Dataset Viewer
Auto-converted to Parquet Duplicate
user_id
string
item_id
string
interaction_type
string
date
string
User_00000
201869327_1
in_kit
2025-08-26T13:18:43.860346
User_00000
201869327_2
in_kit
2025-08-26T13:18:43.891597
User_00000
201869327_3
in_kit
2025-08-26T13:18:43.929358
User_00000
201869327_4
in_kit
2025-08-26T13:18:43.976236
User_00000
201869327_5
in_kit
2025-08-26T13:18:44.013996
User_00001
209483270_1
in_kit
2025-08-26T13:18:44.045251
User_00001
209483270_2
in_kit
2025-08-26T13:18:44.081673
User_00001
209483270_3
in_kit
2025-08-26T13:18:44.100452
User_00001
209483270_4
in_kit
2025-08-26T13:18:44.129588
User_00001
209483270_5
in_kit
2025-08-26T13:18:44.152344
User_00001
209483270_6
in_kit
2025-08-26T13:18:44.167970
User_00001
209483270_7
in_kit
2025-08-26T13:18:44.213925
User_00001
209483270_8
in_kit
2025-08-26T13:18:44.246778
User_00002
216831657_1
in_kit
2025-08-26T13:18:44.260845
User_00002
216831657_2
in_kit
2025-08-26T13:18:44.307723
User_00002
216831657_3
in_kit
2025-08-26T13:18:44.329861
User_00002
216831657_4
in_kit
2025-08-26T13:18:44.369689
User_00002
216831657_5
in_kit
2025-08-26T13:18:44.385314
User_00003
202406742_1
in_kit
2025-08-26T13:18:44.430078
User_00003
202406742_2
in_kit
2025-08-26T13:18:44.445704
User_00003
202406742_3
in_kit
2025-08-26T13:18:44.476956
User_00003
202406742_4
in_kit
2025-08-26T13:18:44.514715
User_00003
202406742_5
in_kit
2025-08-26T13:18:44.545971
User_00003
202406742_6
in_kit
2025-08-26T13:18:44.577224
User_00003
202406742_7
in_kit
2025-08-26T13:18:44.608475
User_00003
202406742_8
in_kit
2025-08-26T13:18:44.630612
User_00004
138760384_1
in_kit
2025-08-26T13:18:44.666089
User_00004
138760384_2
in_kit
2025-08-26T13:18:44.697340
User_00004
138760384_3
in_kit
2025-08-26T13:18:44.730601
User_00004
138760384_4
in_kit
2025-08-26T13:18:44.762543
User_00004
138760384_5
in_kit
2025-08-26T13:18:44.791682
User_00004
138760384_6
in_kit
2025-08-26T13:18:44.814814
User_00004
138760384_7
in_kit
2025-08-26T13:18:44.830444
User_00004
138760384_8
in_kit
2025-08-26T13:18:44.877323
User_00005
212956042_1
in_kit
2025-08-26T13:18:44.914907
User_00005
212956042_2
in_kit
2025-08-26T13:18:44.961789
User_00005
212956042_3
in_kit
2025-08-26T13:18:45.009177
User_00005
212956042_4
in_kit
2025-08-26T13:18:45.030844
User_00005
212956042_5
in_kit
2025-08-26T13:18:45.062096
User_00005
212956042_6
in_kit
2025-08-26T13:18:45.093350
User_00006
162331098_1
in_kit
2025-08-26T13:18:45.115509
User_00006
162331098_2
in_kit
2025-08-26T13:18:45.146767
User_00006
162331098_3
in_kit
2025-08-26T13:18:45.178017
User_00006
162331098_4
in_kit
2025-08-26T13:18:45.210352
User_00006
162331098_5
in_kit
2025-08-26T13:18:45.242410
User_00006
162331098_6
in_kit
2025-08-26T13:18:45.291772
User_00006
162331098_7
in_kit
2025-08-26T13:18:45.315404
User_00006
162331098_8
in_kit
2025-08-26T13:18:45.346661
User_00007
181728295_1
in_kit
2025-08-26T13:18:45.393538
User_00007
181728295_2
in_kit
2025-08-26T13:18:45.426482
User_00007
181728295_3
in_kit
2025-08-26T13:18:45.454531
User_00007
181728295_4
in_kit
2025-08-26T13:18:45.484023
User_00007
181728295_5
in_kit
2025-08-26T13:18:45.522360
User_00007
181728295_6
in_kit
2025-08-26T13:18:45.550329
User_00007
181728295_7
in_kit
2025-08-26T13:18:45.588915
User_00008
200122942_1
in_kit
2025-08-26T13:18:45.636663
User_00008
200122942_2
in_kit
2025-08-26T13:18:45.665604
User_00008
200122942_3
in_kit
2025-08-26T13:18:45.686813
User_00008
200122942_4
in_kit
2025-08-26T13:18:45.725391
User_00008
200122942_5
in_kit
2025-08-26T13:18:45.744411
User_00008
200122942_6
in_kit
2025-08-26T13:18:45.770006
User_00008
200122942_7
in_kit
2025-08-26T13:18:45.806512
User_00009
205512838_1
in_kit
2025-08-26T13:18:45.834495
User_00009
205512838_2
in_kit
2025-08-26T13:18:45.868243
User_00009
205512838_3
in_kit
2025-08-26T13:18:45.891249
User_00009
205512838_4
in_kit
2025-08-26T13:18:45.927973
User_00009
205512838_5
in_kit
2025-08-26T13:18:45.950579
User_00010
170843847_1
in_kit
2025-08-26T13:18:45.966205
User_00010
170843847_2
in_kit
2025-08-26T13:18:45.999474
User_00010
170843847_3
in_kit
2025-08-26T13:18:46.046863
User_00010
170843847_4
in_kit
2025-08-26T13:18:46.077257
User_00010
170843847_5
in_kit
2025-08-26T13:18:46.105429
User_00010
170843847_6
in_kit
2025-08-26T13:18:46.129557
User_00010
170843847_7
in_kit
2025-08-26T13:18:46.178044
User_00010
170843847_8
in_kit
2025-08-26T13:18:46.224362
User_00011
193591002_1
in_kit
2025-08-26T13:18:46.253704
User_00011
193591002_2
in_kit
2025-08-26T13:18:46.290773
User_00011
193591002_3
in_kit
2025-08-26T13:18:46.322595
User_00011
193591002_4
in_kit
2025-08-26T13:18:46.350463
User_00011
193591002_5
in_kit
2025-08-26T13:18:46.388179
User_00011
193591002_6
in_kit
2025-08-26T13:18:46.423436
User_00011
193591002_7
in_kit
2025-08-26T13:18:46.440852
User_00011
193591002_8
in_kit
2025-08-26T13:18:46.483435
User_00012
212489391_1
in_kit
2025-08-26T13:18:46.526090
User_00012
212489391_2
in_kit
2025-08-26T13:18:46.564302
User_00012
212489391_3
in_kit
2025-08-26T13:18:46.598142
User_00012
212489391_4
in_kit
2025-08-26T13:18:46.623160
User_00012
212489391_5
in_kit
2025-08-26T13:18:46.656750
User_00012
212489391_6
in_kit
2025-08-26T13:18:46.689762
User_00012
212489391_7
in_kit
2025-08-26T13:18:46.725227
User_00013
197034151_1
in_kit
2025-08-26T13:18:46.747231
User_00013
197034151_2
in_kit
2025-08-26T13:18:46.774649
User_00013
197034151_3
in_kit
2025-08-26T13:18:46.802623
User_00013
197034151_4
in_kit
2025-08-26T13:18:46.831080
User_00013
197034151_5
in_kit
2025-08-26T13:18:46.873773
User_00013
197034151_6
in_kit
2025-08-26T13:18:46.917783
User_00014
113315045_1
in_kit
2025-08-26T13:18:46.938327
User_00014
113315045_2
in_kit
2025-08-26T13:18:46.968970
User_00014
113315045_3
in_kit
2025-08-26T13:18:46.990207
User_00014
113315045_4
in_kit
2025-08-26T13:18:47.023367
End of preview. Expand in Data Studio

=====================README====================

Polyvore-1000 Dataset

Welcome! I am Waly NGOM, PhD in Mathematics and passionate about Artificial Intelligence. This repository contains Polyvore-1000, a dataset designed for personalized recommendation in the fashion domain.

Polyvore-1000 builds upon the Polyvore-U splits introduced by Han et al. (2017) and benefits from the complementary work of Lu et al. (CVPR 2019), who proposed an innovative binary-code based approach for efficient outfit recommendation.

Data Structure

a. Available splits: train, valid, test (same proportions as Polyvore-U: 17,316 / 1,497 / 3,076 outfits).

b. Configurations:

items: detailed item data

kits: information on each outfit

users: synthetic user identifiers

interactions: interactions between users and items (outfit composition, views, likes)

user_profiles: aggregated user interaction profiles

Images

Images are organized in images//:

  • 0.jpg → outfit (kit) image

  • 1.jpg, 2.jpg, … → images corresponding to the items of the kit, in the order given by the JSON data

Hugging Face Authentication

In a notebook or Python script:

from huggingface_hub import login import os

login(token=os.getenv("HF_TOKEN"))

Usage

To load these datasets:

from datasets import load_dataset

items_ds = load_dataset("codewaly/polyvore1000", "items", split="train")

kits_ds = load_dataset("codewaly/polyvore1000", "kits", split="train")

users_ds = load_dataset("codewaly/polyvore1000", "users", split="train")

interactions_ds = load_dataset("codewaly/polyvore1000", "interactions", split="train")

user_profiles_ds = load_dataset("codewaly/polyvore1000", "user_profiles", split="train")

References

  1. Han, X., et al. (2017). Learning Fashion Compatibility with Bidirectional LSTMs. ACM Multimedia.

  2. Lu, Z., et al. (2019). Learning Binary Code for Personalized Fashion Recommendation. CVPR.

Downloads last month
104