/events.out.tfevents.1734747943.masked_hostname.local.29821.0 filter=lfs diff=lfs merge=lfs -text
92
+ runs/code-decoder-v16-upscale/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
93
+ runs/code-decoder-v16-upscale/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
94
+ runs/code-decoder-v16-upscale/tensorboard/events.out.tfevents.1734753751.masked_hostname.local.33221.0 filter=lfs diff=lfs merge=lfs -text
95
+ runs/code-decoder-v17-bpe-upscale/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
96
+ runs/code-decoder-v17-bpe-upscale/tensorboard/events.out.tfevents.1734756335.masked_hostname.local.36222.0 filter=lfs diff=lfs merge=lfs -text
97
+ runs/code-decoder-v18-allTrains-customTokenizer/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
98
+ runs/code-decoder-v18-allTrains-customTokenizer/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
99
+ runs/code-decoder-v18-allTrains-customTokenizer/tensorboard/events.out.tfevents.1736301065.masked_hostname.local.17453.0 filter=lfs diff=lfs merge=lfs -text
100
+ runs/code-decoder-v19-bigset-5k/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
101
+ runs/code-decoder-v19-bigset-5k/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
102
+ runs/code-decoder-v19-bigset-5k/tensorboard/events.out.tfevents.1736830316.masked_hostname.local.27628.0 filter=lfs diff=lfs merge=lfs -text
103
+ runs/code-decoder-v2-smallchar/tensorboard/events.out.tfevents.1732481060.masked_hostname.local.25901.0 filter=lfs diff=lfs merge=lfs -text
104
+ runs/code-decoder-v2-smallchar/tensorboard/events.out.tfevents.1732492365.masked_hostname.local.33592.0 filter=lfs diff=lfs merge=lfs -text
105
+ runs/code-decoder-v2-smallchar/tensorboard/events.out.tfevents.1732492422.masked_hostname.local.33654.0 filter=lfs diff=lfs merge=lfs -text
106
+ runs/code-decoder-v20-bigset-153k/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
107
+ runs/code-decoder-v20-bigset-153k/tensorboard/events.out.tfevents.1736903138.masked_hostname.local.53701.0 filter=lfs diff=lfs merge=lfs -text
108
+ runs/code-decoder-v21-alltrains-tuner/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
109
+ runs/code-decoder-v21-alltrains-tuner/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
110
+ runs/code-decoder-v21-alltrains-tuner/tensorboard/events.out.tfevents.1738115963.masked_hostname.local.28117.0 filter=lfs diff=lfs merge=lfs -text
111
+ runs/code-decoder-v21-alltrains-tuner/tensorboard/events.out.tfevents.1738116064.masked_hostname.local.28231.0 filter=lfs diff=lfs merge=lfs -text
112
+ runs/code-decoder-v22-bigset-tuner/CONFIG_big_deeper/tensorboard/events.out.tfevents.1739681142.masked_hostname.local.78963.7 filter=lfs diff=lfs merge=lfs -text
113
+ runs/code-decoder-v22-bigset-tuner/CONFIG_big_deeper/tensorboard/events.out.tfevents.1739725160.masked_hostname.local.91729.7 filter=lfs diff=lfs merge=lfs -text
114
+ runs/code-decoder-v22-bigset-tuner/CONFIG_bigdim/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
115
+ runs/code-decoder-v22-bigset-tuner/CONFIG_bigdim/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
116
+ runs/code-decoder-v22-bigset-tuner/CONFIG_bigdim/tensorboard/events.out.tfevents.1739666843.masked_hostname.local.62901.5 filter=lfs diff=lfs merge=lfs -text
117
+ runs/code-decoder-v22-bigset-tuner/CONFIG_bigdim/tensorboard/events.out.tfevents.1739675798.masked_hostname.local.78963.5 filter=lfs diff=lfs merge=lfs -text
118
+ runs/code-decoder-v22-bigset-tuner/CONFIG_bigdim/tensorboard/events.out.tfevents.1739725159.masked_hostname.local.91729.5 filter=lfs diff=lfs merge=lfs -text
119
+ runs/code-decoder-v22-bigset-tuner/CONFIG_bigdim_drop/tensorboard/events.out.tfevents.1739729210.masked_hostname.local.91729.9 filter=lfs diff=lfs merge=lfs -text
120
+ runs/code-decoder-v22-bigset-tuner/CONFIG_deep_smalldim/tensorboard/events.out.tfevents.1739662710.masked_hostname.local.62901.4 filter=lfs diff=lfs merge=lfs -text
121
+ runs/code-decoder-v22-bigset-tuner/CONFIG_deep_smalldim/tensorboard/events.out.tfevents.1739675797.masked_hostname.local.78963.4 filter=lfs diff=lfs merge=lfs -text
122
+ runs/code-decoder-v22-bigset-tuner/CONFIG_deep_smalldim/tensorboard/events.out.tfevents.1739725158.masked_hostname.local.91729.4 filter=lfs diff=lfs merge=lfs -text
123
+ runs/code-decoder-v22-bigset-tuner/CONFIG_deeper/tensorboard/events.out.tfevents.1739675798.masked_hostname.local.78963.6 filter=lfs diff=lfs merge=lfs -text
124
+ runs/code-decoder-v22-bigset-tuner/CONFIG_deeper/tensorboard/events.out.tfevents.1739725159.masked_hostname.local.91729.6 filter=lfs diff=lfs merge=lfs -text
125
+ runs/code-decoder-v22-bigset-tuner/CONFIG_medium/tensorboard/events.out.tfevents.1739600578.masked_hostname.local.46506.1 filter=lfs diff=lfs merge=lfs -text
126
+ runs/code-decoder-v22-bigset-tuner/CONFIG_medium/tensorboard/events.out.tfevents.1739641096.masked_hostname.local.55605.1 filter=lfs diff=lfs merge=lfs -text
127
+ runs/code-decoder-v22-bigset-tuner/CONFIG_medium/tensorboard/events.out.tfevents.1739661953.masked_hostname.local.62901.1 filter=lfs diff=lfs merge=lfs -text
128
+ runs/code-decoder-v22-bigset-tuner/CONFIG_medium/tensorboard/events.out.tfevents.1739675796.masked_hostname.local.78963.1 filter=lfs diff=lfs merge=lfs -text
129
+ runs/code-decoder-v22-bigset-tuner/CONFIG_medium/tensorboard/events.out.tfevents.1739725157.masked_hostname.local.91729.1 filter=lfs diff=lfs merge=lfs -text
130
+ runs/code-decoder-v22-bigset-tuner/CONFIG_medium_drop/tensorboard/events.out.tfevents.1739725160.masked_hostname.local.91729.8 filter=lfs diff=lfs merge=lfs -text
131
+ runs/code-decoder-v22-bigset-tuner/CONFIG_more_heads/tensorboard/events.out.tfevents.1739633763.masked_hostname.local.46506.2 filter=lfs diff=lfs merge=lfs -text
132
+ runs/code-decoder-v22-bigset-tuner/CONFIG_more_heads/tensorboard/events.out.tfevents.1739641096.masked_hostname.local.55605.2 filter=lfs diff=lfs merge=lfs -text
133
+ runs/code-decoder-v22-bigset-tuner/CONFIG_more_heads/tensorboard/events.out.tfevents.1739661953.masked_hostname.local.62901.2 filter=lfs diff=lfs merge=lfs -text
134
+ runs/code-decoder-v22-bigset-tuner/CONFIG_more_heads/tensorboard/events.out.tfevents.1739675797.masked_hostname.local.78963.2 filter=lfs diff=lfs merge=lfs -text
135
+ runs/code-decoder-v22-bigset-tuner/CONFIG_more_heads/tensorboard/events.out.tfevents.1739725158.masked_hostname.local.91729.2 filter=lfs diff=lfs merge=lfs -text
136
+ runs/code-decoder-v22-bigset-tuner/CONFIG_smalldim/tensorboard/events.out.tfevents.1739638220.masked_hostname.local.46506.3 filter=lfs diff=lfs merge=lfs -text
137
+ runs/code-decoder-v22-bigset-tuner/CONFIG_smalldim/tensorboard/events.out.tfevents.1739641096.masked_hostname.local.55605.3 filter=lfs diff=lfs merge=lfs -text
138
+ runs/code-decoder-v22-bigset-tuner/CONFIG_smalldim/tensorboard/events.out.tfevents.1739661954.masked_hostname.local.62901.3 filter=lfs diff=lfs merge=lfs -text
139
+ runs/code-decoder-v22-bigset-tuner/CONFIG_smalldim/tensorboard/events.out.tfevents.1739675797.masked_hostname.local.78963.3 filter=lfs diff=lfs merge=lfs -text
140
+ runs/code-decoder-v22-bigset-tuner/CONFIG_smalldim/tensorboard/events.out.tfevents.1739725158.masked_hostname.local.91729.3 filter=lfs diff=lfs merge=lfs -text
141
+ runs/code-decoder-v22-bigset-tuner/CONFIG_tiny/tensorboard/events.out.tfevents.1739597728.masked_hostname.local.46506.0 filter=lfs diff=lfs merge=lfs -text
142
+ runs/code-decoder-v22-bigset-tuner/CONFIG_tiny/tensorboard/events.out.tfevents.1739641095.masked_hostname.local.55605.0 filter=lfs diff=lfs merge=lfs -text
143
+ runs/code-decoder-v22-bigset-tuner/CONFIG_tiny/tensorboard/events.out.tfevents.1739661952.masked_hostname.local.62901.0 filter=lfs diff=lfs merge=lfs -text
144
+ runs/code-decoder-v22-bigset-tuner/CONFIG_tiny/tensorboard/events.out.tfevents.1739675796.masked_hostname.local.78963.0 filter=lfs diff=lfs merge=lfs -text
145
+ runs/code-decoder-v22-bigset-tuner/CONFIG_tiny/tensorboard/events.out.tfevents.1739725157.masked_hostname.local.91729.0 filter=lfs diff=lfs merge=lfs -text
146
+ runs/code-decoder-v22-bigset-tuner/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
147
+ runs/code-decoder-v22-bigset-tuner/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
148
+ runs/code-decoder-v22-bigset-tuner/config_v1/CONFIG_medium/tensorboard/events.out.tfevents.1739584945.masked_hostname.local.39155.0 filter=lfs diff=lfs merge=lfs -text
149
+ runs/code-decoder-v22-bigset-tuner/config_v1/CONFIG_tiny/tensorboard/events.out.tfevents.1739584945.masked_hostname.local.39155.0 filter=lfs diff=lfs merge=lfs -text
150
+ runs/code-decoder-v22-bigset-tuner/tensorboard/events.out.tfevents.1739510905.masked_hostname.local.5175.0 filter=lfs diff=lfs merge=lfs -text
151
+ runs/code-decoder-v22-bigset-tuner/tensorboard/events.out.tfevents.1739546361.masked_hostname.local.11555.0 filter=lfs diff=lfs merge=lfs -text
152
+ runs/code-decoder-v22-bigset-tuner/tensorboard/events.out.tfevents.1739571108.masked_hostname.local.29698.0 filter=lfs diff=lfs merge=lfs -text
153
+ runs/code-decoder-v22-bigset-tuner/tensorboard/events.out.tfevents.1739572068.masked_hostname.local.30425.0 filter=lfs diff=lfs merge=lfs -text
154
+ runs/code-decoder-v22-bigset-tuner/tensorboard/events.out.tfevents.1739577463.masked_hostname.local.36626.0 filter=lfs diff=lfs merge=lfs -text
155
+ runs/code-decoder-v23-mega-nontopkacc/tensorboard/events.out.tfevents.1740115503.masked_hostname.local.21733.0 filter=lfs diff=lfs merge=lfs -text
156
+ runs/code-decoder-v23-mega-nontopkacc/tensorboard/events.out.tfevents.1740199837.masked_hostname.local.74855.0 filter=lfs diff=lfs merge=lfs -text
157
+ runs/code-decoder-v25-alltrains-anti/tensorboard/events.out.tfevents.1741741083.masked_hostname.local.37706.2 filter=lfs diff=lfs merge=lfs -text
158
+ runs/code-decoder-v25-alltrains-anti/tensorboard/events.out.tfevents.1741743494.masked_hostname.local.40585.2 filter=lfs diff=lfs merge=lfs -text
159
+ runs/code-decoder-v25-alltrains-scheduled/tensorboard/events.out.tfevents.1741738828.masked_hostname.local.33536.0 filter=lfs diff=lfs merge=lfs -text
160
+ runs/code-decoder-v25-alltrains-scheduled/tensorboard/events.out.tfevents.1741740526.masked_hostname.local.35444.0 filter=lfs diff=lfs merge=lfs -text
161
+ runs/code-decoder-v25-alltrains-scheduled/tensorboard/events.out.tfevents.1741740565.masked_hostname.local.35796.0 filter=lfs diff=lfs merge=lfs -text
162
+ runs/code-decoder-v25-alltrains-scheduled/tensorboard/events.out.tfevents.1741740625.masked_hostname.local.36318.0 filter=lfs diff=lfs merge=lfs -text
163
+ runs/code-decoder-v25-alltrains-scheduled/tensorboard/events.out.tfevents.1741740748.masked_hostname.local.37706.0 filter=lfs diff=lfs merge=lfs -text
164
+ runs/code-decoder-v25-alltrains-scheduled/tensorboard/events.out.tfevents.1741743493.masked_hostname.local.40585.0 filter=lfs diff=lfs merge=lfs -text
165
+ runs/code-decoder-v25-alltrains-unscheduled/tensorboard/events.out.tfevents.1741740566.masked_hostname.local.35796.1 filter=lfs diff=lfs merge=lfs -text
166
+ runs/code-decoder-v25-alltrains-unscheduled/tensorboard/events.out.tfevents.1741740625.masked_hostname.local.36318.1 filter=lfs diff=lfs merge=lfs -text
167
+ runs/code-decoder-v25-alltrains-unscheduled/tensorboard/events.out.tfevents.1741740748.masked_hostname.local.37706.1 filter=lfs diff=lfs merge=lfs -text
168
+ runs/code-decoder-v25-alltrains-unscheduled/tensorboard/events.out.tfevents.1741743494.masked_hostname.local.40585.1 filter=lfs diff=lfs merge=lfs -text
169
+ runs/code-decoder-v26-med-anti/tensorboard/events.out.tfevents.1741780037.masked_hostname.local.40754.2 filter=lfs diff=lfs merge=lfs -text
170
+ runs/code-decoder-v26-med-scheduled/tensorboard/events.out.tfevents.1741740735.masked_hostname.local.37613.0 filter=lfs diff=lfs merge=lfs -text
171
+ runs/code-decoder-v26-med-scheduled/tensorboard/events.out.tfevents.1741741672.masked_hostname.local.38523.0 filter=lfs diff=lfs merge=lfs -text
172
+ runs/code-decoder-v26-med-scheduled/tensorboard/events.out.tfevents.1741743335.masked_hostname.local.39916.0 filter=lfs diff=lfs merge=lfs -text
173
+ runs/code-decoder-v26-med-scheduled/tensorboard/events.out.tfevents.1741743570.masked_hostname.local.40754.0 filter=lfs diff=lfs merge=lfs -text
174
+ runs/code-decoder-v26-med-unscheduled/tensorboard/events.out.tfevents.1741758743.masked_hostname.local.40754.1 filter=lfs diff=lfs merge=lfs -text
175
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-loss/tensorboard/events.out.tfevents.1742835548.masked_hostname.local.81114.4 filter=lfs diff=lfs merge=lfs -text
176
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-loss/tensorboard/events.out.tfevents.1742961345.masked_hostname.local.23462.4 filter=lfs diff=lfs merge=lfs -text
177
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-loss/tensorboard/events.out.tfevents.1743083756.masked_hostname.local.75759.4 filter=lfs diff=lfs merge=lfs -text
178
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-noloss/tensorboard/events.out.tfevents.1742648896.masked_hostname.local.11762.3 filter=lfs diff=lfs merge=lfs -text
179
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-noloss/tensorboard/events.out.tfevents.1742824696.masked_hostname.local.80788.3 filter=lfs diff=lfs merge=lfs -text
180
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-noloss/tensorboard/events.out.tfevents.1742824825.masked_hostname.local.81114.3 filter=lfs diff=lfs merge=lfs -text
181
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-noloss/tensorboard/events.out.tfevents.1742961344.masked_hostname.local.23462.3 filter=lfs diff=lfs merge=lfs -text
182
+ runs/code-decoder-v28-fullset-experiment/anticurriculum-noloss/tensorboard/events.out.tfevents.1743083755.masked_hostname.local.75759.3 filter=lfs diff=lfs merge=lfs -text
183
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1742565457.masked_hostname.local.4305.0 filter=lfs diff=lfs merge=lfs -text
184
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1742612715.masked_hostname.local.11657.0 filter=lfs diff=lfs merge=lfs -text
185
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1742612768.masked_hostname.local.11762.0 filter=lfs diff=lfs merge=lfs -text
186
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1742824694.masked_hostname.local.80788.0 filter=lfs diff=lfs merge=lfs -text
187
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1742824823.masked_hostname.local.81114.0 filter=lfs diff=lfs merge=lfs -text
188
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1742961342.masked_hostname.local.23462.0 filter=lfs diff=lfs merge=lfs -text
189
+ runs/code-decoder-v28-fullset-experiment/curriculum-loss/tensorboard/events.out.tfevents.1743083753.masked_hostname.local.75759.0 filter=lfs diff=lfs merge=lfs -text
190
+ runs/code-decoder-v28-fullset-experiment/curriculum-noloss/tensorboard/events.out.tfevents.1742628351.masked_hostname.local.11762.2 filter=lfs diff=lfs merge=lfs -text
191
+ runs/code-decoder-v28-fullset-experiment/curriculum-noloss/tensorboard/events.out.tfevents.1742824695.masked_hostname.local.80788.2 filter=lfs diff=lfs merge=lfs -text
192
+ runs/code-decoder-v28-fullset-experiment/curriculum-noloss/tensorboard/events.out.tfevents.1742824824.masked_hostname.local.81114.2 filter=lfs diff=lfs merge=lfs -text
193
+ runs/code-decoder-v28-fullset-experiment/curriculum-noloss/tensorboard/events.out.tfevents.1742961343.masked_hostname.local.23462.2 filter=lfs diff=lfs merge=lfs -text
194
+ runs/code-decoder-v28-fullset-experiment/curriculum-noloss/tensorboard/events.out.tfevents.1743083754.masked_hostname.local.75759.2 filter=lfs diff=lfs merge=lfs -text
195
+ runs/code-decoder-v28-fullset-experiment/hybrid-loss/tensorboard/events.out.tfevents.1743096722.masked_hostname.local.75759.8 filter=lfs diff=lfs merge=lfs -text
196
+ runs/code-decoder-v28-fullset-experiment/hybrid-noloss/tensorboard/events.out.tfevents.1743025513.masked_hostname.local.23462.7 filter=lfs diff=lfs merge=lfs -text
197
+ runs/code-decoder-v28-fullset-experiment/hybrid-noloss/tensorboard/events.out.tfevents.1743083758.masked_hostname.local.75759.7 filter=lfs diff=lfs merge=lfs -text
198
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1742597535.masked_hostname.local.4305.1 filter=lfs diff=lfs merge=lfs -text
199
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1742612715.masked_hostname.local.11657.1 filter=lfs diff=lfs merge=lfs -text
200
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1742612768.masked_hostname.local.11762.1 filter=lfs diff=lfs merge=lfs -text
201
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1742824694.masked_hostname.local.80788.1 filter=lfs diff=lfs merge=lfs -text
202
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1742824824.masked_hostname.local.81114.1 filter=lfs diff=lfs merge=lfs -text
203
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1742961343.masked_hostname.local.23462.1 filter=lfs diff=lfs merge=lfs -text
204
+ runs/code-decoder-v28-fullset-experiment/noop/tensorboard/events.out.tfevents.1743083754.masked_hostname.local.75759.1 filter=lfs diff=lfs merge=lfs -text
205
+ runs/code-decoder-v28-fullset-experiment/sequential-loss/tensorboard/events.out.tfevents.1742993038.masked_hostname.local.23462.6 filter=lfs diff=lfs merge=lfs -text
206
+ runs/code-decoder-v28-fullset-experiment/sequential-loss/tensorboard/events.out.tfevents.1743083758.masked_hostname.local.75759.6 filter=lfs diff=lfs merge=lfs -text
207
+ runs/code-decoder-v28-fullset-experiment/sequential-noloss/tensorboard/events.out.tfevents.1742972404.masked_hostname.local.23462.5 filter=lfs diff=lfs merge=lfs -text
208
+ runs/code-decoder-v28-fullset-experiment/sequential-noloss/tensorboard/events.out.tfevents.1743083757.masked_hostname.local.75759.5 filter=lfs diff=lfs merge=lfs -text
209
+ runs/code-decoder-v3-regularized/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
210
+ runs/code-decoder-v3-regularized/tensorboard/events.out.tfevents.1732493237.masked_hostname.local.34892.0 filter=lfs diff=lfs merge=lfs -text
211
+ runs/code-decoder-v30-alltrains-v2/anticurriculum/tensorboard/events.out.tfevents.1743555000.masked_hostname.local.28664.3 filter=lfs diff=lfs merge=lfs -text
212
+ runs/code-decoder-v30-alltrains-v2/anticurriculum-loss/tensorboard/events.out.tfevents.1743555651.masked_hostname.local.28664.4 filter=lfs diff=lfs merge=lfs -text
213
+ runs/code-decoder-v30-alltrains-v2/curriculum-loss/tensorboard/events.out.tfevents.1743553195.masked_hostname.local.28110.0 filter=lfs diff=lfs merge=lfs -text
214
+ runs/code-decoder-v30-alltrains-v2/curriculum-loss/tensorboard/events.out.tfevents.1743553543.masked_hostname.local.28664.0 filter=lfs diff=lfs merge=lfs -text
215
+ runs/code-decoder-v30-alltrains-v2/curriculum-noloss/tensorboard/events.out.tfevents.1743554472.masked_hostname.local.28664.2 filter=lfs diff=lfs merge=lfs -text
216
+ runs/code-decoder-v30-alltrains-v2/hybrid/tensorboard/events.out.tfevents.1743557556.masked_hostname.local.28664.7 filter=lfs diff=lfs merge=lfs -text
217
+ runs/code-decoder-v30-alltrains-v2/hybrid-loss/tensorboard/events.out.tfevents.1743558061.masked_hostname.local.28664.8 filter=lfs diff=lfs merge=lfs -text
218
+ runs/code-decoder-v30-alltrains-v2/noop/tensorboard/events.out.tfevents.1743554208.masked_hostname.local.28664.1 filter=lfs diff=lfs merge=lfs -text
219
+ runs/code-decoder-v30-alltrains-v2/sequential/tensorboard/events.out.tfevents.1743556334.masked_hostname.local.28664.5 filter=lfs diff=lfs merge=lfs -text
220
+ runs/code-decoder-v30-alltrains-v2/sequential-loss/tensorboard/events.out.tfevents.1743556828.masked_hostname.local.28664.6 filter=lfs diff=lfs merge=lfs -text
221
+ runs/code-decoder-v30-alltrains-v3/anticurriculum/tensorboard/events.out.tfevents.1745370988.masked_hostname.local.86231.3 filter=lfs diff=lfs merge=lfs -text
222
+ runs/code-decoder-v30-alltrains-v3/anticurriculum-loss/tensorboard/events.out.tfevents.1745371463.masked_hostname.local.86231.4 filter=lfs diff=lfs merge=lfs -text
223
+ runs/code-decoder-v30-alltrains-v3/curriculum-loss/tensorboard/events.out.tfevents.1745370040.masked_hostname.local.86231.1 filter=lfs diff=lfs merge=lfs -text
224
+ runs/code-decoder-v30-alltrains-v3/curriculum-noloss/tensorboard/events.out.tfevents.1745369463.masked_hostname.local.86231.0 filter=lfs diff=lfs merge=lfs -text
225
+ runs/code-decoder-v30-alltrains-v3/hybrid/tensorboard/events.out.tfevents.1745373525.masked_hostname.local.86231.7 filter=lfs diff=lfs merge=lfs -text
226
+ runs/code-decoder-v30-alltrains-v3/hybrid-loss/tensorboard/events.out.tfevents.1745374219.masked_hostname.local.86231.8 filter=lfs diff=lfs merge=lfs -text
227
+ runs/code-decoder-v30-alltrains-v3/noop/tensorboard/events.out.tfevents.1745370736.masked_hostname.local.86231.2 filter=lfs diff=lfs merge=lfs -text
228
+ runs/code-decoder-v30-alltrains-v3/sequential/tensorboard/events.out.tfevents.1745372095.masked_hostname.local.86231.5 filter=lfs diff=lfs merge=lfs -text
229
+ runs/code-decoder-v30-alltrains-v3/sequential-loss/tensorboard/events.out.tfevents.1745372622.masked_hostname.local.86231.6 filter=lfs diff=lfs merge=lfs -text
230
+ runs/code-decoder-v30-alltrains-v4-entropic/anticurriculum/tensorboard/events.out.tfevents.1745377207.masked_hostname.local.86231.12 filter=lfs diff=lfs merge=lfs -text
231
+ runs/code-decoder-v30-alltrains-v4-entropic/anticurriculum-loss/tensorboard/events.out.tfevents.1745377659.masked_hostname.local.86231.13 filter=lfs diff=lfs merge=lfs -text
232
+ runs/code-decoder-v30-alltrains-v4-entropic/curriculum-loss/tensorboard/events.out.tfevents.1745375980.masked_hostname.local.86231.10 filter=lfs diff=lfs merge=lfs -text
233
+ runs/code-decoder-v30-alltrains-v4-entropic/curriculum-noloss/tensorboard/events.out.tfevents.1745375217.masked_hostname.local.86231.9 filter=lfs diff=lfs merge=lfs -text
234
+ runs/code-decoder-v30-alltrains-v4-entropic/hybrid/tensorboard/events.out.tfevents.1745379411.masked_hostname.local.86231.16 filter=lfs diff=lfs merge=lfs -text
235
+ runs/code-decoder-v30-alltrains-v4-entropic/hybrid-loss/tensorboard/events.out.tfevents.1745379853.masked_hostname.local.86231.17 filter=lfs diff=lfs merge=lfs -text
236
+ runs/code-decoder-v30-alltrains-v4-entropic/noop/tensorboard/events.out.tfevents.1745376940.masked_hostname.local.86231.11 filter=lfs diff=lfs merge=lfs -text
237
+ runs/code-decoder-v30-alltrains-v4-entropic/sequential/tensorboard/events.out.tfevents.1745378311.masked_hostname.local.86231.14 filter=lfs diff=lfs merge=lfs -text
238
+ runs/code-decoder-v30-alltrains-v4-entropic/sequential-loss/tensorboard/events.out.tfevents.1745378808.masked_hostname.local.86231.15 filter=lfs diff=lfs merge=lfs -text
239
+ runs/code-decoder-v4-improved/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
240
+ runs/code-decoder-v4-improved/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
241
+ runs/code-decoder-v4-improved/tensorboard/events.out.tfevents.1732557364.masked_hostname.local.8849.0 filter=lfs diff=lfs merge=lfs -text
242
+ runs/code-decoder-v5-enabled/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
243
+ runs/code-decoder-v5-enabled/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
244
+ runs/code-decoder-v5-enabled/tensorboard/events.out.tfevents.1732655653.masked_hostname.local.44219.0 filter=lfs diff=lfs merge=lfs -text
245
+ runs/code-decoder-v6-big/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
246
+ runs/code-decoder-v6-big/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
247
+ runs/code-decoder-v6-big/tensorboard/events.out.tfevents.1732665038.masked_hostname.local.52234.0 filter=lfs diff=lfs merge=lfs -text
248
+ runs/code-decoder-v7-small/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
249
+ runs/code-decoder-v7-small/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
250
+ runs/code-decoder-v7-small/tensorboard/events.out.tfevents.1732748876.masked_hostname.local.80163.0 filter=lfs diff=lfs merge=lfs -text
251
+ runs/code-decoder-v8-smaller/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
252
+ runs/code-decoder-v8-smaller/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
253
+ runs/code-decoder-v8-smaller/tensorboard/events.out.tfevents.1733447357.masked_hostname.local.15359.0 filter=lfs diff=lfs merge=lfs -text
254
+ runs/code-decoder-v9-vanilla-smaller/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
255
+ runs/code-decoder-v9-vanilla-smaller/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
256
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733447829.masked_hostname.local.15671.0 filter=lfs diff=lfs merge=lfs -text
257
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733448292.masked_hostname.local.17686.0 filter=lfs diff=lfs merge=lfs -text
258
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733448409.masked_hostname.local.17748.0 filter=lfs diff=lfs merge=lfs -text
259
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733448598.masked_hostname.local.17845.0 filter=lfs diff=lfs merge=lfs -text
260
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733448613.masked_hostname.local.17867.0 filter=lfs diff=lfs merge=lfs -text
261
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733448630.masked_hostname.local.17903.0 filter=lfs diff=lfs merge=lfs -text
262
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733807199.masked_hostname.local.69912.0 filter=lfs diff=lfs merge=lfs -text
263
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733807383.masked_hostname.local.70012.0 filter=lfs diff=lfs merge=lfs -text
264
+ runs/code-decoder-v9-vanilla-smaller/tensorboard/events.out.tfevents.1733807429.masked_hostname.local.70077.0 filter=lfs diff=lfs merge=lfs -text
265
+ runs/run1-python/tensorboard/events.out.tfevents.1731190413.masked_hostname.local.15925.0 filter=lfs diff=lfs merge=lfs -text
266
+ runs/run1-python/tensorboard/events.out.tfevents.1731192504.masked_hostname.local.15925.1 filter=lfs diff=lfs merge=lfs -text
267
+ runs/run1-python/tensorboard/events.out.tfevents.1731215622.masked_hostname.local.29982.0 filter=lfs diff=lfs merge=lfs -text
268
+ runs/run1-python/tensorboard/events.out.tfevents.1731217662.masked_hostname.local.29982.1 filter=lfs diff=lfs merge=lfs -text
269
+ runs/run22_old/ckpt/best.pt filter=lfs diff=lfs merge=lfs -text
270
+ runs/run22_old/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
271
+ runs/run22_old/tensorboard/events.out.tfevents.1738980082.masked_hostname.local.19149.0 filter=lfs diff=lfs merge=lfs -text
272
+ runs/shakespeare-test/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
273
+ runs/shakespeare-test/tensorboard/events.out.tfevents.1731187656.masked_hostname.local.14040.0 filter=lfs diff=lfs merge=lfs -text
274
+ runs/shakespeare-test/tensorboard/events.out.tfevents.1731187997.masked_hostname.local.14040.1 filter=lfs diff=lfs merge=lfs -text
275
+ runs/shakespeare-test-v2/ckpt/epoch_27.pt filter=lfs diff=lfs merge=lfs -text
276
+ runs/shakespeare-test-v2/ckpt/epoch_62.pt filter=lfs diff=lfs merge=lfs -text
277
+ runs/shakespeare-test-v2/ckpt/latest.pt filter=lfs diff=lfs merge=lfs -text
278
+ runs/shakespeare-test-v2/tensorboard/events.out.tfevents.1731344010.masked_hostname.local.8638.0 filter=lfs diff=lfs merge=lfs -text
279
+ runs/shakespeare-test-v2/tensorboard/events.out.tfevents.1731344305.masked_hostname.local.8638.1 filter=lfs diff=lfs merge=lfs -text
280
+ runs/shakespeare-test-v2/tensorboard/events.out.tfevents.1731386358.masked_hostname.local.44186.0 filter=lfs diff=lfs merge=lfs -text
281
+ runs/shakespeare-test-v2/tensorboard/events.out.tfevents.1731386659.masked_hostname.local.44186.1 filter=lfs diff=lfs merge=lfs -text
282
+ runs/shakespeare-test-v2/tensorboard/events.out.tfevents.1731386819.masked_hostname.local.44920.0 filter=lfs diff=lfs merge=lfs -text
283
+ runs/wikitexter-v1/tensorboard/events.out.tfevents.1732661788.masked_hostname.local.50017.0 filter=lfs diff=lfs merge=lfs -text
284
+ scraping/files/python_files.txt filter=lfs diff=lfs merge=lfs -text
285
+ smaller-er-test-data/bpe_model.model filter=lfs diff=lfs merge=lfs -text
286
+ smaller-er-test-data/encoded_chunked.pt filter=lfs diff=lfs merge=lfs -text
287
+ smaller-test-data/bpe_model.model filter=lfs diff=lfs merge=lfs -text
288
+ smaller-test-data/encoded_chunked.pt filter=lfs diff=lfs merge=lfs -text
289
+ test-data/bpe_model.model filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .DS_Store
2
+ corpus.zip
3
+ *.pt
4
+ *.old
5
+ scraping/files/downloaded_files/*
6
+
7
+ !smaller-test-data/encoded_chunked.pt
8
+ !runs/code-decoder-v15-sliding/ckpt/best.pt
9
+ !runs/code-decoder-v15-sliding/ckpt/latest.pt
10
+
11
+ # Byte-compiled / optimized / DLL files
12
+ __pycache__/
13
+ *.py[cod]
14
+ *$py.class
15
+
16
+ # C extensions
17
+ *.so
18
+
19
+ # Distribution / packaging
20
+ .Python
21
+ build/
22
+ develop-eggs/
23
+ dist/
24
+ downloads/
25
+ eggs/
26
+ .eggs/
27
+ lib/
28
+ lib64/
29
+ parts/
30
+ sdist/
31
+ var/
32
+ wheels/
33
+ share/python-wheels/
34
+ *.egg-info/
35
+ .installed.cfg
36
+ *.egg
37
+ MANIFEST
38
+
39
+ # PyInstaller
40
+ # Usually these files are written by a python script from a template
41
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
42
+ *.manifest
43
+ *.spec
44
+
45
+ # Installer logs
46
+ pip-log.txt
47
+ pip-delete-this-directory.txt
48
+
49
+ # Unit test / coverage reports
50
+ htmlcov/
51
+ .tox/
52
+ .nox/
53
+ .coverage
54
+ .coverage.*
55
+ .cache
56
+ nosetests.xml
57
+ coverage.xml
58
+ *.cover
59
+ *.py,cover
60
+ .hypothesis/
61
+ .pytest_cache/
62
+ cover/
63
+
64
+ # Translations
65
+ *.mo
66
+ *.pot
67
+
68
+ # Django stuff:
69
+ *.log
70
+ local_settings.py
71
+ db.sqlite3
72
+ db.sqlite3-journal
73
+
74
+ # Flask stuff:
75
+ instance/
76
+ .webassets-cache
77
+
78
+ # Scrapy stuff:
79
+ .scrapy
80
+
81
+ # Sphinx documentation
82
+ docs/_build/
83
+
84
+ # PyBuilder
85
+ .pybuilder/
86
+ target/
87
+
88
+ # Jupyter Notebook
89
+ .ipynb_checkpoints
90
+
91
+ # IPython
92
+ profile_default/
93
+ ipython_config.py
94
+
95
+ # pyenv
96
+ # For a library or package, you might want to ignore these files since the code is
97
+ # intended to run in multiple environments; otherwise, check them in:
98
+ # .python-version
99
+
100
+ # pipenv
101
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
102
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
103
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
104
+ # install all needed dependencies.
105
+ #Pipfile.lock
106
+
107
+ # poetry
108
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
109
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
110
+ # commonly ignored for libraries.
111
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
112
+ #poetry.lock
113
+
114
+ # pdm
115
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
116
+ #pdm.lock
117
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
118
+ # in version control.
119
+ # https://pdm.fming.dev/#use-with-ide
120
+ .pdm.toml
121
+
122
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
123
+ __pypackages__/
124
+
125
+ # Celery stuff
126
+ celerybeat-schedule
127
+ celerybeat.pid
128
+
129
+ # SageMath parsed files
130
+ *.sage.py
131
+
132
+ # Environments
133
+ .env
134
+ .venv
135
+ env/
136
+ venv/
137
+ ENV/
138
+ env.bak/
139
+ venv.bak/
140
+
141
+ # Spyder project settings
142
+ .spyderproject
143
+ .spyproject
144
+
145
+ # Rope project settings
146
+ .ropeproject
147
+
148
+ # mkdocs documentation
149
+ /site
150
+
151
+ # mypy
152
+ .mypy_cache/
153
+ .dmypy.json
154
+ dmypy.json
155
+
156
+ # Pyre type checker
157
+ .pyre/
158
+
159
+ # pytype static type analyzer
160
+ .pytype/
161
+
162
+ # Cython debug symbols
163
+ cython_debug/
164
+
165
+ # PyCharm
166
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
167
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
168
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
169
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
170
+ #.idea/
171
+
NOTES.md ADDED
@@ -0,0 +1,1079 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # code-completion
2
+
3
+ - 5 nov 2024
4
+ - Just doing some research about code completion.
5
+ - Current idea for data gathering: Scrape github but filter on the following criteria:
6
+ - Repo with >100 stars
7
+ - Only python code, the repo must contain mostly python code also
8
+ - Small files: >100 bytes but <100 kb maybe? Paper did 100mb
9
+ - Yes
10
+ - 7 nov
11
+ - more stuff
12
+ - https://github.com/search?q=language%3APython+size%3A5..5000+stars%3A%3E%3D100+license%3AMIT+template%3Afalse&type=repositories
13
+ - https://github.com/search?q=language%3APython+size%3A5..5000+stars%3A%3E%3D100+template%3Afalse&type=repositories
14
+ - 8 nov
15
+ - Take a break from transformers, do some scraping!
16
+ - See `scraping/`
17
+ - Github api requests, switch out PATs for higher ratelimits
18
+ - Scrape repos with the following criterion: >100 stars, python.
19
+ - Do in sections of months to get around the max 1000 results constraint
20
+ - So we have 30k of all python repositories since 2015
21
+ - Then scrape files, just .py files between 1 and 100 kb, using SHA to avoid reuse
22
+ - 9 nov
23
+ - Okay, actually working really hard on transformers now.
24
+ - We have the dataset, now I'm fixing up architecture, making training etc files
25
+ - Using BERT for tokenizing.
26
+ - This project is really starting to come along!
27
+ - Made eval.py and I am testing on a shakespeare dataset because its smaller for now
28
+ - Fixed bugs with it always predicting `[PAD]`
29
+ - I think I will have to train it for a bit on shakespeare and see what I get
30
+ - Integrated tensorboard is bugging, so I open it on web now
31
+ - Nans in stuff, which I had to fix
32
+ - BRUH ok so the reason why it was generating a bunch of unused tokens was because I forgot to set vocab size
33
+ - But now that I've done it, it's working great! Here's some example generated shakespeare: `It is it mumle asch my farewell as together with dec within specialising hannibal glittering plea northern hale withindes iv more transit villains exeunt jaws men fearful trunk wo fertile togetheryr assignent moons . fellowyr hez rivers together translationstton neither most hearts nephew it rests virtuepl patterns make manson elves advocacy old firstous un same pole let ex pleasure monument presumably tis en is sparkle minds faithful polonius phil is fiery exeter germany give bed high high itbit most peace demonstration rescued thoughts why lords exeu`
34
+ - And that was after 12 minutes of training!
35
+ - I'm going to train it on code, but I think we should be in a good spot and we might be able to train it on wikipedia and have something of a chatgpt. That would be quite something.
36
+ - 11 nov
37
+ - Ok, so I trained it overnight on code, and we've got NaN's in the loss!
38
+ - Quite unfortunate, but I think I will pivot and make a TrainingManager class becuase train.py is becoming too big. Also, I will deNaN in there.
39
+ - The current plan is just to train on shakespeare as a test. Why? Because it's small and highly specific. We can use shakespeare to test if the model can really learn and "overfit" to Shakespeare's style. Wish me luck!
40
+ - Even on the shakespeare, these things do take a while to train. Epoch 13 in 2 hr 30 min. Loss curve is looking kind of funny: epoch zero is super high, then it went down to 1 and stayed there, and then suddenly jumped down to like 0.02. Picture: <img src="readme-imgs/shakespeare-test-v2-loss-curve-preliminary.png" width="200">
41
+ - it goes a lot faster when I close all the other apps and turn off the screen, understandably. (Up to epoch 18 just 45 minutes later)
42
+ - I'm considering using wandb, but tensorboard does all I need in terms of making little graphs of loss curves.
43
+ - Inference is still trash: (shakespeare) `Prompt: I am - Completion: faith tern- ndhelen thee more first serious gi and instances cleopatra taffhere`
44
+ - Feels pretty much the same as the sample up above
45
+ - Epoch 20 and loss is at 0.001
46
+ - Beginning to kind of learn sentence structures: `This is king this discovers hall for readiness dansister service old all chamber william usually ab promising soi linen ousostrather hall olivia monument most nmarcus robert applebeauty bride all caesar ' s ex eusort cha because ' usher doolivia old camouflage`
47
+ - Loss is going down, sentences are incoherent, but its picking up on shakespearean words: `Forsooth for silvia weep is sour though xiii exeter crack fee dread with ackthere lstaffforward wears suit safety de count gods spa but lai clarence exeter up remain intex utterly un messengers madam old wo messengers wo old painter additions here several join but music edthe apartments watch dold ex bi youth most old`
48
+ - There might be some Richard III overfitting: "exeter", "clarence", "messengers"
49
+ - Still, that's what we are aiming for
50
+ - While it hasn't really picked up on sentence structure, shakespeare itself as somewhat confusing structure as well.
51
+ - Current loss is 0.0015, we are 28 epochs and 5.5 hours in.
52
+ - Ok, well the Nan check flagged but bug caused it to just error and exit. My tensorboard is being weird too. Sample: `I am crantmore ultultbelong tis honest loved above though bitter gone hat sir was love old tutor er s en marcel more assurance destroy old aex euntpalaces fast old death ex euntas chase t des old friend tis spells death old ( lfla corner most sunshine mates barren lo aththgreat plotted wounds besides ] beside s messengers roast fairly gone uearth said horse quo good nceold breast la`
53
+ - Loss is going up also so that's a sign I stop. This also looks worse than the epoch 20 checkin. Well, that wasn't exactly reassuring.
54
+ - 16 nov
55
+
56
+ - Took a few-day break from this, no clear quickfix. As a sanity check, I will train with the trainer from https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Transformers, and then see if it works and go from there. Should have probably done this sooner, but oh well.
57
+ - Alright. I've cloned it over, but I will keep notes here. Fork is @ https://github.com/JBlitzar/a-PyTorch-Tutorial-to-Transformers
58
+
59
+ - Within the subquest of getting this to work, here's what I've done so far:
60
+ - Rename directories to work with my naming scheme
61
+ - reset model checkpoint
62
+ - Add a gitignore
63
+ - Get data.
64
+ - I'm about to train. Idea is to see if this works, then get it to work on autoregression, then modify if wanted!
65
+ - Quickly added tqdm to see progress.
66
+ - This person really comments _every single line_. Case in point:
67
+
68
+ ```python
69
+ model.eval() # eval mode disables dropout
70
+ # Prohibit gradient computation explicitly
71
+
72
+ with torch.no_grad():
73
+
74
+ ```
75
+
76
+ - Oh my goodness this guy made his own "sequenceloader" which _doesn't inherit from dataloader_ and forgot utility methods like `__len__`. I guess I'll add them so tqdm actually works!
77
+ - We're looking at 13h epochs. Only 24gb ram used, I'll turn that up and crank overnight. _This is why tqdm is useful. We can look at how long things like this take and react._
78
+ - Added caffeinate
79
+ - Something is weird. Actmon says 81 gb used, 8gb real and 478gb virtual. Shared and private are either small or negative. <img src="readme-imgs/weird_mem_usage.png" width="200">
80
+ - What do you know, MPS backend got OOM. Rather than debug this, I'm going to pivot and try to get https://github.com/tunz/transformer-pytorch working. Repo is clean and consice. Author seems like they know the paper inside and out, given they wrote https://tunz.kr/post/4.
81
+
82
+ - Side-quest 2: Getting https://github.com/tunz/transformer-pytorch to work
83
+ - Idiosyncratic #1: Bro uses his own library for custom pytorch operations _implemented in c++_
84
+ - Cool, kind of a pain for the rest of us for one function. https://github.com/tunz/tcop-pytorch/tree/master
85
+ - So only uses tcop in fast_transformer.py, that's also the only difference. https://tunz.kr/post/5 says that it was only 2% faster, so whatever. Kind of sad he went on this whole quest to rewrite a torch op in c++ and it only got 2% faster. Why? He analyzed one area: MHA. I'm absolutely sure that the main time crunch is backprop and Linear. Also when rewriting a couple operators into one vs using pytorch's very optimized ones in succession, you will get similar results
86
+ - It's also designed for autoregression.
87
+ - Dataloading is a bit convoluted, but for now I will trust the process.
88
+ - Quickfixes of recasting to bool bc mps, did weights_only for security
89
+ - Looking up! 20 min epochs, and I will analyze via tensorboard.
90
+ - Did a few fixes with deserialization, and started training. Tensorboard is very fun. Mem usage is actually perfect. TBH, this is how I would've structured the project. Good job tunz 5 years ago! You've earned yourself a star.
91
+
92
+ - 17 nov
93
+
94
+ - We are still working on our fork at https://github.com/jblitzar/transformer-pytorch to work.
95
+ - Loss is around 3.5
96
+ - After training overnight and doing some decoding, we get for the result `[This is] one of the world 's most successful companies . <eos>` (prompt in brackets).
97
+ - Pretty great!
98
+ - Says some interesting things.
99
+ - `[I am not] the only person who has been arrested . <eos>`
100
+ - `[The trees] have been destroyed in a blaze at a house in <unk> . <eos>` (Does this on anything related to trees)
101
+ - `[He is] one of the world 's most successful companies . <eos>` Indicates overfitting on that phrase
102
+ - `[I am trying to] find a solution to the problem . <eos>`
103
+ - `[She is a person who] has a lot to learn from . <eos>` Finally not a company completion. Using "she" might lead the model away from overfitting male-gendered pronouns to stereotypical business-related completions. Compare with `[He is a person who] has a lot of experience and experience . <eos> . . <eos>`
104
+ - `[It is an example of] the <unk> of <unk> . <eos>` Lots of unk
105
+ - `[The idea is to] create a " <unk> " system that allows people to use the internet to communicate with friends . <eos>` Interesting. News articles seem very company and social-media focused.
106
+ - `[The meaning of life is] not the same . <eos>`
107
+ - `[The secret is] one of the world 's most popular <unk> . <eos>`
108
+ - `[Success is] one of the world 's most successful companies . <eos>` Broke the streak!
109
+ - `[A person is] not the only person who has been arrested . <eos>` The arrested one again.
110
+ - `[An animal is] one of the world 's most endangered species . <eos>` Makes sense, quite vague
111
+ - `[He is not] the only one of the most popular <unk> in the world . <eos>` It was going for the company one, wasnt it.
112
+ - I generated some more after a bit, and it's interesting.
113
+ - `[illegal] immigration is a major problem in the united states . <eos>` The news is showing :\
114
+ - `[aawoipehaweio apiouhguivcnxn] , a spokesman for <unk> , said the company had not yet been notified . <eos>`. Does this for all unknown tokens I'm pretty sure. See `[Interesting] <unk> , a spokesman for <unk> , said : " we are pleased to announce that we have reached a new agreement with <unk> . <eos>`. `[Example] <unk> , a spokesman for <unk> , said : " we are pleased to announce that we have reached a new agreement with <unk> . <eos>`
115
+ - `[Climate change is] a good thing . <eos>` Extremely worrying
116
+ - `[The internet is] one of the world 's largest internet companies . <eos> <eos>` ok.
117
+ - `[What is the] leading provider of <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , and <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk> , <unk>` The unknown tokens.
118
+ - `[The economy] , which has been hit hard by the credit crunch , has been hit hard by the recession . <eos>` Very news-related.
119
+ - What's with the violence: `[This man] , who has been in custody for more than a year , was arrested on suspicion of causing grievous bodily harm . <eos>`
120
+ - `[You are] not the only ones that have been affected . <eos> <eos>`
121
+ - `[Welcome to] be the first person to win a gold medal at the beijing olympics . <eos>`
122
+ - `[This is the only] person who has been charged in the case . <eos>` so much legal/arrest stuff
123
+ - `[There is hope that] this will be the end of the year . <eos>`
124
+ - `[h] & r block , which owns the company , said it had agreed to pay $ <unk> million to settle the lawsuit . <eos>`. Google searches reveal that there was a lawsuit in nov 2024, but also a bunch previously.
125
+ - At least `[war] is not the answer . <eos>`
126
+ - `[I'm wondering if] it 's a good thing . <eos>`
127
+ - `[The question is] , what do you think ? <eos>`
128
+ - `[google] , the world 's largest internet search engine , said it was looking at ways to make it easier for people to access the internet . <eos>` Actually good, prob overfit, but google search result for that exact sentence doesnt show anything.
129
+ - `[He was] the first person to be killed in the attack . <eos>` Always violence. Same with [She was]
130
+ - `[The trees in the rainforest are] also being planted . <eos>`
131
+ - `[I am sure that] this will be the case . <eos>`
132
+ - Loss is 3.9. Now its 3.5, 3.9 on val.
133
+ - According to chatgpt: "Your findings are fascinating and provide a clear picture of how the lm1b dataset has influenced your model's behavior. The outputs show a distinct news-style bias with a strong leaning toward legal, corporate, and environmental themes, as well as frequent reliance on `<unk>` tokens when specificity fails."
134
+ - To be added to. Might consider top-p sampling or increasing temeperature or something from the current method of beam search, whatever that is. Somehow get rid of `<unk>`. Keep training for now.
135
+ - So what are the things we might change? Perhaps different sampling method, or continue generating past one sentence. Use `youtokentome` for tokenizing: The data preprocessing took suspiciously long, and `torchtext` is really jank.
136
+ - I ended the run at epoch 100, as val loss tipped up and no change in train loss.
137
+
138
+ - All right, so first of all we can see that they are tokenizing at the word level.
139
+ - I'm going to try to get wikitext working. It's small, factual, and neutral. https://huggingface.co/datasets/Salesforce/wikitext.
140
+
141
+ - Nov 19
142
+ - Nick thoughts:
143
+ - Sometimes just a stack of decoders, no XA just SA. Look into it.
144
+ - Mini autoencoder in feedforward.
145
+ - Look through https://github.com/hyunwoongko/transformer
146
+ - Preprocess code dataset by formatting or something.
147
+ - Prob black. Tokenization might be interesting
148
+ - Next steps: Research decoder stack, get proper tokenization, port tunz code over here, decide what to run it on (code completion probably)
149
+ - Decoder only transformers are just a stack of decoders (no XA ofc)
150
+ - https://datascience.stackexchange.com/questions/104179/is-the-transformer-decoder-an-autoregressive-model
151
+ - Teacher forcing at training, just use actual token not predicted token, duh.
152
+ - Decoder-only architecture opens it up as a classifier. Just knowing that it can be used for non-sequence stuff.
153
+ - Nov 21
154
+ - 75 min session.
155
+ - Just got decoder-only xformer implemented.
156
+ - Also got dataset working!
157
+ - Nov 22:
158
+ - Getting dataset working for more code-specific things, also reformatted all the files.
159
+ - removed "T" hack (from future self: I basically added it back in because YTTM tried to do whitespace norm :\ )
160
+ - I adjusted coverage, because someone put like a unicode dump and there were 14k unique chars
161
+ - After some more investigation, it isnt unicode dumps, its lots of comments in chinese, cuz so many chinese characters.
162
+ - AHAHAWHAfpesao9hasperugha me when I forget to set a flag that I created and then my code doesnt run removing chinese characters
163
+ - Nevermind, I'll just use coverage variable like I initially planned. Silly me with no flag.
164
+ - Switched to autopep8 because black was being weird
165
+ - Got it to work, and realized that YTTM does whitespace normalization. Fine usually, not fine rn.
166
+ - Autopep8 needs to ignore E402, duh, which moves imports to the top.
167
+ - Stoped caching chunked file and instead cached pre-chunked, pytorch loads it faster. idk, prob overhead with delimeters or something.
168
+ - But it's actually crazy. 76 vs 0.05 seconds to load.
169
+ - Loading data finally works, just did a quickfix on tensor-ifying attn_mask also.
170
+ - Train.py runs! Never have I ever spent so many hours on dataset.py (like 3 or 4. crazy.). I suppose also first time I used custom dataset.
171
+ - Nov 23:
172
+ - Ahaa so I thought I was good and I made the rookie error AGAIN of not setting vocab_size. I added a check if its default to print a warning.
173
+ - Reworked saving so that it saves best only.
174
+ - Maybe examine loss before letting it go overnight.
175
+ - In the spirit of testing, I'm going to run it on a minibatch and make sure val stuff works.
176
+ - Done, now retrain.
177
+ - Looking through https://github.com/hyunwoongko/transformer/blob/master/models/blocks/decoder_layer.py, the only other thing I missed was dropout.
178
+ - Made a decision to do only 70 chars for that 99%. Should be fine.
179
+ - Running train.py code-decoder-v2-smallchar. Train loss is a lot smaller than when I don't reduce chars.
180
+ - Loss is small, but it still has a ways to go: `for i in range(in s[i]) s[i]) s[i]) s[i]) s[i]) s[i]) _F _F .append( s[i]) s[i]) s[2] in range( in in in in s[i]) s[i]) s[i]) _func in in s[i]) s[i]) s[i]) s[i]) s[i]) s[i]) ] s[i]) s[i]) s[i]) s[i]) s[i]) s[i]) RIT s[i]) s[i]) tmp s[i]) s[i]) s[i]) s[i]) s[i]) s[i]) tmp s[i]) s[i]) s[i]) s[i]) s[i]) s[i]) tmp s[i]) s[i]) s[i]) s[i]) s[i]) tmp s[i]) tmp tmp s[i]) rgb .append( tmp tmp s[i]) s[i]) s[i]) _test, .append( tmp tmp s[i]) s[i]) s[i]) s[i]) NIST hy tmp tmp s[i]) s.to( s.to( s.to( tmp tmp s[i]) s[i]) NE NE hy s.to( 4 uidance s[i])`
181
+ - Stopped training, changed to smaller context window. Retraining. Perhaps 99% was too restrictive. Later retry with 99.5%, but should be fine I guess for now.
182
+ - Nov 24
183
+ - Ugh, more NaNs in the loss overnight.
184
+ - Time for some ✨debugging✨ - Nans in loss come from nans in results - But there are no nans in labels or batch. - `torch.isnan(batch).any()` - Removing layernorm didnt help. - I'm going to use `torch.autograd.set_detect_anomaly(True)` - Did some funny
185
+
186
+ ```python
187
+ def forward_hook(module, input, output):
188
+ if isinstance(output, tuple):
189
+ return
190
+ if torch.isnan(output).any() or torch.isinf(output).any():
191
+ print(f"NaNs/Infs detected in {module}")
192
+
193
+ for module in net.modules():
194
+ module.register_forward_hook(forward_hook)
195
+ ```
196
+
197
+ - Continuing
198
+ - So looks like MHA is the issue.
199
+ - And what do you know, https://github.com/pytorch/pytorch/issues/21518
200
+ - So yeah. Lets give that fix a try
201
+ - Nope, it seems that NaNs in x are occuring before they even are in MHA_selfattn.
202
+ - Ok, so it seems to be occuring when it comes out of the MultiHeadAttention.
203
+ - The problem is I forgot to cast mask to float 🤦 (I think?)
204
+ - Ran through val and no NaN.
205
+ - All right, going to retrain. Also lowered lr by a factor of 10 and it doesnt explode anymore, so good sign.
206
+ - Its been 2 epochs, avg loss went from 11 to 35, weird spikes. I'll put screenshot. <img src="readme-imgs/code-decoder-v2-loss-curve-1.png" width="200">
207
+ - Weird spikes: Perhaps do some sort of weight initialization? See https://github.com/pytorch/examples/blob/main/word_language_model/model.py
208
+ - Maybe LR is too low now that we actually diagnosed the nans as coming from my MHA.
209
+ - https://github.com/hyunwoongko/transformer/blob/master/train.py Uses Xavier initialization and clips gradients, so I will.
210
+ - Starting up runs/code-decoder-v3-regularized
211
+ - Training, sample: (bracketed prompt from dataset)
212
+
213
+ ```python
214
+ [
215
+ loss_ = self.gwta_loss(out, yss, m, grid_factor=np.power(2, idx))
216
+ else:
217
+ loss_ = m(out, yss)
218
+ loss += loss_
219
+ losses.append(loss_.item())
220
+
221
+ loss.backward()
222
+ self.optimizers.step()
223
+ ]
224
+
225
+ # -- Histd_ +', b as do ed single This to to update is update
226
+ # continue last LR ed this ") ', training
227
+ # if output if args.local_rank not arg e:
228
+ ```
229
+
230
+ - Not quite there yet, but looking like code. optimizer.step() is indeed to update parameters, and it does involve training, so it's getting there.
231
+ - Nov 25
232
+
233
+ - So loss went up after a bit. It's kind of weird. <img src="readme-imgs/code-decoder-v3-loss-curve.png" width="500">
234
+ - Loss went wayy up after it seemed like it was going well going down.
235
+ - Maybe over-regularization? I'm going to implement the lr schedule that https://github.com/hyunwoongko/transformer does and I adjusted gradient clipping to a lower threshold (1.0 vs 10.0)
236
+ - https://github.com/hyunwoongko/transformer also just trained it a lot longer
237
+ - Learning is slower, loss is at 1.3, but its stable, which is good.
238
+ - Loss is literally the same within 2 decimal places as it was 2 hrs ago. 3.22 or whatever. Sometimes with projects, after you've done all the learning and coding, the rest is like fine-tuning and training 1 million times, and that isn't super fulfilling. Transformers was really cool though, and I totally want to run this on wikitext.
239
+ - So this is (maybe) a classic case of too-low learning rate and so it got stuck in local minimum. Fine line between overfitting and over-regularization.
240
+
241
+ - Rerunning with higher LR.
242
+ - `v5-enabled`.
243
+ - aaand a factor of 10 on the lr was too much (loss of 7k after a few steps). Split the difference and go 0.0005
244
+ - That was also too much and resulted in exploding gradients.
245
+ - Hyperparameter tuning is _the worst._
246
+ - 0.0003 seems to be converging faster but not exploding.
247
+ - Aw man! It was looking good but it was not to last.
248
+ - 0.0002?
249
+
250
+ - Converging faster, which is good. Loss is 1.33 after 42 mins.
251
+ - It seemes to have leveled off at 1.32 again, just quicker this time.
252
+
253
+ - It's entirely possible that model is underpowered. Reports 19,711,760 params, but model size is tiny: 80 mb. Something going on?
254
+
255
+ - Just for fun, let's train on wikitext.
256
+ - Loss is 8 (now 7.6, now 7.2), yeah model is underpowered.
257
+ - What are standard model sizes? Looks like 12 decoders and 768-sized embedding.
258
+ - Previous was 6 decoders and 512 embedding.
259
+ - Ok, so wikitext was a good source of inspiration. Let's rerun code decoder with bigger. This will inevitably come with more hparam tuning
260
+ - Training `v6-big`
261
+ - 57911056 params
262
+ - Loss is only going up after first 100 steps. It hit 11k. This isnt right. LR down?
263
+ - Lr is down, now after 2 hrs its converged on loss of 6, its also only epoch 2. Unclear.
264
+ - Weird, so it didn't work. Just converged on 5.7. Ugh, minor architecture changes after already having a good model are the worst.
265
+
266
+ - Nov 27
267
+ - Nick thoughts:
268
+ - Simple. Scale down before scaling up.
269
+ - You get one line and just predict the next token?
270
+ - Look at it differently at how you want to evaluate it.
271
+ - Tweak optimizers etc. AdamW?
272
+ - The problem is not data scarcity. Is the model overpowered instead?
273
+ - Model might be overpowered given that its the same size as lm1b.
274
+ - 3 blocks, reduced dim, less heads.
275
+ - _really_ simplify
276
+ - Is it training?
277
+ - Maybe, doesn't really look too good. Markov-chain level, barely above random.
278
+ - How to prove that we can train something? Having a baseline of markov chain, rnn, really small xformer?
279
+ - How can we on the code task, convince ourselves that we can run something simple?
280
+ - Do a subset train, handpicked, micro.
281
+ - Train it on that, _get it to overfit._
282
+ - Grep for train.py, subset of that even
283
+ - 2 blocks, small dim, less heads.
284
+ - if still not working, consider another model
285
+ - rnn
286
+ - markov
287
+ - yikes
288
+ - Understand that it is challenging, do something you want
289
+ - "convince yourself that this works"
290
+ - How to figure out what isn't working, test and iterate quickly on small homogenous subset
291
+ - Trained it super small, all train.py files, num_heads small, low dim, low vocab size.
292
+ - Got loss of 1.234493 after 100 epochs. Go for 1k epochs? its 1.5s per epoch so.
293
+ - Nov 29
294
+
295
+ - Running eval on v7-small shows that it's still pretty bad though.
296
+ - Lets get a baseline markov chain, cuz why not?
297
+ - Also pro tokenization strategy: Strip comments and docstrings. Split by punctuation etc, within variable names split by capitalization and underscore.
298
+ - That was great except for the fact that it caused 186904 unique tokens.
299
+
300
+ - Retrained on _tiny_ dataset, and it did not overfit.
301
+
302
+ - Decenber 9.
303
+
304
+ - Yeah. It's been a long week.
305
+ - Research allegedly shows that nn.Transformer accepts shapes of (seq_len, batch_size) for some reason instead of the other way around??
306
+ - Super non-debuggable error. See [stack trace](readme-imgs/funny_stack_trace.txt)
307
+ - - ok so it was that and then also just removing the trace.
308
+ - Here's what we get:
309
+
310
+ ```
311
+
312
+ import numpy
313
+ numpy add
314
+ np np\_ numpy np
315
+
316
+ de(num1, def
317
+ numpy np npWorld!") print_hello_world(): defzzbuzz(ni num2): num2): n returnor num2): numpy np npD \* def def
318
+
319
+ def num2): num2):
320
+ multiply(num1, num2): np def num1 elsell %zzb num2):
321
+ cy(num1, def num1
322
+ 3 numpy np np num2):
323
+ el def np % / 3 % num2 5r num1 == n + % n %
324
+ deforld!") num1ubtract(num1,
325
+ num1 1
326
+ = num2 num2): print(" if def 0:zzbuzz % % def %/ 0:,tubtract(num1, ==T num1
327
+
328
+ npizzbuzz(n): World!") def np defW - % def np def "Buzz" + % %
329
+ zzbu def def
330
+ multiply(num1,N if
331
+ %
332
+ num2INE % %<EOS>ply(num1,ellWorld!") % f a % def return eliforld!"b == / zzbuzz(n num2): <IND num1 _ % n 3(num np 0: ad -NT> num2 % == /NT return %orld!" ): %r! \* num2 return return+ % <IND tr(n nEzzbuDiply(num1, % 0:mport3 print_ numpy
333
+ np(num1
334
+ def
335
+ np print_hello_world(): == num2): % 5l num1 print("Hellotr(n) % num2 %izzbuzz(n): def def num1,
336
+
337
+ % "Fizz" num2 num2 % num2): def deftiply(num1, 0: s % def def num2 num2 5 % <UNK> multiply(num1, % % return num2): " def 0: divide(num1, r %, num2 r 3o add
338
+
339
+ "FNEW:% % ly(num1, return / 0: 0: def %or(n return (nfWorld!") num2! % 1World!") % 0:ello
340
+ num2): 0: divide(num1,T % % % return returnn
341
+ % %ltiply(num1, return def print(" num2 %a n "Buzz" divide(num1,z deftrael
342
+ )p 5 re "Buzz" returnvturn % defell divide(num1,mpor 5
343
+ multiply(num1, % print*hello* ide(num1, divide(num1, num2 ==mpor % = 0: num2): % % def s num2 % % ==n
344
+ divide(num1,izzbuzz(n): ! 0:y
345
+
346
+ rin
347
+ % divide(num1,a return (n divide(num1,ltiply(num1,
348
+
349
+ ```
350
+
351
+ - Not ideal.
352
+ - It's sad when you make stuff and it doesnt work.
353
+ - Perhaps even try pytorch trainer on our code, but that's really product over process
354
+ - Where do you draw the line? what are the goals here? Transformers are cool. I hope I can make one myself.
355
+ - So there you go. We can stick with this for a while.
356
+ - At the same time, where's the innovation? LLMs exist, people already do transformers. It would be cool to either do something new and do a write-up on it or use AI/ML to solve a real-world problem
357
+ - We'll see I guess.
358
+
359
+ - Dec 12
360
+ - Debugged stuff, transpose is the way to go, compared w/ pytorch example
361
+ - Made a scuffed accuracy metric for next-token I guess, but it actually converged really well. Problem is elsewhere?
362
+ - 0.984 after 1000 epochs on the tiny dataset
363
+ - Take more time with eval file. Problem is probably there.
364
+ - _try not to rush_
365
+ - "faster than you can understand"
366
+ - Bias towards things? mask out, beam search
367
+ - So I just did the default code. Outputs
368
+
369
+ ```
370
+ print_h 2 3 n de(num1, <INDE % np a "Buzz" ultiply(num1, mport tu else "Fizz" orl add(num1, <IND % 1
371
+ fizzbuzz(n): else zzbuzz(n): "Fizz" if y(num1, d tiply(num1,
372
+ T World!") p NEW
373
+ c " _ 15 add
374
+ <EOS> el + num2 "Fizzbuzz" def add(num1, nump print(" f as ultiply(num1, nump <NEW numpy or def num2 ltiply(num1, =
375
+ f a return - tr(n World!") print_hello_ orld ply(num1, as num print zzbuzz(n): orl subtract(num1, "F I izzbuzz(n): % ply(num1,
376
+ print("Hello, btract(num1,
377
+ np "Fizzbuzz" INE re l 5
378
+ izzbuzz(n): tract(num1, v tract vide(num1, f (num1, i
379
+
380
+ ```
381
+
382
+ - WHY CANT I JUST HAVE THE MODEL WORK???
383
+ - I even just prompted with the dataset.
384
+ - I'm not sure how accuracy was up before, because this isnt matching.
385
+
386
+ ```
387
+
388
+ MOST = torch.argmax(output.view(-1, output.size(-1)), dim=1)
389
+ print(MOST)
390
+ print(word)
391
+ print(word_idx)
392
+ print(T[-1])
393
+ exit()
394
+
395
+ ```
396
+
397
+ - None of them match T[-1]. What's going on?
398
+ - I made train_dataset dataset. Now acc stays at .3?
399
+ - Maybe its better. Was it cheating before somehow?
400
+ - Listen, I gotta go to bed. I'll figure this out tomorrow, or not.
401
+ - 167 freaking commits, code borrowed from 3 seperate codebases, and this thing doesnt even work when I give it all the answers
402
+ - Dec 13
403
+ - More compute doesnt help
404
+ - Dec 14
405
+
406
+ - We are going even smaller with smaller-er test data. Its just the alphabet over and over. It better overfit is all im saying.
407
+ - Acc at 47% looks like. Thats weird. Now 0.485. Some sort of weird limit? Like previously it stopped somewhere near 1/3, now its stopping somewhere near 1/2? Something weird going on. 0.489 accuracy.
408
+ - Ran again with another line of abcs in the data and it converged on 0.3. This must be a weird padding token thing.
409
+ - now THIS is depression:
410
+
411
+ ```
412
+ m f d j I b <PAD> r z p h w W v A r d
413
+ <PAD> n g I y e o e x t <PAD> d I t b NE L W
414
+ h n n z p m l c m o <PAD> e o y g I j x A
415
+ s d h NE I <PAD> s t NE o n h d v NE A m o
416
+ L NE I u <PAD> l I NE o h e d t w e y x
417
+
418
+ ```
419
+
420
+ - Yeah.
421
+
422
+ - Dec 16 - All right, so here's what we are going to do. - Lets set up a "sequential" dummy dataset that literally loads numbers 1,2,3,4,5, etc _as tokens_.
423
+ - Set up.
424
+ - Here's what batches are looking like before they get passed into the model:
425
+ `tensor([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
426
+ [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
427
+ [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
428
+ [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
429
+ [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]], device='mps:0',
430
+ dtype=torch.int32)
431
+ `
432
+ - Cool. Looks right. Shape is [5,10], what it should be I think. Labels _should_ indeed be like that.
433
+ - Whatever that did, accuracy is back in the high nineties.
434
+ - 99%.
435
+ - `results = results.transpose(0, 1) # average bug` goes into the hall of fame
436
+ - Now lets pick apart eval.py.
437
+ - So I got it to work after some pain and reshaping. Refactored eval to be in a function, and just did simple multinomial. It works with next token, and I'm assuming that its just so darn overfit that other stuff doesnt really work.
438
+ - This is cool, lets end on a win for now.
439
+ - Dec 17
440
+ - Scaling back up to smaller (fizzbuzz) data
441
+ - Small data tweaks, used custom tokenizer, 96% acc 500 epochs.
442
+ - switched to argmax, got `import numpy <NEWLINE> <NEWLINE> <NEWLINE> return <NEWLINE> return <NEWLINE> return " <NEWLINE>` and yet 96% acc???
443
+ - Nick thoughts
444
+ - Training _works._ Works on numerical data, can work on simple tokenized code.
445
+ - Eval and generation is the issue.
446
+ - Reccomend: take some time to go through eval.py, what is it that works in acc on training that doesnt work in eval?
447
+ -
448
+ - Dec 18
449
+
450
+ - Now its only generating `<PAD>`
451
+ - So we made `tester_exactly_like_trainingmanager_please_please_work` and ran the same metric and acc is only 0.4013. Far cry from 0.96
452
+ - OH NAR
453
+ - We were loading `best.pt` from experiment folder, but that runs on val loss. Since I trashed the val dataset and it only overfits on train, best val loss was not best train loss. Ok acc is at 0.9934, but now we figure out why it doesnt work.
454
+ - "question everything from line 40-60" the bug on line 23:
455
+ - This is what happens when your code has too many moving parts. You forget stuff.
456
+ - alr we have the `tester_exactly_like_trainingmanager_only_last_please_work`
457
+ - Guys I think including "please please work" in the function name made it work
458
+ - which also works.
459
+ - Now we have `tester_exactly_like_trainingmanager_just_next_given_seq_pls`
460
+ - which works a bit less well
461
+ - Its time to commit, push, and revisit.
462
+
463
+ - Dec 19
464
+
465
+ - Evaluation works on small small code dataset
466
+ - Full output, clean later.
467
+
468
+ ```python
469
+ tensor(0.9868)
470
+ (tensor([26, 25, 12, 5, 5, 6, 27, 8, 28, 12, 13, 5, 29, 28, 30, 31, 32, 32,
471
+ 33, 35, 6, 16, 8, 9, 10, 11, 12, 13, 5, 14, 9, 17, 11, 5, 5, 6,
472
+ 18, 8, 5, 14, 25, 34, 25, 5, 35, 28, 30, 36, 32, 32, 33, 13, 5, 14,
473
+ 25, 37, 25, 35, 9, 21, 11, 5, 5, 6, 22, 23, 24, 8, 12, 13, 5, 22,
474
+ 8, 25, 23, 10, 28, 12, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
475
+ 0, 0, 0, 0, 0, 35, 28, 30, 38, 32, 32, 33, 13, 5, 14, 25, 27, 25,
476
+ 5, 39, 13, 5, 14, 40, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10, 11,
477
+ 12, 13, 5, 14, 9, 15, 11, 10, 11, 12, 13, 5, 14, 9, 19, 11, 5, 5,
478
+ 6, 20, 8, 9, 10, 11, 12, 13]), tensor([26, 25, 12, 5, 5, 6, 27, 8, 28, 12, 13, 5, 29, 28, 30, 31, 32, 32,
479
+ 33, 5, 6, 16, 8, 9, 10, 11, 12, 13, 5, 14, 9, 17, 11, 5, 5, 6,
480
+ 18, 8, 5, 14, 25, 34, 25, 5, 35, 28, 30, 36, 32, 32, 33, 13, 5, 14,
481
+ 25, 37, 25, 14, 9, 21, 11, 5, 5, 6, 22, 23, 24, 8, 12, 13, 5, 22,
482
+ 8, 25, 23, 10, 28, 12, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
483
+ 0, 0, 0, 0, 0, 35, 28, 30, 38, 32, 32, 33, 13, 5, 14, 25, 27, 25,
484
+ 5, 39, 13, 5, 14, 40, 2, 3, 4, 5, 5, 5, 6, 7, 8, 9, 10, 11,
485
+ 12, 13, 5, 14, 9, 15, 11, 10, 11, 12, 13, 5, 14, 9, 19, 11, 5, 5,
486
+ 6, 20, 8, 9, 10, 11, 12, 13], dtype=torch.int32))
487
+ pretty please
488
+ tensor(1.)
489
+ (tensor([10, 11, 12, 13, 5, 14, 9, 19, 11, 5, 5, 6, 20, 8, 9, 10, 11, 12,
490
+ 13]), tensor([10, 11, 12, 13, 5, 14, 9, 19, 11, 5, 5, 6, 20, 8, 9, 10, 11, 12,
491
+ 13], dtype=torch.int32))
492
+ please please please
493
+ tensor(5)
494
+ Answer was 13
495
+ please please please
496
+ tensor(5)
497
+ Answer was 5
498
+ please please please
499
+ tensor([24, 26, 25, 12, 5, 5, 6, 27, 8, 28, 12, 13, 5, 29, 28, 30, 31, 32,
500
+ 32], dtype=torch.int32)
501
+ world ! " ) <NEWLINE> <NEWLINE> def fizzbuzz ( n ) : <NEWLINE> if n % 3 = =
502
+ ! " ) <NEWLINE> <NEWLINE> def fizzbuzz ( n ) : <NEWLINE> if n % 3 = = 0
503
+ that's inp I guess ^^
504
+ tensor([[24, 26, 25, 12, 5, 5, 6, 27, 8, 28, 12, 13, 5, 29, 28, 30, 31, 32,
505
+ 32, 33, 13, 5, 14, 40, 5, 14, 25, 37, 25]])
506
+ world ! " ) <NEWLINE> <NEWLINE> def fizzbuzz ( n ) : <NEWLINE> if n % 3 = = 0 : <NEWLINE> return str <NEWLINE> return " buzz "
507
+ ```
508
+
509
+ - ye.
510
+
511
+ - Dec 20
512
+
513
+ - Tried out sliding window, works really well.
514
+ - Tried to upscale, didnt work
515
+
516
+ - Gonna BPE instead maybe.
517
+ - also crank up batch size so faster
518
+ - except that was slower so it was the same speed
519
+
520
+ ```
521
+ ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------
522
+ Name Self CPU % Self CPU CPU total % CPU total CPU time avg # of Calls
523
+ ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------
524
+ train_step 13.67% 63.885ms 87.14% 407.336ms 407.336ms 1
525
+ Optimizer.step#Adam.step 0.36% 1.674ms 16.75% 78.287ms 78.287ms 1
526
+ aten::scaled_dot_product_attention 0.00% 15.125us 10.99% 51.394ms 8.566ms 6
527
+ aten::_scaled_dot_product_attention_math 0.02% 87.170us 10.99% 51.379ms 8.563ms 6
528
+ aten::cross_entropy_loss 0.01% 65.377us 8.42% 39.360ms 39.360ms 1
529
+ aten::embedding 0.01% 30.419us 7.22% 33.771ms 33.771ms 1
530
+ aten::index_select 7.21% 33.701ms 7.21% 33.704ms 33.704ms 1
531
+ aten::item 0.03% 145.810us 6.63% 31.006ms 83.799us 370
532
+ aten::_local_scalar_dense 6.60% 30.843ms 6.60% 30.860ms 83.405us 370
533
+ aten::is_nonzero 0.00% 1.875us 5.94% 27.783ms 27.783ms 1
534
+ ------------------------------------------------------- ------------ ------------ ------------ ------------ ------------ ------------
535
+ Self CPU time total: 467.476ms
536
+
537
+ ```
538
+
539
+ - Just going to let it train and hope that something terrible doesnt happen. Well, that's why we save best.pt, innit?
540
+
541
+ - Dec 22
542
+ - Training didnt go well, I stopped it like thirty minutes later.
543
+ - Seems like its spamming token 81
544
+
545
+ ```
546
+ tensor([ 166, 2077, 109, 28, 20, 614, 2301, 917, 32, 755, 32, 3654,
547
+ 293, 723, 3034, 978, 88, 88, 81, 166, 2077, 109, 28, 20,
548
+ 614, 2301, 917, 32, 755, 15, 3654, 293, 723, 3034, 978, 88,
549
+ 88, 81, 166, 2077, 109, 28, 20, 614, 2301, 917, 32, 755,
550
+ 15], dtype=torch.int32)
551
+ def write_flat(f, name, ar, np.array([0, 0, 0])))
552
+
553
+ def write_flat(f, name, arr np.array([0, 0, 0])))
554
+
555
+ def write_flat(f, name, arr
556
+ batch ^ labels v
557
+ write_flat(f, name, ar, np.array([0, 0, 0])))
558
+
559
+ def write_flat(f, name, arr np.array([0, 0, 0])))
560
+
561
+ def write_flat(f, name, arr):
562
+ that's inp I guess ^^
563
+ tensor([[ 166, 2077, 109, 28, 20, 614, 2301, 917, 32, 755, 32, 3654,
564
+ 293, 723, 3034, 978, 88, 88, 81, 166, 2077, 109, 28, 20,
565
+ 614, 2301, 917, 32, 755, 15, 3654, 293, 723, 3034, 978, 88,
566
+ 88, 81, 166, 2077, 109, 28, 20, 614, 2301, 917, 32, 755,
567
+ 15, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81,
568
+ 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81,
569
+ 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81,
570
+ 81, 81, 81, 81, 81]])
571
+ def write_flat(f, name, ar, np.array([0, 0, 0])))
572
+
573
+ def write_flat(f, name, arr np.array([0, 0, 0])))
574
+
575
+ def write_flat(f, name, arr
576
+ ```
577
+
578
+ - What is 81?
579
+ - "<INDENT>".
580
+
581
+ - Jan 7
582
+
583
+ - Revisiting after a break with Nick.
584
+ - It works on fizzbuzz, which is a major win! - Scaling to more data with BPE, it struggles to learn. - Nick thoughts: Many things change. - Interesting idea to test BPE on fizzbuzz data - BPE is messing up
585
+
586
+ ````
587
+ --- sep batch ---
588
+
589
+ if n % 3 == 0:
590
+ NEWLINE> if n % 3 == 0:
591
+ r
592
+
593
+ --- sep batch ---
594
+ DENT> elif n % 15 == 0:
595
+ <INz"
596
+ elif n % 15 == 0:
597
+ <IND"
598
+ <INDE
599
+ --- sep batch ---
600
+ def subtract(num1, num2):
601
+ um2
602
+ ```
603
+
604
+ def subtract(num1, num2):
605
+ <m2
606
+
607
+ d
608
+ --- sep batch ---
609
+
610
+ ````
611
+
612
+ - Search the literature for what others use for tokenization.
613
+ - Code custom tokenization seems good and not buggy and retaining information.
614
+ - If our issue is too many tokens, just make tokens not in the top 99% of usage or whatever thrown away
615
+ - if it throws away all variable names, revisit.
616
+ - lets code it up
617
+ - basically just did that. Used np.percentile, lowercase bug in that you need to split by caps before doing case normalization
618
+ - Perhaps train it up
619
+ - Nick says mod architecture: Don't jump _too much._
620
+ - Not much was removed. 4306 tokens.
621
+ - This code isn't actually very complex.
622
+ - Current config:
623
+ ```
624
+ vocab_size = 4306
625
+ embed_dim = 256
626
+ heads = 4
627
+ ff_dim = 256
628
+ layers = 4
629
+ drop = 0
630
+ ```
631
+
632
+ - Jan 8
633
+ - Here's results from eval, looking pretty good!
634
+ ```
635
+ Getting first 20 tokens for batch and labels
636
+ tensor([ 18, 167, 19, 38, 22, 2312, 24, 2386, 19, 3, 3, 14,
637
+ 421, 527, 18, 2283, 19, 20, 3, 59], dtype=torch.int32)
638
+ ( i ) ] , stderr = fnull ) <newline> <newline> def process arguments ( argv ) : <newline> if
639
+ batch ^ labels v
640
+ i ) ] , stderr = fnull ) <newline> <newline> def process arguments ( argv ) : <newline> if len
641
+ that's inp I guess ^^
642
+ tensor([[ 18, 167, 19, 38, 22, 2312, 24, 2386, 19, 3, 3, 14,
643
+ 421, 527, 18, 2283, 19, 20, 3, 59, 52, 18, 2283, 19,
644
+ 249, 24, 119, 20, 3, 316, 18, 19, 3, 86, 20, 3,
645
+ 2181, 162, 24, 2283, 37, 39, 38, 3, 3, 40, 2181, 162,
646
+ 3, 3, 14, 316, 18, 19, 20, 3, 87, 18, 45, 2300]])
647
+ ( i ) ] , stderr = fnull ) <newline> <newline> def process arguments ( argv ) : <newline> if len ( argv ) ! = 2 : <newline> help ( ) <newline> else : <newline> iteration num = argv [ 1 ] <newline> <newline> return iteration num <newline> <newline> def help ( ) : <newline> print ( ' usage
648
+ ```
649
+ - So what are next steps? Maybe try it out on the big boy dataset?
650
+ - Implemented stride with sliding window because otherwise its 27,365,313 samples.
651
+ - Stride of 10 to a much more managable 2m.
652
+ - unfortunately, a vocab size of 186906 is too much. Change thresh to 0.99 instead of 0.995 perhaps?
653
+ - Jan 13
654
+ - weird. Changing cutoff to 0.1 makes 186278 tokens, still a lot.
655
+ - I split by hyphen, also figured out how to cope with hex.
656
+ - Too many tokens, just strict count instead of trying to do percentages. There's some UNK, but that's life.
657
+ - `<newline> def <UNK> _ tv _ fn ( x , measurement = none ) : <newline> with torch . no _ grad ( ) : <newline> <UNK> = _ at ( measurement ) <newline> x , x _ mean = cs _ <UNK> ( x , <UNK> , niter = 1 ) <newline> return x , x _ mean <newline> return <UNK> _ tv _ fn <newline> <newline> predictor _ denoise _ update _ fn = get _ update _ fn ( predictor _ update _ fn ) <newline> corrector _ denoise _ update _ fn = get _ update _ fn ( corrector _ update _ fn ) <newline> mc _ update _ fn = get _ <UNK> _ tv _ fn ( ) <newline> <newline> def pc _ <UNK> ( model , data , measurement = none ) : <newline> with torch . no _ grad ( ) : <newline> x = sde . prior _ sampling ( data . shape ) . to ( data . device ) <newline> <newline> ones = torch . ones _ like ( x ) . to ( data . device ) <newline> norm _ const = _ at ( _ a ( ones ) ) <newline> timesteps = torch . linspace ( sde . t , eps , sde . n ) <newline> for i in tqdm ( range ( sde . n ) ) : <newline> t = timesteps [ i ] <newline> <newline> x _ batch = <UNK> ( x , 1 2 ) <newline> `
658
+ - 0345793 -> tokenizes each number
659
+ -
660
+ - Looking pretty good, going to train
661
+ - Jan 14
662
+
663
+ - 60% acc, not-good val loss again. Cranking up model size might do it.
664
+ - Trying eval. Just figured out that vocab size was misconfigured.
665
+ - maybe try with a big vocab size?
666
+ - Maybe 153k is feasible, just takes a while.
667
+ - Lesson: Try something out before assuming, "your computer can handle a lot more than you'd think"
668
+ - It produced recognizable code. First hurdle: it trains. Is it overfitting? Is it generalizable?
669
+ - We've gone through a lot. Almost hyperparameter tune. A big challenge because it takes a while to train. How to downscale and get the perf you are looking for?
670
+ - model size is important, optimizer is important.
671
+ - Metrics: lots of different things to see if your model is training well, lots of trade offs. Loss is good, Accuracy is kind of good (used for debugging).
672
+ - If it does work, start evaluating it. Is it generalizing or memorizing? Use f1 score perhaps. Also see if code fragments are copied and pasted. (check-memorization). Consider hyperparameter tuning, try scaling down or something? Will take a while.
673
+ - What if it doesn't work?
674
+ - No bug, at least it can learn.
675
+ - If it's just memorizing, then we need to generalize. Train loss _and_ val loss need to go down
676
+ - Does that mean that the model is too big? Could mean not enough data. Too restrictive with data collection? I need updated code.
677
+ - Experimented with many datasets: Code datasets, sequential numbers.
678
+ - Perhaps go back to the old dataset (only train.py). Stop training this, it won't do much. idk -nick
679
+ - Add in scheduler maybe. But it won't work unless you have more metrics more frequently.
680
+ - ⭐Action items
681
+ - Maybe let it run, maybe stop it. Nick says stop it. Incremental testing all the way.
682
+ - ⭐ Experiment from train.py dataset. From there, check for overfitting. Hyperparam tune. Smallest model possible.
683
+ - Model size first, then all other hyperparams. Consider adding f1 score. Isolated envs.
684
+ - Some libraries you need that are unupdated. Learn the hard way that it's nice to have isolated envs. Maybe? I'm not sure.
685
+
686
+ - Jan 16
687
+
688
+ - Running it on the small set, loss down, acc up, val loss up. the classic.
689
+ - Train loss down to 2, val loss up to 9
690
+
691
+ - Jan 21
692
+
693
+ - It's overfit, ran check-memorization with output from eval. Val loss is much higher than train loss
694
+ - <img src="readme-imgs/val-loss-v21.png" width="600px">
695
+ - So it's overfitting right away. Strange?
696
+ - List of things to mitigate overfitting. It's working in terms of overfitting, which is good. Dataset splitting is truly random, which is good.
697
+ - ⭐Is it actually overparamaterized? Usually mitigates overfitting
698
+ - X Data augmentation? Very hard with code dataset.
699
+ - ~X Tweaking parameters or something?
700
+ - (?) Discrepancy btwn train and test dataset, but we think this is not true.
701
+ - Often a headache. Good to double check etc. It's the most obvious one, but it's bad if you get it wrong
702
+ - ⭐Regularization (dropout, gradient clipping)
703
+ - X Early stopping? but not because val loss is never good
704
+ - Which to pursue first? regularization or changing model size.
705
+ - going to builtin_architecture to tune.
706
+ - So these params (halved) still caused overfitting. `vocab_size = 3646 embed_dim = 128 heads = 2 ff_dim = 128 layers = 4 drop = 0`
707
+ - Even more extreme reduction and still no results. `vocab_size = 3646 embed_dim = 64 heads = 2 ff_dim = 64 layers = 2 drop = 0`
708
+ - Smaller model size isn't helping.
709
+ - Trying dropout at 0.3, crossing our fingers that no numerical instability. Dropout isn't working. Loss still going up on val.
710
+ - Decrease window size? Smaller context -> more similarity between train and test.
711
+ - Because of sliding window. train data is expressed in test. The discrepancy is therefore extremely worrying.
712
+ - testing out by making test dataset = train dataset.
713
+ - okay so val loss still went up, which means that our data pipeline is at fault
714
+ - 3 lines in line 269. **So it's _actually_ the same bug as before when it wasn't transposed, but this time I forgot to copy over the changes to valstep**
715
+ - So I guess have dataloaders that are different now and see what happens
716
+ - Changing something and having it in multiple places is the worst. I tried to have good OOP with TrainingManager, ~~but perhaps it just muddled it more.~~ Investigate a framework where call_model is a function and then trainstep and valstep just do different logging. Always the code reuse.
717
+ - great. So val loss actually goes down now with train loss with independent datasets. Even though it's slightly cheating because of sliding window idk. But it's not straight-ahead memorization.
718
+ - Closing thoughts:
719
+ - amazing bugfix
720
+ - model is really learning with train -> val
721
+ - Investigate sliding window, try to have truly independent dsets.
722
+ - Now all the code works, we want a model that works the best. Try dropout, regularization, etc, to prevent overfitting and induce real machine learning.
723
+ - toy with hyperparams, only when you have it perfect scale up. Penalize large weights with adamw or something? Lots of techniques
724
+ - oh also commit better oop
725
+
726
+ - Jan 24
727
+ - I did better OOP
728
+ - Allegedly perplexity is good loss?
729
+ - Jan 28
730
+ - Did some talking with Nick.
731
+ - We eliminated train/test pollution with sliding windows with the somewhat suspicious Datasplit_chunker.
732
+ - Considering different datasets, such as stackoverflow or python packages themselves, but maybe not. Perhaps cast the net wider and get a larger dataset? 50k files seems fine for now though.
733
+ - Actual normal training curve, signifying overfitting (check val loss)
734
+ - <img src="readme-imgs/normal-training-curve.png" width="30%">
735
+ - This shows us that data is independent but the model is still learning and generalizing.
736
+ - Check mem is still returning true, which is suboptimal to say the least.
737
+ - But sometimes not?? (seems like mostly not now, which is good)
738
+ - Sample: `<newline> dataset = [ ] <newline> for i in xrange ( batch _ size ) : <newline> point = np . random . randn ( 2 ) * 0 . 0 5 <newline> center = random . choice ( centers ) <newline> point [ 0 ] + = center [ 0 ] <newline> point [ 1 ] + = center` (not memorized.)
739
+ - Sample: `<newline> logger . info ( f " initial validation samples in first step . . . " ) <newline> model . eval ( ) <newline> <newline> gen _ validation _ samples ( validation _ pipeline , args , wandb , samples _ dir , train _ ts , train _ steps ) <newline> <newline> model . train ( ) <newline>` (not memorized)
740
+ - But at the same time, this looks pretty good.
741
+ - The logger.info was the part included in the dset.
742
+ - Lets train it on the big one again, just for funsies.
743
+ - Jan 29
744
+
745
+ - Trained, stagnated. It's pretty good.
746
+ - NOO NOT THE NEWLINE MEMORIZATION
747
+ - `= c . result <newline> <newline> if self . verbose : <newline> print ( ' \ texception : % s ' % self . result ) <newline> return <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline> <newline>`
748
+ - um `. v _ proj " , " p _ bg 3 9 4 " , " p _ bg 3 9 " , " p _ bg 3 9 " , " p _ bg 3 9 " , " p _ bg 3 9 " , " p _ bg 3 9 " , " p _ bg 3 `
749
+ - This one looks good: `dir ( absolute _ path ) <newline> dataset _ to _ create = os . path . join ( get _ dir , ' dataset _ name ' ) ) <newline> dataset _ to _ create = os . path . join ( get _ dir , ' dataset _ name ' ) ) <newline> dataset _ to _ create` ... until you realize that its repetition
750
+ - A weird one: `' nonpayable ' , ' type ' : ' function ' } , { ' inputs ' : [ { ' internaltype ' : ' uint 2 5 6 ' , ' name ' : ' ' , ' type ' : ' uint 2 5 6 ' } ] , ' name ' : ' ' , ' outputs`
751
+ - No direct mem at least.
752
+
753
+ - Feb 4
754
+ - Ran token analysis
755
+ ```
756
+ Number of tokens that appear only once: 36431. Percentage: 0.0007120090008913647
757
+ Mean token count: 493.84688441047024
758
+ Median token count: 2.0
759
+ Standard deviation of token count: 40239.56310773193
760
+ Min token count: 0
761
+ Max token count: 7655766
762
+ Top 10 most frequent tokens:
763
+ > : 7655766
764
+ <: 7633073
765
+ tab: 4785963
766
+ newline: 2818005
767
+ \_: 2420050
768
+ .: 1680181
769
+ ,: 1428405
770
+ (: 1374695
771
+ ): 1371692
772
+ > =: 1294978
773
+ ```
774
+ - Mean/median differential is crazy
775
+ - Most tokens appear twice.
776
+ - So only keeping tokens that appear >10 times leaves us with 22809, very reasonable.
777
+ - Training it up! So far it's looking optimistic
778
+ - Feb 5
779
+ - `tab > self . avg = self . sum / self . count < newline > < newline > < tab > def _ _ call _ _ ( self , x ) : < newline > < tab > < tab > return self . sum ( x ) < newline > < newline > < tab > def | PREFIX FROM TRAIN DSET: tab > self . avg = self . sum / self . count < newline > < newline > <`
780
+ - Still some rep. : `. md ' , rst _ file = filename + ' . rst ' < newline > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < | PREFIX FROM TRAIN DSET: . md ' , rst _ file = filename + ' . rst ' < newline > < tab >`
781
+ - :( `< newline > < tab > < newline > < tab > evaluating knn accuracy in feature space . < newline > < tab > < tab > < newline > < tab > < tab > < newline > < tab > < tab > < newline > < tab > < tab > < newline > < tab | PREFIX FROM TRAIN DSET: < newline > < tab > < newline > < tab > evaluating knn accuracy in feature space . <`
782
+ - Its actually just tabspamming: `dependencies automatically for any language . < newline > < newline > fabricate is a build tool that finds dependencies . < newline > < newline > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > < tab > | PREFIX FROM TRAIN DSET: dependencies automatically for any language . < newline > < newline > fabricate is a build tool that finds dependencies`
783
+ - I'm going to train a bigger model.
784
+ - Sad: `> problem ( ' abc ' , ' abd ' , ' <UNK> ' , < tab > iterations ) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | PREFIX FROM TRAIN DSET: > problem ( ' abc ' , ' abd ' , ' <UNK> ' , < tab > iterations )`
785
+ - Um so it just spams `>`: `in result < newline > < newline > < newline > def test _ get auto track target ( ) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | PREFIX FROM TRAIN DSET: in result < newline > < newline > < newline > def test _ get auto track target ( )`
786
+ - Maybe its time for dropout. And label smoothing. oh wait label smoothing is already there. Ok, rerunning with dropout ig.
787
+ - Screenshot for posterity: <img src="readme-imgs/v22-another-run.png" width = "30%">
788
+ - You can see the 0.15 acc. Ok, so dropout now.
789
+ - A bit into training, it doesnt seem to be helping: `0 ] ) , < newline > < tab > < tab > < tab > < tab > nn > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | PREFIX FROM TRAIN DSET: 0 ] ) , < newline > < tab > < tab > < tab > < tab > nn`
790
+ - Acc stuck at 0.15, probably because its just constantly doing `>`
791
+ - So this sucks.
792
+ - I'm going to make a better, less skill-issued tokenizer:
793
+ ```python
794
+ def split_token(token):
795
+ if token.startswith("<") and token.endswith(">"): # preserve ✨special✨ tokens
796
+ return [token.lower()]
797
+ result = re.sub(r"([a-z])([A-Z])", r"\1 \2", token)
798
+ result = re.sub(r"([_-])", r" \1 ", result)
799
+ result = re.sub(r"([^a-zA-Z])", r" \1 ", result)
800
+ return [part.lower() for part in result.split() if part.strip()]
801
+ ```
802
+ - Let's see what this does. New datasample: `<tab> f ' acc @ 1 { acc 1 _ meter . val : . 3 f } ( { acc 1 _ meter . avg : . 3 f } ) \ t ' <newline> <tab> <tab> <tab> <tab> f ' acc @ 5 { acc 5 _ meter . val : . 3 f } ( { acc 5 _ meter . avg : . 3 f } ) \ t ' <newline> <tab> <tab> <tab> <tab> f ' mem { memory _ used : . 0 f } mb ' ) <newline> <tab> logger . info ( f ' * acc @ 1 { acc 1 _ meter . avg : . 3 f } acc @ 5 { acc 5 _ meter . avg : . 3 f } ' ) <newline> <tab> return acc 1 _ meter . avg , acc 5 _ meter . avg , loss _ meter . avg <newline> <newline> <newline> @ torch . no _ grad ( ) <newline> def throughput ( data _ loader , model , logger ) : <newline> <tab> model . eval ( ) <newline> <newline> <tab> for idx , ( images , _ ) in enumerate ( data _ loader ) : <newline> <tab> <tab> images = images . cuda ( non _ blocking = true ) <newline> <tab> <tab> batch _ size = images . shape [ 0 ] <newline> <tab> <tab> for i in range ( 5 0 ) : <newline> <tab> <tab> <tab> model ( images ) <newline>`
803
+ - Aand hit train yet again.
804
+ - Its just traded that for tab mem. `. exclusion _ file : <newline> <tab> <tab> with open ( args . exclusion _ file , " r " <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> | PREFIX FROM TRAIN DSET: . exclusion _ file : <newline> <tab> <tab> with open ( args . exclusion _ file , " r "`
805
+ - `_ format ) : <newline> <tab> previewer = none <newline> <tab> method = args . preview _ method <newline> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> <tab> | PREFIX FROM TRAIN DSET: _ format ) : <newline> <tab> previewer = none <newline> <tab> method = args . preview _ method <newline> <tab>`
806
+ - :\\
807
+ - 800 lines of notes, 2605 lines of code, 4 months of work, 241 commits, dozens of hours, and we get `<tab> <tab> <tab> <tab> <tab> <tab> <tab>`.
808
+ - You know what? You know what we're going to do? Train on a dataset where `<tab>` and `<newline>` doesnt exist. It looks like this: `coalesced = _ flatten _ dense _ tensors ( grads ) dist . all _ reduce ( coalesced ) coalesced / = dist . get _ world _ size ( ) for buf , synced in zip ( grads , _ unflatten _ dense _ tensors ( coalesced , grads ) ) :`
809
+ - brody `) : parser = argparse . argument parser ( description = " " ) parser . add _ argument ( _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | PREFIX FROM TRAIN DSET: ) : parser = argparse . argument parser ( description = " " ) parser . add _ argument (`
810
+ - It actually just memorizes the most common one.
811
+ - Feb 7
812
+
813
+ - apparently weight decay works? Also dropout in the embedding
814
+ ```python
815
+ src = self.input_emb(src) * math.sqrt(self.ninp)
816
+ src = self.embedding_dropout(src)
817
+ src = self.pos_encoder(src)
818
+ ```
819
+ - `self.optimizer = torch.optim.Adam(self.net.parameters(), lr=learning_rate, weight_decay=1e-5)`
820
+ - Actual average hyperparameter tuning.
821
+ - No change that its almost ironic
822
+ - <img src="readme-imgs/no_change.png">
823
+ - Less compute is all you need? But also more training time.
824
+
825
+ ```python
826
+ vocab_size = 22812
827
+ embed_dim = 256
828
+ heads = 4
829
+ ff_dim = 256
830
+ layers = 4
831
+ drop = 0.1
832
+ embedding_drop = 0.1
833
+ ```
834
+
835
+ - `results [ index ] = [ rec ] results [ index ] . append ( text ) return results def get _ results ( results , results ) : results = results [ index ] results [ index ] results [ index ] results [ index ] results [ index ] results [ index ] results [ index ] results | PREFIX FROM TRAIN DSET: results [ index ] = [ rec ] results [ index ] . append ( text ) return results def`
836
+ - Upon further inspection, mostly repetition: `get ( ' image ' , ' ' ) if tag : image _ with _ tag = f ' { tag } ' else : image _ with _ tag = f ' { tag } ' else : image _ with _ tag = f ' { tag } ' else : image _ with _ tag = | PREFIX FROM TRAIN DSET: get ( ' image ' , ' ' ) if tag : image _ with _ tag = f '`
837
+ - It just seems to be copying: `= data _ loader . load _ data ( ) dataset _ size = len ( data _ loader ) dataset _ size = len ( data _ loader ) dataset _ size = len ( data _ loader ) dataset _ size = len ( data _ loader ) dataset _ size = len ( data _ loader ) | PREFIX FROM TRAIN DSET: = data _ loader . load _ data ( ) dataset _ size = len ( data _ loader )`
838
+ - Maybe a larger context window to test is all you need? I'm going to do 100 and 100 now.
839
+ <details>
840
+ <summary>Outputs</summary>
841
+
842
+ - No, it just "computes the score" `it does make it easy to mix different scores together . converts an event into the format needed by the <UNK> module , http : / / pp . com . mx / python / <UNK> the type of track ( opus or score ) is <UNK> . returns a " score " containing only the channels specified converts the " score " to midi , and feeds it into ' <UNK> - ' returns a " score " shifted in time by " shift " ticks , or shifted so that the first event starts at " start _ time " . returns a " score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute the score " to compute | PREFIX FROM TRAIN DSET: it does make it easy to mix different scores together . converts an event into the format needed by the <UNK> module , http : / / pp . com . mx / python / <UNK> the type of track ( opus or score ) is <UNK> . returns a " score " containing only the channels specified converts the " score " to midi , and feeds it into ' <UNK> - ' returns a " score " shifted in time by " shift " ticks , or shifted so that the first event starts at " start _ `
843
+ - Almost but not complete repetition: `s ) is not correctly formatted - - please read the documentation . " % path ) else : self . model = qt gui . qstandard item model ( parent = self ) self . model . set horizontal header labels ( self . field names ) self . freq _ table . set model ( self . model ) header = self . freq _ table . horizontal header ( ) for n , _ in enumerate ( self . field names ) : header . set section resize mode ( qheader view . stretch ) for record in self . field names : if record . is _ valid ( ) : self . data = self . data [ 0 ] self . data [ 1 ] = self . data [ 1 ] self . data [ 1 ] = self . data [ 1 ] self . data [ 1 ] = self . data [ 1 ] self . data [ 1 ] = self . data [ 1 ] self . data [ 1 ] = self . data [ 1 ] self . data [ 1 ] = self . data | PREFIX FROM TRAIN DSET: s ) is not correctly formatted - - please read the documentation . " % path ) else : self . model = qt gui . qstandard item model ( parent = self ) self . model . set horizontal header labels ( self . field names ) self . freq _ table . set model ( self . model ) header = self . freq _ table . horizontal header ( ) for n , _ in enumerate ( self . field names ) : header . set section resize mode ( qheader view . stretch ) for record`
844
+ - "code t" `i > seconds < / i > requested by : { message . from _ user . mention } < / b > < b > h { } , ts s s . < / b > < b > w g fs . g fs s s s s . < / b > a s : / <UNK> - < code > t . < / code > / <UNK> - < code > t s . < / code > / <UNK> - < code > t . < / code > / <UNK> - < code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . < / code > t . | PREFIX FROM TRAIN DSET: i > seconds < / i > requested by : { message . from _ user . mention } < / b > < b > h { } , ts s s . < / b > < b > w g fs . g fs s s s s . < / b > a s : / <UNK> - < code > t . < / code > / <UNK> - < code > t s . < / code > / <UNK> - < code > t . < / code > / <UNK> - < `
845
+ - After train: `. sort ( list ( v . keys ( ) ) ) all _ clips = all _ clips [ : num _ seq * ( len ( all _ clips ) / / num _ seq ) ] . reshape ( len ( all _ clips ) / / num _ seq , num _ seq ) for i in range ( all _ clips . shape [ 0 ] ) : self . subclip _ seqs . append ( ( all _ clips [ i ] , k , i ) ) torch . save ( ( self . clips [ i ] , self . clips [ i ] ) , self . clips [ i ] ) def _ _ getitem _ _ ( self , index ) : if index = = 0 : return self . clips [ index ] else : return self . clips [ index ] def _ _ getitem _ _ ( self , index ) : return self . clips [ index ] def _ _ getitem _ _ ( self , index ) : return self . clips [ index ] def _ _ getitem _ _ ( | PREFIX FROM TRAIN DSET: . sort ( list ( v . keys ( ) ) ) all _ clips = all _ clips [ : num _ seq * ( len ( all _ clips ) / / num _ seq ) ] . reshape ( len ( all _ clips ) / / num _ seq , num _ seq ) for i in range ( all _ clips . shape [ 0 ] ) : self . subclip _ seqs . append ( ( all _ clips [ i ] , k , i ) ) torch . save ( ( self `
846
+ </details>
847
+
848
+ - Like, its something, but its not great.
849
+
850
+ - Feb 8
851
+ - wait, the problem might be eval. Because just selecting the max prob is equivalent to temperature of 0.
852
+ - At least it thought of (or memorized) "save folder": `default = 0 . 9 , help = ' momentum ' ) parser . add _ argument ( ' - - weight _ decay ' , type = float , default = 1 e - 4 , help = ' weight decay ' ) parser . add _ argument ( ' - - num _ class ' , type = int , default = 1 0 , help = ' number of classes ' ) parser . add _ argument ( ' - - cuda ' , type = int , default = 1 ) parser . add _ argument ( ' - - save _ folder ' , type = str , default = ' data / save ' , help = ' save folder ' ) parser . add _ argument ( ' - - save _ folder ' , type = str , default = ' data / save ' , help = ' save folder ' ) parser . add _ argument ( ' - - save _ folder ' , type = str , default = ' data / save ' , help = ' save folder ' ) parser . add _ argument ( | PREFIX FROM TRAIN DSET: default = 0 . 9 , help = ' momentum ' ) parser . add _ argument ( ' - - weight _ decay ' , type = float , default = 1 e - 4 , help = ' weight decay ' ) parser . add _ argument ( ' - - num _ class ' , type = int , default = 1 0 , help = ' number of classes ' ) parser . add _ argument ( ' - - cuda ' , type = int , default = 1 ) parser . add _ argument`
853
+ - It's actually thinking. Granted, the data said get_llm_suggestions, but llm_model is close enough:
854
+ - `. cos _ sim ( query _ embedding , semantic _ search . corpus _ embeddings ) [ 0 ] top _ results = torch . topk ( cos _ scores , k = semantic _ search . top _ k ) final = [ ] for _ , idx in zip ( top _ results [ 0 ] , top _ results [ 1 ] ) : final . append ( { ' text ' : semantic _ search . corpus [ idx ] } ) return final model = none tokenizer = none def get _ llm _ model ( model _ name , tokenizer , tokenizer ) : model _ name = model _ name . split ( " , " ) [ 0 ] model _ name = model _ name . split ( " , " ) [ 1 ] tokenizer = tokenizer ( tokenizer _ name , tokenizer = tokenizer , max _ length = tokenizer . max _ length , return _ tensors = model _ name , truncation = true ) if model _ name : model _ name = [ ] model _ name = model _ name . split ( | PREFIX FROM TRAIN DSET: . cos _ sim ( query _ embedding , semantic _ search . corpus _ embeddings ) [ 0 ] top _ results = torch . topk ( cos _ scores , k = semantic _ search . top _ k ) final = [ ] for _ , idx in zip ( top _ results [ 0 ] , top _ results [ 1 ] ) : final . append ( { ' text ' : semantic _ search . corpus [ idx ] } ) return final model = none tokenizer = none def get _ llm _ `
855
+ - This makes me very happy. Running black and signing off for the day.
856
+ - Feb 13
857
+ - What in the sussy data? `" + wi + " id : " + yl + <UNK> + wi ) except exception : err msg ( " please check your victim ' s profile url " ) sys . exit ( 1 ) def login ( self , target , password ) : try : self . br . open ( " https : / / facebook . com " ) self . br . select _ form ( nr = 0 ) self . br . form [ ' email ' ] = target self . br . form [ ' pass ' ]`
858
+ - Kind of learning? `_ pool = [ ' conv net w 3 2 ' , ' conv net w 6 4 ' , ' conv net w 1 2 8 ' , ' conv net w 2 5 6 ' ] elif eval _ mode = = ' d ' : model _ eval _ pool = [ ' conv net d 1 ' , ' conv net d 2 ' , ' conv net d 3 ' , ' conv net d 4 ' ] elif eval _ mode = = ' a ' : model _ eval _ pool = [ ' conv net d 1 ' , ' conv net d 3 ' , ' conv net d 3 ' , ' conv net d 5 ' , ' conv net d 6 ' , ' conv net d 6 ' , ' conv net d 6 ' , ' conv net d 6 ' , ' conv net d 6 ' ] elif eval _ mode = = ' d ' : model _ eval _ pool = [ ' conv net d 6 ' , ' conv net d 6 ' , ' conv net d 6 ' | PREFIX FROM TRAIN DSET: _ pool = [ ' conv net w 3 2 ' , ' conv net w 6 4 ' , ' conv net w 1 2 8 ' , ' conv net w 2 5 6 ' ] elif eval _ mode = = ' d ' : model _ eval _ pool = [ ' conv net d 1 ' , ' conv net d 2 ' , ' conv net d 3 ' , ' conv net d 4 ' ] elif eval _ mode = = ' a ' : model _ eval _ pool = [ `
859
+ - Now it will log generations.
860
+ - Feb 14
861
+ - So its doing pretty well, esp considering we are now running eval on valset. Some repetition. Also it looks like I should've trained longer all along. Still continous improvement.
862
+ - Repetition is decreasing but still present.
863
+ - So it's pretty good but not great. Time to hyperparam search model sizes.
864
+ - fixed a quick bug with the logging. Now running overnight.
865
+ - Here are the results!
866
+ - <img src="readme-imgs/comparison.png" width="40%">
867
+ -
868
+ - Feb 18
869
+
870
+ - Mostly hitting the ceiling
871
+ - Maybe more data?
872
+ - **Make a writeup**
873
+
874
+ - For yourself
875
+ - As a medium
876
+ - Peer-reviewed thing for high schoolers
877
+
878
+ - Journal of emerging investigators
879
+ - $35 fee, high acceptance rate.
880
+ - 7-8 months
881
+ - https://emerginginvestigators.org
882
+
883
+ - Theses: Effect of dataset on results, or hyperparameters. Tokenization. Etc.
884
+
885
+ - Will take a bit. Nick is happy to advise.
886
+
887
+ - Some sort of other metric?
888
+ - Possible metrics:
889
+ - Top k accuracy
890
+ - (not yet) AST parse (possibly too high of a bar)
891
+ - Longest common subsequence **between generated and actual** (kind of a scuffed metric)
892
+ - (x) Bleu score might actually work. investigate.
893
+
894
+ - Feb 20
895
+ - It's been a bit. Continuously scraping all python repos with >10 stars since 2015 now. Tricky to get around those pesky github rate limits
896
+ - Pretty crazy amounts. From 35k to 123k repos, from 52k to 186k files
897
+ - I scraped it all and am now starting to train. `v23-mega`
898
+ - Feb 21
899
+ - Wait, generations are getting better.
900
+ - `K=10,T=0.8: <data>all _ input _ nodes [ 0 ] for i in group ] <newline> <tab> <tab> <tab> <newline> <tab> <tab> <tab> out _ flat = [ <newline> <tab> <tab> <tab> <tab> graph . call _ function ( torch . ops . aten . view . default , args = ( i , [ i . meta [ " val " ] . numel ( ) ] ) ) for i in inputs <newline> <tab> <tab> <tab> ] <newline> <tab> <tab> <tab> out _ cat = graph . call _ function ( torch . ops . aten . cat . default </data>, args = ( i , [ i . meta [ " val " ] . numel ( ) ] ) ) <newline> <tab> <tab> <tab> out _ cat . append ( torch . ops . ops . impl . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . dynamic . view . `
901
+ - `x _ interp = machine . interpolate ( imgs [ 0 ] , imgs [ 1 ] , n _ interp ) <newline> <newline> <tab> opt </data>= torch . zeros ( len ( imgs ) ) <newline> <tab> for x _ interp in range ( 1 , args . batch _ size ) : <newline> <tab> <tab> x _ interp `
902
+ - So its actually quite good until it generates too far out.
903
+ - And its not memorized!
904
+ - More data is all you need??
905
+ - With regards to repetition, it always repeats a line. Like `nout = nin <newline> <tab> <tab> nout = nin <newline> <tab> <tab> nout = nin <newline> <tab> <tab>` or `<newline> options . add _ argument ( ' - - port ' , default = ' localhost ' , help = ' port ' ) <newline> options . add _ argument ( ' - - port ' , default = ' localhost ' , help = ' port ' ) <newline> options . add _ argument ( ' - - port ' , default = ' localhost ' , help = ' port ' ) <newline> options . add _ argument ( ' - - port ' , default = ' localhost ' , help = ' port ' ) <newline> options . `
906
+ - Feb 22
907
+ - Pretty good. `<data>0 " , <newline> " mozilla / 5 . 0 ( windows nt 5 . 1 ; wow 6 4 ) apple web kit / 5 3 7 . 3 6 ( khtml , like gecko ) firefox / 5 3 . 0 " <newline> ] <newline> <tab> return user _ agents [ int ( hashlib . md 5 ( str ( time . time ( ) ) . encode ( ) ) . hexdigest ( ) , 1 6 ) % len ( user _ agents ) ] <newline> <newline> def get _ integ _ hash ( query ) </data> : <newline> <tab> return user _ agents [ int ( k ) ] <newline> <newline> def extract _ urls ( query ) : <newline> <tab> response = request . read ( ) <newline> <tab> soup = beautiful soup ( response , " lxml " ) <newline> <tab> return response . get ( " html " ) <newline> <newline> def find _ html _ by _ token ( query ) : <newline> <tab> soup = beautiful soup ( response , " html " ) <newline> <tab> return soup . find _ all ( " tr " ) [ 0 ] ! `
908
+ - Feb 25
909
+
910
+ - Experimenting with minimizing repetition
911
+ - Thinking of hypotheses:
912
+ - Effect of `<something>` on `<metric>`
913
+ - Rather than human verification, settle for top-k accuracy or something similar
914
+ - Number of decoder layers?
915
+ - Architecture as a whole.
916
+ - Data chunk size?
917
+ - Double descent
918
+ - change dataset or model size
919
+ - X Tokenization? Very interesting question
920
+ - (~) Decoding strategies (topk, beam, greedy, etc).
921
+ - (\*) Curriculum learning
922
+ - A curriculum in which you start with easy samples and then move to hard samples performs better on topk accuracy than normal learning
923
+ - Curriculum learning leads to improved convergence speed (more specific, good)
924
+ - Curriculum learning
925
+ - With loss (_harder_)
926
+ - with token rarity
927
+ - Not doing curriculum learning
928
+ - anti curriculum learning
929
+ - What are the next steps?
930
+ - breif related work search
931
+ - https://arxiv.org/pdf/2101.10382
932
+ - NLP people who say curriculum learning doesn't help: https://arxiv.org/pdf/2108.02170
933
+ - For finetuning https://aclanthology.org/2020.acl-main.542.pdf
934
+ - Sequence completion increasing length: https://aclanthology.org/2023.acl-long.666.pdf
935
+ - IDEA: increase sequence length during training for this?
936
+ - (\*) Curriculum learning FOR CODE https://arxiv.org/pdf/2407.10194
937
+ - tinypy dataset: https://www.kaggle.com/datasets/kamelmohammedyamani/tinypy-for-curriculum-learning
938
+
939
+ - March 4
940
+ - One solid dataset: check!
941
+ - Generalizable architecture: check!
942
+ - Testable hypothesis: check
943
+ - Experimental groups: different curriculum learning strategies (but actually just only do with and without curriculum)
944
+ - How to implement?
945
+ - Assign some sort of difficulty score to each sample
946
+ - Sort by difficulty
947
+ - Every epoch, add a few harder ones.
948
+ - Dynamically do it by loss? If stagnates, increase difficulty
949
+ - Straightforward and good.
950
+ - Metric
951
+ - Just use accuracy
952
+ - trainsteps to reach best acc ± eps (or loss)
953
+ - Qualitative
954
+ - Perplexity? Literally e^loss, so easy implementation, and others use it.
955
+ - Great! implemented schedule and difficulty score based on rarity.
956
+ - Things to do:
957
+ - Perplexity (now)
958
+ - train on a real (small) dataset and compare
959
+ - Run hypothesis experiments
960
+ - Curriculum learning, easy to hard, based off of median token rarity
961
+ - Control
962
+ - Anti-curriculum (easy, sort descending)
963
+ - March 11
964
+ - No meeting, just doing stuff myself. Check for implemented, doublecheck for ran
965
+ - Perplexity (now)
966
+ - train on a real (small) dataset and compare
967
+ - Run hypothesis experiments
968
+ - Curriculum learning, easy to hard, based off of median token rarity ✅
969
+ - Control ✅
970
+ - Anti-curriculum (easy, sort descending) ✅
971
+ - March 18
972
+
973
+ - Looking again at https://arxiv.org/pdf/2407.10194. Possibly cite it in the paper.
974
+ - Fixed anticurriculum
975
+ - add edit similarity, but it's kind of hard at the moment
976
+ - added hybrid and sequential schedules as described in section 5.
977
+ - What experiments? What hyperparams?
978
+ - `def train_curriculum(self, epochs=None, dataloader=None, noop=True, curriculum=False, anticurriculum=False, sequential=False, hybrid=False, loss_based=False):`
979
+ - No curriculum: `noop`, or default
980
+ - Incremental curriculum | not loss-based vs loss-based: `curriculum=True`, `loss_based=False|True`
981
+ - incremental anticurriculum (implemented properly this time) | not loss-based vs loss-based: `anticurriculum=True`, `loss_based=False|True`
982
+ - sequential curriculum | not loss-based vs loss-based: `sequential=True`, `loss_based=False|True`
983
+ - hybrid curriculum | not loss-based vs loss-based: `hybrid=True`, `loss_based=False|True`
984
+ - How are we selecting "hard" samples?
985
+ - Implemented loss-based
986
+ - TBD copyright issues
987
+ - Should resolve: unlicensed bad, but MIT/GPL/CC0 good
988
+
989
+ - April 1
990
+ - A silly bug for a silly day.
991
+ - Checked in with nick, the losses are maybe a bit _too_ similar. Bug perhaps?
992
+ - "too coincidental should raise alarms"
993
+ - Ugh so in train.py, passing in \*\*kwargs doesn't override others, but `noop=True` by default, and it's the first in the `if`/`elif` chain, so all other logic is skipped.
994
+ - Also did the license stuff, and refactored the schedule thing to be an enum. Funny story: enums reinstantiated are not `==`.
995
+ - April 2
996
+ - After some head-banging, I got the copying to work. But only 86,616 files, even though all the urls are included. Who knows why haha. 86k is ok when compared to 90k.
997
+ - 11:51 later, it's done
998
+ - but also only 86616 out of 97711 went
999
+ - So 11,000 files just kind of disappeared. Stuff happens I guess
1000
+ - Line 1000 !
1001
+ - It's 767 mb of files, so still bigger than the smaller corpus of 450 ish mb. Also, let's check the results of training (from the 450mb data)
1002
+
1003
+ - So uhh
1004
+ - noop schedule model did best 💀📉👎😭😡😤💥💔😩💻🤯📊🔴❌🧠
1005
+ - A picture is worth a thousand words.
1006
+ - _Always remember, setbacks are just setups for comebacks! Keep pushing forward, the next run will be better._
1007
+ - <img src="readme-imgs/v30-results.png" style="width: 30%">
1008
+ - <img src="readme-imgs/v30-v2.png" style="width: 30%">
1009
+ - will it though? "better" is an unclear heuristic. I mean, the "best" run is when it overfit to memorizing the alphabet. Like, I don't know what to say here. 1000 lines of MD is crazy.
1010
+ - Maybe it will. Maybe you always learn something new, and that's what matters. I don't know. Why do we do this, anyways? To learn. To be intellectually stimulated. And here we are. So keep pushing forward towards that goal. Towards fulfillment, whatever that means.
1011
+
1012
+ - Tuesday, april 22
1013
+
1014
+ - So I wanted to sort based on entropy. While implementing this, I noticed that, uh, I never used the rarity scores. I really should intermediarily log things more. I swear.
1015
+ - Rerunning, also added in the entropy sorting. I should question my code more. But if this one works well, then it's nice. so many challenges. Also, I had a lot of things occuring. So that's why it's been twenty days.
1016
+ - well, after "fixing" it, results are identical, so I'm going to take a closer look.
1017
+
1018
+ - So it's not fixed.
1019
+
1020
+ - <img src="readme-imgs/sorted_indices.png" style="width: 50%">
1021
+
1022
+ - Run
1023
+ - Run with entropy
1024
+ - Fill in outline
1025
+
1026
+ - Wednesday apr 23
1027
+
1028
+ - Quick entry, line 1024 !
1029
+ - <img src="readme-imgs/v30-v3-v4.png" style="width: 30%">
1030
+ - <img src="readme-imgs/v30-v3-v4-topk.png" style="width: 30%">
1031
+ - The second one is interesting because there was some overtaking. Several other metrics looked like the first. Finally, noop did best. :\(
1032
+
1033
+ - Tue may 6
1034
+ - Something today and then there will be nothing for two weeks because I will be away. Mostly doing some work in the doc, actually writing the paper. I'll put the PDF here one day, of course. Maybe it's all just very silly. My results show that it doesn't work, and it's not even unique because that's what the last guy came across. What more can you do? I am trying, hoping, dreaming of contributing meaningfully to the world, and I thought that this might be a chance. It's a start. It's something. It's not nothing. Plus, it's interesting to write a paper, and I did make a transformer, if nothing else. It's all about learning. And I did learn today. One day it'll all come together. I can report on these results. And I really hope I get in because it would suck if I didn't, especially with the 75% acceptance rate. So I do that, and then what? Several months of review later, I have a paper under my name. That's cool, at least. I don't know, but I guess this is what I'm doing.
1035
+ - Wednesday may 7
1036
+
1037
+ - Updated readme.
1038
+
1039
+ - Tue Jun 10
1040
+ - haha, it's been a bit. Looking over it with Nick, it's not fully converged. Also, yes, noop did best. Perhaps we train longer? What does training longer even mean? Do you just show it all the data at that point?
1041
+ - Start training on the real data (mega licensed) because it's more data for a larger model.
1042
+ - Make some diagrams for curriculums. Easier to communicate for understanding.
1043
+ - "catastrophic forgetting": if you use sliding windows (sequential), gradient updates overwrite the hard ones, you forget the easy stuff. Maybe model isn't doing as well. And we have empirical results: the worst-performing one is the sequential one.
1044
+ - Train for longer to actually see what's going on. Train for all the data after the schedule is done.
1045
+ - Curriculum learning is usually used as a warm-up, not a full-time training schedule. You train normally for several epochs after.
1046
+ - Fri jun 13
1047
+ - Started using adamw. I came back from a three-day trip and 2.5 out of the eight experiments had been completed (haha, the difference between ten and thirty epochs from my prior experiment runs), so I'm investigating methods to speed up training. Hopefully AdamW helps, and then I've implemented some aggressive garbage collection after each experiment. I tried model compilation (using inductor and torchscript), but it didn't play nicely with MPS. I tried profiling to reduce python overhead, but again it said obvious things were taking the most time (train_step, Optimizer.step#AdamW.step, aten::scaled_dot_product_attention, etc). I still implemented caching for the token rarity scores, so hopefully that helps. What mystifies me is this: I made a quick function to print out memory usage, and it all reported values less than a gigabyte. And yet: the python process uses around 40(±10) gigabytes of memory (as reported by Activity Monitor). MPS Memory: 0.54 GB allocated / CPU RAM: 71.7% used / Model parameters: 0.12 GB / Estimated optimizer state: 0.25 GB. (CPU RAM is accurate to what Activity Monitor reports because it uses psutil). Especially MPS because that's supposed to be where my dataset and the model weights live (although maybe half a gigabyte of data compressed into tokens and 30m parameters is smaller than I think).
1048
+ - I made some diagrams describing the schedules. They look pretty good!
1049
+ - <img src="readme-imgs/schedule-diagrams.png">
1050
+ - Still training. Retraining. Let's see if AdamW + gc is faster. Patience. 1.15 ish s/it, same as 1.1 baseline, so idk. I'll take faster convergence times, though. Then again, it's with respect to the other ones. So idk.
1051
+ - <img src="readme-imgs/tb-31-curves.png" style="width: 30%">
1052
+ - Checking TB, it stabilizes after 20, but 30 looks like a good loss curve, I guess. I don't know. 88% RAM is pressing, but I can get away with one other app open, so I'll just let this cook. Tried pin memory, it was about the same. Better to not mess with that stuff, let the OS manage memory as needed since RAM is so high for some reason even though the model is 120mb.
1053
+ - added crazy graceful shutdown so it saves exactly upon ctrl+c. Cursed SIGINT handlers and `except KeyboardInterrupt` and `if self._interrupted` logic. It works. Did I use copilot? Of course. Such is programming these days. I can feel it. It's becoming real now. haha 360 commits later.
1054
+ - perhaps it's unoptimized `_generate_square_subsequent_mask`. Perhaps I should just let it train in peace and hop on something else.
1055
+ - average fluctuation:
1056
+ ```
1057
+ Time: 2025-06-14 02:36:56 / MPS: 0.82 GB / RAM: 88.6% used / data: 0.25 GB / Params: 0.12 GB / Optim (est): 0.25 GB /
1058
+ Time: 2025-06-14 03:45:40 / MPS: 0.82 GB / RAM: 83.9% used / data: 0.25 GB / Params: 0.12 GB / Optim (est): 0.25 GB /
1059
+ Time: 2025-06-14 04:54:29 / MPS: 0.82 GB / RAM: 75.8% used / data: 0.25 GB / Params: 0.12 GB / Optim (est): 0.25 GB /
1060
+ Time: 2025-06-14 06:02:54 / MPS: 0.82 GB / RAM: 85.4% used / data: 0.25 GB / Params: 0.12 GB / Optim (est): 0.25 GB /
1061
+ Time: 2025-06-14 07:11:30 / MPS: 0.82 GB / RAM: 92.2% used / data: 0.25 GB / Params: 0.12 GB / Optim (est): 0.25 GB /
1062
+ ```
1063
+ - 75 to 92% is a big range. That's between 48gb and 58 gb used. I guess it's all those activations. Haha quadratic-time-complexity attention mechanisms. Well, no OOM so this is as fast as it's going to get.
1064
+ - Looking at `vm_stat`, swap space is being used. First of all, all those code helper (renderer) and code helper (plugin) processes. Perhaps I need to just quit vsc and use terminal while training.
1065
+ - Jun 16
1066
+ - aaahaha still training. continuously. On run 3.8.
1067
+ - Strange loss curve.
1068
+ - <img src="readme-imgs/funny-curve.png" style="width: 30%">
1069
+ -Perhaps this is AdamW, but the loss fluctuates in almost a regular pattern. Maybe batches aren't randomly sorted?
1070
+ - Jun 21
1071
+ - Took a look at the runs. 5.3/8 done, each takes on average 1.5 days.
1072
+ - four days left?? FOUR DAYS??? Today is Saturday and the meeting is on Tuesday. That's 3.5 at best. Well then. I guess two weeks wasn't enough time for me to get it together. To be fair, that's 8\*1.5=12 days straight training, and I lost three days to restart because _someone_ had the brilliant idea to use AdamW. which wasn't w to restart and produced not-w loss curves (weird regular fluctuation which, by the way, is consistent across runs). So actually the estimate is accurate.
1073
+ - haha noop config does slightly better but they are all about the same. The exact opposite of my hypothesis. Of course it did. Very slick. Not like I didn't see it coming, though. All the preliminary experiments on the smaller subset said as much, after all.
1074
+ - "At this point the only thing these variants have optimized is your emotional resilience" -ChatGPT
1075
+ - And what of this project? So many extractable lessons, so much resilience learned over nine months now (crazy) and 368 commits. But not much in terms of results. A paper is cool, but a paper that presents new things as doing better is cooler. Oh well. I'll take what I can get. Because what else are you going to do? What else are you going to do. My god this has been a journey. "Oh haha. I know what to do! I'll code a transformer. It'll be fun and quick. Two month project." Little did they know. It has been fun (at times), but it has _not_ been quick.
1076
+ - That feeling when the transformer trains you (to be more resilient, I guess?)
1077
+ - Jun 22
1078
+ - 5.8 done.
1079
+ - Also I guess I knew even before the preliminary experiments, because it also didn't work in the other paper. But I guess I thought I would be different. And then I did the small experiments, and it didn't work. But I guess I thought I would be different. Now, after two weeks of continuous training, the results are almost in and the verdict is that it didn't work. So I can't say this is a sudden realization.
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code Completion
2
+
3
+ ## Take a look at [notes.md](https://github.com/JBlitzar/code-completion/blob/main/NOTES.md)
4
+
5
+ ## **1. Overview**
6
+
7
+ This project aims to develop a code completion model for Python. My process involves scraping GitHub repositories, preprocessing the data, implementing and training a transformer, and refining its performance to improve generalization and avoid overfitting.
8
+
9
+ ## **2. Data Collection & Processing**
10
+
11
+ - See [dataset.py](dataset.py)
12
+ - Scraped GitHub repositories with the following filters ([link](scraping)):
13
+ - More than 100 stars
14
+ - After 2015 (to ensure usage of modern python)
15
+ - `.py` files between 1KB and 100KB
16
+ - Processed around 30,000 repositories and filtered them based on SHA hashes to avoid duplicates, resulting in about 500MB of text data and 53,000 files.
17
+ - Files are then formatted using `autopep8`
18
+ - Tokenization experiments:
19
+ - Started with BERT-based tokenization.
20
+ - Explored Byte Pair Encoding (BPE) with `yttm` but decided against it because of strange tokenization issues. Processing code is a more nuanced problem than natural language (different use of punctuation and whitespace, in particular).
21
+ - Eventually settled on a custom tokenizer ([link](https://github.com/JBlitzar/code-completion/blob/main/dataset.py#L178)), aggressively subdividing the code by first removing docstrings and comments, and then splitting based off of capitalization, spaces, and underscores while preserving newlines and indentation.
22
+ - I discovered that, despite the aggressive tokenization, there were still many tokens that were used only once or twice. In the end, I only preserved tokens that appeared more than ten times.
23
+
24
+ ## **3. Model Development & Training**
25
+
26
+ - After learning about attention mechanisms and reading through various [resources](resources.md), I implemented it myself in [architecture.py](architecture.py). The design is very modular, each component usually being composed of a few smaller components glued together in a `Sequential`. While this was an excellent learning opportunity, and it was really great to truly understand how attention mechanisms worked inside of a transformer, because this project has so many moving parts, as I continued debugging, I used pytorch's builtin implementation of transformers for iteration. The [source code itself](https://github.com/pytorch/pytorch/blob/v2.6.0/torch/nn/modules/transformer.py#L57) is actually surprisingly similar.
27
+ - I created my own [training framework](trainingmanager.py), which I've used in the past to quickly train other models. Building off of this, I made a quick script to run [hyperparameter searches](hyperparam_tune.py).
28
+ - I implemented gradient clipping, weight decay, and Xavier normalization.
29
+ - What's amazing is that I was at this stage of the project _in November_. Spoiler alert: it's not November anymore. In previous, less complex ML projects (such as the VAE), I would do a few weeks of training and finetuning, but usually finish not long after that.
30
+
31
+ ## **4. Challenges, Takeaways, & Further Experimentation**
32
+
33
+ ### **Challenges**
34
+
35
+ - Many challenges arose while training.
36
+ - First of all, I was getting NaNs in the loss, due to incorrect casting in the Multi-Head Attention. At this point, I decided to use the builtin implementation in order to isolate the problem and prevent future issues like this.
37
+ - This next but is probably the most intense one I faced during this project. An interesting shape issue arose where the model expected data in the shape of (seq_len, batch_size), but was receiving and outputting the reverse. What was insane was that in the loss calculation, I flattened the outputs, leading to a lack of actual errors. Pytorch is usually good at catching shape errors and making debugging easy, but if you transpose and then flatten, it would have the same shape as if you didn't.
38
+
39
+ - I only discovered this after actual weeks of debugging and scrutinization of other parts of the code. Finally, I was able to isolate it to this after training on a [purposely undersized dataset](dummy-data-dir/data/corpus.txt) to get the model to overfit, and noticing an incorrect pattern in the outputs.
40
+ - While this fixed the core issue, the bug persisted in a couple of ways:
41
+ - I previously had two places where I evaluated the model in `trainingmanager.py`: The training step and the validation step. I didn't fix the issue in the validation step, which caused it to persist and validation loss to increase rather than decrease over time, creating misleading graphs that looked like overfitting.
42
+ - I also saved the best checkpoint based off of lowest validation loss. Then, when [evaluating the model](eval.py), I loaded in the best checkpoint. Unfortunately, this lead to loading in of bad models because the validation loss was messed up.
43
+ - The lesson here is to make sure you don't have the same code in multiple places, and to ensure when you change a part, that it won't have unintended side effects.
44
+
45
+ - Analysis of data is important to understand it and know how to treat it.
46
+
47
+ - For example, it was important to realize that many tokens were used only a couple of times. This allowed me to cut down on the number of unique tokens, thus reducing model size, without disrupting the diversity of the dataset.
48
+
49
+ - After relatively extensive hyperparameter tuning, I had determined that I was plateuing on performance.
50
+ - I implemented additional inference strategies (top-k, top-p, beam search) and metrics (perplexity, top-k accuracy)
51
+ - I curated a larger dataset, with a threshold of 10 github stars rather than 100 and more lenient size restrictions. This resulted in a dataset approximately four times bigger. After some license filtering, I ended up with a dataset approximately two times bigger.
52
+
53
+ - Most recently, I've been working on experimenting with different curriculums to see if it leads to faster convergence speeds. There was [another paper](https://arxiv.org/pdf/2407.10194) on the same topic which concluded that curriculum learning has no effect on code generation, instead finding that it greatly assisted in code execution. They used procedurally-generated synthetic data to control for which samples were easy, medium, or hard, but I was curious how it would pan out on real data rather than synthetic data. I've been experimenting with several different curriculums, using several different metrics, namely median token rarity, entropy, and loss-based metrics, with the curriculums being a traditional sequential curriculum, sliding window curriculum, anticurriculum, and three-stage hybrid curriculum.
54
+
55
+ ## **5. Conclusion**
56
+
57
+ This project has come a long way, from early scraping experiments to training a functioning code completion model. The focus now is on scaling up data collection and refining the model to produce high-quality completions that generalize well across unseen codebases.
architecture.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+
6
+ DIM = 128
7
+ print(f"DIM IS SET TO {DIM}")
8
+
9
+ DEVICE = "mps" if torch.backends.mps.is_available() else "cpu"
10
+
11
+
12
+ class MHA_SelfAttention(nn.Module):
13
+ def __init__(self, embed_dim=DIM, num_heads=1, *args, **kwargs):
14
+ super().__init__(*args, **kwargs)
15
+ if num_heads != 8:
16
+ print(
17
+ "Num heads is not 8. This is a reminder to change this back after experimenting with smaller architectures"
18
+ )
19
+ self.mha = nn.MultiheadAttention(embed_dim, num_heads)
20
+ self.num_heads = num_heads
21
+
22
+ def forward(self, x, mask=None, triangle_mask=False):
23
+ # if torch.isnan(x).any():
24
+ # print("NAN ALERT!")
25
+ attn_mask = None
26
+ seq_len = x.size(1)
27
+
28
+ if triangle_mask:
29
+ attn_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1) == 0
30
+ attn_mask = attn_mask.to(x.device)
31
+
32
+ if mask is not None:
33
+ if attn_mask is not None:
34
+ attn_mask = mask.unsqueeze(1) & attn_mask.unsqueeze(0)
35
+ else:
36
+ attn_mask = mask.unsqueeze(1).expand(-1, seq_len, -1)
37
+
38
+ if attn_mask is not None:
39
+ attn_mask = attn_mask.repeat(self.num_heads, 1, 1).float()
40
+ attn_mask = attn_mask.masked_fill(
41
+ ~attn_mask.bool(), -1e9
42
+ ) # https://github.com/pytorch/pytorch/issues/21518 we don't talk about how long that took to know. Later it seems like they also support bool, but idk 🤷
43
+
44
+ # print(f"attn_mask shape: {attn_mask.shape if attn_mask is not None else None}")
45
+ # if attn_mask is not None:
46
+ # print(f"attn_mask stats: max={attn_mask.max()}, min={attn_mask.min()}, mean={attn_mask.mean()}")
47
+
48
+ x = x.transpose(0, 1)
49
+ # if torch.isnan(x).any():
50
+ # print("NAN ALERT!")
51
+ attn_output, _ = self.mha(x, x, x, attn_mask=attn_mask)
52
+ attn_output = attn_output.transpose(0, 1)
53
+ # if torch.isnan(x).any() or torch.isinf(x).any():
54
+ # print("NAN ALERT!")
55
+
56
+ # if torch.isnan(attn_output).any() or torch.isinf(attn_output).any():
57
+ # print("NAN or INF detected in attn_output!")
58
+ # print(f"Output stats: max={attn_output.max()}, min={attn_output.min()}, mean={attn_output.mean()}")
59
+
60
+ return attn_output
61
+
62
+
63
+ class FeedForward(nn.Module):
64
+ def __init__(self, dim=DIM, hidden_dim=None, *args, **kwargs):
65
+ super().__init__(*args, **kwargs)
66
+ self.dim = dim
67
+ self.hidden_dim = hidden_dim if hidden_dim is not None else dim
68
+
69
+ self.block = nn.Sequential(
70
+ nn.LayerNorm(self.dim), # nobody knows what this does
71
+ nn.Linear(self.dim, self.hidden_dim),
72
+ nn.GELU(),
73
+ nn.Linear(self.hidden_dim, self.dim),
74
+ nn.GELU(),
75
+ )
76
+
77
+ def forward(self, x):
78
+ return self.block(x)
79
+
80
+
81
+ class DecoderBlock(nn.Module):
82
+ def __init__(self, *args, **kwargs):
83
+ super().__init__(*args, **kwargs)
84
+ self.sa = MHA_SelfAttention()
85
+ self.block = FeedForward()
86
+
87
+ # self.drop = nn.Dropout(p=0.1)
88
+
89
+ def forward(self, x, padding_mask=None):
90
+ res_x = x
91
+ x = self.sa(x, mask=padding_mask, triangle_mask=True)
92
+
93
+ # x = self.drop(x)
94
+ x = x + res_x
95
+
96
+ res_x_2 = x
97
+ x = self.block(x)
98
+ # x = self.drop(x)
99
+ x = x + res_x_2
100
+
101
+ # if torch.isnan(x).any():
102
+ # print("NAN ALERT!")
103
+
104
+ return x
105
+
106
+
107
+ class PositionalEncoding(nn.Module):
108
+ def __init__(self, max_len=5000):
109
+ super().__init__()
110
+ position = torch.arange(0, max_len).unsqueeze(1)
111
+ div_term = torch.exp(torch.arange(0, DIM, 2) * -(np.log(10000.0) / DIM))
112
+ pe = torch.zeros(max_len, DIM)
113
+ pe[:, 0::2] = torch.sin(position * div_term)
114
+ pe[:, 1::2] = torch.cos(position * div_term)
115
+ self.register_buffer("pe", pe.unsqueeze(0))
116
+
117
+ def forward(self, x):
118
+ seq_len = x.size(1)
119
+ return x + self.pe[:, :seq_len, :].to(x.device)
120
+
121
+
122
+ class DecoderTransformer(nn.Module):
123
+ def __init__(self, num_blocks=6, vocab_size=100, *args, **kwargs):
124
+ super().__init__(*args, **kwargs)
125
+
126
+ if vocab_size == 100:
127
+ print(
128
+ "WARNING: vocab_size is set to 100. You probably mean to set it to something else. Comment out the exit line below if this was intentional"
129
+ )
130
+ exit()
131
+
132
+ self.num_blocks = num_blocks
133
+ self.decoders = nn.ModuleList([DecoderBlock() for _ in range(num_blocks)])
134
+ self.pos_encoding = PositionalEncoding()
135
+ self.enc_embedding = nn.Embedding(vocab_size, DIM)
136
+
137
+ self.oblock = nn.Sequential(
138
+ nn.Linear(DIM, vocab_size),
139
+ # nn.Softmax(dim=-1)
140
+ )
141
+
142
+ # https://github.com/hyunwoongko/transformer
143
+ @torch.no_grad()
144
+ def _initialize_weights(m):
145
+ if hasattr(m, "weight") and m.weight.dim() > 1:
146
+ nn.init.kaiming_uniform_(m.weight.data)
147
+
148
+ self.apply(_initialize_weights)
149
+
150
+ print(
151
+ f"Model initialized with {sum(p.numel() for p in self.parameters() if p.requires_grad)} params."
152
+ )
153
+
154
+ def forward(self, x, padding_mask=None):
155
+ # if torch.isnan(x).any():
156
+ # print("NAN ALERT!")
157
+ if isinstance(x, tuple):
158
+ x, padding_mask = x
159
+
160
+ if padding_mask is not None:
161
+ padding_mask = padding_mask == 0
162
+
163
+ x = self.pos_encoding(self.enc_embedding(x))
164
+
165
+ # if torch.isnan(x).any():
166
+ # print("NAN ALERT!")
167
+
168
+ for didx, dblock in enumerate(self.decoders):
169
+
170
+ x = dblock(x, padding_mask=padding_mask)
171
+
172
+ x = self.oblock(x)
173
+
174
+ return x
archive-misc/architecture-v1.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import numpy as np
5
+
6
+ DIM = 512
7
+
8
+ DEVICE = "mps" if torch.backends.mps.is_available() else "cpu"
9
+
10
+
11
+ class MHA_SelfAttention(nn.Module):
12
+ def __init__(self, embed_dim=DIM, num_heads=8, *args, **kwargs):
13
+ super().__init__(*args, **kwargs)
14
+ self.mha = nn.MultiheadAttention(embed_dim, num_heads)
15
+ self.num_heads = num_heads
16
+
17
+ def forward(self, x, mask=None, triangle_mask=False):
18
+ attn_mask = None
19
+ seq_len = x.size(1)
20
+
21
+ if triangle_mask:
22
+ attn_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1) == 0
23
+ attn_mask = attn_mask.to(x.device)
24
+
25
+ if mask is not None:
26
+ if attn_mask is not None:
27
+ attn_mask = mask.unsqueeze(1) & attn_mask.unsqueeze(0)
28
+ else:
29
+ attn_mask = mask.unsqueeze(1).expand(-1, seq_len, -1)
30
+
31
+ if attn_mask is not None:
32
+ attn_mask = attn_mask.repeat(self.num_heads, 1, 1)
33
+
34
+ x = x.transpose(0, 1)
35
+ attn_output, _ = self.mha(x, x, x, attn_mask=attn_mask)
36
+ attn_output = attn_output.transpose(0, 1)
37
+
38
+ return attn_output
39
+
40
+
41
+ class MHA_EncoderDecoderAttention(nn.Module):
42
+ def __init__(self, embed_dim=DIM, num_heads=8, *args, **kwargs):
43
+ super().__init__(*args, **kwargs)
44
+ self.mha = nn.MultiheadAttention(embed_dim, num_heads)
45
+ self.num_heads = num_heads
46
+
47
+ def forward(self, x, encoded, mask=None):
48
+ attn_mask = None
49
+ seq_len_x = x.size(1)
50
+ seq_len_encoded = encoded.size(1)
51
+
52
+ if mask is not None:
53
+ attn_mask = mask.unsqueeze(1).expand(-1, seq_len_x, seq_len_encoded)
54
+ attn_mask = attn_mask.repeat(self.num_heads, 1, 1)
55
+
56
+ x = x.transpose(0, 1)
57
+ encoded = encoded.transpose(0, 1)
58
+
59
+ attn_output, _ = self.mha(x, encoded, encoded, attn_mask=attn_mask)
60
+
61
+ attn_output = attn_output.transpose(0, 1)
62
+
63
+ return attn_output
64
+
65
+
66
+ class FeedForward(nn.Module):
67
+ def __init__(self, dim=DIM, hidden_dim=None, *args, **kwargs):
68
+ super().__init__(*args, **kwargs)
69
+ self.dim = dim
70
+ self.hidden_dim = hidden_dim if hidden_dim is not None else dim
71
+
72
+ self.block = nn.Sequential(
73
+ nn.LayerNorm(self.dim),
74
+ nn.Linear(self.dim, self.hidden_dim),
75
+ nn.GELU(),
76
+ nn.Linear(self.hidden_dim, self.dim),
77
+ nn.GELU(),
78
+ )
79
+
80
+ def forward(self, x):
81
+ return self.block(x)
82
+
83
+
84
+ class EncoderBlock(nn.Module):
85
+ def __init__(self, *args, **kwargs):
86
+ super().__init__(*args, **kwargs)
87
+ self.sa = MHA_SelfAttention()
88
+ self.block = FeedForward()
89
+
90
+ def forward(self, x, padding_mask=None):
91
+ res_x = x
92
+ x = self.sa(x, padding_mask)
93
+ x = x + res_x
94
+
95
+ res_x_2 = x
96
+ x = self.block(x)
97
+ x = x + res_x_2
98
+
99
+ return x
100
+
101
+
102
+ class DecoderBlock(nn.Module):
103
+ def __init__(self, *args, **kwargs):
104
+ super().__init__(*args, **kwargs)
105
+ self.sa = MHA_SelfAttention()
106
+ self.eda = MHA_EncoderDecoderAttention()
107
+ self.block = FeedForward()
108
+
109
+ def forward(self, x, encoded, padding_mask=None):
110
+ res_x = x
111
+ x = self.sa(x, mask=padding_mask, triangle_mask=True)
112
+ x = x + res_x
113
+
114
+ res_x_2 = x
115
+ x = self.eda(x, encoded, mask=padding_mask)
116
+ x = x + res_x_2
117
+
118
+ res_x_3 = x
119
+ x = self.block(x)
120
+ x = x + res_x_3
121
+
122
+ return x
123
+
124
+
125
+ class PositionalEncoding(nn.Module):
126
+ def __init__(self, max_len=5000):
127
+ super().__init__()
128
+ position = torch.arange(0, max_len).unsqueeze(1)
129
+ div_term = torch.exp(torch.arange(0, DIM, 2) * -(np.log(10000.0) / DIM))
130
+ pe = torch.zeros(max_len, DIM)
131
+ pe[:, 0::2] = torch.sin(position * div_term)
132
+ pe[:, 1::2] = torch.cos(position * div_term)
133
+ self.register_buffer("pe", pe.unsqueeze(0))
134
+
135
+ def forward(self, x):
136
+ seq_len = x.size(1)
137
+ return x + self.pe[:, :seq_len, :].to(x.device)
138
+
139
+
140
+ class Transformer(nn.Module):
141
+ def __init__(self, num_blocks=6, vocab_size=30522, seq_len=100, *args, **kwargs):
142
+ super().__init__(*args, **kwargs)
143
+ self.num_blocks = num_blocks
144
+ self.encoders = nn.ModuleList([EncoderBlock() for _ in range(num_blocks)])
145
+ self.decoders = nn.ModuleList([DecoderBlock() for _ in range(num_blocks)])
146
+ self.pos_encoding = PositionalEncoding()
147
+ self.enc_embedding = nn.Embedding(vocab_size, DIM)
148
+
149
+ self.oblock = nn.Sequential(
150
+ nn.Linear(DIM, vocab_size),
151
+ # nn.Softmax(dim=-1)
152
+ )
153
+
154
+ def forward(self, x, padding_mask=None):
155
+ if isinstance(x, tuple):
156
+ x, padding_mask = x
157
+
158
+ if padding_mask is not None:
159
+ padding_mask = padding_mask == 0
160
+
161
+ x = self.pos_encoding(self.enc_embedding(x))
162
+
163
+ for eidx, eblock in enumerate(self.encoders):
164
+ x = eblock(x, padding_mask=padding_mask)
165
+
166
+ encoded = x # No need to clone
167
+
168
+ x = self.pos_encoding(x)
169
+
170
+ for didx, dblock in enumerate(self.decoders):
171
+ x = dblock(x, encoded, padding_mask=padding_mask)
172
+
173
+ x = self.oblock(x)
174
+
175
+ return x
archive-misc/ascii_percentage.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+
4
+ def calculate_ascii_percentage(file_path):
5
+ try:
6
+ with open(file_path, "rb") as f:
7
+ data = f.read()
8
+
9
+ total_chars = len(data)
10
+ if total_chars == 0:
11
+ return 0
12
+
13
+ ascii_chars = sum(1 for c in data if 0 <= c <= 127)
14
+ percentage = (ascii_chars / total_chars) * 100
15
+
16
+ return percentage
17
+ except Exception as e:
18
+ print(f"Error: {e}")
19
+ return None
20
+
21
+
22
+ file_path = os.path.expanduser(
23
+ "~/torch_datasets/github-python/corpus/data/corpus_processed.txt"
24
+ )
25
+ ascii_percentage = calculate_ascii_percentage(file_path)
26
+ if ascii_percentage is not None:
27
+ print(f"Percentage of ASCII characters: {ascii_percentage:.2f}%")
28
+
29
+
30
+ def find_unicode_passages(file_path, threshold=0.5, min_length=20):
31
+ """
32
+ Prints passages with a high density of non-ASCII characters.
33
+ Args:
34
+ file_path (str): Path to the input file.
35
+ threshold (float): Proportion of non-ASCII characters to flag a line.
36
+ min_length (int): Minimum length of a line to be considered.
37
+ """
38
+ try:
39
+ with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
40
+ for line_num, line in enumerate(f, start=1):
41
+ total_chars = len(line.strip())
42
+ if total_chars < min_length:
43
+ continue # Skip short lines
44
+
45
+ non_ascii_count = sum(1 for c in line if ord(c) >= 128)
46
+ if non_ascii_count / total_chars > threshold:
47
+ print(f"Line {line_num}: {line.strip()}")
48
+ print(
49
+ f" -> Non-ASCII Density: {non_ascii_count / total_chars:.2%}"
50
+ )
51
+ except Exception as e:
52
+ print(f"Error: {e}")
53
+
54
+
55
+ # Example usage
56
+ find_unicode_passages(file_path, threshold=0.5, min_length=20)
archive-misc/bpe_test.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+
3
+ import youtokentome as yttm
4
+
5
+ bpe = yttm.BPE(model="e.model")
6
+
7
+ train_data_path = "train_data.txt"
8
+ model_path = "example.model"
9
+
10
+ # Generating random file with training data
11
+ # 10000 lines with 100 characters in each line
12
+ n_lines = 10000
13
+ n_characters = 100
14
+ with open(train_data_path, "w") as fout:
15
+ for _ in range(n_lines):
16
+ print("".join([random.choice("abcd ") for _ in range(n_characters)]), file=fout)
17
+
18
+ # Generating random text
19
+ test_text = "".join([random.choice("abcde ") for _ in range(100)])
20
+
21
+ # Training model
22
+ yttm.BPE.train(data=train_data_path, vocab_size=5000, model=model_path)
23
+
24
+ # Loading model
25
+ bpe = yttm.BPE(model=model_path)
26
+
27
+ # Two types of tokenization
28
+ print(bpe.encode([test_text], output_type=yttm.OutputType.ID))
29
+ print(bpe.encode([test_text], output_type=yttm.OutputType.SUBWORD))
archive-misc/check-memorization.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ with open(
4
+ os.path.expanduser(
5
+ "~/torch_datasets/github-python/mega_corpus/data/corpus_processed.txt"
6
+ ),
7
+ "r",
8
+ ) as f:
9
+ data = f.read()
10
+ to_check = """<newline> logger . info ( f " initial validation samples in first step . . . " ) <newline> model . eval ( ) <newline> <newline> gen _ validation _ samples ( validation _ pipeline , args , wandb , samples _ dir , train _ ts , train _ steps ) <newline> <newline> model . train ( ) <newline>"""
11
+ to_check = """' nonpayable ' , ' type ' : ' function ' } , { ' inputs ' : [ { ' internaltype ' : ' uint 2 5 6 ' , ' name ' : ' ' , ' type ' : ' uint 2 5 6 ' } ] , ' name ' : ' ' , ' outputs"""
12
+
13
+ to_check = """parser . add _ argument ( ' - - save _ folder ' , type = str , default = ' data / save ' , help = ' save folder ' )"""
14
+ to_check = """= torch . zeros ( len ( imgs ) ) <newline> <tab> for x _ interp in range ( 1 , args . batch _ size ) :"""
15
+ # to_check = """x _ interp = machine . interpolate ( imgs [ 0 ] , imgs [ 1 ] , n _ interp )""" # should be true
16
+ # to_check = "<UNK>"
17
+ to_check = to_check.replace(" ", "").lower()
18
+ data = data.replace(" ", "").lower()
19
+
20
+ print(to_check in data)
archive-misc/concatenator.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ from tqdm import tqdm
4
+
5
+ folder = os.path.expanduser("~/torch_datasets/github-python/mega_licensed_all_files")
6
+ output_file = os.path.expanduser(
7
+ "~/torch_datasets/github-python/mega_licensed_corpus/concatenated.py"
8
+ )
9
+
10
+ with open(output_file, "w", encoding="utf-8") as out_f:
11
+ for file in tqdm(glob.glob(os.path.join(folder, "*.py"))):
12
+ out_f.write("\n# <FILESEP>\n")
13
+ try:
14
+ with open(file, "r", encoding="utf-8", errors="ignore") as in_f:
15
+ out_f.write(in_f.read())
16
+ except Exception as e:
17
+ out_f.write(f"\n# Skipping {file} due to error: {e}\n")
18
+
19
+ print(f"Concatenation complete: {output_file}")
archive-misc/dataset.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torchvision.datasets as dset
2
+ from torch.utils.data import Dataset
3
+ import torch
4
+ from torch.utils.data import DataLoader
5
+ import glob
6
+ import os
7
+ from transformers import AutoTokenizer
8
+ from torch.utils.data import Dataset, DataLoader, random_split
9
+
10
+
11
+ class GithubDataset(Dataset):
12
+ def __init__(
13
+ self,
14
+ root_dir=os.path.expanduser("~/torch_datasets/github-python/corpus"),
15
+ train=False,
16
+ max_length=512,
17
+ ):
18
+ self.root = root_dir
19
+ self.file_list = glob.glob(os.path.join(root_dir, "*.*"))
20
+ self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
21
+ self.max_length = max_length
22
+
23
+ def __len__(self):
24
+ return len(self.file_list)
25
+
26
+ def __getitem__(self, idx):
27
+
28
+ path = self.file_list[idx]
29
+
30
+ with open(path, "r", encoding="utf-8", errors="ignore") as file:
31
+ code = file.read()
32
+
33
+ encoding = self.tokenizer(
34
+ code,
35
+ padding="max_length",
36
+ truncation=True,
37
+ max_length=self.max_length,
38
+ return_tensors="pt",
39
+ )
40
+
41
+ input_ids = encoding["input_ids"].squeeze(0)
42
+ attention_mask = encoding["attention_mask"].squeeze(0)
43
+
44
+ # print(encoding.keys)
45
+
46
+ return input_ids, attention_mask
47
+
48
+
49
+ dataset = GithubDataset() # root_dir="./test-data/")
50
+ dataset = GithubDataset(root_dir="./test-data/")
51
+ train_size = int(0.8 * len(dataset))
52
+ test_size = len(dataset) - train_size
53
+
54
+ train_dataset, test_dataset = random_split(dataset, [train_size, test_size])
55
+
56
+
57
+ def get_train_dataset():
58
+ return train_dataset
59
+
60
+
61
+ def get_test_dataset():
62
+
63
+ return test_dataset
64
+
65
+
66
+ def get_dataloader(dataset, batch_size=64):
67
+
68
+ return DataLoader(dataset, batch_size=batch_size, shuffle=True)
69
+
70
+
71
+ if __name__ == "__main__":
72
+ d = get_train_dataset()
73
+ print("Number of samples: ", len(d))
74
+
75
+ a, b = d[4]
76
+ t = AutoTokenizer.from_pretrained("bert-base-uncased")
77
+ for i in a:
78
+ print(t.decode(i.item()), end=" ")
79
+ print()
archive-misc/dset_splitter.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import tqdm
3
+
4
+
5
+ # get through all files in inputted path, put the first 80% in one file concatenated and the last 20% in another
6
+ def split_files(input_path, output_path1, output_path2):
7
+
8
+ files = [
9
+ f
10
+ for f in os.listdir(input_path)
11
+ if os.path.isfile(os.path.join(input_path, f)) and f.endswith(".py")
12
+ ]
13
+
14
+ # Sort files to maintain order
15
+ files.sort()
16
+
17
+ split_index = int(len(files) * 0.8)
18
+ first_80_files = files[:split_index]
19
+ last_20_files = files[split_index:]
20
+
21
+ print(os.listdir(input_path))
22
+
23
+ with open(output_path1, "w") as outfile1:
24
+ for fname in tqdm.tqdm(first_80_files):
25
+ with open(os.path.join(input_path, fname), errors="ignore") as infile:
26
+ outfile1.write(infile.read())
27
+ outfile1.write("\nprint('---FILESEP---')\n")
28
+
29
+ with open(output_path2, "w") as outfile2:
30
+ for fname in tqdm.tqdm(last_20_files):
31
+ with open(os.path.join(input_path, fname), errors="ignore") as infile:
32
+ outfile2.write(infile.read())
33
+ outfile2.write("\nprint('---FILESEP---')\n")
34
+
35
+
36
+ # Example usage
37
+ input_path = os.path.expanduser("~/torch_datasets/github-python/all_trains")
38
+ output_path1 = os.path.expanduser("~/torch_datasets/github-python/80")
39
+ output_path2 = os.path.expanduser("~/torch_datasets/github-python/20")
40
+ split_files(input_path, output_path1, output_path2)
archive-misc/entropy_upper_bound.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from collections import Counter
3
+ import math
4
+
5
+
6
+ def calculate_topk_upper_bound(file_path, k=5):
7
+ """
8
+ Calculates the upper bound for top-k accuracy based on the tokenized text file.
9
+
10
+ Args:
11
+ file_path (str): Path to the input text file.
12
+ k (int): Top-k accuracy value to compute.
13
+
14
+ Returns:
15
+ float: The upper bound for top-k accuracy.
16
+ """
17
+ try:
18
+ # Read the file and tokenize by spaces
19
+ with open(file_path, "r", encoding="utf-8", errors="ignore") as f:
20
+ text = f.read()
21
+
22
+ tokens = text.split() # Tokenize by spaces
23
+
24
+ # Calculate token frequencies
25
+ token_counts = Counter(tokens)
26
+ total_tokens = len(tokens)
27
+
28
+ if total_tokens == 0:
29
+ return 0
30
+
31
+ # Convert frequencies to probabilities
32
+ token_probabilities = {token: count / total_tokens for token, count in token_counts.items()}
33
+
34
+ # Calculate entropy
35
+ entropy = -sum(p * math.log2(p) for p in token_probabilities.values())
36
+
37
+ # Calculate top-k accuracy upper bound
38
+ sorted_tokens = sorted(token_probabilities.items(), key=lambda x: x[1], reverse=True)
39
+ top_k_prob = sum(prob for _, prob in sorted_tokens[:k])
40
+
41
+ # Print entropy and top-k accuracy upper bound
42
+ print(f"Entropy: {entropy:.4f} bits")
43
+ print(f"Top-{k} Accuracy Upper Bound: {top_k_prob:.4f}")
44
+ return top_k_prob
45
+ except Exception as e:
46
+ print(f"Error: {e}")
47
+ return None
48
+
49
+
50
+ # Example usage
51
+ file_path = os.path.expanduser(
52
+ "~/torch_datasets/github-python/corpus/data/corpus_processed.txt"
53
+ )
54
+
55
+ top_k_accuracy = calculate_topk_upper_bound(file_path, k=5)
56
+ if top_k_accuracy is not None:
57
+ print(f"Upper Bound for Top-5 Accuracy: {top_k_accuracy:.4f}")
archive-misc/eval_old.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ # from architecture import DecoderTransformer
4
+ from builtin_architecture import make_model
5
+ import os
6
+ import sys
7
+ import time
8
+ from dataset import dataset, get_train_dataset
9
+ import torch.nn.functional as F
10
+
11
+ EXPERIMENT_DIRECTORY = "runs/code-decoder-v10-vanilla-smaller-batchfirst" # "runs/code-decoder-v9-vanilla-smaller"#"runs/code-decoder-v8-smaller" # "runs/code-decoder-v4-improved" # shakespeare-test, run1-python
12
+
13
+ device = "mps" if torch.backends.mps.is_available() else "cpu"
14
+
15
+ device = "cpu"
16
+
17
+ # net = DecoderTransformer(vocab_size=199, num_blocks=1)
18
+ net = make_model()
19
+ net.to(device)
20
+
21
+ net.load_state_dict(
22
+ torch.load(os.path.join(EXPERIMENT_DIRECTORY, "ckpt", "best.pt"), weights_only=True)
23
+ )
24
+
25
+
26
+ for name, param in net.named_parameters():
27
+ if torch.isnan(param).any():
28
+ print(f"NaN found in {name}")
29
+ for name, param in net.named_parameters():
30
+ if param.grad is not None and torch.isnan(param.grad).any():
31
+ print(f"NaN found in gradients of {name}")
32
+
33
+
34
+ pad_token_id = 0
35
+ sep_token_id = None
36
+
37
+ input_text = input("Prompt: ")
38
+ max_length = 100
39
+
40
+
41
+ input_ids = torch.tensor(dataset.manager.encode(input_text), dtype=int)
42
+ print(input_ids.shape)
43
+ attention_mask = dataset.manager.attention_mask(input_ids.squeeze(0)).to(device)
44
+
45
+
46
+ generated_text = dataset.manager.decode(input_ids)
47
+
48
+ print(generated_text)
49
+ generated_text = ""
50
+ input_ids = torch.randint(199, (1, 1), dtype=torch.long).to(device)
51
+
52
+ net.eval() # Set model to evaluation mode
53
+ temp = 1.0 # Balanced temperature
54
+
55
+ for _ in range(max_length):
56
+ with torch.no_grad():
57
+ output = net(input_ids) # Model output
58
+ logits = F.log_softmax(output[-1], dim=-1) # Normalize logits
59
+ word_weights = logits.div(temp).cpu() # Scale by temperature
60
+
61
+ # Top-k sampling
62
+ top_k = 10 # Adjust based on your vocabulary size
63
+ vocab_size = word_weights.size(0)
64
+ top_k = min(top_k, vocab_size) # Ensure top_k is valid
65
+
66
+ top_probs, top_indices = torch.topk(word_weights, k=top_k)
67
+
68
+ # Handle edge case: only one valid token
69
+ if top_probs.size(0) == 1:
70
+ word_idx = top_indices[0] # Directly choose the only available token
71
+ else:
72
+ sampled_idx = torch.multinomial(top_probs, 1).item()
73
+ word_idx = top_indices[sampled_idx]
74
+
75
+ # Decode and append token
76
+ print(word_idx)
77
+ predicted_token = dataset.manager.decode(word_idx.item())
78
+ print(predicted_token, end=" ")
79
+ generated_text += predicted_token
80
+
81
+ print("Word Weights:", word_weights)
82
+ print("Top Probabilities:", top_probs)
83
+ print("Top Indices:", top_indices)
84
+
85
+ # Update input sequence
86
+ word_tensor = torch.tensor([[word_idx]], dtype=torch.long).to(device)
87
+ input_ids = torch.cat([input_ids, word_tensor], dim=1)
88
+
89
+ print("\nGenerated text:", generated_text)
90
+ with open("output.txt", "w+") as f:
91
+ f.write(generated_text)
archive-misc/f1_score.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.metrics import f1_score
2
+
3
+ print("imported!")
4
+ exit()
5
+ from copy import deepcopy
6
+ import numpy as np
7
+
8
+ # y_true = [0] * 50 + [0] * 5 + [0] * 10 + [1] * 8 + [1] * 40 + [1] * 12+ [2] * 5 + [2] * 7 + [2] * 50
9
+ # y_pred = [0] * 50 + [1] * 5+ [2] * 10 + [0] * 8 + [1] * 40+ [2] * 12+ [0] * 5 + [1] * 7 + [2] * 50
10
+
11
+ # y_true = deepcopy(y_true)
12
+ # y_pred = deepcopy(y_pred)
13
+
14
+ # print(y_true)
15
+
16
+
17
+ # y_true = np.array(y_true)
18
+ # y_pred = np.array(y_pred)
19
+ # print(f1_score(y_true, y_pred, average='sample'))
archive-misc/plot_metrics.py ADDED
@@ -0,0 +1,182 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import pandas as pd
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ import re
7
+
8
+ def extract_run_name(filename):
9
+ """Extract the run name from the filename."""
10
+ basename = os.path.basename(filename)
11
+ # Extract the part between '_' and '_tensorboard.csv'
12
+ match = re.search(r'_([^_]+)(?:-loss)?_tensorboard\.csv$', basename)
13
+ if match:
14
+ return match.group(1)
15
+ return basename.split('_')[1].split('-')[0] # Fallback extraction
16
+
17
+ def setup_plot_style():
18
+ """Apply publication-quality styling to plots."""
19
+ plt.rcParams.update({
20
+ 'font.family': 'serif',
21
+ 'font.size': 12,
22
+ 'axes.labelsize': 14,
23
+ 'axes.titlesize': 16,
24
+ 'legend.fontsize': 10,
25
+ 'figure.dpi': 300,
26
+ 'figure.figsize': (10, 6),
27
+ 'lines.linewidth': 2.5,
28
+ 'axes.grid': True,
29
+ 'grid.linestyle': '--',
30
+ 'grid.alpha': 0.6,
31
+ 'axes.spines.top': False,
32
+ 'axes.spines.right': False,
33
+ })
34
+
35
+ def get_metric_label(metric_name):
36
+ """Return a human-readable label for the metric."""
37
+ labels = {
38
+ 'loss_epoch': 'Loss',
39
+ 'perplexityval_epoch': 'Validation Perplexity',
40
+ 'topkacc_epoch': 'Top-K Accuracy',
41
+ 'acc_trainstep': 'Training Accuracy'
42
+ }
43
+ return labels.get(metric_name, metric_name.replace('_', ' ').title())
44
+
45
+ def get_color_mapping(run_names):
46
+ """Create a consistent color mapping for all runs."""
47
+ # Define a color palette with distinct colors
48
+ # colors = [
49
+ # '#1f77b4', # Blue
50
+ # '#ff7f0e', # Orange
51
+ # '#2ca02c', # Green
52
+ # '#d62728', # Red
53
+ # '#9467bd', # Purple
54
+ # '#8c564b', # Brown
55
+ # '#e377c2', # Pink
56
+ # '#7f7f7f', # Gray
57
+ # '#bcbd22', # Yellow-green
58
+ # '#17becf', # Cyan
59
+ # ]
60
+ # colors = """#091717
61
+
62
+ # #13B3B9
63
+
64
+ # #265E5A
65
+
66
+ # #20808D
67
+
68
+ # #25E5A5
69
+
70
+ # #20808D
71
+
72
+ # #FBFAF4
73
+
74
+ # #E4E3D4
75
+
76
+ # #FFD2A6
77
+
78
+ # #A84B2F
79
+
80
+ # #944454""".lower().split("\n\n")
81
+ colors = [
82
+ "#e6194b", # Red
83
+ "#f58231", # Orange
84
+ "#ffe119", # Yellow
85
+ "#bfef45", # Lime
86
+ "#3cb44b", # Green
87
+ "#42d4f4", # Cyan
88
+ "#4363d8", # Blue
89
+ "#911eb4", # Purple
90
+ "#f032e6", # Magenta
91
+ "#a9a9a9" # Grey
92
+ ]
93
+
94
+ # Create a mapping of run names to colors
95
+ return {name: colors[i % len(colors)] for i, name in enumerate(sorted(run_names))}
96
+
97
+ def plot_metric(metric_dir, color_mapping, output_dir):
98
+ """Plot all runs for a specific metric."""
99
+ metric_name = os.path.basename(metric_dir)
100
+ csv_files = glob.glob(os.path.join(metric_dir, '*.csv'))
101
+
102
+ if not csv_files:
103
+ print(f"No CSV files found in {metric_dir}")
104
+ return
105
+
106
+ plt.figure(figsize=(12, 7))
107
+
108
+ for csv_file in sorted(csv_files):
109
+ try:
110
+ # Read the CSV file
111
+ df = pd.read_csv(csv_file)
112
+
113
+ # Extract run name from filename
114
+ run_name = extract_run_name(csv_file)
115
+
116
+ # Plot the data using step as x-axis
117
+ color = color_mapping.get(run_name, 'gray')
118
+ plt.plot(df['Step'], df['Value'], label=run_name, color=color, alpha=0.9)
119
+ #plt.plot(df['Step'], df['Value'], label=run_name, color=color, marker='o', markersize=6, alpha=0.8)
120
+
121
+ except Exception as e:
122
+ print(f"Error processing {csv_file}: {e}")
123
+
124
+ # Set labels and title
125
+ plt.xlabel('Step')
126
+ plt.ylabel(get_metric_label(metric_name))
127
+
128
+ comparison = "Epoch" if "epoch" in metric_name else "Step"
129
+ plt.title(f'{get_metric_label(metric_name)} vs. {comparison}', fontweight='bold')
130
+
131
+ # Add legend with good positioning
132
+ plt.legend(loc='best', frameon=True, fancybox=True, framealpha=0.9,
133
+ shadow=True, borderpad=1, ncol=2 if len(csv_files) > 5 else 1)
134
+
135
+ # Add grid for better readability
136
+ plt.grid(True, linestyle='--', alpha=0.7)
137
+
138
+ # Tight layout for clean margins
139
+ plt.tight_layout()
140
+
141
+ # Save the plot
142
+ os.makedirs(output_dir, exist_ok=True)
143
+ output_path = os.path.join(output_dir, f'{metric_name}_plot.png')
144
+ plt.savefig(output_path, bbox_inches='tight')
145
+ print(f"Saved plot to {output_path}")
146
+
147
+ # Close the figure to free memory
148
+ plt.close()
149
+
150
+ def main():
151
+ # Base directory containing the metric directories
152
+ base_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'runs_jsons')
153
+
154
+ # Output directory for plots
155
+ output_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'plots')
156
+ os.makedirs(output_dir, exist_ok=True)
157
+
158
+ # Setup plot style
159
+ setup_plot_style()
160
+
161
+ # Get all metric directories
162
+ metric_dirs = [d for d in glob.glob(os.path.join(base_dir, '*')) if os.path.isdir(d)]
163
+
164
+ # Collect all run names across all metrics for consistent coloring
165
+ all_run_names = set()
166
+ for metric_dir in metric_dirs:
167
+ csv_files = glob.glob(os.path.join(metric_dir, '*.csv'))
168
+ for csv_file in csv_files:
169
+ run_name = extract_run_name(csv_file)
170
+ all_run_names.add(run_name)
171
+
172
+ # Create color mapping
173
+ color_mapping = get_color_mapping(all_run_names)
174
+
175
+ # Plot each metric
176
+ for metric_dir in metric_dirs:
177
+ plot_metric(metric_dir, color_mapping, output_dir)
178
+
179
+ print(f"All plots have been generated in {output_dir}")
180
+
181
+ if __name__ == '__main__':
182
+ main()
archive-misc/plots/acc_trainstep_plot.png ADDED

Git LFS Details

  • SHA256: 07741468a279ceb347501f145022b3051b80c5963e45ed2f6a644ad12dede9d2
  • Pointer size: 131 Bytes
  • Size of remote file: 408 kB
archive-misc/plots/loss_epoch_plot.png ADDED

Git LFS Details

  • SHA256: 7dfe6f53b906bc4620a9fbbc64dfefd9caf0ef811e5a6b7c24773cd376244ce9
  • Pointer size: 131 Bytes
  • Size of remote file: 378 kB
archive-misc/plots/perplexityval_epoch_plot.png ADDED

Git LFS Details

  • SHA256: 636312c57998c7571b450fe8aab61fbf4a9e845e966e1e281f993e0abb433bef
  • Pointer size: 131 Bytes
  • Size of remote file: 359 kB
archive-misc/plots/topkacc_epoch_plot.png ADDED

Git LFS Details

  • SHA256: 35915f40ff102f81d2aadfbec1fe3f7f258910c97fc1469d197312d7129c7c06
  • Pointer size: 131 Bytes
  • Size of remote file: 366 kB
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750391963.405016,99,0.28758272528648376
3
+ 1750392086.168981,199,0.37307843565940857
4
+ 1750392208.5869079,299,0.40630942583084106
5
+ 1750392330.8717701,399,0.43048712611198425
6
+ 1750392453.498474,499,0.45128124952316284
7
+ 1750392585.924861,599,0.4640906751155853
8
+ 1750394101.821525,722,0.4684717357158661
9
+ 1750394232.5230699,822,0.47576409578323364
10
+ 1750394358.10847,922,0.4853419065475464
11
+ 1750394491.3217402,1022,0.4948982894420624
12
+ 1750394625.2167208,1122,0.5040943622589111
13
+ 1750394759.376929,1222,0.511553943157196
14
+ 1750396346.573935,2591,0.523975670337677
15
+ 1750396464.359958,2691,0.5316954851150513
16
+ 1750396593.034543,2791,0.5362462997436523
17
+ 1750396722.3297448,2891,0.5424111485481262
18
+ 1750396843.487953,2991,0.5477138757705688
19
+ 1750396964.5418801,3091,0.5496237874031067
20
+ 1750397085.803721,3191,0.5543492436408997
21
+ 1750397206.7307,3291,0.556705892086029
22
+ 1750397327.7294452,3391,0.5581862926483154
23
+ 1750397448.3722959,3491,0.564699113368988
24
+ 1750397569.190787,3591,0.5667800307273865
25
+ 1750397689.629411,3691,0.5721838474273682
26
+ 1750399210.061806,3837,0.5721851587295532
27
+ 1750399328.803469,3937,0.5768272280693054
28
+ 1750399448.697824,4037,0.5804650783538818
29
+ 1750399569.190957,4137,0.5802291631698608
30
+ 1750399690.00176,4237,0.5834344625473022
31
+ 1750399811.529087,4337,0.5861427783966064
32
+ 1750399931.772715,4437,0.5860195755958557
33
+ 1750400051.427737,4537,0.5869417786598206
34
+ 1750400176.853729,4637,0.5894920229911804
35
+ 1750400306.4569101,4737,0.5896464586257935
36
+ 1750400431.092097,4837,0.5900257229804993
37
+ 1750400550.723742,4937,0.5935091972351074
38
+ 1750402065.168691,7571,0.594632625579834
39
+ 1750402182.961608,7671,0.6000049114227295
40
+ 1750402302.621356,7771,0.6004062294960022
41
+ 1750402423.284728,7871,0.6009228229522705
42
+ 1750402543.827255,7971,0.6010753512382507
43
+ 1750402664.210165,8071,0.6000925302505493
44
+ 1750402785.2010791,8171,0.6007965803146362
45
+ 1750402905.502709,8271,0.6033070087432861
46
+ 1750403025.571712,8371,0.6046096682548523
47
+ 1750403145.5079029,8471,0.6046929955482483
48
+ 1750403265.2297,8571,0.6046923995018005
49
+ 1750403384.998875,8671,0.6068811416625977
50
+ 1750403504.4862049,8771,0.6079203486442566
51
+ 1750403623.7825549,8871,0.6097512245178223
52
+ 1750403742.793798,8971,0.6084074974060059
53
+ 1750403876.4235342,9071,0.6094215512275696
54
+ 1750404003.115214,9171,0.6072763204574585
55
+ 1750404121.304395,9271,0.6104883551597595
56
+ 1750405642.011669,9439,0.6106861233711243
57
+ 1750405761.730685,9539,0.612129271030426
58
+ 1750405882.06578,9639,0.6121041774749756
59
+ 1750406009.142996,9739,0.6116084456443787
60
+ 1750406139.7740648,9839,0.6149724125862122
61
+ 1750406266.147126,9939,0.6138026714324951
62
+ 1750406386.9780512,10039,0.6122788190841675
63
+ 1750406507.619675,10139,0.6135343313217163
64
+ 1750406628.241678,10239,0.6149981617927551
65
+ 1750406749.1838799,10339,0.6140103936195374
66
+ 1750406870.2870731,10439,0.6159699559211731
67
+ 1750406990.665215,10539,0.6164675354957581
68
+ 1750407111.044385,10639,0.6145429015159607
69
+ 1750407231.041761,10739,0.615381121635437
70
+ 1750407350.530978,10839,0.6168584823608398
71
+ 1750407473.886058,10939,0.6164289116859436
72
+ 1750407599.025277,11039,0.6161783337593079
73
+ 1750407718.2328582,11139,0.6174693703651428
74
+ 1750409288.9252071,15045,0.6210026144981384
75
+ 1750409406.185398,15145,0.6240753531455994
76
+ 1750409525.7020748,15245,0.6224570870399475
77
+ 1750409645.983714,15345,0.6200165152549744
78
+ 1750409767.120149,15445,0.6223462224006653
79
+ 1750409887.003285,15545,0.6240637302398682
80
+ 1750410007.516577,15645,0.624666690826416
81
+ 1750410126.859099,15745,0.6218351721763611
82
+ 1750410246.7748039,15845,0.6223841905593872
83
+ 1750410366.068408,15945,0.6235833168029785
84
+ 1750410485.5163388,16045,0.623276948928833
85
+ 1750410604.9105248,16145,0.6230471730232239
86
+ 1750410723.908787,16245,0.6238241195678711
87
+ 1750410843.0748658,16345,0.6252604126930237
88
+ 1750410961.730179,16445,0.6225661635398865
89
+ 1750411082.1992378,16545,0.624557614326477
90
+ 1750411205.180066,16645,0.6239485144615173
91
+ 1750411323.487138,16745,0.6227665543556213
92
+ 1750411444.456806,16845,0.6249957084655762
93
+ 1750411564.380202,16945,0.6248412728309631
94
+ 1750411682.873339,17045,0.6236630082130432
95
+ 1750411801.126118,17145,0.6250913143157959
96
+ 1750411919.646475,17245,0.6253725290298462
97
+ 1750412037.659429,17345,0.6242212057113647
98
+ 1750413566.933687,17536,0.6268401741981506
99
+ 1750413684.549922,17636,0.6275759935379028
100
+ 1750413802.068516,17736,0.6274019479751587
101
+ 1750413919.368851,17836,0.6269387006759644
102
+ 1750414036.703834,17936,0.6291954517364502
103
+ 1750414154.379905,18036,0.6291244029998779
104
+ 1750414272.5889988,18136,0.6289613842964172
105
+ 1750414391.175787,18236,0.6295741200447083
106
+ 1750414509.7117262,18336,0.6275030374526978
107
+ 1750414628.5175538,18436,0.6282285451889038
108
+ 1750414749.2212071,18536,0.6290037035942078
109
+ 1750414873.3800588,18636,0.6296923756599426
110
+ 1750414991.208481,18736,0.6257708072662354
111
+ 1750415108.545247,18836,0.630242645740509
112
+ 1750415225.8621771,18936,0.627531886100769
113
+ 1750415343.270394,19036,0.6264626383781433
114
+ 1750415460.235528,19136,0.6282236576080322
115
+ 1750415577.469412,19236,0.6287162899971008
116
+ 1750415694.646375,19336,0.6296850442886353
117
+ 1750415811.340872,19436,0.6315361261367798
118
+ 1750415928.208522,19536,0.6279019713401794
119
+ 1750416044.951065,19636,0.630811870098114
120
+ 1750416161.7805922,19736,0.629878044128418
121
+ 1750416279.460792,19836,0.6303988695144653
122
+ 1750417804.136805,25003,0.63283771276474
123
+ 1750417921.102397,25103,0.634482204914093
124
+ 1750418038.5472991,25203,0.6336372494697571
125
+ 1750418156.042629,25303,0.6343603134155273
126
+ 1750418274.690233,25403,0.6347303986549377
127
+ 1750418403.750201,25503,0.6332867741584778
128
+ 1750418526.082923,25603,0.635621964931488
129
+ 1750418642.563765,25703,0.6346629858016968
130
+ 1750418759.2969239,25803,0.6334099173545837
131
+ 1750418876.046859,25903,0.6345508694648743
132
+ 1750418993.52926,26003,0.6354650855064392
133
+ 1750419111.751643,26103,0.6344546675682068
134
+ 1750419229.823759,26203,0.6361017227172852
135
+ 1750419347.9499562,26303,0.6346011161804199
136
+ 1750419466.2246022,26403,0.632273256778717
137
+ 1750419585.835607,26503,0.6366924047470093
138
+ 1750419704.616571,26603,0.6358627676963806
139
+ 1750419824.766925,26703,0.6379485130310059
140
+ 1750419942.537836,26803,0.6344301700592041
141
+ 1750420060.6184142,26903,0.6359050273895264
142
+ 1750420178.9125571,27003,0.6350361704826355
143
+ 1750420297.1137972,27103,0.6330637335777283
144
+ 1750420415.8522072,27203,0.6344761252403259
145
+ 1750420534.734411,27303,0.6365269422531128
146
+ 1750420653.425687,27403,0.6330030560493469
147
+ 1750420772.227184,27503,0.6345784068107605
148
+ 1750420890.5458748,27603,0.6361641883850098
149
+ 1750421008.778699,27703,0.6378412842750549
150
+ 1750421127.097027,27803,0.635398268699646
151
+ 1750421245.309462,27903,0.6374136209487915
152
+ 1750421363.5219321,28003,0.6376703381538391
153
+ 1750422796.018083,28116,0.6390845775604248
154
+ 1750422913.985208,28216,0.6385864019393921
155
+ 1750423032.13856,28316,0.6375925540924072
156
+ 1750423149.83459,28416,0.6396439671516418
157
+ 1750423267.42682,28516,0.6380251049995422
158
+ 1750423384.995723,28616,0.6388915181159973
159
+ 1750423502.713706,28716,0.6386666893959045
160
+ 1750423620.257157,28816,0.6381250023841858
161
+ 1750423737.4605892,28916,0.639373779296875
162
+ 1750423854.9022012,29016,0.6389166712760925
163
+ 1750423973.02514,29116,0.6370416879653931
164
+ 1750424103.93007,29216,0.6380478143692017
165
+ 1750424237.379366,29316,0.6376948356628418
166
+ 1750424355.43341,29416,0.6376280784606934
167
+ 1750424473.1514509,29516,0.6373106837272644
168
+ 1750424590.771557,29616,0.6380802989006042
169
+ 1750424708.3291452,29716,0.6382542848587036
170
+ 1750424825.7771049,29816,0.6359246373176575
171
+ 1750424943.270345,29916,0.6378106474876404
172
+ 1750425060.699276,30016,0.6363774538040161
173
+ 1750425178.296514,30116,0.63671875
174
+ 1750425295.891006,30216,0.6395600438117981
175
+ 1750425414.143324,30316,0.639651358127594
176
+ 1750425533.624413,30416,0.6388572454452515
177
+ 1750425659.385945,30516,0.639094352722168
178
+ 1750425783.19887,30616,0.637870728969574
179
+ 1750425900.442911,30716,0.6388829946517944
180
+ 1750426017.5772002,30816,0.6379086971282959
181
+ 1750426134.723032,30916,0.6393657922744751
182
+ 1750426251.728645,31016,0.6394289135932922
183
+ 1750426370.172011,31116,0.6372193694114685
184
+ 1750427110.586208,31229,0.6407451033592224
185
+ 1750427226.9793642,31329,0.6399344205856323
186
+ 1750427344.0258079,31429,0.6403363943099976
187
+ 1750427461.017736,31529,0.6378547549247742
188
+ 1750427580.1463559,31629,0.6400918960571289
189
+ 1750427699.5624971,31729,0.6376268267631531
190
+ 1750427816.693315,31829,0.6398045420646667
191
+ 1750427933.695549,31929,0.6389558911323547
192
+ 1750428051.752007,32029,0.6395710706710815
193
+ 1750428168.643732,32129,0.6386721730232239
194
+ 1750428285.899798,32229,0.6397224068641663
195
+ 1750428402.7067468,32329,0.6359546780586243
196
+ 1750428519.8862941,32429,0.6403406858444214
197
+ 1750428636.643082,32529,0.6381691098213196
198
+ 1750428754.3186119,32629,0.6397659182548523
199
+ 1750428872.257874,32729,0.6390992403030396
200
+ 1750428989.4772532,32829,0.6392248868942261
201
+ 1750429107.404566,32929,0.64007967710495
202
+ 1750429229.3547251,33029,0.640085756778717
203
+ 1750429353.6662982,33129,0.6392549276351929
204
+ 1750429470.9699478,33229,0.639375627040863
205
+ 1750429588.0433788,33329,0.6410759687423706
206
+ 1750429705.013918,33429,0.6397548913955688
207
+ 1750429822.030163,33529,0.6397972106933594
208
+ 1750429939.198564,33629,0.6389356851577759
209
+ 1750430056.1450539,33729,0.6388548016548157
210
+ 1750430172.9767108,33829,0.6392873525619507
211
+ 1750430290.102144,33929,0.6401292681694031
212
+ 1750430407.1287522,34029,0.6388995051383972
213
+ 1750430524.0033422,34129,0.6401439905166626
214
+ 1750430641.097196,34229,0.6416966915130615
215
+ 1750431380.565137,34342,0.6415795683860779
216
+ 1750431497.4990091,34442,0.6457396149635315
217
+ 1750431616.972259,34542,0.6391391158103943
218
+ 1750431737.77422,34642,0.6414675116539001
219
+ 1750431855.345222,34742,0.6420894861221313
220
+ 1750431971.797497,34842,0.6419129967689514
221
+ 1750432092.013702,34942,0.6438413262367249
222
+ 1750432212.7010539,35042,0.6427831053733826
223
+ 1750432333.610374,35142,0.6404712200164795
224
+ 1750432453.564967,35242,0.6409705877304077
225
+ 1750432572.20208,35342,0.6433075666427612
226
+ 1750432692.067829,35442,0.6417610049247742
227
+ 1750432813.099978,35542,0.6427144408226013
228
+ 1750432941.482049,35642,0.6400201916694641
229
+ 1750433058.969825,35742,0.6435220837593079
230
+ 1750433174.587164,35842,0.6416826248168945
231
+ 1750433290.972367,35942,0.6424387097358704
232
+ 1750433417.833635,36042,0.6415631175041199
233
+ 1750433535.4006011,36142,0.6395079493522644
234
+ 1750433651.833875,36242,0.6416727900505066
235
+ 1750433767.894007,36342,0.6432923078536987
236
+ 1750433886.0875251,36442,0.639417290687561
237
+ 1750434003.356535,36542,0.6422218084335327
238
+ 1750434121.536761,36642,0.6425012350082397
239
+ 1750434245.319788,36742,0.6424558758735657
240
+ 1750434364.3623009,36842,0.6420220732688904
241
+ 1750434485.914399,36942,0.6411697268486023
242
+ 1750434605.5461252,37042,0.642849862575531
243
+ 1750434722.119754,37142,0.6430937647819519
244
+ 1750434838.9487429,37242,0.6430661678314209
245
+ 1750434955.2114959,37342,0.6417616605758667
246
+ 1750435722.9776409,37455,0.6433213949203491
247
+ 1750435843.0595179,37555,0.6440459489822388
248
+ 1750435966.055239,37655,0.6429075002670288
249
+ 1750436101.068255,37755,0.6435238718986511
250
+ 1750436230.166233,37855,0.6430784463882446
251
+ 1750436349.987224,37955,0.6424105167388916
252
+ 1750436474.901657,38055,0.6450122594833374
253
+ 1750436604.168363,38155,0.6424190998077393
254
+ 1750436727.225525,38255,0.6437579393386841
255
+ 1750436852.5823019,38355,0.6450024247169495
256
+ 1750436981.771934,38455,0.6460079550743103
257
+ 1750437106.833937,38555,0.6438449621200562
258
+ 1750437233.7614038,38655,0.6450612545013428
259
+ 1750437355.893782,38755,0.6443492770195007
260
+ 1750437482.866613,38855,0.6453100442886353
261
+ 1750437604.378762,38955,0.6427034139633179
262
+ 1750437728.0891478,39055,0.643042266368866
263
+ 1750437854.0641642,39155,0.6431452035903931
264
+ 1750437979.616,39255,0.6405355334281921
265
+ 1750438103.1675441,39355,0.6419589519500732
266
+ 1750438227.017985,39455,0.6451151967048645
267
+ 1750438352.80471,39555,0.642490804195404
268
+ 1750438481.0750458,39655,0.6436923742294312
269
+ 1750438607.4506419,39755,0.6426262259483337
270
+ 1750438732.6586308,39855,0.6434859037399292
271
+ 1750438850.041701,39955,0.6414963006973267
272
+ 1750438969.573184,40055,0.6438449621200562
273
+ 1750439094.455677,40155,0.642514705657959
274
+ 1750439220.3763552,40255,0.6439902186393738
275
+ 1750439346.111592,40355,0.6446102857589722
276
+ 1750439473.4727318,40455,0.6444522142410278
277
+ 1750440288.40138,40568,0.6467640399932861
278
+ 1750440416.757272,40668,0.6456770896911621
279
+ 1750440536.2355032,40768,0.6457671523094177
280
+ 1750440656.526047,40868,0.6436586976051331
281
+ 1750440777.034587,40968,0.6458407044410706
282
+ 1750440904.930413,41068,0.6438198685646057
283
+ 1750441027.7695491,41168,0.6463271975517273
284
+ 1750441152.539819,41268,0.6448026895523071
285
+ 1750441280.684284,41368,0.6460006237030029
286
+ 1750441412.2877288,41468,0.6452224254608154
287
+ 1750441539.305119,41568,0.6450667977333069
288
+ 1750441663.1772,41668,0.6457414031028748
289
+ 1750441786.5259461,41768,0.643865168094635
290
+ 1750441909.4749608,41868,0.64384925365448
291
+ 1750442031.882318,41968,0.6438081860542297
292
+ 1750442150.156358,42068,0.6448112726211548
293
+ 1750442267.424397,42168,0.643791675567627
294
+ 1750442386.0849018,42268,0.6449528336524963
295
+ 1750442502.673168,42368,0.6440759897232056
296
+ 1750442620.647326,42468,0.6446268558502197
297
+ 1750442738.017685,42568,0.643791675567627
298
+ 1750442855.613087,42668,0.64360111951828
299
+ 1750442972.90032,42768,0.6467530727386475
300
+ 1750443090.365676,42868,0.6462420225143433
301
+ 1750443208.134689,42968,0.6456483006477356
302
+ 1750443327.7138891,43068,0.6449123620986938
303
+ 1750443446.7773492,43168,0.6431586742401123
304
+ 1750443565.0604858,43268,0.6423296332359314
305
+ 1750443679.328869,43368,0.6451936364173889
306
+ 1750443793.370452,43468,0.6438198685646057
307
+ 1750443911.636725,43568,0.6434025764465332
308
+ 1750444661.583831,43681,0.6461456418037415
309
+ 1750444778.3801448,43781,0.6482426524162292
310
+ 1750444896.266015,43881,0.6472058892250061
311
+ 1750445014.5015402,43981,0.6458106637001038
312
+ 1750445133.139083,44081,0.6457383632659912
313
+ 1750445251.419277,44181,0.6467622518539429
314
+ 1750445369.7066398,44281,0.6460594534873962
315
+ 1750445487.8696551,44381,0.6467254757881165
316
+ 1750445606.089956,44481,0.6473314762115479
317
+ 1750445725.134633,44581,0.6449552774429321
318
+ 1750445843.393945,44681,0.6455159187316895
319
+ 1750445961.405494,44781,0.6454019546508789
320
+ 1750446079.738482,44881,0.644723653793335
321
+ 1750446197.922776,44981,0.6462389826774597
322
+ 1750446315.902155,45081,0.644656240940094
323
+ 1750446433.137455,45181,0.6433915495872498
324
+ 1750446551.264723,45281,0.6457310318946838
325
+ 1750446669.511483,45381,0.6454013586044312
326
+ 1750446787.3911428,45481,0.6469889879226685
327
+ 1750446905.443033,45581,0.6453155875205994
328
+ 1750447023.4219332,45681,0.6450679898262024
329
+ 1750447141.952272,45781,0.6430919170379639
330
+ 1750447259.967958,45881,0.6451482772827148
331
+ 1750447387.044731,45981,0.6459705829620361
332
+ 1750447519.401525,46081,0.6457193493843079
333
+ 1750447642.3075469,46181,0.6459993720054626
334
+ 1750447782.880893,46281,0.6465814709663391
335
+ 1750447910.034666,46381,0.6460391879081726
336
+ 1750448034.677154,46481,0.6449068784713745
337
+ 1750448154.9038641,46581,0.6472445130348206
338
+ 1750448276.621535,46681,0.6447150707244873
339
+ 1750449012.4246259,46794,0.6484406590461731
340
+ 1750449130.954328,46894,0.6473743915557861
341
+ 1750449250.7994518,46994,0.6473921537399292
342
+ 1750449370.727267,47094,0.6469785571098328
343
+ 1750449490.595724,47194,0.6494570970535278
344
+ 1750449610.785643,47294,0.646339476108551
345
+ 1750449730.751853,47394,0.6473553776741028
346
+ 1750449850.567644,47494,0.6467083096504211
347
+ 1750449970.2596061,47594,0.6475189924240112
348
+ 1750450089.6937668,47694,0.6476299166679382
349
+ 1750450212.124989,47794,0.64707350730896
350
+ 1750450332.5156102,47894,0.6465030908584595
351
+ 1750450453.031342,47994,0.6483076214790344
352
+ 1750450572.6104681,48094,0.6435882449150085
353
+ 1750450691.880259,48194,0.6470275521278381
354
+ 1750450811.701461,48294,0.6456072330474854
355
+ 1750450931.363285,48394,0.6477745175361633
356
+ 1750451066.364867,48494,0.6458964347839355
357
+ 1750451191.063326,48594,0.6483376026153564
358
+ 1750451309.400269,48694,0.6470043063163757
359
+ 1750451432.1649559,48794,0.6446225643157959
360
+ 1750451557.380671,48894,0.645907461643219
361
+ 1750451685.618946,48994,0.6463437676429749
362
+ 1750451833.316152,49094,0.6467493772506714
363
+ 1750451970.987531,49194,0.6453112959861755
364
+ 1750452138.191225,49294,0.644321084022522
365
+ 1750452272.043398,49394,0.6451544165611267
366
+ 1750452401.273822,49494,0.6469804048538208
367
+ 1750452522.711506,49594,0.6456249952316284
368
+ 1750452640.381066,49694,0.6457083225250244
369
+ 1750452757.507724,49794,0.6458749771118164
370
+ 1750453526.169133,49907,0.6475443840026855
371
+ 1750453644.4992352,50007,0.6485000252723694
372
+ 1750453763.546672,50107,0.6503995060920715
373
+ 1750453883.2695081,50207,0.6494748592376709
374
+ 1750454004.7841148,50307,0.6482990384101868
375
+ 1750454127.7688398,50407,0.6466936469078064
376
+ 1750454251.3973289,50507,0.6460869908332825
377
+ 1750454375.005162,50607,0.6486035585403442
378
+ 1750454498.866722,50707,0.648090660572052
379
+ 1750454629.7434108,50807,0.6454362869262695
380
+ 1750454760.6950889,50907,0.6481470465660095
381
+ 1750454884.496654,51007,0.6474632620811462
382
+ 1750455008.0026429,51107,0.6468964219093323
383
+ 1750455132.7498,51207,0.6478167772293091
384
+ 1750455258.470098,51307,0.6466445922851562
385
+ 1750455376.942017,51407,0.6477677822113037
386
+ 1750455493.140887,51507,0.6462255120277405
387
+ 1750455609.66634,51607,0.6452065110206604
388
+ 1750455726.584801,51707,0.647035539150238
389
+ 1750455844.3167229,51807,0.6464258432388306
390
+ 1750455962.516587,51907,0.6472169160842896
391
+ 1750456083.84438,52007,0.6468621492385864
392
+ 1750456202.717559,52107,0.6477616429328918
393
+ 1750456321.3288598,52207,0.6463045477867126
394
+ 1750456440.5815392,52307,0.6483480334281921
395
+ 1750456559.834651,52407,0.6464816331863403
396
+ 1750456678.9792309,52507,0.6446556448936462
397
+ 1750456798.6035829,52607,0.6461648344993591
398
+ 1750456918.397055,52707,0.646740198135376
399
+ 1750457038.93219,52807,0.646647036075592
400
+ 1750457159.62396,52907,0.6466268301010132
401
+ 1750457929.211782,53020,0.6496167182922363
402
+ 1750458052.85809,53120,0.647800862789154
403
+ 1750458176.928961,53220,0.6489019393920898
404
+ 1750458303.048157,53320,0.6483253836631775
405
+ 1750458444.2680588,53420,0.6491929888725281
406
+ 1750458573.865906,53520,0.6491292715072632
407
+ 1750458697.898096,53620,0.6475735306739807
408
+ 1750458824.801345,53720,0.648048996925354
409
+ 1750458953.433717,53820,0.6464105248451233
410
+ 1750459075.569062,53920,0.6493860483169556
411
+ 1750459200.4519942,54020,0.6479001045227051
412
+ 1750459322.370071,54120,0.6457898020744324
413
+ 1750459446.5373828,54220,0.6467236280441284
414
+ 1750459573.650956,54320,0.6475441455841064
415
+ 1750459704.177473,54420,0.6485986709594727
416
+ 1750459841.2961438,54520,0.6472708582878113
417
+ 1750459973.288098,54620,0.6489062309265137
418
+ 1750460115.165309,54720,0.6476121544837952
419
+ 1750460254.6476722,54820,0.6478878855705261
420
+ 1750460391.936049,54920,0.6472965478897095
421
+ 1750460529.7383418,55020,0.6481145620346069
422
+ 1750460668.872111,55120,0.6473676562309265
423
+ 1750460809.152336,55220,0.6492573618888855
424
+ 1750460943.546547,55320,0.6486280560493469
425
+ 1750461088.5272598,55420,0.645950973033905
426
+ 1750461233.560725,55520,0.6471207141876221
427
+ 1750461372.070115,55620,0.647911787033081
428
+ 1750461516.1883001,55720,0.646936297416687
429
+ 1750461647.543063,55820,0.6482353210449219
430
+ 1750461798.818411,55920,0.6453725695610046
431
+ 1750461957.278379,56020,0.6469908356666565
432
+ 1750462705.7719848,56133,0.6504263877868652
433
+ 1750462823.666765,56233,0.6493731737136841
434
+ 1750462942.2239392,56333,0.6493461728096008
435
+ 1750463060.770675,56433,0.6497120261192322
436
+ 1750463179.4219909,56533,0.6489902138710022
437
+ 1750463297.778173,56633,0.6487028002738953
438
+ 1750463415.443796,56733,0.6492891907691956
439
+ 1750463533.347379,56833,0.6493076086044312
440
+ 1750463651.751297,56933,0.6492726802825928
441
+ 1750463772.814304,57033,0.6496317386627197
442
+ 1750463890.798354,57133,0.6484277248382568
443
+ 1750464008.648691,57233,0.6509601473808289
444
+ 1750464126.678251,57333,0.648615837097168
445
+ 1750464243.702663,57433,0.6487248539924622
446
+ 1750464360.734715,57533,0.6481225490570068
447
+ 1750464477.643559,57633,0.6487144827842712
448
+ 1750464594.534667,57733,0.6474853157997131
449
+ 1750464711.748069,57833,0.6472322344779968
450
+ 1750464828.272034,57933,0.6495900750160217
451
+ 1750464944.863915,58033,0.6476734280586243
452
+ 1750465061.6391091,58133,0.6475049257278442
453
+ 1750465178.195018,58233,0.6494442224502563
454
+ 1750465294.852366,58333,0.6471164226531982
455
+ 1750465411.6870909,58433,0.6462622284889221
456
+ 1750465528.4726589,58533,0.6461899280548096
457
+ 1750465645.319412,58633,0.6483082175254822
458
+ 1750465764.762222,58733,0.645909309387207
459
+ 1750465883.438494,58833,0.6466617584228516
460
+ 1750466000.2513611,58933,0.6474571228027344
461
+ 1750466116.449578,59033,0.6476936340332031
462
+ 1750466232.7494771,59133,0.6471899747848511
463
+ 1750466954.025831,59246,0.6506918668746948
464
+ 1750467069.798914,59346,0.6502310037612915
465
+ 1750467185.7366168,59446,0.6510318517684937
466
+ 1750467302.346245,59546,0.6469454765319824
467
+ 1750467420.545009,59646,0.6488516926765442
468
+ 1750467537.323788,59746,0.6477493643760681
469
+ 1750467653.529954,59846,0.6498204469680786
470
+ 1750467769.713964,59946,0.6488137245178223
471
+ 1750467885.985452,60046,0.6511831879615784
472
+ 1750468002.338573,60146,0.6487414240837097
473
+ 1750468119.183342,60246,0.6491519808769226
474
+ 1750468235.455771,60346,0.6486047506332397
475
+ 1750468351.629285,60446,0.6491402983665466
476
+ 1750468467.63536,60546,0.6479650735855103
477
+ 1750468583.651401,60646,0.6487475633621216
478
+ 1750468699.767885,60746,0.6470637321472168
479
+ 1750468815.877007,60846,0.6506942510604858
480
+ 1750468932.017609,60946,0.648102343082428
481
+ 1750469047.9748092,61046,0.6479178667068481
482
+ 1750469163.8783622,61146,0.6469007134437561
483
+ 1750469279.843866,61246,0.6485098004341125
484
+ 1750469395.6838698,61346,0.6492837071418762
485
+ 1750469511.7545412,61446,0.6491458415985107
486
+ 1750469630.049988,61546,0.6491427421569824
487
+ 1750469747.596489,61646,0.6505208611488342
488
+ 1750469863.2194428,61746,0.6458866596221924
489
+ 1750469979.2194738,61846,0.6464736461639404
490
+ 1750470095.122258,61946,0.6484969258308411
491
+ 1750470210.562304,62046,0.6498504877090454
492
+ 1750470326.1045911,62146,0.6460232734680176
493
+ 1750470441.834761,62246,0.649115800857544
494
+ 1750471163.36306,62359,0.6514950394630432
495
+ 1750471279.086947,62459,0.6520612835884094
496
+ 1750471395.0649018,62559,0.651094377040863
497
+ 1750471511.038961,62659,0.6490924954414368
498
+ 1750471627.1452959,62759,0.6493008732795715
499
+ 1750471743.128916,62859,0.6492383480072021
500
+ 1750471859.055058,62959,0.6501225233078003
501
+ 1750471975.00283,63059,0.6503989100456238
502
+ 1750472090.809558,63159,0.6498222947120667
503
+ 1750472206.5698009,63259,0.6502689719200134
504
+ 1750472322.232264,63359,0.6496697068214417
505
+ 1750472437.989224,63459,0.65056312084198
506
+ 1750472553.626755,63559,0.6496495008468628
507
+ 1750472669.3234591,63659,0.6486868858337402
508
+ 1750472785.0012438,63759,0.6508694887161255
509
+ 1750472900.6525052,63859,0.6473259925842285
510
+ 1750473016.274345,63959,0.6483345627784729
511
+ 1750473132.548586,64059,0.6493498682975769
512
+ 1750473248.225437,64159,0.6485306620597839
513
+ 1750473364.321547,64259,0.6484577059745789
514
+ 1750473480.225926,64359,0.6511145830154419
515
+ 1750473600.990798,64459,0.6460729241371155
516
+ 1750473725.0170329,64559,0.648897647857666
517
+ 1750473852.577133,64659,0.650192379951477
518
+ 1750473981.622684,64759,0.6487236618995667
519
+ 1750474103.4737291,64859,0.649686872959137
520
+ 1750474219.1391768,64959,0.6493664383888245
521
+ 1750474333.681042,65059,0.6490416526794434
522
+ 1750474448.671713,65159,0.6458510756492615
523
+ 1750474563.9086561,65259,0.6487787961959839
524
+ 1750474687.440989,65359,0.6486139893531799
525
+ 1750475402.1149719,65472,0.6503641605377197
526
+ 1750475517.346734,65572,0.6510857939720154
527
+ 1750475632.709281,65672,0.6523467898368835
528
+ 1750475748.152691,65772,0.6509374976158142
529
+ 1750475863.632912,65872,0.6508296728134155
530
+ 1750475979.121454,65972,0.6497567296028137
531
+ 1750476094.56753,66072,0.6515582203865051
532
+ 1750476209.744134,66172,0.6481899619102478
533
+ 1750476324.7911448,66272,0.6485661864280701
534
+ 1750476439.984586,66372,0.6494032144546509
535
+ 1750476555.031313,66472,0.6489571332931519
536
+ 1750476669.948531,66572,0.6506550312042236
537
+ 1750476784.987467,66672,0.6500391960144043
538
+ 1750476900.266967,66772,0.6504062414169312
539
+ 1750477015.146752,66872,0.6476078629493713
540
+ 1750477130.050998,66972,0.6488952040672302
541
+ 1750477245.0096571,67072,0.648952841758728
542
+ 1750477360.005547,67172,0.6485888361930847
543
+ 1750477475.266708,67272,0.6496372818946838
544
+ 1750477593.1183481,67372,0.6500251293182373
545
+ 1750477708.7258828,67472,0.6484503746032715
546
+ 1750477823.6328719,67572,0.6494423747062683
547
+ 1750477938.5284438,67672,0.6505042910575867
548
+ 1750478054.12744,67772,0.6498180031776428
549
+ 1750478170.498666,67872,0.6492432355880737
550
+ 1750478285.954317,67972,0.6491881012916565
551
+ 1750478401.226903,68072,0.6486304998397827
552
+ 1750478516.522924,68172,0.6480741500854492
553
+ 1750478631.684822,68272,0.6496483087539673
554
+ 1750478746.856767,68372,0.6496262550354004
555
+ 1750478861.9361632,68472,0.6503976583480835
556
+ 1750479575.806946,68585,0.6521384119987488
557
+ 1750479690.32353,68685,0.6518860459327698
558
+ 1750479805.1877701,68785,0.6505594253540039
559
+ 1750479919.9629152,68885,0.6508958339691162
560
+ 1750480034.8541162,68985,0.6496139764785767
561
+ 1750480149.549331,69085,0.6507641077041626
562
+ 1750480264.361679,69185,0.6501194834709167
563
+ 1750480379.125248,69285,0.6503553986549377
564
+ 1750480493.715519,69385,0.6503106355667114
565
+ 1750480608.351685,69485,0.6501868963241577
566
+ 1750480722.979964,69585,0.6506292819976807
567
+ 1750480837.832553,69685,0.6509644389152527
568
+ 1750480952.294443,69785,0.6499748826026917
569
+ 1750481066.869496,69885,0.6507775783538818
570
+ 1750481181.595307,69985,0.649661123752594
571
+ 1750481296.238889,70085,0.6496807336807251
572
+ 1750481411.1383739,70185,0.6505447030067444
573
+ 1750481526.015284,70285,0.6501145958900452
574
+ 1750481643.874416,70385,0.6485772132873535
575
+ 1750481758.848754,70485,0.6489344239234924
576
+ 1750481874.9191191,70585,0.6527248620986938
577
+ 1750481989.3493938,70685,0.6468694806098938
578
+ 1750482103.813694,70785,0.647337019443512
579
+ 1750482218.308801,70885,0.6493272185325623
580
+ 1750482332.447498,70985,0.6493443846702576
581
+ 1750482446.494996,71085,0.6492156982421875
582
+ 1750482560.851434,71185,0.6486396789550781
583
+ 1750482675.167424,71285,0.6508437395095825
584
+ 1750482789.7214952,71385,0.6502757668495178
585
+ 1750482904.13637,71485,0.6490030884742737
586
+ 1750483018.6129029,71585,0.6489736437797546
587
+ 1750483731.0579789,71698,0.6515112519264221
588
+ 1750483844.974041,71798,0.6536256074905396
589
+ 1750483959.419848,71898,0.6514270901679993
590
+ 1750484073.5282922,71998,0.6479448676109314
591
+ 1750484187.93104,72098,0.651832103729248
592
+ 1750484302.163946,72198,0.6511048078536987
593
+ 1750484416.3585322,72298,0.65255206823349
594
+ 1750484530.539971,72398,0.6504852771759033
595
+ 1750484644.6875288,72498,0.651899516582489
596
+ 1750484759.0703092,72598,0.6533210873603821
597
+ 1750484873.4014359,72698,0.6514350175857544
598
+ 1750484987.528637,72798,0.6496642231941223
599
+ 1750485101.637622,72898,0.6514240503311157
600
+ 1750485215.8779562,72998,0.6483572125434875
601
+ 1750485330.404798,73098,0.650580883026123
602
+ 1750485446.021368,73198,0.6504276990890503
603
+ 1750485562.9548411,73298,0.6508204936981201
604
+ 1750485678.785216,73398,0.6502867341041565
605
+ 1750485793.054364,73498,0.6501164436340332
606
+ 1750485907.37626,73598,0.6514963507652283
607
+ 1750486021.8247418,73698,0.6492040157318115
608
+ 1750486136.3473449,73798,0.6500563621520996
609
+ 1750486250.709274,73898,0.6468339562416077
610
+ 1750486364.8596091,73998,0.6491641998291016
611
+ 1750486479.1755798,74098,0.648629903793335
612
+ 1750486593.542068,74198,0.648883581161499
613
+ 1750486707.85393,74298,0.6481935977935791
614
+ 1750486822.1278121,74398,0.6489693522453308
615
+ 1750486936.53057,74498,0.6512916684150696
616
+ 1750487050.717908,74598,0.6485986709594727
617
+ 1750487164.696138,74698,0.6498866677284241
618
+ 1750487874.5115469,74811,0.6510941982269287
619
+ 1750487987.8303921,74911,0.6525385975837708
620
+ 1750488101.44348,75011,0.6542500257492065
621
+ 1750488215.1874702,75111,0.6530171632766724
622
+ 1750488328.995727,75211,0.6528841853141785
623
+ 1750488442.779683,75311,0.6520790457725525
624
+ 1750488556.755313,75411,0.6496041417121887
625
+ 1750488670.543948,75511,0.649968147277832
626
+ 1750488784.313604,75611,0.6517831087112427
627
+ 1750488898.535667,75711,0.6522163152694702
628
+ 1750489013.370904,75811,0.6525214314460754
629
+ 1750489128.4487538,75911,0.6500673890113831
630
+ 1750489242.233129,76011,0.6502261161804199
631
+ 1750489356.006995,76111,0.6507285833358765
632
+ 1750489469.953614,76211,0.6502076983451843
633
+ 1750489584.488816,76311,0.6491323709487915
634
+ 1750489700.788619,76411,0.6487775444984436
635
+ 1750489815.4778082,76511,0.6494393348693848
636
+ 1750489929.277719,76611,0.6519858837127686
637
+ 1750490043.1183228,76711,0.6498388648033142
638
+ 1750490157.016831,76811,0.6505600214004517
639
+ 1750490270.614358,76911,0.6515839695930481
640
+ 1750490383.968896,77011,0.6495447158813477
641
+ 1750490497.365126,77111,0.6486427783966064
642
+ 1750490610.886154,77211,0.648328423500061
643
+ 1750490724.351153,77311,0.6492592096328735
644
+ 1750490837.884931,77411,0.649756133556366
645
+ 1750490951.459667,77511,0.6512389779090881
646
+ 1750491064.937767,77611,0.6487855315208435
647
+ 1750491178.461191,77711,0.6497395634651184
648
+ 1750491292.0026398,77811,0.6497634649276733
649
+ 1750491999.605982,77924,0.6508513689041138
650
+ 1750492113.108762,78024,0.6516966819763184
651
+ 1750492226.5848,78124,0.6520398259162903
652
+ 1750492340.16163,78224,0.6514491438865662
653
+ 1750492453.599425,78324,0.6523351669311523
654
+ 1750492567.592646,78424,0.6511476635932922
655
+ 1750492682.658302,78524,0.6523958444595337
656
+ 1750492796.473689,78624,0.6519944667816162
657
+ 1750492910.223047,78724,0.6528701186180115
658
+ 1750493024.028586,78824,0.6531862616539001
659
+ 1750493137.804054,78924,0.6519387364387512
660
+ 1750493251.537948,79024,0.650509774684906
661
+ 1750493365.2377431,79124,0.6504889726638794
662
+ 1750493479.4787211,79224,0.6521164178848267
663
+ 1750493594.934314,79324,0.6500012278556824
664
+ 1750493708.180213,79424,0.6507683992385864
665
+ 1750493821.614132,79524,0.6500869989395142
666
+ 1750493935.008648,79624,0.6497972011566162
667
+ 1750494048.377472,79724,0.6534552574157715
668
+ 1750494161.808021,79824,0.6491623520851135
669
+ 1750494275.22887,79924,0.6505827307701111
670
+ 1750494388.272109,80024,0.6519761085510254
671
+ 1750494501.45705,80124,0.6508719325065613
672
+ 1750494614.844456,80224,0.6500875949859619
673
+ 1750494728.3395991,80324,0.6502119898796082
674
+ 1750494841.6911979,80424,0.648857831954956
675
+ 1750494954.99737,80524,0.6491954922676086
676
+ 1750495068.329165,80624,0.6493982672691345
677
+ 1750495182.4239628,80724,0.6493633389472961
678
+ 1750495295.763544,80824,0.6497040390968323
679
+ 1750495409.068179,80924,0.6488284468650818
680
+ 1750496116.170484,81037,0.6523707509040833
681
+ 1750496229.2599418,81137,0.6523308753967285
682
+ 1750496343.805463,81237,0.653846800327301
683
+ 1750496457.285084,81337,0.6520637273788452
684
+ 1750496570.7672498,81437,0.6530134677886963
685
+ 1750496684.26799,81537,0.651968777179718
686
+ 1750496797.7675068,81637,0.6531544327735901
687
+ 1750496911.226403,81737,0.6504234075546265
688
+ 1750497024.690944,81837,0.6540141105651855
689
+ 1750497138.0140312,81937,0.652690589427948
690
+ 1750497251.343064,82037,0.6488891243934631
691
+ 1750497364.475938,82137,0.6499773263931274
692
+ 1750497478.279586,82237,0.649258553981781
693
+ 1750497593.521636,82337,0.64949631690979
694
+ 1750497706.586865,82437,0.6508198380470276
695
+ 1750497820.1206038,82537,0.6509448289871216
696
+ 1750497933.514859,82637,0.649718165397644
697
+ 1750498046.807204,82737,0.6509718298912048
698
+ 1750498159.881542,82837,0.6509957313537598
699
+ 1750498272.764572,82937,0.6518014669418335
700
+ 1750498385.626694,83037,0.6505153179168701
701
+ 1750498498.591943,83137,0.650303304195404
702
+ 1750498611.842721,83237,0.6515465974807739
703
+ 1750498725.1735182,83337,0.6495367884635925
704
+ 1750498838.27373,83437,0.6506531834602356
705
+ 1750498951.4907122,83537,0.6525073647499084
706
+ 1750499064.703134,83637,0.6512150764465332
707
+ 1750499177.862365,83737,0.6514528393745422
708
+ 1750499291.159497,83837,0.651731014251709
709
+ 1750499404.430131,83937,0.6489319801330566
710
+ 1750499517.8266392,84037,0.6496292948722839
711
+ 1750500225.367591,84150,0.6519051790237427
712
+ 1750500338.434595,84250,0.6544748544692993
713
+ 1750500451.6891,84350,0.6522947549819946
714
+ 1750500565.096119,84450,0.6509847044944763
715
+ 1750500678.472042,84550,0.6537775993347168
716
+ 1750500791.614295,84650,0.651554524898529
717
+ 1750500904.58726,84750,0.6504203677177429
718
+ 1750501017.6459992,84850,0.651118278503418
719
+ 1750501130.683456,84950,0.6531617641448975
720
+ 1750501243.743277,85050,0.650214433670044
721
+ 1750501357.616941,85150,0.6512022018432617
722
+ 1750501472.321609,85250,0.6521586775779724
723
+ 1750501585.380609,85350,0.6539999842643738
724
+ 1750501698.436961,85450,0.6527628898620605
725
+ 1750501811.4210482,85550,0.6517916917800903
726
+ 1750501924.5078888,85650,0.6509864926338196
727
+ 1750502037.468951,85750,0.6541029214859009
728
+ 1750502150.494959,85850,0.6518939733505249
729
+ 1750502263.440168,85950,0.6502745151519775
730
+ 1750502376.411214,86050,0.6502175331115723
731
+ 1750502489.262076,86150,0.6523351669311523
732
+ 1750502601.9581828,86250,0.6517990231513977
733
+ 1750502714.890722,86350,0.6500361561775208
734
+ 1750502827.857285,86450,0.6501525640487671
735
+ 1750502940.9028091,86550,0.649101734161377
736
+ 1750503053.891348,86650,0.6505643129348755
737
+ 1750503166.955696,86750,0.6500686407089233
738
+ 1750503280.275767,86850,0.6483272314071655
739
+ 1750503393.301862,86950,0.6497126221656799
740
+ 1750503506.3926358,87050,0.6495159268379211
741
+ 1750503620.4175518,87150,0.6491482853889465
742
+ 1750504325.240918,87263,0.6508238911628723
743
+ 1750504437.8989189,87363,0.653662383556366
744
+ 1750504550.7523048,87463,0.653051495552063
745
+ 1750504663.726395,87563,0.6535282135009766
746
+ 1750504776.973186,87663,0.6524871587753296
747
+ 1750504889.837835,87763,0.6525337100028992
748
+ 1750505002.734218,87863,0.65145343542099
749
+ 1750505115.522795,87963,0.6521084308624268
750
+ 1750505228.403977,88063,0.6522983908653259
751
+ 1750505342.702466,88163,0.6498529314994812
752
+ 1750505460.6297479,88263,0.6525331139564514
753
+ 1750505575.877179,88363,0.6522395610809326
754
+ 1750505688.797272,88463,0.6516587138175964
755
+ 1750505801.7769442,88563,0.653624415397644
756
+ 1750505914.8972318,88663,0.650729775428772
757
+ 1750506027.865003,88763,0.6519007086753845
758
+ 1750506140.835049,88863,0.6503682732582092
759
+ 1750506253.87393,88963,0.6514338254928589
760
+ 1750506366.7786722,89063,0.6522561311721802
761
+ 1750506479.536766,89163,0.652329683303833
762
+ 1750506592.4483469,89263,0.6510680317878723
763
+ 1750506705.31634,89363,0.6515679955482483
764
+ 1750506818.388268,89463,0.6509608030319214
765
+ 1750506931.425611,89563,0.6509301662445068
766
+ 1750507044.422219,89663,0.6502536535263062
767
+ 1750507158.00037,89763,0.650896430015564
768
+ 1750507271.543029,89863,0.6493333578109741
769
+ 1750507384.6583848,89963,0.650469958782196
770
+ 1750507497.6100879,90063,0.6499258875846863
771
+ 1750507610.53967,90163,0.6503970623016357
772
+ 1750507723.682441,90263,0.6501384973526001
773
+ 1750508426.5148978,90376,0.6525241136550903
774
+ 1750508539.149127,90476,0.6531550288200378
775
+ 1750508651.981962,90576,0.6542285680770874
776
+ 1750508764.730967,90676,0.6539865136146545
777
+ 1750508877.613912,90776,0.6513713002204895
778
+ 1750508990.3952599,90876,0.6540612578392029
779
+ 1750509103.1236968,90976,0.6530373692512512
780
+ 1750509215.890075,91076,0.6506434082984924
781
+ 1750509329.717459,91176,0.6504074931144714
782
+ 1750509443.355032,91276,0.6535820960998535
783
+ 1750509555.94369,91376,0.6515735387802124
784
+ 1750509668.6442938,91476,0.6513652205467224
785
+ 1750509781.362628,91576,0.6529951095581055
786
+ 1750509894.194156,91676,0.652318000793457
787
+ 1750510006.8420548,91776,0.6528327465057373
788
+ 1750510119.5023942,91876,0.6515141129493713
789
+ 1750510232.194077,91976,0.6515257358551025
790
+ 1750510344.921349,92076,0.6537836790084839
791
+ 1750510457.946561,92176,0.6527512073516846
792
+ 1750510570.890898,92276,0.6509362459182739
793
+ 1750510683.6737568,92376,0.6492291688919067
794
+ 1750510797.512384,92476,0.6511721611022949
795
+ 1750510910.6058948,92576,0.6513419151306152
796
+ 1750511023.451675,92676,0.6500686407089233
797
+ 1750511136.278432,92776,0.6467463374137878
798
+ 1750511249.137708,92876,0.6520962119102478
799
+ 1750511361.9892852,92976,0.6514883637428284
800
+ 1750511474.7244558,93076,0.650035560131073
801
+ 1750511587.554349,93176,0.6526182293891907
802
+ 1750511700.419528,93276,0.6501151919364929
803
+ 1750511813.14798,93376,0.6515588164329529
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750241682.491652,99,0.21416789293289185
3
+ 1750241798.4296,199,0.30339154601097107
4
+ 1750241914.892242,299,0.33487561345100403
5
+ 1750242031.5578701,399,0.3558320999145508
6
+ 1750242147.8598652,499,0.3743719458580017
7
+ 1750242264.0177548,599,0.386802077293396
8
+ 1750242996.703905,722,0.40653958916664124
9
+ 1750243112.179178,822,0.4203621447086334
10
+ 1750243227.960116,922,0.43047672510147095
11
+ 1750243343.7493389,1022,0.44125857949256897
12
+ 1750243459.611735,1122,0.44709068536758423
13
+ 1750243575.247699,1222,0.45822978019714355
14
+ 1750244307.1242821,2591,0.4886654019355774
15
+ 1750244422.194462,2691,0.5010459423065186
16
+ 1750244537.370603,2791,0.5089681148529053
17
+ 1750244652.737849,2891,0.5138774514198303
18
+ 1750244768.363161,2991,0.5198927521705627
19
+ 1750244883.9648619,3091,0.5233259797096252
20
+ 1750245001.597457,3191,0.530121922492981
21
+ 1750245117.855197,3291,0.5302830934524536
22
+ 1750245234.328162,3391,0.5343363881111145
23
+ 1750245351.526498,3491,0.5387812256813049
24
+ 1750245470.529834,3591,0.5402769446372986
25
+ 1750245586.3119879,3691,0.5463467836380005
26
+ 1750246343.139898,3837,0.5505648851394653
27
+ 1750246458.41904,3937,0.5526918172836304
28
+ 1750246573.937508,4037,0.5572022199630737
29
+ 1750246689.4481301,4137,0.5602738857269287
30
+ 1750246804.955596,4237,0.5618419051170349
31
+ 1750246920.456448,4337,0.5658437609672546
32
+ 1750247035.909068,4437,0.5643854141235352
33
+ 1750247151.348026,4537,0.564669132232666
34
+ 1750247266.8208692,4637,0.565129280090332
35
+ 1750247382.343512,4737,0.5662316083908081
36
+ 1750247497.887946,4837,0.5709999799728394
37
+ 1750247613.2338188,4937,0.5710968375205994
38
+ 1750248368.9772642,7571,0.5816092491149902
39
+ 1750248483.672859,7671,0.5875716805458069
40
+ 1750248599.305938,7771,0.5899681448936462
41
+ 1750248714.951941,7871,0.5904393196105957
42
+ 1750248830.486346,7971,0.5897787809371948
43
+ 1750248946.585846,8071,0.5925152897834778
44
+ 1750249062.2329412,8171,0.5895422697067261
45
+ 1750249177.890665,8271,0.5945233106613159
46
+ 1750249293.646674,8371,0.5957432389259338
47
+ 1750249410.172457,8471,0.5967334508895874
48
+ 1750249528.32505,8571,0.5945888757705688
49
+ 1750249643.642487,8671,0.5959883332252502
50
+ 1750249758.920171,8771,0.5973364114761353
51
+ 1750249874.196299,8871,0.5975183844566345
52
+ 1750249989.4330912,8971,0.5985827445983887
53
+ 1750250104.598547,9071,0.5995110273361206
54
+ 1750250219.699279,9171,0.5982469320297241
55
+ 1750250334.860928,9271,0.5999650955200195
56
+ 1750251131.926089,9439,0.6068640947341919
57
+ 1750251246.9172008,9539,0.6070073246955872
58
+ 1750251361.879851,9639,0.6051697134971619
59
+ 1750251477.0158982,9739,0.6055692434310913
60
+ 1750251592.2372851,9839,0.6048725247383118
61
+ 1750251707.280406,9939,0.6078149676322937
62
+ 1750251822.323809,10039,0.6038443446159363
63
+ 1750251937.323814,10139,0.604400098323822
64
+ 1750252052.29767,10239,0.6052733063697815
65
+ 1750252167.3019571,10339,0.6070312261581421
66
+ 1750252283.250794,10439,0.6061752438545227
67
+ 1750252398.2591941,10539,0.6063510775566101
68
+ 1750252513.236476,10639,0.608290433883667
69
+ 1750252628.350452,10739,0.6082898378372192
70
+ 1750252744.4092648,10839,0.6066213250160217
71
+ 1750252860.372185,10939,0.6067665219306946
72
+ 1750252976.300589,11039,0.6089038252830505
73
+ 1750253090.9338,11139,0.6082156896591187
74
+ 1750253883.5361578,15045,0.6134470105171204
75
+ 1750253997.8850172,15145,0.616866409778595
76
+ 1750254112.508249,15245,0.6153474450111389
77
+ 1750254227.1968992,15345,0.6166777014732361
78
+ 1750254341.829042,15445,0.6192064881324768
79
+ 1750254456.525022,15545,0.6184356808662415
80
+ 1750254571.190468,15645,0.618232250213623
81
+ 1750254686.063215,15745,0.6188069581985474
82
+ 1750254800.704541,15845,0.6163308620452881
83
+ 1750254915.783387,15945,0.6184019446372986
84
+ 1750255031.205911,16045,0.6191648244857788
85
+ 1750255146.14499,16145,0.6177481412887573
86
+ 1750255260.942156,16245,0.6192064881324768
87
+ 1750255375.750377,16345,0.619608461856842
88
+ 1750255490.58447,16445,0.6174852848052979
89
+ 1750255605.413252,16545,0.6195269823074341
90
+ 1750255720.2515159,16645,0.619271457195282
91
+ 1750255835.268335,16745,0.6194338202476501
92
+ 1750255949.566218,16845,0.6227101683616638
93
+ 1750256063.789962,16945,0.6195894479751587
94
+ 1750256178.188776,17045,0.6201948523521423
95
+ 1750256293.1323211,17145,0.6186476945877075
96
+ 1750256407.9495418,17245,0.6214761137962341
97
+ 1750256522.734526,17345,0.6193719506263733
98
+ 1750257331.2443368,17536,0.6209809184074402
99
+ 1750257446.1104798,17636,0.625723659992218
100
+ 1750257566.772247,17736,0.6239944696426392
101
+ 1750257688.8950431,17836,0.6249521970748901
102
+ 1750257807.802911,17936,0.6222965717315674
103
+ 1750257922.6778638,18036,0.6244117617607117
104
+ 1750258045.608006,18136,0.624750018119812
105
+ 1750258160.8699641,18236,0.6236881017684937
106
+ 1750258278.062032,18336,0.6239203214645386
107
+ 1750258393.34393,18436,0.6234558820724487
108
+ 1750258510.444354,18536,0.6236366629600525
109
+ 1750258627.3465788,18636,0.6221133470535278
110
+ 1750258741.962354,18736,0.6262475252151489
111
+ 1750258855.813168,18836,0.6224766969680786
112
+ 1750258969.392629,18936,0.6231942176818848
113
+ 1750259083.114611,19036,0.6226966977119446
114
+ 1750259197.602185,19136,0.6246813535690308
115
+ 1750259312.669236,19236,0.6243590712547302
116
+ 1750259428.028898,19336,0.6245042681694031
117
+ 1750259544.013591,19436,0.6236856579780579
118
+ 1750259660.2356632,19536,0.6241586804389954
119
+ 1750259776.559098,19636,0.6265146732330322
120
+ 1750259892.711581,19736,0.6263155341148376
121
+ 1750260008.9627142,19836,0.6259657144546509
122
+ 1750260834.1109152,25003,0.6294178366661072
123
+ 1750260956.0177531,25103,0.6341978907585144
124
+ 1750261074.854673,25203,0.6363382339477539
125
+ 1750261194.548888,25303,0.6368590593338013
126
+ 1750261319.6682591,25403,0.6354871392250061
127
+ 1750261436.8573089,25503,0.6349025964736938
128
+ 1750261560.118855,25603,0.6350404620170593
129
+ 1750261678.9360929,25703,0.6320496201515198
130
+ 1750261799.2243829,25803,0.6345171332359314
131
+ 1750261918.739115,25903,0.6353327035903931
132
+ 1750262033.6455271,26003,0.6329522132873535
133
+ 1750262150.3304498,26103,0.6368737816810608
134
+ 1750262266.430183,26203,0.6347763538360596
135
+ 1750262383.351136,26303,0.6333602666854858
136
+ 1750262502.0331829,26403,0.6335974335670471
137
+ 1750262621.292386,26503,0.636484682559967
138
+ 1750262740.728746,26603,0.63404780626297
139
+ 1750262859.735296,26703,0.6348559856414795
140
+ 1750262978.902925,26803,0.6339277029037476
141
+ 1750263098.5881002,26903,0.6347910761833191
142
+ 1750263218.1136699,27003,0.6350955963134766
143
+ 1750263338.9563498,27103,0.63692706823349
144
+ 1750263459.964499,27203,0.6359436511993408
145
+ 1750263581.618609,27303,0.6360576152801514
146
+ 1750263702.820439,27403,0.63558030128479
147
+ 1750263824.62831,27503,0.6354460716247559
148
+ 1750263946.3345978,27603,0.6366746425628662
149
+ 1750264068.107608,27703,0.6340281963348389
150
+ 1750264190.982796,27803,0.6362739205360413
151
+ 1750264314.090821,27903,0.6344356536865234
152
+ 1750264436.92172,28003,0.6335122585296631
153
+ 1750265205.919146,28116,0.6398958563804626
154
+ 1750265325.289276,28216,0.6380012035369873
155
+ 1750265445.558454,28316,0.6381574869155884
156
+ 1750265566.0940878,28416,0.6374521851539612
157
+ 1750265690.059275,28516,0.6397303938865662
158
+ 1750265812.507515,28616,0.638584554195404
159
+ 1750265936.121522,28716,0.6386323571205139
160
+ 1750266059.419531,28816,0.64011150598526
161
+ 1750266182.449273,28916,0.6387775540351868
162
+ 1750266305.094233,29016,0.6370355486869812
163
+ 1750266428.7435389,29116,0.6374154090881348
164
+ 1750266552.304211,29216,0.6376464366912842
165
+ 1750266675.5758011,29316,0.6369785666465759
166
+ 1750266805.9332962,29416,0.6378100514411926
167
+ 1750266931.0352068,29516,0.6405612826347351
168
+ 1750267053.373451,29616,0.6379374861717224
169
+ 1750267177.051748,29716,0.6398143172264099
170
+ 1750267299.0084312,29816,0.6366201043128967
171
+ 1750267420.616881,29916,0.6380557417869568
172
+ 1750267541.655123,30016,0.6373701095581055
173
+ 1750267662.10873,30116,0.6375141143798828
174
+ 1750267783.709685,30216,0.6374785304069519
175
+ 1750267904.4887528,30316,0.6377861499786377
176
+ 1750268026.647031,30416,0.6383756399154663
177
+ 1750268148.171423,30516,0.6382659077644348
178
+ 1750268271.2071621,30616,0.6402732729911804
179
+ 1750268391.063318,30716,0.6381813883781433
180
+ 1750268511.6307871,30816,0.6375147104263306
181
+ 1750268636.107896,30916,0.6358823776245117
182
+ 1750268769.003489,31016,0.6378302574157715
183
+ 1750268901.972845,31116,0.6389013528823853
184
+ 1750269714.6235719,31229,0.6395766139030457
185
+ 1750269834.188169,31329,0.638219952583313
186
+ 1750269950.9024792,31429,0.6388014554977417
187
+ 1750270066.4540548,31529,0.6397640705108643
188
+ 1750270182.799086,31629,0.6403087973594666
189
+ 1750270299.3589602,31729,0.6392359137535095
190
+ 1750270415.7364538,31829,0.6382027864456177
191
+ 1750270530.978216,31929,0.638592541217804
192
+ 1750270654.507533,32029,0.6403118968009949
193
+ 1750270804.0131269,32129,0.6388529539108276
194
+ 1750270926.15144,32229,0.6389497518539429
195
+ 1750271042.976987,32329,0.6402603983879089
196
+ 1750271158.2399921,32429,0.6365814805030823
197
+ 1750271273.613036,32529,0.6382861733436584
198
+ 1750271390.14693,32629,0.6389043927192688
199
+ 1750271515.1493912,32729,0.6392359137535095
200
+ 1750271634.016979,32829,0.6405753493309021
201
+ 1750271755.758776,32929,0.6390416622161865
202
+ 1750271874.3118231,33029,0.6402653455734253
203
+ 1750271990.907077,33129,0.6378002762794495
204
+ 1750272108.921928,33229,0.6391029357910156
205
+ 1750272228.449949,33329,0.6386336088180542
206
+ 1750272347.898315,33429,0.640414834022522
207
+ 1750272475.2046368,33529,0.6403657793998718
208
+ 1750272589.0914729,33629,0.6407641172409058
209
+ 1750272705.6334841,33729,0.6396709680557251
210
+ 1750272822.816761,33829,0.6394779682159424
211
+ 1750272941.404253,33929,0.639205276966095
212
+ 1750273057.228467,34029,0.6388596892356873
213
+ 1750273173.229009,34129,0.6393554210662842
214
+ 1750273288.4899561,34229,0.640123188495636
215
+ 1750274030.213887,34342,0.6414807438850403
216
+ 1750274147.662473,34442,0.6421213150024414
217
+ 1750274266.3906848,34542,0.6436458230018616
218
+ 1750274385.398832,34642,0.6416642069816589
219
+ 1750274504.567491,34742,0.6416237950325012
220
+ 1750274623.7267442,34842,0.6420839428901672
221
+ 1750274743.5394151,34942,0.6417628526687622
222
+ 1750274862.203712,35042,0.6417536735534668
223
+ 1750274984.318391,35142,0.6422046422958374
224
+ 1750275103.568575,35242,0.6413713097572327
225
+ 1750275220.138966,35342,0.6425900459289551
226
+ 1750275337.941765,35442,0.6412622332572937
227
+ 1750275456.814306,35542,0.6400894522666931
228
+ 1750275574.98401,35642,0.6420097947120667
229
+ 1750275692.1130471,35742,0.642514705657959
230
+ 1750275809.5709782,35842,0.6417150497436523
231
+ 1750275926.2575302,35942,0.6393572092056274
232
+ 1750276045.36431,36042,0.6414693593978882
233
+ 1750276164.4712372,36142,0.6419368982315063
234
+ 1750276284.077454,36242,0.6385643482208252
235
+ 1750276402.926815,36342,0.6410619020462036
236
+ 1750276524.168512,36442,0.6432456970214844
237
+ 1750276642.803875,36542,0.6412659287452698
238
+ 1750276760.664118,36642,0.6388565897941589
239
+ 1750276877.8197088,36742,0.6447322368621826
240
+ 1750276992.52645,36842,0.6426060199737549
241
+ 1750277110.440595,36942,0.6412352919578552
242
+ 1750277227.4103959,37042,0.641943633556366
243
+ 1750277344.953378,37142,0.6418511271476746
244
+ 1750277460.669297,37242,0.6425992846488953
245
+ 1750277576.59105,37342,0.6419374942779541
246
+ 1750278326.4555688,37455,0.6453002691268921
247
+ 1750278442.072955,37555,0.6434295177459717
248
+ 1750278558.4055018,37655,0.6435667872428894
249
+ 1750278676.229068,37755,0.6441090703010559
250
+ 1750278794.5198379,37855,0.642072319984436
251
+ 1750278915.6727328,37955,0.645028829574585
252
+ 1750279040.8716538,38055,0.6462420225143433
253
+ 1750279161.820596,38155,0.6431207060813904
254
+ 1750279280.475289,38255,0.6431145668029785
255
+ 1750279398.834913,38355,0.6438578367233276
256
+ 1750279516.474643,38455,0.6430367827415466
257
+ 1750279633.829937,38555,0.6428572535514832
258
+ 1750279750.60494,38655,0.6425576210021973
259
+ 1750279868.3665621,38755,0.6414080858230591
260
+ 1750279986.88538,38855,0.6441813707351685
261
+ 1750280105.688865,38955,0.6419466733932495
262
+ 1750280222.4142048,39055,0.6438627243041992
263
+ 1750280338.3421881,39155,0.642498791217804
264
+ 1750280457.493066,39255,0.6440134644508362
265
+ 1750280576.4949849,39355,0.642962634563446
266
+ 1750280694.2205691,39455,0.642806351184845
267
+ 1750280812.301379,39555,0.644475519657135
268
+ 1750280937.08998,39655,0.6416617631912231
269
+ 1750281055.1720982,39755,0.6445490121841431
270
+ 1750281171.948852,39855,0.6422959566116333
271
+ 1750281289.418745,39955,0.64436274766922
272
+ 1750281407.81874,40055,0.6438021063804626
273
+ 1750281526.818319,40155,0.6413707137107849
274
+ 1750281644.899203,40255,0.6412806510925293
275
+ 1750281762.475206,40355,0.6419981718063354
276
+ 1750281878.6185431,40455,0.6406317353248596
277
+ 1750282626.3456159,40568,0.6449540853500366
278
+ 1750282752.616928,40668,0.6459221839904785
279
+ 1750282877.317843,40768,0.6436997652053833
280
+ 1750282998.107455,40868,0.645617663860321
281
+ 1750283122.800135,40968,0.6464546322822571
282
+ 1750283262.3346539,41068,0.6452726721763611
283
+ 1750283403.827907,41168,0.6459258794784546
284
+ 1750283524.509494,41268,0.6452248692512512
285
+ 1750283645.3601458,41368,0.6442880034446716
286
+ 1750283768.575882,41468,0.6420226693153381
287
+ 1750283893.432749,41568,0.6444313526153564
288
+ 1750284018.6755168,41668,0.6438676714897156
289
+ 1750284142.309102,41768,0.6434436440467834
290
+ 1750284261.0508292,41868,0.6446678638458252
291
+ 1750284381.139601,41968,0.6443517208099365
292
+ 1750284502.250894,42068,0.6439411640167236
293
+ 1750284623.458782,42168,0.6429129838943481
294
+ 1750284744.15576,42268,0.64682537317276
295
+ 1750284865.5974588,42368,0.6460331082344055
296
+ 1750284987.773657,42468,0.6442880034446716
297
+ 1750285110.2447739,42568,0.644547164440155
298
+ 1750285232.50309,42668,0.6433596611022949
299
+ 1750285354.828066,42768,0.6451323628425598
300
+ 1750285476.54096,42868,0.6434479355812073
301
+ 1750285597.926975,42968,0.643908679485321
302
+ 1750285719.3653271,43068,0.6420814990997314
303
+ 1750285840.557452,43168,0.6439160704612732
304
+ 1750285962.101805,43268,0.6433719396591187
305
+ 1750286083.735996,43368,0.6440735459327698
306
+ 1750286204.703545,43468,0.6429314017295837
307
+ 1750286327.76542,43568,0.6424681544303894
308
+ 1750287089.93405,43681,0.6471216082572937
309
+ 1750287210.040575,43781,0.6467695832252502
310
+ 1750287330.680011,43881,0.6448443531990051
311
+ 1750287452.9146292,43981,0.6471734046936035
312
+ 1750287574.203907,44081,0.6451905369758606
313
+ 1750287695.6190531,44181,0.6456066370010376
314
+ 1750287834.084157,44281,0.6454748511314392
315
+ 1750287954.796106,44381,0.6448712944984436
316
+ 1750288079.650344,44481,0.6475992798805237
317
+ 1750288202.913589,44581,0.6458455920219421
318
+ 1750288328.292566,44681,0.645825982093811
319
+ 1750288458.77768,44781,0.6448125243186951
320
+ 1750288579.276587,44881,0.6433265805244446
321
+ 1750288700.053348,44981,0.6453033089637756
322
+ 1750288823.757793,45081,0.6435851454734802
323
+ 1750288947.5033479,45181,0.6452512145042419
324
+ 1750289071.1844292,45281,0.6451635956764221
325
+ 1750289194.838445,45381,0.6456127166748047
326
+ 1750289318.976344,45481,0.6473155617713928
327
+ 1750289442.564545,45581,0.6429858803749084
328
+ 1750289565.735361,45681,0.6448370218276978
329
+ 1750289688.623064,45781,0.6460006237030029
330
+ 1750289811.3699021,45881,0.6455036997795105
331
+ 1750289943.0644841,45981,0.6461666822433472
332
+ 1750290079.773664,46081,0.646716296672821
333
+ 1750290201.8962939,46181,0.6448621153831482
334
+ 1750290322.202647,46281,0.6431930065155029
335
+ 1750290445.3588831,46381,0.6445759534835815
336
+ 1750290568.215271,46481,0.6440943479537964
337
+ 1750290688.385665,46581,0.6445428729057312
338
+ 1750290808.880954,46681,0.6441415548324585
339
+ 1750291578.4776902,46794,0.6457090973854065
340
+ 1750291698.370927,46894,0.6475306153297424
341
+ 1750291817.165154,46994,0.6468952298164368
342
+ 1750291937.1691918,47094,0.6463872790336609
343
+ 1750292057.929079,47194,0.6450998783111572
344
+ 1750292178.0917802,47294,0.6454583406448364
345
+ 1750292303.482858,47394,0.6467616558074951
346
+ 1750292423.760905,47494,0.6482242345809937
347
+ 1750292542.308008,47594,0.6451581120491028
348
+ 1750292660.2191942,47694,0.6488652229309082
349
+ 1750292777.5716531,47794,0.6461954712867737
350
+ 1750292896.2476,47894,0.6477683782577515
351
+ 1750293016.009115,47994,0.6469166874885559
352
+ 1750293138.117504,48094,0.6451562643051147
353
+ 1750293258.1256971,48194,0.6462162733078003
354
+ 1750293377.4574468,48294,0.643597424030304
355
+ 1750293496.099553,48394,0.6470036506652832
356
+ 1750293618.36915,48494,0.6463841795921326
357
+ 1750293752.436372,48594,0.6448590755462646
358
+ 1750293917.4711082,48694,0.6454522013664246
359
+ 1750294042.4210508,48794,0.6457377672195435
360
+ 1750294162.099357,48894,0.6451789140701294
361
+ 1750294280.357276,48994,0.6460698246955872
362
+ 1750294398.708734,49094,0.6460833549499512
363
+ 1750294516.704125,49194,0.6478798985481262
364
+ 1750294637.669656,49294,0.6450986266136169
365
+ 1750294779.062816,49394,0.6479822397232056
366
+ 1750294917.642625,49494,0.6437861323356628
367
+ 1750295041.37166,49594,0.6425294280052185
368
+ 1750295159.417851,49694,0.6448572278022766
369
+ 1750295277.586646,49794,0.646308183670044
370
+ 1750296054.6071198,49907,0.6466804146766663
371
+ 1750296177.2352269,50007,0.6479687690734863
372
+ 1750296300.8120399,50107,0.6481225490570068
373
+ 1750296424.595592,50207,0.648354172706604
374
+ 1750296547.974368,50307,0.6471893191337585
375
+ 1750296676.166361,50407,0.6477347016334534
376
+ 1750296814.415308,50507,0.6458235383033752
377
+ 1750296945.931654,50607,0.6469044089317322
378
+ 1750297075.295464,50707,0.6463817358016968
379
+ 1750297198.356979,50807,0.6474558711051941
380
+ 1750297341.4102569,50907,0.647463858127594
381
+ 1750297467.1187751,51007,0.6465808749198914
382
+ 1750297587.6885471,51107,0.6463106870651245
383
+ 1750297710.908989,51207,0.648296594619751
384
+ 1750297835.818051,51307,0.647297203540802
385
+ 1750297961.3280158,51407,0.6460373997688293
386
+ 1750298087.4548569,51507,0.6471868753433228
387
+ 1750298213.454858,51607,0.6428700685501099
388
+ 1750298339.8951528,51707,0.6474828720092773
389
+ 1750298466.7554429,51807,0.6478608846664429
390
+ 1750298597.17128,51907,0.6451127529144287
391
+ 1750298732.562523,52007,0.6464699506759644
392
+ 1750298867.001442,52107,0.6459650993347168
393
+ 1750298995.653795,52207,0.6456948518753052
394
+ 1750299113.526079,52307,0.6475864052772522
395
+ 1750299232.773921,52407,0.6468786597251892
396
+ 1750299354.860131,52507,0.646700382232666
397
+ 1750299478.810007,52607,0.6463584303855896
398
+ 1750299603.790758,52707,0.6460520625114441
399
+ 1750299728.0330188,52807,0.6452640891075134
400
+ 1750299852.972244,52907,0.6472334265708923
401
+ 1750300627.761337,53020,0.6483761668205261
402
+ 1750300753.319436,53120,0.6485379934310913
403
+ 1750300894.5988622,53220,0.6470998525619507
404
+ 1750301031.386137,53320,0.6505416631698608
405
+ 1750301153.8477619,53420,0.6486967206001282
406
+ 1750301277.1732311,53520,0.6491133570671082
407
+ 1750301402.075006,53620,0.6442438960075378
408
+ 1750301520.450825,53720,0.6487236618995667
409
+ 1750301639.662542,53820,0.6463835835456848
410
+ 1750301760.182339,53920,0.6470925211906433
411
+ 1750301880.992494,54020,0.6464883685112
412
+ 1750302001.83247,54120,0.6488180160522461
413
+ 1750302123.260853,54220,0.6466305255889893
414
+ 1750302244.690379,54320,0.6463456153869629
415
+ 1750302365.994741,54420,0.6472904682159424
416
+ 1750302488.034341,54520,0.6458161473274231
417
+ 1750302609.855891,54620,0.6480042934417725
418
+ 1750302731.501794,54720,0.6475238800048828
419
+ 1750302853.191099,54820,0.6470471620559692
420
+ 1750302975.518531,54920,0.6460570096969604
421
+ 1750303098.421973,55020,0.6483272314071655
422
+ 1750303220.513244,55120,0.6465263366699219
423
+ 1750303342.572195,55220,0.647531270980835
424
+ 1750303464.636217,55320,0.6481985449790955
425
+ 1750303586.779646,55420,0.6472640633583069
426
+ 1750303709.085526,55520,0.6467304229736328
427
+ 1750303830.806071,55620,0.6458835601806641
428
+ 1750303952.466469,55720,0.6468210816383362
429
+ 1750304073.741874,55820,0.6471930146217346
430
+ 1750304195.127176,55920,0.6458204388618469
431
+ 1750304316.408163,56020,0.6477947235107422
432
+ 1750305082.660233,56133,0.648921549320221
433
+ 1750305203.568924,56233,0.6467108130455017
434
+ 1750305325.488572,56333,0.6503989100456238
435
+ 1750305447.1351511,56433,0.6502788066864014
436
+ 1750305568.840065,56533,0.6482714414596558
437
+ 1750305690.542845,56633,0.649355411529541
438
+ 1750305812.181129,56733,0.6499350666999817
439
+ 1750305933.855696,56833,0.6482751369476318
440
+ 1750306055.506382,56933,0.6461532115936279
441
+ 1750306176.7709591,57033,0.6472175121307373
442
+ 1750306297.884476,57133,0.6478897333145142
443
+ 1750306419.401044,57233,0.646894633769989
444
+ 1750306541.605247,57333,0.6485876441001892
445
+ 1750306663.8581388,57433,0.6478548049926758
446
+ 1750306787.340354,57533,0.6477579474449158
447
+ 1750306909.9931881,57633,0.6465287804603577
448
+ 1750307032.35187,57733,0.6477022171020508
449
+ 1750307154.564481,57833,0.6472230553627014
450
+ 1750307276.835264,57933,0.6498976945877075
451
+ 1750307398.493126,58033,0.6464962959289551
452
+ 1750307520.847733,58133,0.6489521861076355
453
+ 1750307642.977959,58233,0.6469656825065613
454
+ 1750307764.848602,58333,0.6475974321365356
455
+ 1750307886.5466619,58433,0.6472101807594299
456
+ 1750308008.096926,58533,0.646530032157898
457
+ 1750308129.91144,58633,0.6472922563552856
458
+ 1750308251.5830579,58733,0.6473553776741028
459
+ 1750308372.8975759,58833,0.6462971568107605
460
+ 1750308494.214208,58933,0.6466912031173706
461
+ 1750308615.9806452,59033,0.6474724411964417
462
+ 1750308742.1111948,59133,0.6464491486549377
463
+ 1750309504.211555,59246,0.6506167650222778
464
+ 1750309625.168406,59346,0.6489228010177612
465
+ 1750309746.635493,59446,0.6505894660949707
466
+ 1750309868.457798,59546,0.6502009630203247
467
+ 1750309989.681639,59646,0.6506121158599854
468
+ 1750310110.474976,59746,0.6477597951889038
469
+ 1750310232.681849,59846,0.6491525769233704
470
+ 1750310354.60706,59946,0.6493057608604431
471
+ 1750310476.456109,60046,0.6474987864494324
472
+ 1750310598.108342,60146,0.6481243968009949
473
+ 1750310719.631812,60246,0.6481391191482544
474
+ 1750310841.0724092,60346,0.6478572487831116
475
+ 1750310962.477639,60446,0.6478658318519592
476
+ 1750311084.32421,60546,0.6487451195716858
477
+ 1750311206.1186502,60646,0.6478290557861328
478
+ 1750311327.464293,60746,0.6479527950286865
479
+ 1750311448.99296,60846,0.6507965922355652
480
+ 1750311570.703797,60946,0.6489418148994446
481
+ 1750311692.3788621,61046,0.6471636295318604
482
+ 1750311813.798603,61146,0.6461752653121948
483
+ 1750311935.3186,61246,0.6480496525764465
484
+ 1750312056.882661,61346,0.6456611752510071
485
+ 1750312178.2939782,61446,0.6465116739273071
486
+ 1750312299.8791208,61546,0.6471225619316101
487
+ 1750312421.214797,61646,0.6492395997047424
488
+ 1750312543.195411,61746,0.6480588316917419
489
+ 1750312670.233453,61846,0.6464307308197021
490
+ 1750312793.940044,61946,0.6481586694717407
491
+ 1750312915.588005,62046,0.6480116248130798
492
+ 1750313037.027286,62146,0.6466923952102661
493
+ 1750313158.1939578,62246,0.6475116610527039
494
+ 1750313905.375668,62359,0.6485812664031982
495
+ 1750314025.037591,62459,0.6484589576721191
496
+ 1750314145.371774,62559,0.6488749980926514
497
+ 1750314266.599691,62659,0.6495226621627808
498
+ 1750314387.2132962,62759,0.6508517265319824
499
+ 1750314507.7024288,62859,0.6497665643692017
500
+ 1750314628.189686,62959,0.6516213417053223
501
+ 1750314748.146301,63059,0.6487261056900024
502
+ 1750314868.358367,63159,0.6510030627250671
503
+ 1750314988.5014348,63259,0.6490833163261414
504
+ 1750315108.526455,63359,0.6481225490570068
505
+ 1750315228.3911822,63459,0.6478216648101807
506
+ 1750315348.215651,63559,0.6495686173439026
507
+ 1750315468.131627,63659,0.6491384506225586
508
+ 1750315587.960984,63759,0.6480790376663208
509
+ 1750315707.893823,63859,0.6477401852607727
510
+ 1750315827.722427,63959,0.6481207013130188
511
+ 1750315947.566299,64059,0.6498235464096069
512
+ 1750316067.855606,64159,0.6486047506332397
513
+ 1750316187.8744562,64259,0.6477928757667542
514
+ 1750316307.531418,64359,0.6452211737632751
515
+ 1750316427.517174,64459,0.648481011390686
516
+ 1750316550.5545862,64559,0.649202823638916
517
+ 1750316672.624807,64659,0.6461697220802307
518
+ 1750316792.095057,64759,0.6472800374031067
519
+ 1750316911.428381,64859,0.6484797596931458
520
+ 1750317030.673044,64959,0.6474190950393677
521
+ 1750317150.065619,65059,0.6485551595687866
522
+ 1750317269.4576561,65159,0.6473284363746643
523
+ 1750317388.62231,65259,0.6489478945732117
524
+ 1750317510.425743,65359,0.6498370170593262
525
+ 1750318246.259418,65472,0.6497201919555664
526
+ 1750318364.616058,65572,0.651941180229187
527
+ 1750318483.184418,65672,0.6507928967475891
528
+ 1750318602.0962481,65772,0.6518989205360413
529
+ 1750318720.829149,65872,0.6487677693367004
530
+ 1750318839.9066281,65972,0.6484093070030212
531
+ 1750318958.5665972,66072,0.6493566036224365
532
+ 1750319077.469098,66172,0.6498039364814758
533
+ 1750319196.1992152,66272,0.6500980257987976
534
+ 1750319315.074125,66372,0.6488897204399109
535
+ 1750319433.748579,66472,0.6503884792327881
536
+ 1750319552.196927,66572,0.6489307880401611
537
+ 1750319671.013653,66672,0.6499950885772705
538
+ 1750319789.528258,66772,0.6480569839477539
539
+ 1750319908.035121,66872,0.6486513614654541
540
+ 1750320026.431205,66972,0.648715078830719
541
+ 1750320144.7621481,67072,0.6486801505088806
542
+ 1750320263.0357592,67172,0.6503651738166809
543
+ 1750320381.3532522,67272,0.6496090888977051
544
+ 1750320500.5613499,67372,0.6467726826667786
545
+ 1750320623.54901,67472,0.6477181315422058
546
+ 1750320741.795747,67572,0.6472892165184021
547
+ 1750320859.855903,67672,0.6498854160308838
548
+ 1750320978.003171,67772,0.6488057374954224
549
+ 1750321098.499806,67872,0.6470992565155029
550
+ 1750321216.814155,67972,0.6476672887802124
551
+ 1750321335.143292,68072,0.6499993801116943
552
+ 1750321453.319468,68172,0.6484957337379456
553
+ 1750321571.501225,68272,0.6466611623764038
554
+ 1750321690.132703,68372,0.6476348042488098
555
+ 1750321808.66078,68472,0.6482536792755127
556
+ 1750322547.664128,68585,0.6493887305259705
557
+ 1750322664.425544,68685,0.6517763733863831
558
+ 1750322782.043474,68785,0.6519050002098083
559
+ 1750322899.7543712,68885,0.6515141129493713
560
+ 1750323017.3889458,68985,0.649075984954834
561
+ 1750323134.995938,69085,0.6505410671234131
562
+ 1750323253.0190132,69185,0.6498510837554932
563
+ 1750323370.775999,69285,0.6473155617713928
564
+ 1750323488.555377,69385,0.6509785652160645
565
+ 1750323606.278355,69485,0.6489037871360779
566
+ 1750323724.203748,69585,0.6510263681411743
567
+ 1750323841.933225,69685,0.648824155330658
568
+ 1750323960.079792,69785,0.6503823399543762
569
+ 1750324078.064715,69885,0.6487776041030884
570
+ 1750324195.7457888,69985,0.6502567529678345
571
+ 1750324313.406649,70085,0.6468223333358765
572
+ 1750324431.42479,70185,0.6466960906982422
573
+ 1750324550.94887,70285,0.6497089266777039
574
+ 1750324675.2589598,70385,0.6486838459968567
575
+ 1750324793.819502,70485,0.6489037871360779
576
+ 1750324911.8261251,70585,0.6481801271438599
577
+ 1750325030.1411479,70685,0.6487058997154236
578
+ 1750325148.42432,70785,0.64988112449646
579
+ 1750325266.557858,70885,0.6515821218490601
580
+ 1750325384.489578,70985,0.6467652916908264
581
+ 1750325502.346626,71085,0.6488394737243652
582
+ 1750325620.054972,71185,0.650479793548584
583
+ 1750325737.303225,71285,0.647771418094635
584
+ 1750325854.335532,71385,0.6492316126823425
585
+ 1750325971.239757,71485,0.6474711894989014
586
+ 1750326088.271001,71585,0.6487935185432434
587
+ 1750326816.132333,71698,0.6502522230148315
588
+ 1750326933.194338,71798,0.6512677669525146
589
+ 1750327050.175751,71898,0.6514301300048828
590
+ 1750327167.495158,71998,0.6498296856880188
591
+ 1750327284.9254432,72098,0.6511623859405518
592
+ 1750327402.3306282,72198,0.6518124938011169
593
+ 1750327519.8128698,72298,0.6498884558677673
594
+ 1750327637.1756642,72398,0.6509025692939758
595
+ 1750327754.545989,72498,0.6492757201194763
596
+ 1750327872.0523992,72598,0.650468111038208
597
+ 1750327989.467781,72698,0.6497953534126282
598
+ 1750328106.91109,72798,0.6502175331115723
599
+ 1750328224.329986,72898,0.6474730372428894
600
+ 1750328343.594594,72998,0.6517916917800903
601
+ 1750328461.7706828,73098,0.6490668058395386
602
+ 1750328584.434108,73198,0.6493229269981384
603
+ 1750328702.7211268,73298,0.6505508422851562
604
+ 1750328820.1412349,73398,0.650176465511322
605
+ 1750328937.665895,73498,0.6481127738952637
606
+ 1750329055.284807,73598,0.6477389931678772
607
+ 1750329172.769314,73698,0.649357259273529
608
+ 1750329289.9146729,73798,0.6503124833106995
609
+ 1750329407.0319202,73898,0.6481776833534241
610
+ 1750329524.153242,73998,0.6477175354957581
611
+ 1750329641.224229,74098,0.6486396789550781
612
+ 1750329757.8959308,74198,0.6504963040351868
613
+ 1750329874.259397,74298,0.6490269303321838
614
+ 1750329990.60547,74398,0.6488014459609985
615
+ 1750330108.3216069,74498,0.6469368934631348
616
+ 1750330225.5629098,74598,0.649093747138977
617
+ 1750330342.624664,74698,0.6504252552986145
618
+ 1750331068.310646,74811,0.6512323617935181
619
+ 1750331184.909408,74911,0.6507211923599243
620
+ 1750331301.768451,75011,0.6504889726638794
621
+ 1750331418.8345752,75111,0.6531997323036194
622
+ 1750331535.65965,75211,0.6511715650558472
623
+ 1750331652.5237691,75311,0.6501777172088623
624
+ 1750331769.310387,75411,0.6503259539604187
625
+ 1750331886.0936131,75511,0.650214433670044
626
+ 1750332004.929323,75611,0.6505091786384583
627
+ 1750332121.9415019,75711,0.6511041522026062
628
+ 1750332238.997463,75811,0.6510563492774963
629
+ 1750332356.059675,75911,0.6478394865989685
630
+ 1750332473.099851,76011,0.6509203314781189
631
+ 1750332592.230027,76111,0.6497402191162109
632
+ 1750332716.068458,76211,0.6508136987686157
633
+ 1750332834.6589582,76311,0.6482028365135193
634
+ 1750332951.37817,76411,0.6488333344459534
635
+ 1750333068.0262249,76511,0.6487273573875427
636
+ 1750333184.994744,76611,0.6512953639030457
637
+ 1750333301.572347,76711,0.6484797596931458
638
+ 1750333418.234983,76811,0.650410532951355
639
+ 1750333534.869468,76911,0.6503063440322876
640
+ 1750333651.2686841,77011,0.6505821347236633
641
+ 1750333767.357428,77111,0.6473523378372192
642
+ 1750333883.067544,77211,0.6503553986549377
643
+ 1750333999.2657301,77311,0.6490692496299744
644
+ 1750334116.1577961,77411,0.6505526900291443
645
+ 1750334232.3563468,77511,0.6493333578109741
646
+ 1750334348.514185,77611,0.6487787961959839
647
+ 1750334464.8386402,77711,0.6489228010177612
648
+ 1750334581.1770968,77811,0.648578405380249
649
+ 1750335305.515574,77924,0.6500704288482666
650
+ 1750335421.451164,78024,0.6515514850616455
651
+ 1750335539.5966039,78124,0.6511317491531372
652
+ 1750335657.7199922,78224,0.6509822010993958
653
+ 1750335775.054247,78324,0.6518909335136414
654
+ 1750335891.6804101,78424,0.6532628536224365
655
+ 1750336008.170381,78524,0.6509877443313599
656
+ 1750336124.7923908,78624,0.6499687433242798
657
+ 1750336241.045173,78724,0.6491813659667969
658
+ 1750336357.363477,78824,0.6493700742721558
659
+ 1750336473.563044,78924,0.6500067114830017
660
+ 1750336592.577394,79024,0.6502812504768372
661
+ 1750336710.247206,79124,0.6505931615829468
662
+ 1750336826.520014,79224,0.6503744125366211
663
+ 1750336942.538775,79324,0.6512524485588074
664
+ 1750337058.567289,79424,0.6504086852073669
665
+ 1750337174.580393,79524,0.6492910385131836
666
+ 1750337290.514969,79624,0.647658109664917
667
+ 1750337406.387496,79724,0.649397075176239
668
+ 1750337522.300965,79824,0.6499987840652466
669
+ 1750337637.9587681,79924,0.6483517289161682
670
+ 1750337753.6101792,80024,0.6483290195465088
671
+ 1750337868.836907,80124,0.6477181315422058
672
+ 1750337984.170497,80224,0.6507726907730103
673
+ 1750338099.979442,80324,0.6489865183830261
674
+ 1750338215.673398,80424,0.6506593227386475
675
+ 1750338331.3641798,80524,0.6513970494270325
676
+ 1750338447.094371,80624,0.6503664255142212
677
+ 1750338563.121328,80724,0.6507107615470886
678
+ 1750338678.824536,80824,0.6490545272827148
679
+ 1750338794.5569391,80924,0.649645209312439
680
+ 1750339515.51679,81037,0.6530735492706299
681
+ 1750339631.1298602,81137,0.651217520236969
682
+ 1750339746.8785229,81237,0.6502726674079895
683
+ 1750339862.773015,81337,0.6523235440254211
684
+ 1750339979.4091032,81437,0.6500030755996704
685
+ 1750340095.093813,81537,0.650927722454071
686
+ 1750340210.6843278,81637,0.6517083048820496
687
+ 1750340326.337384,81737,0.652924656867981
688
+ 1750340442.3833878,81837,0.6513204574584961
689
+ 1750340561.534982,81937,0.6520097851753235
690
+ 1750340680.117114,82037,0.6500189900398254
691
+ 1750340796.1884549,82137,0.6520116329193115
692
+ 1750340911.915088,82237,0.6495036482810974
693
+ 1750341027.543648,82337,0.6498492360115051
694
+ 1750341143.395276,82437,0.650689959526062
695
+ 1750341259.559998,82537,0.6496433615684509
696
+ 1750341375.434209,82637,0.6507408022880554
697
+ 1750341490.948511,82737,0.6499375104904175
698
+ 1750341606.710141,82837,0.6490784287452698
699
+ 1750341721.814566,82937,0.6491348147392273
700
+ 1750341837.331264,83037,0.648245096206665
701
+ 1750341953.211265,83137,0.6513798832893372
702
+ 1750342069.0807161,83237,0.6488406658172607
703
+ 1750342185.1426518,83337,0.6499031782150269
704
+ 1750342300.783836,83437,0.6506298780441284
705
+ 1750342416.592161,83537,0.6487769484519958
706
+ 1750342532.407535,83637,0.650630533695221
707
+ 1750342648.207677,83737,0.6485833525657654
708
+ 1750342765.009377,83837,0.6488823294639587
709
+ 1750342881.701005,83937,0.6510103940963745
710
+ 1750342997.716446,84037,0.6501452326774597
711
+ 1750343718.065668,84150,0.6516106724739075
712
+ 1750343833.633333,84250,0.650243878364563
713
+ 1750343949.533427,84350,0.650896430015564
714
+ 1750344065.720902,84450,0.6520116329193115
715
+ 1750344182.2826722,84550,0.651564359664917
716
+ 1750344298.61443,84650,0.6520177721977234
717
+ 1750344414.591867,84750,0.6516109108924866
718
+ 1750344532.102746,84850,0.6519338488578796
719
+ 1750344653.871885,84950,0.6527591943740845
720
+ 1750344767.572968,85050,0.6507757306098938
721
+ 1750344892.887903,85150,0.6527095437049866
722
+ 1750379136.628101,85250,0.653421938419342
723
+ 1750379250.96206,85350,0.650648295879364
724
+ 1750379367.015548,85450,0.6494423747062683
725
+ 1750379481.0428228,85550,0.6492549180984497
726
+ 1750379593.498946,85650,0.6499558687210083
727
+ 1750379705.965035,85750,0.6501905918121338
728
+ 1750379820.272479,85850,0.6511335968971252
729
+ 1750379936.0781498,85950,0.6478216648101807
730
+ 1750380053.3225842,86050,0.6508284211158752
731
+ 1750380171.982768,86150,0.648435652256012
732
+ 1750380291.6105971,86250,0.6498792767524719
733
+ 1750380411.511211,86350,0.6504166722297668
734
+ 1750380533.9704819,86450,0.6495949625968933
735
+ 1750380659.838042,86550,0.6476697325706482
736
+ 1750380777.568034,86650,0.6459124088287354
737
+ 1750380893.660362,86750,0.648826003074646
738
+ 1750381010.8516119,86850,0.6514846682548523
739
+ 1750381130.6362581,86950,0.6510809063911438
740
+ 1750381252.80625,87050,0.6502947211265564
741
+ 1750381373.937963,87150,0.6487561464309692
742
+ 1750382120.180901,87263,0.6513592600822449
743
+ 1750382235.866944,87363,0.6503798961639404
744
+ 1750382365.523697,87463,0.6513124704360962
745
+ 1750382491.619613,87563,0.6521127223968506
746
+ 1750382614.830884,87663,0.6514797806739807
747
+ 1750382738.181688,87763,0.6523486375808716
748
+ 1750382858.773399,87863,0.6495551466941833
749
+ 1750382979.250171,87963,0.6515551209449768
750
+ 1750383101.317154,88063,0.6511887311935425
751
+ 1750383223.180498,88163,0.6504589319229126
752
+ 1750383346.266277,88263,0.6508162021636963
753
+ 1750383475.137713,88363,0.6480140686035156
754
+ 1750383602.4944682,88463,0.6508939862251282
755
+ 1750383731.6209762,88563,0.6486960649490356
756
+ 1750383862.741338,88663,0.6508578658103943
757
+ 1750383990.9452841,88763,0.6488032937049866
758
+ 1750384123.171714,88863,0.6506158113479614
759
+ 1750384254.607017,88963,0.6502849459648132
760
+ 1750384386.85204,89063,0.6513688564300537
761
+ 1750384520.881977,89163,0.6468964219093323
762
+ 1750384654.052042,89263,0.6504650712013245
763
+ 1750384786.019552,89363,0.6480398178100586
764
+ 1750384917.7445939,89463,0.6507499814033508
765
+ 1750385049.460108,89563,0.6491605639457703
766
+ 1750385185.126712,89663,0.6488234996795654
767
+ 1750385320.041018,89763,0.6487879753112793
768
+ 1750385454.420981,89863,0.6473633646965027
769
+ 1750385587.665528,89963,0.648159921169281
770
+ 1750385721.327701,90063,0.6492407917976379
771
+ 1750385853.920752,90163,0.6485766172409058
772
+ 1750385984.836493,90263,0.6495043039321899
773
+ 1750386771.1338828,90376,0.6527379751205444
774
+ 1750386891.5614269,90476,0.6509515643119812
775
+ 1750387012.4985468,90576,0.6514166593551636
776
+ 1750387133.300371,90676,0.6527132391929626
777
+ 1750387253.684694,90776,0.6516789197921753
778
+ 1750387374.3121002,90876,0.6511207222938538
779
+ 1750387495.17602,90976,0.6511115431785583
780
+ 1750387616.024838,91076,0.6512408256530762
781
+ 1750387737.2461271,91176,0.6528302431106567
782
+ 1750387858.791801,91276,0.6500024795532227
783
+ 1750387980.692109,91376,0.6507279276847839
784
+ 1750388103.426921,91476,0.6507695913314819
785
+ 1750388226.078679,91576,0.6498388648033142
786
+ 1750388348.178328,91676,0.6508400440216064
787
+ 1750388469.837296,91776,0.6519038081169128
788
+ 1750388591.572599,91876,0.6501691341400146
789
+ 1750388712.8626308,91976,0.6503039002418518
790
+ 1750388841.8957708,92076,0.6493204832077026
791
+ 1750388972.115207,92176,0.6491703391075134
792
+ 1750389098.6719759,92276,0.6496703624725342
793
+ 1750389223.995049,92376,0.6493363976478577
794
+ 1750389351.848442,92476,0.6512628793716431
795
+ 1750389476.405678,92576,0.6492487788200378
796
+ 1750389601.319693,92676,0.650007963180542
797
+ 1750389726.894148,92776,0.6495955586433411
798
+ 1750389850.07146,92876,0.6499528288841248
799
+ 1750389972.1826189,92976,0.6504693627357483
800
+ 1750390090.092722,93076,0.6502230167388916
801
+ 1750390205.974981,93176,0.651092529296875
802
+ 1750390323.627625,93276,0.6483596563339233
803
+ 1750390442.0130482,93376,0.6499479413032532
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_curriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749977364.335526,99,0.28588664531707764
3
+ 1749977479.028688,199,0.3745232820510864
4
+ 1749977593.705034,299,0.4085974395275116
5
+ 1749977708.9612758,399,0.43084007501602173
6
+ 1749977826.4679549,499,0.449031263589859
7
+ 1749977943.257545,599,0.4616672694683075
8
+ 1749981000.7470999,722,0.4902438521385193
9
+ 1749981116.730113,822,0.5027604103088379
10
+ 1749981231.429653,922,0.5114178657531738
11
+ 1749981346.264277,1022,0.520479142665863
12
+ 1749981460.89554,1122,0.5261605381965637
13
+ 1749981575.62288,1222,0.5330343246459961
14
+ 1749984660.365978,2591,0.5397835373878479
15
+ 1749984773.941619,2691,0.5454724431037903
16
+ 1749984888.513812,2791,0.5498265624046326
17
+ 1749985002.865367,2891,0.5563768148422241
18
+ 1749985117.15324,2991,0.5628455877304077
19
+ 1749985231.433402,3091,0.5667720437049866
20
+ 1749985345.998219,3191,0.569880485534668
21
+ 1749985460.906912,3291,0.5726421475410461
22
+ 1749985575.3593469,3391,0.5760772228240967
23
+ 1749985691.7491999,3491,0.5811237692832947
24
+ 1749985815.587678,3591,0.580393373966217
25
+ 1749985929.7506618,3691,0.5871672630310059
26
+ 1749989010.094342,3837,0.5913770794868469
27
+ 1749989123.943269,3937,0.5954620242118835
28
+ 1749989238.09817,4037,0.5997714400291443
29
+ 1749989352.3528981,4137,0.6012462973594666
30
+ 1749989466.4953432,4237,0.6006200909614563
31
+ 1749989580.637305,4337,0.6004209518432617
32
+ 1749989694.765909,4437,0.6052303910255432
33
+ 1749989818.2607958,4537,0.6040643453598022
34
+ 1749989942.487204,4637,0.6051568388938904
35
+ 1749990056.146515,4737,0.6058547496795654
36
+ 1749990169.766712,4837,0.6068351864814758
37
+ 1749990283.4751868,4937,0.6084963083267212
38
+ 1749993352.9395578,7571,0.6084688901901245
39
+ 1749993466.648562,7671,0.6101813912391663
40
+ 1749993580.709169,7771,0.6113382577896118
41
+ 1749993694.6656058,7871,0.6122714281082153
42
+ 1749993815.172954,7971,0.6128994822502136
43
+ 1749993930.671676,8071,0.6156709790229797
44
+ 1749994044.35568,8171,0.6157383322715759
45
+ 1749994158.1081998,8271,0.6165416836738586
46
+ 1749994272.019066,8371,0.6152009963989258
47
+ 1749994385.881603,8471,0.6155833601951599
48
+ 1749994499.466678,8571,0.6163216829299927
49
+ 1749994613.1914399,8671,0.6180055141448975
50
+ 1749994726.919243,8771,0.6173602938652039
51
+ 1749994840.688326,8871,0.61722731590271
52
+ 1749994954.296221,8971,0.6184638738632202
53
+ 1749995068.586358,9071,0.6206642389297485
54
+ 1749995181.909915,9171,0.619077205657959
55
+ 1749995294.907391,9271,0.6202395558357239
56
+ 1749998394.780915,9439,0.6250227689743042
57
+ 1749998509.561884,9539,0.6268419027328491
58
+ 1749998624.169394,9639,0.6251703500747681
59
+ 1749998738.764092,9739,0.6259638667106628
60
+ 1749998853.596479,9839,0.6260729432106018
61
+ 1749998970.952068,9939,0.6260238885879517
62
+ 1749999090.790731,10039,0.6284595727920532
63
+ 1749999204.6298828,10139,0.6254178881645203
64
+ 1749999318.84687,10239,0.6281286478042603
65
+ 1749999433.180917,10339,0.6281035542488098
66
+ 1749999547.5268722,10439,0.627795934677124
67
+ 1749999662.015342,10539,0.6291084289550781
68
+ 1749999776.5737789,10639,0.6277438998222351
69
+ 1749999890.931427,10739,0.6303106546401978
70
+ 1750000005.481672,10839,0.6280863881111145
71
+ 1750000119.87854,10939,0.6273688673973083
72
+ 1750000234.334095,11039,0.6276838183403015
73
+ 1750000348.707572,11139,0.6283755898475647
74
+ 1750003528.256055,15045,0.62782883644104
75
+ 1750003642.596102,15145,0.6282438635826111
76
+ 1750003757.3387341,15245,0.6293431520462036
77
+ 1750003873.315587,15345,0.6315287947654724
78
+ 1750003988.3306408,15445,0.6304099559783936
79
+ 1750004103.302248,15545,0.6282867789268494
80
+ 1750004218.435863,15645,0.6298266053199768
81
+ 1750004333.339542,15745,0.6305355429649353
82
+ 1750004448.350045,15845,0.6284080743789673
83
+ 1750004563.301732,15945,0.6274583339691162
84
+ 1750004678.213912,16045,0.6294417977333069
85
+ 1750004793.1398342,16145,0.6306874752044678
86
+ 1750004908.186692,16245,0.631015956401825
87
+ 1750005023.021367,16345,0.6281139850616455
88
+ 1750005138.246336,16445,0.6303842067718506
89
+ 1750005254.049628,16545,0.6315600275993347
90
+ 1750005371.7509718,16645,0.6306795477867126
91
+ 1750005486.9075148,16745,0.6326752305030823
92
+ 1750005602.060213,16845,0.6310612559318542
93
+ 1750005717.2153442,16945,0.6297892332077026
94
+ 1750005832.324348,17045,0.6305006146430969
95
+ 1750005947.536924,17145,0.6308155655860901
96
+ 1750006063.083155,17245,0.6321685314178467
97
+ 1750006178.734329,17345,0.6319099068641663
98
+ 1750009399.704169,17536,0.6343737244606018
99
+ 1750009514.3865962,17636,0.6345661878585815
100
+ 1750009629.909656,17736,0.6372830867767334
101
+ 1750009746.8921971,17836,0.635703444480896
102
+ 1750009864.805543,17936,0.6337475180625916
103
+ 1750009981.668085,18036,0.6362861394882202
104
+ 1750010097.8974762,18136,0.6354865431785583
105
+ 1750010214.100458,18236,0.6353400945663452
106
+ 1750010331.977967,18336,0.6348345875740051
107
+ 1750010448.701419,18436,0.6347469091415405
108
+ 1750010565.3602402,18536,0.636064350605011
109
+ 1750010681.492363,18636,0.6342193484306335
110
+ 1750010795.889803,18736,0.6365196108818054
111
+ 1750010913.419132,18836,0.6347261071205139
112
+ 1750011028.388973,18936,0.6362769603729248
113
+ 1750011148.152082,19036,0.6334969401359558
114
+ 1750011271.832135,19136,0.6362677812576294
115
+ 1750011393.6038358,19236,0.634259819984436
116
+ 1750011512.205483,19336,0.6369742751121521
117
+ 1750011627.390275,19436,0.6369025707244873
118
+ 1750011741.720696,19536,0.6365998983383179
119
+ 1750011855.223976,19636,0.6367641091346741
120
+ 1750011969.2611399,19736,0.6374938488006592
121
+ 1750012087.322599,19836,0.6358149647712708
122
+ 1750015355.02448,25003,0.6355385780334473
123
+ 1750015471.710523,25103,0.6348210573196411
124
+ 1750015585.106417,25203,0.6347346901893616
125
+ 1750015699.149504,25303,0.6330912709236145
126
+ 1750015814.148569,25403,0.6347230672836304
127
+ 1750015930.20784,25503,0.6339718103408813
128
+ 1750016046.3103628,25603,0.6341593265533447
129
+ 1750016161.9822211,25703,0.6346629858016968
130
+ 1750016277.6236448,25803,0.6351673007011414
131
+ 1750016396.300969,25903,0.6353664398193359
132
+ 1750016521.229613,26003,0.634468138217926
133
+ 1750016644.04537,26103,0.6366844177246094
134
+ 1750016764.8677518,26203,0.6336568593978882
135
+ 1750016884.577158,26303,0.6336439847946167
136
+ 1750017013.212147,26403,0.636149525642395
137
+ 1750017130.1586502,26503,0.6332034468650818
138
+ 1750017248.9129531,26603,0.6349037885665894
139
+ 1750017368.812139,26703,0.634620726108551
140
+ 1750017488.794925,26803,0.6378597021102905
141
+ 1750017612.375882,26903,0.6332463026046753
142
+ 1750017732.743781,27003,0.6360012292861938
143
+ 1750017848.489934,27103,0.6350870132446289
144
+ 1750017963.6619039,27203,0.6337885856628418
145
+ 1750018078.550231,27303,0.6343676447868347
146
+ 1750018192.748084,27403,0.6369479298591614
147
+ 1750018306.010696,27503,0.6350710988044739
148
+ 1750018419.404276,27603,0.6357254981994629
149
+ 1750018533.5574532,27703,0.6356292963027954
150
+ 1750018648.440438,27803,0.6368480324745178
151
+ 1750018764.887423,27903,0.634440541267395
152
+ 1750018879.13066,28003,0.6343063712120056
153
+ 1750021993.337842,28116,0.6385252475738525
154
+ 1750022108.625397,28216,0.6396666765213013
155
+ 1750022225.3094559,28316,0.6405214667320251
156
+ 1750022343.5684,28416,0.6380766034126282
157
+ 1750022465.6295328,28516,0.638329029083252
158
+ 1750022585.200331,28616,0.6370465755462646
159
+ 1750022698.726985,28716,0.6370342969894409
160
+ 1750022813.0666711,28816,0.6385851502418518
161
+ 1750022926.821846,28916,0.636216938495636
162
+ 1750023040.3530712,29016,0.6401445865631104
163
+ 1750023154.610132,29116,0.6370845437049866
164
+ 1750023269.373156,29216,0.63744056224823
165
+ 1750023384.615044,29316,0.6365986466407776
166
+ 1750023500.060214,29416,0.6377432346343994
167
+ 1750023615.888483,29516,0.6389510035514832
168
+ 1750023738.4718232,29616,0.6373738050460815
169
+ 1750023865.0513432,29716,0.635953426361084
170
+ 1750023980.4567528,29816,0.6385453343391418
171
+ 1750024102.657131,29916,0.6374601721763611
172
+ 1750024225.475231,30016,0.6374080777168274
173
+ 1750024341.848771,30116,0.6396329402923584
174
+ 1750024459.552284,30216,0.638360321521759
175
+ 1750024577.683449,30316,0.6390722990036011
176
+ 1750024695.620969,30416,0.6384742856025696
177
+ 1750024813.15393,30516,0.6379038095474243
178
+ 1750024931.286835,30616,0.6387065052986145
179
+ 1750025049.001534,30716,0.6384369134902954
180
+ 1750025163.835922,30816,0.6373277902603149
181
+ 1750025281.5920188,30916,0.6373835802078247
182
+ 1750025397.560318,31016,0.6376991271972656
183
+ 1750025513.6170099,31116,0.6400925517082214
184
+ 1750026258.913583,31229,0.6403970718383789
185
+ 1750026376.468122,31329,0.638996958732605
186
+ 1750026494.82906,31429,0.6399515867233276
187
+ 1750026612.074744,31529,0.6390226483345032
188
+ 1750026729.107693,31629,0.6389669179916382
189
+ 1750026849.120147,31729,0.6387475728988647
190
+ 1750026966.936425,31829,0.6384184956550598
191
+ 1750027083.108604,31929,0.637732207775116
192
+ 1750027199.450992,32029,0.6385949850082397
193
+ 1750027323.917527,32129,0.6390410661697388
194
+ 1750027450.620377,32229,0.6398792862892151
195
+ 1750027566.849419,32329,0.6390214562416077
196
+ 1750027683.289695,32429,0.6398676633834839
197
+ 1750027802.114905,32529,0.6373082399368286
198
+ 1750027924.2528,32629,0.6389638781547546
199
+ 1750028041.636798,32729,0.6387016177177429
200
+ 1750028159.982292,32829,0.6404320001602173
201
+ 1750028276.4083111,32929,0.6395410299301147
202
+ 1750028392.819813,33029,0.6389172673225403
203
+ 1750028510.07862,33129,0.6388676166534424
204
+ 1750028626.766732,33229,0.6375190019607544
205
+ 1750028743.2398121,33329,0.6382947564125061
206
+ 1750028859.6580448,33429,0.6393235325813293
207
+ 1750028977.066697,33529,0.639760434627533
208
+ 1750029094.035702,33629,0.6389570832252502
209
+ 1750029212.013004,33729,0.6381213068962097
210
+ 1750029329.2934341,33829,0.6403063535690308
211
+ 1750029445.9281878,33929,0.6385067105293274
212
+ 1750029562.146507,34029,0.6391458511352539
213
+ 1750029678.391045,34129,0.6408572196960449
214
+ 1750029794.805592,34229,0.6399093270301819
215
+ 1750030543.7282188,34342,0.6434916257858276
216
+ 1750030659.910597,34442,0.6414521932601929
217
+ 1750030778.590385,34542,0.6412996053695679
218
+ 1750030905.824296,34642,0.6434313654899597
219
+ 1750031037.9024498,34742,0.6433621048927307
220
+ 1750031153.503683,34842,0.6425729393959045
221
+ 1750031269.77982,34942,0.6430465579032898
222
+ 1750031389.400544,35042,0.6422536969184875
223
+ 1750031508.265698,35142,0.6426635980606079
224
+ 1750031626.0132139,35242,0.6429221630096436
225
+ 1750031743.025014,35342,0.6404129862785339
226
+ 1750031885.475497,35442,0.6392824649810791
227
+ 1750032010.656299,35542,0.6409381031990051
228
+ 1750032127.904196,35642,0.640123188495636
229
+ 1750032244.403975,35742,0.6418627500534058
230
+ 1750032360.933419,35842,0.6440447568893433
231
+ 1750032477.541352,35942,0.6406194567680359
232
+ 1750032594.091157,36042,0.6400943398475647
233
+ 1750032710.6262121,36142,0.642808198928833
234
+ 1750032827.175454,36242,0.6403511166572571
235
+ 1750032943.481264,36342,0.6408284306526184
236
+ 1750033059.724577,36442,0.6408045291900635
237
+ 1750033176.860049,36542,0.6395043134689331
238
+ 1750033293.465724,36642,0.6416427493095398
239
+ 1750033410.007821,36742,0.6428804993629456
240
+ 1750033526.524544,36842,0.6391329765319824
241
+ 1750033642.8618398,36942,0.6429295539855957
242
+ 1750033759.300628,37042,0.640650749206543
243
+ 1750033875.82361,37142,0.6393449902534485
244
+ 1750033992.538295,37242,0.6417598128318787
245
+ 1750034109.142217,37342,0.6427794098854065
246
+ 1750034859.436337,37455,0.6443113088607788
247
+ 1750034991.047751,37555,0.6442849040031433
248
+ 1750035122.431795,37655,0.6436274647712708
249
+ 1750035241.4052138,37755,0.6420379877090454
250
+ 1750035356.513953,37855,0.6436770558357239
251
+ 1750035471.387222,37955,0.6419662833213806
252
+ 1750035587.5855339,38055,0.6452144384384155
253
+ 1750035703.43985,38155,0.6444374918937683
254
+ 1750035819.077642,38255,0.643208920955658
255
+ 1750035936.4567711,38355,0.6431666612625122
256
+ 1750036059.2491798,38455,0.642463207244873
257
+ 1750036180.256274,38555,0.6442769765853882
258
+ 1750036294.659355,38655,0.6419767141342163
259
+ 1750036409.479987,38755,0.643569827079773
260
+ 1750036527.079,38855,0.6429632306098938
261
+ 1750036642.9094348,38955,0.6435980200767517
262
+ 1750036760.497163,39055,0.6430018544197083
263
+ 1750036875.5200331,39155,0.6436997652053833
264
+ 1750036990.279715,39255,0.6439846754074097
265
+ 1750037105.5676339,39355,0.6411581039428711
266
+ 1750037220.069133,39455,0.640044093132019
267
+ 1750037336.2036638,39555,0.6431978940963745
268
+ 1750037451.888465,39655,0.6445000171661377
269
+ 1750037569.520401,39755,0.6424607634544373
270
+ 1750037687.51542,39855,0.641943633556366
271
+ 1750037806.725086,39955,0.6436893343925476
272
+ 1750037926.555726,40055,0.6400434970855713
273
+ 1750038046.8097868,40155,0.6440201997756958
274
+ 1750038169.072709,40255,0.6413872241973877
275
+ 1750038294.868284,40355,0.6422027945518494
276
+ 1750038427.1307719,40455,0.6437346935272217
277
+ 1750039231.8825622,40568,0.6437143683433533
278
+ 1750039402.4296,40668,0.646799623966217
279
+ 1750039525.9227898,40768,0.6444270610809326
280
+ 1750039661.6580212,40868,0.6451084613800049
281
+ 1750039781.981627,40968,0.6428462266921997
282
+ 1750039905.767744,41068,0.6430606842041016
283
+ 1750040024.021368,41168,0.645976722240448
284
+ 1750040143.7686882,41268,0.6439148187637329
285
+ 1750040266.25108,41368,0.6431078314781189
286
+ 1750040427.311769,41468,0.6447769403457642
287
+ 1750040578.4353669,41568,0.6441084742546082
288
+ 1750040707.937697,41668,0.6429558992385864
289
+ 1750040836.492491,41768,0.6436746120452881
290
+ 1750040960.603317,41868,0.6442616581916809
291
+ 1750041086.99233,41968,0.6462548971176147
292
+ 1750041210.984496,42068,0.6450679898262024
293
+ 1750041333.8359601,42168,0.6441292762756348
294
+ 1750041456.096718,42268,0.6440931558609009
295
+ 1750041581.238783,42368,0.6456066370010376
296
+ 1750041711.6029398,42468,0.6443829536437988
297
+ 1750041852.4890041,42568,0.6441673040390015
298
+ 1750042000.659992,42668,0.6439050436019897
299
+ 1750042130.042489,42768,0.6438921689987183
300
+ 1750042256.760677,42868,0.6464895606040955
301
+ 1750042385.204942,42968,0.6443406939506531
302
+ 1750042515.443064,43068,0.6432965993881226
303
+ 1750042646.2321632,43168,0.639984667301178
304
+ 1750042783.133068,43268,0.6438658237457275
305
+ 1750042921.271679,43368,0.6428633332252502
306
+ 1750043051.095117,43468,0.6431298851966858
307
+ 1750043179.576931,43568,0.6439454555511475
308
+ 1750043977.9631848,43681,0.6456713080406189
309
+ 1750044103.102685,43781,0.6449705958366394
310
+ 1750044229.522302,43881,0.6451991200447083
311
+ 1750044358.612916,43981,0.6455398201942444
312
+ 1750044486.987199,44081,0.6456978917121887
313
+ 1750044617.962983,44181,0.645112156867981
314
+ 1750044750.4446,44281,0.6441035270690918
315
+ 1750044889.4328802,44381,0.6455913186073303
316
+ 1750045027.381598,44481,0.6464969515800476
317
+ 1750045161.603585,44581,0.6468664407730103
318
+ 1750045290.518494,44681,0.6445355415344238
319
+ 1750045422.188066,44781,0.6446065902709961
320
+ 1750045575.209614,44881,0.6442456841468811
321
+ 1750045707.2751548,44981,0.6456243991851807
322
+ 1750045839.254016,45081,0.6449227929115295
323
+ 1750045971.6699488,45181,0.6455116271972656
324
+ 1750046104.338908,45281,0.6448302865028381
325
+ 1750046239.79817,45381,0.6442965865135193
326
+ 1750046373.61981,45481,0.6440269351005554
327
+ 1750046504.145928,45581,0.6443995237350464
328
+ 1750046636.505515,45681,0.6450520753860474
329
+ 1750046767.470301,45781,0.6460845470428467
330
+ 1750046899.701083,45881,0.6460974216461182
331
+ 1750047032.155242,45981,0.644556999206543
332
+ 1750047163.9177809,46081,0.6430435180664062
333
+ 1750047293.2538261,46181,0.6419926285743713
334
+ 1750047427.440437,46281,0.6454858779907227
335
+ 1750047564.2944481,46381,0.6454938650131226
336
+ 1750047701.456853,46481,0.6454050540924072
337
+ 1750047838.4844108,46581,0.6446617841720581
338
+ 1750047977.628417,46681,0.6460968255996704
339
+ 1750048840.957935,46794,0.6473008990287781
340
+ 1750048973.2961721,46894,0.6472830772399902
341
+ 1750049107.7492101,46994,0.6469509601593018
342
+ 1750049242.322348,47094,0.6464478969573975
343
+ 1750049371.5563462,47194,0.6477059125900269
344
+ 1750049513.91999,47294,0.6474650502204895
345
+ 1750049657.056936,47394,0.6462150812149048
346
+ 1750049797.445607,47494,0.6473970413208008
347
+ 1750049932.04602,47594,0.6489577293395996
348
+ 1750050066.7716742,47694,0.6467947363853455
349
+ 1750050234.0854049,47794,0.6435348987579346
350
+ 1750050351.418953,47894,0.645657479763031
351
+ 1750050494.174859,47994,0.6457021832466125
352
+ 1750050614.79619,48094,0.6438719630241394
353
+ 1750050732.840872,48194,0.6474326252937317
354
+ 1750050850.510725,48294,0.6457800269126892
355
+ 1750050967.865982,48394,0.6442181468009949
356
+ 1750051084.869573,48494,0.6448596715927124
357
+ 1750051201.898559,48594,0.64415442943573
358
+ 1750051318.836611,48694,0.6448884606361389
359
+ 1750051435.858627,48794,0.6452077031135559
360
+ 1750051552.890208,48894,0.6476826071739197
361
+ 1750051670.031324,48994,0.6472010016441345
362
+ 1750051787.218723,49094,0.644515335559845
363
+ 1750051904.636208,49194,0.6462040543556213
364
+ 1750052021.8771899,49294,0.6463437676429749
365
+ 1750052139.210658,49394,0.642183244228363
366
+ 1750052256.490703,49494,0.6454485058784485
367
+ 1750052374.7578518,49594,0.6468566060066223
368
+ 1750052492.334172,49694,0.6466029286384583
369
+ 1750052609.824669,49794,0.642487108707428
370
+ 1750053365.9224792,49907,0.6476205587387085
371
+ 1750053481.476015,50007,0.6485821008682251
372
+ 1750053599.037875,50107,0.6469797492027283
373
+ 1750053716.7924638,50207,0.6489007472991943
374
+ 1750053834.669989,50307,0.6461966633796692
375
+ 1750053952.750252,50407,0.6475735306739807
376
+ 1750054070.644894,50507,0.6470704674720764
377
+ 1750054188.490614,50607,0.6479043960571289
378
+ 1750054306.742827,50707,0.6474724411964417
379
+ 1750054425.004918,50807,0.6474246382713318
380
+ 1750054542.6853938,50907,0.6465471982955933
381
+ 1750054660.682938,51007,0.6475410461425781
382
+ 1750054778.191925,51107,0.6458927989006042
383
+ 1750054895.7676291,51207,0.6464687585830688
384
+ 1750055013.378505,51307,0.6474987864494324
385
+ 1750055130.9935381,51407,0.6478688716888428
386
+ 1750055248.827314,51507,0.6451807618141174
387
+ 1750055366.549689,51607,0.6476121544837952
388
+ 1750055484.1689339,51707,0.6458885073661804
389
+ 1750055601.730171,51807,0.6455968022346497
390
+ 1750055719.2045949,51907,0.6460833549499512
391
+ 1750055836.656107,52007,0.6462745070457458
392
+ 1750055954.067919,52107,0.6452885866165161
393
+ 1750056071.4017038,52207,0.6477634906768799
394
+ 1750056188.7744892,52307,0.6444822549819946
395
+ 1750056306.286787,52407,0.6445361375808716
396
+ 1750056424.055385,52507,0.6447904706001282
397
+ 1750056541.635556,52607,0.6447542905807495
398
+ 1750056665.746124,52707,0.6455514430999756
399
+ 1750056796.684893,52807,0.6456115245819092
400
+ 1750056914.330396,52907,0.6455478072166443
401
+ 1750057654.000876,53020,0.6493867635726929
402
+ 1750057770.534932,53120,0.64915931224823
403
+ 1750057887.580597,53220,0.6495104432106018
404
+ 1750058004.837473,53320,0.6484528183937073
405
+ 1750058126.610375,53420,0.648715078830719
406
+ 1750058243.350247,53520,0.6468033194541931
407
+ 1750058360.9682329,53620,0.6470349431037903
408
+ 1750058478.53059,53720,0.6484313607215881
409
+ 1750058595.484344,53820,0.6487898230552673
410
+ 1750058712.32459,53920,0.6486519575119019
411
+ 1750058829.734424,54020,0.6468756198883057
412
+ 1750058949.057058,54120,0.6460962295532227
413
+ 1750059067.043211,54220,0.645268976688385
414
+ 1750059183.71031,54320,0.6469576954841614
415
+ 1750059300.550472,54420,0.6475827097892761
416
+ 1750059419.021388,54520,0.6452622413635254
417
+ 1750059535.992765,54620,0.6485557556152344
418
+ 1750059652.9171278,54720,0.6454381346702576
419
+ 1750059770.172056,54820,0.6457910537719727
420
+ 1750059887.1253629,54920,0.6453903317451477
421
+ 1750060004.00172,55020,0.6462647318840027
422
+ 1750060120.898835,55120,0.6482334733009338
423
+ 1750060238.7914271,55220,0.6449724435806274
424
+ 1750060356.6630569,55320,0.6488921642303467
425
+ 1750060483.16862,55420,0.6467518210411072
426
+ 1750060608.273094,55520,0.6468780636787415
427
+ 1750060724.648673,55620,0.6457769870758057
428
+ 1750060841.193019,55720,0.6451464295387268
429
+ 1750060957.847646,55820,0.6480183601379395
430
+ 1750061074.541267,55920,0.6465483903884888
431
+ 1750061191.1322691,56020,0.6459154486656189
432
+ 1750061929.540071,56133,0.6493289470672607
433
+ 1750062046.4490082,56233,0.6499944925308228
434
+ 1750062162.9919949,56333,0.6509313583374023
435
+ 1750062280.384002,56433,0.6472922563552856
436
+ 1750062397.188073,56533,0.6470606327056885
437
+ 1750062513.561744,56633,0.6480293869972229
438
+ 1750062629.979378,56733,0.6478112936019897
439
+ 1750062746.4312499,56833,0.6493836045265198
440
+ 1750062862.8876128,56933,0.6481072306632996
441
+ 1750062979.306707,57033,0.64878249168396
442
+ 1750063095.5481331,57133,0.6467052698135376
443
+ 1750063212.493322,57233,0.6481035351753235
444
+ 1750063328.775289,57333,0.6488075852394104
445
+ 1750063445.034789,57433,0.6460257172584534
446
+ 1750063561.407937,57533,0.6473590731620789
447
+ 1750063677.673996,57633,0.6485949754714966
448
+ 1750063793.694189,57733,0.6475416421890259
449
+ 1750063909.95166,57833,0.6466213464736938
450
+ 1750064027.247638,57933,0.6497169137001038
451
+ 1750064143.514656,58033,0.6465557813644409
452
+ 1750064268.079637,58133,0.6479840874671936
453
+ 1750064424.337912,58233,0.6463425159454346
454
+ 1750064548.345029,58333,0.6467218399047852
455
+ 1750064664.193969,58433,0.6449418067932129
456
+ 1750064780.292584,58533,0.6467867493629456
457
+ 1750064896.502843,58633,0.6476826071739197
458
+ 1750065012.795582,58733,0.6480741500854492
459
+ 1750065128.8592482,58833,0.6465104222297668
460
+ 1750065244.7908301,58933,0.6474007368087769
461
+ 1750065360.6975,59033,0.6470018625259399
462
+ 1750065476.57175,59133,0.647394597530365
463
+ 1750066215.112386,59246,0.6484884023666382
464
+ 1750066329.233048,59346,0.6517101526260376
465
+ 1750066446.0869088,59446,0.6494681239128113
466
+ 1750066563.986378,59546,0.6496850252151489
467
+ 1750066680.343473,59646,0.6474074721336365
468
+ 1750066796.7458298,59746,0.649565577507019
469
+ 1750066912.6179461,59846,0.6474013328552246
470
+ 1750067029.49361,59946,0.6498302817344666
471
+ 1750067145.9068658,60046,0.6463137269020081
472
+ 1750067261.559467,60146,0.648062527179718
473
+ 1750067378.464273,60246,0.6487009525299072
474
+ 1750067494.541793,60346,0.6484540700912476
475
+ 1750067611.426126,60446,0.6447340846061707
476
+ 1750067728.451967,60546,0.6489546298980713
477
+ 1750067845.480575,60646,0.6487022042274475
478
+ 1750067963.274455,60746,0.6478694677352905
479
+ 1750068079.824903,60846,0.6502383351325989
480
+ 1750068195.613735,60946,0.6492922902107239
481
+ 1750068327.311218,61046,0.6487003564834595
482
+ 1750068454.94793,61146,0.6478210687637329
483
+ 1750068570.154111,61246,0.6484748721122742
484
+ 1750068685.7284281,61346,0.6482732892036438
485
+ 1750068801.346897,61446,0.646964430809021
486
+ 1750068916.927058,61546,0.6464099287986755
487
+ 1750069032.448956,61646,0.644658088684082
488
+ 1750069147.9146209,61746,0.6485943794250488
489
+ 1750069263.3070111,61846,0.6458688974380493
490
+ 1750069378.775149,61946,0.6487181186676025
491
+ 1750069494.211877,62046,0.6477941274642944
492
+ 1750069609.57893,62146,0.6474037766456604
493
+ 1750069724.84948,62246,0.6479589343070984
494
+ 1750070447.851841,62359,0.651902973651886
495
+ 1750070561.9951239,62459,0.6503787040710449
496
+ 1750070676.8718872,62559,0.6500968337059021
497
+ 1750070791.8396,62659,0.6510557532310486
498
+ 1750070906.979104,62759,0.6499785780906677
499
+ 1750071022.06126,62859,0.649732232093811
500
+ 1750071137.246733,62959,0.6478468179702759
501
+ 1750071256.552842,63059,0.6495073437690735
502
+ 1750071372.671751,63159,0.6482971906661987
503
+ 1750071487.657099,63259,0.6481047868728638
504
+ 1750071602.834729,63359,0.648909330368042
505
+ 1750071718.017049,63459,0.646631121635437
506
+ 1750071833.306231,63559,0.6482463479042053
507
+ 1750071948.5643551,63659,0.6479852795600891
508
+ 1750072063.602099,63759,0.6481752395629883
509
+ 1750072179.286376,63859,0.6478750109672546
510
+ 1750072296.222941,63959,0.6486703157424927
511
+ 1750072418.746772,64059,0.6489123702049255
512
+ 1750072533.577402,64159,0.6501323580741882
513
+ 1750072648.612843,64259,0.6470416784286499
514
+ 1750072763.5893078,64359,0.6490704417228699
515
+ 1750072878.450794,64459,0.6459466814994812
516
+ 1750072993.365532,64559,0.6475882530212402
517
+ 1750073108.697324,64659,0.6503645777702332
518
+ 1750073223.617787,64759,0.6470171809196472
519
+ 1750073338.752395,64859,0.6477291584014893
520
+ 1750073453.570859,64959,0.6484718322753906
521
+ 1750073568.435877,65059,0.6459577083587646
522
+ 1750073683.24477,65159,0.6472359299659729
523
+ 1750073798.1748412,65259,0.6485876441001892
524
+ 1750073913.0885818,65359,0.6493455767631531
525
+ 1750074644.202455,65472,0.650331974029541
526
+ 1750074758.912836,65572,0.6519914269447327
527
+ 1750074875.099701,65672,0.650109052658081
528
+ 1750074990.943136,65772,0.6503970623016357
529
+ 1750075106.007064,65872,0.6483119130134583
530
+ 1750075221.057364,65972,0.6512475609779358
531
+ 1750075336.13061,66072,0.6481102705001831
532
+ 1750075451.236589,66172,0.6488688588142395
533
+ 1750075566.052592,66272,0.6494044065475464
534
+ 1750075682.7699761,66372,0.6493076086044312
535
+ 1750075797.9876559,66472,0.6478333473205566
536
+ 1750075914.64273,66572,0.6474276781082153
537
+ 1750076030.050213,66672,0.6496495008468628
538
+ 1750076152.2348318,66772,0.6493915319442749
539
+ 1750076269.6426702,66872,0.6476317644119263
540
+ 1750076384.59956,66972,0.648086428642273
541
+ 1750076499.781887,67072,0.6497089266777039
542
+ 1750076614.9142919,67172,0.6489056348800659
543
+ 1750076729.905608,67272,0.6496078372001648
544
+ 1750076845.027034,67372,0.6489534378051758
545
+ 1750076960.0806148,67472,0.6497972011566162
546
+ 1750077074.876384,67572,0.649520218372345
547
+ 1750077189.7312992,67672,0.6471053957939148
548
+ 1750077304.536205,67772,0.6471991539001465
549
+ 1750077419.491337,67872,0.6477248668670654
550
+ 1750077534.3444228,67972,0.6475986242294312
551
+ 1750077649.246627,68072,0.6473278403282166
552
+ 1750077764.127095,68172,0.6482389569282532
553
+ 1750077878.92101,68272,0.6501243710517883
554
+ 1750077993.704979,68372,0.6485391855239868
555
+ 1750078108.401723,68472,0.6455429196357727
556
+ 1750078836.657377,68585,0.6516741514205933
557
+ 1750078952.580533,68685,0.6496519446372986
558
+ 1750079067.407628,68785,0.6507120132446289
559
+ 1750079182.252828,68885,0.6490698456764221
560
+ 1750079297.0283499,68985,0.6507880091667175
561
+ 1750079411.772536,69085,0.6514895558357239
562
+ 1750079526.6152508,69185,0.6502475738525391
563
+ 1750079641.374357,69285,0.648604154586792
564
+ 1750079756.093072,69385,0.649006724357605
565
+ 1750079870.5768309,69485,0.6492598056793213
566
+ 1750079992.450662,69585,0.6508265733718872
567
+ 1750080116.739509,69685,0.6490214467048645
568
+ 1750080231.016501,69785,0.648647665977478
569
+ 1750080345.28207,69885,0.6501409411430359
570
+ 1750080459.8231602,69985,0.648421585559845
571
+ 1750080574.2639868,70085,0.6481715440750122
572
+ 1750080688.757041,70185,0.6504570841789246
573
+ 1750080803.202705,70285,0.6495674252510071
574
+ 1750080917.704134,70385,0.6511856913566589
575
+ 1750081032.162951,70485,0.6491391062736511
576
+ 1750081146.549643,70585,0.6491948366165161
577
+ 1750081261.078706,70685,0.6476237773895264
578
+ 1750081375.446201,70785,0.6472598314285278
579
+ 1750081489.6819131,70885,0.649506151676178
580
+ 1750081604.042305,70985,0.6490165591239929
581
+ 1750081718.3400252,71085,0.6489497423171997
582
+ 1750081832.732856,71185,0.6479442119598389
583
+ 1750081947.114954,71285,0.6481096744537354
584
+ 1750082061.835982,71385,0.6467849016189575
585
+ 1750082176.418093,71485,0.6477126479148865
586
+ 1750082290.7188091,71585,0.6497445106506348
587
+ 1750083016.513731,71698,0.6524151563644409
588
+ 1750083130.618523,71798,0.6513198614120483
589
+ 1750083244.589661,71898,0.6509871482849121
590
+ 1750083359.089848,71998,0.6508817672729492
591
+ 1750083473.078088,72098,0.6499442458152771
592
+ 1750083587.289967,72198,0.6507530808448792
593
+ 1750083701.352993,72298,0.6499148011207581
594
+ 1750083815.663315,72398,0.6481636166572571
595
+ 1750083936.105367,72498,0.650898277759552
596
+ 1750084065.999089,72598,0.6477634906768799
597
+ 1750084179.5669591,72698,0.6490398049354553
598
+ 1750084293.404572,72798,0.6496537923812866
599
+ 1750084409.61257,72898,0.6489595770835876
600
+ 1750084530.014266,72998,0.6506764888763428
601
+ 1750084642.7470279,73098,0.6500404477119446
602
+ 1750084756.535712,73198,0.6486256122589111
603
+ 1750084871.964978,73298,0.6500183939933777
604
+ 1750084986.151422,73398,0.650077223777771
605
+ 1750085100.4449952,73498,0.6502646803855896
606
+ 1750085214.790596,73598,0.6472273468971252
607
+ 1750085329.468748,73698,0.6477739214897156
608
+ 1750085443.722016,73798,0.6485349535942078
609
+ 1750085557.787304,73898,0.6490380167961121
610
+ 1750085673.177803,73998,0.6487604379653931
611
+ 1750085787.612976,74098,0.6494344472885132
612
+ 1750085913.490603,74198,0.649268388748169
613
+ 1750086052.901354,74298,0.6489779353141785
614
+ 1750086182.2634351,74398,0.6496483087539673
615
+ 1750086295.016717,74498,0.6478670239448547
616
+ 1750086435.7205381,74598,0.6491844654083252
617
+ 1750086582.7606962,74698,0.6491010785102844
618
+ 1750087650.0419421,74811,0.6522228717803955
619
+ 1750087762.584516,74911,0.6522107720375061
620
+ 1750087875.505641,75011,0.6498799324035645
621
+ 1750087988.452775,75111,0.6499907970428467
622
+ 1750088101.767231,75211,0.65114825963974
623
+ 1750088215.3928099,75311,0.6526415348052979
624
+ 1750088331.228487,75411,0.651384174823761
625
+ 1750088446.234497,75511,0.6497800350189209
626
+ 1750088560.0593631,75611,0.6517898440361023
627
+ 1750088674.036354,75711,0.6499993801116943
628
+ 1750088787.784639,75811,0.6519804000854492
629
+ 1750088901.776468,75911,0.6504987478256226
630
+ 1750089014.103643,76011,0.6487267017364502
631
+ 1750089127.109042,76111,0.6484436392784119
632
+ 1750089240.3520262,76211,0.6512634754180908
633
+ 1750089354.353836,76311,0.6479203701019287
634
+ 1750089468.5235279,76411,0.6494595408439636
635
+ 1750089583.547188,76511,0.6499166488647461
636
+ 1750089704.054522,76611,0.6496145725250244
637
+ 1750089822.3331609,76711,0.6495196223258972
638
+ 1750089941.994915,76811,0.6495153307914734
639
+ 1750090061.784815,76911,0.6490931510925293
640
+ 1750090182.254617,77011,0.6484087109565735
641
+ 1750090303.953204,77111,0.6500018239021301
642
+ 1750090426.952368,77211,0.648506760597229
643
+ 1750090548.443975,77311,0.6480318903923035
644
+ 1750090669.956901,77411,0.6486170291900635
645
+ 1750090791.7959669,77511,0.6492151021957397
646
+ 1750090912.972746,77611,0.6473553776741028
647
+ 1750091033.934365,77711,0.6462597846984863
648
+ 1750091164.33149,77811,0.6510331034660339
649
+ 1750091964.664192,77924,0.6533048152923584
650
+ 1750092091.235796,78024,0.6523431539535522
651
+ 1750092208.4739149,78124,0.6510931253433228
652
+ 1750092328.204187,78224,0.6501372456550598
653
+ 1750092447.8787808,78324,0.6499123573303223
654
+ 1750092567.8858712,78424,0.6484730243682861
655
+ 1750092687.8550222,78524,0.6504344344139099
656
+ 1750092811.3799438,78624,0.6524816155433655
657
+ 1750092929.918206,78724,0.6506648063659668
658
+ 1750093053.76854,78824,0.6516305208206177
659
+ 1750093177.572756,78924,0.6513609290122986
660
+ 1750093302.106108,79024,0.653305172920227
661
+ 1750093429.367929,79124,0.6484840512275696
662
+ 1750093557.5396092,79224,0.649454653263092
663
+ 1750093680.4307358,79324,0.6518210768699646
664
+ 1750093806.49715,79424,0.6496446132659912
665
+ 1750093931.0879638,79524,0.6506440043449402
666
+ 1750094046.997188,79624,0.6500864028930664
667
+ 1750094161.746679,79724,0.6513866186141968
668
+ 1750094278.252318,79824,0.6487426161766052
669
+ 1750094397.103918,79924,0.648730993270874
670
+ 1750094517.025068,80024,0.6489289402961731
671
+ 1750094642.6882298,80124,0.6502524614334106
672
+ 1750094775.814713,80224,0.649855375289917
673
+ 1750094903.003746,80324,0.6477358937263489
674
+ 1750095022.039825,80424,0.6478602886199951
675
+ 1750095140.6187148,80524,0.6489865183830261
676
+ 1750095260.4530401,80624,0.6482934951782227
677
+ 1750095378.731529,80724,0.6490281820297241
678
+ 1750095496.937608,80824,0.6485232710838318
679
+ 1750095616.3465102,80924,0.6485385894775391
680
+ 1750096401.501398,81037,0.6525385975837708
681
+ 1750096526.1197782,81137,0.6502799987792969
682
+ 1750096644.770298,81237,0.6528933644294739
683
+ 1750096759.472527,81337,0.6510306596755981
684
+ 1750096873.226041,81437,0.651094377040863
685
+ 1750096987.332403,81537,0.6506212949752808
686
+ 1750097102.048306,81637,0.6519405841827393
687
+ 1750097216.469391,81737,0.6492205858230591
688
+ 1750097331.152544,81837,0.649980366230011
689
+ 1750097445.0099788,81937,0.6509393453598022
690
+ 1750097558.881762,82037,0.6526182889938354
691
+ 1750097674.117058,82137,0.6499534249305725
692
+ 1750097788.172687,82237,0.6503940224647522
693
+ 1750097903.974227,82337,0.6475943922996521
694
+ 1750098019.9126558,82437,0.6499638557434082
695
+ 1750098132.7968042,82537,0.6512077450752258
696
+ 1750098246.327349,82637,0.649770200252533
697
+ 1750098359.4387681,82737,0.6514387130737305
698
+ 1750098474.935789,82837,0.6485177874565125
699
+ 1750098589.37578,82937,0.6507077217102051
700
+ 1750098703.584759,83037,0.6483749747276306
701
+ 1750098818.363471,83137,0.649534285068512
702
+ 1750098932.86682,83237,0.650955855846405
703
+ 1750099047.605303,83337,0.6501758694648743
704
+ 1750099162.009273,83437,0.6494081020355225
705
+ 1750099276.285405,83537,0.6501213312149048
706
+ 1750099390.24512,83637,0.6502935290336609
707
+ 1750099504.52185,83737,0.6514497399330139
708
+ 1750099620.872819,83837,0.6484656929969788
709
+ 1750099738.8319669,83937,0.6472879648208618
710
+ 1750099854.784019,84037,0.6502016186714172
711
+ 1750100599.842554,84150,0.6516321301460266
712
+ 1750100719.342059,84250,0.6523364186286926
713
+ 1750100835.149472,84350,0.6532328724861145
714
+ 1750100951.360066,84450,0.6507886052131653
715
+ 1750101067.94403,84550,0.6532910466194153
716
+ 1750101184.3113961,84650,0.650813102722168
717
+ 1750101300.6346161,84750,0.6497732996940613
718
+ 1750101417.3176908,84850,0.6496176719665527
719
+ 1750101533.636374,84950,0.6501342058181763
720
+ 1750101649.565685,85050,0.6528940200805664
721
+ 1750101765.909247,85150,0.6525833606719971
722
+ 1750101881.584228,85250,0.650132954120636
723
+ 1750102000.73386,85350,0.6496201157569885
724
+ 1750102123.7391832,85450,0.6501519680023193
725
+ 1750102238.8457978,85550,0.6488964557647705
726
+ 1750102359.9214761,85650,0.6510980129241943
727
+ 1750102475.4553149,85750,0.6516562700271606
728
+ 1750102591.233095,85850,0.6508400440216064
729
+ 1750102706.973902,85950,0.6507493853569031
730
+ 1750102822.656201,86050,0.6494552493095398
731
+ 1750102938.4214451,86150,0.6484871506690979
732
+ 1750103054.184406,86250,0.6494491696357727
733
+ 1750103174.913878,86350,0.6497573256492615
734
+ 1750103291.4358752,86450,0.6503756046295166
735
+ 1750103408.954601,86550,0.6502782106399536
736
+ 1750103525.450433,86650,0.6492156982421875
737
+ 1750103643.345119,86750,0.6502463221549988
738
+ 1750103758.7680361,86850,0.6517242789268494
739
+ 1750103874.44716,86950,0.64891117811203
740
+ 1750103995.1904159,87050,0.6503370404243469
741
+ 1750104113.313233,87150,0.648857831954956
742
+ 1750104867.213655,87263,0.6533442735671997
743
+ 1750104990.644952,87363,0.6527530550956726
744
+ 1750105108.749578,87463,0.6530067324638367
745
+ 1750105228.482618,87563,0.650898277759552
746
+ 1750105345.200011,87663,0.6505967974662781
747
+ 1750105462.401325,87763,0.6541727781295776
748
+ 1750105583.0651278,87863,0.6510753631591797
749
+ 1750105717.216706,87963,0.6523413062095642
750
+ 1750105838.682082,88063,0.6511335968971252
751
+ 1750105975.438334,88163,0.6527175307273865
752
+ 1750106106.627712,88263,0.6487070918083191
753
+ 1750106242.7790568,88363,0.6508768200874329
754
+ 1750106367.5398169,88463,0.6527836918830872
755
+ 1750106491.0528882,88563,0.6500986814498901
756
+ 1750106614.614609,88663,0.6493241190910339
757
+ 1750106735.016927,88763,0.6510257124900818
758
+ 1750106857.7620852,88863,0.6492800116539001
759
+ 1750106986.702441,88963,0.6512181162834167
760
+ 1750107111.717518,89063,0.6506360173225403
761
+ 1750107228.7076979,89163,0.6517395973205566
762
+ 1750107346.9738932,89263,0.6490159630775452
763
+ 1750107464.920545,89363,0.6501629948616028
764
+ 1750107583.2309482,89463,0.6505747437477112
765
+ 1750107699.763712,89563,0.6477003693580627
766
+ 1750107818.607779,89663,0.6475716829299927
767
+ 1750107939.036907,89763,0.6489228010177612
768
+ 1750108058.216803,89863,0.6506924033164978
769
+ 1750108175.199019,89963,0.6502628922462463
770
+ 1750108292.703619,90063,0.6497432589530945
771
+ 1750108411.528075,90163,0.6469877362251282
772
+ 1750108529.149643,90263,0.6497542858123779
773
+ 1750109327.6874151,90376,0.651892364025116
774
+ 1750109448.1817029,90476,0.6531562209129333
775
+ 1750109564.803989,90576,0.6521072387695312
776
+ 1750109682.5154922,90676,0.6510747671127319
777
+ 1750109807.18699,90776,0.6527775526046753
778
+ 1750109937.623831,90876,0.6504724025726318
779
+ 1750110058.013789,90976,0.6522940993309021
780
+ 1750110177.417755,91076,0.6534093022346497
781
+ 1750110294.637894,91176,0.6521856784820557
782
+ 1750110416.915083,91276,0.6513940095901489
783
+ 1750110538.5843232,91376,0.6504846811294556
784
+ 1750110661.573292,91476,0.6513933539390564
785
+ 1750110784.1757429,91576,0.6507052779197693
786
+ 1750110907.472345,91676,0.650814950466156
787
+ 1750111031.5547361,91776,0.6509736776351929
788
+ 1750111153.6419892,91876,0.6515055298805237
789
+ 1750111272.164583,91976,0.6513664126396179
790
+ 1750111387.447068,92076,0.6497408151626587
791
+ 1750111502.772604,92176,0.6496139764785767
792
+ 1750111621.903015,92276,0.6504093408584595
793
+ 1750111738.397706,92376,0.6518149375915527
794
+ 1750111854.356266,92476,0.6491886973381042
795
+ 1750111970.475776,92576,0.6509883403778076
796
+ 1750112092.236366,92676,0.6475692391395569
797
+ 1750112215.338778,92776,0.650664210319519
798
+ 1750112333.134115,92876,0.6502971649169922
799
+ 1750112453.4675221,92976,0.6502291560173035
800
+ 1750112576.257438,93076,0.6490208506584167
801
+ 1750112697.693574,93176,0.6500085592269897
802
+ 1750112819.9915361,93276,0.6529031991958618
803
+ 1750112948.117852,93376,0.6488376259803772
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard (1).csv ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749862029.663543,99,0.37294554710388184
3
+ 1749862156.9849339,199,0.44629713892936707
4
+ 1749862283.002182,299,0.47867053747177124
5
+ 1749862404.551185,399,0.49936822056770325
6
+ 1749862523.688343,499,0.5137384533882141
7
+ 1749862647.099201,599,0.5275991559028625
8
+ 1749863398.260582,722,0.5418893694877625
9
+ 1749863512.803018,822,0.5529560446739197
10
+ 1749863628.045519,922,0.5599608421325684
11
+ 1749863743.546858,1022,0.5664816498756409
12
+ 1749863858.946523,1122,0.5740582346916199
13
+ 1749863974.606943,1222,0.5792315602302551
14
+ 1749864707.312323,2591,0.5740908980369568
15
+ 1749864822.3112042,2691,0.5770991444587708
16
+ 1749864937.8522801,2791,0.5825880765914917
17
+ 1749865053.508802,2891,0.5861800312995911
18
+ 1749865168.944853,2991,0.5914608240127563
19
+ 1749865284.4459488,3091,0.594249963760376
20
+ 1749865399.783348,3191,0.5992579460144043
21
+ 1749865514.924843,3291,0.602853536605835
22
+ 1749865630.1243489,3391,0.6052868366241455
23
+ 1749865745.3801239,3491,0.6072555184364319
24
+ 1749865860.57861,3591,0.6097333431243896
25
+ 1749865976.224461,3691,0.611083984375
26
+ 1749866732.477282,3837,0.6175699830055237
27
+ 1749866847.373405,3937,0.6213619709014893
28
+ 1749866961.69667,4037,0.6234620809555054
29
+ 1749867076.207936,4137,0.6233278512954712
30
+ 1749867192.9578712,4237,0.6250610947608948
31
+ 1749867307.9066849,4337,0.6263699531555176
32
+ 1749867423.839284,4437,0.6277560591697693
33
+ 1749867540.36063,4537,0.6290692090988159
34
+ 1749867656.4509041,4637,0.6298345327377319
35
+ 1749867772.5633621,4737,0.6320093274116516
36
+ 1749867888.3156312,4837,0.6330803036689758
37
+ 1749868006.0029519,4937,0.6348605155944824
38
+ 1749868808.441995,7571,0.6303296089172363
39
+ 1749868930.6764002,7671,0.6296606659889221
40
+ 1749869053.484579,7771,0.6313474178314209
41
+ 1749869174.837471,7871,0.632144570350647
42
+ 1749869292.225559,7971,0.6332916021347046
43
+ 1749869411.03731,8071,0.6333509683609009
44
+ 1749869535.8628109,8171,0.6353659629821777
45
+ 1749869649.086516,8271,0.6361371278762817
46
+ 1749869763.021135,8371,0.6366482973098755
47
+ 1749869877.361543,8471,0.6357555389404297
48
+ 1749869991.890194,8571,0.6368321180343628
49
+ 1749870112.390059,8671,0.6386470794677734
50
+ 1749870228.080665,8771,0.6386367082595825
51
+ 1749870342.9029372,8871,0.6378971338272095
52
+ 1749870457.246625,8971,0.6396408081054688
53
+ 1749870571.635715,9071,0.6408162117004395
54
+ 1749870686.231644,9171,0.6400809288024902
55
+ 1749870800.516695,9271,0.6418086290359497
56
+ 1749871605.094102,9439,0.64491206407547
57
+ 1749871737.065096,9539,0.6465832591056824
58
+ 1749871851.9842901,9639,0.6466361284255981
59
+ 1749871967.5529048,9739,0.6476323008537292
60
+ 1749872083.907424,9839,0.6464681029319763
61
+ 1749872201.8901188,9939,0.6458964347839355
62
+ 1749872363.6062431,10039,0.6475790143013
63
+ 1749872546.685531,10139,0.6460607051849365
64
+ 1749872663.447436,10239,0.6478688716888428
65
+ 1749873472.751728,10339,0.6373345255851746
66
+ 1749873586.958823,10439,0.6448805332183838
67
+ 1749873702.9145112,10539,0.6457089185714722
68
+ 1749873816.705306,10639,0.6463573575019836
69
+ 1749873930.537557,10739,0.6457958817481995
70
+ 1749874044.9519339,10839,0.6481281518936157
71
+ 1749874159.8627908,10939,0.6469950675964355
72
+ 1749874275.146302,11039,0.6485129594802856
73
+ 1749874390.6844969,11139,0.6499018669128418
74
+ 1749875174.8603241,15045,0.6436793208122253
75
+ 1749875290.682424,15145,0.6420380473136902
76
+ 1749875415.815707,15245,0.6425821781158447
77
+ 1749875530.4505758,15345,0.6420215368270874
78
+ 1749875644.9556422,15445,0.6440042853355408
79
+ 1749875759.9207602,15545,0.6424780488014221
80
+ 1749875879.3361962,15645,0.643294095993042
81
+ 1749875993.4695501,15745,0.6448836326599121
82
+ 1749876107.5972888,15845,0.645183801651001
83
+ 1749876221.7461262,15945,0.6461532711982727
84
+ 1749876336.225884,16045,0.6454576849937439
85
+ 1749876450.965764,16145,0.6456298828125
86
+ 1749876566.629506,16245,0.6443301439285278
87
+ 1749876683.568193,16345,0.645946204662323
88
+ 1749876798.040498,16445,0.6467732191085815
89
+ 1749876911.571116,16545,0.6462554931640625
90
+ 1749877025.1111512,16645,0.6451244950294495
91
+ 1749877139.379872,16745,0.6458805203437805
92
+ 1749877254.228658,16845,0.6443285346031189
93
+ 1749877374.360051,16945,0.6479160189628601
94
+ 1749877492.01997,17045,0.6478552222251892
95
+ 1749877608.5502021,17145,0.6497830748558044
96
+ 1749877724.957767,17245,0.6486115455627441
97
+ 1749877841.109853,17345,0.6480239033699036
98
+ 1749878646.2594078,17536,0.6495139598846436
99
+ 1749878760.912617,17636,0.6510331630706787
100
+ 1749878877.23084,17736,0.6514031291007996
101
+ 1749878993.918535,17836,0.6505551338195801
102
+ 1749879109.034369,17936,0.6511745452880859
103
+ 1749879223.9821818,18036,0.6540765166282654
104
+ 1749879339.26787,18136,0.6506806015968323
105
+ 1749879454.726379,18236,0.6503374576568604
106
+ 1749879570.0690088,18336,0.6529502868652344
107
+ 1749879685.1710541,18436,0.6511238217353821
108
+ 1749879800.3635142,18536,0.6518282890319824
109
+ 1749879915.033729,18636,0.6516628861427307
110
+ 1749880029.6866162,18736,0.6537311673164368
111
+ 1749880144.222166,18836,0.653042197227478
112
+ 1749880258.8637629,18936,0.6531310081481934
113
+ 1749880373.32494,19036,0.651985228061676
114
+ 1749880488.133607,19136,0.6532859802246094
115
+ 1749880602.5153239,19236,0.6535618305206299
116
+ 1749880717.016221,19336,0.6526396870613098
117
+ 1749880831.561332,19436,0.6540868282318115
118
+ 1749880946.107208,19536,0.6526824831962585
119
+ 1749881060.5496352,19636,0.652843177318573
120
+ 1749881174.887777,19736,0.6523430347442627
121
+ 1749881289.034664,19836,0.6538118124008179
122
+ 1749882085.5701241,25003,0.6411749720573425
123
+ 1749882199.2805178,25103,0.6289074420928955
124
+ 1749882313.069938,25203,0.63006192445755
125
+ 1749882426.932492,25303,0.6306214332580566
126
+ 1749882540.776115,25403,0.6305362582206726
127
+ 1749882655.2986329,25503,0.6331127882003784
128
+ 1749882771.058639,25603,0.6321122646331787
129
+ 1749882884.853459,25703,0.6309130191802979
130
+ 1749882999.084863,25803,0.6323768496513367
131
+ 1749883113.03004,25903,0.6333639621734619
132
+ 1749883227.049516,26003,0.6328328251838684
133
+ 1749883340.962351,26103,0.6330544948577881
134
+ 1749883454.8910239,26203,0.6316843628883362
135
+ 1749883568.748449,26303,0.6329068541526794
136
+ 1749883682.626584,26403,0.6340925693511963
137
+ 1749883796.266156,26503,0.634718120098114
138
+ 1749883909.823321,26603,0.6345930695533752
139
+ 1749884023.612312,26703,0.6305355429649353
140
+ 1749884137.3909109,26803,0.6329914331436157
141
+ 1749884250.964849,26903,0.6338057518005371
142
+ 1749884364.620685,27003,0.6310195922851562
143
+ 1749884478.288471,27103,0.6320237517356873
144
+ 1749884591.921928,27203,0.6323473453521729
145
+ 1749884705.4580832,27303,0.6338775753974915
146
+ 1749884819.04635,27403,0.6349583268165588
147
+ 1749884932.5079958,27503,0.6327939629554749
148
+ 1749885045.950988,27603,0.6340410709381104
149
+ 1749885159.388893,27703,0.6335666179656982
150
+ 1749885272.804197,27803,0.6340423226356506
151
+ 1749885386.316233,27903,0.6334601640701294
152
+ 1749885499.822531,28003,0.63486647605896
153
+ 1749886221.504969,28116,0.6372697353363037
154
+ 1749886334.385321,28216,0.6380821466445923
155
+ 1749886448.043535,28316,0.6341930627822876
156
+ 1749886566.996864,28416,0.6381385326385498
157
+ 1749886683.145211,28516,0.6390631198883057
158
+ 1749886801.945816,28616,0.6362524628639221
159
+ 1749886917.753129,28716,0.6383652091026306
160
+ 1749887031.577143,28816,0.6372789144515991
161
+ 1749887145.237945,28916,0.6368517875671387
162
+ 1749887259.142705,29016,0.6355586051940918
163
+ 1749887372.8702788,29116,0.6365960836410522
164
+ 1749887486.513908,29216,0.6369326710700989
165
+ 1749887600.1771169,29316,0.6356692314147949
166
+ 1749887714.078214,29416,0.6381360292434692
167
+ 1749887827.802154,29516,0.6395895481109619
168
+ 1749887941.250756,29616,0.6351495981216431
169
+ 1749888054.684053,29716,0.6337200403213501
170
+ 1749888168.055861,29816,0.6380612850189209
171
+ 1749888281.437411,29916,0.6367456912994385
172
+ 1749888395.104567,30016,0.6368082165718079
173
+ 1749888508.717651,30116,0.637988269329071
174
+ 1749888622.26287,30216,0.6383621692657471
175
+ 1749888735.716015,30316,0.6390760540962219
176
+ 1749888849.314946,30416,0.6382609009742737
177
+ 1749888962.671913,30516,0.6376262903213501
178
+ 1749889075.962262,30616,0.6375894546508789
179
+ 1749889189.209306,30716,0.6379967927932739
180
+ 1749889302.4496808,30816,0.6370212435722351
181
+ 1749889415.703003,30916,0.6353185772895813
182
+ 1749889528.950649,31016,0.6387556791305542
183
+ 1749889642.150322,31116,0.6378328204154968
184
+ 1749890378.956782,31229,0.6372666358947754
185
+ 1749890505.625979,31329,0.6375833749771118
186
+ 1749890618.191977,31429,0.6399643421173096
187
+ 1749890731.541603,31529,0.6371794939041138
188
+ 1749890844.967264,31629,0.6412948369979858
189
+ 1749890958.658777,31729,0.6381122469902039
190
+ 1749891071.891078,31829,0.6379870772361755
191
+ 1749891184.9368472,31929,0.636507511138916
192
+ 1749891298.383119,32029,0.6393314599990845
193
+ 1749891411.6084638,32129,0.6372302770614624
194
+ 1749891524.8479302,32229,0.6382989883422852
195
+ 1749891638.000088,32329,0.6384246349334717
196
+ 1749891750.925784,32429,0.642183244228363
197
+ 1749891863.9485052,32529,0.6387585401535034
198
+ 1749891976.981396,32629,0.6382800936698914
199
+ 1749892090.007157,32729,0.6391066908836365
200
+ 1749892204.878405,32829,0.6372695565223694
201
+ 1749892318.016267,32929,0.6377881765365601
202
+ 1749892431.1136398,33029,0.6381900310516357
203
+ 1749892544.650914,33129,0.6379098296165466
204
+ 1749892658.351629,33229,0.6390986442565918
205
+ 1749892771.5412412,33329,0.6394632458686829
206
+ 1749892884.5655081,33429,0.638789176940918
207
+ 1749892997.703425,33529,0.6404674649238586
208
+ 1749893113.111906,33629,0.6377144455909729
209
+ 1749893226.4987352,33729,0.6403603553771973
210
+ 1749893339.7236722,33829,0.6399890184402466
211
+ 1749893452.709901,33929,0.6386091113090515
212
+ 1749893565.764252,34029,0.638846218585968
213
+ 1749893678.8613818,34129,0.6392867565155029
214
+ 1749893793.811114,34229,0.6415501236915588
215
+ 1749894523.4330702,34342,0.6422275900840759
216
+ 1749894635.668705,34442,0.6422102451324463
217
+ 1749894748.496078,34542,0.6423694491386414
218
+ 1749894862.105796,34642,0.6409814953804016
219
+ 1749894975.7232609,34742,0.6424775123596191
220
+ 1749895088.827214,34842,0.6412819027900696
221
+ 1749895201.8739011,34942,0.6421397924423218
222
+ 1749895315.383924,35042,0.6428180932998657
223
+ 1749895428.870367,35142,0.6411274671554565
224
+ 1749895542.779712,35242,0.6404625773429871
225
+ 1749895655.7400692,35342,0.6413607597351074
226
+ 1749895768.754721,35442,0.6396623253822327
227
+ 1749895881.675998,35542,0.6398554444313049
228
+ 1749895994.7287948,35642,0.6418105363845825
229
+ 1749896107.590622,35742,0.6404362320899963
230
+ 1749896220.531776,35842,0.6405752301216125
231
+ 1749896334.0023758,35942,0.6391710638999939
232
+ 1749896447.1242828,36042,0.639792263507843
233
+ 1749896560.152203,36142,0.6422731280326843
234
+ 1749896673.189848,36242,0.6405914425849915
235
+ 1749896786.198764,36342,0.641568124294281
236
+ 1749896899.2863219,36442,0.6413493156433105
237
+ 1749897012.305343,36542,0.6412314772605896
238
+ 1749897125.3817248,36642,0.6421323418617249
239
+ 1749897238.33933,36742,0.6419852375984192
240
+ 1749897351.259258,36842,0.6420484185218811
241
+ 1749897465.7836952,36942,0.641920268535614
242
+ 1749897578.788863,37042,0.640053927898407
243
+ 1749897692.2813172,37142,0.6422847509384155
244
+ 1749897805.190093,37242,0.642421543598175
245
+ 1749897919.005985,37342,0.6421249508857727
246
+ 1749898639.5689752,37455,0.6431224942207336
247
+ 1749898751.988163,37555,0.6455073356628418
248
+ 1749898864.6416771,37655,0.6462562084197998
249
+ 1749898977.266717,37755,0.6433696746826172
250
+ 1749899094.0932312,37855,0.6439356803894043
251
+ 1749899207.426185,37955,0.6446089148521423
252
+ 1749899321.114516,38055,0.6461760997772217
253
+ 1749899435.41614,38155,0.6425666809082031
254
+ 1749899548.3957949,38255,0.6415822505950928
255
+ 1749899661.12898,38355,0.6433603763580322
256
+ 1749899773.907331,38455,0.6439739465713501
257
+ 1749899887.206593,38555,0.6431937217712402
258
+ 1749900000.022349,38655,0.6433701515197754
259
+ 1749900112.838345,38755,0.6402089595794678
260
+ 1749900225.587293,38855,0.6431488990783691
261
+ 1749900338.40116,38955,0.6427022814750671
262
+ 1749900451.419723,39055,0.642128050327301
263
+ 1749900564.1494222,39155,0.6431225538253784
264
+ 1749900676.855479,39255,0.6424416303634644
265
+ 1749900789.689708,39355,0.6426573395729065
266
+ 1749900902.666292,39455,0.6421151161193848
267
+ 1749901015.986363,39555,0.6435821652412415
268
+ 1749901129.7744472,39655,0.6438963413238525
269
+ 1749901242.9367309,39755,0.641447901725769
270
+ 1749901355.883141,39855,0.6451898813247681
271
+ 1749901468.810418,39955,0.6418604850769043
272
+ 1749901581.483256,40055,0.6420018672943115
273
+ 1749901694.195169,40155,0.6414068341255188
274
+ 1749901807.6175969,40255,0.6405832171440125
275
+ 1749901928.495046,40355,0.6415613293647766
276
+ 1749902049.321397,40455,0.6413848400115967
277
+ 1749902758.697643,40568,0.6457716822624207
278
+ 1749902871.2450671,40668,0.646309494972229
279
+ 1749902983.9136572,40768,0.6463437676429749
280
+ 1749903096.5065012,40868,0.6450349688529968
281
+ 1749903209.1087449,40968,0.6446881294250488
282
+ 1749903321.672395,41068,0.644142746925354
283
+ 1749903434.1538491,41168,0.6432740092277527
284
+ 1749903546.677047,41268,0.6437448859214783
285
+ 1749903663.135898,41368,0.6455336213111877
286
+ 1749903775.808806,41468,0.6436740756034851
287
+ 1749903888.313575,41568,0.6446691751480103
288
+ 1749904000.9246452,41668,0.6452683806419373
289
+ 1749904113.586472,41768,0.6439473032951355
290
+ 1749904226.149442,41868,0.6451581716537476
291
+ 1749904338.615375,41968,0.6452315449714661
292
+ 1749904451.142393,42068,0.6444404721260071
293
+ 1749904563.662851,42168,0.6423818469047546
294
+ 1749904678.6194618,42268,0.6442590355873108
295
+ 1749904791.92433,42368,0.6440293788909912
296
+ 1749904905.461743,42468,0.6425467729568481
297
+ 1749905018.109602,42568,0.6436562538146973
298
+ 1749905130.8406038,42668,0.6423113346099854
299
+ 1749905243.4874198,42768,0.6433395147323608
300
+ 1749905356.34921,42868,0.6426182389259338
301
+ 1749905469.8472939,42968,0.6429547071456909
302
+ 1749905582.4856489,43068,0.6445577144622803
303
+ 1749905700.7709599,43168,0.6432076096534729
304
+ 1749905813.246316,43268,0.6452598571777344
305
+ 1749905925.7469351,43368,0.6450968980789185
306
+ 1749906038.568206,43468,0.6417151093482971
307
+ 1749906152.325112,43568,0.6453571319580078
308
+ 1749906869.613624,43681,0.6455939412117004
309
+ 1749906981.776615,43781,0.6470116376876831
310
+ 1749907094.291646,43881,0.6461580395698547
311
+ 1749907206.7288609,43981,0.6449430584907532
312
+ 1749907319.248631,44081,0.6480114459991455
313
+ 1749907431.68859,44181,0.6469368934631348
314
+ 1749907544.137596,44281,0.6462560296058655
315
+ 1749907656.623639,44381,0.6483475565910339
316
+ 1749907769.0745878,44481,0.6476715207099915
317
+ 1749907881.511359,44581,0.6467322707176208
318
+ 1749907993.944629,44681,0.6418707370758057
319
+ 1749908106.3325398,44781,0.6422119736671448
320
+ 1749908218.755035,44881,0.6456181406974792
321
+ 1749908332.6752698,44981,0.6438400149345398
322
+ 1749908445.41487,45081,0.6453412771224976
323
+ 1749908561.7160451,45181,0.6472585201263428
324
+ 1749908674.349626,45281,0.6463475227355957
325
+ 1749908787.409377,45381,0.6437843441963196
326
+ 1749908900.228266,45481,0.6451470255851746
327
+ 1749909012.759907,45581,0.6464168429374695
328
+ 1749909125.33191,45681,0.6457372307777405
329
+ 1749909238.6822069,45781,0.6420699954032898
330
+ 1749909353.055778,45881,0.6455863118171692
331
+ 1749909465.583371,45981,0.6430723071098328
332
+ 1749909578.791123,46081,0.6466464400291443
333
+ 1749909695.810501,46181,0.6415648460388184
334
+ 1749909816.994015,46281,0.6458131670951843
335
+ 1749909931.178684,46381,0.6433743834495544
336
+ 1749910044.3576698,46481,0.6447113156318665
337
+ 1749910156.936951,46581,0.6447990536689758
338
+ 1749910269.43704,46681,0.643962562084198
339
+ 1749910985.444436,46794,0.6470857858657837
340
+ 1749911097.5499258,46894,0.6493186950683594
341
+ 1749911209.9833422,46994,0.6470249891281128
342
+ 1749911323.2898078,47094,0.6450704336166382
343
+ 1749911435.872323,47194,0.6471397876739502
344
+ 1749911548.425044,47294,0.6435807943344116
345
+ 1749911660.932256,47394,0.6473038196563721
346
+ 1749911776.825709,47494,0.6473247408866882
347
+ 1749911900.3222861,47594,0.6455411314964294
348
+ 1749912026.3668249,47694,0.6466323137283325
349
+ 1749912157.162115,47794,0.6445478200912476
350
+ 1749912274.590166,47894,0.646281898021698
351
+ 1749912391.31292,47994,0.6441708207130432
352
+ 1749912505.9149718,48094,0.6465533375740051
353
+ 1749912619.9158368,48194,0.6457281708717346
354
+ 1749912733.845898,48294,0.6469725966453552
355
+ 1749912848.251153,48394,0.6476579308509827
356
+ 1749912962.486568,48494,0.6469281911849976
357
+ 1749913083.380466,48594,0.6445661187171936
358
+ 1749913213.3275251,48694,0.6448878645896912
359
+ 1749913327.168751,48794,0.6478087902069092
360
+ 1749913445.553847,48894,0.6467218995094299
361
+ 1749913562.00287,48994,0.6449093818664551
362
+ 1749913676.5021539,49094,0.6456226110458374
363
+ 1749913865.943388,49194,0.6480283141136169
364
+ 1749913978.782634,49294,0.644949734210968
365
+ 1749914091.5461361,49394,0.6477023363113403
366
+ 1749914205.0430741,49494,0.6454227566719055
367
+ 1749914317.857575,49594,0.6468780636787415
368
+ 1749914436.420907,49694,0.6437995433807373
369
+ 1749914548.4780428,49794,0.6442689895629883
370
+ 1749915254.64979,49907,0.6468920707702637
371
+ 1749915366.522047,50007,0.6443278193473816
372
+ 1749915479.121721,50107,0.64507657289505
373
+ 1749915591.986209,50207,0.6475539207458496
374
+ 1749915705.132767,50307,0.6458376049995422
375
+ 1749915818.162699,50407,0.6470894813537598
376
+ 1749915931.2429461,50507,0.6459890007972717
377
+ 1749916044.412135,50607,0.6449429988861084
378
+ 1749916157.798768,50707,0.6434136033058167
379
+ 1749916270.845293,50807,0.6452168822288513
380
+ 1749916385.228409,50907,0.6414031982421875
381
+ 1749916498.514762,51007,0.6429454684257507
382
+ 1749916610.5736582,51107,0.645865797996521
383
+ 1749916722.826114,51207,0.6456354260444641
384
+ 1749916835.510131,51307,0.6453517079353333
385
+ 1749916948.500181,51407,0.6425925493240356
386
+ 1749917061.547553,51507,0.6441556215286255
387
+ 1749917175.452366,51607,0.6438621282577515
388
+ 1749917289.691377,51707,0.6460551619529724
389
+ 1749917402.7212632,51807,0.6445820927619934
390
+ 1749917515.7485409,51907,0.6466335654258728
391
+ 1749917628.76803,52007,0.6439675092697144
392
+ 1749917741.809431,52107,0.6454479098320007
393
+ 1749917854.9519842,52207,0.6439056396484375
394
+ 1749917968.173187,52307,0.643708348274231
395
+ 1749918081.338985,52407,0.6449944972991943
396
+ 1749918194.488252,52507,0.6446917653083801
397
+ 1749918307.705295,52607,0.6453357934951782
398
+ 1749918420.946692,52707,0.6437267065048218
399
+ 1749918534.1307259,52807,0.6483670473098755
400
+ 1749918647.290252,52907,0.6452763676643372
401
+ 1749919349.8012888,53020,0.6482431888580322
402
+ 1749919462.727903,53120,0.6488265991210938
403
+ 1749919575.7412622,53220,0.6478548049926758
404
+ 1749919688.842592,53320,0.6473872661590576
405
+ 1749919801.817652,53420,0.647352933883667
406
+ 1749919914.7892962,53520,0.6466537714004517
407
+ 1749920027.768988,53620,0.6455276012420654
408
+ 1749920141.053708,53720,0.6472206115722656
409
+ 1749920254.0534441,53820,0.6466146111488342
410
+ 1749920367.0409348,53920,0.6457653045654297
411
+ 1749920479.953151,54020,0.6479485034942627
412
+ 1749920592.791873,54120,0.6481966972351074
413
+ 1749920705.670143,54220,0.647784948348999
414
+ 1749920818.720621,54320,0.6458646059036255
415
+ 1749920931.794077,54420,0.6477463245391846
416
+ 1749921045.317086,54520,0.6461666822433472
417
+ 1749921159.993518,54620,0.6487022042274475
418
+ 1749921273.078507,54720,0.6468180418014526
419
+ 1749921386.2036648,54820,0.6433663964271545
420
+ 1749921499.324935,54920,0.6466029286384583
421
+ 1749921612.4671302,55020,0.6448517441749573
422
+ 1749921725.574382,55120,0.6463658213615417
423
+ 1749921838.710418,55220,0.645363986492157
424
+ 1749921951.791944,55320,0.6455214619636536
425
+ 1749922065.369843,55420,0.6459031701087952
426
+ 1749922178.5358238,55520,0.6457732915878296
427
+ 1749922291.767361,55620,0.6463260054588318
428
+ 1749922404.942503,55720,0.6452855467796326
429
+ 1749922518.24964,55820,0.6466127634048462
430
+ 1749922631.665324,55920,0.6458290219306946
431
+ 1749922745.3478122,56020,0.6472273468971252
432
+ 1749923447.429276,56133,0.6463302373886108
433
+ 1749923561.056462,56233,0.6482003927230835
434
+ 1749923673.753302,56333,0.6483168005943298
435
+ 1749923786.9378948,56433,0.6495551466941833
436
+ 1749923900.16594,56533,0.6490747332572937
437
+ 1749924013.5890381,56633,0.6481636166572571
438
+ 1749924127.013432,56733,0.6470484137535095
439
+ 1749924240.250842,56833,0.6492579579353333
440
+ 1749924353.401773,56933,0.6456274390220642
441
+ 1749924466.8444622,57033,0.6473854184150696
442
+ 1749924580.147986,57133,0.6476078629493713
443
+ 1749924693.80851,57233,0.6493817567825317
444
+ 1749924809.654303,57333,0.6484301686286926
445
+ 1749924924.456167,57433,0.6469117403030396
446
+ 1749925038.634381,57533,0.6482880115509033
447
+ 1749925152.2785192,57633,0.6481899619102478
448
+ 1749925265.869144,57733,0.64661705493927
449
+ 1749925379.272862,57833,0.6464669108390808
450
+ 1749925491.8101661,57933,0.6488008499145508
451
+ 1749925604.6834948,58033,0.6441654562950134
452
+ 1749925717.869805,58133,0.6466636061668396
453
+ 1749925831.2332642,58233,0.6475287675857544
454
+ 1749925944.81216,58333,0.6480196118354797
455
+ 1749926058.425607,58433,0.6473321318626404
456
+ 1749926172.1372879,58533,0.6467843055725098
457
+ 1749926285.852811,58633,0.6482695937156677
458
+ 1749926400.246176,58733,0.64788419008255
459
+ 1749926514.2801862,58833,0.6464325785636902
460
+ 1749926628.411781,58933,0.6449589729309082
461
+ 1749926742.487724,59033,0.6453645825386047
462
+ 1749926856.6434848,59133,0.6469466686248779
463
+ 1749927559.5214038,59246,0.6503404378890991
464
+ 1749927672.020673,59346,0.6473168134689331
465
+ 1749927785.250925,59446,0.6481862664222717
466
+ 1749927898.710655,59546,0.649619460105896
467
+ 1749928012.247091,59646,0.6465483903884888
468
+ 1749928126.010963,59746,0.649186909198761
469
+ 1749928239.80563,59846,0.6484472751617432
470
+ 1749928353.680489,59946,0.6479632258415222
471
+ 1749928467.482208,60046,0.64899080991745
472
+ 1749928581.240331,60146,0.6511568427085876
473
+ 1749928695.511598,60246,0.6487745046615601
474
+ 1749928811.3063512,60346,0.6479558944702148
475
+ 1749928925.040396,60446,0.6488529443740845
476
+ 1749929038.6185012,60546,0.6495551466941833
477
+ 1749929152.2053819,60646,0.6491721868515015
478
+ 1749929265.851369,60746,0.6482187509536743
479
+ 1749929379.502666,60846,0.6466194987297058
480
+ 1749929493.5331898,60946,0.6470288038253784
481
+ 1749929607.4053981,61046,0.6479650735855103
482
+ 1749929721.085204,61146,0.6456948518753052
483
+ 1749929834.74776,61246,0.6463167667388916
484
+ 1749929948.555677,61346,0.6469117403030396
485
+ 1749930063.395309,61446,0.6496709585189819
486
+ 1749930177.1792881,61546,0.6468149423599243
487
+ 1749930291.206655,61646,0.6464289426803589
488
+ 1749930405.0233212,61746,0.6476335525512695
489
+ 1749930519.116152,61846,0.6473082304000854
490
+ 1749930633.092383,61946,0.6477475762367249
491
+ 1749930746.959587,62046,0.645340085029602
492
+ 1749930860.721993,62146,0.6493327021598816
493
+ 1749930974.7665339,62246,0.6471899747848511
494
+ 1749931678.899295,62359,0.648399293422699
495
+ 1749931792.6391659,62459,0.6488786935806274
496
+ 1749931906.5278468,62559,0.6509184837341309
497
+ 1749932020.4616919,62659,0.6484221816062927
498
+ 1749932134.672566,62759,0.6522690057754517
499
+ 1749932248.6759748,62859,0.6484540700912476
500
+ 1749932362.711755,62959,0.6484025716781616
501
+ 1749932476.661569,63059,0.6470717191696167
502
+ 1749932590.790066,63159,0.6500177383422852
503
+ 1749932704.8376472,63259,0.6474350690841675
504
+ 1749932819.889387,63359,0.6481654644012451
505
+ 1749932936.8226,63459,0.6483504772186279
506
+ 1749933051.687947,63559,0.6519791483879089
507
+ 1749933165.7263381,63659,0.6482064723968506
508
+ 1749933279.444386,63759,0.6480998992919922
509
+ 1749933393.378773,63859,0.6485667824745178
510
+ 1749933507.367212,63959,0.6471758484840393
511
+ 1749933623.911954,64059,0.6477560997009277
512
+ 1749933738.056524,64159,0.6477352976799011
513
+ 1749933852.191925,64259,0.6470110416412354
514
+ 1749933966.306999,64359,0.6480882167816162
515
+ 1749934080.359732,64459,0.6488682627677917
516
+ 1749934194.425351,64559,0.6470747590065002
517
+ 1749934308.54075,64659,0.6494074463844299
518
+ 1749934422.480662,64759,0.6468547582626343
519
+ 1749934536.808921,64859,0.6491286754608154
520
+ 1749934650.823456,64959,0.648867666721344
521
+ 1749934764.7258089,65059,0.6472849249839783
522
+ 1749934878.7077188,65159,0.6478468179702759
523
+ 1749934992.883969,65259,0.6479583382606506
524
+ 1749935106.933438,65359,0.6497653126716614
525
+ 1749935813.731499,65472,0.6506868600845337
526
+ 1749935927.942222,65572,0.6503027081489563
527
+ 1749936041.607051,65672,0.6512806415557861
528
+ 1749936155.296227,65772,0.6489803791046143
529
+ 1749936270.8974578,65872,0.6508885025978088
530
+ 1749936385.587658,65972,0.6498168110847473
531
+ 1749936499.060506,66072,0.6503278017044067
532
+ 1749936612.441948,66172,0.6502352952957153
533
+ 1749936726.748907,66272,0.6489626169204712
534
+ 1749936841.875183,66372,0.6480649709701538
535
+ 1749936956.4900322,66472,0.6499338150024414
536
+ 1749937069.998561,66572,0.6472322344779968
537
+ 1749937183.7017019,66672,0.6475245356559753
538
+ 1749937298.516124,66772,0.6491470336914062
539
+ 1749937411.92944,66872,0.647495687007904
540
+ 1749937526.436012,66972,0.6476641893386841
541
+ 1749937641.158314,67072,0.6466764807701111
542
+ 1749937756.0765388,67172,0.6474534273147583
543
+ 1749937871.194944,67272,0.6498247385025024
544
+ 1749937986.103464,67372,0.647672176361084
545
+ 1749938111.256961,67472,0.6493241190910339
546
+ 1749938234.540023,67572,0.649218738079071
547
+ 1749938358.600482,67672,0.6481427550315857
548
+ 1749938482.183712,67772,0.6489521861076355
549
+ 1749938604.988889,67872,0.6490012407302856
550
+ 1749938730.016806,67972,0.6490533351898193
551
+ 1749938855.713066,68072,0.6489706039428711
552
+ 1749938984.016691,68172,0.6467726826667786
553
+ 1749939111.805879,68272,0.6495416760444641
554
+ 1749939237.4458308,68372,0.6492695808410645
555
+ 1749939362.440269,68472,0.6486568450927734
556
+ 1749940143.424747,68585,0.6501026153564453
557
+ 1749940267.8671591,68685,0.6520465612411499
558
+ 1749940406.536912,68785,0.65306556224823
559
+ 1749940539.007791,68885,0.6500367522239685
560
+ 1749940665.279575,68985,0.6502971649169922
561
+ 1749940787.382014,69085,0.6517028212547302
562
+ 1749940907.63042,69185,0.6525441408157349
563
+ 1749941027.280397,69285,0.6494277119636536
564
+ 1749941156.2273762,69385,0.6480973958969116
565
+ 1749941287.1213481,69485,0.6496758460998535
566
+ 1749941414.0066822,69585,0.6504148244857788
567
+ 1749941543.8237681,69685,0.6497818827629089
568
+ 1749941674.046098,69785,0.6492977738380432
569
+ 1749941812.787934,69885,0.64699387550354
570
+ 1749941962.015331,69985,0.6491678953170776
571
+ 1749942102.411791,70085,0.6491384506225586
572
+ 1749942233.3373299,70185,0.6481152176856995
573
+ 1749942359.018425,70285,0.6494773030281067
574
+ 1749942480.5869482,70385,0.6486470699310303
575
+ 1749942601.3076742,70485,0.6487181186676025
576
+ 1749942721.842447,70585,0.6483076214790344
577
+ 1749942847.5958269,70685,0.6500759720802307
578
+ 1749942983.723243,70785,0.6499319672584534
579
+ 1749943115.342161,70885,0.6474846601486206
580
+ 1749943244.810354,70985,0.6511532068252563
581
+ 1749943381.720277,71085,0.6476777195930481
582
+ 1749943509.7974699,71185,0.6476617455482483
583
+ 1749943636.8749802,71285,0.6472451090812683
584
+ 1749943769.3658261,71385,0.6470766067504883
585
+ 1749943902.5753548,71485,0.6476035714149475
586
+ 1749944037.523066,71585,0.6469583511352539
587
+ 1749944826.5780659,71698,0.6512960195541382
588
+ 1749944953.716961,71798,0.65183025598526
589
+ 1749945082.082031,71898,0.6517236232757568
590
+ 1749945210.61923,71998,0.6500888466835022
591
+ 1749945339.124059,72098,0.6505330801010132
592
+ 1749945468.641827,72198,0.6502751111984253
593
+ 1749945598.1349041,72298,0.6493455767631531
594
+ 1749945728.573417,72398,0.6493124961853027
595
+ 1749945858.0623538,72498,0.6513002514839172
596
+ 1749945982.3945642,72598,0.6496317386627197
597
+ 1749946111.765118,72698,0.6507402062416077
598
+ 1749946240.630443,72798,0.6511532068252563
599
+ 1749946368.180806,72898,0.6491826176643372
600
+ 1749946496.832103,72998,0.6513100266456604
601
+ 1749946625.482293,73098,0.6511054039001465
602
+ 1749946755.102677,73198,0.6496274471282959
603
+ 1749946885.840373,73298,0.6478989124298096
604
+ 1749947015.730135,73398,0.6493860483169556
605
+ 1749947148.454241,73498,0.649440586566925
606
+ 1749947279.728344,73598,0.6481335759162903
607
+ 1749947410.7961621,73698,0.648591935634613
608
+ 1749947532.051818,73798,0.6477193832397461
609
+ 1749947658.5383391,73898,0.6488223075866699
610
+ 1749947785.23248,73998,0.6482095718383789
611
+ 1749947905.7281501,74098,0.6481219530105591
612
+ 1749948037.10495,74198,0.649522066116333
613
+ 1749948162.964204,74298,0.6486262083053589
614
+ 1749948299.8906748,74398,0.649992048740387
615
+ 1749948431.189439,74498,0.6464987993240356
616
+ 1749948562.154502,74598,0.6457542777061462
617
+ 1749948692.440773,74698,0.6492316126823425
618
+ 1749949544.119091,74811,0.6499026417732239
619
+ 1749949662.2882051,74911,0.651816189289093
620
+ 1749949782.29321,75011,0.65162193775177
621
+ 1749949903.6215732,75111,0.6497769355773926
622
+ 1749950025.437519,75211,0.652581512928009
623
+ 1749950147.172297,75311,0.6517457365989685
624
+ 1749950269.3430872,75411,0.6511011123657227
625
+ 1749950391.183779,75511,0.6535349488258362
626
+ 1749950512.9859998,75611,0.6526746153831482
627
+ 1749950634.5976489,75711,0.6515275835990906
628
+ 1749950755.841614,75811,0.6468645930290222
629
+ 1749950876.902978,75911,0.6469895839691162
630
+ 1749950997.8276448,76011,0.6505018472671509
631
+ 1749951118.90695,76111,0.6481991410255432
632
+ 1749951242.0590239,76211,0.6500465869903564
633
+ 1749951365.13945,76311,0.6522291898727417
634
+ 1749951485.726495,76411,0.6512941122055054
635
+ 1749951606.384018,76511,0.6485955715179443
636
+ 1749951727.3418372,76611,0.6492347121238708
637
+ 1749951848.91982,76711,0.6510809063911438
638
+ 1749951970.4396238,76811,0.6507787704467773
639
+ 1749952092.018361,76911,0.6465024352073669
640
+ 1749952212.437438,77011,0.6503309011459351
641
+ 1749952333.3358028,77111,0.6472941040992737
642
+ 1749952454.374986,77211,0.6507310271263123
643
+ 1749952577.957252,77311,0.646462619304657
644
+ 1749952698.933182,77411,0.6501801609992981
645
+ 1749952821.444906,77511,0.6480913162231445
646
+ 1749952943.532354,77611,0.6492763757705688
647
+ 1749953065.092947,77711,0.6491703391075134
648
+ 1749953183.2942998,77811,0.6481268405914307
649
+ 1749953919.8155909,77924,0.6514578461647034
650
+ 1749954039.144916,78024,0.6536059975624084
651
+ 1749954164.892725,78124,0.6516213417053223
652
+ 1749954287.405833,78224,0.6496967077255249
653
+ 1749954411.896708,78324,0.6509160399436951
654
+ 1749954532.976285,78424,0.6475796699523926
655
+ 1749954651.8212879,78524,0.6513621211051941
656
+ 1749954768.340374,78624,0.6514209508895874
657
+ 1749954889.928726,78724,0.6494865417480469
658
+ 1749955013.7541099,78824,0.6507163047790527
659
+ 1749955135.127798,78924,0.648713231086731
660
+ 1749955250.329943,79024,0.6503958106040955
661
+ 1749955368.0772521,79124,0.6481421589851379
662
+ 1749955488.714318,79224,0.6509117484092712
663
+ 1749955608.994308,79324,0.6496789455413818
664
+ 1749955730.32185,79424,0.6509148478507996
665
+ 1749955852.183527,79524,0.65162193775177
666
+ 1749955982.130076,79624,0.6507677435874939
667
+ 1749956105.558641,79724,0.6485790610313416
668
+ 1749956225.0044448,79824,0.6489969491958618
669
+ 1749956346.8952608,79924,0.6521139740943909
670
+ 1749956467.616684,80024,0.6509135961532593
671
+ 1749956589.9021041,80124,0.6493566036224365
672
+ 1749956710.854453,80224,0.6497260928153992
673
+ 1749956831.13642,80324,0.6498333215713501
674
+ 1749956952.777001,80424,0.6474724411964417
675
+ 1749957072.210849,80524,0.648578405380249
676
+ 1749957191.451542,80624,0.6495128870010376
677
+ 1749957314.737707,80724,0.6525374054908752
678
+ 1749957435.151362,80824,0.6503774523735046
679
+ 1749957557.393923,80924,0.6495735049247742
680
+ 1749958292.639041,81037,0.6502798199653625
681
+ 1749958412.06761,81137,0.6510465741157532
682
+ 1749958532.686303,81237,0.651066780090332
683
+ 1749958645.7889438,81337,0.6499913930892944
684
+ 1749958759.571202,81437,0.6506991386413574
685
+ 1749958874.801936,81537,0.6515716910362244
686
+ 1749958991.03166,81637,0.649645209312439
687
+ 1749959107.828541,81737,0.6534062623977661
688
+ 1749959224.8999429,81837,0.6517438888549805
689
+ 1749959342.0457559,81937,0.6472377181053162
690
+ 1749959458.717472,82037,0.6487628817558289
691
+ 1749959575.365946,82137,0.6506679058074951
692
+ 1749959691.9944792,82237,0.6509387493133545
693
+ 1749959809.0819032,82337,0.6492481827735901
694
+ 1749959926.093535,82437,0.6509411931037903
695
+ 1749960043.8178828,82537,0.6513333320617676
696
+ 1749960161.549503,82637,0.650521457195282
697
+ 1749960279.3088372,82737,0.6513921618461609
698
+ 1749960397.345453,82837,0.6535490155220032
699
+ 1749960515.7569332,82937,0.651286780834198
700
+ 1749960634.0833302,83037,0.6500453352928162
701
+ 1749960752.65109,83137,0.6486304998397827
702
+ 1749960871.347281,83237,0.648453414440155
703
+ 1749960990.1292732,83337,0.648758590221405
704
+ 1749961108.411705,83437,0.6494736671447754
705
+ 1749961226.271459,83537,0.6482904553413391
706
+ 1749961343.8049831,83637,0.6508358120918274
707
+ 1749961461.005431,83737,0.650747537612915
708
+ 1749961577.844734,83837,0.6494197249412537
709
+ 1749961694.582011,83937,0.6514062285423279
710
+ 1749961811.7100859,84037,0.6520459651947021
711
+ 1749962538.324168,84150,0.6520133018493652
712
+ 1749962654.3846312,84250,0.6523498892784119
713
+ 1749962770.139613,84350,0.6531066298484802
714
+ 1749962886.967903,84450,0.6516783237457275
715
+ 1749963002.7153668,84550,0.6499571204185486
716
+ 1749963118.68018,84650,0.6509124040603638
717
+ 1749963234.560016,84750,0.6497187614440918
718
+ 1749963350.778174,84850,0.6517395973205566
719
+ 1749963466.768766,84950,0.6517120003700256
720
+ 1749963582.5068312,85050,0.6510888338088989
721
+ 1749963697.9346209,85150,0.650672197341919
722
+ 1749963813.328256,85250,0.648465096950531
723
+ 1749963928.9572961,85350,0.6514068841934204
724
+ 1749964044.29373,85450,0.6517898440361023
725
+ 1749964159.5894961,85550,0.6503884792327881
726
+ 1749964275.069377,85650,0.6498480439186096
727
+ 1749964390.285314,85750,0.6514013409614563
728
+ 1749964505.738982,85850,0.6507444977760315
729
+ 1749964620.9884312,85950,0.6518247723579407
730
+ 1749964736.0891361,86050,0.6507181525230408
731
+ 1749964851.121147,86150,0.6493345499038696
732
+ 1749964966.152081,86250,0.651191771030426
733
+ 1749965081.159734,86350,0.6515423059463501
734
+ 1749965196.013607,86450,0.6494301557540894
735
+ 1749965310.919723,86550,0.6503309011459351
736
+ 1749965425.7250419,86650,0.6484840512275696
737
+ 1749965540.5652092,86750,0.6490238904953003
738
+ 1749965655.315326,86850,0.6500490307807922
739
+ 1749965770.049461,86950,0.6497481465339661
740
+ 1749965884.834232,87050,0.6497408151626587
741
+ 1749965999.8417149,87150,0.6487524509429932
742
+ 1749966711.9277241,87263,0.6526259779930115
743
+ 1749966826.452731,87363,0.6557187438011169
744
+ 1749966941.486036,87463,0.6512144804000854
745
+ 1749967056.0634692,87563,0.652887225151062
746
+ 1749967171.025635,87663,0.6515324711799622
747
+ 1749967285.560586,87763,0.6503400802612305
748
+ 1749967400.0741189,87863,0.6521697044372559
749
+ 1749967514.531109,87963,0.6512916684150696
750
+ 1749967628.8952188,88063,0.6526513695716858
751
+ 1749967743.326265,88163,0.6508504748344421
752
+ 1749967857.77909,88263,0.6511495113372803
753
+ 1749967972.186653,88363,0.6517524719238281
754
+ 1749968086.6080792,88463,0.6508412957191467
755
+ 1749968201.192553,88563,0.6497830748558044
756
+ 1749968315.548358,88663,0.6478333473205566
757
+ 1749968429.965076,88763,0.6519607901573181
758
+ 1749968544.336524,88863,0.6503326892852783
759
+ 1749968658.703823,88963,0.6507499814033508
760
+ 1749968773.079833,89063,0.6491066217422485
761
+ 1749968887.395246,89163,0.6507052779197693
762
+ 1749969001.696439,89263,0.6486783027648926
763
+ 1749969115.9041128,89363,0.6508688926696777
764
+ 1749969230.1204438,89463,0.649645209312439
765
+ 1749969344.436378,89563,0.6521825790405273
766
+ 1749969458.747808,89663,0.6497873663902283
767
+ 1749969572.979925,89763,0.6509847044944763
768
+ 1749969687.2085052,89863,0.6497610211372375
769
+ 1749969801.430084,89963,0.6509503722190857
770
+ 1749969916.392996,90063,0.6496807336807251
771
+ 1749970033.5500932,90163,0.6488866209983826
772
+ 1749970147.7666628,90263,0.6514172554016113
773
+ 1749970854.433412,90376,0.6510876417160034
774
+ 1749970968.305205,90476,0.6535937786102295
775
+ 1749971082.257281,90576,0.6536029577255249
776
+ 1749971196.191396,90676,0.6521390676498413
777
+ 1749971310.241806,90776,0.6517383456230164
778
+ 1749971424.201389,90876,0.6515649557113647
779
+ 1749971538.050328,90976,0.6490882635116577
780
+ 1749971652.028349,91076,0.6509369015693665
781
+ 1749971765.8967092,91176,0.6530330777168274
782
+ 1749971879.7971148,91276,0.6518627405166626
783
+ 1749971993.616958,91376,0.6540888547897339
784
+ 1749972107.447367,91476,0.6501213312149048
785
+ 1749972221.310951,91576,0.6517695784568787
786
+ 1749972335.184167,91676,0.6498695015907288
787
+ 1749972449.0105689,91776,0.6509405374526978
788
+ 1749972562.8870301,91876,0.649412989616394
789
+ 1749972676.74808,91976,0.6519399285316467
790
+ 1749972790.527348,92076,0.6517003774642944
791
+ 1749972904.268828,92176,0.6503774523735046
792
+ 1749973018.014807,92276,0.6529123783111572
793
+ 1749973131.713702,92376,0.6517420411109924
794
+ 1749973245.464949,92476,0.648855984210968
795
+ 1749973359.115923,92576,0.650745689868927
796
+ 1749973472.805828,92676,0.6503241658210754
797
+ 1749973587.9607658,92776,0.6507254838943481
798
+ 1749973701.850806,92876,0.6507604122161865
799
+ 1749973817.199614,92976,0.6514717936515808
800
+ 1749973932.78748,93076,0.6498952507972717
801
+ 1749974046.669132,93176,0.6498903036117554
802
+ 1749974160.730736,93276,0.6485962271690369
803
+ 1749974274.685258,93376,0.6504834294319153
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard.csv ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749862029.663543,99,0.37294554710388184
3
+ 1749862156.9849339,199,0.44629713892936707
4
+ 1749862283.002182,299,0.47867053747177124
5
+ 1749862404.551185,399,0.49936822056770325
6
+ 1749862523.688343,499,0.5137384533882141
7
+ 1749862647.099201,599,0.5275991559028625
8
+ 1749863398.260582,722,0.5418893694877625
9
+ 1749863512.803018,822,0.5529560446739197
10
+ 1749863628.045519,922,0.5599608421325684
11
+ 1749863743.546858,1022,0.5664816498756409
12
+ 1749863858.946523,1122,0.5740582346916199
13
+ 1749863974.606943,1222,0.5792315602302551
14
+ 1749864707.312323,2591,0.5740908980369568
15
+ 1749864822.3112042,2691,0.5770991444587708
16
+ 1749864937.8522801,2791,0.5825880765914917
17
+ 1749865053.508802,2891,0.5861800312995911
18
+ 1749865168.944853,2991,0.5914608240127563
19
+ 1749865284.4459488,3091,0.594249963760376
20
+ 1749865399.783348,3191,0.5992579460144043
21
+ 1749865514.924843,3291,0.602853536605835
22
+ 1749865630.1243489,3391,0.6052868366241455
23
+ 1749865745.3801239,3491,0.6072555184364319
24
+ 1749865860.57861,3591,0.6097333431243896
25
+ 1749865976.224461,3691,0.611083984375
26
+ 1749866732.477282,3837,0.6175699830055237
27
+ 1749866847.373405,3937,0.6213619709014893
28
+ 1749866961.69667,4037,0.6234620809555054
29
+ 1749867076.207936,4137,0.6233278512954712
30
+ 1749867192.9578712,4237,0.6250610947608948
31
+ 1749867307.9066849,4337,0.6263699531555176
32
+ 1749867423.839284,4437,0.6277560591697693
33
+ 1749867540.36063,4537,0.6290692090988159
34
+ 1749867656.4509041,4637,0.6298345327377319
35
+ 1749867772.5633621,4737,0.6320093274116516
36
+ 1749867888.3156312,4837,0.6330803036689758
37
+ 1749868006.0029519,4937,0.6348605155944824
38
+ 1749868808.441995,7571,0.6303296089172363
39
+ 1749868930.6764002,7671,0.6296606659889221
40
+ 1749869053.484579,7771,0.6313474178314209
41
+ 1749869174.837471,7871,0.632144570350647
42
+ 1749869292.225559,7971,0.6332916021347046
43
+ 1749869411.03731,8071,0.6333509683609009
44
+ 1749869535.8628109,8171,0.6353659629821777
45
+ 1749869649.086516,8271,0.6361371278762817
46
+ 1749869763.021135,8371,0.6366482973098755
47
+ 1749869877.361543,8471,0.6357555389404297
48
+ 1749869991.890194,8571,0.6368321180343628
49
+ 1749870112.390059,8671,0.6386470794677734
50
+ 1749870228.080665,8771,0.6386367082595825
51
+ 1749870342.9029372,8871,0.6378971338272095
52
+ 1749870457.246625,8971,0.6396408081054688
53
+ 1749870571.635715,9071,0.6408162117004395
54
+ 1749870686.231644,9171,0.6400809288024902
55
+ 1749870800.516695,9271,0.6418086290359497
56
+ 1749871605.094102,9439,0.64491206407547
57
+ 1749871737.065096,9539,0.6465832591056824
58
+ 1749871851.9842901,9639,0.6466361284255981
59
+ 1749871967.5529048,9739,0.6476323008537292
60
+ 1749872083.907424,9839,0.6464681029319763
61
+ 1749872201.8901188,9939,0.6458964347839355
62
+ 1749872363.6062431,10039,0.6475790143013
63
+ 1749872546.685531,10139,0.6460607051849365
64
+ 1749872663.447436,10239,0.6478688716888428
65
+ 1749873472.751728,10339,0.6373345255851746
66
+ 1749873586.958823,10439,0.6448805332183838
67
+ 1749873702.9145112,10539,0.6457089185714722
68
+ 1749873816.705306,10639,0.6463573575019836
69
+ 1749873930.537557,10739,0.6457958817481995
70
+ 1749874044.9519339,10839,0.6481281518936157
71
+ 1749874159.8627908,10939,0.6469950675964355
72
+ 1749874275.146302,11039,0.6485129594802856
73
+ 1749874390.6844969,11139,0.6499018669128418
74
+ 1749875174.8603241,15045,0.6436793208122253
75
+ 1749875290.682424,15145,0.6420380473136902
76
+ 1749875415.815707,15245,0.6425821781158447
77
+ 1749875530.4505758,15345,0.6420215368270874
78
+ 1749875644.9556422,15445,0.6440042853355408
79
+ 1749875759.9207602,15545,0.6424780488014221
80
+ 1749875879.3361962,15645,0.643294095993042
81
+ 1749875993.4695501,15745,0.6448836326599121
82
+ 1749876107.5972888,15845,0.645183801651001
83
+ 1749876221.7461262,15945,0.6461532711982727
84
+ 1749876336.225884,16045,0.6454576849937439
85
+ 1749876450.965764,16145,0.6456298828125
86
+ 1749876566.629506,16245,0.6443301439285278
87
+ 1749876683.568193,16345,0.645946204662323
88
+ 1749876798.040498,16445,0.6467732191085815
89
+ 1749876911.571116,16545,0.6462554931640625
90
+ 1749877025.1111512,16645,0.6451244950294495
91
+ 1749877139.379872,16745,0.6458805203437805
92
+ 1749877254.228658,16845,0.6443285346031189
93
+ 1749877374.360051,16945,0.6479160189628601
94
+ 1749877492.01997,17045,0.6478552222251892
95
+ 1749877608.5502021,17145,0.6497830748558044
96
+ 1749877724.957767,17245,0.6486115455627441
97
+ 1749877841.109853,17345,0.6480239033699036
98
+ 1749878646.2594078,17536,0.6495139598846436
99
+ 1749878760.912617,17636,0.6510331630706787
100
+ 1749878877.23084,17736,0.6514031291007996
101
+ 1749878993.918535,17836,0.6505551338195801
102
+ 1749879109.034369,17936,0.6511745452880859
103
+ 1749879223.9821818,18036,0.6540765166282654
104
+ 1749879339.26787,18136,0.6506806015968323
105
+ 1749879454.726379,18236,0.6503374576568604
106
+ 1749879570.0690088,18336,0.6529502868652344
107
+ 1749879685.1710541,18436,0.6511238217353821
108
+ 1749879800.3635142,18536,0.6518282890319824
109
+ 1749879915.033729,18636,0.6516628861427307
110
+ 1749880029.6866162,18736,0.6537311673164368
111
+ 1749880144.222166,18836,0.653042197227478
112
+ 1749880258.8637629,18936,0.6531310081481934
113
+ 1749880373.32494,19036,0.651985228061676
114
+ 1749880488.133607,19136,0.6532859802246094
115
+ 1749880602.5153239,19236,0.6535618305206299
116
+ 1749880717.016221,19336,0.6526396870613098
117
+ 1749880831.561332,19436,0.6540868282318115
118
+ 1749880946.107208,19536,0.6526824831962585
119
+ 1749881060.5496352,19636,0.652843177318573
120
+ 1749881174.887777,19736,0.6523430347442627
121
+ 1749881289.034664,19836,0.6538118124008179
122
+ 1749882085.5701241,25003,0.6411749720573425
123
+ 1749882199.2805178,25103,0.6289074420928955
124
+ 1749882313.069938,25203,0.63006192445755
125
+ 1749882426.932492,25303,0.6306214332580566
126
+ 1749882540.776115,25403,0.6305362582206726
127
+ 1749882655.2986329,25503,0.6331127882003784
128
+ 1749882771.058639,25603,0.6321122646331787
129
+ 1749882884.853459,25703,0.6309130191802979
130
+ 1749882999.084863,25803,0.6323768496513367
131
+ 1749883113.03004,25903,0.6333639621734619
132
+ 1749883227.049516,26003,0.6328328251838684
133
+ 1749883340.962351,26103,0.6330544948577881
134
+ 1749883454.8910239,26203,0.6316843628883362
135
+ 1749883568.748449,26303,0.6329068541526794
136
+ 1749883682.626584,26403,0.6340925693511963
137
+ 1749883796.266156,26503,0.634718120098114
138
+ 1749883909.823321,26603,0.6345930695533752
139
+ 1749884023.612312,26703,0.6305355429649353
140
+ 1749884137.3909109,26803,0.6329914331436157
141
+ 1749884250.964849,26903,0.6338057518005371
142
+ 1749884364.620685,27003,0.6310195922851562
143
+ 1749884478.288471,27103,0.6320237517356873
144
+ 1749884591.921928,27203,0.6323473453521729
145
+ 1749884705.4580832,27303,0.6338775753974915
146
+ 1749884819.04635,27403,0.6349583268165588
147
+ 1749884932.5079958,27503,0.6327939629554749
148
+ 1749885045.950988,27603,0.6340410709381104
149
+ 1749885159.388893,27703,0.6335666179656982
150
+ 1749885272.804197,27803,0.6340423226356506
151
+ 1749885386.316233,27903,0.6334601640701294
152
+ 1749885499.822531,28003,0.63486647605896
153
+ 1749886221.504969,28116,0.6372697353363037
154
+ 1749886334.385321,28216,0.6380821466445923
155
+ 1749886448.043535,28316,0.6341930627822876
156
+ 1749886566.996864,28416,0.6381385326385498
157
+ 1749886683.145211,28516,0.6390631198883057
158
+ 1749886801.945816,28616,0.6362524628639221
159
+ 1749886917.753129,28716,0.6383652091026306
160
+ 1749887031.577143,28816,0.6372789144515991
161
+ 1749887145.237945,28916,0.6368517875671387
162
+ 1749887259.142705,29016,0.6355586051940918
163
+ 1749887372.8702788,29116,0.6365960836410522
164
+ 1749887486.513908,29216,0.6369326710700989
165
+ 1749887600.1771169,29316,0.6356692314147949
166
+ 1749887714.078214,29416,0.6381360292434692
167
+ 1749887827.802154,29516,0.6395895481109619
168
+ 1749887941.250756,29616,0.6351495981216431
169
+ 1749888054.684053,29716,0.6337200403213501
170
+ 1749888168.055861,29816,0.6380612850189209
171
+ 1749888281.437411,29916,0.6367456912994385
172
+ 1749888395.104567,30016,0.6368082165718079
173
+ 1749888508.717651,30116,0.637988269329071
174
+ 1749888622.26287,30216,0.6383621692657471
175
+ 1749888735.716015,30316,0.6390760540962219
176
+ 1749888849.314946,30416,0.6382609009742737
177
+ 1749888962.671913,30516,0.6376262903213501
178
+ 1749889075.962262,30616,0.6375894546508789
179
+ 1749889189.209306,30716,0.6379967927932739
180
+ 1749889302.4496808,30816,0.6370212435722351
181
+ 1749889415.703003,30916,0.6353185772895813
182
+ 1749889528.950649,31016,0.6387556791305542
183
+ 1749889642.150322,31116,0.6378328204154968
184
+ 1749890378.956782,31229,0.6372666358947754
185
+ 1749890505.625979,31329,0.6375833749771118
186
+ 1749890618.191977,31429,0.6399643421173096
187
+ 1749890731.541603,31529,0.6371794939041138
188
+ 1749890844.967264,31629,0.6412948369979858
189
+ 1749890958.658777,31729,0.6381122469902039
190
+ 1749891071.891078,31829,0.6379870772361755
191
+ 1749891184.9368472,31929,0.636507511138916
192
+ 1749891298.383119,32029,0.6393314599990845
193
+ 1749891411.6084638,32129,0.6372302770614624
194
+ 1749891524.8479302,32229,0.6382989883422852
195
+ 1749891638.000088,32329,0.6384246349334717
196
+ 1749891750.925784,32429,0.642183244228363
197
+ 1749891863.9485052,32529,0.6387585401535034
198
+ 1749891976.981396,32629,0.6382800936698914
199
+ 1749892090.007157,32729,0.6391066908836365
200
+ 1749892204.878405,32829,0.6372695565223694
201
+ 1749892318.016267,32929,0.6377881765365601
202
+ 1749892431.1136398,33029,0.6381900310516357
203
+ 1749892544.650914,33129,0.6379098296165466
204
+ 1749892658.351629,33229,0.6390986442565918
205
+ 1749892771.5412412,33329,0.6394632458686829
206
+ 1749892884.5655081,33429,0.638789176940918
207
+ 1749892997.703425,33529,0.6404674649238586
208
+ 1749893113.111906,33629,0.6377144455909729
209
+ 1749893226.4987352,33729,0.6403603553771973
210
+ 1749893339.7236722,33829,0.6399890184402466
211
+ 1749893452.709901,33929,0.6386091113090515
212
+ 1749893565.764252,34029,0.638846218585968
213
+ 1749893678.8613818,34129,0.6392867565155029
214
+ 1749893793.811114,34229,0.6415501236915588
215
+ 1749894523.4330702,34342,0.6422275900840759
216
+ 1749894635.668705,34442,0.6422102451324463
217
+ 1749894748.496078,34542,0.6423694491386414
218
+ 1749894862.105796,34642,0.6409814953804016
219
+ 1749894975.7232609,34742,0.6424775123596191
220
+ 1749895088.827214,34842,0.6412819027900696
221
+ 1749895201.8739011,34942,0.6421397924423218
222
+ 1749895315.383924,35042,0.6428180932998657
223
+ 1749895428.870367,35142,0.6411274671554565
224
+ 1749895542.779712,35242,0.6404625773429871
225
+ 1749895655.7400692,35342,0.6413607597351074
226
+ 1749895768.754721,35442,0.6396623253822327
227
+ 1749895881.675998,35542,0.6398554444313049
228
+ 1749895994.7287948,35642,0.6418105363845825
229
+ 1749896107.590622,35742,0.6404362320899963
230
+ 1749896220.531776,35842,0.6405752301216125
231
+ 1749896334.0023758,35942,0.6391710638999939
232
+ 1749896447.1242828,36042,0.639792263507843
233
+ 1749896560.152203,36142,0.6422731280326843
234
+ 1749896673.189848,36242,0.6405914425849915
235
+ 1749896786.198764,36342,0.641568124294281
236
+ 1749896899.2863219,36442,0.6413493156433105
237
+ 1749897012.305343,36542,0.6412314772605896
238
+ 1749897125.3817248,36642,0.6421323418617249
239
+ 1749897238.33933,36742,0.6419852375984192
240
+ 1749897351.259258,36842,0.6420484185218811
241
+ 1749897465.7836952,36942,0.641920268535614
242
+ 1749897578.788863,37042,0.640053927898407
243
+ 1749897692.2813172,37142,0.6422847509384155
244
+ 1749897805.190093,37242,0.642421543598175
245
+ 1749897919.005985,37342,0.6421249508857727
246
+ 1749898639.5689752,37455,0.6431224942207336
247
+ 1749898751.988163,37555,0.6455073356628418
248
+ 1749898864.6416771,37655,0.6462562084197998
249
+ 1749898977.266717,37755,0.6433696746826172
250
+ 1749899094.0932312,37855,0.6439356803894043
251
+ 1749899207.426185,37955,0.6446089148521423
252
+ 1749899321.114516,38055,0.6461760997772217
253
+ 1749899435.41614,38155,0.6425666809082031
254
+ 1749899548.3957949,38255,0.6415822505950928
255
+ 1749899661.12898,38355,0.6433603763580322
256
+ 1749899773.907331,38455,0.6439739465713501
257
+ 1749899887.206593,38555,0.6431937217712402
258
+ 1749900000.022349,38655,0.6433701515197754
259
+ 1749900112.838345,38755,0.6402089595794678
260
+ 1749900225.587293,38855,0.6431488990783691
261
+ 1749900338.40116,38955,0.6427022814750671
262
+ 1749900451.419723,39055,0.642128050327301
263
+ 1749900564.1494222,39155,0.6431225538253784
264
+ 1749900676.855479,39255,0.6424416303634644
265
+ 1749900789.689708,39355,0.6426573395729065
266
+ 1749900902.666292,39455,0.6421151161193848
267
+ 1749901015.986363,39555,0.6435821652412415
268
+ 1749901129.7744472,39655,0.6438963413238525
269
+ 1749901242.9367309,39755,0.641447901725769
270
+ 1749901355.883141,39855,0.6451898813247681
271
+ 1749901468.810418,39955,0.6418604850769043
272
+ 1749901581.483256,40055,0.6420018672943115
273
+ 1749901694.195169,40155,0.6414068341255188
274
+ 1749901807.6175969,40255,0.6405832171440125
275
+ 1749901928.495046,40355,0.6415613293647766
276
+ 1749902049.321397,40455,0.6413848400115967
277
+ 1749902758.697643,40568,0.6457716822624207
278
+ 1749902871.2450671,40668,0.646309494972229
279
+ 1749902983.9136572,40768,0.6463437676429749
280
+ 1749903096.5065012,40868,0.6450349688529968
281
+ 1749903209.1087449,40968,0.6446881294250488
282
+ 1749903321.672395,41068,0.644142746925354
283
+ 1749903434.1538491,41168,0.6432740092277527
284
+ 1749903546.677047,41268,0.6437448859214783
285
+ 1749903663.135898,41368,0.6455336213111877
286
+ 1749903775.808806,41468,0.6436740756034851
287
+ 1749903888.313575,41568,0.6446691751480103
288
+ 1749904000.9246452,41668,0.6452683806419373
289
+ 1749904113.586472,41768,0.6439473032951355
290
+ 1749904226.149442,41868,0.6451581716537476
291
+ 1749904338.615375,41968,0.6452315449714661
292
+ 1749904451.142393,42068,0.6444404721260071
293
+ 1749904563.662851,42168,0.6423818469047546
294
+ 1749904678.6194618,42268,0.6442590355873108
295
+ 1749904791.92433,42368,0.6440293788909912
296
+ 1749904905.461743,42468,0.6425467729568481
297
+ 1749905018.109602,42568,0.6436562538146973
298
+ 1749905130.8406038,42668,0.6423113346099854
299
+ 1749905243.4874198,42768,0.6433395147323608
300
+ 1749905356.34921,42868,0.6426182389259338
301
+ 1749905469.8472939,42968,0.6429547071456909
302
+ 1749905582.4856489,43068,0.6445577144622803
303
+ 1749905700.7709599,43168,0.6432076096534729
304
+ 1749905813.246316,43268,0.6452598571777344
305
+ 1749905925.7469351,43368,0.6450968980789185
306
+ 1749906038.568206,43468,0.6417151093482971
307
+ 1749906152.325112,43568,0.6453571319580078
308
+ 1749906869.613624,43681,0.6455939412117004
309
+ 1749906981.776615,43781,0.6470116376876831
310
+ 1749907094.291646,43881,0.6461580395698547
311
+ 1749907206.7288609,43981,0.6449430584907532
312
+ 1749907319.248631,44081,0.6480114459991455
313
+ 1749907431.68859,44181,0.6469368934631348
314
+ 1749907544.137596,44281,0.6462560296058655
315
+ 1749907656.623639,44381,0.6483475565910339
316
+ 1749907769.0745878,44481,0.6476715207099915
317
+ 1749907881.511359,44581,0.6467322707176208
318
+ 1749907993.944629,44681,0.6418707370758057
319
+ 1749908106.3325398,44781,0.6422119736671448
320
+ 1749908218.755035,44881,0.6456181406974792
321
+ 1749908332.6752698,44981,0.6438400149345398
322
+ 1749908445.41487,45081,0.6453412771224976
323
+ 1749908561.7160451,45181,0.6472585201263428
324
+ 1749908674.349626,45281,0.6463475227355957
325
+ 1749908787.409377,45381,0.6437843441963196
326
+ 1749908900.228266,45481,0.6451470255851746
327
+ 1749909012.759907,45581,0.6464168429374695
328
+ 1749909125.33191,45681,0.6457372307777405
329
+ 1749909238.6822069,45781,0.6420699954032898
330
+ 1749909353.055778,45881,0.6455863118171692
331
+ 1749909465.583371,45981,0.6430723071098328
332
+ 1749909578.791123,46081,0.6466464400291443
333
+ 1749909695.810501,46181,0.6415648460388184
334
+ 1749909816.994015,46281,0.6458131670951843
335
+ 1749909931.178684,46381,0.6433743834495544
336
+ 1749910044.3576698,46481,0.6447113156318665
337
+ 1749910156.936951,46581,0.6447990536689758
338
+ 1749910269.43704,46681,0.643962562084198
339
+ 1749910985.444436,46794,0.6470857858657837
340
+ 1749911097.5499258,46894,0.6493186950683594
341
+ 1749911209.9833422,46994,0.6470249891281128
342
+ 1749911323.2898078,47094,0.6450704336166382
343
+ 1749911435.872323,47194,0.6471397876739502
344
+ 1749911548.425044,47294,0.6435807943344116
345
+ 1749911660.932256,47394,0.6473038196563721
346
+ 1749911776.825709,47494,0.6473247408866882
347
+ 1749911900.3222861,47594,0.6455411314964294
348
+ 1749912026.3668249,47694,0.6466323137283325
349
+ 1749912157.162115,47794,0.6445478200912476
350
+ 1749912274.590166,47894,0.646281898021698
351
+ 1749912391.31292,47994,0.6441708207130432
352
+ 1749912505.9149718,48094,0.6465533375740051
353
+ 1749912619.9158368,48194,0.6457281708717346
354
+ 1749912733.845898,48294,0.6469725966453552
355
+ 1749912848.251153,48394,0.6476579308509827
356
+ 1749912962.486568,48494,0.6469281911849976
357
+ 1749913083.380466,48594,0.6445661187171936
358
+ 1749913213.3275251,48694,0.6448878645896912
359
+ 1749913327.168751,48794,0.6478087902069092
360
+ 1749913445.553847,48894,0.6467218995094299
361
+ 1749913562.00287,48994,0.6449093818664551
362
+ 1749913676.5021539,49094,0.6456226110458374
363
+ 1749913865.943388,49194,0.6480283141136169
364
+ 1749913978.782634,49294,0.644949734210968
365
+ 1749914091.5461361,49394,0.6477023363113403
366
+ 1749914205.0430741,49494,0.6454227566719055
367
+ 1749914317.857575,49594,0.6468780636787415
368
+ 1749914436.420907,49694,0.6437995433807373
369
+ 1749914548.4780428,49794,0.6442689895629883
370
+ 1749915254.64979,49907,0.6468920707702637
371
+ 1749915366.522047,50007,0.6443278193473816
372
+ 1749915479.121721,50107,0.64507657289505
373
+ 1749915591.986209,50207,0.6475539207458496
374
+ 1749915705.132767,50307,0.6458376049995422
375
+ 1749915818.162699,50407,0.6470894813537598
376
+ 1749915931.2429461,50507,0.6459890007972717
377
+ 1749916044.412135,50607,0.6449429988861084
378
+ 1749916157.798768,50707,0.6434136033058167
379
+ 1749916270.845293,50807,0.6452168822288513
380
+ 1749916385.228409,50907,0.6414031982421875
381
+ 1749916498.514762,51007,0.6429454684257507
382
+ 1749916610.5736582,51107,0.645865797996521
383
+ 1749916722.826114,51207,0.6456354260444641
384
+ 1749916835.510131,51307,0.6453517079353333
385
+ 1749916948.500181,51407,0.6425925493240356
386
+ 1749917061.547553,51507,0.6441556215286255
387
+ 1749917175.452366,51607,0.6438621282577515
388
+ 1749917289.691377,51707,0.6460551619529724
389
+ 1749917402.7212632,51807,0.6445820927619934
390
+ 1749917515.7485409,51907,0.6466335654258728
391
+ 1749917628.76803,52007,0.6439675092697144
392
+ 1749917741.809431,52107,0.6454479098320007
393
+ 1749917854.9519842,52207,0.6439056396484375
394
+ 1749917968.173187,52307,0.643708348274231
395
+ 1749918081.338985,52407,0.6449944972991943
396
+ 1749918194.488252,52507,0.6446917653083801
397
+ 1749918307.705295,52607,0.6453357934951782
398
+ 1749918420.946692,52707,0.6437267065048218
399
+ 1749918534.1307259,52807,0.6483670473098755
400
+ 1749918647.290252,52907,0.6452763676643372
401
+ 1749919349.8012888,53020,0.6482431888580322
402
+ 1749919462.727903,53120,0.6488265991210938
403
+ 1749919575.7412622,53220,0.6478548049926758
404
+ 1749919688.842592,53320,0.6473872661590576
405
+ 1749919801.817652,53420,0.647352933883667
406
+ 1749919914.7892962,53520,0.6466537714004517
407
+ 1749920027.768988,53620,0.6455276012420654
408
+ 1749920141.053708,53720,0.6472206115722656
409
+ 1749920254.0534441,53820,0.6466146111488342
410
+ 1749920367.0409348,53920,0.6457653045654297
411
+ 1749920479.953151,54020,0.6479485034942627
412
+ 1749920592.791873,54120,0.6481966972351074
413
+ 1749920705.670143,54220,0.647784948348999
414
+ 1749920818.720621,54320,0.6458646059036255
415
+ 1749920931.794077,54420,0.6477463245391846
416
+ 1749921045.317086,54520,0.6461666822433472
417
+ 1749921159.993518,54620,0.6487022042274475
418
+ 1749921273.078507,54720,0.6468180418014526
419
+ 1749921386.2036648,54820,0.6433663964271545
420
+ 1749921499.324935,54920,0.6466029286384583
421
+ 1749921612.4671302,55020,0.6448517441749573
422
+ 1749921725.574382,55120,0.6463658213615417
423
+ 1749921838.710418,55220,0.645363986492157
424
+ 1749921951.791944,55320,0.6455214619636536
425
+ 1749922065.369843,55420,0.6459031701087952
426
+ 1749922178.5358238,55520,0.6457732915878296
427
+ 1749922291.767361,55620,0.6463260054588318
428
+ 1749922404.942503,55720,0.6452855467796326
429
+ 1749922518.24964,55820,0.6466127634048462
430
+ 1749922631.665324,55920,0.6458290219306946
431
+ 1749922745.3478122,56020,0.6472273468971252
432
+ 1749923447.429276,56133,0.6463302373886108
433
+ 1749923561.056462,56233,0.6482003927230835
434
+ 1749923673.753302,56333,0.6483168005943298
435
+ 1749923786.9378948,56433,0.6495551466941833
436
+ 1749923900.16594,56533,0.6490747332572937
437
+ 1749924013.5890381,56633,0.6481636166572571
438
+ 1749924127.013432,56733,0.6470484137535095
439
+ 1749924240.250842,56833,0.6492579579353333
440
+ 1749924353.401773,56933,0.6456274390220642
441
+ 1749924466.8444622,57033,0.6473854184150696
442
+ 1749924580.147986,57133,0.6476078629493713
443
+ 1749924693.80851,57233,0.6493817567825317
444
+ 1749924809.654303,57333,0.6484301686286926
445
+ 1749924924.456167,57433,0.6469117403030396
446
+ 1749925038.634381,57533,0.6482880115509033
447
+ 1749925152.2785192,57633,0.6481899619102478
448
+ 1749925265.869144,57733,0.64661705493927
449
+ 1749925379.272862,57833,0.6464669108390808
450
+ 1749925491.8101661,57933,0.6488008499145508
451
+ 1749925604.6834948,58033,0.6441654562950134
452
+ 1749925717.869805,58133,0.6466636061668396
453
+ 1749925831.2332642,58233,0.6475287675857544
454
+ 1749925944.81216,58333,0.6480196118354797
455
+ 1749926058.425607,58433,0.6473321318626404
456
+ 1749926172.1372879,58533,0.6467843055725098
457
+ 1749926285.852811,58633,0.6482695937156677
458
+ 1749926400.246176,58733,0.64788419008255
459
+ 1749926514.2801862,58833,0.6464325785636902
460
+ 1749926628.411781,58933,0.6449589729309082
461
+ 1749926742.487724,59033,0.6453645825386047
462
+ 1749926856.6434848,59133,0.6469466686248779
463
+ 1749927559.5214038,59246,0.6503404378890991
464
+ 1749927672.020673,59346,0.6473168134689331
465
+ 1749927785.250925,59446,0.6481862664222717
466
+ 1749927898.710655,59546,0.649619460105896
467
+ 1749928012.247091,59646,0.6465483903884888
468
+ 1749928126.010963,59746,0.649186909198761
469
+ 1749928239.80563,59846,0.6484472751617432
470
+ 1749928353.680489,59946,0.6479632258415222
471
+ 1749928467.482208,60046,0.64899080991745
472
+ 1749928581.240331,60146,0.6511568427085876
473
+ 1749928695.511598,60246,0.6487745046615601
474
+ 1749928811.3063512,60346,0.6479558944702148
475
+ 1749928925.040396,60446,0.6488529443740845
476
+ 1749929038.6185012,60546,0.6495551466941833
477
+ 1749929152.2053819,60646,0.6491721868515015
478
+ 1749929265.851369,60746,0.6482187509536743
479
+ 1749929379.502666,60846,0.6466194987297058
480
+ 1749929493.5331898,60946,0.6470288038253784
481
+ 1749929607.4053981,61046,0.6479650735855103
482
+ 1749929721.085204,61146,0.6456948518753052
483
+ 1749929834.74776,61246,0.6463167667388916
484
+ 1749929948.555677,61346,0.6469117403030396
485
+ 1749930063.395309,61446,0.6496709585189819
486
+ 1749930177.1792881,61546,0.6468149423599243
487
+ 1749930291.206655,61646,0.6464289426803589
488
+ 1749930405.0233212,61746,0.6476335525512695
489
+ 1749930519.116152,61846,0.6473082304000854
490
+ 1749930633.092383,61946,0.6477475762367249
491
+ 1749930746.959587,62046,0.645340085029602
492
+ 1749930860.721993,62146,0.6493327021598816
493
+ 1749930974.7665339,62246,0.6471899747848511
494
+ 1749931678.899295,62359,0.648399293422699
495
+ 1749931792.6391659,62459,0.6488786935806274
496
+ 1749931906.5278468,62559,0.6509184837341309
497
+ 1749932020.4616919,62659,0.6484221816062927
498
+ 1749932134.672566,62759,0.6522690057754517
499
+ 1749932248.6759748,62859,0.6484540700912476
500
+ 1749932362.711755,62959,0.6484025716781616
501
+ 1749932476.661569,63059,0.6470717191696167
502
+ 1749932590.790066,63159,0.6500177383422852
503
+ 1749932704.8376472,63259,0.6474350690841675
504
+ 1749932819.889387,63359,0.6481654644012451
505
+ 1749932936.8226,63459,0.6483504772186279
506
+ 1749933051.687947,63559,0.6519791483879089
507
+ 1749933165.7263381,63659,0.6482064723968506
508
+ 1749933279.444386,63759,0.6480998992919922
509
+ 1749933393.378773,63859,0.6485667824745178
510
+ 1749933507.367212,63959,0.6471758484840393
511
+ 1749933623.911954,64059,0.6477560997009277
512
+ 1749933738.056524,64159,0.6477352976799011
513
+ 1749933852.191925,64259,0.6470110416412354
514
+ 1749933966.306999,64359,0.6480882167816162
515
+ 1749934080.359732,64459,0.6488682627677917
516
+ 1749934194.425351,64559,0.6470747590065002
517
+ 1749934308.54075,64659,0.6494074463844299
518
+ 1749934422.480662,64759,0.6468547582626343
519
+ 1749934536.808921,64859,0.6491286754608154
520
+ 1749934650.823456,64959,0.648867666721344
521
+ 1749934764.7258089,65059,0.6472849249839783
522
+ 1749934878.7077188,65159,0.6478468179702759
523
+ 1749934992.883969,65259,0.6479583382606506
524
+ 1749935106.933438,65359,0.6497653126716614
525
+ 1749935813.731499,65472,0.6506868600845337
526
+ 1749935927.942222,65572,0.6503027081489563
527
+ 1749936041.607051,65672,0.6512806415557861
528
+ 1749936155.296227,65772,0.6489803791046143
529
+ 1749936270.8974578,65872,0.6508885025978088
530
+ 1749936385.587658,65972,0.6498168110847473
531
+ 1749936499.060506,66072,0.6503278017044067
532
+ 1749936612.441948,66172,0.6502352952957153
533
+ 1749936726.748907,66272,0.6489626169204712
534
+ 1749936841.875183,66372,0.6480649709701538
535
+ 1749936956.4900322,66472,0.6499338150024414
536
+ 1749937069.998561,66572,0.6472322344779968
537
+ 1749937183.7017019,66672,0.6475245356559753
538
+ 1749937298.516124,66772,0.6491470336914062
539
+ 1749937411.92944,66872,0.647495687007904
540
+ 1749937526.436012,66972,0.6476641893386841
541
+ 1749937641.158314,67072,0.6466764807701111
542
+ 1749937756.0765388,67172,0.6474534273147583
543
+ 1749937871.194944,67272,0.6498247385025024
544
+ 1749937986.103464,67372,0.647672176361084
545
+ 1749938111.256961,67472,0.6493241190910339
546
+ 1749938234.540023,67572,0.649218738079071
547
+ 1749938358.600482,67672,0.6481427550315857
548
+ 1749938482.183712,67772,0.6489521861076355
549
+ 1749938604.988889,67872,0.6490012407302856
550
+ 1749938730.016806,67972,0.6490533351898193
551
+ 1749938855.713066,68072,0.6489706039428711
552
+ 1749938984.016691,68172,0.6467726826667786
553
+ 1749939111.805879,68272,0.6495416760444641
554
+ 1749939237.4458308,68372,0.6492695808410645
555
+ 1749939362.440269,68472,0.6486568450927734
556
+ 1749940143.424747,68585,0.6501026153564453
557
+ 1749940267.8671591,68685,0.6520465612411499
558
+ 1749940406.536912,68785,0.65306556224823
559
+ 1749940539.007791,68885,0.6500367522239685
560
+ 1749940665.279575,68985,0.6502971649169922
561
+ 1749940787.382014,69085,0.6517028212547302
562
+ 1749940907.63042,69185,0.6525441408157349
563
+ 1749941027.280397,69285,0.6494277119636536
564
+ 1749941156.2273762,69385,0.6480973958969116
565
+ 1749941287.1213481,69485,0.6496758460998535
566
+ 1749941414.0066822,69585,0.6504148244857788
567
+ 1749941543.8237681,69685,0.6497818827629089
568
+ 1749941674.046098,69785,0.6492977738380432
569
+ 1749941812.787934,69885,0.64699387550354
570
+ 1749941962.015331,69985,0.6491678953170776
571
+ 1749942102.411791,70085,0.6491384506225586
572
+ 1749942233.3373299,70185,0.6481152176856995
573
+ 1749942359.018425,70285,0.6494773030281067
574
+ 1749942480.5869482,70385,0.6486470699310303
575
+ 1749942601.3076742,70485,0.6487181186676025
576
+ 1749942721.842447,70585,0.6483076214790344
577
+ 1749942847.5958269,70685,0.6500759720802307
578
+ 1749942983.723243,70785,0.6499319672584534
579
+ 1749943115.342161,70885,0.6474846601486206
580
+ 1749943244.810354,70985,0.6511532068252563
581
+ 1749943381.720277,71085,0.6476777195930481
582
+ 1749943509.7974699,71185,0.6476617455482483
583
+ 1749943636.8749802,71285,0.6472451090812683
584
+ 1749943769.3658261,71385,0.6470766067504883
585
+ 1749943902.5753548,71485,0.6476035714149475
586
+ 1749944037.523066,71585,0.6469583511352539
587
+ 1749944826.5780659,71698,0.6512960195541382
588
+ 1749944953.716961,71798,0.65183025598526
589
+ 1749945082.082031,71898,0.6517236232757568
590
+ 1749945210.61923,71998,0.6500888466835022
591
+ 1749945339.124059,72098,0.6505330801010132
592
+ 1749945468.641827,72198,0.6502751111984253
593
+ 1749945598.1349041,72298,0.6493455767631531
594
+ 1749945728.573417,72398,0.6493124961853027
595
+ 1749945858.0623538,72498,0.6513002514839172
596
+ 1749945982.3945642,72598,0.6496317386627197
597
+ 1749946111.765118,72698,0.6507402062416077
598
+ 1749946240.630443,72798,0.6511532068252563
599
+ 1749946368.180806,72898,0.6491826176643372
600
+ 1749946496.832103,72998,0.6513100266456604
601
+ 1749946625.482293,73098,0.6511054039001465
602
+ 1749946755.102677,73198,0.6496274471282959
603
+ 1749946885.840373,73298,0.6478989124298096
604
+ 1749947015.730135,73398,0.6493860483169556
605
+ 1749947148.454241,73498,0.649440586566925
606
+ 1749947279.728344,73598,0.6481335759162903
607
+ 1749947410.7961621,73698,0.648591935634613
608
+ 1749947532.051818,73798,0.6477193832397461
609
+ 1749947658.5383391,73898,0.6488223075866699
610
+ 1749947785.23248,73998,0.6482095718383789
611
+ 1749947905.7281501,74098,0.6481219530105591
612
+ 1749948037.10495,74198,0.649522066116333
613
+ 1749948162.964204,74298,0.6486262083053589
614
+ 1749948299.8906748,74398,0.649992048740387
615
+ 1749948431.189439,74498,0.6464987993240356
616
+ 1749948562.154502,74598,0.6457542777061462
617
+ 1749948692.440773,74698,0.6492316126823425
618
+ 1749949544.119091,74811,0.6499026417732239
619
+ 1749949662.2882051,74911,0.651816189289093
620
+ 1749949782.29321,75011,0.65162193775177
621
+ 1749949903.6215732,75111,0.6497769355773926
622
+ 1749950025.437519,75211,0.652581512928009
623
+ 1749950147.172297,75311,0.6517457365989685
624
+ 1749950269.3430872,75411,0.6511011123657227
625
+ 1749950391.183779,75511,0.6535349488258362
626
+ 1749950512.9859998,75611,0.6526746153831482
627
+ 1749950634.5976489,75711,0.6515275835990906
628
+ 1749950755.841614,75811,0.6468645930290222
629
+ 1749950876.902978,75911,0.6469895839691162
630
+ 1749950997.8276448,76011,0.6505018472671509
631
+ 1749951118.90695,76111,0.6481991410255432
632
+ 1749951242.0590239,76211,0.6500465869903564
633
+ 1749951365.13945,76311,0.6522291898727417
634
+ 1749951485.726495,76411,0.6512941122055054
635
+ 1749951606.384018,76511,0.6485955715179443
636
+ 1749951727.3418372,76611,0.6492347121238708
637
+ 1749951848.91982,76711,0.6510809063911438
638
+ 1749951970.4396238,76811,0.6507787704467773
639
+ 1749952092.018361,76911,0.6465024352073669
640
+ 1749952212.437438,77011,0.6503309011459351
641
+ 1749952333.3358028,77111,0.6472941040992737
642
+ 1749952454.374986,77211,0.6507310271263123
643
+ 1749952577.957252,77311,0.646462619304657
644
+ 1749952698.933182,77411,0.6501801609992981
645
+ 1749952821.444906,77511,0.6480913162231445
646
+ 1749952943.532354,77611,0.6492763757705688
647
+ 1749953065.092947,77711,0.6491703391075134
648
+ 1749953183.2942998,77811,0.6481268405914307
649
+ 1749953919.8155909,77924,0.6514578461647034
650
+ 1749954039.144916,78024,0.6536059975624084
651
+ 1749954164.892725,78124,0.6516213417053223
652
+ 1749954287.405833,78224,0.6496967077255249
653
+ 1749954411.896708,78324,0.6509160399436951
654
+ 1749954532.976285,78424,0.6475796699523926
655
+ 1749954651.8212879,78524,0.6513621211051941
656
+ 1749954768.340374,78624,0.6514209508895874
657
+ 1749954889.928726,78724,0.6494865417480469
658
+ 1749955013.7541099,78824,0.6507163047790527
659
+ 1749955135.127798,78924,0.648713231086731
660
+ 1749955250.329943,79024,0.6503958106040955
661
+ 1749955368.0772521,79124,0.6481421589851379
662
+ 1749955488.714318,79224,0.6509117484092712
663
+ 1749955608.994308,79324,0.6496789455413818
664
+ 1749955730.32185,79424,0.6509148478507996
665
+ 1749955852.183527,79524,0.65162193775177
666
+ 1749955982.130076,79624,0.6507677435874939
667
+ 1749956105.558641,79724,0.6485790610313416
668
+ 1749956225.0044448,79824,0.6489969491958618
669
+ 1749956346.8952608,79924,0.6521139740943909
670
+ 1749956467.616684,80024,0.6509135961532593
671
+ 1749956589.9021041,80124,0.6493566036224365
672
+ 1749956710.854453,80224,0.6497260928153992
673
+ 1749956831.13642,80324,0.6498333215713501
674
+ 1749956952.777001,80424,0.6474724411964417
675
+ 1749957072.210849,80524,0.648578405380249
676
+ 1749957191.451542,80624,0.6495128870010376
677
+ 1749957314.737707,80724,0.6525374054908752
678
+ 1749957435.151362,80824,0.6503774523735046
679
+ 1749957557.393923,80924,0.6495735049247742
680
+ 1749958292.639041,81037,0.6502798199653625
681
+ 1749958412.06761,81137,0.6510465741157532
682
+ 1749958532.686303,81237,0.651066780090332
683
+ 1749958645.7889438,81337,0.6499913930892944
684
+ 1749958759.571202,81437,0.6506991386413574
685
+ 1749958874.801936,81537,0.6515716910362244
686
+ 1749958991.03166,81637,0.649645209312439
687
+ 1749959107.828541,81737,0.6534062623977661
688
+ 1749959224.8999429,81837,0.6517438888549805
689
+ 1749959342.0457559,81937,0.6472377181053162
690
+ 1749959458.717472,82037,0.6487628817558289
691
+ 1749959575.365946,82137,0.6506679058074951
692
+ 1749959691.9944792,82237,0.6509387493133545
693
+ 1749959809.0819032,82337,0.6492481827735901
694
+ 1749959926.093535,82437,0.6509411931037903
695
+ 1749960043.8178828,82537,0.6513333320617676
696
+ 1749960161.549503,82637,0.650521457195282
697
+ 1749960279.3088372,82737,0.6513921618461609
698
+ 1749960397.345453,82837,0.6535490155220032
699
+ 1749960515.7569332,82937,0.651286780834198
700
+ 1749960634.0833302,83037,0.6500453352928162
701
+ 1749960752.65109,83137,0.6486304998397827
702
+ 1749960871.347281,83237,0.648453414440155
703
+ 1749960990.1292732,83337,0.648758590221405
704
+ 1749961108.411705,83437,0.6494736671447754
705
+ 1749961226.271459,83537,0.6482904553413391
706
+ 1749961343.8049831,83637,0.6508358120918274
707
+ 1749961461.005431,83737,0.650747537612915
708
+ 1749961577.844734,83837,0.6494197249412537
709
+ 1749961694.582011,83937,0.6514062285423279
710
+ 1749961811.7100859,84037,0.6520459651947021
711
+ 1749962538.324168,84150,0.6520133018493652
712
+ 1749962654.3846312,84250,0.6523498892784119
713
+ 1749962770.139613,84350,0.6531066298484802
714
+ 1749962886.967903,84450,0.6516783237457275
715
+ 1749963002.7153668,84550,0.6499571204185486
716
+ 1749963118.68018,84650,0.6509124040603638
717
+ 1749963234.560016,84750,0.6497187614440918
718
+ 1749963350.778174,84850,0.6517395973205566
719
+ 1749963466.768766,84950,0.6517120003700256
720
+ 1749963582.5068312,85050,0.6510888338088989
721
+ 1749963697.9346209,85150,0.650672197341919
722
+ 1749963813.328256,85250,0.648465096950531
723
+ 1749963928.9572961,85350,0.6514068841934204
724
+ 1749964044.29373,85450,0.6517898440361023
725
+ 1749964159.5894961,85550,0.6503884792327881
726
+ 1749964275.069377,85650,0.6498480439186096
727
+ 1749964390.285314,85750,0.6514013409614563
728
+ 1749964505.738982,85850,0.6507444977760315
729
+ 1749964620.9884312,85950,0.6518247723579407
730
+ 1749964736.0891361,86050,0.6507181525230408
731
+ 1749964851.121147,86150,0.6493345499038696
732
+ 1749964966.152081,86250,0.651191771030426
733
+ 1749965081.159734,86350,0.6515423059463501
734
+ 1749965196.013607,86450,0.6494301557540894
735
+ 1749965310.919723,86550,0.6503309011459351
736
+ 1749965425.7250419,86650,0.6484840512275696
737
+ 1749965540.5652092,86750,0.6490238904953003
738
+ 1749965655.315326,86850,0.6500490307807922
739
+ 1749965770.049461,86950,0.6497481465339661
740
+ 1749965884.834232,87050,0.6497408151626587
741
+ 1749965999.8417149,87150,0.6487524509429932
742
+ 1749966711.9277241,87263,0.6526259779930115
743
+ 1749966826.452731,87363,0.6557187438011169
744
+ 1749966941.486036,87463,0.6512144804000854
745
+ 1749967056.0634692,87563,0.652887225151062
746
+ 1749967171.025635,87663,0.6515324711799622
747
+ 1749967285.560586,87763,0.6503400802612305
748
+ 1749967400.0741189,87863,0.6521697044372559
749
+ 1749967514.531109,87963,0.6512916684150696
750
+ 1749967628.8952188,88063,0.6526513695716858
751
+ 1749967743.326265,88163,0.6508504748344421
752
+ 1749967857.77909,88263,0.6511495113372803
753
+ 1749967972.186653,88363,0.6517524719238281
754
+ 1749968086.6080792,88463,0.6508412957191467
755
+ 1749968201.192553,88563,0.6497830748558044
756
+ 1749968315.548358,88663,0.6478333473205566
757
+ 1749968429.965076,88763,0.6519607901573181
758
+ 1749968544.336524,88863,0.6503326892852783
759
+ 1749968658.703823,88963,0.6507499814033508
760
+ 1749968773.079833,89063,0.6491066217422485
761
+ 1749968887.395246,89163,0.6507052779197693
762
+ 1749969001.696439,89263,0.6486783027648926
763
+ 1749969115.9041128,89363,0.6508688926696777
764
+ 1749969230.1204438,89463,0.649645209312439
765
+ 1749969344.436378,89563,0.6521825790405273
766
+ 1749969458.747808,89663,0.6497873663902283
767
+ 1749969572.979925,89763,0.6509847044944763
768
+ 1749969687.2085052,89863,0.6497610211372375
769
+ 1749969801.430084,89963,0.6509503722190857
770
+ 1749969916.392996,90063,0.6496807336807251
771
+ 1749970033.5500932,90163,0.6488866209983826
772
+ 1749970147.7666628,90263,0.6514172554016113
773
+ 1749970854.433412,90376,0.6510876417160034
774
+ 1749970968.305205,90476,0.6535937786102295
775
+ 1749971082.257281,90576,0.6536029577255249
776
+ 1749971196.191396,90676,0.6521390676498413
777
+ 1749971310.241806,90776,0.6517383456230164
778
+ 1749971424.201389,90876,0.6515649557113647
779
+ 1749971538.050328,90976,0.6490882635116577
780
+ 1749971652.028349,91076,0.6509369015693665
781
+ 1749971765.8967092,91176,0.6530330777168274
782
+ 1749971879.7971148,91276,0.6518627405166626
783
+ 1749971993.616958,91376,0.6540888547897339
784
+ 1749972107.447367,91476,0.6501213312149048
785
+ 1749972221.310951,91576,0.6517695784568787
786
+ 1749972335.184167,91676,0.6498695015907288
787
+ 1749972449.0105689,91776,0.6509405374526978
788
+ 1749972562.8870301,91876,0.649412989616394
789
+ 1749972676.74808,91976,0.6519399285316467
790
+ 1749972790.527348,92076,0.6517003774642944
791
+ 1749972904.268828,92176,0.6503774523735046
792
+ 1749973018.014807,92276,0.6529123783111572
793
+ 1749973131.713702,92376,0.6517420411109924
794
+ 1749973245.464949,92476,0.648855984210968
795
+ 1749973359.115923,92576,0.650745689868927
796
+ 1749973472.805828,92676,0.6503241658210754
797
+ 1749973587.9607658,92776,0.6507254838943481
798
+ 1749973701.850806,92876,0.6507604122161865
799
+ 1749973817.199614,92976,0.6514717936515808
800
+ 1749973932.78748,93076,0.6498952507972717
801
+ 1749974046.669132,93176,0.6498903036117554
802
+ 1749974160.730736,93276,0.6485962271690369
803
+ 1749974274.685258,93376,0.6504834294319153
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_hybrid-loss_tensorboard.csv ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750631065.525121,99,0.2892015874385834
3
+ 1750631199.189507,199,0.38064277172088623
4
+ 1750631324.1754081,299,0.4115380048751831
5
+ 1750631444.5063932,399,0.43499264121055603
6
+ 1750631570.60304,499,0.4534068703651428
7
+ 1750631701.118371,599,0.46645158529281616
8
+ 1750633238.095068,722,0.4837685227394104
9
+ 1750633374.96926,822,0.4952218234539032
10
+ 1750633510.0165582,922,0.5035698413848877
11
+ 1750633645.130949,1022,0.513650119304657
12
+ 1750633779.191838,1122,0.5235496163368225
13
+ 1750633909.250054,1222,0.5300692319869995
14
+ 1750635519.98188,1345,0.537870466709137
15
+ 1750635651.208163,1445,0.5448480248451233
16
+ 1750635786.351653,1545,0.5495679974555969
17
+ 1750635919.9084532,1645,0.5562426447868347
18
+ 1750636046.0017889,1745,0.5584007501602173
19
+ 1750636176.090967,1845,0.5644050240516663
20
+ 1750637798.3572638,1968,0.5683611035346985
21
+ 1750637944.9763231,2068,0.5706801414489746
22
+ 1750638084.590005,2168,0.5772916674613953
23
+ 1750638219.658646,2268,0.5787334442138672
24
+ 1750638344.697794,2368,0.5803602933883667
25
+ 1750638467.964193,2468,0.5839117765426636
26
+ 1750640028.77862,2591,0.5846061706542969
27
+ 1750640153.68973,2691,0.5862714648246765
28
+ 1750640279.634827,2791,0.5884944796562195
29
+ 1750640404.920202,2891,0.5922720432281494
30
+ 1750640532.764215,2991,0.5919049978256226
31
+ 1750640660.727814,3091,0.5935349464416504
32
+ 1750642226.478454,3214,0.5932989716529846
33
+ 1750642351.258563,3314,0.5945245027542114
34
+ 1750642476.434068,3414,0.5954754948616028
35
+ 1750642601.0683022,3514,0.5981869101524353
36
+ 1750642725.9307342,3614,0.600186288356781
37
+ 1750642852.359199,3714,0.5997254848480225
38
+ 1750644408.5053859,3837,0.600395143032074
39
+ 1750644528.7009401,3937,0.5971096754074097
40
+ 1750644664.0226219,4037,0.6009920239448547
41
+ 1750644809.2195818,4137,0.6015698313713074
42
+ 1750644959.742783,4237,0.601019024848938
43
+ 1750645101.643283,4337,0.6039412021636963
44
+ 1750646733.2835321,4460,0.6012372970581055
45
+ 1750646871.831888,4560,0.603259801864624
46
+ 1750647009.8041651,4660,0.600981593132019
47
+ 1750647142.06771,4760,0.6031023263931274
48
+ 1750647284.050242,4860,0.6026011109352112
49
+ 1750647416.582078,4960,0.6032015681266785
50
+ 1750648993.736192,5083,0.6007488369941711
51
+ 1750649118.638871,5183,0.6006850600242615
52
+ 1750649243.5734222,5283,0.597931981086731
53
+ 1750649374.5322108,5383,0.6009148359298706
54
+ 1750649511.9782,5483,0.6021550297737122
55
+ 1750649643.696907,5583,0.6012359261512756
56
+ 1750651237.184215,5706,0.605415403842926
57
+ 1750651371.145504,5806,0.6034534573554993
58
+ 1750651512.9966888,5906,0.6053388714790344
59
+ 1750651645.601891,6006,0.6061537861824036
60
+ 1750651768.101696,6106,0.6082696318626404
61
+ 1750651894.2527318,6206,0.6087990403175354
62
+ 1750652751.670625,31229,0.6166274547576904
63
+ 1750652868.119637,31329,0.6185355186462402
64
+ 1750652987.307248,31429,0.6230275630950928
65
+ 1750653108.938766,31529,0.6198063492774963
66
+ 1750653231.185305,31629,0.6204130053520203
67
+ 1750653353.8723042,31729,0.6206746101379395
68
+ 1750653485.112509,31829,0.6198235154151917
69
+ 1750653619.547445,31929,0.6213094592094421
70
+ 1750653735.6447968,32029,0.6196972727775574
71
+ 1750653850.830616,32129,0.6215110421180725
72
+ 1750653967.8004758,32229,0.6225257515907288
73
+ 1750654085.789829,32329,0.6231274604797363
74
+ 1750654204.026706,32429,0.6223854422569275
75
+ 1750654322.3788009,32529,0.6243988871574402
76
+ 1750654440.559285,32629,0.6218382120132446
77
+ 1750654559.3013608,32729,0.6245214343070984
78
+ 1750654677.978327,32829,0.6259387135505676
79
+ 1750654796.143668,32929,0.6237101554870605
80
+ 1750654914.796604,33029,0.6228921413421631
81
+ 1750655032.7838562,33129,0.6244197487831116
82
+ 1750655150.7129211,33229,0.6263841986656189
83
+ 1750655268.704857,33329,0.626318633556366
84
+ 1750655386.503475,33429,0.6249117851257324
85
+ 1750655504.5079181,33529,0.625941812992096
86
+ 1750655622.460054,33629,0.6252077221870422
87
+ 1750655740.27733,33729,0.6250073313713074
88
+ 1750655861.6650329,33829,0.6259454488754272
89
+ 1750655980.320866,33929,0.6259902119636536
90
+ 1750656097.877643,34029,0.6275263428688049
91
+ 1750656215.370133,34129,0.6273707151412964
92
+ 1750656333.075268,34229,0.6274074912071228
93
+ 1750657086.7578921,34342,0.629107654094696
94
+ 1750657204.668383,34442,0.6307554841041565
95
+ 1750657322.042016,34542,0.6320698261260986
96
+ 1750657440.209099,34642,0.6313345432281494
97
+ 1750657557.434792,34742,0.630058228969574
98
+ 1750657674.6609201,34842,0.6304326057434082
99
+ 1750657792.012317,34942,0.6296194791793823
100
+ 1750657909.36126,35042,0.6288976669311523
101
+ 1750658027.830069,35142,0.6288621425628662
102
+ 1750658146.2059221,35242,0.6297763586044312
103
+ 1750658264.251379,35342,0.6283137202262878
104
+ 1750658381.4552808,35442,0.6315312385559082
105
+ 1750658499.310551,35542,0.6321831941604614
106
+ 1750658616.736139,35642,0.6333051323890686
107
+ 1750658733.911008,35742,0.6327359080314636
108
+ 1750658851.442867,35842,0.6320796608924866
109
+ 1750658969.819356,35942,0.6324282884597778
110
+ 1750659087.024925,36042,0.6331182718276978
111
+ 1750659204.912767,36142,0.6325937509536743
112
+ 1750659322.231669,36242,0.6324228048324585
113
+ 1750659439.335664,36342,0.6320667862892151
114
+ 1750659556.742486,36442,0.6295673847198486
115
+ 1750659686.196736,36542,0.633201003074646
116
+ 1750659820.735029,36642,0.6299142241477966
117
+ 1750659952.2519848,36742,0.6304901838302612
118
+ 1750660069.779297,36842,0.6325153112411499
119
+ 1750660186.531904,36942,0.6317647099494934
120
+ 1750660303.349201,37042,0.6333976984024048
121
+ 1750660420.603225,37142,0.6317064762115479
122
+ 1750660541.714292,37242,0.633700966835022
123
+ 1750660660.136745,37342,0.6330820918083191
124
+ 1750661388.201132,37455,0.6364847421646118
125
+ 1750661504.059097,37555,0.6347518563270569
126
+ 1750661620.601632,37655,0.6350349187850952
127
+ 1750661737.8392,37755,0.6348829865455627
128
+ 1750661854.791054,37855,0.6365698575973511
129
+ 1750661971.614787,37955,0.6343265771865845
130
+ 1750662088.802027,38055,0.6356586813926697
131
+ 1750662205.563544,38155,0.6366415619850159
132
+ 1750662322.22959,38255,0.6359074711799622
133
+ 1750662438.993978,38355,0.6354228258132935
134
+ 1750662555.670385,38455,0.6363198757171631
135
+ 1750662672.0950882,38555,0.6336360573768616
136
+ 1750662788.568151,38655,0.6352775692939758
137
+ 1750662904.984475,38755,0.635205864906311
138
+ 1750663021.477014,38855,0.6362101435661316
139
+ 1750663138.0638971,38955,0.635427713394165
140
+ 1750663254.581194,39055,0.637482225894928
141
+ 1750663370.997845,39155,0.6358364224433899
142
+ 1750663493.812136,39255,0.632895827293396
143
+ 1750663627.289997,39355,0.6369025707244873
144
+ 1750663743.763742,39455,0.637343168258667
145
+ 1750663861.556258,39555,0.6361697316169739
146
+ 1750663978.43328,39655,0.6330171823501587
147
+ 1750664096.123036,39755,0.6363339424133301
148
+ 1750664213.899255,39855,0.6361568570137024
149
+ 1750664330.618678,39955,0.6359429955482483
150
+ 1750664447.20275,40055,0.6349148154258728
151
+ 1750664564.020528,40155,0.6366127729415894
152
+ 1750664680.570506,40255,0.6383057832717896
153
+ 1750664797.279377,40355,0.6339424252510071
154
+ 1750664913.7482638,40455,0.6364099383354187
155
+ 1750665641.142454,40568,0.6383413076400757
156
+ 1750665760.664209,40668,0.6392855644226074
157
+ 1750665877.128622,40768,0.6404803991317749
158
+ 1750665995.714239,40868,0.6381770968437195
159
+ 1750666112.245776,40968,0.6393100619316101
160
+ 1750666228.523797,41068,0.6395349502563477
161
+ 1750666344.925282,41168,0.6408413052558899
162
+ 1750666461.593054,41268,0.637652575969696
163
+ 1750666579.433974,41368,0.6385288238525391
164
+ 1750666696.877779,41468,0.640026330947876
165
+ 1750666812.9850519,41568,0.6378768682479858
166
+ 1750666929.211252,41668,0.6363480091094971
167
+ 1750667045.4454331,41768,0.6351427435874939
168
+ 1750667170.844815,41868,0.6397064924240112
169
+ 1750667297.539781,41968,0.6390379667282104
170
+ 1750667413.213182,42068,0.6378137469291687
171
+ 1750667529.4597619,42168,0.6374160647392273
172
+ 1750667647.741377,42268,0.6378731727600098
173
+ 1750667768.2726898,42368,0.6387904286384583
174
+ 1750667888.868618,42468,0.6397058963775635
175
+ 1750668005.4062688,42568,0.6393921375274658
176
+ 1750668123.1960561,42668,0.6392971873283386
177
+ 1750668240.35351,42768,0.6400429010391235
178
+ 1750668356.820052,42868,0.640026330947876
179
+ 1750668473.354707,42968,0.6401923894882202
180
+ 1750668589.6288471,43068,0.6370373964309692
181
+ 1750668705.693681,43168,0.638969361782074
182
+ 1750668822.180295,43268,0.6386280655860901
183
+ 1750668938.474815,43368,0.6391764879226685
184
+ 1750669054.528234,43468,0.6391905546188354
185
+ 1750669170.334048,43568,0.6384166479110718
186
+ 1750669890.286228,43681,0.6410545706748962
187
+ 1750670005.478684,43781,0.6422426700592041
188
+ 1750670121.107224,43881,0.6428235173225403
189
+ 1750670236.806165,43981,0.6417873501777649
190
+ 1750670352.39135,44081,0.6401703357696533
191
+ 1750670467.961828,44181,0.6414467096328735
192
+ 1750670583.4607208,44281,0.6410232782363892
193
+ 1750670700.078947,44381,0.6407126188278198
194
+ 1750670817.439255,44481,0.6421048045158386
195
+ 1750670938.819511,44581,0.6384797692298889
196
+ 1750671067.602432,44681,0.6404001116752625
197
+ 1750671182.949585,44781,0.6403780579566956
198
+ 1750671303.0707479,44881,0.640904426574707
199
+ 1750671419.453831,44981,0.6423774361610413
200
+ 1750671536.2709272,45081,0.6402193307876587
201
+ 1750671652.090307,45181,0.6390085816383362
202
+ 1750671767.837034,45281,0.6396801471710205
203
+ 1750671883.496514,45381,0.6396065950393677
204
+ 1750671999.103832,45481,0.6402015686035156
205
+ 1750672114.666927,45581,0.6429314017295837
206
+ 1750672230.1629078,45681,0.6415674090385437
207
+ 1750672345.576981,45781,0.6380888223648071
208
+ 1750672461.0743942,45881,0.6400943398475647
209
+ 1750672576.9968,45981,0.6397291421890259
210
+ 1750672692.294366,46081,0.6416593194007874
211
+ 1750672807.730447,46181,0.6401035785675049
212
+ 1750672923.071418,46281,0.6408541798591614
213
+ 1750673038.510377,46381,0.6429779529571533
214
+ 1750673153.916872,46481,0.6408265829086304
215
+ 1750673269.40186,46581,0.6402071118354797
216
+ 1750673384.451123,46681,0.6400980353355408
217
+ 1750674100.060661,46794,0.6442976593971252
218
+ 1750674214.866165,46894,0.6420912742614746
219
+ 1750674330.260976,46994,0.6419485211372375
220
+ 1750674445.835049,47094,0.6429399251937866
221
+ 1750674560.9154491,47194,0.6439393162727356
222
+ 1750674676.151907,47294,0.6419363021850586
223
+ 1750674791.636968,47394,0.6423609256744385
224
+ 1750674922.1213708,47494,0.644547164440155
225
+ 1750675052.2869709,47594,0.6426292657852173
226
+ 1750675167.9400709,47694,0.6425269842147827
227
+ 1750675283.399919,47794,0.6424803733825684
228
+ 1750675398.730604,47894,0.6421470642089844
229
+ 1750675514.069264,47994,0.6427990198135376
230
+ 1750675629.360107,48094,0.6415747404098511
231
+ 1750675744.7140338,48194,0.642421543598175
232
+ 1750675859.934976,48294,0.6413670182228088
233
+ 1750675974.88224,48394,0.6440698504447937
234
+ 1750676090.1252851,48494,0.6412782073020935
235
+ 1750676205.5739782,48594,0.6424521803855896
236
+ 1750676320.4785259,48694,0.6418020725250244
237
+ 1750676435.3930979,48794,0.6436948776245117
238
+ 1750676550.250946,48894,0.6425514817237854
239
+ 1750676665.2288482,48994,0.6427904367446899
240
+ 1750676780.087465,49094,0.6412267088890076
241
+ 1750676894.973839,49194,0.6426372528076172
242
+ 1750677010.184855,49294,0.641489565372467
243
+ 1750677125.007437,49394,0.6410931348800659
244
+ 1750677239.845695,49494,0.6417775750160217
245
+ 1750677354.7222772,49594,0.6416972875595093
246
+ 1750677469.7859788,49694,0.6428253650665283
247
+ 1750677584.576396,49794,0.6431384682655334
248
+ 1750678299.27569,49907,0.6434351205825806
249
+ 1750678413.905586,50007,0.6445478200912476
250
+ 1750678531.823102,50107,0.6454742550849915
251
+ 1750678646.712779,50207,0.643337607383728
252
+ 1750678761.7013912,50307,0.644447922706604
253
+ 1750678880.435966,50407,0.6441225409507751
254
+ 1750679010.284852,50507,0.6426029205322266
255
+ 1750679134.0058482,50607,0.644059419631958
256
+ 1750679249.3821728,50707,0.6426562666893005
257
+ 1750679364.4773529,50807,0.6431776881217957
258
+ 1750679479.19853,50907,0.6433780789375305
259
+ 1750679593.954922,51007,0.64449143409729
260
+ 1750679709.1884952,51107,0.6440226435661316
261
+ 1750679823.9469929,51207,0.6416170597076416
262
+ 1750679938.726235,51307,0.6432934999465942
263
+ 1750680053.322082,51407,0.6428688764572144
264
+ 1750680167.934365,51507,0.6435839533805847
265
+ 1750680282.568205,51607,0.6457653045654297
266
+ 1750680397.378247,51707,0.6440061330795288
267
+ 1750680512.335923,51807,0.645423412322998
268
+ 1750680626.8774269,51907,0.6447021961212158
269
+ 1750680741.40782,52007,0.6430257558822632
270
+ 1750680855.937533,52107,0.641985297203064
271
+ 1750680971.009221,52207,0.6439638733863831
272
+ 1750681085.748811,52307,0.6442089676856995
273
+ 1750681200.528425,52407,0.6428124904632568
274
+ 1750681315.339005,52507,0.6452438831329346
275
+ 1750681429.589907,52607,0.6432763338088989
276
+ 1750681543.8544981,52707,0.6444277167320251
277
+ 1750681658.02585,52807,0.6424583196640015
278
+ 1750681772.812811,52907,0.6432414054870605
279
+ 1750682496.464426,53020,0.6453410387039185
280
+ 1750682610.4130208,53120,0.6466960906982422
281
+ 1750682724.89655,53220,0.6458014845848083
282
+ 1750682851.957867,53320,0.6452855467796326
283
+ 1750682974.301877,53420,0.6456722021102905
284
+ 1750683088.494407,53520,0.6459877490997314
285
+ 1750683203.613056,53620,0.6453210711479187
286
+ 1750683318.650611,53720,0.643280029296875
287
+ 1750683433.289535,53820,0.646141529083252
288
+ 1750683548.048495,53920,0.6453112959861755
289
+ 1750683662.402407,54020,0.6435919404029846
290
+ 1750683776.7563431,54120,0.6448676586151123
291
+ 1750683891.090209,54220,0.6451409459114075
292
+ 1750684005.30981,54320,0.6430343389511108
293
+ 1750684119.456249,54420,0.6458688974380493
294
+ 1750684233.579416,54520,0.6452438831329346
295
+ 1750684347.760201,54620,0.6426666975021362
296
+ 1750684461.8397079,54720,0.6438566446304321
297
+ 1750684576.002183,54820,0.6431954503059387
298
+ 1750684690.038761,54920,0.6441697478294373
299
+ 1750684804.1086779,55020,0.6478394865989685
300
+ 1750684918.116061,55120,0.6437377333641052
301
+ 1750685032.259659,55220,0.6452493667602539
302
+ 1750685146.6256042,55320,0.6453210711479187
303
+ 1750685260.67823,55420,0.6463456153869629
304
+ 1750685376.882659,55520,0.6453866362571716
305
+ 1750685493.291549,55620,0.6427052617073059
306
+ 1750685607.024134,55720,0.6428866386413574
307
+ 1750685727.476725,55820,0.6446048021316528
308
+ 1750685842.3274372,55920,0.6424411535263062
309
+ 1750685956.441565,56020,0.6442604064941406
310
+ 1750686672.225863,56133,0.6452059149742126
311
+ 1750686791.769061,56233,0.6464859247207642
312
+ 1750686906.029582,56333,0.6462916731834412
313
+ 1750687020.063763,56433,0.645586371421814
314
+ 1750687134.383457,56533,0.6452543139457703
315
+ 1750687248.784163,56633,0.6459258794784546
316
+ 1750687362.727921,56733,0.6461715698242188
317
+ 1750687476.80187,56833,0.6469969153404236
318
+ 1750687590.8523,56933,0.6452996134757996
319
+ 1750687705.0287628,57033,0.6463247537612915
320
+ 1750687818.963202,57133,0.6458566188812256
321
+ 1750687933.0801868,57233,0.6479871273040771
322
+ 1750688047.127454,57333,0.6460961699485779
323
+ 1750688161.213365,57433,0.6467254757881165
324
+ 1750688276.0170398,57533,0.644781231880188
325
+ 1750688403.652831,57633,0.6459190845489502
326
+ 1750688521.523565,57733,0.6464926600456238
327
+ 1750688644.4562812,57833,0.6445631384849548
328
+ 1750688770.101472,57933,0.6468847990036011
329
+ 1750688890.472131,58033,0.6455134749412537
330
+ 1750689007.258662,58133,0.6451200842857361
331
+ 1750689125.634627,58233,0.6431875228881836
332
+ 1750689244.2372658,58333,0.644850492477417
333
+ 1750689364.695701,58433,0.6435110569000244
334
+ 1750689483.856778,58533,0.64333575963974
335
+ 1750689602.730277,58633,0.6450287699699402
336
+ 1750689715.3254662,58733,0.6437554955482483
337
+ 1750689828.575561,58833,0.6466703414916992
338
+ 1750689943.0059462,58933,0.6457230448722839
339
+ 1750690057.1912692,59033,0.6446985006332397
340
+ 1750690171.580263,59133,0.6473180055618286
341
+ 1750690905.871822,59246,0.64793860912323
342
+ 1750691038.545429,59346,0.6456004977226257
343
+ 1750691165.34847,59446,0.6488615274429321
344
+ 1750691280.322457,59546,0.6473891139030457
345
+ 1750691403.3815491,59646,0.6478112936019897
346
+ 1750691524.508241,59746,0.6466991305351257
347
+ 1750691644.0496929,59846,0.6483572125434875
348
+ 1750691764.225536,59946,0.6464233994483948
349
+ 1750691880.756077,60046,0.6465569734573364
350
+ 1750692002.569738,60146,0.6469810009002686
351
+ 1750692120.909455,60246,0.6465851664543152
352
+ 1750692245.229753,60346,0.6458603143692017
353
+ 1750692369.640859,60446,0.6466072201728821
354
+ 1750692495.37012,60546,0.6461721658706665
355
+ 1750692623.336402,60646,0.6448425054550171
356
+ 1750692748.5088708,60746,0.6467867493629456
357
+ 1750692874.7629929,60846,0.6467475295066833
358
+ 1750693004.752369,60946,0.6442990303039551
359
+ 1750693132.13376,61046,0.6468836069107056
360
+ 1750693252.7927139,61146,0.643668532371521
361
+ 1750693374.481353,61246,0.6488774418830872
362
+ 1750693516.340599,61346,0.6444466710090637
363
+ 1750693652.6204538,61446,0.6460545063018799
364
+ 1750693789.2221708,61546,0.6460103988647461
365
+ 1750693923.9854028,61646,0.6463541388511658
366
+ 1750694062.410586,61746,0.6441966891288757
367
+ 1750694211.168782,61846,0.6448927521705627
368
+ 1750694354.862964,61946,0.6444712281227112
369
+ 1750694509.583164,62046,0.6447359323501587
370
+ 1750694658.221782,62146,0.6455471515655518
371
+ 1750694811.258077,62246,0.6479007601737976
372
+ 1750695756.325511,62359,0.6486972570419312
373
+ 1750695908.34564,62459,0.6474969387054443
374
+ 1750696060.974647,62559,0.6472408175468445
375
+ 1750696213.8780239,62659,0.6475049257278442
376
+ 1750696371.832135,62759,0.6473884582519531
377
+ 1750696538.972726,62859,0.6451342105865479
378
+ 1750696703.472451,62959,0.6484380960464478
379
+ 1750696862.664015,63059,0.6466072201728821
380
+ 1750697019.825461,63159,0.6475588083267212
381
+ 1750697178.623338,63259,0.6457787752151489
382
+ 1750697338.321743,63359,0.6473228931427002
383
+ 1750697496.1072798,63459,0.6486611366271973
384
+ 1750697640.699009,63559,0.6490833163261414
385
+ 1750697798.67978,63659,0.6481010913848877
386
+ 1750697973.567866,63759,0.6467138528823853
387
+ 1750698130.159744,63859,0.6478351950645447
388
+ 1750698288.505541,63959,0.6474264860153198
389
+ 1750698443.6894138,64059,0.6452934741973877
390
+ 1750698600.570563,64159,0.6454577445983887
391
+ 1750698762.2083058,64259,0.6472849249839783
392
+ 1750698927.0930612,64359,0.6461752653121948
393
+ 1750699092.819475,64459,0.6464166641235352
394
+ 1750699254.193381,64559,0.6461654305458069
395
+ 1750699417.738376,64659,0.6442646980285645
396
+ 1750699580.8290539,64759,0.6487463116645813
397
+ 1750699744.4795609,64859,0.645877480506897
398
+ 1750699902.463346,64959,0.6496366262435913
399
+ 1750700059.6175628,65059,0.6453235149383545
400
+ 1750700217.401553,65159,0.6459877490997314
401
+ 1750700373.628779,65259,0.6481280326843262
402
+ 1750700522.979404,65359,0.6468296647071838
403
+ 1750701377.086987,65472,0.6475510597229004
404
+ 1750701517.144674,65572,0.6492867469787598
405
+ 1750701645.158174,65672,0.650678277015686
406
+ 1750701763.433599,65772,0.6491249799728394
407
+ 1750701883.156283,65872,0.649980366230011
408
+ 1750702005.192172,65972,0.6487285494804382
409
+ 1750702135.9532921,66072,0.6475416421890259
410
+ 1750702259.124198,66172,0.647977352142334
411
+ 1750702380.897517,66272,0.6486433744430542
412
+ 1750702504.3463502,66372,0.6462622284889221
413
+ 1750702627.001485,66472,0.6512279510498047
414
+ 1750702748.683696,66572,0.6497218012809753
415
+ 1750702871.379016,66672,0.646327793598175
416
+ 1750703002.8059258,66772,0.6470361351966858
417
+ 1750703129.8358212,66872,0.6464185118675232
418
+ 1750703254.3501709,66972,0.6481636166572571
419
+ 1750703374.948131,67072,0.6462395787239075
420
+ 1750703496.332047,67172,0.6486942172050476
421
+ 1750703622.6555572,67272,0.6456899642944336
422
+ 1750703745.221765,67372,0.6455833315849304
423
+ 1750703878.715412,67472,0.6465294361114502
424
+ 1750703999.804201,67572,0.6461703181266785
425
+ 1750704123.5258,67672,0.6471580862998962
426
+ 1750704244.238156,67772,0.6484571099281311
427
+ 1750704364.829161,67872,0.6461807489395142
428
+ 1750704503.792347,67972,0.6457751393318176
429
+ 1750704647.331369,68072,0.6455257534980774
430
+ 1750704783.771793,68172,0.6465281844139099
431
+ 1750704923.119327,68272,0.6465435028076172
432
+ 1750705071.639251,68372,0.6453333497047424
433
+ 1750705197.302738,68472,0.6477996110916138
434
+ 1750705965.7468271,68585,0.6481080055236816
435
+ 1750706082.729342,68685,0.6502708196640015
436
+ 1750706202.871629,68785,0.6493762135505676
437
+ 1750706323.307158,68885,0.6498241424560547
438
+ 1750706443.331074,68985,0.6487175226211548
439
+ 1750706562.951682,69085,0.6472249031066895
440
+ 1750706683.12535,69185,0.6495385766029358
441
+ 1750706803.174572,69285,0.6501666903495789
442
+ 1750706934.701206,69385,0.6494032144546509
443
+ 1750707065.983119,69485,0.6485214233398438
444
+ 1750707197.3294451,69585,0.6473425030708313
445
+ 1750707327.289064,69685,0.6495343446731567
446
+ 1750707451.997995,69785,0.649676501750946
447
+ 1750707570.648684,69885,0.6482769846916199
448
+ 1750707691.121522,69985,0.6493817567825317
449
+ 1750707813.819514,70085,0.6475061178207397
450
+ 1750707944.233801,70185,0.6452242732048035
451
+ 1750708069.5539682,70285,0.6478223204612732
452
+ 1750708193.143508,70385,0.6486562490463257
453
+ 1750708313.543391,70485,0.6490907073020935
454
+ 1750708435.994677,70585,0.6490913033485413
455
+ 1750708556.496484,70685,0.6464282870292664
456
+ 1750708683.346485,70785,0.6461372375488281
457
+ 1750708804.8735192,70885,0.6472303867340088
458
+ 1750708925.507859,70985,0.6471476554870605
459
+ 1750709044.3017159,71085,0.6456458568572998
460
+ 1750709164.810722,71185,0.6467101573944092
461
+ 1750709292.3388329,71285,0.6471237540245056
462
+ 1750709419.642994,71385,0.6455876231193542
463
+ 1750709540.056331,71485,0.6471979022026062
464
+ 1750709664.903027,71585,0.6474840641021729
465
+ 1750710541.4944708,71698,0.6503886580467224
466
+ 1750710717.131572,71798,0.6500024795532227
467
+ 1750710901.969075,71898,0.6495906710624695
468
+ 1750711072.293113,71998,0.6502586007118225
469
+ 1750711202.7389472,72098,0.6461090445518494
470
+ 1750711396.2362828,72198,0.6494160294532776
471
+ 1750711598.5428538,72298,0.6488057374954224
472
+ 1750711785.426256,72398,0.6490386128425598
473
+ 1750711975.593777,72498,0.6491384506225586
474
+ 1750712139.114897,72598,0.6515661478042603
475
+ 1750712276.62222,72698,0.6474993824958801
476
+ 1750712408.118044,72798,0.647630512714386
477
+ 1750712532.846184,72898,0.6472610235214233
478
+ 1750712732.6694112,72998,0.6475815176963806
479
+ 1750712912.756147,73098,0.6476121544837952
480
+ 1750713089.944423,73198,0.6483517289161682
481
+ 1750713266.5091908,73298,0.6472702026367188
482
+ 1750713469.4219148,73398,0.6492101550102234
483
+ 1750713638.181789,73498,0.6476243734359741
484
+ 1750713771.21946,73598,0.6491378545761108
485
+ 1750713912.549492,73698,0.6466948390007019
486
+ 1750714050.563842,73798,0.6465091705322266
487
+ 1750714183.45089,73898,0.6491899490356445
488
+ 1750714314.628376,73998,0.6481991410255432
489
+ 1750714435.101216,74098,0.6487414240837097
490
+ 1750714560.014582,74198,0.6473872661590576
491
+ 1750714745.7170901,74298,0.6494601964950562
492
+ 1750714909.82759,74398,0.6497021913528442
493
+ 1750715069.977015,74498,0.6480085849761963
494
+ 1750715238.480225,74598,0.6475067138671875
495
+ 1750715372.129917,74698,0.6503259539604187
496
+ 1750716228.131658,74811,0.6505544781684875
497
+ 1750716350.395545,74911,0.6496856808662415
498
+ 1750716474.600398,75011,0.6469619870185852
499
+ 1750716600.222958,75111,0.650341272354126
500
+ 1750716724.592279,75211,0.6511985063552856
501
+ 1750716846.6685288,75311,0.649648904800415
502
+ 1750716970.249894,75411,0.6496115326881409
503
+ 1750717093.2215412,75511,0.6492812633514404
504
+ 1750717214.8042839,75611,0.651259183883667
505
+ 1750717334.98802,75711,0.6500968337059021
506
+ 1750717460.1300192,75811,0.6493321061134338
507
+ 1750717583.9358342,75911,0.6485692262649536
508
+ 1750717705.862606,76011,0.6479626297950745
509
+ 1750717829.5720232,76111,0.6494246125221252
510
+ 1750717955.916364,76211,0.6481115221977234
511
+ 1750718085.498107,76311,0.6478915214538574
512
+ 1750718216.036777,76411,0.6476054191589355
513
+ 1750718340.389607,76511,0.648463249206543
514
+ 1750718464.600441,76611,0.6489871144294739
515
+ 1750718587.348203,76711,0.6475778222084045
516
+ 1750718708.304975,76811,0.6484387516975403
517
+ 1750718829.805079,76911,0.6481636166572571
518
+ 1750718954.33559,77011,0.6491053700447083
519
+ 1750719081.4483619,77111,0.6484283208847046
520
+ 1750719204.075867,77211,0.6471807360649109
521
+ 1750719324.287713,77311,0.6484160423278809
522
+ 1750719445.91699,77411,0.6471991539001465
523
+ 1750719576.412999,77511,0.6469191312789917
524
+ 1750719705.654291,77611,0.6492947340011597
525
+ 1750719828.729173,77711,0.6487928628921509
526
+ 1750719952.819894,77811,0.6483290195465088
527
+ 1750720707.855105,77924,0.6514130234718323
528
+ 1750720834.3818061,78024,0.6511390805244446
529
+ 1750720954.2498791,78124,0.6513014435768127
530
+ 1750721075.6623218,78224,0.6500998735427856
531
+ 1750721198.050805,78324,0.648921549320221
532
+ 1750721324.231403,78424,0.6483725309371948
533
+ 1750721445.729855,78524,0.649813711643219
534
+ 1750721567.7231958,78624,0.6490533351898193
535
+ 1750721689.3256562,78724,0.6521862745285034
536
+ 1750721811.6838999,78824,0.6498749852180481
537
+ 1750721934.568477,78924,0.6493455767631531
538
+ 1750722057.12514,79024,0.6505618691444397
539
+ 1750722180.053097,79124,0.6507413983345032
540
+ 1750722309.0838542,79224,0.6470245122909546
541
+ 1750722430.786697,79324,0.6500116586685181
542
+ 1750722552.653567,79424,0.6486446261405945
543
+ 1750722675.150284,79524,0.6497328281402588
544
+ 1750722801.892572,79624,0.6492977738380432
545
+ 1750722926.87468,79724,0.6499423980712891
546
+ 1750723048.9938838,79824,0.649302065372467
547
+ 1750723171.157585,79924,0.64703369140625
548
+ 1750723293.181637,80024,0.649258553981781
549
+ 1750723431.741166,80124,0.6478559970855713
550
+ 1750723559.550064,80224,0.6506384611129761
551
+ 1750723681.40414,80324,0.6469699740409851
552
+ 1750723803.064142,80424,0.6478290557861328
553
+ 1750723925.7209768,80524,0.6485876441001892
554
+ 1750724047.5232399,80624,0.6461513638496399
555
+ 1750724170.174003,80724,0.647087037563324
556
+ 1750724297.151586,80824,0.6457886099815369
557
+ 1750724417.878161,80924,0.6503731608390808
558
+ 1750725157.696506,81037,0.6495773792266846
559
+ 1750725276.6986072,81137,0.6504503488540649
560
+ 1750725397.190547,81237,0.6491556167602539
561
+ 1750725524.3689,81337,0.6497187614440918
562
+ 1750725644.67522,81437,0.6509546637535095
563
+ 1750725765.146411,81537,0.649066150188446
564
+ 1750725884.893885,81637,0.6516880989074707
565
+ 1750726005.993588,81737,0.649161159992218
566
+ 1750726126.0909061,81837,0.6498290300369263
567
+ 1750726245.70204,81937,0.6476758718490601
568
+ 1750726365.361954,82037,0.6505698561668396
569
+ 1750726485.85697,82137,0.6511262059211731
570
+ 1750726605.3225331,82237,0.6503793001174927
571
+ 1750726724.761475,82337,0.6514166593551636
572
+ 1750726844.29699,82437,0.6494975686073303
573
+ 1750726963.862327,82537,0.6492120027542114
574
+ 1750727083.898033,82637,0.6498327255249023
575
+ 1750727203.5610502,82737,0.6495827436447144
576
+ 1750727335.467991,82837,0.6498339176177979
577
+ 1750727461.4255848,82937,0.6493180394172668
578
+ 1750727580.802688,83037,0.6476672887802124
579
+ 1750727700.546695,83137,0.6492990255355835
580
+ 1750727820.246243,83237,0.6486592888832092
581
+ 1750727939.7627158,83337,0.6493976712226868
582
+ 1750728059.387846,83437,0.6471347808837891
583
+ 1750728178.965193,83537,0.6504607796669006
584
+ 1750728298.911614,83637,0.6483713388442993
585
+ 1750728417.9110038,83737,0.6494062542915344
586
+ 1750728536.891008,83837,0.6495723128318787
587
+ 1750728656.541192,83937,0.6500159502029419
588
+ 1750728775.999934,84037,0.6504166722297668
589
+ 1750729516.326271,84150,0.6514350175857544
590
+ 1750729635.5868201,84250,0.6485661864280701
591
+ 1750729755.283911,84350,0.6504926681518555
592
+ 1750729874.948045,84450,0.6497555375099182
593
+ 1750729994.65663,84550,0.6508461833000183
594
+ 1750730115.380836,84650,0.6527867913246155
595
+ 1750730235.7166631,84750,0.6499779224395752
596
+ 1750730357.25261,84850,0.649398922920227
597
+ 1750730481.5908852,84950,0.65004962682724
598
+ 1750730602.491642,85050,0.650799036026001
599
+ 1750730722.6586602,85150,0.6507383584976196
600
+ 1750730842.4600708,85250,0.6495306491851807
601
+ 1750730962.190387,85350,0.6494981646537781
602
+ 1750731088.203167,85450,0.649103581905365
603
+ 1750731223.60728,85550,0.6513688564300537
604
+ 1750731342.761135,85650,0.6500018239021301
605
+ 1750731462.366403,85750,0.6494865417480469
606
+ 1750731581.910183,85850,0.6486973166465759
607
+ 1750731702.0141718,85950,0.6486813426017761
608
+ 1750731821.820343,86050,0.6480244994163513
609
+ 1750731941.7614589,86150,0.6482402086257935
610
+ 1750732061.7666922,86250,0.6491397023200989
611
+ 1750732181.49381,86350,0.6469172835350037
612
+ 1750732300.797029,86450,0.6487285494804382
613
+ 1750732422.157172,86550,0.649090051651001
614
+ 1750732542.973932,86650,0.6489270925521851
615
+ 1750732662.5130408,86750,0.6489424109458923
616
+ 1750732785.6029382,86850,0.6521629691123962
617
+ 1750732910.433344,86950,0.6478688716888428
618
+ 1750733035.9218528,87050,0.6507003903388977
619
+ 1750733156.725365,87150,0.6498915553092957
620
+ 1750733896.359711,87263,0.6497565507888794
621
+ 1750734015.399508,87363,0.6516507267951965
622
+ 1750734134.69631,87463,0.6511244177818298
623
+ 1750734254.233375,87563,0.6511893272399902
624
+ 1750734373.475133,87663,0.6513578295707703
625
+ 1750734493.382653,87763,0.6510146856307983
626
+ 1750734612.470846,87863,0.649398922920227
627
+ 1750734731.6779652,87963,0.6510551571846008
628
+ 1750734850.9760342,88063,0.6505367755889893
629
+ 1750734970.168761,88163,0.6485563516616821
630
+ 1750735097.956203,88263,0.651425838470459
631
+ 1750735230.192062,88363,0.6517040729522705
632
+ 1750735353.5143921,88463,0.649908721446991
633
+ 1750735472.50462,88563,0.6502830982208252
634
+ 1750735592.248508,88663,0.6493400931358337
635
+ 1750735711.481355,88763,0.6515184044837952
636
+ 1750735835.323574,88863,0.651968777179718
637
+ 1750735959.649396,88963,0.6492573618888855
638
+ 1750736079.622922,89063,0.6485177874565125
639
+ 1750736201.45227,89163,0.65073162317276
640
+ 1750736328.779538,89263,0.6506391167640686
641
+ 1750736453.863393,89363,0.6493461728096008
642
+ 1750736579.8850691,89463,0.6513738036155701
643
+ 1750736706.55581,89563,0.649884819984436
644
+ 1750736833.269705,89663,0.6500735282897949
645
+ 1750736960.1432378,89763,0.6492965817451477
646
+ 1750737084.776,89863,0.6479424238204956
647
+ 1750737208.4969301,89963,0.6495612859725952
648
+ 1750737332.222544,90063,0.650051474571228
649
+ 1750737455.16169,90163,0.6492947340011597
650
+ 1750737577.5052302,90263,0.649922788143158
651
+ 1750738343.503647,90376,0.6517683863639832
652
+ 1750738464.6283572,90476,0.6503811478614807
653
+ 1750738586.790051,90576,0.6515122652053833
654
+ 1750738709.366909,90676,0.6520986557006836
655
+ 1750738832.5377321,90776,0.6523400545120239
656
+ 1750738970.401221,90876,0.6531476974487305
657
+ 1750739095.7010791,90976,0.6510576009750366
658
+ 1750739217.840459,91076,0.6499638557434082
659
+ 1750739340.2926238,91176,0.6502794027328491
660
+ 1750739463.466149,91276,0.6517659425735474
661
+ 1750739590.7468421,91376,0.6497941017150879
662
+ 1750739713.8746822,91476,0.6495937705039978
663
+ 1750739836.112065,91576,0.6491133570671082
664
+ 1750739963.997621,91676,0.6504295468330383
665
+ 1750740087.7551308,91776,0.6515079736709595
666
+ 1750740212.115783,91876,0.6501353979110718
667
+ 1750740336.1198661,91976,0.6524007320404053
668
+ 1750740460.717707,92076,0.6504209637641907
669
+ 1750740583.9634502,92176,0.6514607667922974
670
+ 1750740706.436011,92276,0.6513572335243225
671
+ 1750740829.78276,92376,0.6487401723861694
672
+ 1750740953.5337112,92476,0.6475380063056946
673
+ 1750741076.088882,92576,0.6479228138923645
674
+ 1750741199.643792,92676,0.6485998630523682
675
+ 1750741323.0374389,92776,0.6502567529678345
676
+ 1750741445.873158,92876,0.6485974192619324
677
+ 1750741568.847466,92976,0.6510079503059387
678
+ 1750741691.524961,93076,0.6507824659347534
679
+ 1750741814.875741,93176,0.6490287780761719
680
+ 1750741937.7055318,93276,0.6506329774856567
681
+ 1750742060.312392,93376,0.6476893424987793
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_hybrid_tensorboard.csv ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750512519.815718,99,0.35653799772262573
3
+ 1750512633.343317,199,0.4381672739982605
4
+ 1750512747.365131,299,0.4712659418582916
5
+ 1750512861.224118,399,0.49623775482177734
6
+ 1750512975.119779,499,0.513439953327179
7
+ 1750513088.872152,599,0.5254001021385193
8
+ 1750513809.867424,722,0.5253951549530029
9
+ 1750513923.8327522,822,0.5347071290016174
10
+ 1750514037.5889359,922,0.5412462949752808
11
+ 1750514151.3481102,1022,0.5503872632980347
12
+ 1750514265.3658612,1122,0.554965078830719
13
+ 1750514379.196322,1222,0.5614001154899597
14
+ 1750515100.2786849,1345,0.555978000164032
15
+ 1750515221.4078789,1445,0.5601238012313843
16
+ 1750515339.4312892,1545,0.5642242431640625
17
+ 1750515452.4170399,1645,0.5709405541419983
18
+ 1750515568.994731,1745,0.5758161544799805
19
+ 1750515686.4188118,1845,0.5814154148101807
20
+ 1750516412.14166,1968,0.5749399662017822
21
+ 1750516525.414965,2068,0.5782021880149841
22
+ 1750516639.16349,2168,0.5816942453384399
23
+ 1750516752.973536,2268,0.5854877233505249
24
+ 1750516866.946796,2368,0.5889233946800232
25
+ 1750516981.5747578,2468,0.592665433883667
26
+ 1750517706.2651598,2591,0.5968009233474731
27
+ 1750517820.3146722,2691,0.6044197082519531
28
+ 1750517934.468713,2791,0.6065300107002258
29
+ 1750518049.348709,2891,0.6092806458473206
30
+ 1750518163.634838,2991,0.6104442477226257
31
+ 1750518278.329371,3091,0.6138020753860474
32
+ 1750519000.4730198,3214,0.6145917177200317
33
+ 1750519114.607754,3314,0.6169730424880981
34
+ 1750519228.8915122,3414,0.6186458468437195
35
+ 1750519342.9850502,3514,0.6210214495658875
36
+ 1750519457.0511758,3614,0.6226415634155273
37
+ 1750519571.277271,3714,0.6246513724327087
38
+ 1750520294.328237,3837,0.6104810237884521
39
+ 1750520408.563489,3937,0.6084001064300537
40
+ 1750520522.554494,4037,0.6111329793930054
41
+ 1750520636.649106,4137,0.6098198294639587
42
+ 1750520750.8757708,4237,0.6129932403564453
43
+ 1750520865.4166121,4337,0.6150122284889221
44
+ 1750521588.555209,4460,0.5972975492477417
45
+ 1750521703.739831,4560,0.6002150774002075
46
+ 1750521818.0140438,4660,0.5990980267524719
47
+ 1750521932.381789,4760,0.6041396856307983
48
+ 1750522046.6180868,4860,0.6016372442245483
49
+ 1750522160.804651,4960,0.6044938564300537
50
+ 1750522882.363214,5083,0.5452057719230652
51
+ 1750522996.178067,5183,0.5377548933029175
52
+ 1750523110.268896,5283,0.5406078696250916
53
+ 1750523224.938071,5383,0.5426801443099976
54
+ 1750541295.082926,5483,0.5457214117050171
55
+ 1750541413.756873,5583,0.5476936101913452
56
+ 1750542158.7599602,5706,0.5522372126579285
57
+ 1750542290.217236,5806,0.5540257096290588
58
+ 1750542417.53398,5906,0.5527156591415405
59
+ 1750542537.180147,6006,0.5527616143226624
60
+ 1750542656.817374,6106,0.5534932613372803
61
+ 1750542777.823172,6206,0.5568425059318542
62
+ 1750543545.430414,31229,0.610929548740387
63
+ 1750543663.278502,31329,0.6151758432388306
64
+ 1750543781.815904,31429,0.615355372428894
65
+ 1750543905.7521641,31529,0.6202402114868164
66
+ 1750544029.771921,31629,0.6155343055725098
67
+ 1750544148.302644,31729,0.6183946132659912
68
+ 1750544267.0461318,31829,0.6176010966300964
69
+ 1750544385.893482,31929,0.6180815100669861
70
+ 1750544505.148078,32029,0.61910480260849
71
+ 1750544623.689687,32129,0.6188995242118835
72
+ 1750544742.472401,32229,0.6202977895736694
73
+ 1750544862.1196558,32329,0.6215581893920898
74
+ 1750544980.752425,32429,0.6213241219520569
75
+ 1750545100.1657238,32529,0.6201795339584351
76
+ 1750545219.826904,32629,0.6202463507652283
77
+ 1750545339.65601,32729,0.6230955719947815
78
+ 1750545459.081982,32829,0.6213045120239258
79
+ 1750545578.037591,32929,0.6234099268913269
80
+ 1750545696.975323,33029,0.6207371354103088
81
+ 1750545815.385591,33129,0.6228461861610413
82
+ 1750545934.608308,33229,0.6237910389900208
83
+ 1750546053.3803542,33329,0.6244209408760071
84
+ 1750546182.375731,33429,0.622624397277832
85
+ 1750546307.277687,33529,0.6251568794250488
86
+ 1750546429.378062,33629,0.6256231665611267
87
+ 1750546550.834217,33729,0.6248804926872253
88
+ 1750546671.655812,33829,0.6258406639099121
89
+ 1750546792.428179,33929,0.6277745366096497
90
+ 1750546918.626771,34029,0.6248946189880371
91
+ 1750547042.8809779,34129,0.6268229484558105
92
+ 1750547162.770035,34229,0.6267101764678955
93
+ 1750547925.0949068,34342,0.629385769367218
94
+ 1750548054.083701,34442,0.6300692558288574
95
+ 1750548178.90531,34542,0.6305318474769592
96
+ 1750548304.004815,34642,0.6282947063446045
97
+ 1750548425.417802,34742,0.6297309994697571
98
+ 1750548548.194823,34842,0.6289791464805603
99
+ 1750548669.393541,34942,0.6279013752937317
100
+ 1750548789.350036,35042,0.6303896903991699
101
+ 1750548906.935905,35142,0.6307867765426636
102
+ 1750549022.121208,35242,0.6295006275177002
103
+ 1750549141.310299,35342,0.6311660408973694
104
+ 1750549268.005093,35442,0.6301262378692627
105
+ 1750549387.780771,35542,0.6300386190414429
106
+ 1750549514.264724,35642,0.6322604417800903
107
+ 1750549639.401718,35742,0.6307003498077393
108
+ 1750549761.940147,35842,0.6288437247276306
109
+ 1750549887.1971352,35942,0.6304025650024414
110
+ 1750550011.6239932,36042,0.6312199831008911
111
+ 1750550132.8257868,36142,0.6306874752044678
112
+ 1750550255.810136,36242,0.6294883489608765
113
+ 1750550381.590354,36342,0.6302328705787659
114
+ 1750550501.410628,36442,0.6305447220802307
115
+ 1750550634.333121,36542,0.6334442496299744
116
+ 1750550765.55441,36642,0.6321170330047607
117
+ 1750550887.487181,36742,0.6318621039390564
118
+ 1750551013.896276,36842,0.6318296790122986
119
+ 1750551137.945178,36942,0.6315900683403015
120
+ 1750551266.814848,37042,0.6314914226531982
121
+ 1750551394.2324128,37142,0.6335533261299133
122
+ 1750551523.5538719,37242,0.6346985101699829
123
+ 1750551650.787906,37342,0.6316176652908325
124
+ 1750552466.9763598,37455,0.6362544894218445
125
+ 1750552593.755706,37555,0.6365900635719299
126
+ 1750552717.375516,37655,0.6357371211051941
127
+ 1750552835.905696,37755,0.6341838240623474
128
+ 1750552954.684725,37855,0.6333137154579163
129
+ 1750553073.9152,37955,0.6359472870826721
130
+ 1750553192.2524118,38055,0.6344184875488281
131
+ 1750553310.080835,38155,0.6353762149810791
132
+ 1750553428.732256,38255,0.6352101564407349
133
+ 1750553546.970997,38355,0.6349589228630066
134
+ 1750553666.473217,38455,0.6361311078071594
135
+ 1750553784.241045,38555,0.6340802907943726
136
+ 1750553902.091969,38655,0.6345416903495789
137
+ 1750554026.661404,38755,0.6336268186569214
138
+ 1750554146.0335739,38855,0.6340404152870178
139
+ 1750554265.734678,38955,0.6374675035476685
140
+ 1750554412.668614,39055,0.6357383728027344
141
+ 1750554536.714976,39155,0.6354368925094604
142
+ 1750554654.934488,39255,0.634547770023346
143
+ 1750554776.778559,39355,0.6353645920753479
144
+ 1750554900.425964,39455,0.6348314881324768
145
+ 1750555022.075907,39555,0.6348682641983032
146
+ 1750555142.84383,39655,0.6349509954452515
147
+ 1750555263.858019,39755,0.6392279267311096
148
+ 1750555381.484349,39855,0.6370049118995667
149
+ 1750555500.748307,39955,0.6361789107322693
150
+ 1750555619.281695,40055,0.6373627185821533
151
+ 1750555738.519796,40155,0.6367095708847046
152
+ 1750555857.1638122,40255,0.6352824568748474
153
+ 1750555976.423006,40355,0.6345422863960266
154
+ 1750556097.481622,40455,0.6377561092376709
155
+ 1750556849.481431,40568,0.6366961002349854
156
+ 1750556968.323946,40668,0.6389920115470886
157
+ 1750557090.0829928,40768,0.641265332698822
158
+ 1750557209.600089,40868,0.637299656867981
159
+ 1750557332.9571662,40968,0.6393511295318604
160
+ 1750557454.556417,41068,0.6385324597358704
161
+ 1750557575.257521,41168,0.6373486518859863
162
+ 1750557694.323545,41268,0.6395165324211121
163
+ 1750557813.8086998,41368,0.6381868720054626
164
+ 1750557933.02108,41468,0.6384454369544983
165
+ 1750558057.867629,41568,0.6389246582984924
166
+ 1750558186.963292,41668,0.640751838684082
167
+ 1750558308.942624,41768,0.6382028460502625
168
+ 1750558428.0147572,41868,0.6369920372962952
169
+ 1750558547.4412658,41968,0.638592541217804
170
+ 1750558682.438314,42068,0.6381452083587646
171
+ 1750558808.044629,42168,0.6389350295066833
172
+ 1750558930.6890728,42268,0.6376427412033081
173
+ 1750559051.3273962,42368,0.6376127600669861
174
+ 1750559178.170135,42468,0.637618899345398
175
+ 1750559307.4376478,42568,0.6370833516120911
176
+ 1750559431.0882099,42668,0.6377671360969543
177
+ 1750559553.4359171,42768,0.6386574506759644
178
+ 1750559675.465578,42868,0.63829106092453
179
+ 1750559800.673301,42968,0.6385459303855896
180
+ 1750559929.051855,43068,0.6382383704185486
181
+ 1750560049.739744,43168,0.6397971510887146
182
+ 1750560167.535625,43268,0.6400588154792786
183
+ 1750560289.986766,43368,0.6386746168136597
184
+ 1750560406.148522,43468,0.6393057703971863
185
+ 1750560521.5862908,43568,0.6379473209381104
186
+ 1750561252.059766,43681,0.6409271359443665
187
+ 1750561365.918968,43781,0.6408057808876038
188
+ 1750561486.963851,43881,0.6405190229415894
189
+ 1750561604.9847198,43981,0.6418737769126892
190
+ 1750561727.380712,44081,0.6414803862571716
191
+ 1750561855.436966,44181,0.6388021111488342
192
+ 1750561973.1673331,44281,0.6416249871253967
193
+ 1750562089.661609,44381,0.6407567262649536
194
+ 1750562205.391223,44481,0.6435379981994629
195
+ 1750562328.7374332,44581,0.6402175426483154
196
+ 1750562443.504435,44681,0.640390932559967
197
+ 1750562560.073649,44781,0.63901287317276
198
+ 1750562676.1336892,44881,0.6404430270195007
199
+ 1750562791.255451,44981,0.6395447254180908
200
+ 1750562906.4314828,45081,0.6409381031990051
201
+ 1750563022.989471,45181,0.639928936958313
202
+ 1750563143.009612,45281,0.6422383785247803
203
+ 1750563258.426795,45381,0.6405906677246094
204
+ 1750563376.2271922,45481,0.6399515867233276
205
+ 1750563492.181812,45581,0.6405729055404663
206
+ 1750563606.7030542,45681,0.6400998830795288
207
+ 1750563722.270846,45781,0.6418590545654297
208
+ 1750563855.6493251,45881,0.6403008699417114
209
+ 1750563971.354243,45981,0.6378388404846191
210
+ 1750564085.182728,46081,0.6398559808731079
211
+ 1750564200.637504,46181,0.6400257349014282
212
+ 1750564317.326557,46281,0.6415300369262695
213
+ 1750564434.4818282,46381,0.6426758766174316
214
+ 1750564551.824142,46481,0.6398523449897766
215
+ 1750564668.9933949,46581,0.6407260894775391
216
+ 1750564785.8267531,46681,0.6419124007225037
217
+ 1750565535.8494668,46794,0.6422056555747986
218
+ 1750565657.997025,46894,0.6463032960891724
219
+ 1750565772.921847,46994,0.6411439776420593
220
+ 1750565889.006614,47094,0.6431507468223572
221
+ 1750566005.92935,47194,0.6427739262580872
222
+ 1750566123.246987,47294,0.644709587097168
223
+ 1750566241.316244,47394,0.6436188817024231
224
+ 1750566359.59302,47494,0.6419742703437805
225
+ 1750566478.1097019,47594,0.6424705982208252
226
+ 1750566596.7906308,47694,0.6443076133728027
227
+ 1750566715.658506,47794,0.6413400769233704
228
+ 1750566834.1012092,47894,0.6434215903282166
229
+ 1750566952.149738,47994,0.6423106789588928
230
+ 1750567070.122616,48094,0.6425330638885498
231
+ 1750567187.9696372,48194,0.6412070989608765
232
+ 1750567305.905546,48294,0.6385864019393921
233
+ 1750567423.545755,48394,0.6413811445236206
234
+ 1750567540.965311,48494,0.6424896121025085
235
+ 1750567658.286883,48594,0.6416807770729065
236
+ 1750567775.6383739,48694,0.6426562666893005
237
+ 1750567893.00083,48794,0.641862154006958
238
+ 1750568010.5977511,48894,0.6437365412712097
239
+ 1750568128.829071,48994,0.6420478224754333
240
+ 1750568246.5276082,49094,0.6405422687530518
241
+ 1750568363.7302551,49194,0.6421311497688293
242
+ 1750568481.0795798,49294,0.6424846649169922
243
+ 1750568599.233805,49394,0.6423088312149048
244
+ 1750568716.026248,49494,0.6430091857910156
245
+ 1750568832.759424,49594,0.6410496234893799
246
+ 1750568949.76052,49694,0.6420183777809143
247
+ 1750569066.560096,49794,0.6412965655326843
248
+ 1750569807.785005,49907,0.6452121734619141
249
+ 1750569924.86,50007,0.64546138048172
250
+ 1750570042.331681,50107,0.6411899328231812
251
+ 1750570158.903578,50207,0.6425251364707947
252
+ 1750570275.5214038,50307,0.6432732939720154
253
+ 1750570392.1878011,50407,0.6426911950111389
254
+ 1750570508.411907,50507,0.6446635723114014
255
+ 1750570624.694793,50607,0.6437653303146362
256
+ 1750570740.793289,50707,0.6411666870117188
257
+ 1750570856.8499572,50807,0.6449939012527466
258
+ 1750570972.8968399,50907,0.643962025642395
259
+ 1750571088.87247,51007,0.6435968279838562
260
+ 1750571205.251838,51107,0.6421219110488892
261
+ 1750571321.295198,51207,0.6449313759803772
262
+ 1750571437.27664,51307,0.6418517231941223
263
+ 1750571553.188294,51407,0.6427794098854065
264
+ 1750571669.605008,51507,0.6435288190841675
265
+ 1750571785.396748,51607,0.6424405574798584
266
+ 1750571901.20281,51707,0.644616425037384
267
+ 1750572016.9972858,51807,0.6438559889793396
268
+ 1750572132.757011,51907,0.6454203724861145
269
+ 1750572248.543735,52007,0.6435306072235107
270
+ 1750572364.283351,52107,0.6453829407691956
271
+ 1750572479.954495,52207,0.6444313526153564
272
+ 1750572595.630369,52307,0.6437414288520813
273
+ 1750572711.608358,52407,0.6438400745391846
274
+ 1750572827.294903,52507,0.6434191465377808
275
+ 1750572949.4278588,52607,0.6442353129386902
276
+ 1750573081.115513,52707,0.6438174247741699
277
+ 1750573196.249892,52807,0.6420766115188599
278
+ 1750573311.5793018,52907,0.642891526222229
279
+ 1750574031.98301,53020,0.6436647772789001
280
+ 1750574147.29718,53120,0.6458823680877686
281
+ 1750574262.8689039,53220,0.6458296775817871
282
+ 1750574378.20222,53320,0.6470888257026672
283
+ 1750574493.654762,53420,0.647616446018219
284
+ 1750574609.564354,53520,0.6457353234291077
285
+ 1750574725.0149271,53620,0.6446035504341125
286
+ 1750574840.4245021,53720,0.6438578367233276
287
+ 1750574956.014117,53820,0.6460122466087341
288
+ 1750575071.2638001,53920,0.6461544036865234
289
+ 1750575186.563884,54020,0.6442506313323975
290
+ 1750575302.772993,54120,0.6432886123657227
291
+ 1750575418.222311,54220,0.6440937519073486
292
+ 1750575533.568038,54320,0.6452794075012207
293
+ 1750575649.4060469,54420,0.6453946232795715
294
+ 1750575764.808038,54520,0.643932580947876
295
+ 1750575880.2007291,54620,0.6454748511314392
296
+ 1750575995.601755,54720,0.642601728439331
297
+ 1750576110.9728398,54820,0.6444087028503418
298
+ 1750576226.336683,54920,0.6438363790512085
299
+ 1750576341.659678,55020,0.6449577212333679
300
+ 1750576457.048513,55120,0.6454240083694458
301
+ 1750576572.232755,55220,0.6449577212333679
302
+ 1750576687.4686751,55320,0.6424785256385803
303
+ 1750576802.802933,55420,0.644071102142334
304
+ 1750576924.621731,55520,0.645532488822937
305
+ 1750577056.267253,55620,0.6443345546722412
306
+ 1750577173.309717,55720,0.6449442505836487
307
+ 1750577289.042749,55820,0.6443547606468201
308
+ 1750577404.575142,55920,0.6440588235855103
309
+ 1750577519.9576378,56020,0.6426476836204529
310
+ 1750578238.668938,56133,0.6469918489456177
311
+ 1750578353.731814,56233,0.6458842158317566
312
+ 1750578469.1204789,56333,0.6470937728881836
313
+ 1750578584.3296099,56433,0.6494325995445251
314
+ 1750578699.499978,56533,0.6446874737739563
315
+ 1750578814.765738,56633,0.6472757458686829
316
+ 1750578930.1919858,56733,0.6456893682479858
317
+ 1750579045.453515,56833,0.6469656825065613
318
+ 1750579160.8550808,56933,0.6465668082237244
319
+ 1750579275.820174,57033,0.6443455815315247
320
+ 1750579390.958364,57133,0.6445361375808716
321
+ 1750579505.911273,57233,0.6454914212226868
322
+ 1750579620.8545332,57333,0.6444337964057922
323
+ 1750579735.869893,57433,0.6451758742332458
324
+ 1750579850.789462,57533,0.6452665328979492
325
+ 1750579965.67233,57633,0.6462322473526001
326
+ 1750580080.63616,57733,0.6449939012527466
327
+ 1750580195.508951,57833,0.6456440091133118
328
+ 1750580310.310483,57933,0.6459197402000427
329
+ 1750580425.353987,58033,0.6460098028182983
330
+ 1750580540.1708171,58133,0.6448296308517456
331
+ 1750580655.5569558,58233,0.645352303981781
332
+ 1750580773.674479,58333,0.64360111951828
333
+ 1750580908.940358,58433,0.6448719501495361
334
+ 1750581023.3370812,58533,0.6445863842964172
335
+ 1750581137.9006279,58633,0.6447775959968567
336
+ 1750581252.673393,58733,0.644709587097168
337
+ 1750581367.477561,58833,0.648421585559845
338
+ 1750581482.437027,58933,0.6426127552986145
339
+ 1750581597.4778292,59033,0.6464632153511047
340
+ 1750581712.4491048,59133,0.6453744173049927
341
+ 1750582429.634799,59246,0.6471410393714905
342
+ 1750582544.210488,59346,0.6491905450820923
343
+ 1750582659.016445,59446,0.6470538973808289
344
+ 1750582773.78576,59546,0.6470618844032288
345
+ 1750582888.855089,59646,0.6465263366699219
346
+ 1750583003.3240662,59746,0.6477512121200562
347
+ 1750583117.701067,59846,0.6461568474769592
348
+ 1750583232.1828108,59946,0.6468449831008911
349
+ 1750583347.412756,60046,0.6451090574264526
350
+ 1750583461.909665,60146,0.6453369855880737
351
+ 1750583576.393462,60246,0.6463989019393921
352
+ 1750583692.413404,60346,0.6461660265922546
353
+ 1750583806.796368,60446,0.6431660652160645
354
+ 1750583922.159539,60546,0.6469038128852844
355
+ 1750584037.123441,60646,0.6451770663261414
356
+ 1750584151.542207,60746,0.6481862664222717
357
+ 1750584273.796669,60846,0.6473749876022339
358
+ 1750584394.352535,60946,0.6465943455696106
359
+ 1750584515.335422,61046,0.6462965607643127
360
+ 1750584631.064252,61146,0.6443327069282532
361
+ 1750584750.8549461,61246,0.6457077264785767
362
+ 1750584889.686422,61346,0.6464699506759644
363
+ 1750585011.032854,61446,0.6477438807487488
364
+ 1750585125.415521,61546,0.6452156901359558
365
+ 1750585239.952118,61646,0.6447757482528687
366
+ 1750585354.440314,61746,0.6467132568359375
367
+ 1750585468.9611871,61846,0.6464454531669617
368
+ 1750585583.376058,61946,0.647243857383728
369
+ 1750585697.829522,62046,0.6438388228416443
370
+ 1750585812.219603,62146,0.6457659602165222
371
+ 1750585926.509505,62246,0.6463039517402649
372
+ 1750586641.152458,62359,0.6478689908981323
373
+ 1750586755.0868979,62459,0.6492831110954285
374
+ 1750586869.202715,62559,0.6477726697921753
375
+ 1750586983.435402,62659,0.6484154462814331
376
+ 1750587097.811608,62759,0.6487561464309692
377
+ 1750587211.895541,62859,0.6486678719520569
378
+ 1750587326.1778922,62959,0.6473970413208008
379
+ 1750587440.346177,63059,0.6490961909294128
380
+ 1750587554.630498,63159,0.6482481360435486
381
+ 1750587668.8492742,63259,0.644489586353302
382
+ 1750587783.0494442,63359,0.6476078629493713
383
+ 1750587899.978155,63459,0.6483131051063538
384
+ 1750588014.9147332,63559,0.6460931301116943
385
+ 1750588129.3693519,63659,0.6467328667640686
386
+ 1750588243.8547578,63759,0.6476801633834839
387
+ 1750588358.458077,63859,0.6495165228843689
388
+ 1750588472.834694,63959,0.6476917862892151
389
+ 1750588587.1876748,64059,0.644529402256012
390
+ 1750588701.4570339,64159,0.6447855234146118
391
+ 1750588821.0114582,64259,0.6437076926231384
392
+ 1750588955.885608,64359,0.6447230577468872
393
+ 1750589071.6215308,64459,0.6471397280693054
394
+ 1750589185.356407,64559,0.6479007601737976
395
+ 1750589299.509584,64659,0.644725501537323
396
+ 1750589413.543396,64759,0.6464246511459351
397
+ 1750589527.535722,64859,0.6464620232582092
398
+ 1750589641.46502,64959,0.6458835601806641
399
+ 1750589755.7920032,65059,0.6466954946517944
400
+ 1750589869.688013,65159,0.6468278169631958
401
+ 1750589983.531646,65259,0.6452040672302246
402
+ 1750590097.425102,65359,0.6451256275177002
403
+ 1750590808.176262,65472,0.6471759676933289
404
+ 1750590921.921278,65572,0.650242030620575
405
+ 1750591035.834945,65672,0.6471421718597412
406
+ 1750591149.778326,65772,0.6475422978401184
407
+ 1750591263.569057,65872,0.6506139636039734
408
+ 1750591377.499996,65972,0.6497548818588257
409
+ 1750591492.6199858,66072,0.6472107768058777
410
+ 1750591608.058696,66172,0.6497953534126282
411
+ 1750591722.086161,66272,0.6478143334388733
412
+ 1750591837.5271091,66372,0.6468130946159363
413
+ 1750591951.600312,66472,0.6478676199913025
414
+ 1750592065.9358442,66572,0.6482720375061035
415
+ 1750592180.108526,66672,0.6472058892250061
416
+ 1750592294.1624372,66772,0.6472187638282776
417
+ 1750592408.118195,66872,0.6455698609352112
418
+ 1750592521.987005,66972,0.6482892036437988
419
+ 1750592635.671606,67072,0.6464956998825073
420
+ 1750592749.309768,67172,0.6475116610527039
421
+ 1750592873.8428931,67272,0.6468645930290222
422
+ 1750592993.918257,67372,0.6468793153762817
423
+ 1750593107.367975,67472,0.6465765833854675
424
+ 1750593221.155617,67572,0.6472683548927307
425
+ 1750593335.090611,67672,0.6478118896484375
426
+ 1750593448.960873,67772,0.6479766964912415
427
+ 1750593564.0753238,67872,0.6446660757064819
428
+ 1750593678.410104,67972,0.6475949883460999
429
+ 1750593792.5865002,68072,0.6463884711265564
430
+ 1750593906.303969,68172,0.6469693779945374
431
+ 1750594020.026242,68272,0.6472254991531372
432
+ 1750594133.6772149,68372,0.6451256275177002
433
+ 1750594247.254053,68472,0.6462708115577698
434
+ 1750594961.283332,68585,0.6506675481796265
435
+ 1750595074.51535,68685,0.6492162942886353
436
+ 1750595190.514826,68785,0.6484957337379456
437
+ 1750595304.432062,68885,0.6488602757453918
438
+ 1750595418.623473,68985,0.651425838470459
439
+ 1750595532.449842,69085,0.6482800245285034
440
+ 1750595646.204473,69185,0.64822918176651
441
+ 1750595762.673673,69285,0.650368869304657
442
+ 1750595877.196369,69385,0.6483909487724304
443
+ 1750595991.276843,69485,0.6484816074371338
444
+ 1750596105.727592,69585,0.6470624804496765
445
+ 1750596220.7992299,69685,0.6490337252616882
446
+ 1750596335.3485792,69785,0.646506130695343
447
+ 1750596448.897135,69885,0.6479473114013672
448
+ 1750596564.747894,69985,0.6497861742973328
449
+ 1750596678.875308,70085,0.649032473564148
450
+ 1750596792.3268101,70185,0.6471666693687439
451
+ 1750596924.9429271,70285,0.6476060152053833
452
+ 1750597043.7443461,70385,0.6474436521530151
453
+ 1750597157.05215,70485,0.6484914422035217
454
+ 1750597273.072156,70585,0.6457003951072693
455
+ 1750597387.474043,70685,0.6476954817771912
456
+ 1750597500.927712,70785,0.6476231813430786
457
+ 1750597614.392519,70885,0.6465104222297668
458
+ 1750597727.858714,70985,0.6453964710235596
459
+ 1750597841.328077,71085,0.6476513743400574
460
+ 1750597954.9446578,71185,0.6449001431465149
461
+ 1750598068.513953,71285,0.6473345756530762
462
+ 1750598182.8033369,71385,0.6480250954627991
463
+ 1750598296.94331,71485,0.6461629867553711
464
+ 1750598410.522016,71585,0.6479019522666931
465
+ 1750599126.963549,71698,0.6486186385154724
466
+ 1750599240.299493,71798,0.6481819748878479
467
+ 1750599353.719161,71898,0.6503051519393921
468
+ 1750599467.1946821,71998,0.6500055193901062
469
+ 1750599580.561397,72098,0.6490943431854248
470
+ 1750599693.795018,72198,0.6512138247489929
471
+ 1750599807.05666,72298,0.6481212973594666
472
+ 1750599920.236497,72398,0.650051474571228
473
+ 1750600033.394361,72498,0.6495527029037476
474
+ 1750600146.6231291,72598,0.6471550464630127
475
+ 1750600259.913486,72698,0.6475778222084045
476
+ 1750600373.3632681,72798,0.6488180160522461
477
+ 1750600486.834271,72898,0.6477310061454773
478
+ 1750600599.855514,72998,0.6499209403991699
479
+ 1750600713.053118,73098,0.6469252705574036
480
+ 1750600826.464627,73198,0.6488933563232422
481
+ 1750600953.8382468,73298,0.6481825709342957
482
+ 1750601080.921181,73398,0.6490073800086975
483
+ 1750601194.100801,73498,0.6484344601631165
484
+ 1750601307.372137,73598,0.647243857383728
485
+ 1750601420.6709042,73698,0.6485416889190674
486
+ 1750601534.0793972,73798,0.6484705805778503
487
+ 1750601647.552754,73898,0.6458694934844971
488
+ 1750601760.966083,73998,0.6481115221977234
489
+ 1750601874.406259,74098,0.6480833292007446
490
+ 1750601988.078152,74198,0.6486004590988159
491
+ 1750602101.551609,74298,0.6483842134475708
492
+ 1750602214.817476,74398,0.6475067138671875
493
+ 1750602328.090564,74498,0.6483412981033325
494
+ 1750602443.7624419,74598,0.6467549204826355
495
+ 1750602557.626081,74698,0.6482132077217102
496
+ 1750603268.085641,74811,0.6493449807167053
497
+ 1750603381.465674,74911,0.6493836045265198
498
+ 1750603494.849602,75011,0.6496973037719727
499
+ 1750603608.307693,75111,0.6514828205108643
500
+ 1750603721.841194,75211,0.6484718322753906
501
+ 1750603835.478155,75311,0.651509165763855
502
+ 1750603948.918059,75411,0.6493082046508789
503
+ 1750604062.4713511,75511,0.6493167877197266
504
+ 1750604176.132805,75611,0.6502978205680847
505
+ 1750604291.777073,75711,0.6487714648246765
506
+ 1750604404.9040508,75811,0.6485036611557007
507
+ 1750604519.9396749,75911,0.6494589447975159
508
+ 1750604633.384871,76011,0.6465171575546265
509
+ 1750604749.003573,76111,0.6481679081916809
510
+ 1750604861.942571,76211,0.6491654515266418
511
+ 1750604991.504076,76311,0.6484301686286926
512
+ 1750605110.915926,76411,0.648379921913147
513
+ 1750605224.225229,76511,0.6497408151626587
514
+ 1750605337.9226382,76611,0.6495067477226257
515
+ 1750605460.625063,76711,0.64895099401474
516
+ 1750605573.4640121,76811,0.6485710740089417
517
+ 1750605690.328724,76911,0.6481311321258545
518
+ 1750605819.816677,77011,0.6497769355773926
519
+ 1750605951.775168,77111,0.6471458077430725
520
+ 1750606083.632878,77211,0.6488964557647705
521
+ 1750606206.9935338,77311,0.6482897996902466
522
+ 1750606326.036043,77411,0.6463878750801086
523
+ 1750606447.776541,77511,0.6483945846557617
524
+ 1750606573.864937,77611,0.6469258666038513
525
+ 1750606686.392003,77711,0.646547794342041
526
+ 1750606799.700439,77811,0.6500318646430969
527
+ 1750607531.42963,77924,0.6539332270622253
528
+ 1750607646.005093,78024,0.6508700847625732
529
+ 1750607762.3291159,78124,0.6489117741584778
530
+ 1750607876.9745002,78224,0.6478290557861328
531
+ 1750607990.553424,78324,0.6508229374885559
532
+ 1750608104.333185,78424,0.6502634882926941
533
+ 1750608218.94431,78524,0.648602306842804
534
+ 1750608332.3119192,78624,0.6503958106040955
535
+ 1750608448.777334,78724,0.6495441198348999
536
+ 1750608565.710043,78824,0.6504626274108887
537
+ 1750608697.5426712,78924,0.6474418044090271
538
+ 1750608813.743689,79024,0.6483995318412781
539
+ 1750608931.296033,79124,0.6503363847732544
540
+ 1750609051.616808,79224,0.6509423851966858
541
+ 1750609170.325835,79324,0.6495392322540283
542
+ 1750609287.822495,79424,0.6479007601737976
543
+ 1750609404.5917308,79524,0.649052083492279
544
+ 1750609521.92617,79624,0.6479411721229553
545
+ 1750609644.375568,79724,0.6480759978294373
546
+ 1750609779.294302,79824,0.6493504643440247
547
+ 1750609908.866155,79924,0.6490018367767334
548
+ 1750610027.0822668,80024,0.6477825045585632
549
+ 1750610144.4391959,80124,0.6481972932815552
550
+ 1750610262.5570219,80224,0.6487996578216553
551
+ 1750610381.838706,80324,0.6485079526901245
552
+ 1750610501.226707,80424,0.6487144827842712
553
+ 1750610620.8597472,80524,0.6500441431999207
554
+ 1750610740.6217742,80624,0.6486127376556396
555
+ 1750610860.366892,80724,0.6491838097572327
556
+ 1750610980.208236,80824,0.6473811268806458
557
+ 1750611099.770781,80924,0.6480177640914917
558
+ 1750611869.460192,81037,0.6499354243278503
559
+ 1750611987.6706471,81137,0.6512537002563477
560
+ 1750612106.840222,81237,0.651816189289093
561
+ 1750612234.3039439,81337,0.650275707244873
562
+ 1750612360.8318841,81437,0.6499889492988586
563
+ 1750612480.657759,81537,0.6484877467155457
564
+ 1750612601.2043068,81637,0.6499779224395752
565
+ 1750612722.204899,81737,0.6482211947441101
566
+ 1750612845.812425,81837,0.6495686173439026
567
+ 1750612965.936807,81937,0.651201605796814
568
+ 1750613085.701558,82037,0.6513584852218628
569
+ 1750613205.6292732,82137,0.6499001383781433
570
+ 1750613328.230561,82237,0.6502407789230347
571
+ 1750613449.8727932,82337,0.6506360173225403
572
+ 1750613572.076292,82437,0.649478554725647
573
+ 1750613694.686913,82537,0.6480134725570679
574
+ 1750613814.5874639,82637,0.6490668058395386
575
+ 1750613935.299573,82737,0.6511960625648499
576
+ 1750614055.92192,82837,0.6488516926765442
577
+ 1750614178.808106,82937,0.6496151685714722
578
+ 1750614299.236428,83037,0.6512248516082764
579
+ 1750614419.280396,83137,0.6513504981994629
580
+ 1750614541.370991,83237,0.6505110263824463
581
+ 1750614661.353313,83337,0.6482665538787842
582
+ 1750614781.57492,83437,0.6482396125793457
583
+ 1750614903.094549,83537,0.6486562490463257
584
+ 1750615024.0435221,83637,0.649006724357605
585
+ 1750615145.50887,83737,0.6487040519714355
586
+ 1750615267.080477,83837,0.6492610573768616
587
+ 1750615389.716396,83937,0.6466494798660278
588
+ 1750615510.6090298,84037,0.6468896865844727
589
+ 1750616279.8720782,84150,0.6526991128921509
590
+ 1750616399.818967,84250,0.6504766941070557
591
+ 1750616520.4718778,84350,0.6510208249092102
592
+ 1750616641.622665,84450,0.653174638748169
593
+ 1750616764.3281019,84550,0.6528529524803162
594
+ 1750616892.090367,84650,0.6496495008468628
595
+ 1750617016.783542,84750,0.6483529210090637
596
+ 1750617140.8825998,84850,0.6534565091133118
597
+ 1750617264.373489,84950,0.6515576243400574
598
+ 1750617385.02099,85050,0.6476219296455383
599
+ 1750617507.1370711,85150,0.6492205858230591
600
+ 1750617628.504561,85250,0.6475943326950073
601
+ 1750617750.817056,85350,0.6470876336097717
602
+ 1750617873.566484,85450,0.6500269770622253
603
+ 1750617995.333026,85550,0.6503198742866516
604
+ 1750618118.851619,85650,0.6515373587608337
605
+ 1750618241.0798368,85750,0.6499902009963989
606
+ 1750618364.121679,85850,0.6491415500640869
607
+ 1750618487.464784,85950,0.648560643196106
608
+ 1750618611.460181,86050,0.6482163071632385
609
+ 1750618734.826777,86150,0.6484558582305908
610
+ 1750618856.437807,86250,0.6502573490142822
611
+ 1750618979.6873322,86350,0.6508774757385254
612
+ 1750619103.141767,86450,0.6505165696144104
613
+ 1750619224.659722,86550,0.6477352976799011
614
+ 1750619348.091896,86650,0.6486329436302185
615
+ 1750619476.8873081,86750,0.6491035223007202
616
+ 1750619606.321012,86850,0.6493394374847412
617
+ 1750619740.594385,86950,0.6478296518325806
618
+ 1750619863.408876,87050,0.6471274495124817
619
+ 1750619985.631146,87150,0.649993896484375
620
+ 1750620756.7987552,87263,0.650802493095398
621
+ 1750620882.0297558,87363,0.6521164178848267
622
+ 1750621003.968464,87463,0.6504436135292053
623
+ 1750621126.092192,87563,0.6502971649169922
624
+ 1750621247.571977,87663,0.6495686173439026
625
+ 1750621369.483636,87763,0.6518437266349792
626
+ 1750621491.970355,87863,0.6509503722190857
627
+ 1750621613.86056,87963,0.6497542858123779
628
+ 1750621735.753966,88063,0.6520538926124573
629
+ 1750621857.879051,88163,0.6510637402534485
630
+ 1750621994.1035788,88263,0.6493682861328125
631
+ 1750622135.149805,88363,0.6500649452209473
632
+ 1750622256.653326,88463,0.6486452221870422
633
+ 1750622385.631712,88563,0.6495349407196045
634
+ 1750622509.917459,88663,0.6512365341186523
635
+ 1750622643.8225129,88763,0.6506893634796143
636
+ 1750622766.2324889,88863,0.6490857601165771
637
+ 1750622901.935771,88963,0.6516850590705872
638
+ 1750623047.185132,89063,0.6498480439186096
639
+ 1750623201.280082,89163,0.6501519680023193
640
+ 1750623332.6913059,89263,0.6491029262542725
641
+ 1750623464.901411,89363,0.6478192210197449
642
+ 1750623601.143538,89463,0.6510116457939148
643
+ 1750623736.550787,89563,0.6510367393493652
644
+ 1750623873.634254,89663,0.6512346863746643
645
+ 1750624010.361918,89763,0.6488339304924011
646
+ 1750624148.0604842,89863,0.6489362716674805
647
+ 1750624285.8869388,89963,0.6506789326667786
648
+ 1750624422.588512,90063,0.6470484137535095
649
+ 1750624558.7439559,90163,0.6507463455200195
650
+ 1750624693.945033,90263,0.6487003564834595
651
+ 1750625561.1012402,90376,0.6528535485267639
652
+ 1750625700.597535,90476,0.6515300273895264
653
+ 1750625840.1480231,90576,0.6503186225891113
654
+ 1750625982.267066,90676,0.6544325947761536
655
+ 1750626125.271106,90776,0.6524448394775391
656
+ 1750626261.545839,90876,0.650384783744812
657
+ 1750626396.5558882,90976,0.651689350605011
658
+ 1750626532.687592,91076,0.6526868939399719
659
+ 1750626667.8625998,91176,0.65162193775177
660
+ 1750626820.179069,91276,0.6481838226318359
661
+ 1750626957.687435,91376,0.6513223052024841
662
+ 1750627090.740042,91476,0.6505637168884277
663
+ 1750627212.479149,91576,0.6479706168174744
664
+ 1750627346.710177,91676,0.6502432823181152
665
+ 1750627467.090128,91776,0.6488933563232422
666
+ 1750627589.0224462,91876,0.6498934030532837
667
+ 1750627706.6918569,91976,0.6503088474273682
668
+ 1750627826.827691,92076,0.6487782001495361
669
+ 1750627949.173918,92176,0.6491109132766724
670
+ 1750628072.8665018,92276,0.6505398154258728
671
+ 1750628196.8727,92376,0.651665449142456
672
+ 1750628320.0594828,92476,0.649732232093811
673
+ 1750628442.600629,92576,0.6493094563484192
674
+ 1750628571.3224661,92676,0.6495833396911621
675
+ 1750628695.75915,92776,0.6489681601524353
676
+ 1750628814.931844,92876,0.6502506136894226
677
+ 1750628935.356877,92976,0.6503320932388306
678
+ 1750629056.920314,93076,0.6506360173225403
679
+ 1750629178.913306,93176,0.6491133570671082
680
+ 1750629301.540896,93276,0.6481752395629883
681
+ 1750629423.713382,93376,0.64860600233078
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_noop_tensorboard.csv ADDED
@@ -0,0 +1,931 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750113731.620789,99,0.2894834578037262
3
+ 1750113849.767039,199,0.3767451047897339
4
+ 1750113967.6854558,299,0.4108302593231201
5
+ 1750114086.60289,399,0.43304839730262756
6
+ 1750114203.53461,499,0.4487530589103699
7
+ 1750114319.05894,599,0.4647977948188782
8
+ 1750114433.683232,699,0.4779221713542938
9
+ 1750114549.178375,799,0.4858437478542328
10
+ 1750114666.602735,899,0.4952310025691986
11
+ 1750114784.96975,999,0.5046378970146179
12
+ 1750114903.164481,1099,0.510549008846283
13
+ 1750115021.448666,1199,0.5169546604156494
14
+ 1750115139.529448,1299,0.5243063569068909
15
+ 1750115257.0991611,1399,0.5313149690628052
16
+ 1750115374.696079,1499,0.5365349054336548
17
+ 1750115492.256682,1599,0.5419779419898987
18
+ 1750115609.7381198,1699,0.5472671389579773
19
+ 1750115727.6742442,1799,0.5525239109992981
20
+ 1750115846.1890602,1899,0.5586219429969788
21
+ 1750115963.3834822,1999,0.5621029138565063
22
+ 1750116078.100993,2099,0.5670888423919678
23
+ 1750116193.276267,2199,0.5702389478683472
24
+ 1750116309.9196339,2299,0.5720189809799194
25
+ 1750116427.060064,2399,0.5749754905700684
26
+ 1750116547.518163,2499,0.5783933997154236
27
+ 1750116667.225869,2599,0.5825998783111572
28
+ 1750116785.104908,2699,0.5849546790122986
29
+ 1750116902.92834,2799,0.5844546556472778
30
+ 1750117020.8187819,2899,0.5880067348480225
31
+ 1750117138.61855,2999,0.5897616147994995
32
+ 1750117256.4706008,3099,0.5910385847091675
33
+ 1750117985.241129,3212,0.5960073471069336
34
+ 1750118102.617536,3312,0.5971531867980957
35
+ 1750118220.444465,3412,0.5973045229911804
36
+ 1750118338.19369,3512,0.5979706048965454
37
+ 1750118456.5901508,3612,0.5989013314247131
38
+ 1750118574.4481542,3712,0.6017383337020874
39
+ 1750118692.173856,3812,0.6024864912033081
40
+ 1750118809.675841,3912,0.6059197187423706
41
+ 1750118927.0768251,4012,0.605040431022644
42
+ 1750119044.244113,4112,0.6060906648635864
43
+ 1750119161.4492958,4212,0.6076433658599854
44
+ 1750119278.9653602,4312,0.6105741262435913
45
+ 1750119396.2123258,4412,0.608817994594574
46
+ 1750119513.680035,4512,0.6096912026405334
47
+ 1750119631.039315,4612,0.6099552512168884
48
+ 1750119748.182695,4712,0.6081299185752869
49
+ 1750119865.2358,4812,0.6111084818840027
50
+ 1750119982.510842,4912,0.6108804941177368
51
+ 1750120099.751489,5012,0.6128131151199341
52
+ 1750120216.878508,5112,0.6107971668243408
53
+ 1750120336.3254158,5212,0.611819863319397
54
+ 1750120455.1962152,5312,0.6152880191802979
55
+ 1750120572.40735,5412,0.6127806305885315
56
+ 1750120689.8053892,5512,0.6141225695610046
57
+ 1750120806.95999,5612,0.6120851635932922
58
+ 1750120924.000415,5712,0.6140600442886353
59
+ 1750121041.0392551,5812,0.616313099861145
60
+ 1750121158.027762,5912,0.616937518119812
61
+ 1750121275.076512,6012,0.6182089447975159
62
+ 1750121392.242815,6112,0.6185839772224426
63
+ 1750121509.560572,6212,0.6185386180877686
64
+ 1750122236.247565,6325,0.6205170750617981
65
+ 1750122353.2827451,6425,0.6217316389083862
66
+ 1750122470.6261241,6525,0.6223118901252747
67
+ 1750122587.740099,6625,0.6239798069000244
68
+ 1750122704.872276,6725,0.6233713030815125
69
+ 1750122821.802098,6825,0.6230680346488953
70
+ 1750122938.833802,6925,0.6210196018218994
71
+ 1750123055.842272,7025,0.6240410804748535
72
+ 1750123172.8767931,7125,0.6223112940788269
73
+ 1750123289.89931,7225,0.6236402988433838
74
+ 1750123406.977906,7325,0.6227518320083618
75
+ 1750123524.040493,7425,0.6241286993026733
76
+ 1750123645.586762,7525,0.6230373978614807
77
+ 1750123770.12349,7625,0.6250728964805603
78
+ 1750123894.062557,7725,0.626041054725647
79
+ 1750124017.769852,7825,0.6263768076896667
80
+ 1750124141.589675,7925,0.6256023049354553
81
+ 1750124264.9646668,8025,0.6247665286064148
82
+ 1750124388.286009,8125,0.6270281672477722
83
+ 1750124511.5643709,8225,0.6259209513664246
84
+ 1750124634.786423,8325,0.6271286606788635
85
+ 1750124757.976234,8425,0.6265177726745605
86
+ 1750124881.255619,8525,0.6269381046295166
87
+ 1750125004.6163251,8625,0.6261979341506958
88
+ 1750125127.80512,8725,0.6244840621948242
89
+ 1750125251.1043782,8825,0.6263057589530945
90
+ 1750125372.8366652,8925,0.6279277205467224
91
+ 1750125488.471084,9025,0.6275722980499268
92
+ 1750125604.8458922,9125,0.6267922520637512
93
+ 1750125721.945167,9225,0.6274963021278381
94
+ 1750125839.4399822,9325,0.6265906691551208
95
+ 1750126568.87327,9438,0.6310899257659912
96
+ 1750126686.0177972,9538,0.6319068670272827
97
+ 1750126803.075713,9638,0.6296250224113464
98
+ 1750126920.2006972,9738,0.6294779181480408
99
+ 1750127037.2270699,9838,0.6321789026260376
100
+ 1750127154.403425,9938,0.631394624710083
101
+ 1750127271.66291,10038,0.6310882568359375
102
+ 1750127389.2984068,10138,0.6316127181053162
103
+ 1750127506.492415,10238,0.6307291388511658
104
+ 1750127623.8482492,10338,0.630906879901886
105
+ 1750127741.937981,10438,0.6305000185966492
106
+ 1750127861.817396,10538,0.6327885985374451
107
+ 1750127986.162461,10638,0.6290306448936462
108
+ 1750128101.973453,10738,0.6331011056900024
109
+ 1750128215.941491,10838,0.6333174109458923
110
+ 1750128333.051722,10938,0.6326783299446106
111
+ 1750128449.8881018,11038,0.632743239402771
112
+ 1750128565.201629,11138,0.6354828476905823
113
+ 1750128680.718143,11238,0.629326581954956
114
+ 1750128796.200768,11338,0.6336666941642761
115
+ 1750128912.1242769,11438,0.6331813931465149
116
+ 1750129028.2624772,11538,0.6323400735855103
117
+ 1750129145.020651,11638,0.6308204531669617
118
+ 1750129260.3285818,11738,0.6334859132766724
119
+ 1750129375.7598982,11838,0.6311874985694885
120
+ 1750129490.823924,11938,0.6339693665504456
121
+ 1750129612.1423109,12038,0.6321121454238892
122
+ 1750129729.737945,12138,0.6323835849761963
123
+ 1750129843.521337,12238,0.6343400478363037
124
+ 1750129958.389817,12338,0.6346200704574585
125
+ 1750130074.886712,12438,0.6317095756530762
126
+ 1750130797.195461,12551,0.6377848982810974
127
+ 1750130913.551477,12651,0.6359258890151978
128
+ 1750131029.9605272,12751,0.6366654634475708
129
+ 1750131146.178004,12851,0.6349962949752808
130
+ 1750131262.316326,12951,0.6367310285568237
131
+ 1750131378.346705,13051,0.6352874040603638
132
+ 1750131495.698422,13151,0.6360171437263489
133
+ 1750131616.7174149,13251,0.6332733035087585
134
+ 1750131731.532917,13351,0.6358032822608948
135
+ 1750131847.1308758,13451,0.6361176371574402
136
+ 1750131968.430305,13551,0.6354730129241943
137
+ 1750132084.27898,13651,0.6354466676712036
138
+ 1750132200.038204,13751,0.6371151804924011
139
+ 1750132319.169413,13851,0.6363713145256042
140
+ 1750132438.390068,13951,0.637178897857666
141
+ 1750132558.9431229,14051,0.6359381079673767
142
+ 1750132675.8777852,14151,0.6376035809516907
143
+ 1750132792.4886348,14251,0.634702205657959
144
+ 1750132910.584851,14351,0.6372800469398499
145
+ 1750133025.6731231,14451,0.6361268162727356
146
+ 1750133142.90565,14551,0.6342365145683289
147
+ 1750133258.155395,14651,0.636232852935791
148
+ 1750133373.189059,14751,0.6362788081169128
149
+ 1750133491.139358,14851,0.638356626033783
150
+ 1750133607.066138,14951,0.6361353993415833
151
+ 1750133723.421437,15051,0.6371831893920898
152
+ 1750133840.847361,15151,0.6361868977546692
153
+ 1750133959.700592,15251,0.638497531414032
154
+ 1750134074.1966631,15351,0.6368253827095032
155
+ 1750134187.9394948,15451,0.637081503868103
156
+ 1750134302.713641,15551,0.6369711756706238
157
+ 1750135023.636418,15664,0.6414214372634888
158
+ 1750135141.1357188,15764,0.6409013271331787
159
+ 1750135258.759758,15864,0.6405637264251709
160
+ 1750135376.99012,15964,0.6418529748916626
161
+ 1750135494.1965451,16064,0.6383431553840637
162
+ 1750135608.808107,16164,0.6378315091133118
163
+ 1750135723.458106,16264,0.6394038200378418
164
+ 1750135839.631459,16364,0.640099287033081
165
+ 1750135955.580974,16464,0.6385912895202637
166
+ 1750136074.264535,16564,0.6373909115791321
167
+ 1750136193.651,16664,0.6392021775245667
168
+ 1750136314.32962,16764,0.6415532827377319
169
+ 1750136434.18018,16864,0.6389154195785522
170
+ 1750136555.7207282,16964,0.6406936049461365
171
+ 1750136675.4657931,17064,0.6387518644332886
172
+ 1750136795.084468,17164,0.6393167972564697
173
+ 1750136914.205429,17264,0.6392285227775574
174
+ 1750137035.372716,17364,0.6363167762756348
175
+ 1750137154.359993,17464,0.6403204798698425
176
+ 1750137273.301456,17564,0.6400998830795288
177
+ 1750137394.2470431,17664,0.6375594139099121
178
+ 1750137513.418113,17764,0.6383321285247803
179
+ 1750137634.678452,17864,0.6409785747528076
180
+ 1750137756.4706821,17964,0.6375900506973267
181
+ 1750137875.473762,18064,0.6377848982810974
182
+ 1750137994.2557068,18164,0.6396868824958801
183
+ 1750138113.775125,18264,0.6368486285209656
184
+ 1750138232.8082612,18364,0.6396819949150085
185
+ 1750138354.624307,18464,0.6409926414489746
186
+ 1750138473.795286,18564,0.6381832361221313
187
+ 1750138592.955252,18664,0.638762891292572
188
+ 1750139332.563206,18777,0.6417085528373718
189
+ 1750139450.918967,18877,0.6413272023200989
190
+ 1750139568.5608902,18977,0.6415269374847412
191
+ 1750139683.728093,19077,0.642278790473938
192
+ 1750139798.8207428,19177,0.6432695984840393
193
+ 1750139914.742817,19277,0.6426323652267456
194
+ 1750140030.56935,19377,0.6408547759056091
195
+ 1750140146.465847,19477,0.6393155455589294
196
+ 1750140262.49084,19577,0.6393713355064392
197
+ 1750140377.922889,19677,0.6409344673156738
198
+ 1750140493.495858,19777,0.6416102647781372
199
+ 1750140608.8578281,19877,0.6388081908226013
200
+ 1750140724.1570408,19977,0.6407830715179443
201
+ 1750140839.597943,20077,0.6431452035903931
202
+ 1750140955.138979,20177,0.6435882449150085
203
+ 1750141070.454108,20277,0.6393401026725769
204
+ 1750141185.7768152,20377,0.6400582194328308
205
+ 1750141301.044354,20477,0.6432475447654724
206
+ 1750141416.3390641,20577,0.640428900718689
207
+ 1750141531.601494,20677,0.6398032903671265
208
+ 1750141646.825821,20777,0.6412371397018433
209
+ 1750141761.996236,20877,0.6410496234893799
210
+ 1750141877.182584,20977,0.6418633460998535
211
+ 1750141992.5366201,21077,0.6428903341293335
212
+ 1750142107.586726,21177,0.6411133408546448
213
+ 1750142222.6049569,21277,0.6410361528396606
214
+ 1750142337.798254,21377,0.6409087181091309
215
+ 1750142453.484319,21477,0.6398229002952576
216
+ 1750142568.740176,21577,0.6409865021705627
217
+ 1750142683.7909062,21677,0.6418002247810364
218
+ 1750142798.773196,21777,0.6425018310546875
219
+ 1750143520.164426,21890,0.6443571448326111
220
+ 1750143634.6251478,21990,0.6450649499893188
221
+ 1750143749.21843,22090,0.6443308591842651
222
+ 1750143864.2806258,22190,0.6435453295707703
223
+ 1750143979.28554,22290,0.6437665224075317
224
+ 1750144094.193641,22390,0.6440392136573792
225
+ 1750144209.3165162,22490,0.6438339352607727
226
+ 1750144324.3223748,22590,0.6418835520744324
227
+ 1750144439.282978,22690,0.6438413262367249
228
+ 1750144554.216827,22790,0.6436820030212402
229
+ 1750144669.008311,22890,0.6432769894599915
230
+ 1750144783.814523,22990,0.6408646106719971
231
+ 1750144898.5940568,23090,0.6421887278556824
232
+ 1750145013.393398,23190,0.6414957046508789
233
+ 1750145128.2170281,23290,0.6440876126289368
234
+ 1750145242.972746,23390,0.6400729417800903
235
+ 1750145357.732231,23490,0.6425802707672119
236
+ 1750145472.505175,23590,0.6433351635932922
237
+ 1750145587.4498,23690,0.6431158185005188
238
+ 1750145702.163373,23790,0.6410600543022156
239
+ 1750145816.921547,23890,0.639877438545227
240
+ 1750145931.7669811,23990,0.6422916650772095
241
+ 1750146046.504975,24090,0.6443449854850769
242
+ 1750146161.2147121,24190,0.6426194906234741
243
+ 1750146275.9584918,24290,0.6449301242828369
244
+ 1750146390.784697,24390,0.6416991353034973
245
+ 1750146505.614413,24490,0.6413970589637756
246
+ 1750146620.282717,24590,0.6429215669631958
247
+ 1750146734.8804638,24690,0.6432873606681824
248
+ 1750146849.533429,24790,0.6407738924026489
249
+ 1750146964.5592299,24890,0.6440024375915527
250
+ 1750147679.542837,25003,0.6454715132713318
251
+ 1750147793.6827168,25103,0.6458553671836853
252
+ 1750147907.787584,25203,0.6463437676429749
253
+ 1750148021.8308291,25303,0.6460214257240295
254
+ 1750148136.3536232,25403,0.6446813941001892
255
+ 1750148250.906328,25503,0.6433265805244446
256
+ 1750148365.442896,25603,0.6450576186180115
257
+ 1750148480.200042,25703,0.644380509853363
258
+ 1750148595.058618,25803,0.6459301710128784
259
+ 1750148709.66884,25903,0.6446764469146729
260
+ 1750148824.243923,26003,0.6451599597930908
261
+ 1750148939.0552242,26103,0.6425201892852783
262
+ 1750149053.6095018,26203,0.6443584561347961
263
+ 1750149168.228619,26303,0.6439142227172852
264
+ 1750149282.822546,26403,0.6410729289054871
265
+ 1750149397.330698,26503,0.6427549123764038
266
+ 1750149511.8132858,26603,0.6437352895736694
267
+ 1750149626.1733289,26703,0.6415925025939941
268
+ 1750149740.6842072,26803,0.6445502638816833
269
+ 1750149855.045606,26903,0.642570436000824
270
+ 1750149969.485446,27003,0.6419209837913513
271
+ 1750150083.913009,27103,0.6432291865348816
272
+ 1750150198.319511,27203,0.6437806487083435
273
+ 1750150312.843913,27303,0.6411721706390381
274
+ 1750150427.516995,27403,0.6436336040496826
275
+ 1750150542.11465,27503,0.6441850662231445
276
+ 1750150656.459729,27603,0.6442763209342957
277
+ 1750150771.42578,27703,0.6445937752723694
278
+ 1750150885.853046,27803,0.6449534296989441
279
+ 1750151001.460722,27903,0.6456507444381714
280
+ 1750151118.4321642,28003,0.64631187915802
281
+ 1750151829.248618,28116,0.646086573600769
282
+ 1750151943.078294,28216,0.6479123830795288
283
+ 1750152057.047113,28316,0.6474877595901489
284
+ 1750152171.432849,28416,0.6482303738594055
285
+ 1750152286.508014,28516,0.6460502743721008
286
+ 1750152401.1489978,28616,0.6448835730552673
287
+ 1750152515.413527,28716,0.6456035375595093
288
+ 1750152629.652021,28816,0.6447438597679138
289
+ 1750152743.952258,28916,0.6452659368515015
290
+ 1750152858.325719,29016,0.6441513299942017
291
+ 1750152972.611438,29116,0.6438400745391846
292
+ 1750153086.916217,29216,0.644781231880188
293
+ 1750153201.144207,29316,0.6442689895629883
294
+ 1750153315.309581,29416,0.6456679105758667
295
+ 1750153429.44458,29516,0.6448688507080078
296
+ 1750153543.543734,29616,0.645100474357605
297
+ 1750153657.6779819,29716,0.6447163224220276
298
+ 1750153771.8275049,29816,0.6465955972671509
299
+ 1750153885.92943,29916,0.6442383527755737
300
+ 1750153999.957532,30016,0.6444007158279419
301
+ 1750154114.308219,30116,0.644033670425415
302
+ 1750154228.255648,30216,0.6465018391609192
303
+ 1750154342.671011,30316,0.6441317200660706
304
+ 1750154456.92466,30416,0.6441439986228943
305
+ 1750154570.8514502,30516,0.6443982720375061
306
+ 1750154684.893121,30616,0.6452634930610657
307
+ 1750154798.786987,30716,0.6440244913101196
308
+ 1750154913.827877,30816,0.6440759897232056
309
+ 1750155029.3820329,30916,0.6450165510177612
310
+ 1750155143.22456,31016,0.6444761157035828
311
+ 1750155257.108583,31116,0.6448621153831482
312
+ 1750155962.728151,31229,0.6478039026260376
313
+ 1750156075.928097,31329,0.6434123516082764
314
+ 1750156189.48367,31429,0.6451672911643982
315
+ 1750156303.394955,31529,0.6452407836914062
316
+ 1750156417.372407,31629,0.6449154615402222
317
+ 1750156531.142308,31729,0.6444166898727417
318
+ 1750156644.83728,31829,0.6429234147071838
319
+ 1750156758.558246,31929,0.6457071304321289
320
+ 1750156872.236898,32029,0.6429779529571533
321
+ 1750156985.8631868,32129,0.6454914212226868
322
+ 1750157099.471839,32229,0.6448553800582886
323
+ 1750157213.144945,32329,0.6450937390327454
324
+ 1750157326.83038,32429,0.6457101702690125
325
+ 1750157440.418242,32529,0.6459914445877075
326
+ 1750157554.108214,32629,0.6459436416625977
327
+ 1750157667.764524,32729,0.6446029543876648
328
+ 1750157781.77124,32829,0.6433131098747253
329
+ 1750157895.391364,32929,0.6455876231193542
330
+ 1750158009.4498491,33029,0.6422027945518494
331
+ 1750158123.400573,33129,0.6441372632980347
332
+ 1750158237.274854,33229,0.6478474140167236
333
+ 1750158351.4057229,33329,0.642891526222229
334
+ 1750158465.0631769,33429,0.644404411315918
335
+ 1750158578.82605,33529,0.643045961856842
336
+ 1750158693.140485,33629,0.6461200714111328
337
+ 1750158806.7955441,33729,0.6441783308982849
338
+ 1750158921.5146172,33829,0.6449828147888184
339
+ 1750159037.7530391,33929,0.6435337066650391
340
+ 1750159154.457119,34029,0.6459822058677673
341
+ 1750159268.228975,34129,0.6478161811828613
342
+ 1750159381.740445,34229,0.6426378488540649
343
+ 1750160085.005162,34342,0.6470090746879578
344
+ 1750160198.348043,34442,0.6481801271438599
345
+ 1750160311.747175,34542,0.6475827097892761
346
+ 1750160425.138507,34642,0.6469852924346924
347
+ 1750160538.48875,34742,0.6483670473098755
348
+ 1750160651.848408,34842,0.6453578472137451
349
+ 1750160765.314482,34942,0.6456782817840576
350
+ 1750160878.866994,35042,0.646591305732727
351
+ 1750160992.230761,35142,0.6468860507011414
352
+ 1750161105.693148,35242,0.6465141177177429
353
+ 1750161218.995789,35342,0.6469963192939758
354
+ 1750161332.5664508,35442,0.6466348171234131
355
+ 1750161445.919214,35542,0.6484062671661377
356
+ 1750161559.383483,35642,0.6455906629562378
357
+ 1750161673.6305,35742,0.6493076086044312
358
+ 1750161787.254136,35842,0.6477861404418945
359
+ 1750161900.676028,35942,0.645685076713562
360
+ 1750162014.149937,36042,0.6454393267631531
361
+ 1750162127.658717,36142,0.6482794284820557
362
+ 1750162241.275851,36242,0.6471041440963745
363
+ 1750162354.631356,36342,0.6425851583480835
364
+ 1750162468.086647,36442,0.6445594429969788
365
+ 1750162581.5384982,36542,0.6445643305778503
366
+ 1750162695.087326,36642,0.6442175507545471
367
+ 1750162809.828563,36742,0.6470441222190857
368
+ 1750162924.7870321,36842,0.6449258327484131
369
+ 1750163038.209954,36942,0.646640956401825
370
+ 1750163151.635194,37042,0.6461133360862732
371
+ 1750163264.974731,37142,0.6443866491317749
372
+ 1750163378.221429,37242,0.6464932560920715
373
+ 1750163491.5059998,37342,0.6447793841362
374
+ 1750164193.677419,37455,0.6476581692695618
375
+ 1750164307.195159,37555,0.647255539894104
376
+ 1750164421.066918,37655,0.6487867832183838
377
+ 1750164534.736021,37755,0.6464687585830688
378
+ 1750164648.24837,37855,0.6465888619422913
379
+ 1750164761.81198,37955,0.6500686407089233
380
+ 1750164875.635211,38055,0.645599901676178
381
+ 1750164989.1543128,38155,0.6471317410469055
382
+ 1750165102.588775,38255,0.6502401828765869
383
+ 1750165216.941986,38355,0.6477800011634827
384
+ 1750165331.034644,38455,0.6475955843925476
385
+ 1750165445.119753,38555,0.647935688495636
386
+ 1750165558.645719,38655,0.6478866338729858
387
+ 1750165672.160977,38755,0.6475901007652283
388
+ 1750165785.6155572,38855,0.6450784206390381
389
+ 1750165899.311167,38955,0.6473743915557861
390
+ 1750166012.88341,39055,0.645641565322876
391
+ 1750166126.417427,39155,0.6463271975517273
392
+ 1750166239.942431,39255,0.6468958258628845
393
+ 1750166353.3543758,39355,0.6461611390113831
394
+ 1750166466.737011,39455,0.646640956401825
395
+ 1750166580.132757,39555,0.6450404524803162
396
+ 1750166694.087965,39655,0.6461501121520996
397
+ 1750166808.932729,39755,0.6485146880149841
398
+ 1750166922.1546009,39855,0.6473143100738525
399
+ 1750167035.455957,39955,0.6466066241264343
400
+ 1750167148.981168,40055,0.6473357677459717
401
+ 1750167262.136349,40155,0.6464975476264954
402
+ 1750167375.418537,40255,0.6477984189987183
403
+ 1750167488.6276622,40355,0.6458902955055237
404
+ 1750167601.80478,40455,0.6469926238059998
405
+ 1750168305.549919,40568,0.6479889154434204
406
+ 1750168418.686291,40668,0.6489663124084473
407
+ 1750168532.243145,40768,0.6484571099281311
408
+ 1750168645.629598,40868,0.6462671756744385
409
+ 1750168759.0465431,40968,0.6473872661590576
410
+ 1750168872.680598,41068,0.649395227432251
411
+ 1750168986.166226,41168,0.6480453610420227
412
+ 1750169099.474284,41268,0.6467450857162476
413
+ 1750169212.7410848,41368,0.6484111547470093
414
+ 1750169326.04799,41468,0.6493627429008484
415
+ 1750169439.392054,41568,0.6476011276245117
416
+ 1750169552.8411279,41668,0.6482506394386292
417
+ 1750169666.2452219,41768,0.6467812657356262
418
+ 1750169779.630753,41868,0.6488823294639587
419
+ 1750169892.997459,41968,0.6475870013237
420
+ 1750170006.325802,42068,0.6473737955093384
421
+ 1750170119.74634,42168,0.6490128636360168
422
+ 1750170233.111603,42268,0.6491776704788208
423
+ 1750170346.464087,42368,0.6470282077789307
424
+ 1750170459.819036,42468,0.6465251445770264
425
+ 1750170573.186072,42568,0.6488749980926514
426
+ 1750170687.445025,42668,0.6481562256813049
427
+ 1750170802.2272902,42768,0.6471311450004578
428
+ 1750170915.545244,42868,0.6452487707138062
429
+ 1750171029.069637,42968,0.6465508341789246
430
+ 1750171142.355304,43068,0.6480312347412109
431
+ 1750171255.3594549,43168,0.6468027234077454
432
+ 1750171368.3259819,43268,0.647104799747467
433
+ 1750171481.2981818,43368,0.6469283103942871
434
+ 1750171594.1976168,43468,0.6453443765640259
435
+ 1750171707.4200919,43568,0.6480011940002441
436
+ 1750172411.56715,43681,0.6506575345993042
437
+ 1750172525.263346,43781,0.6503186225891113
438
+ 1750172638.9083562,43881,0.6491972804069519
439
+ 1750172752.3709812,43981,0.6485925316810608
440
+ 1750172865.821585,44081,0.6492530703544617
441
+ 1750172979.3060749,44181,0.648758590221405
442
+ 1750173092.803905,44281,0.6458437442779541
443
+ 1750173206.320617,44381,0.6495532989501953
444
+ 1750173320.0753589,44481,0.6473075747489929
445
+ 1750173433.839679,44581,0.6493823528289795
446
+ 1750173547.568301,44681,0.6470006108283997
447
+ 1750173661.262742,44781,0.64878249168396
448
+ 1750173774.887253,44881,0.6495998501777649
449
+ 1750173888.577277,44981,0.6497346758842468
450
+ 1750174002.540683,45081,0.650436282157898
451
+ 1750174116.500936,45181,0.6478793025016785
452
+ 1750174230.292064,45281,0.6493216753005981
453
+ 1750174344.00959,45381,0.6477751135826111
454
+ 1750174458.6823559,45481,0.6478314995765686
455
+ 1750174582.002251,45581,0.6497757434844971
456
+ 1750174697.423135,45681,0.6471936106681824
457
+ 1750174812.9403892,45781,0.6474087238311768
458
+ 1750174926.491348,45881,0.6489497423171997
459
+ 1750175040.076024,45981,0.6474913954734802
460
+ 1750175154.131111,46081,0.6461586952209473
461
+ 1750175268.282666,46181,0.6451795101165771
462
+ 1750175382.425216,46281,0.6477794051170349
463
+ 1750175496.392714,46381,0.6479068398475647
464
+ 1750175609.770999,46481,0.6458786725997925
465
+ 1750175724.055951,46581,0.646839439868927
466
+ 1750175838.421676,46681,0.6497340798377991
467
+ 1750176580.928725,46794,0.6514317393302917
468
+ 1750176705.306518,46894,0.6506942510604858
469
+ 1750176831.4460852,46994,0.6502358913421631
470
+ 1750176955.433076,47094,0.6493523120880127
471
+ 1750177073.9730392,47194,0.6472653150558472
472
+ 1750177192.6517901,47294,0.6478253602981567
473
+ 1750177314.1818519,47394,0.6494748592376709
474
+ 1750177434.44067,47494,0.6500471830368042
475
+ 1750177553.952735,47594,0.6531305313110352
476
+ 1750177673.134149,47694,0.6493964195251465
477
+ 1750177792.270995,47794,0.6481494903564453
478
+ 1750177911.997818,47894,0.6478658318519592
479
+ 1750178031.541447,47994,0.6486777067184448
480
+ 1750178152.013373,48094,0.647212028503418
481
+ 1750178282.920251,48194,0.6479981541633606
482
+ 1750178404.602707,48294,0.650227963924408
483
+ 1750178524.305347,48394,0.649756133556366
484
+ 1750178645.1386409,48494,0.649482250213623
485
+ 1750178766.525677,48594,0.646979808807373
486
+ 1750178888.9640179,48694,0.6477328538894653
487
+ 1750179011.975293,48794,0.6484197378158569
488
+ 1750179135.350307,48894,0.6497855186462402
489
+ 1750179259.6127,48994,0.6480778455734253
490
+ 1750179383.8094609,49094,0.6481825709342957
491
+ 1750179511.237918,49194,0.6486868858337402
492
+ 1750179627.0805178,49294,0.6475882530212402
493
+ 1750179746.269055,49394,0.646894633769989
494
+ 1750179866.396343,49494,0.648546576499939
495
+ 1750179986.382614,49594,0.6483370065689087
496
+ 1750180107.75221,49694,0.64788419008255
497
+ 1750180227.678242,49794,0.6463406682014465
498
+ 1750180969.0883079,49907,0.6518536806106567
499
+ 1750181090.172385,50007,0.650023877620697
500
+ 1750181212.134043,50107,0.6507181525230408
501
+ 1750181334.533705,50207,0.6484644412994385
502
+ 1750181465.882124,50307,0.6544803977012634
503
+ 1750181587.068089,50407,0.6485630869865417
504
+ 1750181708.084366,50507,0.6504883766174316
505
+ 1750181840.999325,50607,0.6505625247955322
506
+ 1750181961.5115259,50707,0.648201584815979
507
+ 1750182079.541576,50807,0.6486090421676636
508
+ 1750182197.266737,50907,0.6495968103408813
509
+ 1750182315.1002722,51007,0.6482720375061035
510
+ 1750182432.904394,51107,0.6480674147605896
511
+ 1750182551.339682,51207,0.6502254605293274
512
+ 1750182670.478698,51307,0.6492512226104736
513
+ 1750182789.90627,51407,0.6473082304000854
514
+ 1750182908.7698948,51507,0.6484963297843933
515
+ 1750183037.4613519,51607,0.6488296389579773
516
+ 1750183161.471972,51707,0.6489105224609375
517
+ 1750183291.52994,51807,0.6490851640701294
518
+ 1750183407.790381,51907,0.6481225490570068
519
+ 1750183521.6878788,52007,0.6502506136894226
520
+ 1750183637.919424,52107,0.647424042224884
521
+ 1750183752.363044,52207,0.6496298909187317
522
+ 1750183866.9297988,52307,0.6503333449363708
523
+ 1750183981.390929,52407,0.6479521989822388
524
+ 1750184095.5802271,52507,0.6479148268699646
525
+ 1750184210.028254,52607,0.6463069915771484
526
+ 1750184324.589393,52707,0.6484387516975403
527
+ 1750184438.467419,52807,0.6486115455627441
528
+ 1750184552.48716,52907,0.6494203209877014
529
+ 1750185269.738076,53020,0.6529350280761719
530
+ 1750185385.6406112,53120,0.6514607667922974
531
+ 1750185518.791826,53220,0.6502573490142822
532
+ 1750185648.3261309,53320,0.6507150530815125
533
+ 1750185766.350579,53420,0.6509687304496765
534
+ 1750185882.4859111,53520,0.6498749852180481
535
+ 1750185999.920657,53620,0.6490496397018433
536
+ 1750186116.470092,53720,0.6494356393814087
537
+ 1750186233.701521,53820,0.6506243944168091
538
+ 1750186348.1218078,53920,0.6511102914810181
539
+ 1750186462.8153942,54020,0.6500092148780823
540
+ 1750186577.176766,54120,0.6470000147819519
541
+ 1750186691.626355,54220,0.6490698456764221
542
+ 1750186809.135169,54320,0.6488339304924011
543
+ 1750186924.101025,54420,0.6512530446052551
544
+ 1750187038.042819,54520,0.6513051390647888
545
+ 1750187153.876576,54620,0.649454653263092
546
+ 1750187270.856839,54720,0.6488707065582275
547
+ 1750187388.092273,54820,0.6468566060066223
548
+ 1750187505.3842618,54920,0.6477567553520203
549
+ 1750187622.499163,55020,0.6494356393814087
550
+ 1750187739.232141,55120,0.6487793922424316
551
+ 1750187856.038623,55220,0.6468333601951599
552
+ 1750187972.701476,55320,0.6477089524269104
553
+ 1750188089.368793,55420,0.6492751240730286
554
+ 1750188209.86198,55520,0.6488946080207825
555
+ 1750188327.6926038,55620,0.6480735540390015
556
+ 1750188443.593812,55720,0.6484246253967285
557
+ 1750188558.7403882,55820,0.649732232093811
558
+ 1750188673.727296,55920,0.648169755935669
559
+ 1750188788.464843,56020,0.648758590221405
560
+ 1750189510.837446,56133,0.652562141418457
561
+ 1750189636.569664,56233,0.6531740427017212
562
+ 1750189760.1718102,56333,0.6522052884101868
563
+ 1750189884.2184691,56433,0.6514399647712708
564
+ 1750190002.556967,56533,0.6519460678100586
565
+ 1750190125.644963,56633,0.6504319906234741
566
+ 1750190253.3642602,56733,0.6498603224754333
567
+ 1750190373.920746,56833,0.6517855525016785
568
+ 1750190491.961588,56933,0.6493884921073914
569
+ 1750190613.771198,57033,0.6494656801223755
570
+ 1750190734.327851,57133,0.6519926190376282
571
+ 1750190862.187742,57233,0.6505416631698608
572
+ 1750190984.956588,57333,0.6512144804000854
573
+ 1750191104.267488,57433,0.6494032144546509
574
+ 1750191225.094819,57533,0.6509761214256287
575
+ 1750191345.572768,57633,0.6475679874420166
576
+ 1750191470.165256,57733,0.6501360535621643
577
+ 1750191587.409512,57833,0.6503192186355591
578
+ 1750191703.425641,57933,0.6478345394134521
579
+ 1750191819.150804,58033,0.6481010913848877
580
+ 1750191935.777419,58133,0.650660514831543
581
+ 1750192051.979758,58233,0.6503952145576477
582
+ 1750192167.9384131,58333,0.6502059102058411
583
+ 1750192293.379223,58433,0.6492549180984497
584
+ 1750192417.20106,58533,0.6459411978721619
585
+ 1750192542.735241,58633,0.6474999785423279
586
+ 1750192661.1384242,58733,0.6492089629173279
587
+ 1750192802.421109,58833,0.6491139531135559
588
+ 1750192933.7944162,58933,0.647077202796936
589
+ 1750193050.276062,59033,0.6494344472885132
590
+ 1750193176.119875,59133,0.6495790481567383
591
+ 1750193920.51338,59246,0.6499886512756348
592
+ 1750194045.084266,59346,0.6525447368621826
593
+ 1750194166.152643,59446,0.6545361280441284
594
+ 1750194290.1062028,59546,0.6511783003807068
595
+ 1750194413.406618,59646,0.6522555351257324
596
+ 1750194532.297371,59746,0.6506648063659668
597
+ 1750194651.915478,59846,0.6495827436447144
598
+ 1750194768.454585,59946,0.6509699821472168
599
+ 1750194885.989171,60046,0.6505171656608582
600
+ 1750195004.4217758,60146,0.6496574878692627
601
+ 1750195122.796754,60246,0.6495760083198547
602
+ 1750195241.1685178,60346,0.6539803743362427
603
+ 1750195359.380128,60446,0.6518909335136414
604
+ 1750195477.500273,60546,0.6500398516654968
605
+ 1750195595.194546,60646,0.6493155360221863
606
+ 1750195712.6640158,60746,0.6507965922355652
607
+ 1750195830.128203,60846,0.6487315893173218
608
+ 1750195947.532106,60946,0.64984130859375
609
+ 1750196064.6767318,61046,0.6507530808448792
610
+ 1750196181.839788,61146,0.6503750085830688
611
+ 1750196298.9782882,61246,0.6491789221763611
612
+ 1750196419.469962,61346,0.6494809985160828
613
+ 1750196537.685473,61446,0.648508608341217
614
+ 1750196654.741201,61546,0.6499896049499512
615
+ 1750196771.60573,61646,0.6491972804069519
616
+ 1750196888.68485,61746,0.6472653150558472
617
+ 1750197005.5654202,61846,0.648643970489502
618
+ 1750197122.58132,61946,0.6495269536972046
619
+ 1750197239.6836321,62046,0.6489706039428711
620
+ 1750197356.658911,62146,0.650370717048645
621
+ 1750197473.705615,62246,0.6491789221763611
622
+ 1750198215.8670452,62359,0.6532827615737915
623
+ 1750198335.5019982,62459,0.6520931124687195
624
+ 1750198455.383928,62559,0.6538217067718506
625
+ 1750198575.79297,62659,0.6519485116004944
626
+ 1750198696.533057,62759,0.6506170034408569
627
+ 1750198815.859319,62859,0.6506446003913879
628
+ 1750198935.44478,62959,0.6487156748771667
629
+ 1750199059.1411462,63059,0.6485925316810608
630
+ 1750199184.803943,63159,0.6515673995018005
631
+ 1750199310.925441,63259,0.6507904529571533
632
+ 1750199433.72157,63359,0.6506826281547546
633
+ 1750199561.5135539,63459,0.649024486541748
634
+ 1750199691.5398378,63559,0.6502034068107605
635
+ 1750199822.156569,63659,0.6515159606933594
636
+ 1750199951.5579321,63759,0.6505275964736938
637
+ 1750200083.599078,63859,0.6500361561775208
638
+ 1750200207.467263,63959,0.6518909335136414
639
+ 1750200330.1590981,64059,0.6511121392250061
640
+ 1750200469.507869,64159,0.6491243839263916
641
+ 1750200594.17766,64259,0.6516826152801514
642
+ 1750200718.7385821,64359,0.6484901905059814
643
+ 1750200846.544816,64459,0.6489362716674805
644
+ 1750200980.4076228,64559,0.649101734161377
645
+ 1750201118.501771,64659,0.6507015824317932
646
+ 1750201251.713602,64759,0.6516936421394348
647
+ 1750201387.155283,64859,0.649645209312439
648
+ 1750201513.980899,64959,0.6489956974983215
649
+ 1750201636.0862138,65059,0.6496255993843079
650
+ 1750201758.982406,65159,0.6510600447654724
651
+ 1750201883.149479,65259,0.6485349535942078
652
+ 1750202006.093005,65359,0.6479546427726746
653
+ 1750202777.213505,65472,0.6521849632263184
654
+ 1750202896.2299972,65572,0.6521967053413391
655
+ 1750203019.795586,65672,0.6540802717208862
656
+ 1750203140.703593,65772,0.6515918970108032
657
+ 1750203263.335868,65872,0.651580274105072
658
+ 1750203384.854414,65972,0.651120126247406
659
+ 1750203504.846452,66072,0.6513449549674988
660
+ 1750203628.212611,66172,0.6506274342536926
661
+ 1750203756.130655,66272,0.6480668187141418
662
+ 1750203876.6895628,66372,0.6519798040390015
663
+ 1750204006.239497,66472,0.6513695120811462
664
+ 1750204142.196408,66572,0.6510729193687439
665
+ 1750204287.2481012,66672,0.6501390933990479
666
+ 1750204423.739143,66772,0.6511347889900208
667
+ 1750204559.135356,66872,0.6513848304748535
668
+ 1750204695.453165,66972,0.6511813998222351
669
+ 1750204819.261575,67072,0.6505778431892395
670
+ 1750204942.811445,67172,0.6470471620559692
671
+ 1750205066.229961,67272,0.6509184837341309
672
+ 1750205193.411467,67372,0.6518590450286865
673
+ 1750205321.508208,67472,0.6499056220054626
674
+ 1750205444.7884219,67572,0.6505864262580872
675
+ 1750205564.955932,67672,0.650077223777771
676
+ 1750205687.457877,67772,0.6515147089958191
677
+ 1750205812.0596402,67872,0.6515190005302429
678
+ 1750205934.748478,67972,0.65004962682724
679
+ 1750206063.267509,68072,0.6492340564727783
680
+ 1750206183.376571,68172,0.6521697044372559
681
+ 1750206301.27382,68272,0.6474865078926086
682
+ 1750206421.328908,68372,0.6496250033378601
683
+ 1750206539.485643,68472,0.6490839719772339
684
+ 1750207321.8521621,68585,0.6537524461746216
685
+ 1750207442.4434109,68685,0.6518541574478149
686
+ 1750207566.014395,68785,0.6520618796348572
687
+ 1750207704.319272,68885,0.6525790691375732
688
+ 1750207846.854864,68985,0.6519289016723633
689
+ 1750207984.225697,69085,0.652522087097168
690
+ 1750208118.714988,69185,0.6517009735107422
691
+ 1750208242.605837,69285,0.6530214548110962
692
+ 1750208361.1823092,69385,0.6520110368728638
693
+ 1750208487.8287401,69485,0.6518511176109314
694
+ 1750208617.661794,69585,0.6500625014305115
695
+ 1750208743.342601,69685,0.6487806439399719
696
+ 1750208870.029738,69785,0.6512181162834167
697
+ 1750208997.522767,69885,0.6523026823997498
698
+ 1750209127.494852,69985,0.6515324711799622
699
+ 1750209256.4055629,70085,0.6476084589958191
700
+ 1750209384.005273,70185,0.6507536768913269
701
+ 1750209510.114496,70285,0.6517114043235779
702
+ 1750209634.697458,70385,0.6498817205429077
703
+ 1750209759.469044,70485,0.6528468132019043
704
+ 1750209881.834552,70585,0.6493946313858032
705
+ 1750210004.882837,70685,0.650033712387085
706
+ 1750210130.674243,70785,0.6516813635826111
707
+ 1750210250.644804,70885,0.6499975323677063
708
+ 1750210369.9460092,70985,0.648506760597229
709
+ 1750210487.077604,71085,0.6502401828765869
710
+ 1750210603.498112,71185,0.6484497785568237
711
+ 1750210723.773453,71285,0.6500245332717896
712
+ 1750210854.9351768,71385,0.6486703157424927
713
+ 1750210974.741968,71485,0.6504276990890503
714
+ 1750211092.69955,71585,0.6502315998077393
715
+ 1750211836.4115598,71698,0.6527054905891418
716
+ 1750211959.258971,71798,0.6532187461853027
717
+ 1750212080.137299,71898,0.6524791717529297
718
+ 1750212206.760812,71998,0.6517573595046997
719
+ 1750212328.7633018,72098,0.6519681215286255
720
+ 1750212452.735042,72198,0.6514185070991516
721
+ 1750212579.902265,72298,0.6531807780265808
722
+ 1750212706.0983,72398,0.6497095823287964
723
+ 1750212828.38046,72498,0.6521152257919312
724
+ 1750212949.6319842,72598,0.6546366214752197
725
+ 1750213069.810538,72698,0.6505435109138489
726
+ 1750213189.514265,72798,0.6510116457939148
727
+ 1750213309.594836,72898,0.6516385078430176
728
+ 1750213428.384023,72998,0.6517401933670044
729
+ 1750213546.256141,73098,0.6523290276527405
730
+ 1750213663.961636,73198,0.6519142389297485
731
+ 1750213780.801387,73298,0.6516415476799011
732
+ 1750213898.225749,73398,0.6520814895629883
733
+ 1750214016.615032,73498,0.6494430303573608
734
+ 1750214133.553664,73598,0.6524209380149841
735
+ 1750214250.9355168,73698,0.6498633623123169
736
+ 1750214368.522475,73798,0.6487671732902527
737
+ 1750214489.8051682,73898,0.6514932513237
738
+ 1750214608.765088,73998,0.6499601602554321
739
+ 1750214726.388865,74098,0.6509920358657837
740
+ 1750214842.279794,74198,0.6481733918190002
741
+ 1750214958.14559,74298,0.6512224078178406
742
+ 1750215076.020194,74398,0.6492077112197876
743
+ 1750215194.694057,74498,0.6519576907157898
744
+ 1750215313.7677739,74598,0.649075984954834
745
+ 1750215433.00785,74698,0.6498480439186096
746
+ 1750216172.726628,74811,0.652137279510498
747
+ 1750216292.926495,74911,0.6519228219985962
748
+ 1750216412.879912,75011,0.6520006060600281
749
+ 1750216533.188134,75111,0.6530429124832153
750
+ 1750216652.7510452,75211,0.6530116200447083
751
+ 1750216776.881959,75311,0.6532891988754272
752
+ 1750216906.5222652,75411,0.6530269384384155
753
+ 1750217031.058101,75511,0.6527003645896912
754
+ 1750217152.050337,75611,0.6500183939933777
755
+ 1750217269.059565,75711,0.6527996063232422
756
+ 1750217392.82244,75811,0.6536691188812256
757
+ 1750217521.202039,75911,0.6502052545547485
758
+ 1750217641.773841,76011,0.6522555351257324
759
+ 1750217763.52988,76111,0.6519368886947632
760
+ 1750217881.227099,76211,0.6508572101593018
761
+ 1750218001.397727,76311,0.6519503593444824
762
+ 1750218132.3350358,76411,0.6496427655220032
763
+ 1750218258.737887,76511,0.6489430069923401
764
+ 1750218393.898423,76611,0.6514148116111755
765
+ 1750218510.02509,76711,0.6520465612411499
766
+ 1750218629.485386,76811,0.6529031991958618
767
+ 1750218745.9510798,76911,0.6506954431533813
768
+ 1750218861.8234,77011,0.6509944796562195
769
+ 1750218976.982463,77111,0.6486415266990662
770
+ 1750219091.593133,77211,0.6513308882713318
771
+ 1750219207.006262,77311,0.6480122804641724
772
+ 1750219324.491625,77411,0.6490435004234314
773
+ 1750219443.126828,77511,0.6507389545440674
774
+ 1750219562.186364,77611,0.6509172916412354
775
+ 1750219682.374294,77711,0.6519840955734253
776
+ 1750219803.256639,77811,0.6488437652587891
777
+ 1750220547.487328,77924,0.6541770100593567
778
+ 1750220666.5607219,78024,0.6527420282363892
779
+ 1750220785.9198349,78124,0.6526396870613098
780
+ 1750220905.561426,78224,0.6513082385063171
781
+ 1750221024.579232,78324,0.6541329622268677
782
+ 1750221145.641382,78424,0.6535055041313171
783
+ 1750221262.671669,78524,0.6536703705787659
784
+ 1750221380.535554,78624,0.651840090751648
785
+ 1750221498.180607,78724,0.6509056091308594
786
+ 1750221616.054903,78824,0.653022050857544
787
+ 1750221736.730556,78924,0.6500710844993591
788
+ 1750221857.297961,79024,0.6526850461959839
789
+ 1750221975.378724,79124,0.6527885794639587
790
+ 1750222093.4923189,79224,0.6522634625434875
791
+ 1750222211.5956328,79324,0.6526820063591003
792
+ 1750222329.568151,79424,0.6509130001068115
793
+ 1750222448.042943,79524,0.65059494972229
794
+ 1750222566.028182,79624,0.6490649580955505
795
+ 1750222683.794375,79724,0.650840699672699
796
+ 1750222801.529133,79824,0.651219367980957
797
+ 1750222919.185378,79924,0.6499607563018799
798
+ 1750223036.869143,80024,0.6507965922355652
799
+ 1750223154.4993632,80124,0.652316153049469
800
+ 1750223273.096011,80224,0.6516691446304321
801
+ 1750223392.282187,80324,0.6491348147392273
802
+ 1750223511.047883,80424,0.648965060710907
803
+ 1750223629.70635,80524,0.6500606536865234
804
+ 1750223747.561592,80624,0.6500563621520996
805
+ 1750223865.3728168,80724,0.6505728960037231
806
+ 1750223983.192951,80824,0.6500864028930664
807
+ 1750224100.908614,80924,0.6509608030319214
808
+ 1750224826.8349671,81037,0.652090847492218
809
+ 1750224943.717508,81137,0.6527524590492249
810
+ 1750225060.981622,81237,0.6508351564407349
811
+ 1750225178.264178,81337,0.6526764631271362
812
+ 1750225295.705386,81437,0.6532114148139954
813
+ 1750225412.985178,81537,0.6510863900184631
814
+ 1750225531.5854342,81637,0.6527928709983826
815
+ 1750225652.238388,81737,0.6523639559745789
816
+ 1750225769.389229,81837,0.6519240140914917
817
+ 1750225886.7443252,81937,0.6535325050354004
818
+ 1750226004.139014,82037,0.6526923775672913
819
+ 1750226121.744965,82137,0.6520079374313354
820
+ 1750226239.267585,82237,0.6528774499893188
821
+ 1750226356.8135831,82337,0.6542622447013855
822
+ 1750226474.220803,82437,0.6500110030174255
823
+ 1750226591.654186,82537,0.6520367860794067
824
+ 1750226709.390264,82637,0.6523934006690979
825
+ 1750226827.765235,82737,0.6517738699913025
826
+ 1750226945.789679,82837,0.649882972240448
827
+ 1750227063.175751,82937,0.6507132649421692
828
+ 1750227180.6074429,83037,0.6521985530853271
829
+ 1750227298.25555,83137,0.6523768305778503
830
+ 1750227415.797388,83237,0.6505563855171204
831
+ 1750227533.07081,83337,0.6523523330688477
832
+ 1750227650.184134,83437,0.6497150659561157
833
+ 1750227767.183999,83537,0.6509068608283997
834
+ 1750227884.621568,83637,0.649048388004303
835
+ 1750228001.723806,83737,0.6508872509002686
836
+ 1750228118.7199092,83837,0.6515741348266602
837
+ 1750228235.600491,83937,0.6501850485801697
838
+ 1750228352.460177,84037,0.6503933668136597
839
+ 1750229072.101535,84150,0.6527323126792908
840
+ 1750229188.532489,84250,0.6524515748023987
841
+ 1750229305.9727669,84350,0.6531286835670471
842
+ 1750229422.7452438,84450,0.6521519422531128
843
+ 1750229542.9914508,84550,0.6535490155220032
844
+ 1750229660.802776,84650,0.6511911749839783
845
+ 1750229777.73071,84750,0.6520624756813049
846
+ 1750229894.272873,84850,0.6516923904418945
847
+ 1750230011.0650299,84950,0.6546746492385864
848
+ 1750230127.8485062,85050,0.651620090007782
849
+ 1750230244.4886231,85150,0.6534650921821594
850
+ 1750230361.215148,85250,0.6513762474060059
851
+ 1750230479.274983,85350,0.653814971446991
852
+ 1750230596.4249868,85450,0.6522212028503418
853
+ 1750230713.1627898,85550,0.6504136323928833
854
+ 1750230829.994378,85650,0.6521758437156677
855
+ 1750230946.848085,85750,0.6543266177177429
856
+ 1750231063.6933088,85850,0.652149498462677
857
+ 1750231180.7751548,85950,0.652924656867981
858
+ 1750231297.4416032,86050,0.6517003774642944
859
+ 1750231414.00541,86150,0.6498719453811646
860
+ 1750231530.459255,86250,0.6528701186180115
861
+ 1750231646.981014,86350,0.652484655380249
862
+ 1750231763.465852,86450,0.6517757177352905
863
+ 1750231879.910605,86550,0.6511158347129822
864
+ 1750231996.4017532,86650,0.6514742374420166
865
+ 1750232112.817041,86750,0.6500385999679565
866
+ 1750232229.149757,86850,0.6491495370864868
867
+ 1750232345.40557,86950,0.6505526900291443
868
+ 1750232461.7093189,87050,0.651520848274231
869
+ 1750232577.5444229,87150,0.6499301195144653
870
+ 1750233293.810208,87263,0.654270350933075
871
+ 1750233412.682642,87363,0.6527132391929626
872
+ 1750233532.513292,87463,0.6526311039924622
873
+ 1750233648.786123,87563,0.6516342163085938
874
+ 1750233764.80583,87663,0.6509135961532593
875
+ 1750233880.8387609,87763,0.6523756384849548
876
+ 1750233997.011285,87863,0.6529742479324341
877
+ 1750234114.62957,87963,0.6528559923171997
878
+ 1750234230.975869,88063,0.6532873511314392
879
+ 1750234347.233397,88163,0.6519926190376282
880
+ 1750234463.849152,88263,0.6529381275177002
881
+ 1750234580.176417,88363,0.6527230143547058
882
+ 1750234696.535578,88463,0.6503474116325378
883
+ 1750234812.71581,88563,0.6534693837165833
884
+ 1750234928.711324,88663,0.6540380120277405
885
+ 1750235044.749944,88763,0.6518866419792175
886
+ 1750235160.68432,88863,0.6515116691589355
887
+ 1750235276.5570402,88963,0.652815580368042
888
+ 1750235392.382603,89063,0.6518388390541077
889
+ 1750235508.203466,89163,0.6518087983131409
890
+ 1750235624.0762482,89263,0.6527689695358276
891
+ 1750235739.848402,89363,0.6516948342323303
892
+ 1750235855.594966,89463,0.652318000793457
893
+ 1750235971.4175649,89563,0.6520777940750122
894
+ 1750236087.155264,89663,0.653346836566925
895
+ 1750236202.856292,89763,0.6505588293075562
896
+ 1750236318.631579,89863,0.6495183706283569
897
+ 1750236434.248589,89963,0.6511139869689941
898
+ 1750236550.018139,90063,0.6504080891609192
899
+ 1750236665.693109,90163,0.6510986685752869
900
+ 1750236781.38388,90263,0.6509822010993958
901
+ 1750237498.135129,90376,0.6541507244110107
902
+ 1750237615.0882099,90476,0.6536709666252136
903
+ 1750237732.1482828,90576,0.6522940993309021
904
+ 1750237848.0962281,90676,0.6530110239982605
905
+ 1750237963.832159,90776,0.651495099067688
906
+ 1750238079.56806,90876,0.6530711054801941
907
+ 1750238195.2640378,90976,0.6519693732261658
908
+ 1750238310.9922712,91076,0.6534608006477356
909
+ 1750238426.7211242,91176,0.6535612940788269
910
+ 1750238542.1769311,91276,0.652286171913147
911
+ 1750238657.767673,91376,0.6521991491317749
912
+ 1750238773.9103758,91476,0.6521053910255432
913
+ 1750238889.683209,91576,0.6514387130737305
914
+ 1750239005.221324,91676,0.6537463068962097
915
+ 1750239120.568118,91776,0.6524190902709961
916
+ 1750239235.766874,91876,0.6518057584762573
917
+ 1750239350.995439,91976,0.652538001537323
918
+ 1750239466.191257,92076,0.6496225595474243
919
+ 1750239581.3315861,92176,0.6545753479003906
920
+ 1750239696.6121259,92276,0.6525925397872925
921
+ 1750239812.100725,92376,0.6508376002311707
922
+ 1750239927.215979,92476,0.6518186330795288
923
+ 1750240042.182482,92576,0.6532205939292908
924
+ 1750240157.28223,92676,0.6516004800796509
925
+ 1750240271.974707,92776,0.6527561545372009
926
+ 1750240386.43259,92876,0.6521452069282532
927
+ 1750240501.080244,92976,0.6521005034446716
928
+ 1750240615.6359181,93076,0.6517248749732971
929
+ 1750240730.188971,93176,0.6491905450820923
930
+ 1750240845.331557,93276,0.6526237726211548
931
+ 1750240960.604365,93376,0.650396466255188
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_sequential-loss_tensorboard.csv ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750850577.6079428,99,0.28115931153297424
3
+ 1750850694.707842,199,0.37388479709625244
4
+ 1750850811.767244,299,0.4071066081523895
5
+ 1750850928.9375691,399,0.43296018242836
6
+ 1750851045.901768,499,0.45245465636253357
7
+ 1750851162.862512,599,0.46473467350006104
8
+ 1750852597.229173,722,0.4919930696487427
9
+ 1750852717.123183,822,0.5057536959648132
10
+ 1750852833.988262,922,0.5127604007720947
11
+ 1750852950.821522,1022,0.520756721496582
12
+ 1750853067.686709,1122,0.5296911597251892
13
+ 1750853184.429913,1222,0.5354975461959839
14
+ 1750854663.42876,1345,0.5358098745346069
15
+ 1750854780.403699,1445,0.5411611795425415
16
+ 1750854898.699645,1545,0.5472536683082581
17
+ 1750855019.05928,1645,0.5525686144828796
18
+ 1750855138.038317,1745,0.5584620237350464
19
+ 1750855255.6974368,1845,0.5636035799980164
20
+ 1750856739.877013,1968,0.5708346962928772
21
+ 1750856857.0484312,2068,0.5771746039390564
22
+ 1750856976.928643,2168,0.5785061120986938
23
+ 1750857094.258836,2268,0.5807254910469055
24
+ 1750857217.580058,2368,0.5823449492454529
25
+ 1750857334.0503318,2468,0.5875085592269897
26
+ 1750858807.092771,2591,0.5817051529884338
27
+ 1750858925.080086,2691,0.5819307565689087
28
+ 1750859042.594805,2791,0.5876415371894836
29
+ 1750859160.043197,2891,0.5881660580635071
30
+ 1750859276.457642,2991,0.5912389755249023
31
+ 1750859396.0647879,3091,0.5902340412139893
32
+ 1750860867.422347,3214,0.5981722474098206
33
+ 1750860983.654924,3314,0.6010686159133911
34
+ 1750861107.934299,3414,0.600269615650177
35
+ 1750861242.432056,3514,0.6020055413246155
36
+ 1750861357.54804,3614,0.60275799036026
37
+ 1750861473.101582,3714,0.6043713092803955
38
+ 1750862942.001462,3837,0.5971077084541321
39
+ 1750863059.0574589,3937,0.5979332327842712
40
+ 1750863179.12206,4037,0.5981176495552063
41
+ 1750863301.301445,4137,0.5991507172584534
42
+ 1750863419.9197068,4237,0.600868284702301
43
+ 1750863540.890483,4337,0.5996053814888
44
+ 1750865026.1622899,4460,0.6069161891937256
45
+ 1750865148.40977,4560,0.6094215512275696
46
+ 1750865269.679025,4660,0.6069871187210083
47
+ 1750865390.869505,4760,0.6085416674613953
48
+ 1750865515.5613399,4860,0.6078510880470276
49
+ 1750865643.630974,4960,0.6096580624580383
50
+ 1750867176.255392,5083,0.5974678993225098
51
+ 1750867299.122742,5183,0.5987929105758667
52
+ 1750867430.3805718,5283,0.5946066379547119
53
+ 1750867569.451477,5383,0.601796567440033
54
+ 1750867703.357517,5483,0.598520815372467
55
+ 1750867838.90882,5583,0.6008124947547913
56
+ 1750869442.570985,5706,0.6059330105781555
57
+ 1750869573.518789,5806,0.6075226664543152
58
+ 1750869704.9694211,5906,0.604717493057251
59
+ 1750869835.4636421,6006,0.6086176633834839
60
+ 1750869963.869592,6106,0.6054001450538635
61
+ 1750870092.8343601,6206,0.6075674295425415
62
+ 1750870996.7552729,31229,0.6220373511314392
63
+ 1750871130.67268,31329,0.6198210716247559
64
+ 1750871275.926871,31429,0.6185900568962097
65
+ 1750871416.433268,31529,0.6199577450752258
66
+ 1750871558.685056,31629,0.6209883689880371
67
+ 1750871703.876673,31729,0.6211740374565125
68
+ 1750871831.815979,31829,0.6202947497367859
69
+ 1750871969.127967,31929,0.6218584775924683
70
+ 1750872120.680382,32029,0.6228578686714172
71
+ 1750872259.82047,32129,0.6231299042701721
72
+ 1750872388.811221,32229,0.6221286654472351
73
+ 1750872548.4661372,32329,0.6245875954627991
74
+ 1750872705.31099,32429,0.6251531839370728
75
+ 1750872863.2039318,32529,0.6232358813285828
76
+ 1750873029.33886,32629,0.621163010597229
77
+ 1750873206.787233,32729,0.6249099373817444
78
+ 1750873366.4264479,32829,0.625666081905365
79
+ 1750873522.343495,32929,0.6261237859725952
80
+ 1750873679.8278,33029,0.6246703267097473
81
+ 1750873838.1228411,33129,0.6268603205680847
82
+ 1750873995.625974,33229,0.6253376007080078
83
+ 1750874154.71947,33329,0.6255349516868591
84
+ 1750874314.983135,33429,0.6262009739875793
85
+ 1750874460.9879549,33529,0.6277205944061279
86
+ 1750874606.7178721,33629,0.6270428895950317
87
+ 1750874751.407423,33729,0.6290870308876038
88
+ 1750874904.389549,33829,0.6264516115188599
89
+ 1750875043.44718,33929,0.6280067563056946
90
+ 1750875167.557311,34029,0.6270428895950317
91
+ 1750875295.4132302,34129,0.6269865036010742
92
+ 1750875414.519587,34229,0.6273002624511719
93
+ 1750876217.3065972,34342,0.6303669214248657
94
+ 1750876336.9180648,34442,0.6308363676071167
95
+ 1750876456.8001559,34542,0.6302604079246521
96
+ 1750876578.2574131,34642,0.6324717998504639
97
+ 1750876697.580331,34742,0.6301899552345276
98
+ 1750876818.058099,34842,0.6293897032737732
99
+ 1750876941.269356,34942,0.6334614157676697
100
+ 1750877067.386539,35042,0.6296336054801941
101
+ 1750877201.552383,35142,0.6310955882072449
102
+ 1750877337.687994,35242,0.6322169303894043
103
+ 1750877470.697649,35342,0.6314730644226074
104
+ 1750877601.397642,35442,0.6331887245178223
105
+ 1750877740.69434,35542,0.6329497694969177
106
+ 1750877865.283885,35642,0.6317598223686218
107
+ 1750877985.03089,35742,0.6339185237884521
108
+ 1750878106.057319,35842,0.6319141983985901
109
+ 1750878228.407137,35942,0.6321470737457275
110
+ 1750878349.436917,36042,0.631462037563324
111
+ 1750878469.454664,36142,0.6317794322967529
112
+ 1750878600.80924,36242,0.6296960711479187
113
+ 1750878735.579987,36342,0.6366875171661377
114
+ 1750878864.145241,36442,0.6329087018966675
115
+ 1750878989.7037902,36542,0.6324595808982849
116
+ 1750879120.459902,36642,0.6337567567825317
117
+ 1750879260.620251,36742,0.6324607729911804
118
+ 1750879395.440415,36842,0.6325894594192505
119
+ 1750879515.2062788,36942,0.6337254643440247
120
+ 1750879635.8409731,37042,0.6325735449790955
121
+ 1750879754.3542411,37142,0.6336103081703186
122
+ 1750879873.1619258,37242,0.6338854432106018
123
+ 1750880001.208302,37342,0.6328412890434265
124
+ 1750880788.32362,37455,0.6362589597702026
125
+ 1750880915.265224,37555,0.6373688578605652
126
+ 1750881043.94467,37655,0.6366102695465088
127
+ 1750881171.139327,37755,0.6367561221122742
128
+ 1750881303.697291,37855,0.6348167657852173
129
+ 1750881431.8726342,37955,0.6375747323036194
130
+ 1750881555.054423,38055,0.638455867767334
131
+ 1750881678.0593972,38155,0.6361470818519592
132
+ 1750881802.045056,38255,0.6364325881004333
133
+ 1750881924.236502,38355,0.6367426514625549
134
+ 1750882046.318992,38455,0.6358743906021118
135
+ 1750882168.6089668,38555,0.6360135078430176
136
+ 1750882290.50672,38655,0.6362383365631104
137
+ 1750882417.132798,38755,0.6376954913139343
138
+ 1750882541.07625,38855,0.6359668970108032
139
+ 1750882665.201195,38955,0.6364895701408386
140
+ 1750882790.203367,39055,0.6373271942138672
141
+ 1750882934.318351,39155,0.6360600590705872
142
+ 1750883072.642247,39255,0.6367928981781006
143
+ 1750883203.800666,39355,0.634830892086029
144
+ 1750883327.9033291,39455,0.6364111304283142
145
+ 1750883458.7586079,39555,0.6354846954345703
146
+ 1750883578.854849,39655,0.6363229155540466
147
+ 1750883697.435915,39755,0.6364748477935791
148
+ 1750883816.138189,39855,0.6361415386199951
149
+ 1750883934.742814,39955,0.6367193460464478
150
+ 1750884058.696786,40055,0.6363431215286255
151
+ 1750884182.448661,40155,0.6362065076828003
152
+ 1750884301.546071,40255,0.6375808715820312
153
+ 1750884421.238451,40355,0.6364301443099976
154
+ 1750884542.540622,40455,0.6373621225357056
155
+ 1750885360.973109,40568,0.6391980648040771
156
+ 1750885481.833812,40668,0.6400465965270996
157
+ 1750885599.6937668,40768,0.6411629915237427
158
+ 1750885718.592056,40868,0.6390974521636963
159
+ 1750885840.1120589,40968,0.638247549533844
160
+ 1750885960.0050821,41068,0.6382505893707275
161
+ 1750886085.665708,41168,0.6392971873283386
162
+ 1750886206.945123,41268,0.6405600309371948
163
+ 1750886327.482077,41368,0.6364178657531738
164
+ 1750886451.088746,41468,0.6395796537399292
165
+ 1750886572.309311,41568,0.6387757062911987
166
+ 1750886691.2056682,41668,0.6397720575332642
167
+ 1750886821.646378,41768,0.6410680413246155
168
+ 1750886952.998621,41868,0.638858437538147
169
+ 1750887076.256232,41968,0.6374497413635254
170
+ 1750887200.8472629,42068,0.6399393081665039
171
+ 1750887323.13034,42168,0.6400049328804016
172
+ 1750887452.120953,42268,0.6396507620811462
173
+ 1750887579.971466,42368,0.6391195058822632
174
+ 1750887710.160838,42468,0.6401317119598389
175
+ 1750887836.69287,42568,0.637844979763031
176
+ 1750887961.934599,42668,0.6387500166893005
177
+ 1750888085.3976698,42768,0.6408082246780396
178
+ 1750888208.27091,42868,0.640357255935669
179
+ 1750888330.497325,42968,0.6409405469894409
180
+ 1750888458.281606,43068,0.6405863761901855
181
+ 1750888585.1346078,43168,0.6402457356452942
182
+ 1750888713.844177,43268,0.6408848166465759
183
+ 1750888847.294386,43368,0.6382824778556824
184
+ 1750888978.981641,43468,0.6391090750694275
185
+ 1750889120.402831,43568,0.6393290162086487
186
+ 1750889934.630212,43681,0.6431518197059631
187
+ 1750890071.319562,43781,0.6426819562911987
188
+ 1750890213.91127,43881,0.6394056081771851
189
+ 1750890344.088576,43981,0.6426188945770264
190
+ 1750890474.425335,44081,0.6417880058288574
191
+ 1750890608.4396338,44181,0.6409375071525574
192
+ 1750890749.367145,44281,0.642723023891449
193
+ 1750890889.3314428,44381,0.64364093542099
194
+ 1750891032.219209,44481,0.6411648392677307
195
+ 1750891165.964857,44581,0.6419350504875183
196
+ 1750891293.480545,44681,0.6405717134475708
197
+ 1750891416.125021,44781,0.6419503688812256
198
+ 1750891540.518293,44881,0.6417635083198547
199
+ 1750891660.080145,44981,0.6410398483276367
200
+ 1750891781.948166,45081,0.6419135928153992
201
+ 1750891905.11839,45181,0.6410024762153625
202
+ 1750892029.265239,45281,0.644433856010437
203
+ 1750892153.8494442,45381,0.6413002610206604
204
+ 1750892280.011641,45481,0.6401182413101196
205
+ 1750892410.555498,45581,0.6407414078712463
206
+ 1750892536.069839,45681,0.6414871215820312
207
+ 1750892659.696752,45781,0.6405300498008728
208
+ 1750892782.067382,45881,0.6402732729911804
209
+ 1750892911.29154,45981,0.6424650549888611
210
+ 1750893033.8896341,46081,0.6400704383850098
211
+ 1750893154.7128499,46181,0.6428565979003906
212
+ 1750893276.050278,46281,0.6393039226531982
213
+ 1750893399.0719528,46381,0.6423039436340332
214
+ 1750893521.6037629,46481,0.6420502662658691
215
+ 1750893641.629602,46581,0.641614556312561
216
+ 1750893779.075807,46681,0.6429068446159363
217
+ 1750894583.6880262,46794,0.6428733468055725
218
+ 1750894711.184323,46894,0.6453744173049927
219
+ 1750894839.150917,46994,0.6419810056686401
220
+ 1750894967.514038,47094,0.6449546813964844
221
+ 1750895094.755141,47194,0.6430398225784302
222
+ 1750895222.492712,47294,0.6443498730659485
223
+ 1750895351.571402,47394,0.6427984237670898
224
+ 1750895479.660096,47494,0.642681360244751
225
+ 1750895606.71259,47594,0.6447800397872925
226
+ 1750895739.731491,47694,0.6446108818054199
227
+ 1750895868.058298,47794,0.6433719396591187
228
+ 1750895997.39312,47894,0.6455802917480469
229
+ 1750896124.759792,47994,0.6433308720588684
230
+ 1750896250.305929,48094,0.6430606842041016
231
+ 1750896374.635793,48194,0.6415778398513794
232
+ 1750896498.919508,48294,0.6433780789375305
233
+ 1750896623.4286542,48394,0.6438223123550415
234
+ 1750896747.847158,48494,0.6433033347129822
235
+ 1750896876.367622,48594,0.6434356570243835
236
+ 1750897001.81382,48694,0.6426544189453125
237
+ 1750897127.529459,48794,0.6441066265106201
238
+ 1750897251.997642,48894,0.6419779658317566
239
+ 1750897391.9284601,48994,0.641223669052124
240
+ 1750897530.420704,49094,0.6415784358978271
241
+ 1750897656.3747,49194,0.642179548740387
242
+ 1750897781.185787,49294,0.6422781944274902
243
+ 1750897905.838592,49394,0.6428572535514832
244
+ 1750898030.6905658,49494,0.6434853076934814
245
+ 1750898155.156597,49594,0.6452162861824036
246
+ 1750898279.965455,49694,0.6438688635826111
247
+ 1750898404.8010619,49794,0.6422671675682068
248
+ 1750899212.633543,49907,0.6464402675628662
249
+ 1750899343.2950358,50007,0.646129310131073
250
+ 1750899472.941449,50107,0.6457077264785767
251
+ 1750899606.5571651,50207,0.645046591758728
252
+ 1750899737.428975,50307,0.643833339214325
253
+ 1750899877.032158,50407,0.6462070941925049
254
+ 1750900005.486089,50507,0.6452683806419373
255
+ 1750900133.916393,50607,0.6452322006225586
256
+ 1750900256.1888168,50707,0.6424969434738159
257
+ 1750900380.848832,50807,0.6473706960678101
258
+ 1750900504.3940322,50907,0.6434172987937927
259
+ 1750900627.8239639,51007,0.6444602012634277
260
+ 1750900753.072267,51107,0.643002450466156
261
+ 1750900886.204142,51207,0.6453762054443359
262
+ 1750901035.190274,51307,0.6462138295173645
263
+ 1750901163.328012,51407,0.6459166407585144
264
+ 1750901286.782429,51507,0.6438118815422058
265
+ 1750901409.128047,51607,0.6438590884208679
266
+ 1750901532.0578618,51707,0.6446274518966675
267
+ 1750901660.4352782,51807,0.6424828171730042
268
+ 1750901792.7007182,51907,0.6434687376022339
269
+ 1750901923.531831,52007,0.6444613933563232
270
+ 1750902052.132679,52107,0.6430226564407349
271
+ 1750902179.658934,52207,0.644810676574707
272
+ 1750902309.190856,52307,0.6444748640060425
273
+ 1750902436.6699321,52407,0.6428700685501099
274
+ 1750902564.216942,52507,0.6438847780227661
275
+ 1750902690.0879822,52607,0.6460637450218201
276
+ 1750902813.023041,52707,0.6452077031135559
277
+ 1750902939.8120599,52807,0.6433609127998352
278
+ 1750903070.9000618,52907,0.6433253884315491
279
+ 1750903862.9156759,53020,0.6475154161453247
280
+ 1750903986.861263,53120,0.646629273891449
281
+ 1750904112.39692,53220,0.6469932794570923
282
+ 1750904239.780994,53320,0.6450784206390381
283
+ 1750904366.4874518,53420,0.6478762030601501
284
+ 1750904496.969588,53520,0.6455214619636536
285
+ 1750904635.007241,53620,0.6467383503913879
286
+ 1750904757.660865,53720,0.6458204388618469
287
+ 1750904880.1947489,53820,0.6460667848587036
288
+ 1750905002.967725,53920,0.6446973085403442
289
+ 1750905125.842842,54020,0.6452922821044922
290
+ 1750905248.7482188,54120,0.6465686559677124
291
+ 1750905371.10138,54220,0.6452928781509399
292
+ 1750905493.773238,54320,0.6482236385345459
293
+ 1750905616.159102,54420,0.6453559994697571
294
+ 1750905738.843713,54520,0.6479975581169128
295
+ 1750905861.588533,54620,0.6480312347412109
296
+ 1750905985.703113,54720,0.6466445922851562
297
+ 1750906116.521803,54820,0.6444534063339233
298
+ 1750906245.937283,54920,0.6436856389045715
299
+ 1750906372.03501,55020,0.6463027000427246
300
+ 1750906500.091948,55120,0.6455140709877014
301
+ 1750906631.044678,55220,0.6453578472137451
302
+ 1750906762.9924512,55320,0.6443836092948914
303
+ 1750906890.046156,55420,0.645324170589447
304
+ 1750907025.419771,55520,0.6473572254180908
305
+ 1750907151.996316,55620,0.6437892317771912
306
+ 1750907280.478845,55720,0.6435680389404297
307
+ 1750907410.0027452,55820,0.6442157030105591
308
+ 1750907537.871084,55920,0.6427842974662781
309
+ 1750907666.4693801,56020,0.6448125243186951
310
+ 1750908471.8054981,56133,0.649034857749939
311
+ 1750908598.565808,56233,0.6494669318199158
312
+ 1750908727.921131,56333,0.6510263681411743
313
+ 1750908855.573693,56433,0.6477836966514587
314
+ 1750908991.2967548,56533,0.6450141072273254
315
+ 1750909131.634036,56633,0.6461188793182373
316
+ 1750909284.3952,56733,0.647019624710083
317
+ 1750909411.5474439,56833,0.646393358707428
318
+ 1750909536.3520918,56933,0.6487659215927124
319
+ 1750909658.71984,57033,0.6472156643867493
320
+ 1750909780.587345,57133,0.6461611390113831
321
+ 1750909910.2807622,57233,0.646244466304779
322
+ 1750910045.99917,57333,0.6470863819122314
323
+ 1750910185.240757,57433,0.643696665763855
324
+ 1750910323.0858161,57533,0.6463320851325989
325
+ 1750910463.68661,57633,0.6454797983169556
326
+ 1750910596.877676,57733,0.648062527179718
327
+ 1750910732.9618618,57833,0.6459338068962097
328
+ 1750910862.7883341,57933,0.643030047416687
329
+ 1750910994.566977,58033,0.647784948348999
330
+ 1750911116.712628,58133,0.6461188793182373
331
+ 1750911242.518239,58233,0.6463027000427246
332
+ 1750911373.846729,58333,0.6458002328872681
333
+ 1750911503.935261,58433,0.647658109664917
334
+ 1750911626.761462,58533,0.6480233073234558
335
+ 1750911755.233547,58633,0.6457616686820984
336
+ 1750911888.391101,58733,0.6468002200126648
337
+ 1750912013.4667919,58833,0.6444056630134583
338
+ 1750912133.361022,58933,0.646145224571228
339
+ 1750912255.219611,59033,0.6447996497154236
340
+ 1750912378.537761,59133,0.6448271870613098
341
+ 1750913179.433624,59246,0.6501647233963013
342
+ 1750913303.739379,59346,0.6485196352005005
343
+ 1750913425.917527,59446,0.6497438549995422
344
+ 1750913547.49926,59546,0.647741436958313
345
+ 1750913670.900279,59646,0.6488510966300964
346
+ 1750913793.327086,59746,0.64717036485672
347
+ 1750913914.975698,59846,0.6483498811721802
348
+ 1750914039.2794409,59946,0.6461820006370544
349
+ 1750914162.671892,60046,0.6479123830795288
350
+ 1750914283.225902,60146,0.6449393630027771
351
+ 1750914411.7684639,60246,0.6477500200271606
352
+ 1750914539.323285,60346,0.6502971649169922
353
+ 1750914659.7170491,60446,0.6488609313964844
354
+ 1750914781.342937,60546,0.6469595432281494
355
+ 1750914904.180421,60646,0.6473774313926697
356
+ 1750915027.264678,60746,0.6466066241264343
357
+ 1750915150.558697,60846,0.6461660861968994
358
+ 1750915273.552982,60946,0.6473535299301147
359
+ 1750915398.620424,61046,0.6482916474342346
360
+ 1750915524.7711182,61146,0.6480728983879089
361
+ 1750915647.482632,61246,0.647158682346344
362
+ 1750915770.944706,61346,0.647311270236969
363
+ 1750915893.186027,61446,0.6472414135932922
364
+ 1750916015.889415,61546,0.6462309956550598
365
+ 1750916138.166996,61646,0.6468639969825745
366
+ 1750916260.279406,61746,0.6477304100990295
367
+ 1750916382.71929,61846,0.645532488822937
368
+ 1750916505.05823,61946,0.6470796465873718
369
+ 1750916627.2343628,62046,0.6467499732971191
370
+ 1750916749.403017,62146,0.6446335911750793
371
+ 1750916871.43501,62246,0.6444540619850159
372
+ 1750917670.038614,62359,0.647418737411499
373
+ 1750917792.02987,62459,0.6491881012916565
374
+ 1750917917.474452,62559,0.650884211063385
375
+ 1750918043.013752,62659,0.648897647857666
376
+ 1750918174.5421581,62759,0.6486213207244873
377
+ 1750918308.542767,62859,0.6478437781333923
378
+ 1750918438.4512389,62959,0.6487138271331787
379
+ 1750918567.373274,63059,0.6486942172050476
380
+ 1750918692.689415,63159,0.6492941379547119
381
+ 1750918818.542409,63259,0.6484093070030212
382
+ 1750918940.721191,63359,0.6445998549461365
383
+ 1750919071.046887,63459,0.6481139659881592
384
+ 1750919195.254519,63559,0.6460208296775818
385
+ 1750919317.589064,63659,0.6489405632019043
386
+ 1750919439.178564,63759,0.6469509601593018
387
+ 1750919561.135176,63859,0.6483192443847656
388
+ 1750919682.895743,63959,0.6480097770690918
389
+ 1750919804.48234,64059,0.6475710868835449
390
+ 1750919926.20049,64159,0.6472879648208618
391
+ 1750920047.718527,64259,0.6479785442352295
392
+ 1750920169.184226,64359,0.6482456922531128
393
+ 1750920290.848407,64459,0.6483646035194397
394
+ 1750920412.478467,64559,0.6474166512489319
395
+ 1750920534.211891,64659,0.6492592096328735
396
+ 1750920655.893172,64759,0.6492279171943665
397
+ 1750920777.669284,64859,0.6471158266067505
398
+ 1750920899.403708,64959,0.6476764678955078
399
+ 1750921025.0799801,65059,0.6467646956443787
400
+ 1750921150.997535,65159,0.6486464738845825
401
+ 1750921276.822866,65259,0.6472935080528259
402
+ 1750921406.559783,65359,0.6456985473632812
403
+ 1750922201.8808472,65472,0.6491064429283142
404
+ 1750922335.5998678,65572,0.6507015824317932
405
+ 1750922466.940992,65672,0.6512285470962524
406
+ 1750922591.68689,65772,0.6479865312576294
407
+ 1750922721.988064,65872,0.6486464738845825
408
+ 1750922843.08352,65972,0.6498088240623474
409
+ 1750922964.566847,66072,0.6509638428688049
410
+ 1750923085.474137,66172,0.649839460849762
411
+ 1750923206.383039,66272,0.6484135985374451
412
+ 1750923327.453134,66372,0.6500716805458069
413
+ 1750923448.123444,66472,0.6503284573554993
414
+ 1750923568.853112,66572,0.648423433303833
415
+ 1750923689.65459,66672,0.6478958129882812
416
+ 1750923810.447805,66772,0.6492162942886353
417
+ 1750923931.042791,66872,0.6473988890647888
418
+ 1750924051.916737,66972,0.6482604146003723
419
+ 1750924173.199275,67072,0.648994505405426
420
+ 1750924293.858598,67172,0.6486293077468872
421
+ 1750924415.077677,67272,0.6478174328804016
422
+ 1750924536.2253509,67372,0.6496537923812866
423
+ 1750924662.9054248,67472,0.6481562256813049
424
+ 1750924792.057019,67572,0.6468345522880554
425
+ 1750924916.8148491,67672,0.6478131413459778
426
+ 1750925042.747761,67772,0.646910548210144
427
+ 1750925170.406854,67872,0.6478045582771301
428
+ 1750925293.492859,67972,0.6473388671875
429
+ 1750925418.957403,68072,0.6464074850082397
430
+ 1750925541.840107,68172,0.6478223204612732
431
+ 1750925663.5091,68272,0.6482077240943909
432
+ 1750925784.65945,68372,0.6487855315208435
433
+ 1750925906.0801122,68472,0.6465165615081787
434
+ 1750926700.457063,68585,0.6502459049224854
435
+ 1750926826.9456398,68685,0.651401937007904
436
+ 1750926953.6492538,68785,0.6517910361289978
437
+ 1750927078.952777,68885,0.6490827202796936
438
+ 1750927205.3010828,68985,0.650858461856842
439
+ 1750927329.743047,69085,0.6488449573516846
440
+ 1750927454.28623,69185,0.6479975581169128
441
+ 1750927580.5161228,69285,0.6503829956054688
442
+ 1750927705.630354,69385,0.6467738747596741
443
+ 1750927831.181097,69485,0.6512561440467834
444
+ 1750927957.4820192,69585,0.6498749852180481
445
+ 1750928083.418227,69685,0.6479362845420837
446
+ 1750928210.516265,69785,0.6487597823143005
447
+ 1750928337.9859421,69885,0.6513578295707703
448
+ 1750928466.57218,69985,0.6503247618675232
449
+ 1750928591.0808609,70085,0.6471317410469055
450
+ 1750928712.549025,70185,0.648591935634613
451
+ 1750928834.0284002,70285,0.6484154462814331
452
+ 1750928955.571093,70385,0.6498407125473022
453
+ 1750929075.983147,70485,0.6484828591346741
454
+ 1750929196.275585,70585,0.6494001150131226
455
+ 1750929316.778184,70685,0.6480600237846375
456
+ 1750929436.865588,70785,0.6480422616004944
457
+ 1750929560.202616,70885,0.6478958129882812
458
+ 1750929680.995494,70985,0.647394597530365
459
+ 1750929801.422886,71085,0.6490048766136169
460
+ 1750929943.29896,71185,0.650200366973877
461
+ 1750930068.967339,71285,0.6482769846916199
462
+ 1750930189.072788,71385,0.6460214257240295
463
+ 1750930308.7765188,71485,0.6505600214004517
464
+ 1750930429.611978,71585,0.6480796337127686
465
+ 1750931205.2413719,71698,0.6527718305587769
466
+ 1750931326.428332,71798,0.6477978229522705
467
+ 1750931449.9233081,71898,0.6518376469612122
468
+ 1750931573.760788,71998,0.6521115303039551
469
+ 1750931694.6096342,72098,0.6505722999572754
470
+ 1750931818.165248,72198,0.6516188979148865
471
+ 1750931948.603304,72298,0.6470564007759094
472
+ 1750932076.934408,72398,0.650993287563324
473
+ 1750932203.6527512,72498,0.6495453715324402
474
+ 1750932332.362875,72598,0.652105987071991
475
+ 1750932459.72476,72698,0.6486384868621826
476
+ 1750932586.006664,72798,0.6518786549568176
477
+ 1750932712.433674,72898,0.6480814814567566
478
+ 1750932833.490408,72998,0.6507444977760315
479
+ 1750932953.271996,73098,0.6490061283111572
480
+ 1750933073.4454489,73198,0.647949755191803
481
+ 1750933193.6256452,73298,0.6485024690628052
482
+ 1750933313.522526,73398,0.6500251293182373
483
+ 1750933432.8896089,73498,0.6501495242118835
484
+ 1750933559.187637,73598,0.6502885818481445
485
+ 1750933691.372032,73698,0.6501495242118835
486
+ 1750933810.739407,73798,0.6492481827735901
487
+ 1750933930.987875,73898,0.6489564776420593
488
+ 1750934050.3341088,73998,0.650886058807373
489
+ 1750934169.8655858,74098,0.6477953195571899
490
+ 1750934289.4910982,74198,0.6487432718276978
491
+ 1750934409.0436878,74298,0.6494399309158325
492
+ 1750934528.496396,74398,0.6505404114723206
493
+ 1750934647.6416872,74498,0.6483222842216492
494
+ 1750934767.3372312,74598,0.6466078162193298
495
+ 1750934886.8239932,74698,0.6476887464523315
496
+ 1750935667.094647,74811,0.6520823240280151
497
+ 1750935791.266507,74911,0.6515815258026123
498
+ 1750935914.606653,75011,0.6508811116218567
499
+ 1750936039.06153,75111,0.6499025821685791
500
+ 1750936165.694906,75211,0.6508517265319824
501
+ 1750936291.294213,75311,0.6521464586257935
502
+ 1750936416.024253,75411,0.6500281691551208
503
+ 1750936541.313317,75511,0.651495099067688
504
+ 1750936663.961,75611,0.6510618925094604
505
+ 1750936787.1065311,75711,0.6508431434631348
506
+ 1750936910.651989,75811,0.6501868963241577
507
+ 1750937035.475455,75911,0.650493860244751
508
+ 1750937174.3356822,76011,0.6468051671981812
509
+ 1750937296.402282,76111,0.6489773392677307
510
+ 1750937415.056671,76211,0.6508811116218567
511
+ 1750937534.0117319,76311,0.6501476764678955
512
+ 1750937653.302214,76411,0.6487193703651428
513
+ 1750937772.312762,76511,0.6498878598213196
514
+ 1750937891.033729,76611,0.6482493877410889
515
+ 1750938009.852423,76711,0.6508100628852844
516
+ 1750938128.461038,76811,0.6482242941856384
517
+ 1750938247.067235,76911,0.6491262316703796
518
+ 1750938365.590821,77011,0.652357816696167
519
+ 1750938484.2761998,77111,0.6490649580955505
520
+ 1750938602.906268,77211,0.6494031548500061
521
+ 1750938721.6004522,77311,0.6518670320510864
522
+ 1750938840.3788958,77411,0.6487389802932739
523
+ 1750938959.428231,77511,0.6489448547363281
524
+ 1750939078.0850508,77611,0.6487916707992554
525
+ 1750939200.7135448,77711,0.6509914398193359
526
+ 1750939321.166645,77811,0.6488952040672302
527
+ 1750940094.809199,77924,0.6526339650154114
528
+ 1750940217.234244,78024,0.6542683839797974
529
+ 1750940346.059194,78124,0.6495704650878906
530
+ 1750940470.212898,78224,0.6520876288414001
531
+ 1750940589.032979,78324,0.6522684097290039
532
+ 1750940708.133315,78424,0.6509938836097717
533
+ 1750940837.9103842,78524,0.6519785523414612
534
+ 1750940975.8179379,78624,0.650454044342041
535
+ 1750941095.2669902,78724,0.647087037563324
536
+ 1750941213.9696698,78824,0.6488590836524963
537
+ 1750941332.621811,78924,0.6520287990570068
538
+ 1750941451.281897,79024,0.6517101526260376
539
+ 1750941569.900013,79124,0.6491991281509399
540
+ 1750941688.514817,79224,0.6504749059677124
541
+ 1750941807.542513,79324,0.6506611704826355
542
+ 1750941926.6724448,79424,0.6498695015907288
543
+ 1750942045.9601479,79524,0.6501017212867737
544
+ 1750942168.355915,79624,0.6487457156181335
545
+ 1750942296.663371,79724,0.6524160504341125
546
+ 1750942419.767167,79824,0.6513786911964417
547
+ 1750942545.070986,79924,0.6490833163261414
548
+ 1750942668.438934,80024,0.6487867832183838
549
+ 1750942796.3619041,80124,0.6486017107963562
550
+ 1750942923.124234,80224,0.6483988761901855
551
+ 1750943058.1432269,80324,0.6503474116325378
552
+ 1750943203.790324,80424,0.6502794027328491
553
+ 1750943341.517162,80524,0.6492022275924683
554
+ 1750943466.439969,80624,0.6479111313819885
555
+ 1750943589.441782,80724,0.6514332294464111
556
+ 1750943711.3610811,80824,0.6519209742546082
557
+ 1750943834.455572,80924,0.6504687666893005
558
+ 1750944606.875496,81037,0.6522871851921082
559
+ 1750944727.609366,81137,0.6515563726425171
560
+ 1750944846.120693,81237,0.6497898101806641
561
+ 1750944967.2339032,81337,0.652232825756073
562
+ 1750945090.3662348,81437,0.6507910490036011
563
+ 1750945211.797076,81537,0.651106595993042
564
+ 1750945330.042583,81637,0.6506397128105164
565
+ 1750945448.8972192,81737,0.6519307494163513
566
+ 1750945567.0563169,81837,0.6516096591949463
567
+ 1750945685.100916,81937,0.6511819958686829
568
+ 1750945803.9379368,82037,0.649468719959259
569
+ 1750945926.481904,82137,0.6496985554695129
570
+ 1750946055.549682,82237,0.6508976817131042
571
+ 1750946178.625365,82337,0.6501617431640625
572
+ 1750946303.409825,82437,0.6516960859298706
573
+ 1750946429.152622,82537,0.6523486375808716
574
+ 1750946552.534206,82637,0.6493486762046814
575
+ 1750946674.518133,82737,0.6518946290016174
576
+ 1750946798.236918,82837,0.6495766043663025
577
+ 1750946924.468488,82937,0.6500422954559326
578
+ 1750947047.724276,83037,0.6488174200057983
579
+ 1750947170.843002,83137,0.6509907841682434
580
+ 1750947294.740781,83237,0.6502095460891724
581
+ 1750947417.294125,83337,0.6490539312362671
582
+ 1750947540.771071,83437,0.6508578658103943
583
+ 1750947662.384672,83537,0.6505318880081177
584
+ 1750947783.331347,83637,0.6509711742401123
585
+ 1750947908.258089,83737,0.6505796313285828
586
+ 1750948039.4229639,83837,0.653219997882843
587
+ 1750948171.129049,83937,0.6481268405914307
588
+ 1750948289.858269,84037,0.6493921279907227
589
+ 1750949058.226542,84150,0.6519173979759216
590
+ 1750949181.067277,84250,0.652815580368042
591
+ 1750949307.2892659,84350,0.6513253450393677
592
+ 1750949439.01839,84450,0.6528223156929016
593
+ 1750949551.864723,84550,0.6522849202156067
594
+ 1750949737.308183,84650,0.6512879729270935
595
+ 1750949855.809212,84750,0.6491966843605042
596
+ 1750949977.819556,84850,0.6497671604156494
597
+ 1750950090.820287,84950,0.6525888442993164
598
+ 1750950202.941718,85050,0.6501887440681458
599
+ 1750950315.218237,85150,0.6522665619850159
600
+ 1750950429.6683562,85250,0.6511936187744141
601
+ 1750950546.027575,85350,0.6516770720481873
602
+ 1750950662.1023219,85450,0.651203453540802
603
+ 1750950785.824854,85550,0.6510520577430725
604
+ 1750950904.5093288,85650,0.6501231789588928
605
+ 1750951019.37567,85750,0.6506231427192688
606
+ 1750951137.001701,85850,0.6502812504768372
607
+ 1750951257.822999,85950,0.6499130129814148
608
+ 1750951376.334996,86050,0.6525477766990662
609
+ 1750951508.36153,86150,0.6494105458259583
610
+ 1750951653.929481,86250,0.6496948599815369
611
+ 1750951780.7706292,86350,0.649940550327301
612
+ 1750951900.429235,86450,0.6511250138282776
613
+ 1750952020.460129,86550,0.6500226855278015
614
+ 1750952140.587803,86650,0.6509822010993958
615
+ 1750952258.030296,86750,0.6532450914382935
616
+ 1750952376.401353,86850,0.6505300402641296
617
+ 1750952494.550299,86950,0.6496709585189819
618
+ 1750952611.356643,87050,0.650303304195404
619
+ 1750952728.486352,87150,0.6507144570350647
620
+ 1750953607.870789,87263,0.6540953516960144
621
+ 1750953741.1156712,87363,0.6534571051597595
622
+ 1750953876.673899,87463,0.6530048847198486
623
+ 1750954008.2263958,87563,0.6522052884101868
624
+ 1750954134.876569,87663,0.6529846787452698
625
+ 1750954275.110658,87763,0.6527052521705627
626
+ 1750954410.617163,87863,0.6522138714790344
627
+ 1750954546.785998,87963,0.6516979336738586
628
+ 1750954681.6060128,88063,0.654875636100769
629
+ 1750954809.4235651,88163,0.6518474221229553
630
+ 1750954935.581568,88263,0.6498578190803528
631
+ 1750955063.266297,88363,0.648994505405426
632
+ 1750955195.611402,88463,0.6514338254928589
633
+ 1750955349.305851,88563,0.6500398516654968
634
+ 1750955491.144202,88663,0.6512365341186523
635
+ 1750955661.751243,88763,0.6501795053482056
636
+ 1750955789.472915,88863,0.6513388752937317
637
+ 1750955916.455606,88963,0.6507641077041626
638
+ 1750956043.57365,89063,0.6520398259162903
639
+ 1750956172.116692,89163,0.6523762345314026
640
+ 1750956300.8387232,89263,0.6488468050956726
641
+ 1750956426.0187678,89363,0.6504718065261841
642
+ 1750956550.824841,89463,0.6528094410896301
643
+ 1750956676.1422899,89563,0.6500986814498901
644
+ 1750956795.7607691,89663,0.6482028365135193
645
+ 1750956912.415222,89763,0.650150716304779
646
+ 1750957031.373131,89863,0.6517420411109924
647
+ 1750957156.32019,89963,0.6502113938331604
648
+ 1750957304.596373,90063,0.6499865055084229
649
+ 1750957440.024402,90163,0.6511102914810181
650
+ 1750957571.496244,90263,0.6512358784675598
651
+ 1750958396.879992,90376,0.6540916562080383
652
+ 1750958523.848976,90476,0.6543688774108887
653
+ 1750958650.727561,90576,0.6532585620880127
654
+ 1750958781.975317,90676,0.6527677774429321
655
+ 1750958926.18809,90776,0.6502892374992371
656
+ 1750959057.247673,90876,0.6526997685432434
657
+ 1750959183.969264,90976,0.6530202031135559
658
+ 1750959309.7882721,91076,0.6501832008361816
659
+ 1750959440.487211,91176,0.6517861485481262
660
+ 1750959567.645947,91276,0.6520073413848877
661
+ 1750959694.23929,91376,0.6519497632980347
662
+ 1750959821.394371,91476,0.6525055170059204
663
+ 1750959955.037148,91576,0.6517549157142639
664
+ 1750960083.06543,91676,0.6512113809585571
665
+ 1750960206.475574,91776,0.6483603119850159
666
+ 1750960339.1817,91876,0.6516813635826111
667
+ 1750960477.6669922,91976,0.6513210535049438
668
+ 1750960610.298056,92076,0.6508394479751587
669
+ 1750960738.587141,92176,0.6515735387802124
670
+ 1750960856.138477,92276,0.6536997556686401
671
+ 1750960975.38271,92376,0.6503039002418518
672
+ 1750961094.6123688,92476,0.6526568531990051
673
+ 1750961212.9602098,92576,0.65289705991745
674
+ 1750961330.572914,92676,0.6479264497756958
675
+ 1750961450.333251,92776,0.6491641998291016
676
+ 1750961569.7984881,92876,0.6493884921073914
677
+ 1750961687.424532,92976,0.6523302793502808
678
+ 1750961805.406246,93076,0.6503909230232239
679
+ 1750961937.18595,93176,0.6519724130630493
680
+ 1750962080.5853848,93276,0.6517199873924255
681
+ 1750962219.942724,93376,0.6518253684043884
archive-misc/runs_jsons/acc_trainstep/!code-decoder-v31-mega-licensed-1_sequential_tensorboard.csv ADDED
@@ -0,0 +1,681 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750742837.6197991,99,0.36904042959213257
3
+ 1750742959.546508,199,0.44737011194229126
4
+ 1750743082.732747,299,0.47564032673835754
5
+ 1750743206.693352,399,0.49883824586868286
6
+ 1750743330.856798,499,0.5141243934631348
7
+ 1750743454.929158,599,0.5264865159988403
8
+ 1750744239.287515,722,0.541310727596283
9
+ 1750744363.888371,822,0.5509797930717468
10
+ 1750744488.6690261,922,0.5590435266494751
11
+ 1750744612.728082,1022,0.5634166598320007
12
+ 1750744736.573202,1122,0.5711072087287903
13
+ 1750744860.3516622,1222,0.5781397223472595
14
+ 1750745639.087075,1345,0.5573936700820923
15
+ 1750745761.870153,1445,0.5579822063446045
16
+ 1750745884.924454,1545,0.5657849311828613
17
+ 1750746008.142229,1645,0.5697389841079712
18
+ 1750746130.9888499,1745,0.5756507515907288
19
+ 1750746254.2531168,1845,0.5814270973205566
20
+ 1750747034.411872,1968,0.5898361206054688
21
+ 1750747161.104775,2068,0.5952500104904175
22
+ 1750747284.3177412,2168,0.5954675078392029
23
+ 1750747407.53179,2268,0.5999111533164978
24
+ 1750747530.13609,2368,0.601463258266449
25
+ 1750747652.508849,2468,0.6034111380577087
26
+ 1750748426.4023712,2591,0.5962967872619629
27
+ 1750748548.152691,2691,0.5989730358123779
28
+ 1750748670.332829,2791,0.6034019589424133
29
+ 1750748792.033957,2891,0.6055275797843933
30
+ 1750748913.654305,2991,0.6092022061347961
31
+ 1750749035.48637,3091,0.611865222454071
32
+ 1750749804.5840662,3214,0.617388904094696
33
+ 1750749926.68753,3314,0.6186991333961487
34
+ 1750750048.534391,3414,0.6210447549819946
35
+ 1750750170.009557,3514,0.622041642665863
36
+ 1750750292.006481,3614,0.6248449683189392
37
+ 1750750414.405195,3714,0.6247016191482544
38
+ 1750751193.8930078,3837,0.6037773489952087
39
+ 1750751315.359325,3937,0.6039528250694275
40
+ 1750751437.273057,4037,0.6069276928901672
41
+ 1750751559.02651,4137,0.6077849268913269
42
+ 1750751681.462891,4237,0.6098229289054871
43
+ 1750751803.531113,4337,0.6127052903175354
44
+ 1750752568.891242,4460,0.6153458952903748
45
+ 1750752689.6196811,4560,0.6187671422958374
46
+ 1750752810.5254478,4660,0.6224969625473022
47
+ 1750752931.439138,4760,0.6224191188812256
48
+ 1750753052.3244538,4860,0.6226696968078613
49
+ 1750753173.179165,4960,0.6215306520462036
50
+ 1750753937.2430022,5083,0.539279043674469
51
+ 1750754057.59066,5183,0.528941810131073
52
+ 1750754178.295239,5283,0.5329399704933167
53
+ 1750754299.033118,5383,0.5406439900398254
54
+ 1750754422.568199,5483,0.5422530770301819
55
+ 1750754548.9622169,5583,0.5443247556686401
56
+ 1750755328.347894,5706,0.5503765344619751
57
+ 1750755447.7443478,5806,0.5573063492774963
58
+ 1750755568.281234,5906,0.5552720427513123
59
+ 1750755688.8679402,6006,0.5544227957725525
60
+ 1750755809.374611,6106,0.5525067448616028
61
+ 1750755929.7489762,6206,0.5546917915344238
62
+ 1750756705.562717,31229,0.6134282946586609
63
+ 1750756829.0259671,31329,0.6172665357589722
64
+ 1750756949.343882,31429,0.6197683811187744
65
+ 1750757078.677712,31529,0.6175140738487244
66
+ 1750757198.826624,31629,0.6200233101844788
67
+ 1750757318.9408782,31729,0.6193560361862183
68
+ 1750757439.0837288,31829,0.6225073337554932
69
+ 1750757559.06675,31929,0.620078444480896
70
+ 1750757678.7195451,32029,0.6205655932426453
71
+ 1750757799.1143239,32129,0.6206102967262268
72
+ 1750757919.020712,32229,0.6213443875312805
73
+ 1750758042.009888,32329,0.6223890781402588
74
+ 1750758166.2468889,32429,0.622481644153595
75
+ 1750758299.388862,32529,0.6226991415023804
76
+ 1750758424.9395342,32629,0.625359058380127
77
+ 1750758545.61158,32729,0.6247769594192505
78
+ 1750758665.587701,32829,0.6244283318519592
79
+ 1750758785.512001,32929,0.6239809989929199
80
+ 1750758908.149125,33029,0.6258223056793213
81
+ 1750759030.2707908,33129,0.6224032044410706
82
+ 1750759151.089634,33229,0.6246237754821777
83
+ 1750759270.41044,33329,0.6262695789337158
84
+ 1750759389.422902,33429,0.6265717148780823
85
+ 1750759508.650507,33529,0.6267462968826294
86
+ 1750759627.92784,33629,0.6261611580848694
87
+ 1750759747.075024,33729,0.6264215707778931
88
+ 1750759866.299139,33829,0.6259289383888245
89
+ 1750759985.405504,33929,0.6276574730873108
90
+ 1750760104.837285,34029,0.6260238885879517
91
+ 1750760224.402069,34129,0.6263854503631592
92
+ 1750760345.750891,34229,0.626671552658081
93
+ 1750761103.4888792,34342,0.6312656998634338
94
+ 1750761229.4441931,34442,0.6303835511207581
95
+ 1750761355.2628942,34542,0.6316807866096497
96
+ 1750761480.874649,34642,0.6313860416412354
97
+ 1750761607.7712588,34742,0.6320606470108032
98
+ 1750761736.7761228,34842,0.6289032101631165
99
+ 1750761863.39511,34942,0.6316948533058167
100
+ 1750761990.0101068,35042,0.6324865221977234
101
+ 1750762116.3877618,35142,0.6316875219345093
102
+ 1750762249.288865,35242,0.6300404667854309
103
+ 1750762376.090362,35342,0.632953405380249
104
+ 1750762502.080409,35442,0.6323081851005554
105
+ 1750762627.82608,35542,0.6321666836738586
106
+ 1750762753.5969422,35642,0.6300557851791382
107
+ 1750762879.876796,35742,0.6326311230659485
108
+ 1750763006.5001202,35842,0.6319313645362854
109
+ 1750763132.9935622,35942,0.631047785282135
110
+ 1750763258.156081,36042,0.6321427822113037
111
+ 1750763383.903738,36142,0.63047856092453
112
+ 1750763510.011431,36242,0.6317977905273438
113
+ 1750763635.5001469,36342,0.6309497356414795
114
+ 1750763760.9809768,36442,0.6323658227920532
115
+ 1750763886.428213,36542,0.6336813569068909
116
+ 1750764012.081731,36642,0.630462646484375
117
+ 1750764137.8974771,36742,0.6334981918334961
118
+ 1750764263.873915,36842,0.6330251097679138
119
+ 1750764390.009352,36942,0.6332083344459534
120
+ 1750764515.930391,37042,0.6311777234077454
121
+ 1750764641.606347,37142,0.6333014965057373
122
+ 1750764767.127562,37242,0.6339362859725952
123
+ 1750764893.1785972,37342,0.632925271987915
124
+ 1750765665.5694988,37455,0.6345545649528503
125
+ 1750765790.936673,37555,0.635745108127594
126
+ 1750765916.488437,37655,0.6353376507759094
127
+ 1750766043.204027,37755,0.6342653036117554
128
+ 1750766176.155006,37855,0.633561909198761
129
+ 1750766309.9887629,37955,0.6367040276527405
130
+ 1750766435.9808052,38055,0.6353290677070618
131
+ 1750766561.507215,38155,0.6362383365631104
132
+ 1750766687.761547,38255,0.6351893544197083
133
+ 1750766813.374468,38355,0.6356801390647888
134
+ 1750766938.476672,38455,0.6352922916412354
135
+ 1750767063.94742,38555,0.6348260045051575
136
+ 1750767188.9039412,38655,0.6365422606468201
137
+ 1750767314.098763,38755,0.6388063430786133
138
+ 1750767439.509332,38855,0.6352959275245667
139
+ 1750767565.280206,38955,0.6363357901573181
140
+ 1750767690.333876,39055,0.6391231417655945
141
+ 1750767816.262549,39155,0.636873185634613
142
+ 1750767942.017864,39255,0.6374209523200989
143
+ 1750768067.717936,39355,0.6357077360153198
144
+ 1750768194.353793,39455,0.6367469429969788
145
+ 1750768320.1663208,39555,0.6365545392036438
146
+ 1750768445.402051,39655,0.6376004815101624
147
+ 1750768571.1441479,39755,0.6360937356948853
148
+ 1750768696.381954,39855,0.6375337243080139
149
+ 1750768822.0582972,39955,0.6336041688919067
150
+ 1750768949.197896,40055,0.6351929903030396
151
+ 1750769075.347171,40155,0.6376004815101624
152
+ 1750769200.98032,40255,0.6377028226852417
153
+ 1750769325.995973,40355,0.6360937356948853
154
+ 1750769450.1222012,40455,0.6372702121734619
155
+ 1750770212.22892,40568,0.6391403675079346
156
+ 1750770337.235692,40668,0.6396825909614563
157
+ 1750770461.035936,40768,0.6387885808944702
158
+ 1750770586.025459,40868,0.6397027969360352
159
+ 1750770710.65363,40968,0.6380771994590759
160
+ 1750770836.624546,41068,0.6397095322608948
161
+ 1750770960.969816,41168,0.6382555365562439
162
+ 1750771085.822515,41268,0.6392702460289001
163
+ 1750771210.295008,41368,0.6390502452850342
164
+ 1750771335.099481,41468,0.6391182541847229
165
+ 1750771460.042669,41568,0.6393253803253174
166
+ 1750771584.8335161,41668,0.6398566365242004
167
+ 1750771709.965019,41768,0.6393627524375916
168
+ 1750771834.376404,41868,0.6393468379974365
169
+ 1750771959.458994,41968,0.6397126317024231
170
+ 1750772084.903645,42068,0.6398835778236389
171
+ 1750772209.9900868,42168,0.6368670463562012
172
+ 1750772334.583624,42268,0.638695478439331
173
+ 1750772459.2145548,42368,0.6395208239555359
174
+ 1750772583.934293,42468,0.6379546523094177
175
+ 1750772710.0044641,42568,0.6402867436408997
176
+ 1750772834.619936,42668,0.6405624747276306
177
+ 1750772959.3818722,42768,0.6397273540496826
178
+ 1750773082.836871,42868,0.6404123902320862
179
+ 1750773206.818681,42968,0.638261616230011
180
+ 1750773330.99267,43068,0.6365735530853271
181
+ 1750773454.452687,43168,0.6383835673332214
182
+ 1750773577.893802,43268,0.6385894417762756
183
+ 1750773702.293399,43368,0.6393002271652222
184
+ 1750773826.6592598,43468,0.636163592338562
185
+ 1750773956.231112,43568,0.641834557056427
186
+ 1750774701.058917,43681,0.6414767503738403
187
+ 1750774824.324727,43781,0.6403449773788452
188
+ 1750774947.902482,43881,0.6420478224754333
189
+ 1750775072.5444129,43981,0.6443719267845154
190
+ 1750775197.573143,44081,0.6438602805137634
191
+ 1750775321.648554,44181,0.6409393548965454
192
+ 1750775445.6248288,44281,0.6413835883140564
193
+ 1750775569.206202,44381,0.6412414312362671
194
+ 1750775693.360138,44481,0.6426268219947815
195
+ 1750775818.041559,44581,0.6406102776527405
196
+ 1750775942.3875961,44681,0.6418321132659912
197
+ 1750776067.079108,44781,0.6407567262649536
198
+ 1750776190.216455,44881,0.642294704914093
199
+ 1750776316.605943,44981,0.6407910585403442
200
+ 1750776441.708267,45081,0.6397812366485596
201
+ 1750776566.3821728,45181,0.6401249766349792
202
+ 1750776691.835101,45281,0.6421715617179871
203
+ 1750776815.85951,45381,0.6388425230979919
204
+ 1750776940.483356,45481,0.6395741105079651
205
+ 1750777064.732235,45581,0.6405282020568848
206
+ 1750777189.073138,45681,0.6414981484413147
207
+ 1750777314.5960279,45781,0.6402794122695923
208
+ 1750777438.241591,45881,0.6405006051063538
209
+ 1750777561.9531991,45981,0.6422346830368042
210
+ 1750777692.820798,46081,0.6408694982528687
211
+ 1750777820.8835342,46181,0.640204668045044
212
+ 1750777945.470925,46281,0.6404834389686584
213
+ 1750778069.65347,46381,0.6402432322502136
214
+ 1750778194.368608,46481,0.6402347087860107
215
+ 1750778322.778739,46581,0.6419828534126282
216
+ 1750778447.16852,46681,0.6393155455589294
217
+ 1750779212.0583649,46794,0.6435402035713196
218
+ 1750779336.033227,46894,0.6429583430290222
219
+ 1750779460.355482,46994,0.6421666741371155
220
+ 1750779582.112957,47094,0.6412267088890076
221
+ 1750779715.6459038,47194,0.6452603936195374
222
+ 1750779839.06378,47294,0.6431770920753479
223
+ 1750779969.444735,47394,0.644919753074646
224
+ 1750780100.559294,47494,0.6444944739341736
225
+ 1750780228.8061728,47594,0.6433780789375305
226
+ 1750780355.893033,47694,0.6408945918083191
227
+ 1750780489.041636,47794,0.6430104374885559
228
+ 1750780621.223639,47894,0.6415698528289795
229
+ 1750780752.219553,47994,0.6443069577217102
230
+ 1750780888.478504,48094,0.6418939828872681
231
+ 1750781028.7073689,48194,0.6430557370185852
232
+ 1750781175.704441,48294,0.6399730443954468
233
+ 1750781324.396688,48394,0.6406427621841431
234
+ 1750781473.980017,48494,0.6425551772117615
235
+ 1750781609.7190971,48594,0.6419417858123779
236
+ 1750781740.119979,48694,0.6428192257881165
237
+ 1750781871.363491,48794,0.6444454789161682
238
+ 1750782004.174865,48894,0.6416041851043701
239
+ 1750782137.862446,48994,0.6425073742866516
240
+ 1750782265.936386,49094,0.6432487964630127
241
+ 1750782403.7187278,49194,0.6440649628639221
242
+ 1750782538.301892,49294,0.6432787775993347
243
+ 1750782689.3264818,49394,0.6424552798271179
244
+ 1750782843.259275,49494,0.6423174142837524
245
+ 1750782986.946542,49594,0.6410165429115295
246
+ 1750783123.844516,49694,0.642348051071167
247
+ 1750783252.6179578,49794,0.6417592167854309
248
+ 1750784134.094883,49907,0.6442288160324097
249
+ 1750784267.055677,50007,0.6450937390327454
250
+ 1750784396.809908,50107,0.6455336809158325
251
+ 1750784540.68293,50207,0.6459117531776428
252
+ 1750784685.3494022,50307,0.6453884840011597
253
+ 1750784825.603266,50407,0.6443143486976624
254
+ 1750784970.852562,50507,0.6460220813751221
255
+ 1750785124.676715,50607,0.6426783204078674
256
+ 1750785261.507145,50707,0.6435110569000244
257
+ 1750785403.2566102,50807,0.6428578495979309
258
+ 1750785549.3775492,50907,0.6444724202156067
259
+ 1750785694.352969,51007,0.6436213254928589
260
+ 1750785842.9487228,51107,0.6439338326454163
261
+ 1750785995.988441,51207,0.6430392265319824
262
+ 1750786138.111999,51307,0.6441458463668823
263
+ 1750786279.883648,51407,0.6437824964523315
264
+ 1750786424.398026,51507,0.6429178714752197
265
+ 1750786562.827903,51607,0.6433768272399902
266
+ 1750786703.119499,51707,0.644769012928009
267
+ 1750786846.0823522,51807,0.6429730653762817
268
+ 1750786988.558388,51907,0.6424209475517273
269
+ 1750787130.541497,52007,0.6440122723579407
270
+ 1750787272.7065651,52107,0.6456740498542786
271
+ 1750787418.573973,52207,0.6420202255249023
272
+ 1750787555.390604,52307,0.643044114112854
273
+ 1750787695.138582,52407,0.6435778141021729
274
+ 1750787835.8369222,52507,0.6435808539390564
275
+ 1750787974.315232,52607,0.6420220732688904
276
+ 1750788107.1543639,52707,0.6427579522132874
277
+ 1750788233.893576,52807,0.6421329379081726
278
+ 1750788361.041194,52907,0.6442506313323975
279
+ 1750789258.583812,53020,0.646504819393158
280
+ 1750789414.647167,53120,0.646045982837677
281
+ 1750789569.265596,53220,0.6455931067466736
282
+ 1750789725.542769,53320,0.6448137164115906
283
+ 1750789886.1022232,53420,0.6451066136360168
284
+ 1750790043.21908,53520,0.6452879905700684
285
+ 1750790197.523573,53620,0.645102322101593
286
+ 1750790350.642303,53720,0.6442456841468811
287
+ 1750790506.690637,53820,0.6454032063484192
288
+ 1750790665.733622,53920,0.6463805437088013
289
+ 1750790828.387039,54020,0.6445643305778503
290
+ 1750790989.766167,54120,0.645153820514679
291
+ 1750791156.6413922,54220,0.6454338431358337
292
+ 1750791315.356648,54320,0.6458118557929993
293
+ 1750791468.996352,54420,0.6443431377410889
294
+ 1750791607.7428281,54520,0.6441152095794678
295
+ 1750791737.503336,54620,0.6445784568786621
296
+ 1750791870.312643,54720,0.6458590626716614
297
+ 1750792012.619204,54820,0.644293487071991
298
+ 1750792173.602272,54920,0.6431084275245667
299
+ 1750792345.805465,55020,0.6445538997650146
300
+ 1750792504.482763,55120,0.6442646980285645
301
+ 1750792662.77343,55220,0.6441115140914917
302
+ 1750792826.4392908,55320,0.6436017155647278
303
+ 1750792989.490883,55420,0.6445349454879761
304
+ 1750793150.201789,55520,0.6444632411003113
305
+ 1750793310.96963,55620,0.64418625831604
306
+ 1750793471.689198,55720,0.64411461353302
307
+ 1750793633.997622,55820,0.6446427702903748
308
+ 1750793771.361454,55920,0.6421868801116943
309
+ 1750793898.339762,56020,0.6449227929115295
310
+ 1750794715.279263,56133,0.6482804417610168
311
+ 1750794844.989433,56233,0.6481776833534241
312
+ 1750794975.590302,56333,0.6468339562416077
313
+ 1750795106.289749,56433,0.6473713517189026
314
+ 1750795236.418029,56533,0.6481985449790955
315
+ 1750795367.739757,56633,0.6463897228240967
316
+ 1750795496.9391842,56733,0.6464086771011353
317
+ 1750795625.8119879,56833,0.64665687084198
318
+ 1750795755.705375,56933,0.6464675068855286
319
+ 1750795899.6942139,57033,0.6448878645896912
320
+ 1750796035.104954,57133,0.6464515924453735
321
+ 1750796170.040396,57233,0.6453817486763
322
+ 1750796298.5071092,57333,0.6441231369972229
323
+ 1750796429.311371,57433,0.6473431587219238
324
+ 1750796554.3222442,57533,0.6448198556900024
325
+ 1750796680.498879,57633,0.6428216695785522
326
+ 1750796808.865582,57733,0.6424534320831299
327
+ 1750796936.229256,57833,0.6466004848480225
328
+ 1750797064.150819,57933,0.6458192467689514
329
+ 1750797191.786251,58033,0.6452126502990723
330
+ 1750797319.7743769,58133,0.6464528441429138
331
+ 1750797447.7426932,58233,0.6451654434204102
332
+ 1750797575.880682,58333,0.6441439986228943
333
+ 1750797703.1639428,58433,0.6445943713188171
334
+ 1750797831.238049,58533,0.6445538997650146
335
+ 1750797960.4362,58633,0.6459847092628479
336
+ 1750798087.6576068,58733,0.645104169845581
337
+ 1750798215.118301,58833,0.6446556448936462
338
+ 1750798343.66004,58933,0.6447536945343018
339
+ 1750798472.9229262,59033,0.6429099440574646
340
+ 1750798601.3384461,59133,0.644894003868103
341
+ 1750799411.726611,59246,0.648718535900116
342
+ 1750799562.9718988,59346,0.6476292610168457
343
+ 1750799693.71536,59446,0.6495410799980164
344
+ 1750799825.5060081,59546,0.6477291584014893
345
+ 1750799961.1823318,59646,0.6461580991744995
346
+ 1750800093.838211,59746,0.6455496549606323
347
+ 1750800222.3160698,59846,0.6458125114440918
348
+ 1750800349.5177312,59946,0.6471948623657227
349
+ 1750800476.517913,60046,0.6473553776741028
350
+ 1750800603.51851,60146,0.646906852722168
351
+ 1750800732.724886,60246,0.6469632387161255
352
+ 1750800860.773531,60346,0.6476641893386841
353
+ 1750800994.139314,60446,0.6453768610954285
354
+ 1750801128.625023,60546,0.6463921666145325
355
+ 1750801255.306974,60646,0.6476666927337646
356
+ 1750801381.878898,60746,0.6465967893600464
357
+ 1750801511.829727,60846,0.6465104222297668
358
+ 1750801637.147579,60946,0.6430771946907043
359
+ 1750801761.5167391,61046,0.6442641019821167
360
+ 1750801888.139904,61146,0.6429436206817627
361
+ 1750802014.436662,61246,0.6462824940681458
362
+ 1750802155.183458,61346,0.6463149189949036
363
+ 1750802280.9436212,61446,0.6453002691268921
364
+ 1750802406.023594,61546,0.6450214385986328
365
+ 1750802535.9519181,61646,0.644806981086731
366
+ 1750802664.659689,61746,0.6448878645896912
367
+ 1750802791.178323,61846,0.645933210849762
368
+ 1750802914.792695,61946,0.6460140943527222
369
+ 1750803039.588114,62046,0.6473057866096497
370
+ 1750803177.726551,62146,0.646781861782074
371
+ 1750803304.093698,62246,0.6445061564445496
372
+ 1750804067.461365,62359,0.6465290784835815
373
+ 1750804190.3091588,62459,0.6480244994163513
374
+ 1750804314.915205,62559,0.6477248668670654
375
+ 1750804440.797796,62659,0.6470097899436951
376
+ 1750804569.121289,62759,0.6475049257278442
377
+ 1750804694.160801,62859,0.6483259797096252
378
+ 1750804823.114181,62959,0.6467800140380859
379
+ 1750804950.241332,63059,0.6467885971069336
380
+ 1750805079.370759,63159,0.6475520730018616
381
+ 1750805208.732679,63259,0.6473645567893982
382
+ 1750805338.920463,63359,0.6480992436408997
383
+ 1750805469.50536,63459,0.6476678848266602
384
+ 1750805608.147779,63559,0.647253692150116
385
+ 1750805734.972286,63659,0.6449258327484131
386
+ 1750805862.4968588,63759,0.6461672782897949
387
+ 1750805988.45022,63859,0.6458964347839355
388
+ 1750806123.169887,63959,0.647939920425415
389
+ 1750806256.202873,64059,0.6484871506690979
390
+ 1750806393.472111,64159,0.6470263600349426
391
+ 1750806547.472808,64259,0.6475827097892761
392
+ 1750806691.373438,64359,0.6466715931892395
393
+ 1750806849.185892,64459,0.6458413004875183
394
+ 1750806990.452616,64559,0.6463345885276794
395
+ 1750807125.020457,64659,0.6483137011528015
396
+ 1750807258.217799,64759,0.6457217931747437
397
+ 1750807391.006315,64859,0.6449068784713745
398
+ 1750807526.301808,64959,0.6463021039962769
399
+ 1750807666.378596,65059,0.6463823318481445
400
+ 1750807809.388958,65159,0.6463333368301392
401
+ 1750807951.5288792,65259,0.6469528079032898
402
+ 1750808092.63092,65359,0.6464956998825073
403
+ 1750808938.0724359,65472,0.6471639275550842
404
+ 1750809074.119413,65572,0.6487616300582886
405
+ 1750809209.820045,65672,0.6496335864067078
406
+ 1750809342.745279,65772,0.6473774313926697
407
+ 1750809476.897032,65872,0.6502751111984253
408
+ 1750809613.8903549,65972,0.6470043063163757
409
+ 1750809747.467062,66072,0.6485587954521179
410
+ 1750809872.350077,66172,0.6457512378692627
411
+ 1750809997.746201,66272,0.6469516158103943
412
+ 1750810121.1808681,66372,0.6476795077323914
413
+ 1750810245.578121,66472,0.6476421356201172
414
+ 1750810380.9506109,66572,0.6473364233970642
415
+ 1750810512.713094,66672,0.6464914083480835
416
+ 1750810633.451982,66772,0.6471274495124817
417
+ 1750810755.61098,66872,0.6466550230979919
418
+ 1750810881.8008718,66972,0.6478750109672546
419
+ 1750811009.929226,67072,0.647144615650177
420
+ 1750811138.430103,67172,0.6447530388832092
421
+ 1750811266.86188,67272,0.6493449807167053
422
+ 1750811395.091655,67372,0.6474999785423279
423
+ 1750811523.0771708,67472,0.646438717842102
424
+ 1750811651.687756,67572,0.6476942300796509
425
+ 1750811783.037171,67672,0.6473756432533264
426
+ 1750811917.467489,67772,0.6467695832252502
427
+ 1750812047.789182,67872,0.6464332342147827
428
+ 1750812173.486615,67972,0.645909309387207
429
+ 1750812300.31341,68072,0.6483431458473206
430
+ 1750812423.2969952,68172,0.6461353898048401
431
+ 1750812550.8289511,68272,0.6480061411857605
432
+ 1750812678.884728,68372,0.6471066474914551
433
+ 1750812805.8926039,68472,0.6482904553413391
434
+ 1750813604.1502929,68585,0.650193989276886
435
+ 1750813731.223047,68685,0.6522193551063538
436
+ 1750813857.732806,68785,0.6497787833213806
437
+ 1750813988.8907259,68885,0.6475673913955688
438
+ 1750814119.260182,68985,0.6473192572593689
439
+ 1750814248.132718,69085,0.6485839486122131
440
+ 1750814377.243381,69185,0.6481679081916809
441
+ 1750814505.812932,69285,0.6453449726104736
442
+ 1750814634.419463,69385,0.6485612988471985
443
+ 1750814763.763408,69485,0.6482040286064148
444
+ 1750814893.179103,69585,0.6466060280799866
445
+ 1750815021.7957919,69685,0.6475943326950073
446
+ 1750815150.5378401,69785,0.6472702026367188
447
+ 1750815279.177554,69885,0.6487181186676025
448
+ 1750815407.75913,69985,0.647549033164978
449
+ 1750815535.9784162,70085,0.6479987502098083
450
+ 1750815664.166744,70185,0.6472996473312378
451
+ 1750815792.8404732,70285,0.6481243968009949
452
+ 1750815921.5008771,70385,0.6492622494697571
453
+ 1750816050.331789,70485,0.6485159397125244
454
+ 1750816178.767342,70585,0.648588240146637
455
+ 1750816306.1265862,70685,0.6481764912605286
456
+ 1750816433.7588422,70785,0.6460980176925659
457
+ 1750816561.7959769,70885,0.6478241682052612
458
+ 1750816688.949652,70985,0.6460447311401367
459
+ 1750816816.109664,71085,0.6486065983772278
460
+ 1750816943.5686212,71185,0.6461054086685181
461
+ 1750817070.7129998,71285,0.6465563774108887
462
+ 1750817197.603124,71385,0.6458885073661804
463
+ 1750817325.305474,71485,0.6494895815849304
464
+ 1750817453.850782,71585,0.6482126116752625
465
+ 1750818235.341888,71698,0.6487380266189575
466
+ 1750818357.7280252,71798,0.6504595875740051
467
+ 1750818481.7980459,71898,0.6481531858444214
468
+ 1750818604.542128,71998,0.6499889492988586
469
+ 1750818730.118634,72098,0.6505637168884277
470
+ 1750818853.118078,72198,0.652050256729126
471
+ 1750818974.4946308,72298,0.6500778198242188
472
+ 1750819101.224452,72398,0.6472787857055664
473
+ 1750819223.747354,72498,0.6491146087646484
474
+ 1750819345.070886,72598,0.6484160423278809
475
+ 1750819471.8304262,72698,0.6470293998718262
476
+ 1750819611.2639308,72798,0.6482524275779724
477
+ 1750819747.3201559,72898,0.649369478225708
478
+ 1750819875.1713212,72998,0.6482445001602173
479
+ 1750820012.2468321,73098,0.6460986733436584
480
+ 1750820141.524881,73198,0.6498842239379883
481
+ 1750820266.279186,73298,0.6474179029464722
482
+ 1750820389.3882308,73398,0.6481782793998718
483
+ 1750820513.378579,73498,0.6480472087860107
484
+ 1750820635.609552,73598,0.6474031805992126
485
+ 1750820758.281336,73698,0.6487126350402832
486
+ 1750820880.701854,73798,0.6488277912139893
487
+ 1750821000.5747242,73898,0.6469320058822632
488
+ 1750821121.916939,73998,0.6461231708526611
489
+ 1750821249.6419818,74098,0.6483603119850159
490
+ 1750821376.5807638,74198,0.648493230342865
491
+ 1750821501.672632,74298,0.648620069026947
492
+ 1750821628.2809339,74398,0.6486850380897522
493
+ 1750821753.825325,74498,0.6474534273147583
494
+ 1750821880.516624,74598,0.6453946232795715
495
+ 1750822006.337743,74698,0.6465251445770264
496
+ 1750822768.416353,74811,0.6495864391326904
497
+ 1750822893.587872,74911,0.648423433303833
498
+ 1750823021.0332532,75011,0.6498854160308838
499
+ 1750823146.548241,75111,0.6494516134262085
500
+ 1750823273.2604852,75211,0.6486611366271973
501
+ 1750823400.978105,75311,0.6499724388122559
502
+ 1750823528.704538,75411,0.6516096591949463
503
+ 1750823656.129306,75511,0.6495631337165833
504
+ 1750823784.509665,75611,0.6481942534446716
505
+ 1750823911.075191,75711,0.6502769589424133
506
+ 1750824037.748201,75811,0.6512530446052551
507
+ 1750824164.504883,75911,0.6486047506332397
508
+ 1750824291.308073,76011,0.648506760597229
509
+ 1750824418.683721,76111,0.6514491438865662
510
+ 1750824546.1074848,76211,0.6475459337234497
511
+ 1750824672.645638,76311,0.6464601755142212
512
+ 1750824801.644362,76411,0.6480851769447327
513
+ 1750824932.714845,76511,0.6480717062950134
514
+ 1750825062.607043,76611,0.6477800011634827
515
+ 1750825190.624785,76711,0.6490055322647095
516
+ 1750825318.172802,76811,0.6477978229522705
517
+ 1750825445.538239,76911,0.6483823657035828
518
+ 1750825572.384473,77011,0.6485171318054199
519
+ 1750825700.182718,77111,0.6484546661376953
520
+ 1750825827.936522,77211,0.6489546298980713
521
+ 1750825955.436144,77311,0.6471041440963745
522
+ 1750826083.645848,77411,0.647773265838623
523
+ 1750826210.9560719,77511,0.6483694911003113
524
+ 1750826338.876941,77611,0.6459589600563049
525
+ 1750826466.961814,77711,0.6473443508148193
526
+ 1750826594.736065,77811,0.6475484371185303
527
+ 1750827371.309746,77924,0.650373637676239
528
+ 1750827498.822388,78024,0.6503903269767761
529
+ 1750827628.078668,78124,0.6522181630134583
530
+ 1750827755.8670568,78224,0.6497867703437805
531
+ 1750827886.349826,78324,0.6486838459968567
532
+ 1750828014.371655,78424,0.6503210663795471
533
+ 1750828143.997387,78524,0.6503744125366211
534
+ 1750828270.322001,78624,0.6480919122695923
535
+ 1750828398.756683,78724,0.6498051285743713
536
+ 1750828537.040342,78824,0.6486409306526184
537
+ 1750828664.805336,78924,0.6491219401359558
538
+ 1750828792.283156,79024,0.6501562595367432
539
+ 1750828920.453904,79124,0.6485809087753296
540
+ 1750829048.98982,79224,0.651231586933136
541
+ 1750829176.8632069,79324,0.6481494903564453
542
+ 1750829305.751989,79424,0.649010419845581
543
+ 1750829433.509136,79524,0.6484068632125854
544
+ 1750829562.596454,79624,0.6482904553413391
545
+ 1750829690.386684,79724,0.6503511071205139
546
+ 1750829817.7913349,79824,0.6483615040779114
547
+ 1750829946.319406,79924,0.6486973166465759
548
+ 1750830073.0913548,80024,0.6493173837661743
549
+ 1750830201.1831071,80124,0.6492328643798828
550
+ 1750830330.114635,80224,0.6475808620452881
551
+ 1750830461.9016042,80324,0.6484013199806213
552
+ 1750830591.590712,80424,0.647438108921051
553
+ 1750830718.6005561,80524,0.6450526714324951
554
+ 1750830850.0460238,80624,0.6485833525657654
555
+ 1750830977.883887,80724,0.6485416889190674
556
+ 1750831105.3197818,80824,0.6496464610099792
557
+ 1750831232.8340611,80924,0.6479148268699646
558
+ 1750832007.374463,81037,0.6519679427146912
559
+ 1750832142.4253492,81137,0.6512359380722046
560
+ 1750832271.85084,81237,0.6501054167747498
561
+ 1750832398.0974,81337,0.650800883769989
562
+ 1750832523.7339048,81437,0.6511005163192749
563
+ 1750832649.128074,81537,0.6487438678741455
564
+ 1750832774.8890471,81637,0.650283694267273
565
+ 1750832899.332615,81737,0.6482524275779724
566
+ 1750833024.3810802,81837,0.6513112783432007
567
+ 1750833149.348097,81937,0.6498198509216309
568
+ 1750833275.481499,82037,0.6512113809585571
569
+ 1750833400.406284,82137,0.6496102809906006
570
+ 1750833524.9375072,82237,0.6483327150344849
571
+ 1750833650.5324612,82337,0.6503376364707947
572
+ 1750833774.197678,82437,0.6503565907478333
573
+ 1750833898.7189372,82537,0.6475784182548523
574
+ 1750834023.5484319,82637,0.6491605639457703
575
+ 1750834150.958664,82737,0.6483026742935181
576
+ 1750834275.947628,82837,0.6492665410041809
577
+ 1750834402.872994,82937,0.6511304974555969
578
+ 1750834531.4198,83037,0.6469154357910156
579
+ 1750834657.1064892,83137,0.647325336933136
580
+ 1750834781.427836,83237,0.6476887464523315
581
+ 1750834907.936564,83337,0.64775550365448
582
+ 1750835031.289141,83437,0.6493425369262695
583
+ 1750835154.701272,83537,0.6464117765426636
584
+ 1750835279.25683,83637,0.649427056312561
585
+ 1750835403.225004,83737,0.6485557556152344
586
+ 1750835527.815967,83837,0.649300217628479
587
+ 1750835651.535708,83937,0.647672176361084
588
+ 1750835785.81686,84037,0.6468572020530701
589
+ 1750836534.634183,84150,0.6491373181343079
590
+ 1750836656.4746299,84250,0.6519834399223328
591
+ 1750836779.568351,84350,0.6510815024375916
592
+ 1750836903.123183,84450,0.649770200252533
593
+ 1750837027.663439,84550,0.649480402469635
594
+ 1750837150.8689868,84650,0.6516231894493103
595
+ 1750837273.5473018,84750,0.6521262526512146
596
+ 1750837396.218327,84850,0.6507377624511719
597
+ 1750837518.651513,84950,0.6494099497795105
598
+ 1750837642.729192,85050,0.6519491672515869
599
+ 1750837767.173884,85150,0.64809250831604
600
+ 1750837890.435542,85250,0.6499093174934387
601
+ 1750838015.162685,85350,0.6489932537078857
602
+ 1750838141.841892,85450,0.6509203314781189
603
+ 1750838264.395839,85550,0.6487199664115906
604
+ 1750838386.4672089,85650,0.6507787704467773
605
+ 1750838508.305929,85750,0.6505226492881775
606
+ 1750838630.9132092,85850,0.6481819748878479
607
+ 1750838752.80761,85950,0.6477187275886536
608
+ 1750838876.729792,86050,0.6482365131378174
609
+ 1750839000.481405,86150,0.6497224569320679
610
+ 1750839124.189415,86250,0.6488774418830872
611
+ 1750839249.659301,86350,0.6483216881752014
612
+ 1750839380.5320761,86450,0.6500600576400757
613
+ 1750839511.1560152,86550,0.6495729088783264
614
+ 1750839632.920226,86650,0.6476078629493713
615
+ 1750839754.502992,86750,0.6494852900505066
616
+ 1750839876.169039,86850,0.647813081741333
617
+ 1750839997.6025548,86950,0.6475661993026733
618
+ 1750840119.2894459,87050,0.6494755148887634
619
+ 1750840241.411623,87150,0.6488339304924011
620
+ 1750840989.9151518,87263,0.6530276536941528
621
+ 1750841110.055352,87363,0.6512236595153809
622
+ 1750841231.6609762,87463,0.6514938473701477
623
+ 1750841356.174644,87563,0.6533076167106628
624
+ 1750841478.984334,87663,0.6507328152656555
625
+ 1750841601.728671,87763,0.6493033170700073
626
+ 1750841729.127606,87863,0.6501617431640625
627
+ 1750841854.381567,87963,0.6488339304924011
628
+ 1750841978.459552,88063,0.6512187719345093
629
+ 1750842099.504819,88163,0.6482947468757629
630
+ 1750842226.03354,88263,0.6501396894454956
631
+ 1750842348.654759,88363,0.6503596901893616
632
+ 1750842472.3478332,88463,0.6484742760658264
633
+ 1750842593.27832,88563,0.6495208144187927
634
+ 1750842713.752249,88663,0.6514754891395569
635
+ 1750842834.968949,88763,0.6502481698989868
636
+ 1750842960.018307,88863,0.6500110030174255
637
+ 1750843092.0033002,88963,0.6480465531349182
638
+ 1750843212.1028411,89063,0.64847731590271
639
+ 1750843331.764721,89163,0.6518651843070984
640
+ 1750843456.1175401,89263,0.6491274237632751
641
+ 1750843577.4408052,89363,0.6497352719306946
642
+ 1750843698.726388,89463,0.6468449831008911
643
+ 1750843820.6274261,89563,0.6505067348480225
644
+ 1750843942.463534,89663,0.65004962682724
645
+ 1750844064.361599,89763,0.6500349044799805
646
+ 1750844185.531637,89863,0.6491274237632751
647
+ 1750844307.055935,89963,0.6490735411643982
648
+ 1750844428.23875,90063,0.64860600233078
649
+ 1750844548.884526,90163,0.6485992670059204
650
+ 1750844669.689771,90263,0.6477720737457275
651
+ 1750845419.776615,90376,0.6516579985618591
652
+ 1750845539.936069,90476,0.6498026847839355
653
+ 1750845660.686485,90576,0.650747537612915
654
+ 1750845781.7870138,90676,0.6518860459327698
655
+ 1750845903.486742,90776,0.6498921513557434
656
+ 1750846024.118847,90876,0.6507340669631958
657
+ 1750846145.2169468,90976,0.6494007110595703
658
+ 1750846266.158889,91076,0.6519228219985962
659
+ 1750846388.121265,91176,0.6499393582344055
660
+ 1750846511.9636748,91276,0.6514620184898376
661
+ 1750846645.2285812,91376,0.6507598161697388
662
+ 1750846776.012331,91476,0.6510759592056274
663
+ 1750846901.397064,91576,0.6497622728347778
664
+ 1750847023.2603798,91676,0.6497886180877686
665
+ 1750847143.491034,91776,0.6475152969360352
666
+ 1750847264.5538418,91876,0.649131715297699
667
+ 1750847386.1762078,91976,0.6515067219734192
668
+ 1750847508.7911491,92076,0.6488627195358276
669
+ 1750847630.0856042,92176,0.6505784392356873
670
+ 1750847751.669802,92276,0.6482217907905579
671
+ 1750847871.691395,92376,0.6489706039428711
672
+ 1750847992.1358988,92476,0.6497169137001038
673
+ 1750848112.580328,92576,0.6478866338729858
674
+ 1750848234.56429,92676,0.649066150188446
675
+ 1750848355.870071,92776,0.6504510045051575
676
+ 1750848476.582013,92876,0.6467065215110779
677
+ 1750848607.900353,92976,0.6504276990890503
678
+ 1750848738.0173771,93076,0.6495931148529053
679
+ 1750848857.766874,93176,0.650150716304779
680
+ 1750848979.737535,93276,0.6482169032096863
681
+ 1750849099.877127,93376,0.6505275964736938
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750393244.648032,0,4.497038841247559
3
+ 1750395455.19265,1,3.903747320175171
4
+ 1750398368.11519,2,3.5344879627227783
5
+ 1750401224.5931342,3,3.3312270641326904
6
+ 1750404823.3122802,4,3.210529088973999
7
+ 1750408456.2591732,5,3.1416213512420654
8
+ 1750412752.2084851,6,3.0853068828582764
9
+ 1750416996.0416489,7,3.050424098968506
10
+ 1750421987.898771,8,3.011716842651367
11
+ 1750426988.913014,9,2.989940643310547
12
+ 1750431261.3392692,10,2.989818572998047
13
+ 1750435597.5351439,11,2.9662227630615234
14
+ 1750440150.407784,12,2.954162359237671
15
+ 1750444543.849094,13,2.9454574584960938
16
+ 1750448894.259244,14,2.938507318496704
17
+ 1750453403.6882539,15,2.9323973655700684
18
+ 1750457802.088578,16,2.928183078765869
19
+ 1750462587.858046,17,2.9238781929016113
20
+ 1750466837.808796,18,2.919602870941162
21
+ 1750471047.37008,19,2.916750431060791
22
+ 1750475286.553396,20,2.9133033752441406
23
+ 1750479461.077869,21,2.910808801651001
24
+ 1750483616.5842361,22,2.9080207347869873
25
+ 1750487760.517968,23,2.905743360519409
26
+ 1750491885.537745,24,2.903864860534668
27
+ 1750496002.133448,25,2.9018428325653076
28
+ 1750500111.205085,26,2.900128126144409
29
+ 1750504211.5523431,27,2.8988354206085205
30
+ 1750508312.8637319,28,2.8973073959350586
31
+ 1750512402.2931461,29,2.89581298828125
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750242880.7459168,0,4.869692325592041
3
+ 1750244191.138468,1,4.110507488250732
4
+ 1750246227.2990952,2,3.639007806777954
5
+ 1750248253.918893,3,3.4058213233947754
6
+ 1750251015.6637871,4,3.2411768436431885
7
+ 1750253768.7380931,5,3.1608352661132812
8
+ 1750257214.117406,6,3.0938303470611572
9
+ 1750260713.1403809,7,3.0553507804870605
10
+ 1750265084.791737,8,3.0033442974090576
11
+ 1750269591.634613,9,2.980733871459961
12
+ 1750273913.096587,10,2.9817233085632324
13
+ 1750278210.551297,11,2.9585886001586914
14
+ 1750282506.163321,12,2.9470789432525635
15
+ 1750286970.443168,13,2.9389889240264893
16
+ 1750291458.6969159,14,2.9322216510772705
17
+ 1750295931.3745222,15,2.9269731044769287
18
+ 1750300503.985491,16,2.9222328662872314
19
+ 1750304961.6577501,17,2.9180169105529785
20
+ 1750309383.141315,18,2.9146981239318848
21
+ 1750313785.064812,19,2.9115850925445557
22
+ 1750318127.0641851,20,2.908963441848755
23
+ 1750322430.64604,21,2.906283378601074
24
+ 1750326698.7906518,22,2.904263734817505
25
+ 1750330951.355423,23,2.9020612239837646
26
+ 1750335187.655484,24,2.90006422996521
27
+ 1750339399.5665002,25,2.8983960151672363
28
+ 1750343602.1534889,26,2.8967831134796143
29
+ 1750381999.790324,27,2.910587787628174
30
+ 1750386648.843059,28,2.9034934043884277
31
+ 1750391063.2994308,29,2.896620035171509
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_curriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749978550.906435,0,4.503419399261475
3
+ 1749982198.575948,1,3.7155017852783203
4
+ 1749986570.5654368,2,3.421501636505127
5
+ 1749990918.852331,3,3.2091517448425293
6
+ 1749995961.55019,4,3.133439540863037
7
+ 1750001056.034247,5,3.056046724319458
8
+ 1750006899.604149,6,3.0407228469848633
9
+ 1750012834.238941,7,3.001800298690796
10
+ 1750019498.535541,8,3.0090649127960205
11
+ 1750026135.227586,9,2.9857029914855957
12
+ 1750030424.814303,10,2.9864180088043213
13
+ 1750034741.041949,11,2.9633243083953857
14
+ 1750039109.9737952,12,2.951890468597412
15
+ 1750043848.344384,13,2.943676710128784
16
+ 1750048701.546577,14,2.9368529319763184
17
+ 1750053246.211833,15,2.9313669204711914
18
+ 1750057533.257866,16,2.9266626834869385
19
+ 1750061807.049831,17,2.9223711490631104
20
+ 1750066096.786038,18,2.91867995262146
21
+ 1750070333.225527,19,2.9154393672943115
22
+ 1750074521.0456681,20,2.912705659866333
23
+ 1750078718.076233,21,2.9102835655212402
24
+ 1750082899.140814,22,2.9077396392822266
25
+ 1750087512.151513,23,2.905846357345581
26
+ 1750091828.878402,24,2.903412103652954
27
+ 1750096276.2888389,25,2.9015419483184814
28
+ 1750100481.644725,26,2.9000253677368164
29
+ 1750104739.717453,27,2.8983654975891113
30
+ 1750109186.5023448,28,2.8976855278015137
31
+ 1750113609.3978848,29,2.895890712738037
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749863283.3324292,0,4.141076564788818
3
+ 1749864592.20433,1,3.486952543258667
4
+ 1749866617.404851,2,3.261892080307007
5
+ 1749868684.412531,3,3.062371253967285
6
+ 1749871473.75741,4,3.018030881881714
7
+ 1749875060.477828,5,2.9788944721221924
8
+ 1749878531.724277,6,2.972249746322632
9
+ 1749881971.612274,7,2.918388843536377
10
+ 1749886106.593578,8,3.02687931060791
11
+ 1749890253.398643,9,2.9919655323028564
12
+ 1749894408.7118459,10,2.9894230365753174
13
+ 1749898526.6077719,11,2.964907169342041
14
+ 1749902645.408054,12,2.952655792236328
15
+ 1749906756.7643032,13,2.943563938140869
16
+ 1749910871.86694,14,2.9363276958465576
17
+ 1749915142.938997,15,2.9653398990631104
18
+ 1749919236.457516,16,2.950559616088867
19
+ 1749923334.0531998,17,2.9297029972076416
20
+ 1749927446.811945,18,2.9225661754608154
21
+ 1749931565.0115268,19,2.9181556701660156
22
+ 1749935700.2720928,20,2.914483070373535
23
+ 1749940017.87676,21,2.9113500118255615
24
+ 1749944700.7074828,22,2.9086496829986572
25
+ 1749949409.596221,23,2.907172203063965
26
+ 1749953801.5466728,24,2.9044301509857178
27
+ 1749958169.537259,25,2.9020256996154785
28
+ 1749962421.037086,26,2.900437355041504
29
+ 1749966597.282641,27,2.8991353511810303
30
+ 1749970740.188172,28,2.8973348140716553
31
+ 1749974864.4389849,29,2.8956847190856934
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_hybrid-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750632371.14848,0,4.48432731628418
3
+ 1750634606.382995,1,3.7629923820495605
4
+ 1750636890.23707,2,3.517442226409912
5
+ 1750639149.8933601,3,3.3807172775268555
6
+ 1750641343.348047,4,3.3065621852874756
7
+ 1750643529.9231098,5,3.2629871368408203
8
+ 1750645794.686304,6,3.239704132080078
9
+ 1750648101.2390442,7,3.229910373687744
10
+ 1750650363.3526568,8,3.241615056991577
11
+ 1750652619.7843251,9,3.190913200378418
12
+ 1750656967.762392,10,3.1016592979431152
13
+ 1750661271.727958,11,3.0410385131835938
14
+ 1750665520.585057,12,3.009328603744507
15
+ 1750669774.234454,13,2.9884204864501953
16
+ 1750673984.9646752,14,2.9735829830169678
17
+ 1750678184.292531,15,2.961824417114258
18
+ 1750682381.31706,16,2.95274019241333
19
+ 1750686553.589227,17,2.9454822540283203
20
+ 1750690784.6460009,18,2.9388856887817383
21
+ 1750695602.3815339,19,2.9336090087890625
22
+ 1750701233.219311,20,2.9288313388824463
23
+ 1750705842.984583,21,2.925161361694336
24
+ 1750710360.7942688,22,2.921215057373047
25
+ 1750716082.206906,23,2.9179205894470215
26
+ 1750720587.083864,24,2.91546368598938
27
+ 1750725037.9899788,25,2.9129858016967773
28
+ 1750729396.893383,26,2.9098708629608154
29
+ 1750733776.534288,27,2.9085488319396973
30
+ 1750738221.1560059,28,2.905959129333496
31
+ 1750742708.6763039,29,2.9041709899902344
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_hybrid_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750513695.726909,0,4.168796062469482
3
+ 1750514985.9507,1,3.5498626232147217
4
+ 1750516298.708396,2,3.385937213897705
5
+ 1750517591.810358,3,3.2866876125335693
6
+ 1750518885.955939,4,3.189992904663086
7
+ 1750520180.033519,5,3.143275499343872
8
+ 1750521474.176068,6,3.1730546951293945
9
+ 1750522767.9193249,7,3.1737563610076904
10
+ 1750542035.493311,8,3.481318235397339
11
+ 1750543428.10198,9,3.4353036880493164
12
+ 1750547793.590507,10,3.1064982414245605
13
+ 1750552335.730495,11,3.03554105758667
14
+ 1750556730.614615,12,3.002964973449707
15
+ 1750561135.750268,13,2.982447385787964
16
+ 1750565414.917825,14,2.9676835536956787
17
+ 1750569689.9089541,15,2.956284284591675
18
+ 1750573916.3536901,16,2.9475157260894775
19
+ 1750578123.218335,17,2.9403586387634277
20
+ 1750582314.4729521,18,2.934619426727295
21
+ 1750586526.732241,19,2.929375171661377
22
+ 1750590694.093346,20,2.9248242378234863
23
+ 1750594847.352438,21,2.9210140705108643
24
+ 1750599012.9660952,22,2.9179041385650635
25
+ 1750603153.176775,23,2.914592981338501
26
+ 1750607416.40974,24,2.9117836952209473
27
+ 1750611744.08181,25,2.9093730449676514
28
+ 1750616158.759497,26,2.906916856765747
29
+ 1750620626.200702,27,2.9057676792144775
30
+ 1750625418.3782148,28,2.9032325744628906
31
+ 1750630090.167115,29,2.9016776084899902
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_noop_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750117867.7551942,0,3.7190332412719727
3
+ 1750122118.772188,1,3.18149995803833
4
+ 1750126451.403994,2,3.078232765197754
5
+ 1750130680.443696,3,3.0302648544311523
6
+ 1750134907.800519,4,3.001476764678955
7
+ 1750139213.399209,5,2.9822638034820557
8
+ 1750143404.626784,6,2.9680933952331543
9
+ 1750147564.933099,7,2.9573044776916504
10
+ 1750151715.1421719,8,2.948808431625366
11
+ 1750155848.0789561,9,2.941603422164917
12
+ 1750159971.2616692,10,2.952218532562256
13
+ 1750164079.575281,11,2.935922145843506
14
+ 1750168191.7420218,12,2.928865671157837
15
+ 1750172297.5916102,13,2.924445629119873
16
+ 1750176453.961837,14,2.920473337173462
17
+ 1750180850.016053,15,2.916942834854126
18
+ 1750185154.177082,16,2.914234161376953
19
+ 1750189391.2774699,17,2.912083387374878
20
+ 1750193791.2887151,18,2.9088315963745117
21
+ 1750198091.669888,19,2.906681776046753
22
+ 1750202651.749294,20,2.904893159866333
23
+ 1750207163.865692,21,2.9029510021209717
24
+ 1750211713.375293,22,2.9017179012298584
25
+ 1750216052.8991191,23,2.8993325233459473
26
+ 1750220428.1077309,24,2.898499011993408
27
+ 1750224709.561266,25,2.8970789909362793
28
+ 1750228955.137394,26,2.8957550525665283
29
+ 1750233176.7532659,27,2.8942177295684814
30
+ 1750237381.096981,28,2.893112897872925
31
+ 1750241562.5282292,29,2.891904592514038
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_sequential-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750851784.794701,0,4.511007785797119
3
+ 1750853835.8761,1,3.705850601196289
4
+ 1750855908.694172,2,3.5212864875793457
5
+ 1750857984.476949,3,3.338186264038086
6
+ 1750860045.676554,4,3.3243212699890137
7
+ 1750862121.035478,5,3.2101285457611084
8
+ 1750864200.552823,6,3.256943941116333
9
+ 1750866328.966167,7,3.169743299484253
10
+ 1750868555.664671,8,3.2560107707977295
11
+ 1750870840.9499478,9,3.179680109024048
12
+ 1750876091.3780549,10,3.0882112979888916
13
+ 1750880660.639144,11,3.0279011726379395
14
+ 1750885227.6555479,12,2.9967029094696045
15
+ 1750889799.821455,13,2.9763381481170654
16
+ 1750894456.987148,14,2.9617059230804443
17
+ 1750899082.675252,15,2.9503867626190186
18
+ 1750903736.3783329,16,2.941533327102661
19
+ 1750908342.7633312,17,2.9340784549713135
20
+ 1750913044.888563,18,2.927919387817383
21
+ 1750917542.481531,19,2.9227824211120605
22
+ 1750922072.556569,20,2.918488025665283
23
+ 1750926571.310741,21,2.9141738414764404
24
+ 1750931079.8687649,22,2.911165237426758
25
+ 1750935536.838163,23,2.9075887203216553
26
+ 1750939971.365792,24,2.904879093170166
27
+ 1750944482.602001,25,2.902339458465576
28
+ 1750948934.391331,26,2.90018367767334
29
+ 1750953472.56209,27,2.8982222080230713
30
+ 1750958261.6061661,28,2.8960745334625244
31
+ 1750962989.888033,29,2.8941383361816406
archive-misc/runs_jsons/loss_epoch/!code-decoder-v31-mega-licensed-1_sequential_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750744114.997982,0,4.144684791564941
3
+ 1750745515.7019641,1,3.491670608520508
4
+ 1750746911.6984901,2,3.4095680713653564
5
+ 1750748303.8670888,3,3.2133724689483643
6
+ 1750749682.481517,4,3.227614641189575
7
+ 1750751071.4764748,5,3.0969951152801514
8
+ 1750752447.519634,6,3.219228982925415
9
+ 1750753816.043037,7,3.104700803756714
10
+ 1750755208.793823,8,3.5905277729034424
11
+ 1750756580.028522,9,3.432602882385254
12
+ 1750760976.771947,10,3.0987296104431152
13
+ 1750765539.2077901,11,3.03275203704834
14
+ 1750770075.641336,12,3.001636028289795
15
+ 1750774577.088722,13,2.9812886714935303
16
+ 1750779086.689203,14,2.966902732849121
17
+ 1750783996.870292,15,2.956063985824585
18
+ 1750789102.207841,16,2.947303056716919
19
+ 1750794584.888244,17,2.940584659576416
20
+ 1750799274.569878,18,2.93465256690979
21
+ 1750803944.550782,19,2.9295992851257324
22
+ 1750808795.973741,20,2.925201892852783
23
+ 1750813476.9015622,21,2.921534299850464
24
+ 1750818113.2744079,22,2.9179158210754395
25
+ 1750822645.292929,23,2.914977550506592
26
+ 1750827242.8207428,24,2.9125137329101562
27
+ 1750831878.2705438,25,2.9098050594329834
28
+ 1750836412.47137,26,2.9085917472839355
29
+ 1750840869.555746,27,2.906043291091919
30
+ 1750845298.118175,28,2.904139518737793
31
+ 1750849718.6242921,29,2.903306722640991
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750393244.648103,0,48.165138244628906
3
+ 1750395455.192726,1,33.44196701049805
4
+ 1750398368.115252,2,25.141826629638672
5
+ 1750401224.593175,3,22.759912490844727
6
+ 1750404823.31231,4,20.737628936767578
7
+ 1750408456.259201,5,19.79881477355957
8
+ 1750412752.2085462,6,19.20827865600586
9
+ 1750416996.041706,7,18.66091537475586
10
+ 1750421987.898804,8,18.275800704956055
11
+ 1750426988.9130409,9,18.060943603515625
12
+ 1750431261.3393211,10,17.835844039916992
13
+ 1750435597.5352042,11,17.654146194458008
14
+ 1750440150.407841,12,17.513704299926758
15
+ 1750444543.849122,13,17.49494171142578
16
+ 1750448894.259268,14,17.388378143310547
17
+ 1750453403.688282,15,17.3646240234375
18
+ 1750457802.088604,16,17.25867462158203
19
+ 1750462587.8580768,17,17.154783248901367
20
+ 1750466837.808824,18,17.124469757080078
21
+ 1750471047.37011,19,17.113733291625977
22
+ 1750475286.553422,20,17.124876022338867
23
+ 1750479461.0779,21,17.068208694458008
24
+ 1750483616.584269,22,17.040496826171875
25
+ 1750487760.517992,23,17.030763626098633
26
+ 1750491885.537775,24,16.933334350585938
27
+ 1750496002.133483,25,16.948078155517578
28
+ 1750500111.2051148,26,16.96770668029785
29
+ 1750504211.552373,27,16.927907943725586
30
+ 1750508312.8637671,28,16.89035987854004
31
+ 1750512402.293206,29,16.9533748626709
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750242880.745945,0,53.867008209228516
3
+ 1750244191.138497,1,37.6105842590332
4
+ 1750246227.299125,2,26.738567352294922
5
+ 1750248253.918934,3,23.37044906616211
6
+ 1750251015.6638331,4,20.932710647583008
7
+ 1750253768.7381241,5,20.084152221679688
8
+ 1750257214.1177301,6,19.152809143066406
9
+ 1750260713.140447,7,18.58722686767578
10
+ 1750265084.791805,8,18.09245491027832
11
+ 1750269591.634642,9,17.810033798217773
12
+ 1750273913.0966349,10,17.79850959777832
13
+ 1750278210.55135,11,17.607419967651367
14
+ 1750282506.1633558,12,17.50511932373047
15
+ 1750286970.443201,13,17.351274490356445
16
+ 1750291458.696942,14,17.263975143432617
17
+ 1750295931.374552,15,17.2078857421875
18
+ 1750300503.9855201,16,17.132694244384766
19
+ 1750304961.65779,17,17.121416091918945
20
+ 1750309383.141357,18,17.135910034179688
21
+ 1750313785.064841,19,17.052095413208008
22
+ 1750318127.064212,20,17.08173370361328
23
+ 1750322430.6460679,21,17.006471633911133
24
+ 1750326698.7906811,22,17.02798843383789
25
+ 1750330951.355455,23,16.987016677856445
26
+ 1750335187.655519,24,16.947071075439453
27
+ 1750339399.566528,25,17.024276733398438
28
+ 1750343602.1535301,26,16.952640533447266
29
+ 1750381999.7903502,27,17.084932327270508
30
+ 1750386648.8430898,28,16.945514678955078
31
+ 1750391063.299486,29,16.956756591796875
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_curriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749978550.906464,0,48.71048355102539
3
+ 1749982198.575983,1,34.35873794555664
4
+ 1749986570.565465,2,25.615686416625977
5
+ 1749990918.8523571,3,22.831928253173828
6
+ 1749995961.5502348,4,20.793249130249023
7
+ 1750001056.034306,5,19.962661743164062
8
+ 1750006899.604214,6,19.140541076660156
9
+ 1750012834.2390242,7,18.668323516845703
10
+ 1750019498.535569,8,18.27408790588379
11
+ 1750026135.227616,9,17.97447967529297
12
+ 1750030424.814328,10,17.869421005249023
13
+ 1750034741.0419781,11,17.722238540649414
14
+ 1750039109.973821,12,17.575319290161133
15
+ 1750043848.344415,13,17.574447631835938
16
+ 1750048701.5466409,14,17.354393005371094
17
+ 1750053246.211863,15,17.31399154663086
18
+ 1750057533.257897,16,17.21194839477539
19
+ 1750061807.049879,17,17.228086471557617
20
+ 1750066096.786062,18,17.149364471435547
21
+ 1750070333.22556,19,17.173809051513672
22
+ 1750074521.045703,20,17.086381912231445
23
+ 1750078718.0762591,21,17.187509536743164
24
+ 1750082899.14084,22,17.079730987548828
25
+ 1750087512.1517591,23,17.033306121826172
26
+ 1750091828.8784692,24,16.973848342895508
27
+ 1750096276.288867,25,17.029022216796875
28
+ 1750100481.644755,26,16.918643951416016
29
+ 1750104739.71748,27,16.91028594970703
30
+ 1750109186.502416,28,16.98614501953125
31
+ 1750113609.3979561,29,16.994081497192383
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_curriculum-noloss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1749863283.332475,0,55.554115295410156
3
+ 1749864592.20436,1,38.6469612121582
4
+ 1749866617.4049091,2,28.14055824279785
5
+ 1749868684.4125981,3,25.03399085998535
6
+ 1749871473.757462,4,22.157758712768555
7
+ 1749875060.4778938,5,21.59893035888672
8
+ 1749878531.7243142,6,20.037084579467773
9
+ 1749881971.612328,7,19.365510940551758
10
+ 1749886106.593612,8,18.370973587036133
11
+ 1749890253.398698,9,18.02777862548828
12
+ 1749894408.711875,10,17.842618942260742
13
+ 1749898526.6078122,11,17.59517478942871
14
+ 1749902645.4080808,12,17.457857131958008
15
+ 1749906756.764334,13,17.35848617553711
16
+ 1749910871.8669991,14,17.400739669799805
17
+ 1749915142.939046,15,17.950729370117188
18
+ 1749919236.457552,16,17.27395248413086
19
+ 1749923334.053243,17,17.22505760192871
20
+ 1749927446.811975,18,17.116395950317383
21
+ 1749931565.0115561,19,17.109756469726562
22
+ 1749935700.272127,20,17.01395034790039
23
+ 1749940017.8768482,21,16.97368812561035
24
+ 1749944700.7075331,22,16.974573135375977
25
+ 1749949409.596299,23,16.941125869750977
26
+ 1749953801.546734,24,17.035322189331055
27
+ 1749958169.537314,25,16.969554901123047
28
+ 1749962421.037111,26,16.842958450317383
29
+ 1749966597.282666,27,16.842815399169922
30
+ 1749970740.1882,28,16.859209060668945
31
+ 1749974864.439013,29,16.862390518188477
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_hybrid-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750632371.148538,0,49.487388610839844
3
+ 1750634606.383071,1,34.278865814208984
4
+ 1750636890.237139,2,27.99624252319336
5
+ 1750639149.893426,3,25.216676712036133
6
+ 1750641343.3481212,4,23.53975486755371
7
+ 1750643529.923166,5,22.532695770263672
8
+ 1750645794.686364,6,21.782365798950195
9
+ 1750648101.239102,7,21.24361228942871
10
+ 1750650363.352725,8,20.716150283813477
11
+ 1750652619.7844238,9,20.394941329956055
12
+ 1750656967.762419,10,19.212770462036133
13
+ 1750661271.727992,11,18.654909133911133
14
+ 1750665520.5851111,12,18.28499984741211
15
+ 1750669774.2345128,13,17.99468421936035
16
+ 1750673984.9647071,14,17.756744384765625
17
+ 1750678184.292585,15,17.66889762878418
18
+ 1750682381.317089,16,17.62046241760254
19
+ 1750686553.589252,17,17.473724365234375
20
+ 1750690784.6460302,18,17.390039443969727
21
+ 1750695602.3816,19,17.322021484375
22
+ 1750701233.21937,20,17.29917335510254
23
+ 1750705842.984617,21,17.225284576416016
24
+ 1750710360.794543,22,17.184450149536133
25
+ 1750716082.20699,23,17.170568466186523
26
+ 1750720587.083894,24,17.155235290527344
27
+ 1750725037.990058,25,17.128530502319336
28
+ 1750729396.893443,26,17.081998825073242
29
+ 1750733776.534314,27,17.105083465576172
30
+ 1750738221.15604,28,16.993898391723633
31
+ 1750742708.676333,29,17.012083053588867
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_hybrid_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750513695.72694,0,55.51445007324219
3
+ 1750514985.950729,1,39.2695198059082
4
+ 1750516298.708423,2,31.212324142456055
5
+ 1750517591.810386,3,27.47551155090332
6
+ 1750518885.95597,4,25.029054641723633
7
+ 1750520180.033547,5,23.71649932861328
8
+ 1750521474.176096,6,22.651994705200195
9
+ 1750522767.919355,7,22.043315887451172
10
+ 1750542035.493428,8,22.119585037231445
11
+ 1750543428.102027,9,21.723588943481445
12
+ 1750547793.590572,10,19.168630599975586
13
+ 1750552335.730549,11,18.56935691833496
14
+ 1750556730.614645,12,18.131643295288086
15
+ 1750561135.750296,13,17.852975845336914
16
+ 1750565414.917851,14,17.68834114074707
17
+ 1750569689.908984,15,17.585899353027344
18
+ 1750573916.35372,16,17.48543357849121
19
+ 1750578123.218365,17,17.39935874938965
20
+ 1750582314.472981,18,17.333566665649414
21
+ 1750586526.732269,19,17.398630142211914
22
+ 1750590694.093396,20,17.14397430419922
23
+ 1750594847.352469,21,17.201200485229492
24
+ 1750599012.966125,22,17.124305725097656
25
+ 1750603153.176806,23,17.060588836669922
26
+ 1750607416.4097679,24,17.077545166015625
27
+ 1750611744.081841,25,16.95123291015625
28
+ 1750616158.7595599,26,17.02434730529785
29
+ 1750620626.200762,27,16.964458465576172
30
+ 1750625418.378272,28,16.929859161376953
31
+ 1750630090.167186,29,16.960468292236328
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_noop_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750117867.755234,0,23.239450454711914
3
+ 1750122118.772226,1,20.12681770324707
4
+ 1750126451.404056,2,18.946428298950195
5
+ 1750130680.443724,3,18.481264114379883
6
+ 1750134907.800551,4,18.190732955932617
7
+ 1750139213.39924,5,17.848926544189453
8
+ 1750143404.62681,6,17.755733489990234
9
+ 1750147564.933135,7,17.527202606201172
10
+ 1750151715.142207,8,17.498178482055664
11
+ 1750155848.0789828,9,17.42560386657715
12
+ 1750159971.261696,10,17.40009117126465
13
+ 1750164079.57537,11,17.289079666137695
14
+ 1750168191.742054,12,17.23641014099121
15
+ 1750172297.59164,13,17.132404327392578
16
+ 1750176453.9619021,14,17.157405853271484
17
+ 1750180850.0160792,15,17.11432456970215
18
+ 1750185154.1771278,16,17.09980583190918
19
+ 1750189391.2775,17,17.059040069580078
20
+ 1750193791.288744,18,16.979639053344727
21
+ 1750198091.669916,19,16.972339630126953
22
+ 1750202651.749393,20,16.979339599609375
23
+ 1750207163.865746,21,16.89175796508789
24
+ 1750211713.375345,22,16.97710609436035
25
+ 1750216052.899157,23,16.890480041503906
26
+ 1750220428.1077561,24,16.858570098876953
27
+ 1750224709.5613,25,16.90614891052246
28
+ 1750228955.137419,26,16.897302627563477
29
+ 1750233176.753309,27,16.809844970703125
30
+ 1750237381.097017,28,16.8604679107666
31
+ 1750241562.528254,29,16.772478103637695
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_sequential-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750851784.794734,0,47.883819580078125
3
+ 1750853835.876152,1,34.170345306396484
4
+ 1750855908.6942,2,27.97521209716797
5
+ 1750857984.4770079,3,25.124433517456055
6
+ 1750860045.676613,4,23.297279357910156
7
+ 1750862121.035541,5,22.294965744018555
8
+ 1750864200.552898,6,21.455820083618164
9
+ 1750866328.966235,7,21.07961082458496
10
+ 1750868555.6648161,8,20.36427116394043
11
+ 1750870840.952002,9,20.15283966064453
12
+ 1750876091.378129,10,19.164051055908203
13
+ 1750880660.639204,11,18.36109733581543
14
+ 1750885227.655615,12,18.093502044677734
15
+ 1750889799.8215308,13,17.82415199279785
16
+ 1750894456.987202,14,17.60459327697754
17
+ 1750899082.675283,15,17.409502029418945
18
+ 1750903736.3783958,16,17.403959274291992
19
+ 1750908342.7635908,17,17.337602615356445
20
+ 1750913044.888625,18,17.170236587524414
21
+ 1750917542.481596,19,17.201303482055664
22
+ 1750922072.5566359,20,17.051054000854492
23
+ 1750926571.3109682,21,17.04094886779785
24
+ 1750931079.868824,22,17.091703414916992
25
+ 1750935536.840482,23,16.971879959106445
26
+ 1750939971.36584,24,16.901966094970703
27
+ 1750944482.602058,25,17.002233505249023
28
+ 1750948934.391398,26,16.905183792114258
29
+ 1750953472.564333,27,16.886463165283203
30
+ 1750958261.6062322,28,16.828359603881836
31
+ 1750962989.888096,29,16.814006805419922
archive-misc/runs_jsons/perplexityval_epoch/!code-decoder-v31-mega-licensed-1_sequential_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750744114.998019,0,55.897640228271484
3
+ 1750745515.701992,1,39.123687744140625
4
+ 1750746911.698519,2,31.01366424560547
5
+ 1750748303.867115,3,27.91205596923828
6
+ 1750749682.481547,4,25.122596740722656
7
+ 1750751071.476505,5,24.014915466308594
8
+ 1750752447.519661,6,22.796173095703125
9
+ 1750753816.043069,7,22.192251205444336
10
+ 1750755208.793853,8,21.739532470703125
11
+ 1750756580.028548,9,21.410900115966797
12
+ 1750760976.772001,10,19.162677764892578
13
+ 1750765539.2078211,11,18.53352928161621
14
+ 1750770075.641408,12,18.13855743408203
15
+ 1750774577.088748,13,17.958200454711914
16
+ 1750779086.6892831,14,17.704954147338867
17
+ 1750783996.8703659,15,17.57247543334961
18
+ 1750789102.2079082,16,17.522357940673828
19
+ 1750794584.888319,17,17.44750213623047
20
+ 1750799274.570146,18,17.346946716308594
21
+ 1750803944.5508559,19,17.277511596679688
22
+ 1750808795.973829,20,17.262670516967773
23
+ 1750813476.90166,21,17.25432586669922
24
+ 1750818113.274487,22,17.158058166503906
25
+ 1750822645.295224,23,17.09587860107422
26
+ 1750827242.820804,24,17.148212432861328
27
+ 1750831878.270625,25,17.039690017700195
28
+ 1750836412.471421,26,16.9765625
29
+ 1750840869.5558138,27,16.93719482421875
30
+ 1750845298.1182668,28,16.99267578125
31
+ 1750849718.624556,29,16.954301834106445
archive-misc/runs_jsons/topkacc_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum-loss_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750393244.648108,0,0.6343427300453186
3
+ 1750395455.192731,1,0.7130727171897888
4
+ 1750398368.115256,2,0.7620786428451538
5
+ 1750401224.593179,3,0.7874769568443298
6
+ 1750404823.312315,4,0.8027870059013367
7
+ 1750408456.2592058,5,0.8109784722328186
8
+ 1750412752.20855,6,0.8182910084724426
9
+ 1750416996.041711,7,0.822501540184021
10
+ 1750421987.8988092,8,0.8276702761650085
11
+ 1750426988.913045,9,0.83023601770401
12
+ 1750431261.339326,10,0.8304120898246765
13
+ 1750435597.535208,11,0.8330893516540527
14
+ 1750440150.407846,12,0.8346453905105591
15
+ 1750444543.8491259,13,0.8356961011886597
16
+ 1750448894.2592719,14,0.8365774750709534
17
+ 1750453403.688287,15,0.8373432755470276
18
+ 1750457802.088609,16,0.8378559350967407
19
+ 1750462587.858082,17,0.8383844494819641
20
+ 1750466837.8088279,18,0.8389201164245605
21
+ 1750471047.370114,19,0.8392801880836487
22
+ 1750475286.553427,20,0.8397110104560852
23
+ 1750479461.077905,21,0.8400309085845947
24
+ 1750483616.5842738,22,0.8404346108436584
25
+ 1750487760.517996,23,0.8406738638877869
26
+ 1750491885.5377789,24,0.8409435749053955
27
+ 1750496002.1334882,25,0.8411745429039001
28
+ 1750500111.20512,26,0.8413821458816528
29
+ 1750504211.5523782,27,0.8415029644966125
30
+ 1750508312.863772,28,0.8417081236839294
31
+ 1750512402.29321,29,0.8419042229652405
archive-misc/runs_jsons/topkacc_epoch/!code-decoder-v31-mega-licensed-1_anticurriculum_tensorboard.csv ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Wall time,Step,Value
2
+ 1750242880.745949,0,0.5624285340309143
3
+ 1750244191.138502,1,0.6705055832862854
4
+ 1750246227.2991302,2,0.7446311116218567
5
+ 1750248253.9189382,3,0.7735044956207275
6
+ 1750251015.663837,4,0.7975758910179138
7
+ 1750253768.738128,5,0.807144045829773
8
+ 1750257214.117735,6,0.81730055809021
9
+ 1750260713.140451,7,0.8217986822128296
10
+ 1750265084.791811,8,0.8293147683143616
11
+ 1750269591.6346471,9,0.8318940997123718
12
+ 1750273913.096639,10,0.831876814365387
13
+ 1750278210.5513558,11,0.8344914317131042
14
+ 1750282506.16336,12,0.8358903527259827
15
+ 1750286970.4432058,13,0.8368845582008362
16
+ 1750291458.6969469,14,0.8377507328987122
17
+ 1750295931.374558,15,0.8383060097694397
18
+ 1750300503.985525,16,0.8389614224433899
19
+ 1750304961.6577952,17,0.8394600749015808
20
+ 1750309383.141361,18,0.8399106860160828
21
+ 1750313785.064845,19,0.8403005003929138
22
+ 1750318127.0642161,20,0.8405484557151794
23
+ 1750322430.646074,21,0.84091717004776
24
+ 1750326698.790686,22,0.8411679267883301
25
+ 1750330951.355459,23,0.8414445519447327
26
+ 1750335187.6555252,24,0.8416553139686584
27
+ 1750339399.5665321,25,0.8419271111488342
28
+ 1750343602.153534,26,0.8420628309249878
29
+ 1750381999.790354,27,0.8403863310813904
30
+ 1750386648.843095,28,0.8411089181900024
31
+ 1750391063.299506,29,0.8420304656028748