Datasets:

Modalities:
Image
Libraries:
Datasets
License:
Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
640
1.28k
label
class label
411 classes
0global_localization_env_dg_da_001
0global_localization_env_dg_da_001
0global_localization_env_dg_da_001
1global_localization_env_dg_da_002
1global_localization_env_dg_da_002
1global_localization_env_dg_da_002
2global_localization_env_dg_da_003
2global_localization_env_dg_da_003
2global_localization_env_dg_da_003
3global_localization_env_dg_da_004
3global_localization_env_dg_da_004
3global_localization_env_dg_da_004
4global_localization_env_dg_da_005
4global_localization_env_dg_da_005
4global_localization_env_dg_da_005
5global_localization_env_dg_da_006
5global_localization_env_dg_da_006
5global_localization_env_dg_da_006
6global_localization_env_dg_da_007
6global_localization_env_dg_da_007
6global_localization_env_dg_da_007
7global_localization_env_dg_da_008
7global_localization_env_dg_da_008
7global_localization_env_dg_da_008
8global_localization_env_dg_da_009
8global_localization_env_dg_da_009
8global_localization_env_dg_da_009
9global_localization_env_dg_da_010
9global_localization_env_dg_da_010
9global_localization_env_dg_da_010
10global_localization_env_dg_da_011
10global_localization_env_dg_da_011
10global_localization_env_dg_da_011
11global_localization_env_dg_da_012
11global_localization_env_dg_da_012
11global_localization_env_dg_da_012
12global_localization_env_dg_da_013
12global_localization_env_dg_da_013
12global_localization_env_dg_da_013
13global_localization_env_dg_da_014
13global_localization_env_dg_da_014
13global_localization_env_dg_da_014
14global_localization_env_dg_da_015
14global_localization_env_dg_da_015
14global_localization_env_dg_da_015
15global_localization_env_dg_da_016
15global_localization_env_dg_da_016
15global_localization_env_dg_da_016
16global_localization_env_dg_da_017
16global_localization_env_dg_da_017
16global_localization_env_dg_da_017
17global_localization_env_dg_da_018
17global_localization_env_dg_da_018
17global_localization_env_dg_da_018
18global_localization_env_dg_da_019
18global_localization_env_dg_da_019
18global_localization_env_dg_da_019
19global_localization_env_dg_da_020
19global_localization_env_dg_da_020
19global_localization_env_dg_da_020
20global_localization_env_dg_da_021
20global_localization_env_dg_da_021
20global_localization_env_dg_da_021
21global_localization_env_dg_da_022
21global_localization_env_dg_da_022
21global_localization_env_dg_da_022
22global_localization_env_dg_da_023
22global_localization_env_dg_da_023
22global_localization_env_dg_da_023
23global_localization_env_dg_da_024
23global_localization_env_dg_da_024
23global_localization_env_dg_da_024
24global_localization_env_dg_da_025
24global_localization_env_dg_da_025
24global_localization_env_dg_da_025
25global_localization_env_dg_da_026
25global_localization_env_dg_da_026
25global_localization_env_dg_da_026
26global_localization_env_dg_da_027
26global_localization_env_dg_da_027
26global_localization_env_dg_da_027
27global_localization_env_dg_da_028
27global_localization_env_dg_da_028
27global_localization_env_dg_da_028
28global_localization_env_dg_da_029
28global_localization_env_dg_da_029
28global_localization_env_dg_da_029
29global_localization_env_dg_da_030
29global_localization_env_dg_da_030
29global_localization_env_dg_da_030
30global_localization_env_dg_da_031
30global_localization_env_dg_da_031
30global_localization_env_dg_da_031
31global_localization_env_dg_da_032
31global_localization_env_dg_da_032
31global_localization_env_dg_da_032
32global_localization_env_dg_da_033
32global_localization_env_dg_da_033
32global_localization_env_dg_da_033
33global_localization_env_dg_da_034
End of preview. Expand in Data Studio

Vision-Language Global Localization (VLG-Loc) Dataset

This dataset is for evaluation of Vision-Language Global Localization (VLG-Loc).

Dataset Structure

Each dataset directory contains the following files. Note: All camera images (.png) are pre-corrected for lens distortion.

  • left_camera_image.png: Image from the rear-left camera of the robot.
  • center_camera_image.png: Image from the front-facing camera of the robot.
  • right_camera_image.png: Image from the rear-right camera of the robot.
  • data.yaml: Contains metadata, file paths, and ground truth information for the sample.
    • Format: A YAML file storing key-value pairs.
    • Example Content:
      task_label: global_localization
      ground_truth_pose: # Ground truth pose (x, y, yaw) in the map frame
        x: 1.4948672925333364
        y: -0.2408375545348086
        theta: -0.19592457986226722
      left_camera_image_path: left_camera_image.png
      center_camera_image_path: center_camera_image.png
      right_camera_image_path: right_camera_image.png
      pointcloud_path: pointcloud.npy
      timestamp: 1756980768.4454215
      
  • pointcloud.npy: Point cloud data from the 2D LiDAR scan, saved as a NumPy array.
    • Format: A NumPy ndarray.
    • Shape: (N, 2), where N is the number of points.
    • Data Type: float32.
    • Content: Each row represents a 2D point (x, y) in the robot's base coordinate frame.

Environments

The table below details the environments included in this dataset.

Environment Name Directory Name Description
UG/UA (Uniform Geometry, Uniform Appearance) env_ug_ua An environment of identical columns arranged in a regular pattern.
UG/DA (Uniform Geometry, Diverse Appearance) env_ug_da An environment consisting of regularly placed bookshelves.
DG/UA (Diverse Geometry, Uniform Appearance) env_dg_ua An indoor scene with many pieces of furniture and frequent item repetition.
DG/DA (Diverse Geometry, Diverse Appearance) env_dg_da An indoor environment populated with numerous objects, where a high variety of furniture reduces item repetition.
Retail Store (Real) env_retail_store_real Real retail store environment (EZOHUB TOKYO).
Retail Store (Sim) env_retail_store_sim A simulated retail environment where appearances are substituted with alphanumeric labels.

Acknowledgement

It was collected in several simulation environments and at the real-world retail store "EZOHUB TOKYO", in cooperation with SATUDORA HOLDINGS CO.,LTD.

Downloads last month
27