hashed_data / README.md
humair025's picture
Update README.md
b1a23d7 verified
---
license: cc-by-4.0
task_categories:
- text-generation
- text-to-speech
- automatic-speech-recognition
tags:
- Urdu
language:
- ur
pretty_name: 'Munch Hashed Index'
---
# Munch Hashed Index - Lightweight Audio Reference Dataset
[![Original Dataset](https://img.shields.io/badge/πŸ€—%20Original-Munch-blue)](https://huggingface.co/datasets/humair025/Munch)
[![Hashed Index](https://img.shields.io/badge/πŸ€—%20Index-hashed__data-green)](https://huggingface.co/datasets/humair025/hashed_data)
[![Size](https://img.shields.io/badge/Size-~1GB-brightgreen)]()
[![Original Size](https://img.shields.io/badge/Original-1.27TB-orange)]()
[![Space Saved](https://img.shields.io/badge/Space%20Saved-99.92%25-success)]()
## πŸ“– Overview
**Munch Hashed Index** is a lightweight reference dataset that provides SHA-256 hashes for all audio files in the [Munch Urdu TTS Dataset](https://huggingface.co/datasets/humair025/Munch). Instead of storing 1.27 TB of raw audio, this index stores only metadata and cryptographic hashes, enabling:
- βœ… **Fast duplicate detection** across 4.17 million audio samples
- βœ… **Efficient dataset exploration** without downloading terabytes
- βœ… **Quick metadata queries** (voice distribution, text stats, etc.)
- βœ… **Selective audio retrieval** - download only what you need
- βœ… **Storage efficiency** - 99.92% space reduction (1.27 TB β†’ ~1 GB)
### πŸ”— Related Datasets
- **Original Dataset**: [humair025/Munch](https://huggingface.co/datasets/humair025/Munch) - Full audio dataset (1.27 TB)
- **This Index**: [humair025/hashed_data](https://huggingface.co/datasets/humair025/hashed_data) - Hashed reference (~1 GB)
- **Munch-1 (v2)**: [humair025/munch-1](https://huggingface.co/datasets/humair025/munch-1) - Newer version (3.28 TB, 3.86M samples)
- **Munch-1 Index**: [humair025/hashed_data_munch_1](https://huggingface.co/datasets/humair025/hashed_data_munch_1) - Index for v2
---
## 🎯 What Problem Does This Solve?
### The Challenge
The original [Munch dataset](https://huggingface.co/datasets/humair025/Munch) contains:
- πŸ“Š **4,167,500 audio-text pairs**
- πŸ’Ύ **1.27 TB total size**
- πŸ“¦ **~8,300 separate parquet files**
This makes it difficult to:
- ❌ Quickly check if specific audio exists
- ❌ Find duplicate audio samples
- ❌ Explore metadata without downloading everything
- ❌ Work on limited bandwidth/storage
### The Solution
This hashed index provides:
- βœ… **All metadata** (text, voice, timestamps) without audio bytes
- βœ… **SHA-256 hashes** for every audio file (unique fingerprint)
- βœ… **File references** (which parquet contains each audio)
- βœ… **Fast queries** - search 4.17M records in seconds
- βœ… **Retrieve on demand** - download only specific audio when needed
---
## πŸš€ Quick Start
### Installation
```bash
pip install datasets pandas
```
### Basic Usage
```python
from datasets import load_dataset
import pandas as pd
# Load the entire hashed index (fast - only ~1 GB!)
ds = load_dataset("humair025/hashed_data", split="train")
df = pd.DataFrame(ds)
print(f"Total records: {len(df)}")
print(f"Unique audio hashes: {df['audio_bytes_hash'].nunique()}")
print(f"Voices: {df['voice'].unique()}")
```
### Find Duplicates
```python
# Check for duplicate audio
duplicates = df[df.duplicated(subset=['audio_bytes_hash'], keep=False)]
if len(duplicates) > 0:
print(f"⚠️ Found {len(duplicates)} duplicate rows")
print(f" Unique audio files: {df['audio_bytes_hash'].nunique()}")
print(f" Redundancy: {(1 - df['audio_bytes_hash'].nunique()/len(df))*100:.2f}%")
else:
print("βœ… No duplicates found!")
```
### Search by Voice
```python
# Find all "ash" voice samples
ash_samples = df[df['voice'] == 'ash']
print(f"Ash voice samples: {len(ash_samples)}")
# Get file containing first ash sample
first_ash = ash_samples.iloc[0]
print(f"File: {first_ash['parquet_file_name']}")
print(f"Text: {first_ash['text']}")
```
### Search by Text
```python
# Find audio for specific text
query = "یہ ایک Ω†Ω…ΩˆΩ†Ϋ"
matches = df[df['text'].str.contains(query, na=False)]
print(f"Found {len(matches)} matches")
```
### Retrieve Original Audio
```python
from datasets import load_dataset as load_original
import numpy as np
from scipy.io import wavfile
import io
def get_audio_by_hash(audio_hash, index_df):
"""Retrieve original audio bytes using the hash"""
# Find the row with this hash
row = index_df[index_df['audio_bytes_hash'] == audio_hash].iloc[0]
# Download only the specific parquet file containing this audio
ds = load_original(
"humair025/Munch",
data_files=[row['parquet_file_name']],
split="train"
)
# Find matching row by ID
for audio_row in ds:
if audio_row['id'] == row['id']:
return audio_row['audio_bytes']
return None
# Example: Get audio for first row
row = df.iloc[0]
audio_bytes = get_audio_by_hash(row['audio_bytes_hash'], df)
# Convert to WAV and play
def pcm16_to_wav(pcm_bytes, sample_rate=22050):
audio_array = np.frombuffer(pcm_bytes, dtype=np.int16)
wav_io = io.BytesIO()
wavfile.write(wav_io, sample_rate, audio_array)
wav_io.seek(0)
return wav_io
wav_io = pcm16_to_wav(audio_bytes)
# In Jupyter: IPython.display.Audio(wav_io, rate=22050)
```
---
## πŸ“Š Dataset Structure
### Data Fields
| Field | Type | Description |
|-------|------|-------------|
| `id` | int | Original paragraph ID from source dataset |
| `parquet_file_name` | string | Source file in [Munch](https://huggingface.co/datasets/humair025/Munch) dataset |
| `text` | string | Original Urdu text |
| `transcript` | string | TTS transcript (may differ from input) |
| `voice` | string | Voice used (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan) |
| `audio_bytes_hash` | string | SHA-256 hash of audio_bytes (64 hex chars) |
| `audio_size_bytes` | int | Size of original audio in bytes |
| `timestamp` | string | ISO timestamp of generation (nullable) |
| `error` | string | Error message if generation failed (nullable) |
### Example Row
```python
{
'id': 42,
'parquet_file_name': 'tts_data_20251203_130314_83ab0706.parquet',
'text': 'یہ ایک Ω†Ω…ΩˆΩ†Ϋ Ω…ΨͺΩ† ہے۔',
'transcript': 'یہ ایک Ω†Ω…ΩˆΩ†Ϋ Ω…ΨͺΩ† ہے۔',
'voice': 'ash',
'audio_bytes_hash': 'a3f7b2c8e9d1f4a5b6c7d8e9f0a1b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8a9',
'audio_size_bytes': 52340,
'timestamp': '2025-12-03T13:03:14.123456',
'error': None
}
```
---
## 🎯 Use Cases
### 1. **Dataset Quality Analysis**
```python
# Check for duplicates
unique_ratio = df['audio_bytes_hash'].nunique() / len(df)
print(f"Unique audio ratio: {unique_ratio*100:.2f}%")
# Analyze voice distribution
voice_dist = df['voice'].value_counts()
print(voice_dist)
# Find failed generations
failed = df[df['error'].notna()]
print(f"Failed generations: {len(failed)}")
```
### 2. **Efficient Data Exploration**
```python
# Browse dataset without downloading audio
print(df[['id', 'text', 'voice', 'audio_size_bytes']].head(20))
# Filter by criteria
short_audio = df[df['audio_size_bytes'] < 30000]
long_text = df[df['text'].str.len() > 200]
```
### 3. **Selective Download**
```python
# Download only specific voices
ash_files = df[df['voice'] == 'ash']['parquet_file_name'].unique()
ds = load_dataset("humair025/Munch", data_files=list(ash_files))
# Download only short audio samples
small_files = df[df['audio_size_bytes'] < 40000]['parquet_file_name'].unique()
ds = load_dataset("humair025/Munch", data_files=list(small_files[:10]))
```
### 4. **Deduplication Pipeline**
```python
# Create deduplicated subset
df_unique = df.drop_duplicates(subset=['audio_bytes_hash'], keep='first')
print(f"Original: {len(df)} rows")
print(f"Unique: {len(df_unique)} rows")
print(f"Duplicates removed: {len(df) - len(df_unique)}")
# Save unique references
df_unique.to_parquet('unique_audio_index.parquet')
```
### 5. **Audio Similarity Search**
```python
# Find audio with similar hash prefixes (for clustering)
target_hash = df.iloc[0]['audio_bytes_hash']
prefix = target_hash[:8]
similar = df[df['audio_bytes_hash'].str.startswith(prefix)]
print(f"Similar audio candidates: {len(similar)}")
```
---
## πŸ“ˆ Dataset Statistics
### Size Comparison
| Metric | Original Dataset | Hashed Index | Reduction |
|--------|------------------|--------------|-----------|
| Total Size | 1.27 TB | ~1 GB | **99.92%** |
| Records | 4,167,500 | 4,167,500 | Same |
| Files | ~8,300 parquet | Consolidated | **~8,300Γ— fewer** |
| Download Time (100 Mbps) | ~28 hours | ~90 seconds | **~1,100Γ—** |
| Load Time | Minutes-Hours | Seconds | **~100Γ—** |
| Memory Usage | Cannot fit in RAM | ~2-3 GB RAM | **Fits easily** |
### Content Statistics
```
πŸ“Š Dataset Overview:
Total Records: 4,167,500
Total Files: ~8,300 parquet files
Voices: 13 (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan)
Language: Urdu (primary)
Avg Audio Size: ~50-60 KB per sample
Avg Duration: ~3-5 seconds per sample
Total Duration: ~3,500-5,800 hours of audio
```
---
## πŸ”§ Advanced Usage
### Batch Analysis
```python
# Analyze all hash files
from datasets import load_dataset
ds = load_dataset("humair025/hashed_data", split="train")
df = pd.DataFrame(ds)
# Group by voice
voice_stats = df.groupby('voice').agg({
'id': 'count',
'audio_size_bytes': 'mean',
'audio_bytes_hash': 'nunique'
}).rename(columns={
'id': 'total_samples',
'audio_size_bytes': 'avg_size',
'audio_bytes_hash': 'unique_audio'
})
print(voice_stats)
```
### Cross-Reference with Original
```python
# Check if a hash exists in original dataset
def verify_hash_exists(audio_hash, parquet_file):
"""Verify a hash actually exists in the original dataset"""
from datasets import load_dataset
import hashlib
ds = load_dataset(
"humair025/Munch",
data_files=[parquet_file],
split="train"
)
for row in ds:
computed_hash = hashlib.sha256(row['audio_bytes']).hexdigest()
if computed_hash == audio_hash:
return True
return False
# Verify first entry
first_row = df.iloc[0]
exists = verify_hash_exists(
first_row['audio_bytes_hash'],
first_row['parquet_file_name']
)
print(f"Hash verified: {exists}")
```
### Export Unique Dataset
```python
# Create a new dataset with only unique audio
df_unique = df.drop_duplicates(subset=['audio_bytes_hash'], keep='first')
# Get list of unique parquet files needed
unique_files = df_unique['parquet_file_name'].unique()
print(f"Unique audio samples: {len(df_unique)}")
print(f"Files needed: {len(unique_files)} out of {df['parquet_file_name'].nunique()}")
# Calculate space savings
original_size = len(df) * df['audio_size_bytes'].mean()
unique_size = len(df_unique) * df_unique['audio_size_bytes'].mean()
savings = (1 - unique_size/original_size) * 100
print(f"Space savings: {savings:.2f}%")
```
---
## πŸ› οΈ How This Index Was Created
This dataset was generated using an automated pipeline:
### Processing Pipeline
1. **Batch Download**: Download 40 parquet files at a time from source
2. **Hash Computation**: Compute SHA-256 for each audio_bytes field
3. **Metadata Extraction**: Extract text, voice, and other metadata
4. **Save & Upload**: Save hash file, upload to HuggingFace
5. **Clean Up**: Delete local cache to save disk space
6. **Resume**: Track processed files, skip already-processed
### Pipeline Features
- βœ… **Resumable**: Checkpoint system tracks progress
- βœ… **Memory Efficient**: Processes in batches, clears cache
- βœ… **Error Tolerant**: Skips corrupted files, continues processing
- βœ… **No Duplicates**: Checks target repo to avoid reprocessing
- βœ… **Automatic Upload**: Streams results to HuggingFace
### Technical Details
```python
# Hash computation
import hashlib
hash = hashlib.sha256(audio_bytes).hexdigest()
# Batch size: 40 files per batch
# Processing time: ~4-6 hours for full dataset
# Output: Multiple hashed_*.parquet files
```
---
## πŸ“Š Performance Metrics
### Query Performance
```python
import time
# Load index
start = time.time()
ds = load_dataset("humair025/hashed_data", split="train")
df = pd.DataFrame(ds)
print(f"Load time: {time.time() - start:.2f}s")
# Query by hash
start = time.time()
result = df[df['audio_bytes_hash'] == 'target_hash']
print(f"Hash lookup: {(time.time() - start)*1000:.2f}ms")
# Query by voice
start = time.time()
result = df[df['voice'] == 'ash']
print(f"Voice filter: {(time.time() - start)*1000:.2f}ms")
```
**Expected Performance**:
- Load full dataset: 10-30 seconds
- Hash lookup: < 10 milliseconds
- Voice filter: < 50 milliseconds
- Full dataset scan: < 5 seconds
---
## πŸ”— Integration with Original Dataset
### Workflow Example
```python
# 1. Query the index (fast)
df = pd.DataFrame(load_dataset("humair025/hashed_data", split="train"))
target_rows = df[df['voice'] == 'ash'].head(100)
# 2. Get unique parquet files
files_needed = target_rows['parquet_file_name'].unique()
# 3. Download only needed files (selective)
from datasets import load_dataset
ds = load_dataset(
"humair025/Munch",
data_files=list(files_needed),
split="train"
)
# 4. Match by ID to get audio
for idx, row in target_rows.iterrows():
for audio_row in ds:
if audio_row['id'] == row['id']:
# Process audio_bytes
audio = audio_row['audio_bytes']
break
```
---
## πŸ“œ Citation
If you use this dataset in your research, please cite both the original dataset and this index:
### BibTeX
```bibtex
@dataset{munch_hashed_index_2025,
title={Munch Hashed Index: Lightweight Reference Dataset for Urdu TTS},
author={Munir, Humair},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/humair025/hashed_data}},
note={Index of humair025/Munch dataset with SHA-256 audio hashes}
}
@dataset{munch_urdu_tts_2025,
title={Munch: Large-Scale Urdu Text-to-Speech Dataset},
author={Munir, Humair},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/humair025/Munch}}
}
```
### APA Format
```
Munir, H. (2025). Munch Hashed Index: Lightweight Reference Dataset for Urdu TTS
[Dataset]. Hugging Face. https://huggingface.co/datasets/humair025/hashed_data
Munir, H. (2025). Munch: Large-Scale Urdu Text-to-Speech Dataset [Dataset].
Hugging Face. https://huggingface.co/datasets/humair025/Munch
```
### MLA Format
```
Munir, Humair. "Munch Hashed Index: Lightweight Reference Dataset for Urdu TTS."
Hugging Face, 2025, https://huggingface.co/datasets/humair025/hashed_data.
Munir, Humair. "Munch: Large-Scale Urdu Text-to-Speech Dataset." Hugging Face, 2025,
https://huggingface.co/datasets/humair025/Munch.
```
---
## 🀝 Contributing
### Report Issues
Found a problem? Please open an issue:
- Missing hash files
- Incorrect metadata
- Hash mismatches
- Documentation improvements
### Suggest Improvements
We welcome suggestions for:
- Additional metadata fields
- Better indexing strategies
- Integration examples
- Use case documentation
---
## πŸ“„ License
This index dataset inherits the license from the original [Munch dataset](https://huggingface.co/datasets/humair025/Munch):
**Creative Commons Attribution 4.0 International (CC-BY-4.0)**
You are free to:
- βœ… **Share** β€” copy and redistribute
- βœ… **Adapt** β€” remix, transform, build upon
- βœ… **Commercial use** β€” use commercially
Under the terms:
- πŸ“ **Attribution** β€” Give appropriate credit to original dataset
---
## πŸ”— Important Links
- 🎧 [**Original Audio Dataset**](https://huggingface.co/datasets/humair025/Munch) - Full 1.27 TB audio
- πŸ“Š [**This Hashed Index**](https://huggingface.co/datasets/humair025/hashed_data) - Lightweight reference
- πŸ”„ [**Munch-1 (v2)**](https://huggingface.co/datasets/humair025/munch-1) - Newer version (3.28 TB)
- πŸ“‡ [**Munch-1 Index**](https://huggingface.co/datasets/humair025/hashed_data_munch_1) - Index for v2
- πŸ’¬ [**Discussions**](https://huggingface.co/datasets/humair025/hashed_data/discussions) - Ask questions
- πŸ› [**Report Issues**](https://huggingface.co/datasets/humair025/hashed_data/discussions) - Bug reports
---
## ❓ FAQ
### Q: Why use hashes instead of audio?
**A:** Hashes provide unique fingerprints for audio files while taking only 64 bytes vs ~50KB per audio. This enables duplicate detection and fast queries without storing massive audio files.
### Q: Can I reconstruct audio from hashes?
**A:** No. SHA-256 is a one-way cryptographic hash. You must download the original audio from the [Munch dataset](https://huggingface.co/datasets/humair025/Munch) using the file reference provided.
### Q: How accurate are the hashes?
**A:** SHA-256 has virtually zero collision probability. If two hashes match, the audio is identical (byte-for-byte).
### Q: How do I get the actual audio?
**A:** Use the `parquet_file_name` and `id` fields to locate and download the specific audio from the [original dataset](https://huggingface.co/datasets/humair025/Munch). See examples above.
### Q: Is this dataset complete?
**A:** Yes, this index covers all 4,167,500 rows across all ~8,300 parquet files from the original Munch dataset.
### Q: What's the difference between this and Munch-1 Index?
**A:** This indexes the original Munch dataset (1.27 TB, 4.17M samples). The [Munch-1 Index](https://huggingface.co/datasets/humair025/hashed_data_munch_1) indexes the newer Munch-1 dataset (3.28 TB, 3.86M samples).
### Q: Can I contribute?
**A:** Yes! Help verify hashes, report inconsistencies, or suggest improvements via discussions.
---
## πŸ™ Acknowledgments
- **Original Dataset**: [humair025/Munch](https://huggingface.co/datasets/humair025/Munch)
- **TTS Generation**: OpenAI-compatible models
- **Voices**: 13 high-quality voices (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan)
- **Infrastructure**: HuggingFace Datasets platform
- **Hashing**: SHA-256 cryptographic hash function
---
## πŸ“ Version History
- **v1.0.0** (December 2025): Initial release
- Processed all ~8,300 parquet files
- 4,167,500 audio samples indexed
- SHA-256 hashes computed for all audio
- ~99.92% space reduction achieved
---
**Last Updated**: December 2025
**Status**: βœ… Complete
---
πŸ’‘ **Pro Tip**: Start with this lightweight index to explore the dataset, then selectively download only the audio you need from the [original Munch dataset](https://huggingface.co/datasets/humair025/Munch)!