Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Samoed's picture
Add dataset card
c521567 verified
metadata
annotations_creators:
  - expert-annotated
language:
  - eng
license: mit
multilinguality: monolingual
source_datasets:
  - embedding-benchmark/FinanceBench
task_categories:
  - text-retrieval
  - multiple-choice-qa
  - question-answering
task_ids:
  - multiple-choice-qa
  - question-answering
dataset_info:
  - config_name: corpus
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
      - name: title
        dtype: string
    splits:
      - name: test
        num_bytes: 251783
        num_examples: 145
    download_size: 118625
    dataset_size: 251783
  - config_name: qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int64
    splits:
      - name: test
        num_bytes: 4500
        num_examples: 150
    download_size: 3351
    dataset_size: 4500
  - config_name: queries
    features:
      - name: id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: test
        num_bytes: 26114
        num_examples: 150
    download_size: 12751
    dataset_size: 26114
configs:
  - config_name: corpus
    data_files:
      - split: test
        path: corpus/test-*
  - config_name: qrels
    data_files:
      - split: test
        path: qrels/test-*
  - config_name: queries
    data_files:
      - split: test
        path: queries/test-*
tags:
  - mteb
  - text

FinanceBenchRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

A financial retrieval task based on FinanceBench dataset containing financial questions and answers. Each query is a financial question (e.g., 'What was the total revenue in Q3 2023?'), and the corpus contains financial document excerpts and annual reports. The task is to retrieve the correct financial information that answers the question. Queries are financial questions while the corpus contains relevant excerpts from financial documents, earnings reports, and SEC filings with detailed financial data and metrics.

Task category t2t
Domains Financial
Reference https://huggingface.co/datasets/embedding-benchmark/FinanceBench

Source datasets:

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_task("FinanceBenchRetrieval")
evaluator = mteb.MTEB([task])

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repository.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@article{islam2023financebench,
  author = {Islam, Pranab and Kannappan, Anand and Kiela, Douwe and Fergus, Rob and Ott, Myle and Wang, Sam and Garimella, Aparna and Garcia, Nino},
  journal = {arXiv preprint arXiv:2311.11944},
  title = {FinanceBench: A New Benchmark for Financial Question Answering},
  year = {2023},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("FinanceBenchRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 295,
        "number_of_characters": 267323,
        "documents_text_statistics": {
            "total_text_length": 243159,
            "min_text_length": 67,
            "average_text_length": 1676.9586206896552,
            "max_text_length": 12172,
            "unique_texts": 145
        },
        "documents_image_statistics": null,
        "queries_text_statistics": {
            "total_text_length": 24164,
            "min_text_length": 44,
            "average_text_length": 161.09333333333333,
            "max_text_length": 592,
            "unique_texts": 150
        },
        "queries_image_statistics": null,
        "relevant_docs_statistics": {
            "num_relevant_docs": 150,
            "min_relevant_docs_per_query": 1,
            "average_relevant_docs_per_query": 1.0,
            "max_relevant_docs_per_query": 1,
            "unique_relevant_docs": 145
        },
        "top_ranked_statistics": null
    }
}

This dataset card was automatically generated using MTEB