|
|
--- |
|
|
license: cc-by-4.0 |
|
|
task_categories: |
|
|
- text-generation |
|
|
- text-to-speech |
|
|
- automatic-speech-recognition |
|
|
tags: |
|
|
- Urdu |
|
|
language: |
|
|
- ur |
|
|
pretty_name: 'Munch Hashed Index' |
|
|
--- |
|
|
# Munch Hashed Index - Lightweight Audio Reference Dataset |
|
|
|
|
|
[](https://huggingface.co/datasets/humair025/Munch) |
|
|
[](https://huggingface.co/datasets/humair025/hashed_data) |
|
|
[]() |
|
|
[]() |
|
|
[]() |
|
|
|
|
|
## π Overview |
|
|
|
|
|
**Munch Hashed Index** is a lightweight reference dataset that provides SHA-256 hashes for all audio files in the [Munch Urdu TTS Dataset](https://huggingface.co/datasets/humair025/Munch). Instead of storing 1.27 TB of raw audio, this index stores only metadata and cryptographic hashes, enabling: |
|
|
|
|
|
- β
**Fast duplicate detection** across 4.17 million audio samples |
|
|
- β
**Efficient dataset exploration** without downloading terabytes |
|
|
- β
**Quick metadata queries** (voice distribution, text stats, etc.) |
|
|
- β
**Selective audio retrieval** - download only what you need |
|
|
- β
**Storage efficiency** - 99.92% space reduction (1.27 TB β ~1 GB) |
|
|
|
|
|
### π Related Datasets |
|
|
|
|
|
- **Original Dataset**: [humair025/Munch](https://huggingface.co/datasets/humair025/Munch) - Full audio dataset (1.27 TB) |
|
|
- **This Index**: [humair025/hashed_data](https://huggingface.co/datasets/humair025/hashed_data) - Hashed reference (~1 GB) |
|
|
- **Munch-1 (v2)**: [humair025/munch-1](https://huggingface.co/datasets/humair025/munch-1) - Newer version (3.28 TB, 3.86M samples) |
|
|
- **Munch-1 Index**: [humair025/hashed_data_munch_1](https://huggingface.co/datasets/humair025/hashed_data_munch_1) - Index for v2 |
|
|
|
|
|
--- |
|
|
|
|
|
## π― What Problem Does This Solve? |
|
|
|
|
|
### The Challenge |
|
|
The original [Munch dataset](https://huggingface.co/datasets/humair025/Munch) contains: |
|
|
- π **4,167,500 audio-text pairs** |
|
|
- πΎ **1.27 TB total size** |
|
|
- π¦ **~8,300 separate parquet files** |
|
|
|
|
|
This makes it difficult to: |
|
|
- β Quickly check if specific audio exists |
|
|
- β Find duplicate audio samples |
|
|
- β Explore metadata without downloading everything |
|
|
- β Work on limited bandwidth/storage |
|
|
|
|
|
### The Solution |
|
|
This hashed index provides: |
|
|
- β
**All metadata** (text, voice, timestamps) without audio bytes |
|
|
- β
**SHA-256 hashes** for every audio file (unique fingerprint) |
|
|
- β
**File references** (which parquet contains each audio) |
|
|
- β
**Fast queries** - search 4.17M records in seconds |
|
|
- β
**Retrieve on demand** - download only specific audio when needed |
|
|
|
|
|
--- |
|
|
|
|
|
## π Quick Start |
|
|
|
|
|
### Installation |
|
|
|
|
|
```bash |
|
|
pip install datasets pandas |
|
|
``` |
|
|
|
|
|
### Basic Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import pandas as pd |
|
|
|
|
|
# Load the entire hashed index (fast - only ~1 GB!) |
|
|
ds = load_dataset("humair025/hashed_data", split="train") |
|
|
df = pd.DataFrame(ds) |
|
|
|
|
|
print(f"Total records: {len(df)}") |
|
|
print(f"Unique audio hashes: {df['audio_bytes_hash'].nunique()}") |
|
|
print(f"Voices: {df['voice'].unique()}") |
|
|
``` |
|
|
|
|
|
### Find Duplicates |
|
|
|
|
|
```python |
|
|
# Check for duplicate audio |
|
|
duplicates = df[df.duplicated(subset=['audio_bytes_hash'], keep=False)] |
|
|
|
|
|
if len(duplicates) > 0: |
|
|
print(f"β οΈ Found {len(duplicates)} duplicate rows") |
|
|
print(f" Unique audio files: {df['audio_bytes_hash'].nunique()}") |
|
|
print(f" Redundancy: {(1 - df['audio_bytes_hash'].nunique()/len(df))*100:.2f}%") |
|
|
else: |
|
|
print("β
No duplicates found!") |
|
|
``` |
|
|
|
|
|
### Search by Voice |
|
|
|
|
|
```python |
|
|
# Find all "ash" voice samples |
|
|
ash_samples = df[df['voice'] == 'ash'] |
|
|
print(f"Ash voice samples: {len(ash_samples)}") |
|
|
|
|
|
# Get file containing first ash sample |
|
|
first_ash = ash_samples.iloc[0] |
|
|
print(f"File: {first_ash['parquet_file_name']}") |
|
|
print(f"Text: {first_ash['text']}") |
|
|
``` |
|
|
|
|
|
### Search by Text |
|
|
|
|
|
```python |
|
|
# Find audio for specific text |
|
|
query = "ΫΫ Ψ§ΫΪ© ΩΩ
ΩΩΫ" |
|
|
matches = df[df['text'].str.contains(query, na=False)] |
|
|
print(f"Found {len(matches)} matches") |
|
|
``` |
|
|
|
|
|
### Retrieve Original Audio |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset as load_original |
|
|
import numpy as np |
|
|
from scipy.io import wavfile |
|
|
import io |
|
|
|
|
|
def get_audio_by_hash(audio_hash, index_df): |
|
|
"""Retrieve original audio bytes using the hash""" |
|
|
# Find the row with this hash |
|
|
row = index_df[index_df['audio_bytes_hash'] == audio_hash].iloc[0] |
|
|
|
|
|
# Download only the specific parquet file containing this audio |
|
|
ds = load_original( |
|
|
"humair025/Munch", |
|
|
data_files=[row['parquet_file_name']], |
|
|
split="train" |
|
|
) |
|
|
|
|
|
# Find matching row by ID |
|
|
for audio_row in ds: |
|
|
if audio_row['id'] == row['id']: |
|
|
return audio_row['audio_bytes'] |
|
|
|
|
|
return None |
|
|
|
|
|
# Example: Get audio for first row |
|
|
row = df.iloc[0] |
|
|
audio_bytes = get_audio_by_hash(row['audio_bytes_hash'], df) |
|
|
|
|
|
# Convert to WAV and play |
|
|
def pcm16_to_wav(pcm_bytes, sample_rate=22050): |
|
|
audio_array = np.frombuffer(pcm_bytes, dtype=np.int16) |
|
|
wav_io = io.BytesIO() |
|
|
wavfile.write(wav_io, sample_rate, audio_array) |
|
|
wav_io.seek(0) |
|
|
return wav_io |
|
|
|
|
|
wav_io = pcm16_to_wav(audio_bytes) |
|
|
# In Jupyter: IPython.display.Audio(wav_io, rate=22050) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `id` | int | Original paragraph ID from source dataset | |
|
|
| `parquet_file_name` | string | Source file in [Munch](https://huggingface.co/datasets/humair025/Munch) dataset | |
|
|
| `text` | string | Original Urdu text | |
|
|
| `transcript` | string | TTS transcript (may differ from input) | |
|
|
| `voice` | string | Voice used (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan) | |
|
|
| `audio_bytes_hash` | string | SHA-256 hash of audio_bytes (64 hex chars) | |
|
|
| `audio_size_bytes` | int | Size of original audio in bytes | |
|
|
| `timestamp` | string | ISO timestamp of generation (nullable) | |
|
|
| `error` | string | Error message if generation failed (nullable) | |
|
|
|
|
|
### Example Row |
|
|
|
|
|
```python |
|
|
{ |
|
|
'id': 42, |
|
|
'parquet_file_name': 'tts_data_20251203_130314_83ab0706.parquet', |
|
|
'text': 'ΫΫ Ψ§ΫΪ© ΩΩ
ΩΩΫ Ω
ΨͺΩ ΫΫΫ', |
|
|
'transcript': 'ΫΫ Ψ§ΫΪ© ΩΩ
ΩΩΫ Ω
ΨͺΩ ΫΫΫ', |
|
|
'voice': 'ash', |
|
|
'audio_bytes_hash': 'a3f7b2c8e9d1f4a5b6c7d8e9f0a1b2c3d4e5f6a7b8c9d0e1f2a3b4c5d6e7f8a9', |
|
|
'audio_size_bytes': 52340, |
|
|
'timestamp': '2025-12-03T13:03:14.123456', |
|
|
'error': None |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π― Use Cases |
|
|
|
|
|
### 1. **Dataset Quality Analysis** |
|
|
```python |
|
|
# Check for duplicates |
|
|
unique_ratio = df['audio_bytes_hash'].nunique() / len(df) |
|
|
print(f"Unique audio ratio: {unique_ratio*100:.2f}%") |
|
|
|
|
|
# Analyze voice distribution |
|
|
voice_dist = df['voice'].value_counts() |
|
|
print(voice_dist) |
|
|
|
|
|
# Find failed generations |
|
|
failed = df[df['error'].notna()] |
|
|
print(f"Failed generations: {len(failed)}") |
|
|
``` |
|
|
|
|
|
### 2. **Efficient Data Exploration** |
|
|
```python |
|
|
# Browse dataset without downloading audio |
|
|
print(df[['id', 'text', 'voice', 'audio_size_bytes']].head(20)) |
|
|
|
|
|
# Filter by criteria |
|
|
short_audio = df[df['audio_size_bytes'] < 30000] |
|
|
long_text = df[df['text'].str.len() > 200] |
|
|
``` |
|
|
|
|
|
### 3. **Selective Download** |
|
|
```python |
|
|
# Download only specific voices |
|
|
ash_files = df[df['voice'] == 'ash']['parquet_file_name'].unique() |
|
|
ds = load_dataset("humair025/Munch", data_files=list(ash_files)) |
|
|
|
|
|
# Download only short audio samples |
|
|
small_files = df[df['audio_size_bytes'] < 40000]['parquet_file_name'].unique() |
|
|
ds = load_dataset("humair025/Munch", data_files=list(small_files[:10])) |
|
|
``` |
|
|
|
|
|
### 4. **Deduplication Pipeline** |
|
|
```python |
|
|
# Create deduplicated subset |
|
|
df_unique = df.drop_duplicates(subset=['audio_bytes_hash'], keep='first') |
|
|
print(f"Original: {len(df)} rows") |
|
|
print(f"Unique: {len(df_unique)} rows") |
|
|
print(f"Duplicates removed: {len(df) - len(df_unique)}") |
|
|
|
|
|
# Save unique references |
|
|
df_unique.to_parquet('unique_audio_index.parquet') |
|
|
``` |
|
|
|
|
|
### 5. **Audio Similarity Search** |
|
|
```python |
|
|
# Find audio with similar hash prefixes (for clustering) |
|
|
target_hash = df.iloc[0]['audio_bytes_hash'] |
|
|
prefix = target_hash[:8] |
|
|
|
|
|
similar = df[df['audio_bytes_hash'].str.startswith(prefix)] |
|
|
print(f"Similar audio candidates: {len(similar)}") |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Dataset Statistics |
|
|
|
|
|
### Size Comparison |
|
|
|
|
|
| Metric | Original Dataset | Hashed Index | Reduction | |
|
|
|--------|------------------|--------------|-----------| |
|
|
| Total Size | 1.27 TB | ~1 GB | **99.92%** | |
|
|
| Records | 4,167,500 | 4,167,500 | Same | |
|
|
| Files | ~8,300 parquet | Consolidated | **~8,300Γ fewer** | |
|
|
| Download Time (100 Mbps) | ~28 hours | ~90 seconds | **~1,100Γ** | |
|
|
| Load Time | Minutes-Hours | Seconds | **~100Γ** | |
|
|
| Memory Usage | Cannot fit in RAM | ~2-3 GB RAM | **Fits easily** | |
|
|
|
|
|
### Content Statistics |
|
|
|
|
|
``` |
|
|
π Dataset Overview: |
|
|
Total Records: 4,167,500 |
|
|
Total Files: ~8,300 parquet files |
|
|
Voices: 13 (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan) |
|
|
Language: Urdu (primary) |
|
|
Avg Audio Size: ~50-60 KB per sample |
|
|
Avg Duration: ~3-5 seconds per sample |
|
|
Total Duration: ~3,500-5,800 hours of audio |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π§ Advanced Usage |
|
|
|
|
|
### Batch Analysis |
|
|
|
|
|
```python |
|
|
# Analyze all hash files |
|
|
from datasets import load_dataset |
|
|
|
|
|
ds = load_dataset("humair025/hashed_data", split="train") |
|
|
df = pd.DataFrame(ds) |
|
|
|
|
|
# Group by voice |
|
|
voice_stats = df.groupby('voice').agg({ |
|
|
'id': 'count', |
|
|
'audio_size_bytes': 'mean', |
|
|
'audio_bytes_hash': 'nunique' |
|
|
}).rename(columns={ |
|
|
'id': 'total_samples', |
|
|
'audio_size_bytes': 'avg_size', |
|
|
'audio_bytes_hash': 'unique_audio' |
|
|
}) |
|
|
|
|
|
print(voice_stats) |
|
|
``` |
|
|
|
|
|
### Cross-Reference with Original |
|
|
|
|
|
```python |
|
|
# Check if a hash exists in original dataset |
|
|
def verify_hash_exists(audio_hash, parquet_file): |
|
|
"""Verify a hash actually exists in the original dataset""" |
|
|
from datasets import load_dataset |
|
|
import hashlib |
|
|
|
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files=[parquet_file], |
|
|
split="train" |
|
|
) |
|
|
|
|
|
for row in ds: |
|
|
computed_hash = hashlib.sha256(row['audio_bytes']).hexdigest() |
|
|
if computed_hash == audio_hash: |
|
|
return True |
|
|
|
|
|
return False |
|
|
|
|
|
# Verify first entry |
|
|
first_row = df.iloc[0] |
|
|
exists = verify_hash_exists( |
|
|
first_row['audio_bytes_hash'], |
|
|
first_row['parquet_file_name'] |
|
|
) |
|
|
print(f"Hash verified: {exists}") |
|
|
``` |
|
|
|
|
|
### Export Unique Dataset |
|
|
|
|
|
```python |
|
|
# Create a new dataset with only unique audio |
|
|
df_unique = df.drop_duplicates(subset=['audio_bytes_hash'], keep='first') |
|
|
|
|
|
# Get list of unique parquet files needed |
|
|
unique_files = df_unique['parquet_file_name'].unique() |
|
|
|
|
|
print(f"Unique audio samples: {len(df_unique)}") |
|
|
print(f"Files needed: {len(unique_files)} out of {df['parquet_file_name'].nunique()}") |
|
|
|
|
|
# Calculate space savings |
|
|
original_size = len(df) * df['audio_size_bytes'].mean() |
|
|
unique_size = len(df_unique) * df_unique['audio_size_bytes'].mean() |
|
|
savings = (1 - unique_size/original_size) * 100 |
|
|
|
|
|
print(f"Space savings: {savings:.2f}%") |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π οΈ How This Index Was Created |
|
|
|
|
|
This dataset was generated using an automated pipeline: |
|
|
|
|
|
### Processing Pipeline |
|
|
1. **Batch Download**: Download 40 parquet files at a time from source |
|
|
2. **Hash Computation**: Compute SHA-256 for each audio_bytes field |
|
|
3. **Metadata Extraction**: Extract text, voice, and other metadata |
|
|
4. **Save & Upload**: Save hash file, upload to HuggingFace |
|
|
5. **Clean Up**: Delete local cache to save disk space |
|
|
6. **Resume**: Track processed files, skip already-processed |
|
|
|
|
|
### Pipeline Features |
|
|
- β
**Resumable**: Checkpoint system tracks progress |
|
|
- β
**Memory Efficient**: Processes in batches, clears cache |
|
|
- β
**Error Tolerant**: Skips corrupted files, continues processing |
|
|
- β
**No Duplicates**: Checks target repo to avoid reprocessing |
|
|
- β
**Automatic Upload**: Streams results to HuggingFace |
|
|
|
|
|
### Technical Details |
|
|
```python |
|
|
# Hash computation |
|
|
import hashlib |
|
|
hash = hashlib.sha256(audio_bytes).hexdigest() |
|
|
|
|
|
# Batch size: 40 files per batch |
|
|
# Processing time: ~4-6 hours for full dataset |
|
|
# Output: Multiple hashed_*.parquet files |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Performance Metrics |
|
|
|
|
|
### Query Performance |
|
|
|
|
|
```python |
|
|
import time |
|
|
|
|
|
# Load index |
|
|
start = time.time() |
|
|
ds = load_dataset("humair025/hashed_data", split="train") |
|
|
df = pd.DataFrame(ds) |
|
|
print(f"Load time: {time.time() - start:.2f}s") |
|
|
|
|
|
# Query by hash |
|
|
start = time.time() |
|
|
result = df[df['audio_bytes_hash'] == 'target_hash'] |
|
|
print(f"Hash lookup: {(time.time() - start)*1000:.2f}ms") |
|
|
|
|
|
# Query by voice |
|
|
start = time.time() |
|
|
result = df[df['voice'] == 'ash'] |
|
|
print(f"Voice filter: {(time.time() - start)*1000:.2f}ms") |
|
|
``` |
|
|
|
|
|
**Expected Performance**: |
|
|
- Load full dataset: 10-30 seconds |
|
|
- Hash lookup: < 10 milliseconds |
|
|
- Voice filter: < 50 milliseconds |
|
|
- Full dataset scan: < 5 seconds |
|
|
|
|
|
--- |
|
|
|
|
|
## π Integration with Original Dataset |
|
|
|
|
|
### Workflow Example |
|
|
|
|
|
```python |
|
|
# 1. Query the index (fast) |
|
|
df = pd.DataFrame(load_dataset("humair025/hashed_data", split="train")) |
|
|
target_rows = df[df['voice'] == 'ash'].head(100) |
|
|
|
|
|
# 2. Get unique parquet files |
|
|
files_needed = target_rows['parquet_file_name'].unique() |
|
|
|
|
|
# 3. Download only needed files (selective) |
|
|
from datasets import load_dataset |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files=list(files_needed), |
|
|
split="train" |
|
|
) |
|
|
|
|
|
# 4. Match by ID to get audio |
|
|
for idx, row in target_rows.iterrows(): |
|
|
for audio_row in ds: |
|
|
if audio_row['id'] == row['id']: |
|
|
# Process audio_bytes |
|
|
audio = audio_row['audio_bytes'] |
|
|
break |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Citation |
|
|
|
|
|
If you use this dataset in your research, please cite both the original dataset and this index: |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
```bibtex |
|
|
@dataset{munch_hashed_index_2025, |
|
|
title={Munch Hashed Index: Lightweight Reference Dataset for Urdu TTS}, |
|
|
author={Munir, Humair}, |
|
|
year={2025}, |
|
|
publisher={Hugging Face}, |
|
|
howpublished={\url{https://huggingface.co/datasets/humair025/hashed_data}}, |
|
|
note={Index of humair025/Munch dataset with SHA-256 audio hashes} |
|
|
} |
|
|
|
|
|
@dataset{munch_urdu_tts_2025, |
|
|
title={Munch: Large-Scale Urdu Text-to-Speech Dataset}, |
|
|
author={Munir, Humair}, |
|
|
year={2025}, |
|
|
publisher={Hugging Face}, |
|
|
howpublished={\url{https://huggingface.co/datasets/humair025/Munch}} |
|
|
} |
|
|
``` |
|
|
|
|
|
### APA Format |
|
|
|
|
|
``` |
|
|
Munir, H. (2025). Munch Hashed Index: Lightweight Reference Dataset for Urdu TTS |
|
|
[Dataset]. Hugging Face. https://huggingface.co/datasets/humair025/hashed_data |
|
|
|
|
|
Munir, H. (2025). Munch: Large-Scale Urdu Text-to-Speech Dataset [Dataset]. |
|
|
Hugging Face. https://huggingface.co/datasets/humair025/Munch |
|
|
``` |
|
|
|
|
|
### MLA Format |
|
|
|
|
|
``` |
|
|
Munir, Humair. "Munch Hashed Index: Lightweight Reference Dataset for Urdu TTS." |
|
|
Hugging Face, 2025, https://huggingface.co/datasets/humair025/hashed_data. |
|
|
|
|
|
Munir, Humair. "Munch: Large-Scale Urdu Text-to-Speech Dataset." Hugging Face, 2025, |
|
|
https://huggingface.co/datasets/humair025/Munch. |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π€ Contributing |
|
|
|
|
|
### Report Issues |
|
|
Found a problem? Please open an issue: |
|
|
- Missing hash files |
|
|
- Incorrect metadata |
|
|
- Hash mismatches |
|
|
- Documentation improvements |
|
|
|
|
|
### Suggest Improvements |
|
|
We welcome suggestions for: |
|
|
- Additional metadata fields |
|
|
- Better indexing strategies |
|
|
- Integration examples |
|
|
- Use case documentation |
|
|
|
|
|
--- |
|
|
|
|
|
## π License |
|
|
|
|
|
This index dataset inherits the license from the original [Munch dataset](https://huggingface.co/datasets/humair025/Munch): |
|
|
|
|
|
**Creative Commons Attribution 4.0 International (CC-BY-4.0)** |
|
|
|
|
|
You are free to: |
|
|
- β
**Share** β copy and redistribute |
|
|
- β
**Adapt** β remix, transform, build upon |
|
|
- β
**Commercial use** β use commercially |
|
|
|
|
|
Under the terms: |
|
|
- π **Attribution** β Give appropriate credit to original dataset |
|
|
|
|
|
--- |
|
|
|
|
|
## π Important Links |
|
|
|
|
|
- π§ [**Original Audio Dataset**](https://huggingface.co/datasets/humair025/Munch) - Full 1.27 TB audio |
|
|
- π [**This Hashed Index**](https://huggingface.co/datasets/humair025/hashed_data) - Lightweight reference |
|
|
- π [**Munch-1 (v2)**](https://huggingface.co/datasets/humair025/munch-1) - Newer version (3.28 TB) |
|
|
- π [**Munch-1 Index**](https://huggingface.co/datasets/humair025/hashed_data_munch_1) - Index for v2 |
|
|
- π¬ [**Discussions**](https://huggingface.co/datasets/humair025/hashed_data/discussions) - Ask questions |
|
|
- π [**Report Issues**](https://huggingface.co/datasets/humair025/hashed_data/discussions) - Bug reports |
|
|
|
|
|
--- |
|
|
|
|
|
## β FAQ |
|
|
|
|
|
### Q: Why use hashes instead of audio? |
|
|
**A:** Hashes provide unique fingerprints for audio files while taking only 64 bytes vs ~50KB per audio. This enables duplicate detection and fast queries without storing massive audio files. |
|
|
|
|
|
### Q: Can I reconstruct audio from hashes? |
|
|
**A:** No. SHA-256 is a one-way cryptographic hash. You must download the original audio from the [Munch dataset](https://huggingface.co/datasets/humair025/Munch) using the file reference provided. |
|
|
|
|
|
### Q: How accurate are the hashes? |
|
|
**A:** SHA-256 has virtually zero collision probability. If two hashes match, the audio is identical (byte-for-byte). |
|
|
|
|
|
### Q: How do I get the actual audio? |
|
|
**A:** Use the `parquet_file_name` and `id` fields to locate and download the specific audio from the [original dataset](https://huggingface.co/datasets/humair025/Munch). See examples above. |
|
|
|
|
|
### Q: Is this dataset complete? |
|
|
**A:** Yes, this index covers all 4,167,500 rows across all ~8,300 parquet files from the original Munch dataset. |
|
|
|
|
|
### Q: What's the difference between this and Munch-1 Index? |
|
|
**A:** This indexes the original Munch dataset (1.27 TB, 4.17M samples). The [Munch-1 Index](https://huggingface.co/datasets/humair025/hashed_data_munch_1) indexes the newer Munch-1 dataset (3.28 TB, 3.86M samples). |
|
|
|
|
|
### Q: Can I contribute? |
|
|
**A:** Yes! Help verify hashes, report inconsistencies, or suggest improvements via discussions. |
|
|
|
|
|
--- |
|
|
|
|
|
## π Acknowledgments |
|
|
|
|
|
- **Original Dataset**: [humair025/Munch](https://huggingface.co/datasets/humair025/Munch) |
|
|
- **TTS Generation**: OpenAI-compatible models |
|
|
- **Voices**: 13 high-quality voices (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan) |
|
|
- **Infrastructure**: HuggingFace Datasets platform |
|
|
- **Hashing**: SHA-256 cryptographic hash function |
|
|
|
|
|
--- |
|
|
|
|
|
## π Version History |
|
|
|
|
|
- **v1.0.0** (December 2025): Initial release |
|
|
- Processed all ~8,300 parquet files |
|
|
- 4,167,500 audio samples indexed |
|
|
- SHA-256 hashes computed for all audio |
|
|
- ~99.92% space reduction achieved |
|
|
|
|
|
--- |
|
|
|
|
|
**Last Updated**: December 2025 |
|
|
|
|
|
**Status**: β
Complete |
|
|
|
|
|
--- |
|
|
|
|
|
π‘ **Pro Tip**: Start with this lightweight index to explore the dataset, then selectively download only the audio you need from the [original Munch dataset](https://huggingface.co/datasets/humair025/Munch)! |