document
stringlengths
121
3.99k
embedding
listlengths
384
384
192 Chapter 9 9.5 Graphs of sine, cosine and tangent ■ The graphs of sine, cosine and tangent are periodic. They repeat themselves after a certain inter val. You need to be able to draw the graphs for a given range of angles. ■ The graph of y = sin θ: • repeats ever y 360° and cro sses the x-axis at …, −180°, 0, 180°, 360°, … • has a maximum value of 1 and a minimum value of −1. y θ 90°y = sin θ –90° –180° 180° 270° 360° 450° 540°01 1 2 –1–12 ■ The graph of y = cos θ: • repeats ever y 360° and cro sses the x-axis at …, −90°, 90°, 270°, 450°, … • has a maximum value of 1 and a minimum value of −1. y θ 90° –90° –180° 180° 270° 360° 450° 540°01 12 –1–12y = co s θsin θ = −1 when θ = −90°, 270°, etc.sin θ = 1 when θ = 90°, 450°, etc. sin θ = 0 when θ = −180°, 0°, 180°, 360°, 540°, etc. cos θ = 1 when θ = 0°, 360°, etc. cos θ = 0 when θ = −90°, 90°, 270°, 450, etc. cos θ = −1 when θ = −180°, 180°, 540°, etc.
[ -0.0056667146272957325, 0.017399175092577934, 0.054401978850364685, -0.08554059267044067, -0.049488749355077744, 0.00790510792285204, -0.049339354038238525, -0.042600229382514954, -0.020310375839471817, -0.05890442430973053, 0.08088645339012146, 0.01900116167962551, 0.00555709283798933, 0.1288398802280426, 0.019575374200940132, 0.06768406182527542, -0.05649017542600632, 0.06363546848297119, -0.02943611890077591, -0.007691790349781513, 0.010521390475332737, 0.022791704162955284, 0.011911572888493538, -0.10614985227584839, 0.019245458766818047, -0.06447632610797882, 0.057513631880283356, -0.08878723531961441, 0.007523530628532171, 0.06951611489057541, -0.019188953563570976, -0.026905979961156845, -0.09720488637685776, -0.03273965045809746, 0.01739903725683689, -0.07495025545358658, 0.01898043602705002, -0.0220884270966053, 0.0010070118587464094, 0.06517460942268372, -0.08431943506002426, 0.1252628117799759, 0.020024364814162254, -0.027863606810569763, 0.01306411437690258, 0.06437450647354126, -0.014323827810585499, 0.03695974498987198, 0.031056946143507957, -0.0131278857588768, 0.0920913890004158, 0.046145249158144, -0.14153265953063965, -0.0291444044560194, 0.02631297893822193, 0.07936391979455948, -0.05569402128458023, -0.015251231379806995, -0.04111678898334503, -0.008072733879089355, 0.05243019014596939, 0.014598040841519833, 0.008666688576340675, 0.025198811665177345, -0.03999004885554314, 0.025825737044215202, 0.055476024746894836, -0.024104805663228035, -0.01584181748330593, 0.037260036915540695, -0.046320170164108276, -0.0004872974823229015, -0.026669055223464966, 0.010921153239905834, -0.0035612292122095823, -0.02563786692917347, -0.04053274542093277, 0.05989872291684151, -0.06229286268353462, -0.06299477070569992, -0.13541369140148163, -0.018406463786959648, 0.110797218978405, 0.061523038893938065, 0.008470907807350159, 0.0015546799404546618, 0.11007542908191681, 0.082992322742939, 0.011098125949501991, 0.01841309294104576, 0.10114136338233948, 0.03308846801519394, -0.03533831611275673, -0.05782905966043472, 0.040886908769607544, 0.05133377015590668, -0.02097623236477375, 0.020365536212921143, 0.02993442676961422, -0.027865497395396233, -0.04080842062830925, -0.06648746132850647, -0.0010417011799290776, 0.12120623141527176, 0.02900245413184166, 0.0008217259892262518, 0.09859776496887207, 0.00505002262070775, -0.07268933206796646, -0.06779666990041733, -0.05333707109093666, 0.053275927901268005, 0.037632379680871964, -0.06105208769440651, 0.06331215053796768, -0.04650473967194557, -0.06812866777181625, 0.01833559386432171, 0.015279311686754227, 0.03492940589785576, 0.012106316164135933, 0.013156014494597912, -0.006313791498541832, 0.04870761185884476, -0.05510152503848076, 0.01240654569119215, 0.050039142370224, 0.04180790111422539, 0.044071637094020844, 0.0453721322119236, 0.05206978693604469, -0.06953117996454239, -0.004218423273414373, -0.030044399201869965, -0.014904088340699673, -0.04126950725913048, 0.020640501752495766, 0.015085777267813683, -0.04140575975179672, 0.03928877413272858, 0.02486506663262844, 0.04827321693301201, -0.00781753845512867, -0.018244925886392593, 0.014184389263391495, -0.10840108245611191, -0.0750499814748764, -0.03022589161992073, -0.04172484204173088, 0.03710826113820076, 0.04570405185222626, 0.017370950430631638, -0.01805211417376995, 0.12717421352863312, 0.020934313535690308, 0.05499287322163582, -0.006100896280258894, 0.012934071943163872, 0.07508433610200882, -0.024179942905902863, -0.025409460067749023, 0.07816189527511597, 0.0668446347117424, 0.010878066532313824, 0.007736113388091326, 0.015121550299227238, 0.039021607488393784, -0.0254210177809, 0.02700863778591156, 0.016323847696185112, 0.024608932435512543, 0.049522433429956436, 0.014269452542066574, 0.05404292047023773, -0.008693254552781582, -0.007874035276472569, 0.031513214111328125, -0.0444033220410347, -0.0017894956981763244, -0.05300480127334595, 0.027237949892878532, -0.028478406369686127, 0.003622934455052018, -0.05616942048072815, 0.07952438294887543, -0.01963108777999878, -0.06069622561335564, 0.04039178416132927, -0.0906304121017456, 0.02925964444875717, -0.01669946499168873, -0.07466575503349304, -0.0508403442800045, 0.034689925611019135, -0.11926330626010895, -0.05167761817574501, 0.06170694902539253, -0.00021671794820576906, -0.06530921906232834, -0.020660333335399628, 0.08317770808935165, -0.03428205847740173, 0.032406680285930634, -0.0085859764367342, 0.05760406330227852, 0.020595107227563858, 0.01648937165737152, -0.016995705664157867, -0.10598201304674149, -0.029156314209103584, 0.020570235326886177, 0.010854857973754406, 0.0021499195136129856, 0.01712838187813759, 0.04106134548783302, -0.04674869775772095, 0.042142294347286224, -0.06086305156350136, -0.0320851132273674, 0.06138690933585167, -0.010570107027888298, 0.0053414879366755486, 0.004324084613472223, 8.606152300804983e-34, -0.05768462270498276, -0.041467104107141495, -0.051238782703876495, -0.029953762888908386, -0.011273659765720367, -0.014927687123417854, 0.09733761101961136, 0.08191340416669846, 0.03419026359915733, -0.05155950412154198, 0.0499131865799427, -0.06731458008289337, -0.04345449060201645, 0.005436308681964874, -0.036312952637672424, -0.055402807891368866, 0.027421828359365463, -0.03610604628920555, -0.021002890542149544, -0.022120419889688492, -0.02605443447828293, 0.012385876849293709, -0.03134801611304283, -0.010173546150326729, 0.10708197206258774, 0.029238147661089897, 0.0901980996131897, -0.07865193486213684, -0.10795851796865463, -0.003787769004702568, -0.04835394397377968, 0.010274062864482403, 0.004918151535093784, -0.011390285566449165, -0.044808875769376755, 0.035437505692243576, -0.006223402451723814, -0.08582522720098495, -0.042615484446287155, -0.0678345337510109, 0.06925394386053085, -0.04022344946861267, 0.05931293964385986, -0.04110090434551239, 0.009342076256871223, 0.05616158992052078, -0.03280774503946304, 0.01832262985408306, -0.11704924702644348, -0.026965757831931114, 0.000559484411496669, -0.08099960535764694, 0.07398001849651337, -0.03262507915496826, 0.10730838775634766, -0.003717845305800438, -0.08943124860525131, 0.001557698822580278, 0.07936374843120575, -0.03532382845878601, -0.023331521078944206, -0.12152723222970963, -0.041669756174087524, 0.0758451595902443, 0.0032991154585033655, -0.07361825555562973, -0.04569295048713684, -0.022273274138569832, 0.06304249912500381, -0.012396657839417458, -0.016527146100997925, 0.06024160981178284, -0.030701769515872, -0.05496714264154434, -0.15930043160915375, -0.04874449595808983, -0.08407292515039444, -0.03321006894111633, 0.07080348581075668, -0.08742835372686386, 0.004544385708868504, 0.02328883484005928, 0.0022017618175596, -0.07128433138132095, -0.04953280836343765, -0.0673915445804596, -0.038447581231594086, 0.013035239651799202, 0.10283017158508301, 0.0323677733540535, 0.018174098804593086, 0.010345914401113987, -0.07762445509433746, -0.0010686804307624698, 0.04537181183695793, 7.665205292891427e-32, -0.04812748730182648, 0.01113990880548954, 0.009304727427661419, 0.0821075588464737, 0.03430395573377609, -0.015756919980049133, 0.0659291073679924, 0.0018854119116440415, 0.027417130768299103, -0.07075570523738861, 0.1027364656329155, 0.05153273046016693, -0.04467208310961723, 0.01094100158661604, 0.01576160080730915, 0.03976200148463249, -0.01990339159965515, 0.03276893496513367, 0.045629460364580154, -0.07240110635757446, -0.006934491917490959, 0.025011500343680382, 0.038330696523189545, -0.0035907693672925234, 0.0022410389501601458, 0.03404040262103081, 0.033938873559236526, -0.008451873436570168, -0.016844263300299644, -0.041287630796432495, 0.001334216445684433, -0.05005623400211334, 0.0746273472905159, 0.004137829411774874, 0.0106267174705863, -0.05700581520795822, -0.04266431927680969, 0.13240477442741394, -0.05220525711774826, 0.028333647176623344, -0.03731866553425789, -0.006193334236741066, 0.0042350213043391705, 0.01942049339413643, -0.039754822850227356, -0.06343378871679306, -0.05005873367190361, -0.029595227912068367, -0.004501578398048878, -0.0537971667945385, -0.03402955085039139, 0.0206568855792284, 0.018926307559013367, -0.008287445642054081, 0.0399196520447731, -0.0028022362384945154, 0.05050119757652283, -0.008928150869905949, -0.050186511129140854, 0.003568332875147462, -0.01764542981982231, 0.13935823738574982, 0.0021643228828907013, 0.011422024108469486 ]
193 Trigonometric ratios ■ The graph of y = tan θ: • repeats ever y 180° and cro sses the x-axis at … −180°, 0°, 180°, 360°, … • has no maximum or minimum value • has ver tical as ymptotes at x = −90°, x = 90°, x = 270°, … y θ –180° –120° –60° 60° 30° 120° 180° 240° 300° 360° –150° –90° –30° 90° 150° 210° 270° 330°0y = tan θ tan θ = 0 when θ = 0°, 180°, 360°, etc.tan θ does not have maximum and minimum points but approaches negative or positive infinity as the curve approaches the asymptotes at −90°, 90°, 270°, etc. tan θ is undefined for these values of θ. Example 11 a Sketch the graph of y = cos θ in the interval −360° < θ < 360°. b i Sketch the gra ph of y = sin x in the interva l −180° < x < 270 ° ii sin (− 30°) = − 0.5. Use your gra ph to determine two further values of x for which sin x = − 0.5. a y y = cos θ θ90° 180° 270° 360° –90° –11 –180° –270° –360°OThe axes are θ and y. The curve meets the θ-axis at θ = ±270° and θ = ±90°. The curve crosses the y-axis at (0, 1).
[ -0.018168989568948746, -0.02913554385304451, 0.030376529321074486, -0.045857980847358704, -0.02104325033724308, 0.015303206630051136, -0.04847551882266998, -0.04402092844247818, -0.06751479208469391, -0.028053006157279015, 0.04054361209273338, -0.060537394136190414, 0.016511879861354828, 0.05881303921341896, 0.020015474408864975, 0.015073158778250217, -0.07733405381441116, -0.014995308592915535, -0.07275139540433884, -0.0017048419686034322, -0.0018866154132410884, -0.04377531632781029, 0.09288851916790009, -0.02760387770831585, 0.030634727329015732, 0.0031499643810093403, -0.03161465376615524, -0.10438709706068039, -0.0014992052456364036, 0.03511844202876091, -0.0667305737733841, -0.01883070357143879, -0.0494253933429718, -0.057444024831056595, -0.03857600688934326, -0.11208996176719666, -0.011141846887767315, 0.012975390069186687, -0.02215588092803955, 0.04339950904250145, -0.10444097965955734, 0.09268050640821457, -0.011474897153675556, 0.05623655021190643, 0.029234059154987335, -0.029336215928196907, -0.05365225672721863, 0.05110084265470505, 0.06991817057132721, 0.056549735367298126, 0.0008060038671828806, 0.06585448980331421, -0.09250965714454651, 0.01400695275515318, -0.004213531501591206, 0.07953505963087082, -0.06773362308740616, -0.030236586928367615, -0.06385920196771622, -0.025858353823423386, 0.06558404117822647, 0.04797760769724846, 0.035924073308706284, 0.003430671291425824, 0.008554482832551003, 0.011390144005417824, -0.0027600049506872892, -0.07517272233963013, 0.018636412918567657, 0.020174700766801834, -0.07038086652755737, 0.0415780171751976, -0.04495418071746826, -0.020714355632662773, 0.005956896580755711, -0.07137727737426758, -0.059104159474372864, 0.020440414547920227, -0.09439268708229065, -0.08471040427684784, -0.11318846046924591, 0.013122436590492725, 0.07836997509002686, 0.054936327040195465, 0.05725368857383728, 0.04230166971683502, 0.09368754923343658, 0.12544089555740356, 0.05031828582286835, 0.05914130061864853, 0.02894035167992115, -0.0013601633254438639, -0.04899665340781212, 0.005432037636637688, 0.015790484845638275, 0.050473105162382126, 0.0017579789273440838, 0.023434363305568695, 0.0013523758389055729, -0.018017781898379326, -0.014152654446661472, -0.039924535900354385, -0.0010337813291698694, 0.031199589371681213, -0.10076519101858139, -0.032037656754255295, 0.04852525517344475, -0.06330624967813492, -0.03081193007528782, -0.06610477715730667, -0.10337673872709274, 0.1306096911430359, 0.0761304497718811, -0.033467553555965424, 0.05036956071853638, -0.026849135756492615, 0.01384811196476221, 0.016962017863988876, 0.03607865422964096, 0.04615091532468796, -0.009275336749851704, 0.060124967247247696, -0.010149476118385792, 0.04631710797548294, -0.05388074740767479, -0.011867533437907696, -0.02497927099466324, -0.005169362295418978, 0.013857534155249596, 0.03765397146344185, 0.08279573917388916, -0.004034283570945263, 0.005910997744649649, -0.04144745692610741, -0.04179385304450989, -0.05782066285610199, 0.07714635133743286, 0.08119072765111923, 0.0044909450225532055, 0.016231287270784378, 0.0681237056851387, 0.07764223963022232, 0.0038881232030689716, -0.041239164769649506, 0.01277147326618433, -0.03215961530804634, -0.13067933917045593, -0.013483325019478798, -0.043280597776174545, 0.028268445283174515, 0.038030728697776794, 0.07481711357831955, -0.02081214264035225, 0.11961845308542252, 0.01717996411025524, 0.08595754951238632, -0.013387009501457214, 0.03235192596912384, 0.04427823796868324, 0.028619494289159775, 0.013521515764296055, 0.042689450085163116, 0.034250129014253616, 0.004606477916240692, 0.032339949160814285, -0.0013748746132478118, 0.019138434901833534, 0.040525779128074646, -0.0073501961305737495, 0.04794706404209137, 0.04391995444893837, 0.03567775711417198, -0.023285889998078346, 0.029304245486855507, 0.02217167429625988, -0.028414322063326836, 0.02852475456893444, -0.03251733258366585, -0.08830142766237259, 0.014654389582574368, -0.03167260065674782, 0.0010806367499753833, 0.012039675377309322, -0.014105728827416897, 0.0527079813182354, 0.005628244485706091, -0.05094081163406372, 0.060751888900995255, -0.08047858625650406, -0.0123092420399189, 0.009362275712192059, -0.07010915875434875, -0.02043744921684265, 0.010379612445831299, -0.04281900078058243, -0.01823740266263485, 0.001295418944209814, -0.005282145459204912, -0.08451089262962341, 0.025370003655552864, 0.030882325023412704, -0.06613516807556152, 0.012736470438539982, 0.04728159308433533, 0.1090097576379776, 0.0520145446062088, -0.03384850546717644, -0.014384639449417591, -0.0853034183382988, 0.030237998813390732, -0.0038453228771686554, -0.08689557015895844, -0.052418481558561325, 0.039270658046007156, -0.010266931727528572, -0.009273683652281761, 0.04156997427344322, -0.04357776418328285, -0.005731069948524237, 0.052172742784023285, 0.018203599378466606, -0.06083904579281807, 0.00973336212337017, 3.0078944341474172e-33, -0.06034410744905472, -0.031546853482723236, -0.11622902750968933, -0.017279284074902534, 0.011896275915205479, -0.05959648638963699, 0.10950389504432678, 0.07411433756351471, 0.04621255770325661, -0.025568194687366486, 0.06442808359861374, -0.024135367944836617, -0.00587650528177619, -0.051410477608442307, -0.04512849077582359, 0.0020410697907209396, -0.007003061473369598, 0.011181077919900417, -0.031694743782281876, -0.03477846831083298, -0.030621474608778954, -0.02044971100986004, 0.018656816333532333, 0.04633662849664688, 0.007932517677545547, 0.012872006744146347, 0.06980501860380173, -0.09004001319408417, -0.08407110720872879, 0.02898353710770607, -0.038858719170093536, -0.07584064453840256, 0.040732987225055695, 0.035659309476614, -0.04737221449613571, -0.026499882340431213, -0.02933674119412899, -0.01779310218989849, -0.01494024507701397, -0.03671194985508919, 0.09893366694450378, -0.009532979689538479, 0.07039081305265427, 0.015385410748422146, 0.07718905061483383, -0.015047692693769932, 0.00022863065532874316, -0.08842094242572784, -0.05563977360725403, -0.05332956835627556, 0.02030525542795658, -0.07802538573741913, 0.012672576121985912, -0.014657142572104931, 0.15766403079032898, -0.01355989184230566, -0.09468979388475418, 0.03272276744246483, 0.07982304692268372, -0.044985998421907425, 0.05393318086862564, -0.021607384085655212, -0.021319959312677383, 0.03978852182626724, 0.000710231950506568, 0.0016917965840548277, 0.0032098875381052494, -0.03735421597957611, 0.06159235164523125, 0.036571700125932693, 0.00045910151675343513, 0.026729438453912735, 0.011829672381281853, 0.02677452750504017, -0.10964915156364441, 0.006754801608622074, 0.02283659763634205, 0.030078154057264328, 0.06346578896045685, 0.0024032755754888058, -0.10026469826698303, 0.03210790827870369, 0.029252532869577408, -0.08040166646242142, -0.04378439113497734, -0.05099250003695488, 0.045125190168619156, -0.0023321108892560005, 0.09414908289909363, 0.09147505462169647, -0.06495945155620575, -0.010947316884994507, -0.07419823855161667, 0.048521388322114944, 0.001964602619409561, 8.671430808184006e-32, -0.10421580821275711, 0.04137657210230827, -0.05154809728264809, 0.06539055705070496, -0.008182174526154995, 0.0731707438826561, 0.05082640424370766, -0.028680451214313507, 0.025863248854875565, -0.04756547138094902, 0.0650344043970108, -0.02232683263719082, -0.03386203572154045, 0.01726830005645752, -0.052221812307834625, -0.007909967564046383, -0.07694882154464722, 0.01064149197191, -0.014107920229434967, -0.04826205596327782, 0.014760001562535763, 0.0573519766330719, 0.0012691867304965854, -0.028465639799833298, 0.01619838923215866, 0.026481090113520622, -0.028032833710312843, 0.010864939540624619, -0.11809030920267105, -0.10202274471521378, 0.006584392860531807, -0.08273220807313919, -0.04936438798904419, -0.01964273862540722, 0.05319296941161156, -0.021788280457258224, -0.08899802714586258, 0.15315096080303192, 0.009921839460730553, 0.06971967965364456, -0.027276942506432533, -0.044518500566482544, -0.011287705041468143, 0.07088111340999603, 0.0017533499049022794, -0.06355107575654984, -0.025992969051003456, -0.02793414518237114, 0.04711928591132164, -0.0457187257707119, -0.01211791206151247, 0.06152697280049324, 0.0413329191505909, 0.06006138399243355, -0.018054986372590065, -0.00459559028968215, 0.005018439143896103, 0.008302233181893826, -0.09653858840465546, -0.0023958105593919754, 0.03819819167256355, 0.10401518642902374, -0.056376416236162186, -0.00435972586274147 ]
194 Chapter 9 1 Sketch the gra ph of y = cos θ in the interva l −180° < θ < 180°. 2 Sketch the gra ph of y = tan θ in the interva l −180° < θ < 180°. 3 Sketch the gra ph of y = sin θ in the interva l −90° < θ < 270°. 4 a cos 30° = √ __ 3 ___ 2 Use your graph in question 1 to find another value of θ for which cos θ = √ __ 3 ___ 2 b tan 60° = √ __ 3 . Use your graph in question 2 to find other values of θ for which: i tan θ = √ __ 3 ii tan θ = − √ __ 3 c sin 45° = 1 ___ √ __ 2 Use your graph in question 3 to find other values of θ for which: i sin θ = 1 ___ √ __ 2 ii sin θ = − 1 ___ √ __ 2 Exercise 9F Example 12 Sketch on separate sets of axes the graphs of: a y = 3 sin x, 0 < x < 360° b y = −tan θ, − 180° < θ < 180°b i y y = sin x x –11 –180° –90° 90° 180° 270° O ii Using the symmetry of the graph: sin (−150°) = − 0.5 sin 210° = − 0.5 x = −150° or 210° 9.6 Transforming trigonometric graphs You can use your knowledge of transforming graphs to transform the graphs of trigonometric functions. You need to be able to apply tra nslations and stretches to graphs of trigonometric functions. ← Chapter 4LinksThe line x = −90° is a line of symmetry. The line x = 90° is a line of symmetry. You could also find this value by working out sin (180° − (−30°)).
[ -0.013774562627077103, 0.021954413503408432, 0.020321208983659744, -0.04575701057910919, 0.015789175406098366, 0.0010870278347283602, -0.009663901291787624, 0.011556120589375496, -0.036655619740486145, -0.022408388555049896, 0.1343853771686554, -0.0396350733935833, -0.031283553689718246, 0.0651826560497284, 0.05603276565670967, -0.03637516871094704, -0.04896576702594757, 0.06357251852750778, -0.045087601989507675, 0.021370595321059227, 0.014056983403861523, -0.020348528400063515, -0.010551698505878448, -0.01924312859773636, 0.055339038372039795, -0.014704250730574131, 0.023004502058029175, 0.0014282624470070004, 0.011463657952845097, 0.03566993400454521, 0.012206188403069973, 0.015129980631172657, -0.039264630526304245, -0.07572042942047119, -0.007524328771978617, 0.006392594892531633, -0.011282610706984997, -0.043336573988199234, -0.005620043259114027, 0.019886590540409088, -0.01733092963695526, 0.030650608241558075, -0.008753491565585136, -0.0006178096518851817, 0.025323303416371346, -0.007546089589595795, -0.0845259502530098, 0.06392108649015427, 0.038982585072517395, 0.006727476604282856, 0.03834123909473419, 0.03505096584558487, -0.12077084183692932, -0.0006536071305163205, -0.03899640217423439, 0.08423002064228058, 0.03398600220680237, 0.010522112250328064, -0.023796183988451958, 0.04873783886432648, 0.07131294906139374, 0.07212190330028534, 0.022096876055002213, -0.006775640416890383, 0.00972311943769455, 0.024222683161497116, 0.014727393165230751, -0.08922231942415237, -0.0562838651239872, 0.02024528570473194, -0.05425892770290375, 0.03520281985402107, -0.03600919991731644, -0.09648699313402176, 0.01980682648718357, -0.02638428471982479, 0.004791092127561569, 0.025137020274996758, -0.10011798143386841, -0.06763431429862976, -0.03927111253142357, 0.014569142833352089, 0.06341320276260376, 0.06293752044439316, 0.024558063596487045, 0.0545109324157238, 0.040647510439157486, 0.0505647137761116, -0.013701074756681919, 0.018908029422163963, 0.04455611854791641, 0.050118960440158844, -0.07349160313606262, -0.02298678457736969, 0.043412379920482635, 0.007864194922149181, 0.024859672412276268, 0.023677315562963486, -0.018182193860411644, 0.023370753973722458, -0.09187141805887222, -0.04788107052445412, -0.020078809931874275, 0.003015328198671341, -0.008220984600484371, -0.020112911239266396, 0.0820067822933197, -0.005979476496577263, 0.030590882524847984, -0.021075941622257233, -0.06021541357040405, 0.03540843725204468, 0.06070386990904808, 0.018479954451322556, 0.0714641585946083, -0.000056893055443651974, 0.014126737602055073, 0.004012951627373695, -0.029492199420928955, 0.0027666003443300724, -0.014897279441356659, -0.045278530567884445, -0.01665053516626358, -0.032370857894420624, -0.09100525081157684, -0.048550039529800415, -0.08577211946249008, -0.017482968047261238, -0.008075572550296783, 0.07354327291250229, 0.04293549433350563, -0.08170368522405624, -0.029009129852056503, -0.04404190927743912, -0.10557697713375092, -0.11516370624303818, -0.026108259335160255, 0.0342462994158268, -0.019949639216065407, 0.017100248485803604, 0.05085109919309616, 0.040761806070804596, -0.039776768535375595, 0.07208124548196793, 0.010696090757846832, -0.04771437495946884, -0.09210928529500961, -0.02102120965719223, -0.04356449842453003, 0.00882366206496954, -0.02590486966073513, 0.03503338620066643, -0.013681100681424141, 0.05281059443950653, -0.008735653944313526, 0.0964917466044426, -0.09699670225381851, 0.06430207937955856, 0.029034163802862167, 0.038625530898571014, -0.02070939727127552, 0.06341202557086945, 0.018432259559631348, 0.05195141211152077, 0.05104295164346695, 0.05462469905614853, 0.07694471627473831, 0.006519792135804892, 0.01791696809232235, 0.08983614295721054, 0.092142254114151, 0.027649253606796265, -0.02580542117357254, 0.038625746965408325, 0.004034047480672598, 0.014964049682021141, 0.08011499047279358, 0.04424067586660385, -0.042644891887903214, -0.022860325872898102, 0.03434983640909195, -0.07067937403917313, 0.02507190965116024, 0.048818234354257584, 0.08116652071475983, -0.0447605699300766, -0.06997381150722504, 0.057115860283374786, -0.08659075945615768, 0.057791996747255325, 0.0028966981917619705, -0.024516843259334564, -0.03979399800300598, 0.12700794637203217, -0.10865333676338196, -0.07567213475704193, 0.0030291290022432804, -0.07361721247434616, -0.10233541578054428, 0.037054214626550674, 0.08239741623401642, -0.02344059757888317, -0.015425100922584534, -0.021006904542446136, 0.0453750379383564, 0.033560048788785934, -0.032695408910512924, -0.010507939383387566, -0.08106518536806107, -0.04439555108547211, 0.018098751083016396, -0.03640470653772354, -0.0817236602306366, -0.02044927515089512, 0.0795091986656189, -0.061217982321977615, 0.04806877300143242, -0.136053204536438, -0.12122119218111038, 0.029308145865797997, 0.012540943920612335, -0.021661700680851936, 0.014233428053557873, 1.4988170107518347e-33, 0.044986654072999954, 0.03892583027482033, -0.05332455411553383, -0.05236637592315674, -0.012550645507872105, -0.0406978614628315, 0.12829537689685822, 0.04279562458395958, 0.08112645149230957, -0.010154880583286285, 0.08469461649656296, -0.026343053206801414, 0.014241770841181278, -0.022867845371365547, 0.01864253357052803, 0.03333527594804764, 0.04266619682312012, 0.03029954992234707, 0.02189241722226143, 0.011634168215095997, -0.017672162503004074, -0.01791749894618988, -0.0034754325170069933, -0.00921077374368906, 0.09629792720079422, 0.0942680761218071, 0.06953480839729309, -0.11702138185501099, -0.11728455126285553, -0.03070583939552307, -0.01703716069459915, 0.03585091978311539, 0.011297321878373623, 0.017734382301568985, -0.07149440050125122, -0.0667756050825119, 0.02696566842496395, -0.09940291196107864, -0.08712349086999893, -0.06681522727012634, 0.03559375926852226, -0.03264321759343147, 0.04301105812191963, 0.029112940654158592, -0.005823133047670126, 0.0012114811688661575, 0.06938078999519348, -0.0010938127525150776, -0.1043105348944664, 0.0352100171148777, -0.04418257623910904, -0.028461134061217308, 0.02003553695976734, 0.03988225385546684, 0.1377650648355484, 0.03915879502892494, 0.005678133573383093, 0.015936626121401787, 0.04085727408528328, -0.08834778517484665, -0.022557364776730537, -0.012403140775859356, 0.04278791695833206, -0.004330860450863838, -0.05391749367117882, -0.01813020370900631, 0.027804236859083176, -0.008282621391117573, 0.10053509473800659, 0.000027243882868788205, 0.022491222247481346, 0.06392251700162888, -0.0008050940232351422, -0.05442081764340401, -0.041537098586559296, -0.03899817168712616, -0.05576230213046074, -0.0020474204793572426, 0.06970743089914322, -0.03960795700550079, -0.1154395043849945, 0.004757036920636892, -0.07554467022418976, -0.1113666370511055, 0.00336475414223969, -0.09613422304391861, -0.04852858558297157, 0.0028749520424753428, 0.14692261815071106, -0.04021970555186272, -0.030690807849168777, 0.03379296138882637, -0.117411769926548, -0.002770898165181279, 0.07226432114839554, 7.915123620336701e-32, -0.048471901565790176, -0.0027823448181152344, -0.009134135209023952, 0.09657192975282669, 0.028737293556332588, -0.013477427884936333, 0.0033751397859305143, -0.049794960767030716, -0.020608918741345406, -0.04714522510766983, 0.012149597518146038, 0.012506593950092793, -0.023965399712324142, 0.0023107128217816353, -0.09588353335857391, -0.018647730350494385, -0.014317742548882961, 0.04400547593832016, 0.02079388126730919, -0.05672689154744148, -0.03177200257778168, -0.0024827197194099426, 0.02079756185412407, 0.07471110671758652, 0.03137361258268356, 0.01868347078561783, -0.017068805173039436, -0.06441818922758102, -0.0334051176905632, -0.07959145307540894, 0.04699062183499336, -0.0566418431699276, 0.04334719106554985, -0.05446217209100723, 0.012432154268026352, -0.05892886593937874, -0.06876148283481598, 0.04603375121951103, -0.01538825873285532, 0.046574581414461136, -0.030467262491583824, 0.06151293218135834, -0.040322426706552505, 0.019486386328935623, 0.004258319735527039, -0.03544072434306145, 0.013624015264213085, -0.06876755505800247, 0.044271063059568405, 0.0032018423080444336, -0.02326214872300625, 0.0032896599732339382, -0.003068080637603998, 0.0372881218791008, 0.05947388708591461, -0.02256481908261776, 0.04094777628779411, -0.009166110306978226, -0.038399238139390945, 0.015436210669577122, 0.02437644638121128, 0.0958242416381836, -0.075734943151474, 0.04282368719577789 ]
195 Trigonometric ratios a y y = 3 sin x ×3 x –33 90° 180° 270° 360° ×3O b y y = –t/a.ss01n θ O x –180° –90° 90° 180°y = 3f(x) is a vertical stretch of the graph y = f(x) with scale factor 3. The intercepts on the x-axis remain unchanged, and the graph has a maximum point at (90°, 3) and a minimum point at (270°, −3). y = −f(x) is a reflection of the graph y = f(x) in the x-axis. So this graph is a reflection of the graph y = tan x in the x -axis. Example 13 Sketch on separate sets of axes the graphs of: a y = −1 + sin x, 0 < x < 360° b y = 1 _ 2 + cos x, 0 < x < 360° a y y = –1 + sin x –1x –2+1 90° 180° 270° 360°O b y y = + cos x –x 360° 270° 180° 90°11 1 21 2 1 21 21 2 OOy = f(x) − 1 is a translation of the graph y = f(x) by vector ( 0 −1 ) . The graph of y = sin x is translated by 1 unit in the negative y-direction. y = f(x) + 1 _ 2 is a translation of the graph y = f(x) by vector ( 0 1 _ 2 ) . The graph of y = cos x is translated by 1 _ 2 unit in the positive y-direction.
[ -0.03717261552810669, 0.014893529936671257, 0.03597526624798775, -0.05714454874396324, 0.014444485306739807, -0.02217547968029976, -0.02995366044342518, 0.0334157720208168, -0.04551146551966667, -0.0794769823551178, 0.0876179039478302, -0.062026966363191605, 0.006378043908625841, 0.05850754305720329, 0.08286263048648834, 0.07348917424678802, -0.04303446039557457, 0.023339420557022095, -0.026804393157362938, 0.005646036937832832, -0.03983920440077782, -0.0647464245557785, 0.016826115548610687, -0.07377588003873825, 0.03808736056089401, 0.01968950219452381, -0.029606593772768974, -0.03932255879044533, -0.01645631715655327, 0.0024487224873155355, -0.05762820690870285, 0.03408905491232872, -0.028147295117378235, -0.03856102377176285, 0.01936950907111168, -0.04665553197264671, -0.03422334045171738, 0.024933388456702232, 0.01612037979066372, 0.03859739005565643, -0.08214633911848068, 0.0984177514910698, -0.011901173740625381, 0.036590345203876495, 0.02882520854473114, -0.012343920767307281, -0.03094322420656681, 0.02813640981912613, 0.054572828114032745, -0.01258566603064537, -0.003670445643365383, -0.011457428336143494, -0.07758697122335434, -0.00962856039404869, 0.04420701786875725, 0.11161000281572342, 0.004077977035194635, -0.01864771731197834, -0.08590084314346313, -0.02571590431034565, 0.03574018552899361, 0.08027005940675735, 0.027036840096116066, 0.0010247929021716118, 0.004052374046295881, -0.0012842041905969381, -0.019514529034495354, -0.0806613564491272, 0.01561522763222456, 0.011783504858613014, -0.05274505168199539, 0.0479910634458065, -0.06339329481124878, -0.10530639439821243, 0.03463876619935036, -0.061026133596897125, -0.054255161434412, 0.011982953175902367, -0.08910684287548065, -0.05805153027176857, -0.08066093921661377, -0.013096524402499199, 0.07637292891740799, 0.05999365821480751, 0.06591787189245224, 0.10170895606279373, 0.06395087391138077, 0.06605273485183716, -0.0008655423298478127, 0.0676601305603981, -0.010625731199979782, 0.010311872698366642, -0.04847437143325806, -0.0322248600423336, -0.008442255668342113, -0.033020880073308945, -0.04935116693377495, -0.024279335513710976, -0.0037991234567016363, 0.06747300922870636, -0.003218467114493251, 0.02559445984661579, 0.039234891533851624, 0.053596656769514084, -0.08202987909317017, -0.010801346972584724, 0.10391072928905487, -0.026042619720101357, -0.029301753267645836, 0.016164302825927734, -0.07143578678369522, 0.07281140983104706, -0.003216569544747472, -0.026545850560069084, 0.09187786281108856, -0.08655247837305069, 0.028586767613887787, 0.0230646301060915, 0.03346069157123566, -0.05760783329606056, 0.045868583023548126, 0.03268197923898697, -0.02636473812162876, 0.007767010480165482, -0.032634343951940536, -0.011766968294978142, -0.0043939463794231415, 0.018730266019701958, 0.014290127903223038, 0.08507497608661652, 0.07589094340801239, -0.01756698079407215, -0.06821812689304352, -0.06395076960325241, -0.04301948845386505, -0.022751271724700928, -0.031200021505355835, 0.08608155697584152, 0.0009611652931198478, 0.021717770025134087, 0.018575701862573624, 0.10534130781888962, 0.03210245445370674, -0.023608867079019547, 0.01143711432814598, -0.0022702484857290983, -0.10309749096632004, -0.06770899891853333, -0.06373996287584305, -0.009862661361694336, 0.0804457738995552, 0.023589618504047394, -0.0403880849480629, 0.09141021221876144, -0.039989665150642395, 0.031127341091632843, -0.017630016431212425, -0.0324690155684948, -0.022834910079836845, 0.04173339158296585, -0.008817770518362522, 0.012295419350266457, -0.034352224320173264, 0.027711492031812668, 0.05153129622340202, 0.01699148118495941, 0.02756364829838276, 0.04055146500468254, 0.026503751054406166, 0.03472599759697914, 0.029147041961550713, -0.05734734609723091, 0.009291115216910839, 0.03732611984014511, 0.039828117936849594, 0.05633527785539627, 0.08817928284406662, 0.005332008469849825, -0.09333956241607666, -0.02445441484451294, 0.04742991551756859, -0.10197371244430542, -0.04381678253412247, 0.0399765782058239, 0.040376242250204086, -0.04409121349453926, -0.06896314769983292, -0.002580129075795412, -0.06029191613197327, -0.03197665512561798, 0.025381209328770638, -0.08109622448682785, -0.016386844217777252, -0.02886378951370716, -0.08253367990255356, -0.026317279785871506, 0.012019229121506214, 0.038551926612854004, -0.0809650868177414, 0.07674828916788101, 0.07696465402841568, -0.030530456453561783, 0.009810145013034344, 0.07176245003938675, 0.05033472925424576, 0.033492136746644974, -0.01591595821082592, 0.021470313891768456, -0.13690492510795593, -0.008279012516140938, -0.06686536222696304, -0.048649854958057404, -0.05394219234585762, 0.07595688849687576, 0.06116602197289467, -0.017537029460072517, 0.05390173941850662, -0.09622010588645935, -0.04497847706079483, 0.13392215967178345, 0.031224271282553673, -0.02429720014333725, 0.03677263855934143, 9.248059460075302e-34, 0.00857450906187296, -0.0674005076289177, -0.07963062077760696, -0.044365864247083664, -0.01040222030133009, -0.05196327716112137, 0.09600412100553513, 0.035146258771419525, 0.027958182618021965, -0.008202290162444115, 0.04336395859718323, -0.02303585410118103, -0.012721981853246689, -0.05808383598923683, -0.010199284180998802, -0.05645947530865669, 0.050613075494766235, -0.018075885251164436, -0.04572869464755058, -0.04547927528619766, 0.0296882726252079, -0.02367359772324562, 0.03000151365995407, 0.004843432921916246, -0.020382294431328773, 0.0694451630115509, 0.01697245053946972, -0.07621733844280243, -0.08126962929964066, -0.00857494305819273, -0.036438897252082825, -0.014455930329859257, 0.08715329319238663, 0.04995653033256531, -0.014777511358261108, -0.0008451658068224788, -0.030913131311535835, -0.003158536972478032, 0.02969639003276825, 0.01798970438539982, 0.03278424218297005, -0.004537722561508417, 0.07061512023210526, 0.04147003963589668, 0.013176683336496353, 0.018126780167222023, 0.024529365822672844, -0.03473865985870361, 0.011635124683380127, -0.035196490585803986, -0.014206265099346638, -0.09721966087818146, 0.04745703190565109, -0.006637461483478546, 0.1220579743385315, 0.005267569795250893, -0.11351892352104187, -0.019939517602324486, 0.10475557297468185, -0.012211764231324196, 0.051614418625831604, -0.012337593361735344, -0.05283223092556, 0.001252559944987297, 0.039163943380117416, 0.010624230839312077, -0.00880343560129404, -0.07586167752742767, 0.0479838028550148, 0.04162865877151489, -0.012406310066580772, 0.0631103590130806, -0.009054538793861866, -0.014194238930940628, -0.09957408159971237, -0.022186441347002983, 0.01953229308128357, 0.01529423426836729, 0.023397034034132957, 0.01165067683905363, -0.0812663659453392, 0.06696251779794693, -0.014163666404783726, -0.017353780567646027, -0.06370179355144501, -0.08641708642244339, 0.031122269108891487, 0.01169738732278347, 0.09346836805343628, 0.06404794007539749, 0.0406314879655838, 0.005592158995568752, -0.05409388244152069, -0.0026026966515928507, -0.0036821698304265738, 8.372495541803794e-32, -0.07869222015142441, 0.038973111659288406, -0.055515848100185394, 0.06686872988939285, -0.002358191879466176, 0.05948590487241745, 0.023843640461564064, -0.06054854393005371, 0.031511884182691574, -0.11796022206544876, 0.025559566915035248, 0.07215284556150436, -0.06904610991477966, 0.02515260875225067, -0.09968757629394531, -0.01045483723282814, -0.06033896654844284, -0.003449756884947419, 0.0240619033575058, -0.08508487790822983, -0.0774078294634819, 0.09479904174804688, 0.01715593785047531, -0.02179979905486107, 0.04275381937623024, 0.01326663512736559, -0.05554841831326485, -0.004173235036432743, -0.11899679899215698, -0.03443443775177002, 0.0420234352350235, -0.024531643837690353, -0.07920851558446884, -0.018658850342035294, 0.0208243690431118, -0.006337879691272974, -0.08020353317260742, 0.06112777814269066, -0.029170753434300423, 0.0937320813536644, 0.015705643221735954, -0.024534428492188454, -0.02377384528517723, 0.04594413936138153, -0.003790609072893858, -0.06362750381231308, -0.06490716338157654, -0.0724451094865799, 0.0754941776394844, -0.03379831835627556, 0.0162937194108963, 0.0718320980668068, 0.016864268109202385, 0.0036309666465967894, 0.024722037836909294, -0.03696189820766449, -0.004085286054760218, -0.017739398404955864, -0.08336116373538971, 0.024203171953558922, 0.008923694491386414, 0.15865187346935272, -0.0679560974240303, -0.014594403095543385 ]
196 Chapter 9 Example 14 Sketch on separate sets of axes the graphs of: a y = tan (θ + 45°), 0 < θ < 360° b y = cos (θ − 90°), −360° < θ < 360° y = f(θ + 45°) is a translation of the graph y = f(θ ) by vector ( −45° 0 ) . Remember to translate any asymptotes as well. y = f(θ − 90°) is a translation of the graph y = f(θ ) by vector ( 90° 0 ) .a y Oy = t/a.ss01n (θ + /four.ss015°) /four.ss015° θ1 /four.ss015° 135° 225° 315° 360° b y θ O 90°90° –90° –180° –270° –360° 180° 270° 360°1 –1y = cos (θ – 90°) The graph of y = cos θ is translated by 90° to the right. Note that this is exactly the same curve as y = sin θ , so another property is that cos (θ − 90°) = sin θ .The graph of y = tan θ is translated by 45° to the left. The asymptotes are now at θ = 45° and θ = 225°. The curve meets the y -axis where θ = 0 so y = 1. Example 15 Sketch on separate sets of axes the graphs of: a y = sin 2x , 0 < x < 360° b y = cos θ __ 3 , −540° < θ < 540° c y = tan (− x), −360° < x < 360° a y Oy = sin 2x x90° 180° 270° 360°1 –1y = f(2x) is a horizontal stretch of the graph y = f(x) with scale factor 1 _ 2 . The graph of y = sin x is str etched horizontally with scale factor 1 _ 2 The period is now 180° and tw o complete ‘waves’ are seen in the interval 0 < x < 360°.
[ -0.03422199934720993, 0.00399892870336771, -0.014300178736448288, -0.09377742558717728, -0.020009230822324753, 0.026830697432160378, -0.05524986609816551, 0.016045426949858665, -0.022537661716341972, 0.0614582784473896, 0.029121579602360725, 0.016780393198132515, 0.03480800613760948, 0.08333983272314072, -0.07851697504520416, 0.02964300662279129, -0.11668170243501663, 0.05350080505013466, 0.006222947500646114, -0.02647232823073864, 0.019284237176179886, -0.003775052260607481, 0.014658280648291111, -0.10809962451457977, 0.03381004184484482, -0.02485646866261959, -0.001453879289329052, -0.02084740437567234, -0.008575948886573315, -0.025474512949585915, 0.019049713388085365, 0.02317008748650551, -0.07749782502651215, -0.010276793502271175, -0.02384604886174202, 0.0033660184126347303, 0.00010655324877006933, -0.024039791896939278, 0.05799756199121475, 0.031567517668008804, -0.038842856884002686, 0.06829730421304703, -0.012465654872357845, 0.03906884416937828, 0.044509049504995346, 0.03970429673790932, -0.06555505841970444, 0.03361475467681885, 0.01688518188893795, 0.01904635690152645, 0.02348509058356285, 0.014661919325590134, -0.10338766872882843, -0.01795937307178974, 0.029008865356445312, 0.08184115588665009, 0.04534626379609108, -0.03441230207681656, -0.035980548709630966, -0.02748006582260132, 0.0629129558801651, 0.07650722563266754, -0.0054886299185454845, -0.008015478029847145, 0.011333589442074299, 0.007470505312085152, 0.07059217244386673, -0.05565449222922325, -0.07542534172534943, 0.12374646216630936, -0.11999055743217468, 0.03318563848733902, -0.023102862760424614, -0.04896938055753708, -0.009839633479714394, -0.0887392908334732, 0.04565725103020668, 0.11643809825181961, -0.07746977359056473, -0.09351955354213715, -0.1173403337597847, 0.0020049139857292175, 0.04239913076162338, 0.05558854714035988, 0.004174717236310244, 0.03851458057761192, 0.04847084358334541, 0.02831137925386429, 0.05589140206575394, -0.010604055598378181, -0.03458767011761665, -0.012897784821689129, -0.02090214006602764, -0.05518313869833946, 0.08777915686368942, -0.027782831341028214, 0.02031783014535904, -0.0061684115789830685, 0.09223069995641708, 0.07106191664934158, -0.008967340923845768, 0.003682421986013651, 0.018774719908833504, 0.07344482839107513, -0.026613855734467506, -0.023343294858932495, 0.04914809390902519, -0.04523377865552902, -0.060907505452632904, -0.046827156096696854, -0.04851484298706055, -0.014950491487979889, -0.00247209588997066, 0.03180605545639992, 0.062468647956848145, -0.10502444207668304, -0.007198418490588665, 0.023714223876595497, 0.04237796366214752, 0.01587204448878765, -0.007345450110733509, 0.028291691094636917, -0.018250031396746635, 0.03181089088320732, -0.10531355440616608, -0.07168599963188171, -0.053697969764471054, -0.03312739357352257, 0.022409124299883842, 0.015466169454157352, 0.0967734083533287, -0.04403873160481453, 0.023502372205257416, -0.05269666016101837, -0.0010345018235966563, 0.01864907331764698, -0.0013597817160189152, 0.08026062697172165, -0.04193276911973953, 0.06189379468560219, 0.05130220949649811, 0.1441800445318222, 0.08571884781122208, 0.051352377980947495, 0.026648150756955147, -0.03739433363080025, -0.07698141783475876, 0.011558985337615013, 0.01070950273424387, 0.0955243706703186, -0.0022422780748456717, 0.008136761374771595, -0.039066821336746216, 0.12757454812526703, -0.026491710916161537, 0.09357613325119019, -0.048038750886917114, -0.0028739983681589365, -0.004134309943765402, 0.026200704276561737, -0.011436422355473042, 0.05772131308913231, 0.05084151029586792, -0.0007009755354374647, 0.03486179932951927, -0.009549330919981003, -0.02742638625204563, 0.03665035963058472, -0.014179034158587456, 0.0016799303703010082, 0.007682592608034611, -0.04155020788311958, 0.019400889053940773, 0.10621952265501022, -0.017527373507618904, 0.059687089174985886, 0.04650896415114403, 0.01625465601682663, -0.05824990198016167, -0.05802933871746063, 0.05728058144450188, -0.09306859225034714, 0.008266197517514229, 0.04511970654129982, -0.007265882100909948, -0.04720321670174599, -0.040352463722229004, 0.028181349858641624, -0.047168828547000885, 0.01618667133152485, 0.037441663444042206, -0.07670211791992188, 0.01431239489465952, 0.04643099009990692, -0.10420074313879013, -0.0034074652940034866, 0.023340290412306786, 0.0069123231805861, -0.05416010692715645, 0.02387298457324505, -0.005971849896013737, 0.03413573279976845, 0.012574524618685246, 0.016109369695186615, -0.03046564757823944, -0.001477526966482401, -0.008357622660696507, -0.13383148610591888, -0.11941058933734894, 0.0540466271340847, -0.06313110888004303, -0.029955314472317696, -0.04661322012543678, -0.0045389761216938496, 0.036023348569869995, -0.03217760846018791, 0.09457742422819138, -0.08023616671562195, -0.08661771565675735, 0.056214120239019394, -0.021404296159744263, -0.06839243322610855, 0.012714722193777561, 3.0662575449947515e-33, -0.06639663130044937, 0.031130295246839523, -0.11175385862588882, -0.01926497183740139, -0.04062783718109131, -0.12236598134040833, 0.12761178612709045, 0.06733547896146774, 0.03938267379999161, -0.017376119270920753, -0.0169697143137455, -0.033002983778715134, -0.10367492586374283, -0.004224881064146757, -0.012512384913861752, -0.07965327054262161, 0.04515901952981949, -0.021334467455744743, -0.007648644968867302, -0.04753232002258301, 0.012695305980741978, -0.015491901896893978, 0.038421422243118286, -0.0017114391084760427, 0.023030070587992668, 0.016897231340408325, 0.0622992180287838, -0.03547941893339157, -0.1256837099790573, 0.010822172276675701, -0.09587464481592178, -0.0029056603088974953, 0.03834984824061394, 0.04065863788127899, -0.04166802763938904, 0.025570999830961227, -0.012143900617957115, -0.01600594073534012, -0.024073351174592972, -0.06541617214679718, 0.0332406610250473, 0.04540741443634033, 0.07227706164121628, -0.006893929559737444, 0.04650348052382469, 0.028533870354294777, 0.06053975224494934, 0.10340698063373566, -0.09507464617490768, -0.04264136031270027, -0.024710331112146378, -0.10599042475223541, 0.06749045848846436, 0.0035569272004067898, 0.09096866101026535, -0.04371808096766472, -0.03353279083967209, -0.09148990362882614, 0.0900527834892273, -0.035841263830661774, -0.05461210012435913, -0.0018230858258903027, -0.038044270128011703, 0.08453121781349182, 0.012601553462445736, -0.059783414006233215, 0.0014132978394627571, -0.03264891728758812, 0.07559654861688614, -0.03529749810695648, -0.0030015292577445507, 0.002929955953732133, -0.00461376179009676, -0.08444813638925552, -0.06202372908592224, -0.019623279571533203, 0.0679561123251915, -0.026328347623348236, 0.034157369285821915, -0.031243620440363884, -0.0473506860435009, -0.0284029021859169, -0.00742072518914938, 0.002523292088881135, 0.015377085655927658, -0.07166337221860886, -0.01677425391972065, 0.07751443237066269, 0.07771829515695572, -0.0006667230627499521, 0.029716122895479202, 0.013735787011682987, -0.07275253534317017, 0.04370235279202461, 0.12709453701972961, 7.591074504898345e-32, -0.060617946088314056, 0.0006340359686873853, -0.042515646666288376, 0.07593101263046265, 0.021554680541157722, 0.01104656420648098, 0.03858267515897751, -0.07051189988851547, 0.038163844496011734, -0.031288132071495056, -0.01102858129888773, 0.07352288067340851, -0.01217136811465025, -0.01934080198407173, 0.006750863511115313, -0.03149735927581787, 0.0040643601678311825, 0.026541205123066902, 0.04062101989984512, -0.07335726171731949, -0.052692532539367676, 0.013981414958834648, -0.04057500138878822, 0.03838104382157326, -0.05157109349966049, 0.04827631637454033, 0.009003281593322754, 0.012615660205483437, -0.007025292608886957, -0.038570959120988846, -0.044861260801553726, 0.0032742738258093596, 0.0719216987490654, -0.0186188742518425, -0.006411239039152861, -0.09493625909090042, -0.015186771750450134, 0.06098880618810654, 0.03062671236693859, -0.026595940813422203, 0.010746294632554054, 0.02270568534731865, 0.007944386452436447, -0.010380547493696213, -0.005945509299635887, -0.010825487785041332, 0.03543814644217491, 0.010181951336562634, 0.039554744958877563, -0.026534445583820343, -0.04291272908449173, 0.08347738534212112, 0.04851244390010834, 0.01574290171265602, -0.008971466682851315, 0.006629273761063814, 0.02919868938624859, -0.002161071402952075, -0.021386483684182167, 0.01691245660185814, -0.04465184733271599, 0.06365416944026947, -0.08910586684942245, -0.028930416330695152 ]
197 Trigonometric ratios b y y = cos 1 –1θ180° –180° 360° –360° –5/four.ss010° 5/four.ss010°θ 3 O c y xy = t/a.ss01n (–x) O 360° 180° –360° –180°y = f( 1 _ 3 θ ) is a horizontal stretch of the graph y = f(θ ) with scale factor 3. y = f(− x) is a reflection of the graph y = f(x) in the y-axis.The graph of y = cos θ is str etched horizontally with scale factor 3. The period of cos θ __ 3 is 1080° and only one complete wave is seen while −540 < θ < 540°. The curve crosses the θ-axis at θ = ±270°. The graph of y = tan (−x) is refl ected in the y-axis. In this case the asymptotes are all vertical so they remain unchanged. 1 Write down i the maximum value, and ii the minimum value, of the following expressions, and in each case giv e the smallest positive (or zero) value of x for which it occurs. a cos x b 4 sin x c cos (− x) d 3 + sin x e −sin x f sin 3x 2 Sketch, on the same set of ax es, in the interval 0 < θ < 360°, the graphs of cos θ and cos 3θ. 3 Sketch, on separa te sets of axes, the graphs of the following, in the interval 0 < θ < 360°. Give the coordinates of points of intersection with the axes, and of maximum and minimum points where appropriate. a y = −cos θ b y = 1 _ 3 sin θ c y = sin 1 _ 3 θ d y = tan (θ − 45°) 4 Sketch, on separa te sets of axes, the graphs of the following, in the interval −180° < θ < 180°. Give the coordinates of points of intersection with the axes, and of maximum and minimum points where appropriate. a y = −2 sin θ b y = tan (θ + 180°) c y = cos 4θ d y = sin (− θ ) 5 Sketch, on separa te sets of axes, the graphs of the following in the interval −360° < θ < 360°. In each case give the periodicity of the function.a y = sin 1 _ 2 θ b y = − 1 _ 2 cos θ c y = tan (θ − 90°) d y = tan 2θExercise 9G Plot transformations of tri gonometric graphs using GeoGebra.Online
[ -0.07932998985052109, -0.0006660960498265922, 0.05859466642141342, -0.0403473861515522, -0.025980662554502487, -0.03418593853712082, -0.011075307615101337, 0.017638063058257103, -0.028226107358932495, -0.09302019327878952, 0.07445651292800903, -0.0727209821343422, 0.031033378094434738, 0.06091585382819176, 0.05105890706181526, 0.02689293958246708, -0.049075521528720856, 0.000983566977083683, -0.009258316829800606, -0.003075004555284977, -0.04048541933298111, -0.03416749835014343, 0.011278219521045685, -0.026626981794834137, 0.051051460206508636, 0.016462579369544983, -0.016070283949375153, -0.04573462903499603, -0.0053101107478141785, -0.019325098022818565, -0.06325310468673706, 0.017077920958399773, -0.02047257497906685, -0.02547115832567215, 0.01249290443956852, -0.0545036643743515, 0.01260767225176096, 0.018189236521720886, 0.0010546687990427017, 0.05317627638578415, -0.0810035839676857, 0.07855503261089325, 0.029120365157723427, 0.06011504679918289, 0.019064443185925484, -0.006718993186950684, -0.08400692045688629, 0.03180330619215965, 0.059818681329488754, 0.004505655262619257, -0.02398882806301117, 0.008691041730344296, -0.11716724932193756, -0.05270583927631378, 0.029690662398934364, 0.12725014984607697, 0.012201257981359959, -0.032763946801424026, -0.06480636447668076, -0.04877103865146637, 0.014039342291653156, 0.06902535259723663, -0.005535663105547428, -0.016458576545119286, -0.02025594748556614, 0.017797620967030525, -0.005668883677572012, -0.10858102142810822, 0.013119528070092201, 0.0036997890565544367, -0.055466290563344955, 0.03243480622768402, -0.06902901083230972, -0.10086514800786972, 0.04832584783434868, -0.07186532765626907, -0.04523231089115143, 0.010489184409379959, -0.0968238115310669, -0.07145918160676956, -0.10204935073852539, -0.011464291252195835, 0.06930350512266159, 0.05456868186593056, 0.04670943319797516, 0.08772958070039749, 0.08053644001483917, 0.09060147404670715, -0.011891398578882217, 0.06153116747736931, -0.014579126611351967, -0.020687991753220558, -0.025115951895713806, -0.04530075192451477, -0.015805715695023537, -0.0012678044149652123, -0.011631461791694164, -0.02071981132030487, 0.01522330567240715, 0.07247309386730194, 0.009571361355483532, -0.022749517112970352, 0.06913874298334122, 0.055548906326293945, -0.08704910427331924, -0.032454606145620346, 0.07136817276477814, -0.06627719104290009, -0.00226617231965065, -0.016528092324733734, -0.05672174692153931, 0.12086822092533112, 0.007517331279814243, -0.04088796675205231, 0.08720003813505173, -0.062498025596141815, 0.03381488099694252, 0.013576318509876728, 0.026800569146871567, -0.037397634238004684, 0.03073134832084179, 0.06039552018046379, 0.0012059863656759262, 0.02295856736600399, -0.028991661965847015, -0.02813435159623623, 0.01375842746347189, 0.018557140603661537, -0.016911255195736885, 0.0777713805437088, 0.09593236446380615, 0.0190136581659317, -0.019298551604151726, -0.034888412803411484, -0.03756918013095856, -0.02811424247920513, 0.0020099561661481857, 0.07791875302791595, -0.017734745517373085, 0.016700079664587975, 0.0126075129956007, 0.09918756037950516, 0.010282918810844421, -0.039330340921878815, 0.012661290355026722, -0.008430015295743942, -0.11964019387960434, -0.07019742578268051, -0.015199859626591206, 0.010710246860980988, 0.09031657129526138, 0.03423808887600899, -0.034512072801589966, 0.06787995994091034, -0.06048014760017395, 0.06329396367073059, -0.016930701211094856, -0.029432421550154686, 0.005016024224460125, 0.030316907912492752, -0.0037923722993582487, 0.004560777451843023, -0.007301462348550558, 0.028886359184980392, 0.06995353102684021, 0.023681962862610817, 0.00023215499822981656, 0.0246193315833807, 0.007220437750220299, 0.04936770349740982, 0.02950022928416729, -0.07452290505170822, 0.0502568744122982, 0.025768514722585678, 0.0377078577876091, 0.04471134766936302, 0.054542094469070435, 0.011201576329767704, -0.11717162281274796, -0.03709295392036438, 0.007118247915059328, -0.06316588073968887, -0.008097991347312927, 0.04521426185965538, 0.036128412932157516, -0.06980611383914948, -0.09852561354637146, -0.004945070948451757, -0.05171941593289375, -0.02388855814933777, 0.013838219456374645, -0.1055106669664383, -0.0037634759210050106, -0.009113376028835773, -0.04648081585764885, -0.005600851494818926, 0.011506718583405018, 0.007162644062191248, -0.08516829460859299, 0.08712209761142731, 0.04101363196969032, -0.0531303808093071, 0.004254304338246584, 0.08543547242879868, 0.06656063348054886, 0.031469035893678665, -0.02360088750720024, 0.028643136844038963, -0.13264034688472748, -0.032647229731082916, -0.05301608145236969, -0.060870613902807236, -0.03451390191912651, 0.038765426725149155, 0.04987438768148422, -0.05714453384280205, 0.08177218586206436, -0.07372007519006729, -0.020777147263288498, 0.0969594419002533, 0.006595233920961618, -0.025376498699188232, 0.004938289988785982, -2.7471209306510778e-33, -0.03007955104112625, -0.04157938435673714, -0.07697749137878418, -0.00766849797219038, 0.0006661199149675667, -0.028524471446871758, 0.11560654640197754, 0.02319643273949623, 0.03527342155575752, -0.017894014716148376, 0.060457345098257065, -0.0279549490660429, -0.01802937313914299, -0.0649871677160263, -0.021583396941423416, -0.06099342182278633, 0.052393730729818344, 0.018849961459636688, -0.058131761848926544, -0.019002757966518402, 0.04771465063095093, -0.012042250484228134, 0.031210098415613174, -0.00933059025555849, -0.02113739401102066, 0.07379648089408875, 0.02844875678420067, -0.07353159040212631, -0.09745144844055176, -0.011075693182647228, -0.03599877282977104, -0.02129248157143593, 0.11346438527107239, 0.047255247831344604, -0.0634201169013977, -0.01625250093638897, -0.05258800461888313, -0.027796979993581772, 0.005013616755604744, 0.002430940279737115, 0.05851518735289574, -0.0013301956932991743, 0.04274321720004082, 0.029445204883813858, 0.05064256861805916, -0.022287821397185326, -0.0050252890214324, -0.03520520403981209, 0.009659355506300926, -0.03650408983230591, -0.017193226143717766, -0.07004542648792267, 0.02287856675684452, -0.010594612918794155, 0.11206155270338058, 0.019787583500146866, -0.10317409038543701, -0.0318937823176384, 0.12320943176746368, -0.04917486757040024, 0.033517636358737946, -0.015699053183197975, -0.05841875821352005, 0.002455177018418908, 0.026521537452936172, -0.03178371116518974, -0.0028441871982067823, -0.09099256247282028, 0.03939996287226677, 0.06265885382890701, 0.02042597346007824, 0.047977667301893234, 0.005909112747758627, 0.010541862808167934, -0.11481339484453201, -0.010138415731489658, 0.0194130577147007, -0.016325607895851135, 0.018670640885829926, -0.00791195034980774, -0.08282479643821716, 0.08448954671621323, 0.016224926337599754, 0.00912030041217804, -0.050067078322172165, -0.08038097620010376, 0.05038660764694214, -0.0014450493035838008, 0.0928710550069809, 0.062019478529691696, -0.010601391084492207, 0.011135164648294449, -0.0464102067053318, 0.015991175547242165, 0.013094878755509853, 9.18037460555755e-32, -0.06397723406553268, 0.03629520907998085, -0.02932121977210045, 0.09091616421937943, -0.006078761536628008, 0.08860761672258377, 0.04065554589033127, -0.04585536569356918, 0.05500667542219162, -0.11468092352151871, 0.03803447633981705, 0.06810968369245529, -0.07232093811035156, 0.02994760125875473, -0.09606010466814041, -0.016248667612671852, -0.06635061651468277, 0.035264842212200165, 0.00933793280273676, -0.020319471135735512, -0.03348057344555855, 0.0364048145711422, 0.014990689232945442, -0.01616618223488331, 0.05576135590672493, 0.03782150521874428, -0.08589977025985718, -0.023686310276389122, -0.12603966891765594, -0.049410175532102585, 0.06201046705245972, -0.05762021243572235, -0.0363929346203804, -0.02957543358206749, 0.019936447963118553, -0.042153943330049515, -0.07033619284629822, 0.058959461748600006, -0.020584966987371445, 0.09422409534454346, -0.01008945144712925, -0.025532735511660576, -0.013356246054172516, 0.06992483884096146, -0.016030142083764076, -0.06360813975334167, -0.06337269395589828, -0.08043205738067627, 0.05095496028661728, -0.02614245004951954, 0.00919575709849596, 0.04032714292407036, -0.006465945392847061, 0.025455061346292496, 0.04567362368106842, -0.01814649999141693, -0.010823126882314682, 0.001376566244289279, -0.049607180058956146, 0.050991229712963104, -0.007484171073883772, 0.14096830785274506, -0.0512644425034523, -0.03964712843298912 ]
198 Chapter 9 6 a By considering the graphs of the functions, or otherwise, verify that: i cos θ = cos (− θ ) ii sin θ = −sin (− θ ) iii sin (θ − 90°) = −cos θ. b Use the results in a ii and iii to show that sin (90° − θ ) = cos θ. c In Example 14 you saw tha t cos (θ − 90°) = sin θ. Use this result with part a i to show that cos (90° − θ ) = sin θ. 7 The graph sho ws the curve y θ 90° 180° 270° 360° –90° –11 –180° –270° –360°0 y = cos (x + 30°), −360° < x < 360°. a Write down the coor dinates of the points where the curve crosses the x-axis. (2 marks) b Find the coordinates of the point where the curve crosses the y-axis. (1 mark) 8 The graph sho ws the curve with equation y θ 120° 300° –60° –11 –240°0 y = sin (x + k), −360° < x < 360°, where k is a constant. a Find one possible va lue for k. (2 marks) b Is there more than one possib le answer to part a? Give a reason for your answer. (2 marks) 9 The variation in the depth of water in a rock pool can be modelled using the function y = sin (30t )°, where t is the time in hours and 0 < t < 6. a Sketch the function for the gi ven interval. (2 marks) b If t = 0 r epresents midday, during what times will the rock pool be at least half full? (3 marks)P E E/P E/P Give non-exact answers to 3 significant figures. 1 Triangle ABC has area 10 cm2. AB = 6 cm, BC = 8 cm and ∠ABC is obtuse. Find: a the size of ∠ABC b the length of AC 2 In each triangle below , find the size of x and the area of the triangle. 40°x 80°xx2.4 cm6 cm 5 cm5 cm 3 cm1.2 cm 3 cmabcMixed Exercise 9
[ -0.04000534489750862, 0.09055008739233017, 0.027374915778636932, -0.0579155832529068, -0.0694705992937088, 0.024977032095193863, -0.03142930194735527, 0.009051090106368065, -0.0506678931415081, -0.05797279253602028, 0.031152019277215004, 0.018195537850260735, 0.03437882289290428, 0.08579540252685547, 0.0647171288728714, -0.017838718369603157, -0.05781736597418785, 0.08757585287094116, 0.02306676097214222, -0.06092160940170288, -0.06823355704545975, 0.04626758024096489, -0.04223436862230301, -0.05217374861240387, 0.045880623161792755, -0.01755025051534176, 0.04008691757917404, 0.007549609523266554, 0.03524216264486313, -0.03330228105187416, 0.01960832066833973, -0.010624423623085022, -0.09610291570425034, -0.055485691875219345, 0.012582466006278992, -0.024755623191595078, -0.024358121678233147, -0.03967105969786644, 0.06330164521932602, -0.014826413244009018, -0.028712445870041847, 0.050938963890075684, 0.07663974910974503, 0.04877244308590889, 0.0058810212649405, 0.061118870973587036, -0.046143289655447006, 0.05867866426706314, -0.005848156288266182, -0.024683356285095215, -0.006845536176115274, 0.02739007957279682, -0.13387173414230347, -0.02399393357336521, 0.0442926250398159, 0.04824313148856163, 0.020960193127393723, 0.005423102993518114, -0.049520302563905716, -0.029135605320334435, 0.09882620722055435, 0.06801778823137283, -0.07838200777769089, 0.028090422973036766, -0.05356845632195473, 0.05871128290891647, 0.055219680070877075, -0.09603417664766312, -0.019706644117832184, 0.06593615561723709, -0.03555556386709213, 0.06105799600481987, -0.05049130693078041, -0.021189380437135696, -0.004618608858436346, 0.020004553720355034, -0.040536049753427505, 0.08063781261444092, -0.07314666360616684, -0.04987847059965134, -0.02292906865477562, -0.06255409121513367, 0.031008118763566017, 0.058031272143125534, 0.06417686492204666, 0.07424440234899521, 0.02639666199684143, 0.06628382205963135, 0.03115818277001381, -0.008563281036913395, 0.03020903281867504, -0.06817122548818588, 0.023235611617565155, -0.03702748194336891, 0.029908068478107452, 0.05951526761054993, -0.04091927781701088, 0.08763103187084198, 0.03737039491534233, 0.0593821220099926, -0.05862266570329666, -0.05302084609866142, 0.024247145280241966, 0.061209164559841156, 0.014677166938781738, 0.004390696994960308, 0.08718745410442352, -0.01811537891626358, -0.018294252455234528, -0.014073695056140423, -0.04369575157761574, 0.0706385001540184, -0.05110049620270729, -0.016898948699235916, -0.003669744823127985, -0.07950600981712341, -0.006884990260004997, 0.014780181460082531, 0.012450129725039005, 0.010640924796462059, -0.027806034311652184, 0.00929944310337305, 0.015770411118865013, 0.03955141082406044, -0.07133167237043381, -0.049277596175670624, 0.06076758727431297, -0.024284200742840767, -0.002006084658205509, 0.0717230886220932, 0.013368029147386551, -0.0055028293281793594, -0.034293919801712036, -0.037068966776132584, -0.02723166160285473, -0.03333725407719612, -0.010010450147092342, 0.13032954931259155, -0.018407544121146202, 0.02208798937499523, 0.013556521385908127, 0.061462875455617905, -0.010484183207154274, 0.0772605910897255, 0.0042191618122160435, -0.09823018312454224, -0.07420117408037186, -0.031787604093551636, 0.016233256086707115, 0.024317191913723946, 0.07026135921478271, -0.025537502020597458, -0.02335328236222267, 0.053989507257938385, 0.015630478039383888, 0.0392315536737442, -0.05805537849664688, -0.008978454396128654, 0.0651615783572197, -0.003688646014779806, -0.045520491898059845, 0.11937611550092697, 0.03723127394914627, 0.003382818540558219, 0.06353163719177246, 0.0010988515568897128, 0.016001567244529724, -0.014013550244271755, 0.03414565697312355, 0.009909228421747684, -0.009721003472805023, -0.06491489708423615, 0.03636246919631958, 0.08856230229139328, 0.006704725790768862, -0.030328400433063507, 0.054860807955265045, -0.061399027705192566, -0.041421905159950256, -0.05758203938603401, 0.034798458218574524, -0.11921922862529755, 0.03925185650587082, -0.06416726857423782, 0.06602757424116135, 0.011372191831469536, -0.121536023914814, 0.022685207426548004, -0.07370784878730774, -0.006444431841373444, 0.00879889540374279, -0.07017394155263901, -0.03320416435599327, -0.034973740577697754, -0.11108952760696411, -0.045329030603170395, 0.012808943167328835, -0.03809305280447006, -0.08970043808221817, 0.02815956249833107, 0.0895981565117836, -0.010154985822737217, 0.04386793449521065, -0.006196042988449335, -0.029380057007074356, -0.010176688432693481, 0.027296634390950203, -0.03527453914284706, -0.06662241369485855, -0.014262208715081215, -0.014047100208699703, -0.014112879522144794, -0.0758855938911438, -0.006713059265166521, 0.036977171897888184, -0.08126145601272583, 0.09074274450540543, -0.024526113644242287, -0.0619724802672863, 0.09649662673473358, -0.07628105580806732, 0.015457694418728352, -0.04427225515246391, -6.368733618523119e-33, -0.09838826954364777, 0.020746327936649323, -0.06082765385508537, -0.02842286415398121, -0.032910920679569244, 0.0013072462752461433, 0.11624577641487122, 0.0006597769679501653, 0.02183864638209343, 0.03280703350901604, 0.01932423934340477, -0.06658732146024704, -0.14025430381298065, -0.031115790829062462, -0.039102960377931595, -0.039794083684682846, 0.022671498358249664, -0.020463453605771065, -0.00374785577878356, -0.03220006078481674, 0.03103792294859886, -0.006700611207634211, -0.024877039715647697, 0.026451200246810913, 0.018188947811722755, -0.0013037689495831728, 0.07332802563905716, -0.10236028581857681, -0.004833852872252464, -0.012692860327661037, -0.017013493925333023, 0.05583237111568451, 0.05495830997824669, 0.033954937011003494, -0.034327514469623566, 0.04060976579785347, 0.030302749946713448, -0.025145865976810455, -0.012661384418606758, -0.05237090215086937, 0.12080331146717072, 0.01806717738509178, -0.010115629993379116, -0.025652233511209488, 0.04363391548395157, -0.02923646569252014, 0.020393164828419685, -0.0160992369055748, -0.11693697422742844, -0.01748482882976532, -0.024519532918930054, -0.09299878776073456, 0.07257451117038727, 0.014058197848498821, 0.1294037401676178, 0.016361407935619354, -0.026948802173137665, -0.10905198007822037, 0.06823098659515381, -0.04478940740227699, -0.028386734426021576, -0.0036899305414408445, -0.0619954988360405, 0.05155079439282417, 0.04888443276286125, -0.1153695359826088, -0.03075716271996498, -0.030346928164362907, 0.10095871984958649, -0.0429718904197216, 0.010973110795021057, 0.03609113767743111, -0.01817665435373783, -0.09177947044372559, -0.08657636493444443, -0.04942628741264343, -0.08026357740163803, -0.05433667078614235, 0.02499881014227867, -0.05573296919465065, 0.06488737463951111, 0.005194961559027433, 0.026086559519171715, -0.05813077837228775, -0.03518209978938103, -0.05130579322576523, 0.012255655601620674, 0.014745526947081089, 0.04556313529610634, 0.04493054375052452, -0.02665441669523716, 0.0034673851914703846, -0.011127348057925701, -0.05071338638663292, 0.11341780424118042, 1.0102545221800231e-31, -0.0641489177942276, -0.029104851186275482, -0.025373589247465134, 0.09184762090444565, 0.014206410385668278, -0.015186809003353119, 0.06525962054729462, -0.04099636897444725, 0.06366956233978271, -0.0433681346476078, 0.06410788744688034, 0.07740787416696548, -0.03470273315906525, -0.056096237152814865, 0.035118218511343, 0.017132172361016273, -0.06408260762691498, 0.018398765474557877, 0.01329442672431469, -0.0411204919219017, -0.06042609363794327, 0.0013113819295540452, 0.07106570154428482, 0.010177446529269218, 0.071040578186512, 0.008465812541544437, -0.009336214512586594, -0.017092261463403702, -0.0178074948489666, -0.06943830102682114, 0.0028699850663542747, -0.02607467770576477, 0.10645824670791626, -0.04682425782084465, -0.026557516306638718, -0.13322682678699493, 0.007839255966246128, 0.034262485802173615, -0.028864825144410133, 0.019374297931790352, -0.04125994071364403, 0.024707138538360596, 0.00033674968290142715, 0.049140892922878265, -0.03665162995457649, -0.04137155041098595, 0.047785572707653046, -0.00025858584558591247, -0.016101710498332977, -0.025033820420503616, -0.004938454832881689, 0.05733026936650276, -0.026697512716054916, -0.021568965166807175, 0.06285489350557327, 0.016145501285791397, 0.02826543338596821, -0.01620219089090824, -0.043436285108327866, 0.004361963830888271, -0.06487209349870682, 0.0833226665854454, -0.06874924153089523, -0.0007752382662147284 ]
199 Trigonometric ratios 3 The sides of a triangle are 3 cm, 5 cm and 7 cm respectiv ely. Show that the largest angle is 120°, and find the area of the triangle. 4 In each of the figures be low calculate the total area. ab A A D DC CB 8.2 cm10.4 cm 4.8 cm3.9 cm 75°100° 30.6°B 2.4 cm 5 In △ABC, AB = 10 cm, BC = a √ __ 3 cm, AC = 5 √ ___ 13 cm and ∠ ABC = 150°. Calculate: a the value of a b the exact area of △ABC. 6 In a triangle, the largest side has length 2 cm and one of the other sides has length √ __ 2 cm. Given tha t the area of the triangle is 1 cm2, show that the triangle is right-angled and isosceles. 7 The three points A , B and C, with coordinates A(0, 1), B(3, 4) and C (1, 3) respectiv ely, are joined to form a triangle. a Show that cos ∠ACB = − 4 _ 5 (5 marks) b Calculate the ar ea of △ABC. (2 marks) 8 The longest side of a triangle has length (2x − 1) cm. The other sides have lengths ( x − 1) cm and (x + 1) cm. Given tha t the largest angle is 120°, work out a the value of x (5 marks) b the area of the triangle . (3 marks) 9 A park is in the shape of a triangle ABC as shown. 110° 1.2 km1.4 km C ABN A park keeper walks due north from his hut at A until he reaches point B. He then walks on a bearing of 110° to point C. a Find how far he is from his hut w hen at point C. Give your answer in km to 3 s.f. (3 marks) b Work out the bearing of the hut from point C. Give your answer to the nearest degree. (3 marks) c Work out the ar ea of the park. (3 marks) 10 A windmill has four identical triangular sails made fr om wood. If each triangle has sides of length 12 m, 15 m and 20 m, work out the tota l area of wood needed. (5 marks) 11 Two points , A and B are on level ground. A church tower at point C has an angle of elevation from A of 15° and an angle of elevation from B of 32°. A and B are both on the same side of C, and A, B and C lie on the same straight line. The distance AB = 75 m. Find the height of the chur ch tower. (4 marks)P P E/P E/P E/P E/P E/P
[ 0.029671935364603996, 0.04465069621801376, 0.013624254614114761, -0.058124542236328125, -0.0636674240231514, 0.04257951304316521, -0.006685344502329826, 0.04903851076960564, -0.07820148766040802, -0.00649023475125432, 0.03346290439367294, -0.10012113302946091, -0.021702218800783157, 0.012999913655221462, 0.008858240209519863, 0.07874655723571777, -0.04874810203909874, 0.0033126582857221365, -0.12643034756183624, 0.020647604018449783, -0.020167743787169456, -0.06792212277650833, 0.11294633895158768, 0.009075340814888477, 0.02175764925777912, -0.016695400699973106, 0.012767390348017216, -0.044703159481287, -0.007096949499100447, 0.02473180741071701, -0.04437699168920517, -0.006118757650256157, 0.1083822026848793, -0.061410292983055115, -0.04890801012516022, -0.06210419163107872, -0.015824943780899048, 0.03803510218858719, 0.010768686421215534, 0.03309616073966026, -0.10603800415992737, 0.07302406430244446, 0.01964816451072693, -0.002497481182217598, -0.006831655744463205, -0.04407995566725731, -0.01682111993432045, 0.09477545320987701, 0.010474271140992641, 0.048475008457899094, -0.010885038413107395, -0.03921843692660332, -0.1050519198179245, -0.06102342531085014, -0.04546382278203964, 0.03797809034585953, -0.031605951488018036, -0.02100246399641037, -0.09301023185253143, -0.030492691323161125, 0.055182501673698425, 0.07394881546497345, 0.031065603718161583, 0.05524076893925667, -0.05324486643075943, 0.010403194464743137, 0.004208773374557495, -0.04125778749585152, -0.0034069179091602564, -0.013098299503326416, -0.014017889276146889, -0.0076098451390862465, -0.015644332394003868, -0.07038306444883347, 0.10614290833473206, -0.026124557480216026, -0.07983652502298355, 0.022327721118927002, -0.015559369698166847, -0.10863429307937622, -0.04873044788837433, 0.03017595410346985, 0.06240714341402054, -0.019455384463071823, 0.04890361800789833, 0.024454757571220398, 0.10647694766521454, 0.05110934376716614, -0.014432141557335854, -0.12614856660366058, 0.041858114302158356, -0.04453812167048454, -0.028875844553112984, -0.012921202927827835, -0.013456533662974834, -0.008090726099908352, -0.012021813541650772, -0.0157804936170578, -0.05444999411702156, 0.051375217735767365, 0.010342979803681374, 0.037296224385499954, 0.016873380169272423, 0.006243900395929813, -0.07938207685947418, 0.017710214480757713, 0.04473510757088661, -0.026543084532022476, 0.040201351046562195, 0.006507668178528547, -0.10384654998779297, 0.07948712259531021, 0.04365236684679985, -0.028599586337804794, 0.012784479185938835, -0.00912686437368393, 0.0616992823779583, 0.06058608740568161, -0.014968613162636757, 0.019662437960505486, -0.020424621179699898, 0.03448907658457756, 0.0677923783659935, 0.01810109056532383, 0.012212488800287247, -0.031798407435417175, 0.06654582172632217, 0.007012214045971632, -0.0377248115837574, 0.014045726507902145, 0.09703482687473297, 0.003057914786040783, -0.07315376400947571, -0.12955783307552338, -0.01288660243153572, -0.037121232599020004, 0.09452546387910843, 0.03531476482748985, -0.00541574927046895, 0.020421728491783142, 0.054892655462026596, 0.07802759110927582, 0.052505895495414734, -0.06731107085943222, 0.019709622487425804, -0.03249282389879227, -0.11089219897985458, -0.05058548226952553, -0.06897203624248505, 0.0036701916251331568, 0.11998911201953888, 0.0878157988190651, -0.010335039347410202, 0.08584073930978775, -0.026952020823955536, 0.05117412656545639, -0.026176797226071358, -0.0015032122610136867, -0.008576763793826103, 0.06429051607847214, -0.001300215721130371, 0.03448346257209778, 0.019941074773669243, 0.03542305901646614, -0.016293881461024284, 0.0936584398150444, 0.06868734955787659, 0.03384549915790558, 0.009589271619915962, 0.0029768869280815125, 0.0028008618392050266, -0.023010626435279846, 0.0023144427686929703, 0.028778446838259697, 0.06007944047451019, -0.00388380722142756, 0.05988521873950958, -0.032306186854839325, -0.02998744510114193, -0.0277579165995121, 0.030438587069511414, -0.055692408233881, 0.00997085589915514, 0.014671304263174534, 0.005699577275663614, -0.010927321389317513, -0.015183140523731709, 0.019641689956188202, -0.10316956788301468, -0.0043412744998931885, 0.025060147047042847, -0.004133896436542273, -0.04964171350002289, -0.062170810997486115, -0.06561797112226486, 0.03372585028409958, -0.030170150101184845, -0.0361618772149086, -0.12124712765216827, 0.0661839172244072, 0.056361231952905655, -0.011706077493727207, -0.015778178349137306, 0.03319200128316879, 0.05692090094089508, 0.11402297765016556, -0.03286268934607506, 0.0006536958971992135, -0.048783108592033386, 0.003991423640400171, -0.02040158584713936, -0.11757457256317139, 0.012657112441956997, -0.023892631754279137, 0.016552601009607315, -0.023600123822689056, 0.04042584076523781, -0.04399239644408226, -0.010407507419586182, 0.05668507516384125, -0.01555350236594677, -0.01256440207362175, 0.02849000133574009, -1.0499558704227866e-33, 0.023579370230436325, 0.022419406101107597, -0.06994041055440903, -0.04167493060231209, -0.011001816019415855, 0.03807738423347473, 0.1267920583486557, -0.03835759311914444, 0.00031921020126901567, -0.01804298907518387, 0.03854822367429733, -0.020709017291665077, -0.008659269660711288, -0.178386852145195, -0.02901630848646164, -0.04172937572002411, -0.006470141466706991, -0.0019301328575238585, -0.024648435413837433, -0.01629827730357647, 0.0012740831589326262, -0.01963229291141033, 0.024902338162064552, -0.019926035776734352, 0.005925096105784178, 0.016481811180710793, 0.04955945536494255, -0.054973941296339035, -0.026031047105789185, -0.010308957658708096, 0.025044916197657585, -0.057118672877550125, 0.06292114406824112, 0.09098102152347565, -0.04489022493362427, -0.14277668297290802, -0.02639247477054596, 0.0009672345477156341, 0.012700174003839493, -0.07522978633642197, 0.14526304602622986, 0.04750021919608116, 0.0010239763651043177, -0.009028381668031216, 0.014463528990745544, -0.05095291882753372, -0.02915845438838005, -0.10811818391084671, -0.0026300817262381315, -0.011594122275710106, -0.013547474518418312, -0.05807150900363922, -0.033176373690366745, -0.10148221254348755, 0.10003463923931122, 0.09959477186203003, -0.0002375712210778147, 0.0025443576741963625, 0.07641558349132538, 0.03749670460820198, 0.032583050429821014, -0.06718567758798599, 0.053736332803964615, 0.0006910111987963319, 0.0007155452622100711, 0.02870134450495243, -0.0001724428148008883, -0.007379903923720121, -0.00874019879847765, -0.03517458215355873, -0.0042965891771018505, 0.09166920930147171, -0.059844132512807846, 0.00538841774687171, -0.0456966832280159, 0.08621806651353836, -0.01251691672950983, 0.06571298837661743, -0.011811970733106136, 0.009331743232905865, -0.07068125158548355, -0.007617251947522163, 0.03730243444442749, -0.06492123752832413, -0.006202254444360733, 0.011806336231529713, 0.07406601309776306, -0.04144718497991562, 0.01846792735159397, 0.024868495762348175, -0.07086098939180374, -0.010541918687522411, -0.0362519770860672, 0.018169932067394257, 0.0153446514159441, 7.306304533192717e-32, -0.02820487692952156, 0.0625121146440506, -0.053293321281671524, 0.00452928151935339, 0.04369989037513733, 0.015600432641804218, 0.0868304967880249, 0.030897127464413643, 0.03463113307952881, -0.03752123937010765, 0.00332936504855752, -0.005089373793452978, -0.04405958577990532, 0.03004133142530918, -0.05153452977538109, -0.06287779659032822, -0.10044310986995697, -0.06090221554040909, 0.0397820882499218, -0.055969350039958954, -0.04534672573208809, 0.0623507983982563, 0.034752342849969864, 0.020190056413412094, 0.03655517101287842, 0.062217023223638535, -0.03663049638271332, 0.005456478334963322, -0.027707576751708984, -0.05008925497531891, 0.048096995800733566, -0.12720435857772827, -0.011756869032979012, 0.012864232994616032, 0.0399591363966465, -0.0367426872253418, -0.004193606320768595, 0.04186208173632622, -0.013097040355205536, 0.0815306082367897, 0.0516861230134964, -0.06088227033615112, 0.005876584909856319, -0.0038833816070109606, -0.0037720270920544863, -0.049743831157684326, -0.0213105920702219, -0.07389026880264282, 0.06208672374486923, -0.01445111446082592, -0.054288532584905624, 0.04717715457081795, 0.044063471257686615, 0.04231080040335655, -0.02669946476817131, -0.043687038123607635, 0.06601399183273315, -0.010494735091924667, -0.10276824980974197, 0.017313726246356964, -0.0052367448806762695, 0.08811888843774796, -0.10816852003335953, 0.056926093995571136 ]
200 Chapter 9 12 Describe geometrically the tr ansformations which map: a the graph of y = tan x onto the gra ph of tan 1 _ 2 x b the graph of y = tan 1 _ 2 x onto the gra ph of 3 + tan 1 _ 2 x c the graph of y = cos x onto the gra ph of −cos x d the graph of y = sin (x − 10) onto the graph of sin (x + 10). 13 a Sketch on the same set of ax es, in the interval 0 < x < 180°, the graphs of y = tan (x − 45°) and y = −2 cos x, sho wing the coordinates of points of intersection with the axes. (6 marks) b Deduce the number of solutions of the equation tan (x − 45°) + 2 cos x = 0, in the interval 0 < x < 180°. (2 marks) 14 The diagram sho ws part of the graph of y = f(x). y x 0 pC q AD B 120° It crosses the x-axis at A(120°, 0) and B( p, 0). It crosses the y-axis at C (0, q) and has a maxim um value at D, as shown. Given that f(x) = sin (x + k), where k > 0, write down a the value of p (1 mark) b the coordinates of D (1 mark) c the smallest va lue of k (1 mark) d the value of q. (1 mark) 15 Consider the function f(x) = sin px, p ∈ ℝ, 0 < x < 360°. The closest point to the origin that the graph of f(x) crosses the x-axis has x-coordinate 36°. a Determine the va lue of p and sketch the graph of y = f(x). (5 marks) b Write down the period of f(x). (1 mark) 16 The graph be low shows y = sin θ, 0 < θ < 360°, with one y θ01 –190°α180° 270° 360° value of θ (θ = α) marked on the axis. a Copy the gra ph and mark on the θ -axis the positions of 180° − α, 180° + α, and 360° − α. b Verify that: sin α = sin (180° − α) = −sin (180° + α) = −sin (360° − α). 17 a Sketch on separa te sets of axes the graphs of y = cos θ (0 < θ < 360°) and y = tan θ (0 < θ < 360°), and on each θ-axis mark the point ( α, 0) as in question 16. b Verify that:i cos α = −cos (180° − α) = −cos (180° + α) = cos (360° − α) ii tan α = −tan (180° − α) = tan (180° + α) = −tan (360° − α) 18 A series of sand dunes has a cross-section w hich can be modelled using a sine curve of the form y = sin (60x )° where x is the length of the series of dunes in metres. a Draw the gr aph of y = sin (60x )° for 0 < x < 24°. (3 marks) b Write down the n umber of sand dunes in this model. (1 mark) c Give one r eason why this may not be a realistic model. (1 mark)E/P E E/P E/P
[ -0.07980819791555405, 0.017875507473945618, 0.0011870450107380748, -0.03173457458615303, -0.10074963420629501, 0.036235492676496506, 0.027277668938040733, 0.0524633452296257, -0.016905250027775764, -0.04520963504910469, 0.05341743677854538, 0.01338943187147379, 0.02765970677137375, 0.053621307015419006, -0.10208220034837723, 0.023114020004868507, -0.10449222475290298, 0.015455019660294056, -0.023469122126698494, 0.004607333801686764, 0.06866192072629929, 0.03678184747695923, -0.030618101358413696, -0.0499560609459877, 0.033302318304777145, -0.09505310654640198, 0.02145896665751934, -0.044583458453416824, 0.058585330843925476, -0.04435859993100166, -0.0006211001891642809, 0.004385131411254406, 0.0008686927030794322, -0.04141395911574364, 0.029702916741371155, -0.015148679725825787, 0.02545049414038658, -0.010714433155953884, 0.11899012327194214, 0.004357865080237389, 0.011842474341392517, 0.06232530251145363, -0.03974371403455734, 0.06299611926078796, -0.0018866611644625664, -0.02839752286672592, 0.02002883329987526, 0.061385300010442734, -0.02766251564025879, -0.009110860526561737, 0.014842459000647068, -0.007399620488286018, -0.05485674366354942, 0.03259905427694321, -0.026915401220321655, 0.05498042702674866, 0.011658672243356705, 0.05209120735526085, -0.003118011401966214, -0.03333541005849838, 0.028258688747882843, -0.019408173859119415, -0.018977148458361626, 0.01776747778058052, -0.002994951792061329, -0.029557092115283012, 0.056825559586286545, -0.10905303806066513, -0.057862136512994766, 0.07750793546438217, -0.1228768527507782, 0.043108515441417694, -0.039072513580322266, -0.014624778181314468, 0.027770206332206726, -0.06442848592996597, -0.004416779614984989, 0.0656147226691246, 0.006435064133256674, -0.05255798250436783, -0.052951451390981674, 0.014020591042935848, 0.07763412594795227, 0.07843273878097534, 0.027649596333503723, 0.08988340944051743, -0.01261141151189804, -0.017078738659620285, 0.024642493575811386, -0.014935416169464588, 0.08205683529376984, -0.027543675154447556, -0.014197549782693386, -0.02239791862666607, -0.022807108238339424, -0.0001092831080313772, -0.022862907499074936, 0.012923335656523705, 0.11364718526601791, 0.08412935584783554, 0.01520891860127449, 0.06363791972398758, 0.01821184530854225, 0.05870441719889641, -0.08560214936733246, -0.0443064384162426, 0.06931015849113464, -0.07598770409822464, 0.019862335175275803, -0.05641763284802437, -0.05685403570532799, -0.0162106491625309, 0.022095903754234314, 0.006316198501735926, 0.019524121657013893, -0.11442243307828903, -0.03928246721625328, 0.11111605167388916, 0.045143790543079376, 0.03723638132214546, -0.0446702241897583, -0.025334566831588745, 0.005150584504008293, 0.08570156991481781, 0.014668119139969349, -0.050578195601701736, -0.060150060802698135, -0.030999071896076202, -0.02785089798271656, 0.016080642119050026, 0.08008240163326263, -0.024590307846665382, 0.0008250278769992292, -0.05293666571378708, -0.050613414496183395, -0.06716460734605789, -0.007688750512897968, 0.04784386232495308, -0.0958196222782135, 0.04868956655263901, 0.05776156112551689, 0.05971009284257889, 0.005643888376653194, 0.01111369114369154, 0.07563911378383636, -0.05446069315075874, -0.03425741195678711, -0.07278966158628464, -0.023412644863128662, 0.12124241143465042, -0.006198108661919832, -0.013866141438484192, 0.033064357936382294, 0.09391320496797562, -0.052690714597702026, 0.041049666702747345, -0.08015803247690201, 0.03915960714221001, 0.01573486067354679, 0.009426063857972622, 0.010900026187300682, 0.09405332058668137, 0.046822261065244675, -0.022932952269911766, 0.04836812615394592, -0.04168609157204628, -0.01800484023988247, 0.039111971855163574, -0.03400857001543045, 0.036515917629003525, -0.00032727635698392987, -0.05521086975932121, -0.00793827511370182, 0.07274741679430008, 0.005754470359534025, 0.0976971834897995, 0.03280587121844292, -0.02569938823580742, -0.06864158064126968, 0.017554381862282753, 0.08497792482376099, -0.09767059981822968, 0.023983214050531387, 0.03840190917253494, -0.030411673709750175, -0.02034490928053856, -0.032359641045331955, 0.09576989710330963, -0.03286891430616379, 0.038555096834897995, 0.03155193850398064, -0.05231650918722153, -0.05716684088110924, -0.007120736874639988, -0.05864845961332321, -0.026192929595708847, 0.024211730808019638, 0.05709349736571312, -0.059904370456933975, -0.013731054030358791, 0.02917591482400894, 0.029373375698924065, 0.06957906484603882, -0.009749280288815498, -0.07668329775333405, -0.03454666584730148, -0.06373330950737, -0.05794042721390724, -0.0739322155714035, 0.0230074692517519, 0.010592461563646793, -0.08737026154994965, -0.02594543993473053, -0.05352078750729561, 0.01705636829137802, -0.136952742934227, 0.07053892314434052, -0.08404526859521866, -0.09242521971464157, 0.042755261063575745, -0.016069108620285988, -0.03834279626607895, -0.012209860607981682, 2.7333105250678468e-33, -0.012149479240179062, 0.01805821992456913, -0.05589877814054489, -0.03887924924492836, -0.006237481255084276, -0.05921206250786781, 0.059024132788181305, 0.012455950491130352, 0.05358894541859627, -0.008278497494757175, -0.01898450218141079, -0.021006334573030472, -0.012715528719127178, -0.041021063923835754, -0.04405912384390831, -0.07438329607248306, 0.031626466661691666, 0.037932928651571274, -0.02002875693142414, -0.05466126278042793, -0.012728589586913586, 0.003321749856695533, 0.01409611664712429, 0.017077840864658356, 0.03837164118885994, -0.004840088076889515, 0.07334006577730179, -0.05640330910682678, -0.09315360337495804, 0.04153018444776535, -0.03564471751451492, -0.006631878204643726, 0.030344121158123016, 0.042143791913986206, -0.03577502816915512, -0.04150921851396561, 0.08063807338476181, -0.012662505730986595, -0.05030186101794243, -0.05829277262091637, 0.0799451693892479, -0.008307632990181446, 0.07424651086330414, 0.03479556739330292, -0.04390892758965492, 0.04913567751646042, 0.0003777214151341468, 0.11922437697649002, -0.055403292179107666, -0.02152613364160061, -0.025606200098991394, -0.04711084067821503, 0.06380941718816757, -0.07390467822551727, 0.09659069031476974, 0.08438730984926224, 0.02381042391061783, -0.050533849745988846, -0.024549279361963272, -0.02483472041785717, -0.010071257129311562, -0.01591392047703266, -0.05795557424426079, -0.0021673780865967274, -0.013125949539244175, -0.021703599020838737, -0.015509149059653282, -0.10220137238502502, -0.0059663369320333, 0.02931699901819229, 0.04350920021533966, 0.035214707255363464, -0.07446157932281494, -0.059223711490631104, -0.020612016320228577, -0.061158422380685806, 0.02597988024353981, -0.03674361854791641, 0.04639299213886261, -0.08017883449792862, -0.03033486381173134, -0.009329507127404213, 0.0727386623620987, -0.0709284320473671, 0.08253096789121628, 0.0691109448671341, -0.03646433353424072, 0.07247881591320038, 0.029485220089554787, 0.04033911973237991, 0.06641316413879395, -0.0018905815668404102, -0.06874529272317886, 0.04630240052938461, 0.02157495729625225, 9.162417753854389e-32, -0.09993807971477509, -0.0737980455160141, -0.08729107677936554, 0.01856887713074684, 0.08890829980373383, 0.04819083586335182, 0.11695694178342819, -0.04371950775384903, -0.04198712110519409, 0.0055120293982326984, 0.0932372659444809, 0.047952111810445786, -0.03485823795199394, -0.03338880091905594, -0.010819382034242153, 0.06096157431602478, -0.029543256387114525, 0.04664177820086479, -0.02071056328713894, -0.10261070728302002, -0.07774996757507324, -0.02034754492342472, -0.038878995925188065, 0.08272326737642288, -0.022918572649359703, -0.0004924205131828785, -0.026298735290765762, -0.03392179310321808, 0.02806795947253704, 0.008301724679768085, -0.014151976443827152, -0.06455057114362717, 0.08684656023979187, 0.04430364817380905, -0.025426171720027924, -0.04335717856884003, 0.03574061021208763, 0.0347684808075428, 0.013658029958605766, 0.00675674295052886, 0.007635184563696384, 0.013050512410700321, 0.01897464692592621, 0.0411103218793869, 0.05243929103016853, 0.0320783331990242, -0.04842516779899597, -0.039046987891197205, 0.009156073443591595, 0.012041766196489334, -0.03438352048397064, 0.01902846060693264, 0.0021872473880648613, 0.053079381585121155, -0.04054221883416176, -0.03707556799054146, 0.045192182064056396, -0.007694577798247337, -0.0943116769194603, -0.07959922403097153, 0.062429215759038925, 0.0917881578207016, -0.10907799005508423, -0.024463122710585594 ]
201 Trigonometric ratios 1 This version of the cosine rule is used to find a missing side if you kno w two sides and the angle between them: a2 = b2 + c2 − 2bc cos A 2 This version of the c osine rule is used to find an angle if you know all three sides: cos A = b2 + c2 − a2 __________ 2bc 3 This version of the sine rul e is used to find the length of a missing side: a _____ sin A = b _____ sin B = c _____ sin C 4 This version of the sine rul e is used to find a missing angle: sin A _____ a = sin B _____ b = sin C _____ c 5 The sine rule sometimes produc es two possible solutions for a b bcA BC1 C2 missing angle: sin θ = sin (180° − θ ) 6 Area of a t riangle = 1 _ 2 ab sin C. 7 The graphs of sine, c osine and tangent are periodic. They repeat themselves after a certain interval. • The graph of y = sin θ: repeats ever y 360° and crosses the x -axis at …, − 180°, 0, 180°, 360°, … • has a maximum value of 1 and a minimum value of −1. • The graph of y = cos θ: repeats ever y 360° and crosses the x -axis at …, − 90°, 90°, 270°, 450°, … • has a maximum value of 1 and a minimum value of −1 • The graph of y = tan θ: repeats ever y 180° and crosses the x -axis at … − 180°, 0°, 180°, 360°, … • has no maximum or minimum value • has ver tical as ymptotes at x = −90°, x = 90°, x = 270°, …A CB ac bSummary of key pointsIn this diagram AB = BC = CD = DE = 1 m. B1 m1 m 1 m1 mA CD E Prove that ∠AEB + ∠ADB = ∠ACB .Challenge Try drawing triangles ADB and AEB back to back. BA BA DEHint
[ -0.029902011156082153, 0.03220852091908455, 0.0222860649228096, -0.05496789887547493, -0.030511924996972084, 0.05075828358530998, -0.02130059525370598, -0.008144357241690159, -0.027840109542012215, -0.073392353951931, 0.045010436326265335, -0.054834604263305664, 0.0185847245156765, 0.02106880396604538, 0.09314508736133575, -0.017164839431643486, -0.07993311434984207, 0.0008667283691465855, -0.024708637967705727, 0.0016723696608096361, -0.013186968863010406, -0.019212156534194946, 0.0616634301841259, -0.013169871643185616, -0.013297764584422112, 0.0742463767528534, 0.021837595850229263, -0.030819019302725792, -0.0029649597126990557, 0.0418149009346962, -0.0682610422372818, -0.016538500785827637, -0.00986426044255495, -0.055816713720560074, -0.02893238328397274, -0.11218808591365814, -0.013856572099030018, 0.03105873614549637, -0.03606192395091057, 0.04069364815950394, -0.10212098062038422, 0.10424225777387619, 0.001797891571186483, 0.07334651052951813, -0.037252821028232574, -0.028981853276491165, -0.0596478208899498, 0.02782827615737915, 0.060349877923727036, 0.03071955032646656, -0.013223223388195038, 0.09291757643222809, -0.13766761124134064, 0.0011028998997062445, -0.021842600777745247, 0.05037936940789223, -0.02269071899354458, 0.016259629279375076, -0.0704500824213028, -0.027351830154657364, 0.0761551707983017, -0.0017195447580888867, 0.04123464226722717, 0.0007672484498471022, -0.01694282703101635, -0.024484170600771904, 0.015325109474360943, -0.04923729971051216, 0.019689613953232765, -0.003345799632370472, -0.06435247510671616, 0.04727201163768768, -0.04864312708377838, -0.04521933197975159, -0.005100879818201065, -0.031464435160160065, -0.07698360830545425, -0.00544193247333169, -0.019265687093138695, -0.04416722059249878, -0.13143321871757507, -0.04864083230495453, 0.06513747572898865, -0.007607731036841869, 0.07902409136295319, 0.006778629031032324, 0.047806255519390106, 0.11355005949735641, 0.052430666983127594, -0.022778142243623734, 0.09075400233268738, -0.07079552114009857, -0.03683165833353996, -0.0343453474342823, -0.0059860022738575935, 0.04609980434179306, -0.007348800543695688, 0.039298731833696365, -0.012302663177251816, 0.013939913362264633, 0.02394280582666397, 0.00033297736081294715, 0.058877427130937576, 0.03770981729030609, -0.06189172714948654, 0.039499431848526, 0.05718464404344559, -0.011299978010356426, 0.07425421476364136, -0.03209406137466431, -0.07942233979701996, 0.10140899568796158, 0.018932225182652473, -0.03167891502380371, 0.06940095871686935, -0.0021138042211532593, 0.05412425473332405, 0.028754783794283867, 0.09282276779413223, 0.055193182080984116, 0.01633203588426113, -0.04199625924229622, 0.010867121629416943, 0.009593424387276173, 0.017352743074297905, -0.003527485765516758, 0.021143898367881775, -0.038601458072662354, -0.04668305441737175, 0.04865799471735954, 0.03430276736617088, 0.045662201941013336, -0.05650198459625244, -0.0546635165810585, -0.024607999250292778, -0.02235541306436062, 0.08262860029935837, 0.0583617202937603, -0.037061624228954315, -0.060728274285793304, 0.04493650048971176, 0.04629417136311531, 0.01706257089972496, -0.06455376744270325, 0.008818197064101696, -0.04431058466434479, -0.15189063549041748, 0.003100660163909197, -0.07025391608476639, 0.014170864596962929, 0.1066628023982048, 0.0765356570482254, 0.026979558169841766, 0.09596864879131317, 0.017732400447130203, 0.048810992389917374, 0.059788934886455536, 0.013532971031963825, 0.05649524927139282, 0.050061482936143875, 0.025150783360004425, -0.04255833849310875, -0.003616668051108718, 0.023403635248541832, 0.02599944919347763, 0.013160515576601028, 0.06670588254928589, 0.03485862910747528, 0.0469122938811779, 0.046585291624069214, 0.07028454542160034, -0.022629546001553535, 0.033988941460847855, -0.035096753388643265, 0.053614191710948944, -0.009213925339281559, 0.05779559910297394, 0.037964899092912674, -0.03271706402301788, 0.01115258876234293, -0.030682677403092384, -0.026060504838824272, 0.015486815012991428, -0.0438372828066349, -0.03603261709213257, -0.013937825337052345, -0.08044657856225967, 0.0769604817032814, -0.017562812194228172, -0.00689633609727025, 0.0437982901930809, -0.03184386342763901, -0.015471846796572208, -0.008348116651177406, -0.0726134404540062, -0.043211907148361206, -0.02006317302584648, -0.04025537148118019, -0.11720313876867294, 0.037561576813459396, 0.01438740361481905, 0.018303297460079193, -0.0070991818793118, 0.01924506388604641, 0.04611074924468994, 0.045348115265369415, 0.016518479213118553, -0.029795855283737183, -0.019688431173563004, 0.0046818009577691555, -0.011306055821478367, -0.09871985018253326, 0.028487369418144226, -0.07499784231185913, 0.044890932738780975, -0.0673467293381691, 0.03597687557339668, -0.05518695339560509, -0.012182659469544888, 0.10508474707603455, -0.01349665503948927, -0.07182129472494125, 0.029647313058376312, 4.44753724294985e-33, -0.03772886469960213, -0.04960327595472336, -0.09406740218400955, -0.04457886517047882, 0.004117893520742655, -0.023709770292043686, 0.09327081590890884, -0.06702709197998047, 0.1311894804239273, -0.04466233402490616, 0.05001087859272957, -0.03944568336009979, -0.07814865559339523, -0.04502991586923599, -0.05909603089094162, 0.002397768897935748, -0.012249167077243328, -0.024717438966035843, -0.04221545159816742, -0.032017480581998825, 0.07309679687023163, -0.024020465090870857, 0.022754134610295296, 0.03186722472310066, -0.06031200289726257, 0.0033357422798871994, 0.05705174058675766, -0.06747481971979141, -0.07597105950117111, -0.035065773874521255, -0.012627498246729374, -0.050340548157691956, 0.1397484391927719, 0.049158334732055664, -0.09244607388973236, -0.08455323427915573, -0.01224193163216114, 0.052471961826086044, 0.001140276319347322, -0.015537076629698277, 0.06163017451763153, 0.03176053240895271, 0.0660180002450943, 0.012049912475049496, 0.04848894849419594, -0.030732814222574234, -0.0036727767437696457, -0.09761098027229309, 0.012055598199367523, -0.007076689507812262, 0.05618412792682648, -0.05134119838476181, 0.013307121582329273, -0.028203701600432396, 0.06474660336971283, -0.0020458362996578217, -0.10016648471355438, -0.009098720736801624, 0.0610915943980217, -0.03625787794589996, 0.04633375629782677, 0.051067743450403214, -0.007315390277653933, 0.01734466291964054, 0.01831672713160515, -0.03425287827849388, -0.00269215926527977, 0.019361533224582672, 0.004634231794625521, 0.05228445306420326, 0.011940259486436844, 0.06307105720043182, -0.06427855044603348, -0.008092423900961876, -0.05916302651166916, 0.05651217699050903, -0.017240960150957108, 0.05730435997247696, 0.007716761901974678, -0.01936441846191883, -0.09984982758760452, 0.032299358397722244, 0.055502455681562424, -0.026224473491311073, -0.05163310095667839, -0.05240235850214958, 0.009262356907129288, 0.02891472913324833, -0.010783455334603786, 0.045508973300457, -0.076414555311203, -0.011169075034558773, -0.014916100539267063, 0.02732943929731846, 0.06366681307554245, 7.875625834654721e-32, -0.07550601661205292, 0.11436191201210022, -0.00940538290888071, 0.05478430166840553, -0.010055681690573692, 0.10698885470628738, 0.030620228499174118, 0.035138316452503204, -0.01147810835391283, -0.050383586436510086, -0.004235127475112677, -0.037488412111997604, -0.0232015922665596, -0.030232779681682587, -0.04366216063499451, -0.02062738873064518, -0.04077783226966858, 0.03741415590047836, -0.0261769350618124, 0.0037952254060655832, 0.01877913996577263, 0.01602006144821644, -0.05182024464011192, -0.05255597457289696, -0.018279658630490303, 0.08299514651298523, -0.11336469650268555, 0.07018604129552841, -0.04285445064306259, -0.07450556010007858, 0.08583561331033707, -0.08252919465303421, -0.03349016606807709, 0.025430386886000633, 0.07662393897771835, -0.056217994540929794, -0.08419962972402573, 0.09785760194063187, -0.045626405626535416, 0.07792845368385315, -0.03729860112071037, -0.07321543246507645, -0.022727876901626587, 0.05110257491469383, 0.061682458966970444, -0.039461396634578705, -0.033894363790750504, -0.0896720215678215, 0.0415717251598835, -0.052514489740133286, -0.01744677498936653, 0.01901105046272278, 0.01691446080803871, 0.010191596113145351, 0.002098413184285164, -0.04505963250994682, -0.03158333897590637, -0.027323957532644272, -0.043431710451841354, -0.006276074796915054, 0.004345477093011141, 0.15500770509243011, -0.07247947156429291, -0.018015632405877113 ]
202 After completing this chapter you should be able to: ● Calculat e the sine, cosine and tangent of any angle → pages 203–208 ● Know the exact trigonometric ratios for 30°, 45° and 60° → pages 208–209 ● Know and use the relationships tan θ ; sin θ _____ cos θ  and sin2 θ + cos2 θ ; 1 → pages 209–213 ● Solve simple trigonometric equations of the forms sin θ = k, cos θ = k and tan θ = k → pages 213–217 ● Solve more complicated trigonometric equations of the forms sin nθ = k and sin (θ ± α) = k and equivalent equations involving cos and tan → pages 217–219 ● Solve trigonometric equations that produce quadratics → pages 219–222Objectives 1 a Sketch the graph of y = sin x for 0 < x < 540°. b How many solutions ar e there to the equation sin x = 0.6 in the range 0 < x < 540°? c Given that sin−1(0.6) = 36.9° (to 3 s.f.), write down three other solutions to the equation sin x = 0.6. ← Section 9.5 2 Work out the marked angles in these triangles.a θ 16.3 cm8.7 cm bθ6.1 cm 20 cm ← GCSE Mathematics 3 Solve the following equations. a 2x – 7 = 15 b 3x + 5 = 7x – 4 c sin x = –0.7 ← GCSE Mathematics 4 Solve the following equations.a x2 – 4x + 3 = 0 b x2 + 8x – 9 = 0 c 2x2 – 3x – 7 = 0 ← Section 2.1Prior knowledge check Trigonometric equations can be used to model many real-life situations such as the rise and fall of the tides or the angle of elevation of the sun at different times of the day.Trigonometric identities and equations 10
[ -0.017683004960417747, 0.058107081800699234, 0.0052863904275000095, -0.012440606020390987, -0.04061184078454971, 0.026969170197844505, -0.06948476284742355, 0.0856902003288269, -0.14321191608905792, -0.02322051115334034, 0.06849046796560287, -0.043340858072042465, -0.0355055145919323, 0.06332843005657196, 0.06560932099819183, 0.0523836724460125, -0.07973585277795792, 0.06411877274513245, -0.009560646489262581, -0.04293916001915932, 0.003614821471273899, 0.012356970459222794, 0.04142588749527931, -0.08978491276502609, -0.005413600709289312, 0.046487584710121155, 0.09841426461935043, -0.03402593359351158, 0.019185306504368782, -0.0009864362655207515, -0.034075137227773666, -0.0040277112275362015, -0.03333146125078201, -0.03290928527712822, -0.07525140047073364, -0.03566054627299309, 0.060652267187833786, -0.02339436113834381, 0.007038835436105728, -0.027376290410757065, -0.08517483621835709, 0.09582486003637314, -0.018227247521281242, 0.05176645144820213, 0.06540670990943909, -0.015315979719161987, -0.09806408733129501, -0.004948969930410385, 0.016863500699400902, -0.04746035113930702, -0.0076660471968352795, 0.0031279902905225754, -0.07512608170509338, -0.051284343004226685, 0.02897900529205799, 0.0551898367702961, -0.04621473699808121, 0.05409211665391922, -0.0737520158290863, -0.022100010886788368, 0.056411635130643845, 0.022883115336298943, 0.01400576438754797, 0.019535234197974205, 0.024598224088549614, 0.026572389528155327, 0.05112600326538086, 0.013545779511332512, 0.05193563923239708, 0.016838952898979187, -0.11875976622104645, 0.018039211630821228, -0.05975164473056793, 0.013611037284135818, 0.030177738517522812, 0.011888912878930569, -0.08222796767950058, -0.0003064920019824058, -0.06490704417228699, -0.08328714966773987, -0.011776814237236977, 0.0014360742643475533, 0.06527681648731232, 0.00569614814594388, 0.09131518006324768, 0.051381517201662064, 0.04600049927830696, 0.0882796049118042, 0.03807281330227852, -0.029225533828139305, 0.13846252858638763, -0.10079438984394073, -0.05420069769024849, -0.07312379032373428, 0.0013284195447340608, 0.07408902794122696, -0.009380847215652466, 0.02347111701965332, 0.06252668797969818, 0.021283423528075218, 0.017789550125598907, -0.019314512610435486, 0.027940545231103897, 0.04807759076356888, -0.07119728624820709, -0.054420795291662216, 0.12349560856819153, -0.024462055414915085, 0.005757507868111134, -0.07571092993021011, -0.08765491098165512, -0.019821904599666595, -0.010338753461837769, -0.045191194862127304, 0.07019567489624023, -0.02836642973124981, 0.04077201336622238, -0.00044965845881961286, 0.04041040688753128, 0.06183997914195061, 0.014090973883867264, 0.02192089892923832, 0.024281315505504608, 0.03201877325773239, -0.014970611780881882, -0.03090750239789486, 0.020763784646987915, -0.003805933753028512, -0.033404640853405, 0.03990596905350685, 0.004859930835664272, 0.0280604250729084, -0.0447300523519516, -0.01373012363910675, -0.004658457823097706, 0.02306024357676506, 0.08807336539030075, 0.0443262942135334, -0.044811002910137177, 0.0041186995804309845, -0.014901509508490562, 0.04755758121609688, -0.05329618975520134, -0.07325154542922974, -0.03088521771132946, -0.02575412578880787, -0.07184984534978867, 0.01158859208226204, -0.009532752446830273, 0.0408860482275486, 0.053685419261455536, 0.005816216580569744, 0.002234544139355421, 0.08642704039812088, -0.010487956926226616, 0.015839237719774246, 0.02187150903046131, 0.011146479286253452, 0.10116870701313019, -0.028317350894212723, -0.03589431196451187, 0.019936058670282364, 0.05681702867150307, 0.05318325385451317, 0.057305481284856796, -0.004910608753561974, -0.03326689824461937, -0.029358111321926117, -0.05788672715425491, 0.08878352493047714, 0.07183471322059631, 0.017338309437036514, 0.017134424299001694, 0.07940831035375595, 0.06984597444534302, 0.01796051859855652, 0.14726635813713074, 0.012829266488552094, -0.025243079289793968, -0.06322675198316574, -0.033197756856679916, -0.06306293606758118, 0.005798116326332092, -0.055470582097768784, 0.03773733228445053, -0.016684554517269135, -0.05022985115647316, 0.06500381231307983, -0.025618119165301323, 0.0239095576107502, 0.022970328107476234, -0.0112505704164505, 0.01479584164917469, -0.01810281351208687, -0.14636074006557465, -0.010528081096708775, 0.0061043668538331985, -0.1480826884508133, -0.12742674350738525, 0.03123130463063717, 0.02051677368581295, -0.05793611705303192, -0.018535126000642776, 0.031078826636075974, 0.054598476737737656, -0.02104983665049076, -0.006246374454349279, -0.03088940680027008, -0.022631298750638962, 0.022252656519412994, 0.01280058454722166, -0.10214062035083771, 0.006940033286809921, -0.07223105430603027, 0.029861614108085632, -0.05363601818680763, 0.037988681346178055, -0.04813164472579956, -0.05545290932059288, 0.11720388382673264, 0.00031904163188301027, -0.02897557243704796, 0.023646125569939613, 2.489826155749203e-33, -0.10366219282150269, -0.030900588259100914, -0.10983507335186005, -0.04282285273075104, 0.030373046174645424, -0.006514460779726505, 0.035273466259241104, -0.07459773123264313, 0.08988108485937119, -0.06402231752872467, -0.02151809260249138, -0.002890137955546379, -0.023431697860360146, -0.019296638667583466, -0.06633899360895157, -0.06456601619720459, 0.021718012169003487, -0.016735440120100975, -0.011590416543185711, 0.013232923112809658, -0.03045414201915264, 0.01463013980537653, -0.019018465653061867, -0.045981112867593765, -0.02689002826809883, 0.01651502214372158, 0.09526092559099197, -0.057522352784872055, -0.0839972123503685, 0.04295851290225983, 0.03661980852484703, -0.0214513149112463, 0.025103859603405, -0.01229971181601286, -0.07477475702762604, -0.07267013192176819, 0.04209398478269577, -0.025270389392971992, -0.09744827449321747, -0.040476419031620026, 0.14200232923030853, -0.01901078037917614, 0.03297269716858864, -0.09155798703432083, 0.018314523622393608, -0.017260337248444557, 0.05003305897116661, -0.05570312961935997, -0.0728682279586792, -0.02601243183016777, 0.03077823668718338, -0.058370329439640045, 0.08518849313259125, -0.046225547790527344, 0.09171192348003387, -0.0025181088130921125, -0.026605233550071716, -0.0661056861281395, 0.09396880120038986, -0.0029326309449970722, -0.004352505784481764, -0.0035832140129059553, 0.055626191198825836, -0.005455193109810352, 0.010866370052099228, -0.05986269935965538, 0.00811438262462616, -0.026263857260346413, -0.014985744841396809, 0.005056964233517647, -0.06732559204101562, 0.06251604110002518, -0.0009957450674846768, -0.02655087597668171, -0.020347481593489647, 0.021794943138957024, 0.014573467895388603, 0.012797822244465351, 0.030904991552233696, -0.026205413043498993, -0.08384723961353302, -0.006994424853473902, -0.00697720143944025, -0.06439850479364395, -0.03430919721722603, 0.04111485928297043, 0.039780087769031525, 0.012426064349710941, 0.08772960305213928, -0.05445972830057144, -0.015599195845425129, -0.030542807653546333, 0.008967776782810688, -0.016959629952907562, 0.07064583152532578, 7.30486572810731e-32, -0.06695830076932907, 0.03157920762896538, -0.028848402202129364, 0.06155254691839218, -0.0042123072780668736, 0.05762472748756409, 0.02556907758116722, 0.050153087824583054, 0.006113989278674126, -0.016519078984856606, 0.009455077350139618, -0.04055459424853325, 0.0042077344842255116, -0.00448615150526166, -0.06038327515125275, -0.021732822060585022, -0.05225882679224014, 0.08932825922966003, 0.012518620118498802, -0.03470233082771301, 0.027981985360383987, 0.016026761382818222, -0.009506299160420895, -0.0018494041869416833, 0.05820395052433014, 0.10767462849617004, -0.00015415370580740273, 0.032859425991773605, -0.04532552883028984, -0.054457683116197586, 0.09500756859779358, -0.047232143580913544, 0.039949964731931686, 0.022830508649349213, 0.007618884555995464, -0.057199425995349884, 0.006276058033108711, 0.10161246359348297, 0.004743399564176798, 0.08286622166633606, -0.03346436470746994, 0.03629246726632118, -0.013765061274170876, 0.037276946008205414, 0.025858717039227486, -0.04895279183983803, -0.07025115936994553, -0.06875979900360107, -0.008746322244405746, -0.02498682588338852, -0.02877238392829895, -0.011110448278486729, 0.036539942026138306, -0.04395396634936333, 0.059103161096572876, 0.013072292320430279, -0.019037533551454544, -0.013190208002924919, -0.034650251269340515, 0.04022657871246338, 0.015432818792760372, 0.12918341159820557, -0.09591016173362732, 0.015291270799934864 ]
203Trigonometric identities and equations 10.1 Angles in all four quadr ants You can use a unit circle with its centre at the origin to help you understand the trigonometric ratios. ■ For a point P(x, y) on a unit circle such that OP makes an angle θ with the positive x-axis: • cos θ = x = x-coordinate of P • sin θ = y = y-coordinate of P • tan θ = y __ x = gr adient of OP You can use these definitions to find the values of sine, cosine and tangent for any angle θ. You always measure positive angles θ anticlockwise from the positive x-axis. 1(x,y) θP xOy yx Use GeoGebra to explore the va lues of sin θ, cos θ and tan θ for any angle θ in a unit circle.Online You can also use these definitions to generate the graphs of y = sin θ and y = cos θ. Py y = sin θ 45° 90° 180° 270° 360°1 –10O (–1, 0)45° (1, 0) (0, –1)θ(0, 1) y y = cos θ45° 90° 180° 270° 360°1 –1 0 θ The point P corresponding to an angle θ is the same as the point P corresponding to an angle θ + 360°. This shows you that the graphs of y = sin θ and y = cos θ are periodic with period 360°. ← Section 9.5LinksTo plot y = sin θ, read off the y-coordinates as P moves around the circle. To plot y = cos θ, read off the x-coordinates as P moves around the circle.1P x Oy x(x,y) yθ A unit circ le is a circle with a radius of 1 unit.Notation When θ is obtuse, cos θ is negative because the x-coordinate of P is negative.
[ 0.005260057281702757, 0.05481402575969696, 0.03412600979208946, 0.0145505890250206, -0.10791610181331635, -0.0027307935524731874, 0.013563727028667927, -0.02047872729599476, -0.07544013112783432, 0.00233823386952281, 0.08433511108160019, -0.04725604131817818, -0.060158610343933105, 0.049633122980594635, 0.07252191007137299, -0.010969123803079128, -0.10068175196647644, -0.010996959172189236, -0.027451857924461365, 0.06227971985936165, 0.033506181091070175, -0.10085839033126831, 0.02675061672925949, -0.056236255913972855, -0.024637460708618164, 0.02158237434923649, 0.034425441175699234, 0.05656860023736954, 0.06579910218715668, 0.05471491813659668, -0.02326628752052784, 0.020430775359272957, 0.023632479831576347, -0.11064815521240234, 0.018972322344779968, -0.10049836337566376, 0.022776935249567032, -0.040293898433446884, -0.013591945171356201, 0.026287229731678963, 0.03808286786079407, 0.03992174193263054, -0.013582547195255756, -0.00516031077131629, 0.026690319180488586, -0.04164872691035271, -0.045690588653087616, 0.07298718392848969, 0.019653862342238426, 0.04818404093384743, 0.05260951444506645, 0.007100127637386322, -0.13673916459083557, -0.028942465782165527, -0.00568808289244771, 0.0060568442568182945, -0.0189254991710186, 0.01346250344067812, -0.07624266296625137, -0.16274523735046387, 0.060009803622961044, -0.022638706490397453, -0.05913098156452179, 0.01074006874114275, -0.05891120061278343, -0.040692657232284546, -0.0024892867077142, -0.0778864249587059, 0.017386985942721367, -0.005848361179232597, -0.0447990857064724, 0.022859914228320122, 0.029483476653695107, -0.02742193266749382, -0.0710962787270546, -0.019786866381764412, -0.03160412237048149, 0.0178835391998291, -0.0018914963584393263, -0.05899902805685997, -0.07948180288076401, 0.05298106372356415, 0.059283312410116196, 0.014846667647361755, 0.08916903287172318, -0.0030041076242923737, 0.06448569148778915, 0.05070449039340019, 0.02848738059401512, -0.053311318159103394, 0.042959343641996384, -0.04959917068481445, -0.006434198003262281, -0.056416891515254974, 0.06044519692659378, 0.0452936589717865, 0.05236832797527313, 0.020617980509996414, -0.04729706421494484, 0.040883395820856094, -0.0215570330619812, 0.0003054904518648982, -0.013006937690079212, -0.00477903988212347, -0.026922497898340225, -0.01055156160145998, 0.09071511030197144, -0.12311331927776337, 0.03958643227815628, -0.03486517816781998, -0.09453134983778, 0.09936655312776566, 0.056883834302425385, -0.0021090840455144644, 0.00009103331103688106, -0.0642143115401268, 0.005550714675337076, 0.034579046070575714, 0.07614678144454956, 0.012200341559946537, 0.09144463390111923, 0.011714067310094833, 0.016391316428780556, 0.04382794350385666, -0.02340823970735073, 0.014701818116009235, -0.05642150342464447, -0.02952452562749386, -0.028707614168524742, 0.08278185874223709, 0.1461813896894455, -0.015344931744039059, 0.005298906937241554, -0.05904344841837883, -0.007580254692584276, -0.0343032069504261, 0.06437236070632935, 0.04469762369990349, -0.08118264377117157, 0.04283546283841133, 0.053255077451467514, 0.01947803795337677, -0.029159395024180412, 0.02725980430841446, 0.019355103373527527, 0.001913245301693678, -0.05449756979942322, -0.021634286269545555, -0.046266667544841766, 0.08300123363733292, -0.02051159180700779, 0.10506349056959152, -0.04594843089580536, 0.09960408508777618, -0.008281165733933449, 0.0727442130446434, -0.07409980893135071, -0.01508021168410778, 0.0872335210442543, -0.011346843093633652, 0.021618353202939034, 0.06019426882266998, -0.000556053186301142, 0.03389887884259224, 0.08232002705335617, -0.055671267211437225, -0.04245154932141304, 0.038111720234155655, -0.0004101370577700436, 0.007520876359194517, 0.03985658288002014, -0.024283336475491524, 0.019058596342802048, -0.015461208298802376, -0.004168524872511625, -0.034764792770147324, 0.11518362909555435, 0.0028776912949979305, -0.029579292982816696, -0.007905050180852413, -0.0679408386349678, -0.03815075010061264, 0.04321314021945, -0.0654391422867775, 0.04559971019625664, 0.010439805686473846, -0.08106323331594467, 0.09168671071529388, -0.06889310479164124, -0.020500943064689636, 0.03895355388522148, -0.05353774502873421, -0.010721414349973202, 0.001835838658735156, -0.0789395123720169, -0.006080291233956814, -0.012972434051334858, 0.0035663151647895575, -0.06436317414045334, 0.021561985835433006, 0.024586666375398636, -0.09072759002447128, -0.012479866854846478, -0.059860169887542725, -0.0004913582233712077, 0.0364103689789772, -0.01739576831459999, -0.031099839136004448, -0.06396273523569107, 0.014404813759028912, 0.0301424041390419, -0.06483130902051926, 0.03174188360571861, -0.09108822792768478, 0.017671877518296242, -0.07649223506450653, 0.011372857727110386, -0.06205873563885689, -0.013431317172944546, 0.034325212240219116, 0.0074110496789216995, 0.004072349518537521, -0.03457675501704216, 9.313867858267157e-34, -0.07712975144386292, -0.03748007491230965, -0.11557993292808533, -0.03795665502548218, -0.01955997385084629, 0.006969545967876911, 0.11674166470766068, -0.05456961318850517, 0.08386005461215973, -0.01272695604711771, 0.06505618989467621, 0.027118798345327377, -0.04170958325266838, -0.06625370681285858, 0.026804445311427116, 0.015067335218191147, 0.02857327088713646, 0.06178421527147293, -0.04746859893202782, -0.0295864250510931, 0.00680723087862134, 0.03634154796600342, 0.07128223031759262, -0.004941947292536497, -0.009048874489963055, 0.0028484018985182047, 0.12889592349529266, -0.07551133632659912, -0.07992969453334808, 0.006923081818968058, 0.02194853127002716, 0.0007353358087129891, 0.05658593028783798, 0.016730548813939095, -0.006466706283390522, -0.09763813763856888, -0.02840452641248703, 0.006874385755509138, -0.02268003299832344, -0.043733008205890656, 0.04416417330503464, -0.02033834159374237, 0.066738061606884, -0.03556772321462631, 0.09560143947601318, -0.011113620363175869, -0.050323039293289185, 0.0035237297415733337, -0.01700160652399063, 0.046784061938524246, -0.0281225573271513, -0.05697636678814888, 0.012362770736217499, -0.03882813826203346, 0.06873112171888351, 0.06637033075094223, 0.0039010937325656414, 0.0030224681831896305, 0.07631771266460419, -0.040574703365564346, -0.02812580205500126, 0.013550952076911926, -0.01805899292230606, 0.05205089971423149, -0.031982772052288055, -0.05077093839645386, 0.026761861518025398, -0.012250898405909538, 0.057899653911590576, 0.020192734897136688, 0.004062389489263296, 0.03930611163377762, -0.03458409383893013, -0.020867856219410896, -0.14395155012607574, -0.011045346967875957, -0.028507499024271965, 0.022318469360470772, 0.048634376376867294, -0.012371690943837166, -0.07640726864337921, 0.004738148767501116, 0.048191137611866, 0.012333759106695652, -0.08222533762454987, -0.02008996158838272, -0.004793517291545868, 0.02128641866147518, 0.04293201118707657, 0.040813155472278595, -0.04043963551521301, -0.00711043132469058, -0.013875636272132397, -0.015788324177265167, 0.10099644213914871, 8.897121021564482e-32, -0.05817348510026932, 0.0784345418214798, -0.07947397977113724, -0.017785562202334404, -0.015759704634547234, 0.04460708424448967, 0.04234202206134796, 0.022489722818136215, 0.02865065634250641, -0.050226952880620956, 0.04163368418812752, -0.0030733481980860233, -0.02047518640756607, -0.06958907842636108, -0.05894980579614639, 0.04017103835940361, -0.03293581306934357, 0.1162719875574112, -0.057692281901836395, -0.03391970694065094, 0.01918799988925457, 0.015130440704524517, -0.0433385856449604, 0.017679374665021896, 0.04176606237888336, 0.10140705108642578, -0.028083384037017822, -0.05581129714846611, -0.04044383391737938, -0.05617274343967438, 0.016830800101161003, -0.059053875505924225, 0.044830113649368286, 0.06738974153995514, 0.042449723929166794, -0.04041176661849022, 0.0073881568387150764, 0.05761029198765755, 0.0442902073264122, 0.07039369642734528, -0.01066902931779623, -0.0698140487074852, -0.004541778936982155, 0.05343601852655411, 0.02044074609875679, -0.09567506611347198, -0.024359049275517464, -0.13511599600315094, 0.07738836109638214, -0.0522596649825573, -0.041475094854831696, 0.04056021571159363, -0.04562082141637802, -0.008078181184828281, 0.056804947555065155, -0.0077826594933867455, 0.004260895773768425, 0.02421017736196518, -0.03688599169254303, -0.004738215357065201, -0.008628018200397491, 0.10340902954339981, -0.0790196880698204, -0.03842282295227051 ]
204 Chapter 10 Example 1 Write down the values of: a sin 90° b sin 180° c sin 270° d cos 180° e cos (− 90)° f cos 450° a sin 90° = 1 b sin 18 0° = 0 c sin 27 0° = −1 d cos 18 0° = −1 e cos (−90 °) = 0 f cos 45 0° = 0 Example 2 Write down the values of:a tan 45° b tan 135° c tan 225° d tan (− 45°) e tan 180° f tan 90° a tan 45° = 1 b tan 135° = −1 c tan 22 5° = 1 d tan (−45° ) = tan 31 5° = −1 e tan 18 0° = 0 f tan 90 ° = undefinedWhen θ = 45°, the coordinates of OP are ( 1 ___ √ __ 2 , 1 ___ √ __ 2 ) so the gradient of OP is 1. O xy ( , )1 2 45°12 When θ = –45° the gradient of OP is –1. When θ = 180°, P has coordinates (–1, 0) so the gradient of OP = 0 __ 1 = 0. When θ = 90°, P has coordinates (0, 1) so the gradient of OP = 1 __ 0 . This is undefined since you cannot divide by zero. tan θ is undefined when θ = 270° or any other odd multiple of 90°. These values of θ correspond to the asymptotes on the graph of y = tan θ. ←Section 9.5LinksThe y-coordinate is 1 when θ = 90°. O xy (0, 1) (0, –1)90° -90° If θ is negative, then measure clockwise from the positive x-axis. An angle of −90° is equivalent to a positive angle of 270°. The x-coordinate is 0 when θ = −90° or 270°.
[ -0.009879173710942268, 0.0059527065604925156, -0.000645646417979151, -0.008359718136489391, -0.058040034025907516, 0.048892684280872345, -0.0035303516779094934, -0.03263775259256363, -0.05608223378658295, -0.004918475169688463, 0.054447077214717865, -0.008084431290626526, 0.05877421796321869, 0.022840671241283417, 0.04010247811675072, 0.025124890729784966, -0.11700931936502457, 0.06045074015855789, -0.03957023099064827, 0.009355816058814526, 0.03857447952032089, -0.010109865106642246, 0.029891761019825935, -0.08414257317781448, -0.014416138641536236, 0.0477541908621788, 0.00870207604020834, -0.05017516762018204, 0.0017942923586815596, -0.0262235626578331, -0.12086714059114456, 0.002919425955042243, -0.045894160866737366, -0.05941787734627724, -0.027247756719589233, -0.07184375077486038, -0.01214762032032013, 0.0468113012611866, -0.01863030344247818, 0.011184739880263805, -0.03126504272222519, 0.04648801311850548, -0.006044680252671242, 0.05288401618599892, -0.004698954988270998, 0.0024700618814677, -0.08457890152931213, 0.059416431933641434, 0.048988718539476395, -0.010042070411145687, 0.048992183059453964, 0.03787185996770859, -0.09882104396820068, -0.011448015458881855, -0.015399490483105183, 0.10091708600521088, -0.06958919018507004, 0.003478879341855645, -0.07177341729402542, -0.01679546944797039, 0.004043255001306534, -0.024125656113028526, 0.05028846114873886, 0.0054487185552716255, -0.015913601964712143, -0.00800157431513071, 0.03853992745280266, -0.06657374650239944, -0.02000582590699196, 0.01826179400086403, -0.08754418790340424, 0.04689161852002144, -0.023849666118621826, -0.04694278538227081, 0.012783756479620934, -0.054303430020809174, -0.04231094568967819, 0.026066847145557404, -0.02602064236998558, -0.07827752828598022, -0.10918664187192917, -0.04058009013533592, 0.06642764061689377, 0.039260681718587875, 0.07199323922395706, 0.029635196551680565, 0.03931903466582298, 0.11005302518606186, 0.027566177770495415, -0.01859520934522152, 0.06376869976520538, -0.05714200437068939, -0.015912482514977455, -0.011488757096230984, -0.0392376109957695, 0.0927298367023468, 0.001307350699789822, 0.025029199197888374, 0.04794766381382942, -0.004116075579077005, 0.016190407797694206, -0.03580067306756973, 0.015290695242583752, 0.08375871181488037, -0.036685556173324585, -0.03697690740227699, 0.07898849248886108, -0.05722842365503311, 0.00542420893907547, -0.12665314972400665, -0.0646044984459877, -0.008478980511426926, 0.033099494874477386, -0.047323863953351974, 0.048774946480989456, -0.061459291726350784, 0.04198829457163811, 0.07106384634971619, -0.0177137590944767, 0.06559551507234573, 0.012388398870825768, 0.018392426893115044, -0.024419717490673065, -0.0043927826918661594, -0.08199086785316467, -0.003640797920525074, 0.014624066650867462, -0.026940612122416496, -0.0014697540318593383, 0.04397488757967949, 0.04205276817083359, -0.01428463775664568, -0.017218193039298058, -0.01245915051549673, -0.0798197016119957, -0.024806568399071693, 0.12404639273881912, 0.08729371428489685, -0.033436521887779236, 0.018660593777894974, 0.046115413308143616, 0.10488639026880264, -0.007440679240971804, -0.02238076739013195, 0.06770258396863937, -0.0232979878783226, -0.11122959107160568, -0.04706903547048569, -0.036333441734313965, 0.140232652425766, 0.05754450708627701, 0.036911383271217346, -0.01168579887598753, 0.10034064203500748, -0.027026912197470665, 0.06826908141374588, 0.022418970242142677, 0.019706642255187035, 0.05726845934987068, 0.027630001306533813, 0.010031186044216156, 0.0637456402182579, 0.058368176221847534, 0.0037616118788719177, 0.030181409791111946, 0.01382535882294178, 0.004659341182559729, -0.0035288124345242977, -0.07209286838769913, 0.04976154863834381, 0.06882370263338089, 0.0022600307129323483, 0.037433672696352005, 0.10341627150774002, 0.02054552175104618, -0.017586790025234222, 0.020315764471888542, -0.004072204232215881, -0.010077012702822685, -0.02678687497973442, -0.04668063670396805, -0.0194522887468338, 0.051515478640794754, -0.00070682552177459, 0.03082922473549843, -0.05519838631153107, -0.0712975263595581, 0.03610191494226456, -0.05259205773472786, 0.08185958862304688, 0.015535281971096992, -0.056817956268787384, -0.052944596856832504, 0.0353316068649292, -0.1424567997455597, -0.04518621414899826, -0.01628749817609787, -0.09248658269643784, -0.09748927503824234, 0.03703875467181206, 0.04096240550279617, -0.06339813768863678, -0.011099601164460182, 0.021094081923365593, 0.05065477639436722, -0.021220093593001366, -0.03699960559606552, -0.025209134444594383, -0.038639213889837265, -0.0012466059997677803, 0.008415894582867622, -0.10769414901733398, -0.07148232311010361, -0.02532018907368183, 0.007427826523780823, -0.06222596764564514, 0.03869675099849701, -0.09541795402765274, -0.05682704225182533, 0.07662571221590042, 0.03280327469110489, -0.07618997246026993, -0.00029939584783278406, -7.347366461045259e-33, -0.04486380144953728, 0.03032437525689602, -0.13857214152812958, -0.029839150607585907, -0.049933843314647675, -0.08112844824790955, 0.06691405922174454, -0.0023633583914488554, 0.05578480288386345, -0.03330547735095024, -0.04121951758861542, -0.01948142610490322, -0.09199436008930206, -0.05636121332645416, -0.1096733957529068, -0.00812628772109747, 0.00040393948438577354, 0.08130857348442078, 0.032267976552248, -0.03787035867571831, -0.007691900711506605, 0.014144531451165676, -0.009339350275695324, 0.07337260991334915, 0.009651454165577888, 0.007880473509430885, 0.12361850589513779, -0.08124073594808578, -0.05891856178641319, -0.010029137134552002, -0.0020120174158364534, -0.0014713869895786047, 0.07832259684801102, 0.051434941589832306, -0.0975847840309143, -0.055143602192401886, 0.04198652133345604, -0.052249085158109665, -0.07149168103933334, -0.047710638493299484, 0.0920853242278099, 0.0005770200514234602, 0.07890675216913223, 0.017239101231098175, 0.03151888772845268, 0.050138652324676514, 0.031033210456371307, -0.001604262855835259, -0.08739740401506424, -0.012216407805681229, -0.0062220171093940735, -0.08208855986595154, 0.05991858243942261, -0.026026204228401184, 0.06442059576511383, -0.04635554179549217, -0.06502022594213486, 0.047768861055374146, 0.06580115854740143, 0.022676099091768265, -0.033043790608644485, -0.009419746696949005, 0.042162373661994934, 0.06021423265337944, 0.00041426203097216785, -0.03893057629466057, 0.01611781306564808, -0.00193790381308645, -0.016106165945529938, 0.03779098019003868, 0.009732442907989025, 0.058736320585012436, -0.07108519971370697, -0.04475291073322296, -0.07057686150074005, 0.01592319831252098, 0.04795853793621063, 0.02692962996661663, -0.0352775976061821, 0.005950233433395624, -0.12951906025409698, -0.06182487681508064, 0.053071677684783936, -0.002343585481867194, -0.02548818103969097, -0.06768310070037842, 0.03182590380311012, 0.03410322591662407, 0.11918262392282486, 0.020168190822005272, -0.03611348569393158, 0.030264126136898994, 0.003102377522736788, 0.0051084961742162704, 0.06838971376419067, 1.0363425034066923e-31, -0.06937210261821747, -0.02204885706305504, -0.0663514956831932, 0.057133227586746216, 0.00936751626431942, 0.0507175587117672, 0.018003735691308975, 0.0035987859591841698, 0.0026351420674473047, -0.06721160560846329, 0.01616368442773819, 0.01707610674202442, -0.0367312915623188, -0.019967254251241684, -0.019455840811133385, 0.026098057627677917, -0.029189057648181915, 0.0333305187523365, 0.02183149755001068, -0.04750081151723862, 0.05135362967848778, 0.013158194720745087, -0.025185462087392807, -0.002631683135405183, 0.03207716718316078, 0.07579183578491211, -0.04945697262883186, 0.03611426427960396, 0.014851324260234833, -0.01791071519255638, 0.002212332095950842, -0.06918863952159882, 0.07394054532051086, -0.0019405520288273692, 0.03377700597047806, -0.015517983585596085, -0.04707271605730057, 0.10000786185264587, -0.0012598189059644938, 0.024557095021009445, -0.007845116779208183, -0.03385628014802933, -0.07545482367277145, 0.027292318642139435, 0.007884671911597252, -0.13026632368564606, -0.021499579772353172, 0.007828622125089169, 0.025430139154195786, -0.04494662955403328, -0.029364988207817078, 0.048594046384096146, 0.0008990711066871881, 0.061154626309871674, 0.03983519971370697, -0.042602576315402985, 0.013064087368547916, 0.0005489439936354756, -0.08648800104856491, -0.04415089637041092, -0.01921534165740013, 0.053697675466537476, -0.11285827308893204, -0.013748311437666416 ]
205Trigonometric identities and equations The x-y plane is divided into quadrants: y xFirst quadrantSecond quadrant Fourth quadrantThird quadrantO+90° –270° +270° –90°0 +360°–360° –180° +180°Angles may lie outside the range 0–360°, but they will always lie in one of the four quadrants. For example, an angle of 600° would be equivalent to 600° – 360° = 240°, so it would lie in the third quadrant. Example 3 Find the signs of sin θ, cos θ and tan θ in the second quadrant. P(x, y)y y xO1 θ x As x is − ve and y is + ve in this quadrant sin θ = +ve cos θ = −ve tan θ = +ve _____ −ve = −ve So only sin θ is positive.Draw a circle, centre O and radius 1, with P(x, y) on the circle in the second quadrant.In the second quadrant, θ is obtuse, or 90° < θ < 180°. Thi s diagram is often referred to as a CAST diagram since the word is spelled out from the bottom right going anti-clockwise.Notationy90° All CosSin Tan 270°0, 360° 180°x■ You can use the quadrants to determine whether each of the trigonometric ratios is positive or negative. For an angle θ in the second quadrant, only sin θ is positive. For an angle θ in the third quadrant, only tan θ is positive.For an angle θ in the first quadrant, sin θ , cos θ and tan θ are all positive. For an angle θ in the fourth quadrant, only cos θ is positive.
[ 0.008106395602226257, -0.0381806343793869, 0.05605209618806839, -0.028636878356337547, -0.06365350633859634, 0.03993484750390053, -0.02323935553431511, -0.07498277723789215, -0.06600544601678848, -0.032113201916217804, 0.024712922051548958, -0.023540999740362167, -0.0033954798709601164, 0.02952074445784092, 0.08332973718643188, 0.004214470274746418, -0.07340539246797562, 0.010746940970420837, 0.01827387697994709, 0.04518610239028931, 0.05734914913773537, -0.04880433902144432, -0.0021216829773038626, -0.06374233961105347, 0.028645377606153488, 0.05104129761457443, 0.012096863240003586, 0.0162961445748806, -0.011031688190996647, 0.040680572390556335, 0.00011365164391463622, 0.0036544520407915115, -0.0495886504650116, -0.1461273580789566, -0.07122329622507095, -0.04510819539427757, 0.04712888225913048, -0.029547281563282013, -0.020103266462683678, 0.003745299531146884, -0.03564350679516792, 0.053741905838251114, 0.06454908847808838, 0.014122476801276207, 0.015377648174762726, -0.04090709239244461, -0.07837735116481781, 0.018819604068994522, 0.04591783508658409, 0.014059004373848438, 0.02974662557244301, 0.04463962838053703, -0.12877851724624634, -0.01465407945215702, 0.01418960653245449, 0.032152168452739716, -0.024625346064567566, -0.023158321157097816, -0.1013321802020073, -0.08078493177890778, 0.09853693842887878, -0.0009156066225841641, 0.00620462279766798, -0.015463045798242092, -0.047903187572956085, -0.07925356179475784, 0.05157671496272087, -0.07463223487138748, 0.030326925218105316, 0.018452422693371773, -0.04914854094386101, -0.02089213766157627, -0.04169997200369835, -0.06972760707139969, -0.04506219923496246, -0.03844425454735756, -0.08866845071315765, 0.04319435730576515, -0.021374190226197243, -0.0696469321846962, -0.07834327965974808, 0.001680065062828362, 0.10431501269340515, -0.0076666465029120445, 0.0629568099975586, 0.008634299039840698, 0.0625731348991394, 0.1198749840259552, 0.03181936964392662, 0.007234557066112757, 0.07934445887804031, -0.04433117434382439, -0.027152158319950104, -0.08711185306310654, -0.013408196158707142, 0.025287393480539322, 0.07360310107469559, 0.04594094678759575, 0.030749941244721413, 0.01156812533736229, -0.02362341247498989, -0.01950044557452202, 0.0021812429185956717, -0.029705699533224106, 0.019314704462885857, -0.010736069642007351, 0.11896542459726334, -0.07784722745418549, 0.04042934626340866, -0.025486653670668602, -0.14517365396022797, 0.03522692620754242, 0.05115208774805069, -0.040907856076955795, -0.006473024375736713, -0.05224286764860153, 0.027722159400582314, 0.05781201273202896, 0.040092021226882935, 0.013291485607624054, -0.01034559402614832, 0.06741781532764435, 0.012885410338640213, 0.015553724020719528, -0.009402835741639137, 0.004409768618643284, -0.010111911222338676, -0.006498246919363737, -0.00811720173805952, 0.039255645126104355, 0.08464325964450836, 0.061638303101062775, -0.0051435185596346855, -0.010183078236877918, 0.006488917861133814, 0.002897445345297456, 0.11052796989679337, 0.1072479784488678, -0.011272815056145191, 0.08242190629243851, 0.014111527241766453, 0.08436707407236099, 0.009043052792549133, 0.02391303889453411, -0.033938705921173096, -0.028274642303586006, -0.11160165816545486, -0.017374174669384956, -0.02905774861574173, 0.07820868492126465, 0.048051510006189346, 0.016712430864572525, -0.09324108064174652, 0.08737102895975113, -0.016899682581424713, 0.017164435237646103, 0.012401586398482323, 0.01679176278412342, 0.0958826094865799, 0.0658179521560669, -0.006991174537688494, -0.00670317467302084, -0.009449518285691738, 0.04018411040306091, 0.07251159101724625, -0.011060808785259724, -0.014127540402114391, 0.053418081253767014, 0.03305213898420334, 0.05694786086678505, -0.06574320048093796, -0.009244322776794434, 0.04567749425768852, -0.03314533457159996, 0.028100745752453804, -0.04482244327664375, 0.1266821175813675, -0.047634292393922806, -0.11308242380619049, 0.027603203430771828, -0.025617392733693123, -0.06430583447217941, 0.011873157694935799, -0.06995875388383865, 0.012914142571389675, -0.0490805022418499, -0.09921206533908844, 0.009349154308438301, -0.058048952370882034, -0.006644085049629211, 0.015365391038358212, -0.08616896718740463, -0.02437395416200161, -0.01573985256254673, -0.06340072304010391, 0.040260907262563705, -0.03551667556166649, -0.016685519367456436, -0.10194013267755508, 0.06542835384607315, 0.09454099833965302, -0.034907661378383636, 0.01061263307929039, -0.024461084976792336, 0.03406081348657608, -0.030002372339367867, -0.01250801794230938, -0.02511093206703663, -0.011834351345896721, 0.05405620485544205, -0.004378866404294968, -0.05030674859881401, 0.0725090429186821, -0.05007292702794075, 0.05311555787920952, -0.05123338848352432, 0.01828720048069954, -0.05616554245352745, -0.07210148870944977, 0.055086396634578705, 0.009855217300355434, -0.01826667971909046, -0.021182959899306297, -1.0288702568339195e-33, -0.06726474314928055, -0.07796115428209305, -0.11335444450378418, -0.014800046570599079, -0.011985371820628643, -0.05040016025304794, 0.0816180557012558, 0.01148664765059948, 0.06660357117652893, -0.00034339301055297256, 0.11006228625774384, -0.05697539076209068, -0.04174656793475151, -0.06711781024932861, -0.06374618411064148, -0.025156451389193535, -0.009413357824087143, 0.024957502260804176, -0.02839229814708233, -0.06372486054897308, 0.04577629268169403, 0.017667971551418304, -0.006472374312579632, 0.04088214039802551, -0.012259354814887047, 0.01596090756356716, 0.11110545694828033, -0.04756252095103264, -0.03919597342610359, 0.042787037789821625, -0.023111149668693542, -0.03552126884460449, 0.07132817804813385, 0.05547171086072922, -0.006869848817586899, -0.059249844402074814, -0.03491080552339554, -0.020418092608451843, 0.023367444053292274, -0.0539388470351696, -0.005699041299521923, -0.0009251765441149473, 0.08807862550020218, -0.0044463626109063625, 0.07849366962909698, -0.037289250642061234, 0.02486073598265648, -0.0034819822758436203, -0.023919282481074333, 0.019834468141198158, -0.005959775764495134, -0.06075845658779144, -0.006068555172532797, 0.01507053803652525, 0.0985134094953537, 0.010347160510718822, -0.0795450285077095, -0.0067253815941512585, 0.1252351552248001, -0.0819740891456604, 0.05360197648406029, 0.01308160275220871, 0.040862713009119034, 0.03327380493283272, 0.016040731221437454, -0.05989425256848335, 0.04617740586400032, 0.0001946656993823126, 0.04552508145570755, 0.0471750944852829, 0.017964038997888565, -0.05518593266606331, -0.06198795512318611, -0.06153563782572746, -0.07580708712339401, 0.05393887311220169, -0.008840082213282585, 0.036472998559474945, -0.001438087783753872, -0.017956804484128952, -0.09031645208597183, 0.013540353626012802, -0.03407851606607437, 0.018359269946813583, -0.08872610330581665, -0.05745560675859451, 0.044271133840084076, 0.027157705277204514, 0.018978476524353027, 0.018622035160660744, -0.020111706107854843, -0.01741412840783596, -0.019977018237113953, 0.022584721446037292, 0.10880747437477112, 6.998664731144665e-32, -0.05586007237434387, 0.06113060563802719, -0.0032235009130090475, 0.014730638824403286, -0.0037514977157115936, -0.0061188675463199615, -0.034379102289676666, -0.01815563254058361, 0.04561638459563255, -0.07038107514381409, 0.07606956362724304, 0.02234404906630516, -0.03590647503733635, -0.08883114904165268, -0.07628986239433289, 0.000004918664217257174, -0.035329487174749374, 0.10616619884967804, 0.005838858429342508, -0.010989317670464516, 0.0777268037199974, 0.048256807029247284, 0.052548374980688095, -0.0370451882481575, 0.07178278267383575, 0.04511858522891998, -0.0715990662574768, -0.007089270278811455, -0.05126645788550377, -0.03296409547328949, 0.011036409065127373, -0.06584882736206055, -0.012997281737625599, 0.06253910809755325, 0.01873001828789711, -0.052071236073970795, -0.033599577844142914, 0.020584246143698692, -0.035925641655921936, 0.04562796652317047, -0.0049406238831579685, -0.037234917283058167, -0.020886972546577454, 0.04196729511022568, 0.016739146783947945, -0.057231441140174866, 0.022236865013837814, -0.06046050414443016, 0.01956315152347088, -0.06610959768295288, -0.027461806312203407, 0.06988313049077988, -0.005671638995409012, 0.04940319433808327, 0.05991284176707268, 0.020581616088747978, -0.018635639920830727, 0.017505571246147156, 0.006751620210707188, 0.06592391431331635, -0.04233479127287865, 0.11998014897108078, -0.08240261673927307, -0.06021754443645477 ]
206 Chapter 10 ■ You can use these rules to find sin, cos or tan of any positive or negative angle using the corresponding acute angle made with the x-axis, θ. A CS T360° – θ 180° + θ180° – θ θ θθθ θy x cos (180° − θ ) = − cos θ cos (180° + θ ) = − cos θ cos (360° − θ ) = cos θtan (180° − θ ) = − tan θ tan (180° + θ ) = tan θ tan (360° − θ ) = − tan θsin (180° − θ ) = sin θ sin (180° + θ ) = − sin θ sin (360° − θ ) = − sin θ Example 4 Express in terms of trigonometric ratios of acute angles: a sin (− 100°) b cos 330° c tan 500° a 80°A CS T80° –100°y x O P The acute angle made with the x -axis is 80°. In the third quadrant only tan is + ve, so sin is − ve. So sin (−10 0)° = − sin 80 ° b +330°30°y O xA CS TP The acute angle made with the x -axis is 30°. In the fourth quadrant only cos is + ve. So cos 33 0° = +cos 30 °For each part, draw diagrams showing the position of OP for the given angle and insert the acute angle that OP makes with the x-axis.
[ -0.03881235793232918, 0.02005922980606556, -0.009691301733255386, -0.05000996217131615, 0.013693052344024181, -0.03706236556172371, 0.012718725949525833, -0.02683405764400959, -0.03285663574934006, 0.009826259687542915, 0.0524747371673584, 0.0030614235438406467, 0.059461161494255066, 0.07059820741415024, 0.0654609277844429, 0.0217616967856884, -0.050278693437576294, 0.025088300928473473, 0.005520996637642384, 0.005942525342106819, -0.010984491556882858, -0.030984999611973763, -0.03328307345509529, -0.06330970674753189, -0.0188022218644619, -0.01311861164867878, 0.00836145505309105, -0.014728742651641369, 0.04549641162157059, 0.020114002749323845, 0.0005506930174306035, -0.07907463610172272, -0.0008728636312298477, -0.10197250545024872, -0.06455858051776886, -0.02965555712580681, -0.020214790478348732, 0.05941701680421829, -0.04777570068836212, 0.042310282588005066, -0.016377488151192665, 0.08049675077199936, 0.020851610228419304, 0.04858352243900299, -0.0026650764048099518, 0.001945927389897406, -0.10398532450199127, -0.02521577663719654, -0.010153508745133877, 0.06305734813213348, 0.042965155094861984, 0.10415782779455185, -0.0737367570400238, 0.017664045095443726, -0.07162100076675415, 0.11674704402685165, -0.04311191663146019, -0.009453185833990574, -0.016728991642594337, -0.06177790090441704, 0.11687050014734268, 0.08123405277729034, -0.03413935750722885, -0.033050619065761566, -0.03783636912703514, 0.00857896264642477, 0.007576760835945606, -0.10489065945148468, 0.0037531994748860598, 0.029700107872486115, -0.0017161107389256358, 0.01352398656308651, -0.02761971391737461, -0.05937942862510681, -0.03169288858771324, 0.017648376524448395, 0.0271227415651083, 0.10180047154426575, -0.08781808614730835, -0.07013335078954697, -0.09049078822135925, -0.015377339906990528, 0.007840847596526146, 0.0518425852060318, 0.08768679201602936, 0.06612793356180191, 0.017604436725378036, 0.09751411527395248, 0.0417151041328907, 0.08078094571828842, 0.02665909379720688, -0.07722508162260056, -0.011283795349299908, -0.03686332702636719, 0.03481779992580414, 0.04098095744848251, 0.034840233623981476, 0.06377533078193665, -0.01772160828113556, -0.012104508467018604, 0.009345658123493195, -0.031525518745183945, -0.023555010557174683, 0.10416587442159653, 0.007620156742632389, -0.04675457999110222, 0.06907913088798523, -0.00032191677019000053, -0.0331302136182785, -0.05685108155012131, -0.03652040660381317, 0.09419090300798416, 0.04754404351115227, -0.0923079326748848, 0.033326156437397, -0.039311449974775314, 0.0026681742165237665, 0.07568801194429398, 0.04870530590415001, -0.004037112463265657, 0.01777082309126854, -0.009087243117392063, -0.038051050156354904, -0.004432523623108864, -0.041007474064826965, 0.023656144738197327, 0.03480658680200577, -0.044936131685972214, -0.03141165152192116, 0.047794364392757416, 0.10937149822711945, -0.01832456700503826, -0.061282575130462646, -0.07532920688390732, 0.019648950546979904, 0.010528149083256721, 0.09043250977993011, 0.09858150035142899, 0.026259655132889748, 0.0018417169339954853, 0.03211599960923195, -0.002650182694196701, 0.012599200010299683, 0.033146146684885025, 0.05638498812913895, -0.08028712123632431, -0.14595194160938263, -0.05981902778148651, 0.00005356115798349492, 0.050337426364421844, 0.028724128380417824, -0.07643359154462814, -0.04813889041543007, 0.07597512006759644, -0.02876322902739048, 0.023505007848143578, 0.01837988756597042, 0.07433542609214783, 0.06475480645895004, -0.024860305711627007, -0.06257744133472443, 0.11064840853214264, 0.09238213300704956, -0.00962013192474842, -0.048309437930583954, -0.012864313088357449, 0.027232369408011436, -0.0385611355304718, -0.01534964982420206, 0.10022874921560287, 0.08458007127046585, -0.035077374428510666, -0.010207360610365868, 0.041799433529376984, -0.024419492110610008, -0.08039194345474243, 0.029577316716313362, -0.010418581776320934, -0.02356785163283348, 0.001079557929188013, 0.0064566293731331825, -0.06761021912097931, -0.013439435511827469, 0.0073612588457763195, 0.10942931473255157, -0.050919968634843826, -0.0382935106754303, -0.010744619183242321, -0.026002462953329086, -0.05045995116233826, 0.05795898288488388, -0.03887564316391945, -0.07302215695381165, 0.03271181136369705, -0.08622714877128601, -0.009018433280289173, -0.039038028568029404, -0.05495171993970871, -0.011288058944046497, 0.031994227319955826, 0.02013470232486725, -0.036370210349559784, 0.0048990556970238686, 0.02058892324566841, 0.03813328966498375, -0.0017718669259920716, 0.048821333795785904, -0.007716220337897539, -0.021261373534798622, 0.06672883778810501, -0.0244822446256876, -0.01663534715771675, 0.0466068871319294, -0.006317866500467062, 0.030521048232913017, -0.05258198454976082, 0.07253080606460571, -0.08072256296873093, -0.08525416254997253, 0.1130589097738266, -0.03940839692950249, 0.010453288443386555, -0.019554629921913147, 1.3130588731146697e-33, -0.01912483386695385, -0.0386313870549202, -0.09455212205648422, -0.06358108669519424, -0.03181794285774231, -0.05218938738107681, 0.11264277249574661, -0.031977225095033646, 0.05145731940865517, -0.04540861397981644, 0.08521948009729385, -0.04160333052277565, -0.10416975617408752, -0.055681753903627396, 0.008327517658472061, -0.028033249080181122, -0.07839575409889221, 0.00625424413010478, 0.008595478720963001, -0.04179470241069794, 0.012472424656152725, -0.02975744567811489, -0.04505451023578644, 0.03169579803943634, -0.008282087743282318, 0.0025617654900997877, 0.07575584203004837, -0.08138775825500488, -0.07694268971681595, -0.013489366509020329, -0.08591300994157791, 0.05205048993229866, 0.05423415079712868, 0.0634823739528656, -0.05356564372777939, -0.02472616732120514, -0.011778641492128372, -0.04161066934466362, -0.010124648921191692, -0.01081373542547226, 0.05642290040850639, 0.019425561651587486, 0.032003872096538544, 0.08030686527490616, -0.0013502223882824183, -0.05267850309610367, 0.0018855162197723985, 0.0012776064686477184, -0.07672654092311859, 0.018037516623735428, 0.00020812178263440728, -0.11949706822633743, 0.049081217497587204, 0.005145407747477293, 0.11988702416419983, 0.012803840450942516, -0.07051783800125122, -0.03921157866716385, 0.08626732230186462, -0.008665033616125584, -0.00035891938023269176, 0.030528578907251358, -0.009241271764039993, 0.01548626646399498, -0.03041977435350418, -0.03260819613933563, 0.018029028549790382, -0.03846535086631775, 0.04869622364640236, -0.03684142604470253, 0.013895932585000992, 0.09537652879953384, -0.06193249300122261, -0.004356181249022484, -0.044596921652555466, -0.021676188334822655, -0.053328610956668854, 0.0100665632635355, 0.012311672791838646, -0.0023578323889523745, 0.003144602756947279, 0.04146772623062134, 0.07512466609477997, -0.01528178621083498, -0.03342002257704735, -0.01748879812657833, -0.027680810540914536, 0.003646890167146921, 0.038975462317466736, 0.0484795905649662, -0.07488628476858139, -0.02852238528430462, 0.011119299568235874, 0.0006759966490790248, 0.06362398713827133, 7.004015581429608e-32, -0.13878783583641052, -0.02532830461859703, -0.05820018798112869, 0.11637084186077118, -0.07071609050035477, -0.0014471097383648157, 0.007024457212537527, -0.05479500815272331, 0.050381992012262344, -0.0697692260146141, -0.005817824974656105, 0.07940421998500824, 0.011731102131307125, -0.03377354145050049, -0.03567785397171974, -0.023425964638590813, 0.0525163970887661, 0.10002142190933228, 0.010460271500051022, -0.027362296357750893, -0.012496152892708778, 0.024485556408762932, 0.0455646887421608, 0.0070290095172822475, 0.05835860222578049, 0.06428901851177216, -0.026279637590050697, -0.02635112777352333, -0.0317901112139225, -0.08674941211938858, 0.03836449980735779, -0.0657961368560791, 0.05852583795785904, 0.04838625341653824, 0.0204743854701519, -0.07327093929052353, -0.06877711415290833, 0.07490530610084534, 0.008658887818455696, 0.06147279962897301, -0.0004371214599814266, -0.011498834006488323, -0.03144191578030586, 0.014032493345439434, 0.0019430783577263355, -0.07622679322957993, -0.03485110402107239, -0.020757846534252167, 0.047424912452697754, -0.07972943037748337, 0.029566962271928787, 0.062203437089920044, -0.008407659828662872, 0.08258314430713654, 0.05321931838989258, -0.02787570096552372, -0.02179739810526371, -0.012271791696548462, -0.03755073621869087, -0.014323912560939789, 0.014325161464512348, 0.1028866246342659, -0.06409257650375366, -0.03476741909980774 ]
207Trigonometric identities and equations c 40°+500°y O xA CS TP The acute angle made with the x -axis is 40°. In the second quadrant only sin is + ve. So tan 50 0° = −tan 40 ° Exercise 10A 1 Draw diagrams to show the following angles. Mark in the acute angle that OP makes with the x-axis . a −80° b 100° c 200° d 165° e −145° f 225° g 280° h 330° i −160° j −280° 2 State the quadrant tha t OP lies in when the angle that OP makes with the positive x-axis is: a 400° b 115° c −210° d 255° e −100° 3 Without using a calcula tor, write down the values of: a sin (− 90°) b sin 450° c sin 540° d sin (− 450°) e cos (− 180°) f cos (− 270°) g cos 270° h cos 810° i tan 360° j tan (− 180°) 4 Express the follo wing in terms of trigonometric ratios of acute angles: a sin 240° b sin (− 80°) c sin (− 200°) d sin 300° e sin 460° f cos 110° g cos 260° h cos (− 50°) i cos (− 200°) j cos 545° k tan 100° l tan 325° m tan (− 30°) n tan (− 175°) o tan 600° 5 Given tha t θ is an acute angle, express in terms of sin θ: a sin (−θ ) b sin (180° + θ ) c sin (360° − θ ) d sin (− (180° + θ )) e sin (− 180° + θ ) f sin (− 360° + θ ) g sin (540° + θ ) h sin (720° − θ ) i sin (θ + 720°) The results ob tained in questions 5 and 6 are true for all values of θ.Hint 6 Given tha t θ is an acute angle, express in terms of cos θ or tan θ: a cos (180° − θ ) b cos (180° + θ ) c cos (−θ ) d cos (−(180° − θ )) e cos (θ − 360°) f cos (θ − 540°) g tan (−θ ) h tan (180° − θ ) i tan (180° + θ ) j tan (− 180° + θ ) k tan (540° − θ ) l tan (θ − 360°)
[ -0.04603499919176102, 0.058071255683898926, 0.09010346978902817, -0.0037512104026973248, -0.07519226521253586, 0.052059050649404526, 0.008556120097637177, -0.003354455344378948, -0.09993486851453781, -0.00739734061062336, -0.010111751034855843, -0.04867052286863327, 0.033200256526470184, 0.07144485414028168, 0.034166138619184494, 0.016991177573800087, -0.062036558985710144, -0.013942496851086617, -0.04148784652352333, 0.028841469436883926, 0.016561729833483696, -0.03737137094140053, 0.015003867447376251, -0.10779033601284027, 0.025639666244387627, 0.014548374339938164, 0.037531450390815735, 0.0683174654841423, 0.05362424999475479, 0.03508353233337402, -0.037619657814502716, -0.06592889875173569, 0.005235077813267708, -0.11693545430898666, -0.07160107046365738, -0.029761964455246925, 0.007865753024816513, -0.04178659990429878, 0.009763428941369057, -0.013016731478273869, 0.011722072958946228, 0.04559919238090515, -0.017333850264549255, 0.016903044655919075, -0.01544850505888462, -0.047201208770275116, -0.11569672077894211, 0.04487278684973717, 0.022039353847503662, 0.024370379745960236, 0.0448991023004055, 0.06827176362276077, -0.06428439915180206, 0.012882214039564133, -0.0013078198535367846, 0.07257579267024994, -0.05751895159482956, 0.047904521226882935, -0.054246027022600174, -0.07401587814092636, 0.09889917820692062, 0.006645882967859507, 0.006754969246685505, -0.017553795129060745, -0.032857805490493774, -0.02996881492435932, 0.07663074880838394, -0.031471215188503265, 0.01430764514952898, -0.007245996501296759, -0.005790840834379196, -0.0034981200005859137, 0.003048510290682316, -0.06428316235542297, -0.030379466712474823, -0.036235563457012177, -0.03693613037467003, 0.04233178868889809, -0.0009104408090934157, -0.0883604884147644, 0.021336985751986504, -0.03672082722187042, 0.12564289569854736, -0.022202113643288612, 0.018809938803315163, 0.009399608708918095, 0.06788992881774902, 0.12316084653139114, 0.043137528002262115, -0.04017891362309456, 0.06758277863264084, -0.08259014785289764, -0.023134201765060425, -0.07207365334033966, 0.050584763288497925, 0.03133305162191391, 0.03360361605882645, 0.04817148670554161, -0.04920228198170662, 0.059143420308828354, -0.002113268245011568, -0.02574090100824833, 0.004528774414211512, -0.006269851233810186, -0.0013920004712417722, -0.015846259891986847, 0.08905672281980515, -0.03041802905499935, -0.017990000545978546, -0.07244031131267548, -0.08912753313779831, 0.07247082889080048, 0.04867943748831749, -0.06281181424856186, -0.02895655483007431, -0.011273190379142761, 0.059131741523742676, 0.07061801850795746, 0.02916007861495018, 0.011681442148983479, -0.01029027160257101, 0.08474083989858627, 0.04209830239415169, -0.007438851520419121, -0.054257526993751526, -0.04502689093351364, 0.0027594950515776873, 0.005993804894387722, -0.02886311151087284, 0.06225687637925148, 0.06464884430170059, 0.020786361768841743, 0.0009982637129724026, -0.028863247483968735, -0.0077781653963029385, -0.05179233476519585, 0.07835078239440918, 0.09021393209695816, -0.017461925745010376, -0.007879210636019707, 0.011271839961409569, 0.09499305486679077, -0.06052582710981369, 0.00019581581000238657, 0.05623649060726166, -0.022353019565343857, -0.13131116330623627, -0.04716223478317261, -0.02982412278652191, 0.09524420648813248, 0.03382660076022148, 0.024486539885401726, -0.03518632426857948, 0.08197461068630219, 0.018489515408873558, 0.0452493354678154, -0.015074679628014565, -0.006304104812443256, 0.05992300063371658, 0.01769942045211792, -0.002380586927756667, 0.04389077425003052, 0.007207945454865694, 0.010927001014351845, 0.05185084044933319, -0.03145972639322281, 0.055209334939718246, 0.006760081741958857, -0.03747101128101349, 0.024796783924102783, 0.01889643631875515, -0.006368778180330992, 0.002880479907616973, 0.03974219784140587, 0.046360522508621216, -0.07240419089794159, 0.05244738608598709, -0.0003872569359373301, -0.06212859973311424, -0.0023433458991348743, -0.005039691459387541, -0.07308418303728104, -0.023799218237400055, -0.01870841346681118, -0.01716364361345768, -0.027078747749328613, -0.037440329790115356, 0.007912625558674335, -0.054637469351291656, 0.03787253051996231, 0.03762505576014519, -0.00007040132186375558, -0.038673993200063705, 0.04947435483336449, -0.13382217288017273, -0.044733401387929916, -0.01680329069495201, -0.04008891433477402, -0.05995109677314758, 0.04813668504357338, 0.06159256026148796, -0.03543329983949661, -0.014168585650622845, 0.012432213872671127, 0.08031619340181351, -0.0003740876563824713, -0.010523739270865917, -0.04701022431254387, -0.06518164277076721, -0.0005146133480593562, -0.03791581466794014, -0.06644304096698761, 0.006317059975117445, 0.0317872017621994, -0.009808401577174664, -0.11112432926893234, 0.07201424986124039, -0.04599446803331375, -0.04536696523427963, 0.057551540434360504, 0.003515304997563362, 0.0037327618338167667, 0.065766341984272, -9.098934593691056e-33, -0.03452567756175995, -0.09156689792871475, -0.1191968023777008, -0.08564411848783493, 0.009922858327627182, 0.03682016208767891, 0.06812997907400131, 0.003690902143716812, -0.01594497449696064, 0.007926851511001587, 0.10546720027923584, -0.0638495460152626, -0.08956356346607208, -0.09725922346115112, -0.07022706419229507, -0.008439835160970688, 0.016476649791002274, 0.021706299856305122, -0.0640365332365036, -0.006528585683554411, 0.01809331588447094, -0.03157529607415199, 0.03420533984899521, 0.051139384508132935, 0.00849165953695774, -0.0016063720686361194, 0.11316067725419998, -0.10341662168502808, -0.06858113408088684, 0.01365340780466795, 0.023046309128403664, 0.03094744309782982, 0.01913440227508545, 0.112480528652668, -0.0357905738055706, -0.027170047163963318, 0.016974445432424545, -0.022937310859560966, 0.02562369965016842, -0.05829668417572975, 0.038776054978370667, -0.014999943785369396, 0.07171130925416946, -0.015112858265638351, 0.09861302375793457, -0.03010733239352703, 0.004934069700539112, 0.003572494490072131, -0.04236365482211113, 0.005305700935423374, -0.010843406431376934, -0.10023723542690277, -0.015025136061012745, -0.0793241560459137, 0.1314903050661087, -0.017817430198192596, -0.06472042202949524, -0.08764210343360901, 0.10080455243587494, -0.03761432692408562, 0.0718400627374649, 0.008551545441150665, -0.012832920998334885, 0.05498030036687851, 0.012576926499605179, -0.0163473691791296, -0.0012805049773305655, -0.037444572895765305, 0.0400850884616375, -0.0674031525850296, 0.03753495216369629, 0.0567338652908802, -0.06786651164293289, -0.03420327976346016, -0.01699782721698284, 0.04153982177376747, 0.04009139537811279, -0.0070275841280817986, 0.06863509863615036, -0.011972670443356037, -0.07739093899726868, 0.046776872128248215, 0.06098435819149017, -0.012198296375572681, -0.00748015008866787, -0.003010267624631524, -0.006257768254727125, -0.04040779173374176, -0.0005388294812291861, 0.043483614921569824, -0.04917600005865097, -0.009966458193957806, -0.01422929111868143, -0.04733113572001457, 0.039662424474954605, 8.438288548366493e-32, -0.1385481357574463, 0.026173854246735573, -0.008132997900247574, 0.036498695611953735, 0.021631546318531036, 0.003160082036629319, -0.04903149604797363, -0.09990870952606201, 0.060795411467552185, -0.05302545055747032, 0.07555881142616272, 0.010941507294774055, -0.01208117138594389, -0.026908548548817635, -0.032925598323345184, -0.0517108291387558, -0.023994112387299538, 0.054055340588092804, -0.0006056719576008618, -0.055087845772504807, -0.012761089950799942, 0.031788576394319534, 0.040700268000364304, 0.047741103917360306, 0.004603462293744087, 0.04206071048974991, -0.03538573160767555, -0.03465303033590317, -0.04648097604513168, -0.06214803829789162, 0.059181299060583115, -0.10013864189386368, 0.05561831220984459, 0.05075715482234955, 0.0032439406495541334, 0.011227131821215153, -0.011314942501485348, 0.11618811637163162, -0.010440447367727757, 0.09846620261669159, -0.041365619748830795, -0.0012642934452742338, -0.01184807252138853, -0.002894809003919363, 0.014583148062229156, -0.10359100997447968, -0.025344224646687508, -0.028532758355140686, 0.013142211362719536, -0.06493391841650009, -0.06178126111626625, 0.08553305268287659, -0.009874904528260231, 0.047247037291526794, 0.0006491467356681824, 0.0003838135162368417, 0.04061165452003479, 0.009454525075852871, -0.0296571496874094, -0.0569242388010025, -0.04793079197406769, 0.04176890850067139, -0.15904755890369415, -0.09149499982595444 ]
208 Chapter 10 Draw a diagram showing the positions of θ and 180° – θ on the unit circle.Problem-solving a Prove that sin (18 0° − θ ) = sin θ b Prove that cos (−θ ) = cos θ c Prove that tan (18 0° − θ ) = −t an θChallenge 10.2 Exact values of trigonometrical ratios You can find sin, cos and tan of 30°, 45° and 60° exactly using triangles. Consider an equilateral triangle ABC of side 2 units. Draw a perpendicular from A to meet BC at D.Apply the trigonometric ratios in the right-angled triangle ABD. ■ sin 30° = 1 __ 2 cos 30° = √ __ 3 ___ 2 tan 30° = 1 ___ √ __ 3 = √ __ 3 ___ 3 sin 60° = √ __ 3 ___ 2 cos 60° = 1 __ 2 tan 60° = √ __ 3 Consider an iso sceles right-angled triangle PQR with PQ = RQ = 1 unit. ■ sin 45° = 1 ___ √ __ 2 = √ __ 2 ___ 2 cos 45° = 1 ___ √ __ 2 = √ __ 2 ___ 2 tan 45° = 130° 2 160°A BCD3 BD = 1 unitAD = √ ______ 22 − 12 = √ __ 3 PR = √ ______ 12 + 12 = √ __ 2 11 RQP 245° 45° Example 5 Find the exact value of sin (−210°). O xy –210°150° sin (−210°) = sin (1 50°) = sin (3 0°) = 1 __ 2 sin (−210°) = sin (150°) Use sin (180° − θ ) = sin θ
[ -0.051817361265420914, 0.04967747628688812, 0.03546268492937088, 0.004772591404616833, -0.029259521514177322, 0.028434986248612404, -0.056135814636945724, 0.021161822602152824, -0.0642160028219223, -0.04046836122870445, 0.05806143954396248, -0.05493220314383507, 0.03557640314102173, 0.020549897104501724, 0.02453923411667347, 0.04182584583759308, -0.04842691868543625, 0.04000648111104965, -0.04281959682703018, 0.012875879183411598, -0.005917280912399292, 0.005426823627203703, 0.06007005646824837, -0.09775887429714203, 0.015454566106200218, -0.020839335396885872, 0.0750192254781723, -0.052783358842134476, -0.004927448462694883, -0.03705722838640213, -0.05034544691443443, -0.008021914400160313, -0.036910150200128555, -0.03014165349304676, -0.04468153044581413, -0.0833427682518959, 0.01921614445745945, 0.002315774094313383, -0.03871738910675049, -0.06015012785792351, -0.05941133201122284, 0.0792437195777893, 0.0006470684893429279, 0.03926834464073181, -0.004726506303995848, 0.042343929409980774, -0.09097662568092346, 0.0978584811091423, 0.04900595173239708, -0.04426419362425804, -0.0014185975305736065, 0.04093555733561516, -0.11391749978065491, 0.002269114600494504, -0.016966044902801514, 0.0961645245552063, -0.04456498101353645, 0.016009967774152756, -0.09062274545431137, -0.05261266231536865, 0.05073995515704155, 0.03609181195497513, 0.011414950713515282, 0.020174916833639145, -0.0269757192581892, 0.022289982065558434, 0.05898645147681236, -0.07072669267654419, 0.04147021844983101, 0.040603216737508774, -0.04882953315973282, -0.020121335983276367, -0.05609631910920143, -0.04130570590496063, 0.044797010719776154, -0.037923309952020645, -0.06682788580656052, 0.03602290898561478, -0.034511908888816833, -0.09387299418449402, -0.052312348037958145, -0.05825508385896683, 0.060429904609918594, 0.053948335349559784, 0.08471468091011047, 0.052877090871334076, 0.0623093917965889, 0.05908956751227379, 0.054248910397291183, -0.05845163017511368, 0.08676280826330185, -0.07646019011735916, -0.023989969864487648, -0.042353369295597076, 0.05200909078121185, 0.08922141790390015, -0.0015027453191578388, 0.020558040589094162, 0.01611880213022232, 0.025075484067201614, 0.015099572017788887, 0.002219881396740675, 0.040014054626226425, 0.007120169699192047, -0.06942378729581833, -0.012158410623669624, 0.0519774928689003, -0.032217271625995636, 0.022274211049079895, -0.03051220439374447, -0.06838063150644302, 0.13411501049995422, 0.020518528297543526, -0.04513970762491226, 0.02333824336528778, -0.01746678166091442, 0.05461709573864937, 0.029510103166103363, -0.028454871848225594, 0.068526990711689, -0.011590567417442799, 0.03359086066484451, 0.00048524863086640835, 0.03196875378489494, -0.038231343030929565, -0.04198819026350975, 0.004724263679236174, -0.03756824508309364, 0.0034257371444255114, 0.04719444736838341, 0.06281384080648422, -0.0009620903292670846, -0.025731408968567848, -0.03796915337443352, -0.05527407303452492, -0.03741420432925224, 0.07372122257947922, 0.059506334364414215, 0.03458002954721451, 0.017485665157437325, 0.05546391010284424, 0.07398226857185364, -0.01735694147646427, -0.05026911944150925, -0.0024866138119250536, -0.05360892787575722, -0.048647310584783554, -0.0011249271919950843, -0.015728719532489777, 0.01752643473446369, 0.0791066437959671, -0.01583782397210598, -0.024584416300058365, 0.11465401202440262, -0.015876373276114464, 0.0338037945330143, -0.04587847739458084, 0.007789262104779482, 0.08481569588184357, 0.004166960250586271, -0.06871561706066132, 0.08325756341218948, 0.020865950733423233, 0.018385717645287514, 0.04526711255311966, -0.026074811816215515, -0.003966157790273428, -0.03864447399973869, -0.007832493633031845, 0.026469210162758827, 0.05211029574275017, 0.007580455858260393, 0.06550518423318863, 0.06883345544338226, 0.028403446078300476, -0.07774317264556885, 0.0854223221540451, 0.019809547811746597, -0.03685753792524338, -0.0017687467625364661, -0.04530591517686844, -0.06558279693126678, 0.004307800903916359, -0.049675989896059036, 0.024070756509900093, 0.007870635017752647, -0.0539679117500782, 0.056302886456251144, -0.06772380322217941, 0.08308490365743637, 0.00315320142544806, -0.07876820862293243, -0.05918668210506439, -0.015218068845570087, -0.0856594666838646, -0.035096537321805954, 0.010255555622279644, -0.07787636667490005, -0.11849373579025269, 0.010594918392598629, -0.004830590449273586, -0.06698456406593323, 0.02463282085955143, -0.018621942028403282, 0.06857387721538544, -0.03472123295068741, -0.004052057396620512, -0.03009013831615448, -0.07644107937812805, 0.030615901574492455, 0.01743078976869583, -0.11098615825176239, -0.019193066284060478, -0.07020039111375809, 0.07705739885568619, 0.01426982507109642, 0.08683837205171585, -0.04064200446009636, -0.03161075711250305, 0.11378370225429535, -0.010453823022544384, -0.004801033530384302, 0.0151935750618577, 1.1352961174440116e-34, -0.12323163449764252, -0.0049263290129601955, -0.12505297362804413, -0.04023979604244232, -0.009373302571475506, -0.018443169072270393, 0.07719582319259644, 0.037111084908246994, 0.026716671884059906, 0.0018342995317652822, 0.01918943226337433, -0.004010545089840889, -0.04595864564180374, -0.02500743977725506, -0.06347660720348358, -0.06128108873963356, 0.019054638221859932, 0.0021640555933117867, -0.031147824600338936, -0.04025181755423546, 0.015430155210196972, 0.01767253503203392, -0.005475442856550217, -0.02051035314798355, 0.035117700695991516, 0.04394540190696716, 0.1512644737958908, -0.09572496265172958, -0.05901729315519333, 0.015605187974870205, 0.003120777662843466, -0.028285307809710503, 0.06350158154964447, 0.052435409277677536, -0.06230178102850914, -0.0982457622885704, 0.03561396524310112, -0.020168518647551537, -0.003473568009212613, -0.06259547919034958, 0.12380026280879974, -0.040296584367752075, -0.02455410175025463, -0.004616204649209976, 0.05200411006808281, -0.006391875445842743, 0.040148042142391205, -0.03308593109250069, -0.08264269679784775, -0.07817498594522476, 0.02044108137488365, -0.08104859292507172, 0.061136867851018906, -0.058917928487062454, 0.07951720803976059, 0.01730845309793949, -0.03740117698907852, -0.03913241624832153, 0.10983788967132568, 0.039393823593854904, -0.02204028330743313, -0.0036921994760632515, 0.013202155940234661, 0.05604977533221245, 0.023697083815932274, -0.025438828393816948, 0.015148898586630821, -0.010640229098498821, 0.021460823714733124, 0.029037831351161003, -0.0001406123919878155, 0.03190578520298004, 0.0374271422624588, -0.033088069409132004, -0.047935985028743744, 0.05009184405207634, 0.015347533859312534, 0.005411476828157902, 0.0547575019299984, -0.02484394796192646, -0.052350811660289764, 0.02585180103778839, 0.03149491921067238, -0.10738900303840637, -0.08078023791313171, -0.04031609743833542, 0.041312675923109055, 0.007542904000729322, 0.06842704862356186, 0.02901170589029789, -0.021842841058969498, -0.006383552215993404, -0.03691376745700836, -0.019192473962903023, 0.14037872850894928, 7.778967872922481e-32, -0.06671968102455139, -0.0013037153985351324, -0.045511674135923386, 0.05960050970315933, -0.02447463385760784, 0.0776466578245163, 0.013111358508467674, 0.011987607926130295, 0.007920787669718266, 0.004502400290220976, -0.06030211225152016, -0.026695260778069496, -0.016236379742622375, -0.03230094537138939, -0.04236655309796333, -0.005282456986606121, -0.09555649012327194, 0.004366947337985039, 0.040822986513376236, -0.002396972384303808, 0.011448943056166172, 0.044563617557287216, 0.02372884564101696, -0.006838833447545767, 0.06588387489318848, 0.09090036898851395, -0.0468619130551815, 0.019700314849615097, -0.07739869505167007, -0.08161798864603043, 0.08432096987962723, -0.08721257746219635, 0.012432592920958996, 0.009128822013735771, 0.010808463208377361, -0.10124828666448593, 0.03197307512164116, 0.06378747522830963, 0.012691370211541653, 0.07281751930713654, -0.03350050374865532, -0.03149458393454552, -0.0332283079624176, 0.051469795405864716, 0.021984992548823357, -0.08872590214014053, -0.035594236105680466, -0.0077957166358828545, -0.031439974904060364, -0.032869063317775726, -0.04750566929578781, 0.010087586008012295, 0.021084729582071304, 0.029891181737184525, 0.05225759372115135, -0.00018443178851157427, -0.08551469445228577, 0.010210013948380947, -0.07051794230937958, 0.019280102103948593, 0.0348224937915802, 0.15277139842510223, -0.08429161459207535, 0.03429118171334267 ]
209Trigonometric identities and equations Exercise 10B 1 Express the following as trigonometric ratios of either 30°, 45° or 60°, and hence find their exact v alues. a sin 135° b sin (− 60°) c sin 330° d sin 420° e sin (− 300°) f cos 120° g cos 300° h cos 225° i cos (− 210°) j cos 495° k tan 135° l tan (− 225°) m tan 210° n tan 300° o tan (− 120°) The diagram shows an isosceles right-angled triangle ABC . AE = DE = 1 unit. Angle ACD = 30°. a Cal culate the exact lengths of i CE ii DC iii BC iv DB b Sta te the size of angle BCD . c Hen ce find exact values for i sin 15° ii cos 15°45° 30°1 1A CEDBChallenge 10.3 Trigonometric identities You can use the definitions of sin, cos and tan, together with 1P Oy x(x,y) θ Pythagoras’ theorem, to find two useful identities. The unit circle has equation x2 + y2 = 1. Since cos θ = x and sin θ = y, it follows that cos2θ + sin2θ = 1. ■ For all values of θ, sin2θ + cos2θ ≡ 1. Since tan θ = y __ x it follows that tan θ = sin θ _____ cos θ  ■ For all values of θ such that cos θ ≠ 0, tan θ ≡ sin θ _____ cos θ You can use these two identities to simplify trigonometrical expressions and complete proofs. The equation of a circle with radius r and ce ntre at the origin is x2 + y2 = r2. ← Section 6.2Links tan θ is undefined when the denominator = 0. This occurs when cos θ = 0, so when θ = … – 90°, 90°, 270°, 450°, …Watch out The se results are called trigonometric identities. You use the ≡ symbol instead of = to show that they are always true for all values of θ (subject to any conditions given).Notation
[ 0.010279553011059761, 0.0428256057202816, 0.05937739089131355, -0.01879449188709259, -0.07244641333818436, 0.05109157785773277, -0.027194788679480553, -0.029518254101276398, -0.10338125377893448, -0.07087022811174393, 0.07313168048858643, -0.04478728771209717, -0.026703035458922386, -0.015310734510421753, 0.022343473508954048, 0.05119341239333153, -0.07185177505016327, -0.01635729894042015, -0.0064263856038451195, 0.0418398417532444, 0.048563241958618164, -0.02357880026102066, 0.019826438277959824, -0.06451506912708282, 0.010520187206566334, 0.055322833359241486, 0.02737712301313877, 0.0885920524597168, 0.019662460312247276, 0.01849495805799961, -0.08417060971260071, -0.019775692373514175, 0.023855555802583694, -0.11568966507911682, -0.029254524037241936, -0.036348607391119, -0.0038163771387189627, 0.05348890647292137, 0.003169834380969405, 0.012367160059511662, -0.04313915967941284, 0.06253048777580261, 0.023144574835896492, 0.04440709948539734, -0.01079652551561594, -0.055633872747421265, -0.07101400941610336, 0.08781153708696365, 0.01706625334918499, 0.060724712908267975, 0.007332539185881615, 0.11420978605747223, -0.07791891694068909, 0.002110338769853115, -0.003620011266320944, 0.04526995122432709, -0.028213299810886383, 0.014167982153594494, -0.07161150127649307, -0.06642002612352371, 0.07707838714122772, 0.012503264471888542, 0.048337798565626144, 0.03802444040775299, -0.03900681436061859, -0.07079487293958664, 0.07544921338558197, -0.012290802784264088, 0.03763781115412712, -0.0418003611266613, -0.02079470269382, 0.03396541625261307, -0.03117266669869423, -0.06280778348445892, -0.03487074375152588, 0.013207407668232918, -0.06770487129688263, -0.017963409423828125, -0.03004487045109272, -0.0864964947104454, -0.016537077724933624, -0.019592130556702614, 0.14099940657615662, -0.0030668149702250957, 0.06079787015914917, 0.04809490218758583, 0.021703669801354408, 0.1213688999414444, 0.08876428008079529, -0.05094614997506142, 0.006084236316382885, -0.09559778869152069, -0.01780262589454651, -0.07869959622621536, -0.015177754685282707, 0.07554561644792557, 0.046437665820121765, 0.026489203795790672, -0.011468506418168545, 0.03485694155097008, 0.014254859648644924, -0.020440874621272087, 0.0010392421390861273, 0.018325068056583405, -0.09861978143453598, 0.046525612473487854, 0.0733022689819336, -0.04882848635315895, 0.06799682229757309, -0.017001274973154068, -0.10541028529405594, 0.08441842347383499, 0.04261837899684906, -0.05163145437836647, 0.022504203021526337, -0.039879411458969116, 0.00635223975405097, 0.04944991692900658, 0.05998403951525688, 0.041744861751794815, 0.01504573691636324, 0.05124859884381294, 0.01948866806924343, 0.026406850665807724, 0.0037161170039325953, -0.05384283885359764, -0.044562119990587234, -0.010381120257079601, -0.06162648648023605, 0.0665690153837204, 0.047365713864564896, 0.03727516531944275, -0.036086902022361755, -0.05029047280550003, -0.05660586431622505, -0.04811258986592293, 0.10004501789808273, 0.05111589655280113, -0.031179679557681084, 0.04261805862188339, 0.010655379854142666, 0.10961080342531204, -0.0634976178407669, 0.004449398256838322, 0.062164247035980225, 0.009323976933956146, -0.1449160873889923, -0.0024826964363455772, -0.06069926172494888, 0.06502476334571838, 0.05959386005997658, 0.024340661242604256, -0.02461741678416729, 0.03187273070216179, -0.06596162170171738, 0.051221348345279694, -0.0022197605576366186, 0.024419289082288742, 0.0352039635181427, 0.031382158398628235, 0.013878539204597473, -0.00985707901418209, 0.02026369608938694, 0.07662717998027802, 0.11083157360553741, 0.030695486813783646, -0.003908692859113216, -0.015836704522371292, -0.024594701826572418, 0.008030545897781849, 0.01324648316949606, -0.0657138079404831, 0.00895570870488882, 0.052094269543886185, 0.04187376797199249, -0.006452372297644615, 0.08154783397912979, -0.001283725956454873, -0.048130035400390625, 0.001315253903158009, -0.013093139044940472, -0.08991334587335587, 0.005848524626344442, -0.06785483658313751, -0.05937552824616432, -0.023419514298439026, -0.06857888400554657, 0.03228254243731499, -0.02468283660709858, 0.015746289864182472, 0.031516704708337784, -0.02453518658876419, -0.05396633967757225, -0.020465845242142677, -0.08467809110879898, 0.00600661663338542, -0.029852740466594696, -0.048240482807159424, -0.07424642890691757, 0.09809549897909164, 0.09321939200162888, -0.025287840515375137, 0.021091278642416, -0.012120652943849564, 0.01449487917125225, -0.02711978554725647, -0.026170572265982628, -0.053865257650613785, -0.08825287222862244, -0.015746550634503365, -0.06881833076477051, -0.061043448746204376, -0.02256532572209835, -0.026834655553102493, 0.01323308888822794, -0.0355927050113678, 0.02152787148952484, -0.04078427329659462, -0.01067024189978838, 0.0754694864153862, 0.03523072227835655, -0.02924392744898796, 0.06834739446640015, -9.673257623615809e-33, -0.03170343115925789, -0.08642689138650894, -0.08980489522218704, -0.06573436409235, -0.0027902398724108934, -0.013753753155469894, 0.0675143375992775, -0.018144888803362846, 0.029953237622976303, -0.022799530997872353, 0.10615115612745285, -0.06828006356954575, -0.08321656286716461, -0.09928819537162781, -0.04554196074604988, -0.028648413717746735, 0.05720635876059532, 0.03708850219845772, -0.041983168572187424, -0.03251555934548378, 0.03650398179888725, -0.005658573936671019, 0.025122132152318954, 0.08503321558237076, -0.029873967170715332, -0.004092738498002291, 0.09716743230819702, -0.056018877774477005, -0.04953873157501221, 0.054014042019844055, 0.05275394394993782, 0.031530510634183884, 0.06769635528326035, 0.11029364913702011, -0.02523520588874817, -0.0559573657810688, 0.006210841704159975, -0.018174968659877777, -0.013782192952930927, -0.0720858946442604, 0.07300326228141785, 0.026587901636958122, 0.017764832824468613, -0.041735801845788956, 0.08641277253627777, -0.010283851996064186, 0.008698595687747002, -0.08436562120914459, -0.048984479159116745, 0.010498519986867905, -0.04151901975274086, -0.05468998849391937, -0.050892848521471024, -0.07711535692214966, 0.11049884557723999, -0.005019860807806253, -0.09554348886013031, -0.012640303932130337, 0.10717841982841492, -0.00911476369947195, 0.015522967092692852, -0.059086624532938004, -0.031725749373435974, 0.01228698156774044, 0.043151918798685074, -0.050236787647008896, 0.056622445583343506, -0.016424205154180527, -0.0026139647234231234, 0.017049012705683708, 0.07891012728214264, 0.03744693472981453, -0.05194399878382683, -0.061617158353328705, -0.044028885662555695, -0.0021807276643812656, 0.06781665235757828, 0.0404418408870697, -0.006237009074538946, -0.04471072554588318, -0.07562978565692902, 0.01459908951073885, 0.0038393205031752586, -0.0338742658495903, -0.07040997594594955, -0.047567348927259445, -0.0024829122703522444, -0.01891840621829033, 0.07678189128637314, 0.04060554876923561, -0.011609307490289211, 0.031732428818941116, 0.027482522651553154, 0.017180144786834717, 0.028890477493405342, 8.812654699491796e-32, -0.07812029123306274, 0.07014430314302444, -0.03687126934528351, 0.014736659824848175, 0.008163454942405224, 0.035760462284088135, -0.05769702419638634, -0.019817175343632698, 0.017170030623674393, -0.06261551380157471, 0.10513364523649216, -0.008068656548857689, 0.009932528249919415, 0.014958428218960762, 0.0021687843836843967, -0.05029372498393059, -0.11196544021368027, 0.0690082311630249, 0.018093857914209366, -0.022599928081035614, 0.036183468997478485, 0.027478374540805817, 0.009392930194735527, -0.008650282397866249, -0.020342642441391945, 0.05818629264831543, -0.02874009497463703, 0.017441248521208763, -0.06251943856477737, -0.06911810487508774, 0.07069676369428635, -0.06760815531015396, 0.025601986795663834, 0.0037847438361495733, -0.016108790412545204, -0.00892551802098751, -0.05565401911735535, 0.06538492441177368, -0.030868999660015106, 0.06773868948221207, -0.05736670643091202, -0.017283033579587936, -0.033325593918561935, -0.010412381030619144, 0.024870041757822037, -0.0614609494805336, -0.04918603599071503, -0.06331241875886917, -0.004589977208524942, -0.07422565668821335, -0.08243514597415924, 0.028765976428985596, -0.04172191396355629, -0.019488180056214333, 0.003152452874928713, -0.015860624611377716, -0.014964395202696323, 0.01588931865990162, -0.03462857007980347, 0.003398808417841792, 0.0034514148719608784, 0.060056813061237335, -0.11252755671739578, -0.0646807998418808 ]
210 Chapter 10 Example 6 Simplify the following expressions: a sin2 3θ + cos2 3θ b 5 − 5 sin2 θ c sin 2θ __________ √ _________ 1 − sin2 2θ  a sin2 3θ + cos2 3θ = 1 b 5 − 5 sin2 θ = 5(1 − sin2 θ ) = 5 co s2 θ c sin 2θ ____________ √ __________ 1 − sin2 2θ  = sin 2θ ________ √ _______ cos2 2θ  = sin 2θ ______ cos 2θ  = tan 2θsin2 θ + cos2 θ = 1, with θ replaced by 3 θ. sin2 2θ + cos2 2θ = 1, so 1 − sin2 2θ = cos2 2θ. Example 7 Prove that cos4 θ − sin4 θ ____________ cos2 θ  ; 1 − tan2 θ LHS ≡ cos4 θ − sin4 θ  _____________ cos2 θ  ≡ (cos2 θ + sin2 θ )(cos2 θ − sin2 θ ) ____________________________ cos2 θ  ≡ (cos2 θ − sin2 θ ) ______________ cos2 θ  ≡ cos2 θ ______ cos2 θ  − sin2 θ ______ cos2 θ  ≡ 1 − tan2 θ = RHSThe numerator can be factorised as the ‘difference of two squares’. Divide through by cos2 θ and note that sin2 θ _____ cos2 θ  ≡ ( sin θ _____ cos θ  ) 2 ≡ tan2 θ.tan θ = sin θ _____ cos θ  , so sin 2θ ______ cos 2θ  = tan 2θ.Always look for factors. sin2 θ + cos2 θ = 1, so 1 − sin2 θ = cos2 θ. When you have to prove an identity like this you may quote the basic identities like ‘sin 2 + cos2 ≡ 1’.Problem-solving To prove an identity, start from the left-hand side, and manipulate the expression until it matches the right-hand side. ← Sections 7.4, 7.5 Example 8 a Given that cos θ = − 3 __ 5 and that θ is reflex, find the value of sin θ. b Given tha t sin α = 2 __ 5 and that α is obtuse, find the exact value of cos α.sin2 θ + cos2 θ ≡ 1.
[ -0.09999018162488937, 0.08629908412694931, 0.02746148779988289, -0.07336703687906265, -0.0650477334856987, 0.051825862377882004, 0.00005612675522570498, -0.058786701411008835, -0.06819798052310944, -0.012531319633126259, 0.03376102074980736, 0.05836615338921547, 0.029999587684869766, 0.024596402421593666, 0.10663148760795593, 0.06654004752635956, -0.10053880512714386, 0.08233717083930969, -0.06024182215332985, -0.0434686578810215, -0.009055287577211857, -0.05657751485705376, 0.025772783905267715, -0.02243541181087494, 0.02318285033106804, 0.047420669347047806, 0.03595881536602974, -0.028064565733075142, 0.03675927221775055, -0.06337571889162064, 0.027349811047315598, -0.014086504466831684, -0.003955805208534002, -0.117221400141716, 0.013556177727878094, -0.021500131115317345, -0.03301730751991272, 0.002338753780350089, 0.02411937527358532, 0.005835733376443386, -0.024190502241253853, 0.08221586048603058, 0.035208653658628464, 0.04318183287978172, -0.04693961143493652, 0.027638021856546402, -0.056505732238292694, 0.0015701811062172055, 0.018061038106679916, -0.05674314126372337, -0.0036504631862044334, -0.04185722768306732, -0.1349157989025116, -0.10567393153905869, 0.001317925052717328, -0.026344038546085358, -0.0795089453458786, 0.03659532964229584, -0.12987247109413147, -0.051501695066690445, -0.024158846586942673, 0.04420243203639984, 0.038741860538721085, 0.012872409075498581, -0.007192774210125208, 0.0019145981641486287, 0.058642223477363586, -0.02356286160647869, 0.008685650303959846, 0.07388775795698166, -0.057413700968027115, 0.029208241030573845, -0.062013737857341766, -0.037574462592601776, 0.012828637845814228, -0.023677188903093338, -0.11607446521520615, 0.007250006310641766, -0.016999315470457077, -0.015380263328552246, -0.038938235491514206, -0.02340003475546837, 0.02808915078639984, -0.0032857274636626244, 0.1100957840681076, -0.006433279253542423, 0.04650798439979553, 0.04265778511762619, 0.09176258742809296, -0.0402260422706604, 0.06568045914173126, -0.08352594822645187, -0.04082196578383446, -0.0574508011341095, -0.013995710760354996, -0.017981596291065216, -0.001376871601678431, 0.02356872335076332, 0.039118506014347076, 0.023830842226743698, 0.0610346794128418, -0.02230844460427761, 0.017828354611992836, 0.00814314279705286, -0.046472176909446716, -0.050174273550510406, 0.0975005105137825, -0.00728850532323122, 0.10852839797735214, -0.0645122081041336, -0.0862787663936615, 0.030320217832922935, 0.034676119685173035, 0.01663239859044552, -0.02782435528934002, 0.0005350131541490555, 0.004789345897734165, 0.040292929857969284, 0.02758769504725933, 0.07983309775590897, 0.026555893942713737, -0.011307159438729286, -0.0029793791472911835, 0.06928004324436188, 0.021974001079797745, -0.000029840299248462543, -0.013829889707267284, 0.012104290537536144, -0.02160070464015007, 0.05553814768791199, -0.016776515170931816, 0.005381934344768524, -0.07780405879020691, 0.01759541966021061, -0.022577889263629913, -0.03980190306901932, 0.09268663078546524, 0.09987182915210724, -0.08967239409685135, -0.01739226095378399, 0.023530902341008186, 0.04800432547926903, 0.03463410586118698, 0.004806668497622013, 0.012571360915899277, -0.035920627415180206, -0.1043759286403656, -0.06757992506027222, 0.0012223938247188926, 0.05821317061781883, -0.03192375600337982, 0.02714439667761326, -0.014872515574097633, 0.035601697862148285, -0.05065072700381279, 0.03201672062277794, 0.011723500676453114, 0.027073241770267487, 0.045810312032699585, 0.04516873508691788, -0.0028336949180811644, 0.05833163112401962, 0.004172362852841616, -0.020196733996272087, 0.05720093101263046, -0.0041165780276060104, 0.025632284581661224, -0.023013558238744736, 0.033872198313474655, 0.028902480378746986, 0.010132444091141224, -0.01174565963447094, 0.02251998893916607, 0.029276933521032333, -0.06191597878932953, -0.02167615480720997, 0.07777155935764313, -0.007065733894705772, -0.04464481770992279, 0.005485675297677517, 0.02927647903561592, -0.04953679069876671, -0.012891764752566814, 0.022404009476304054, 0.009105264209210873, -0.10826429724693298, -0.10286905616521835, -0.003378061344847083, -0.0690554603934288, -0.05376496538519859, -0.01039091031998396, -0.10629446059465408, -0.02043485827744007, -0.0430317297577858, -0.0918315127491951, 0.03730076178908348, -0.025920003652572632, -0.09580138325691223, -0.11204293370246887, 0.06446564942598343, 0.01989610493183136, -0.0251790601760149, 0.017886945977807045, -0.06565150618553162, -0.002937877085059881, -0.03650733456015587, 0.018292084336280823, -0.015408077277243137, -0.026369348168373108, 0.03706551343202591, -0.013152673840522766, -0.03345396742224693, 0.008503102697432041, -0.0016514192102476954, 0.014615120366215706, -0.06114066764712334, 0.11129463464021683, -0.0020811331924051046, -0.0050638155080378056, 0.05227482691407204, -0.03908425569534302, -0.04543469846248627, 0.01879732497036457, -2.7294633524627962e-33, -0.12700751423835754, 0.030252069234848022, -0.09838453680276871, -0.03604442626237869, -0.02550210990011692, 0.008576631546020508, 0.0926634669303894, -0.09292863309383392, 0.0766269862651825, -0.015725383535027504, -0.028166258707642555, -0.03371201083064079, -0.01313619315624237, -0.023887671530246735, -0.046360522508621216, -0.03199131414294243, 0.039270445704460144, 0.028400655835866928, 0.04157967120409012, 0.02420414797961712, 0.08143340796232224, 0.03379134088754654, -0.018579261377453804, -0.016419485211372375, -0.011042711324989796, 0.06599985808134079, 0.08005166798830032, -0.03999122977256775, 0.06869422644376755, 0.06733611971139908, 0.07819408923387527, 0.030603481456637383, 0.022950921207666397, 0.062311455607414246, -0.00965331681072712, -0.09687993675470352, 0.022502759471535683, 0.01215041521936655, -0.009406041353940964, -0.06878885626792908, 0.06385227292776108, -0.029986348003149033, 0.0412871278822422, -0.00720781646668911, 0.05154042690992355, -0.019125204533338547, 0.0442095547914505, 0.06840067356824875, -0.04075990244746208, -0.03559486195445061, -0.008154811337590218, -0.09462881833314896, 0.025677135214209557, -0.020959237590432167, -0.01032334566116333, 0.046893566846847534, -0.001890299841761589, -0.06284637749195099, 0.11642136424779892, -0.049643173813819885, -0.0814313217997551, -0.0061196573078632355, 0.019452784210443497, 0.03794189915060997, 0.06494925916194916, 0.05824996531009674, 0.012425563298165798, 0.01101225707679987, 0.0455518439412117, -0.004838873632252216, -0.07288127392530441, 0.048162177205085754, -0.0962267816066742, -0.03889623284339905, -0.07961879670619965, -0.0030057851690799, -0.007196324411779642, -0.011302049271762371, -0.03722265362739563, -0.07168320566415787, -0.0426088348031044, 0.04153798148036003, 0.0035417417529970407, -0.13259999454021454, -0.08396568894386292, -0.07363107800483704, 0.049609117209911346, 0.08258098363876343, 0.05200297012925148, 0.0035236685071140528, -0.010309075005352497, 0.03650690242648125, 0.04029865562915802, -0.00033398414961993694, 0.0937790647149086, 8.388211901274288e-32, 0.01383325643837452, -0.0032524236012250185, -0.026074757799506187, 0.020729299634695053, 0.06963618099689484, -0.05259260907769203, 0.0366736464202404, -0.004047165159136057, 0.13667845726013184, -0.06922443211078644, 0.01447182148694992, 0.06892348825931549, 0.0234843697398901, -0.013378829695284367, -0.06402596831321716, 0.018415052443742752, -0.08605349808931351, 0.048489801585674286, 0.020744934678077698, 0.02176273800432682, -0.018640249967575073, 0.0245984960347414, -0.020916394889354706, 0.006221738178282976, 0.10040243715047836, 0.030915895476937294, -0.07114166766405106, 0.005851004738360643, -0.004230611026287079, -0.014806712046265602, 0.061683233827352524, -0.0017542272107675672, 0.00004610472024069168, 0.04161922261118889, -0.03764568269252777, -0.04846708104014397, 0.07524794340133667, 0.06801766902208328, -0.021826578304171562, 0.07859205454587936, 0.05398879200220108, 0.02660009078681469, -0.07508014142513275, 0.025165023282170296, 0.031727857887744904, -0.08617814630270004, -0.08678637444972992, -0.06629574298858643, 0.033448364585638046, -0.061689238995313644, -0.08491203933954239, 0.04378920793533325, -0.024338513612747192, -0.005541709251701832, -0.02200111374258995, -0.03340406343340874, -0.06813344359397888, 0.030122023075819016, -0.01928715594112873, 0.027623875066637993, -0.009523268789052963, 0.09650182723999023, -0.013635898940265179, 0.03745901957154274 ]
211Trigonometric identities and equations Example 9 Given that p = 3 cos θ, and that q = 2 sin θ, show that 4p2 + 9q2 = 36. As p = 3 cos θ, and q = 2 sin θ, cos θ = p __ 3 and sin θ = q __ 2 Using sin2 θ + cos2 θ ≡ 1, ( q __ 2 ) 2 + ( p __ 3 ) 2 = 1 so q2 ___ 4 + p2 ___ 9 = 1 ∴ 4p2 + 9 q2 = 36You need to eliminate θ from the equations. As you can find sin θ and cos θ in terms of p and q , use the identity sin2 θ + cos2 θ ≡ 1.Problem-solvinga Since sin2 θ + cos2 θ ≡ 1, sin2 θ = 1 − (− 3 __ 5 ) 2 = 1 − 9 ___ 25 = 16 ___ 25 So si n θ = − 4 __ 5 b Using sin2 α + cos2 α ≡ 1, cos2 α = 1 − 4 ___ 25 = 21 ___ 25 As α is obtuse, cos α is negative so cos α = − √ ___ 21 ____ 5 Obtuse angles lie in the second quadrant, and have a negative cosine. The question asks for the exact value so leave your answer as a surd. Exercise 10C 1 Simplify each of the follo wing expressions: a 1 − cos2 1 _ 2 θ b 5 sin2 3θ + 5 cos2 3θ c sin2 A − 1 d sin θ _____ tan θ  e √ _________ 1 − cos2 x __________ cos x f √ __________ 1 − cos2 3A ___________ √ __________ 1 − sin2 3A g (1 + sin x)2 + (1 − sin x)2 + 2 cos2 x h sin4 θ + sin2 θ cos2 θ i sin4 θ + 2 sin2 θ cos2 θ + cos4 θ 2 Given that 2 sin θ = 3 cos θ, find the value of tan θ. 3 Given tha t sin x cos y = 3 cos x sin y, expr ess tan x in terms of tan y.‘θ is reflex’ means θ is in the 3rd or 4th quadrants, but as cos θ is negative, θ must be in the 3rd quadrant. sin θ = ± 4 _ 5 but in the third quadrant sin θ is negative. If yo u use your calculator to find cos–1 (– 3 _ 5 ) , then the sine of the result, you will get an i ncorrect answer. This is because the cos–1 function on your calculator gives results between 0 and 180°.Watch out Multiply both sides by 36.
[ -0.01568686030805111, 0.07753204554319382, 0.023014064878225327, -0.030406074598431587, -0.06038428470492363, 0.0497027225792408, -0.04388625547289848, -0.021755123510956764, -0.09227098524570465, -0.02307935431599617, 0.07817547023296356, -0.010161170735955238, -0.04360487312078476, 0.039726026356220245, 0.15490765869617462, -0.026862693950533867, -0.06999112665653229, 0.025719771161675453, -0.03476187586784363, 0.04293903708457947, -0.011096940375864506, -0.1112278401851654, -0.05785020440816879, -0.12161323428153992, 0.07248999923467636, 0.03256205469369888, 0.05152910202741623, 0.14023728668689728, 0.011564853601157665, 0.02060849405825138, 0.048534031957387924, -0.02941928058862686, -0.024948684498667717, -0.12011126428842545, 0.00910226907581091, -0.04952697083353996, 0.03194338455796242, -0.002546807751059532, 0.08418768644332886, -0.008677266538143158, -0.02663637511432171, 0.003171157091856003, -0.033647432923316956, 0.0018740504747256637, -0.0004307441704440862, -0.04378945380449295, -0.009473930113017559, 0.08884084224700928, 0.06214676424860954, -0.0291415024548769, -0.003309481078758836, 0.03423193842172623, -0.09549515694379807, -0.03720224276185036, 0.03703318163752556, -0.055334001779556274, -0.017962807789444923, 0.05143604055047035, -0.04174446314573288, -0.11841525882482529, 0.02214367873966694, 0.002593314740806818, -0.02340731769800186, 0.020732233300805092, -0.042111702263355255, 0.010601378045976162, -0.024121828377246857, -0.0008613326353952289, 0.027323946356773376, 0.02130889892578125, -0.009819429367780685, -0.0008965376182459295, -0.004996394272893667, -0.035467181354761124, -0.05244007334113121, -0.05047517269849777, -0.0979408472776413, 0.006113603711128235, -0.053777698427438736, -0.05237580090761185, 0.0015267813578248024, 0.04104435816407204, -0.010811226442456245, -0.020363319665193558, 0.03106597810983658, 0.02378738485276699, 0.031006064265966415, 0.05456512048840523, 0.08264081180095673, -0.0016073985025286674, 0.012679005041718483, -0.035956010222435, -0.02812773920595646, -0.021151162683963776, 0.021403873339295387, 0.01524647232145071, -0.008122368715703487, 0.08839189261198044, 0.011527208611369133, 0.014606782235205173, 0.055802516639232635, -0.006142384838312864, -0.06723847985267639, 0.002472103573381901, 0.00164998066611588, 0.049274176359176636, 0.09789663553237915, -0.0069031426683068275, 0.12013324350118637, -0.0017287773080170155, -0.048176538199186325, 0.029376395046710968, -0.007054296787828207, -0.05591462552547455, -0.0501098595559597, 0.031027421355247498, -0.008951032534241676, 0.06303522735834122, -0.03358899801969528, 0.02448457106947899, 0.05558723583817482, -0.006869921460747719, 0.0558602511882782, -0.03943847119808197, 0.00841294601559639, 0.010505477897822857, -0.05903743952512741, -0.03455036133527756, 0.0019216976361349225, 0.051877327263355255, 0.059492625296115875, -0.011385085061192513, -0.03666631504893303, -0.09019806236028671, -0.03931731358170509, -0.02238471806049347, 0.0030297543853521347, 0.10487687587738037, -0.11715792864561081, -0.07783567160367966, 0.02985187992453575, 0.008765907026827335, 0.019466206431388855, -0.033368341624736786, -0.04588119313120842, 0.02951466105878353, -0.04417316988110542, -0.07003571838140488, -0.07517372071743011, 0.10855580866336823, 0.02627325803041458, 0.058591362088918686, -0.04164868965744972, 0.027910316362977028, 0.018786640837788582, 0.009383255615830421, -0.011702099815011024, 0.0017660158919170499, 0.034981440752744675, -0.01351724099367857, -0.05689133331179619, -0.06125196814537048, -0.049940936267375946, 0.03633781149983406, 0.06841672956943512, 0.0016168818110600114, 0.020069457590579987, -0.0165593009442091, 0.03688383474946022, 0.026634249836206436, -0.035821810364723206, 0.02826961874961853, 0.016207056120038033, -0.0627976730465889, 0.02685234136879444, -0.11259811371564865, 0.04059473052620888, -0.05464500933885574, 0.006925944704562426, 0.01739119179546833, 0.02076922543346882, 0.00845415610820055, -0.049719542264938354, -0.12462806701660156, 0.09617801755666733, -0.03360985592007637, 0.0060386499390006065, 0.09536347538232803, -0.014272592961788177, -0.06016020476818085, 0.05424713343381882, -0.04625989496707916, 0.034172773361206055, -0.018504619598388672, -0.11522023379802704, 0.11183831095695496, -0.01235920563340187, -0.04657169058918953, -0.08762851357460022, 0.004485935438424349, 0.05868350341916084, -0.02956613339483738, -0.0012895416002720594, -0.0005343332886695862, 0.011419543996453285, 0.03604472056031227, -0.001011326676234603, 0.031742461025714874, 0.00675535062327981, 0.02081000618636608, -0.020440340042114258, 0.020333092659711838, 0.05597987025976181, -0.04967861622571945, 0.01231935154646635, -0.05074051767587662, 0.03379172459244728, -0.05226101726293564, 0.02026587538421154, 0.052205558866262436, -0.012588911689817905, -0.05117170140147209, -0.0144865857437253, -4.22098017595404e-33, -0.1209830567240715, -0.022344116121530533, -0.04564604163169861, -0.03740706667304039, -0.04783592000603676, 0.06400293856859207, 0.055767759680747986, -0.10074950754642487, 0.0824967548251152, 0.027337469160556793, 0.03047628328204155, -0.04250139370560646, -0.040466658771038055, 0.03857465833425522, -0.10617564618587494, -0.013550173491239548, 0.02478855662047863, 0.05118261277675629, -0.019366245716810226, -0.013626950792968273, 0.08371313661336899, 0.05249837040901184, -0.06941831111907959, 0.022951137274503708, 0.026959894225001335, 0.006324418354779482, 0.0921892523765564, -0.047715798020362854, 0.06728604435920715, 0.02594943903386593, 0.05092558637261391, 0.04528193548321724, -0.005594182759523392, -0.015896154567599297, 0.011149287223815918, -0.0665145143866539, 0.012946028262376785, -0.01532312948256731, 0.002636596094816923, -0.04961641505360603, 0.08205877989530563, 0.02431245520710945, -0.0006502734613604844, -0.04389337822794914, 0.09019902348518372, -0.005324644036591053, 0.02420652285218239, -0.0007170094177126884, -0.016970358788967133, -0.025683050975203514, -0.016327233985066414, -0.07598938047885895, -0.01020943932235241, -0.030228689312934875, 0.05009102821350098, 0.009945478290319443, 0.0530434176325798, -0.003092309460043907, 0.08890023082494736, -0.031532276421785355, -0.0809917077422142, 0.029086245223879814, -0.006541115697473288, 0.06505070626735687, 0.0699089989066124, -0.05027521029114723, 0.09511718899011612, -0.0243463683873415, 0.08642543852329254, 0.021882522851228714, -0.04399743303656578, 0.03511117026209831, -0.031098322942852974, -0.07154601812362671, -0.08133430033922195, 0.007370482664555311, -0.008198725059628487, 0.09891816973686218, 0.02756251022219658, -0.05442868173122406, -0.05681411921977997, -0.037309423089027405, -0.022568345069885254, 0.03106478974223137, -0.10715185850858688, -0.0516941100358963, 0.0425393246114254, 0.021543139591813087, 0.0057298848405480385, 0.0028978774789720774, -0.05222083628177643, 0.06447161734104156, 0.03445960953831673, 0.02907603234052658, 0.07915321737527847, 6.287171502180933e-32, 0.042452964931726456, 0.01891251467168331, -0.013501188717782497, -0.08027565479278564, -0.005611993372440338, -0.002292356453835964, 0.048945728689432144, 0.058884330093860626, 0.04788002744317055, -0.06629356741905212, 0.007117434870451689, -0.020332686603069305, 0.006737531162798405, -0.075167216360569, -0.04485924914479256, -0.0014800018398091197, -0.04767455533146858, 0.07186601310968399, 0.014993099495768547, -0.0650240033864975, 0.009619186632335186, 0.039124373346567154, 0.049176182597875595, 0.02991541475057602, 0.09599172323942184, 0.1416945904493332, -0.04043194279074669, 0.055358901619911194, -0.0975995883345604, -0.05965880677103996, 0.04878196120262146, -0.030920352786779404, -0.015432178042829037, -0.06826967000961304, -0.0122341588139534, -0.028104346245527267, 0.034479737281799316, -0.011054555885493755, 0.03867951035499573, 0.006425786763429642, -0.009189235046505928, -0.04287026822566986, -0.07502618432044983, 0.019696636125445366, 0.04444044828414917, -0.029825573787093163, 0.016223987564444542, -0.074446901679039, 0.03043036349117756, -0.06909104436635971, -0.11652304977178574, -0.03554733470082283, -0.022913523018360138, -0.09640832245349884, -0.004006613045930862, 0.061329685151576996, 0.007759540807455778, 0.09635782241821289, 0.004681827966123819, -0.0044669294729828835, -0.010377027094364166, 0.09003840386867523, -0.03259645402431488, -0.07092863321304321 ]
212 Chapter 10 4 Express in terms of sin θ only: a cos2 θ b tan2 θ c cos θ tan θ d cos θ _____ tan θ  e (cos θ − sin θ )(cos θ + sin θ ) 5 Using the identities sin2 A + cos2 A ≡ 1 and/or tan A = sin A _____ cos A (cos A ≠ 0), prove that: a (sin θ + cos θ )2 ≡ 1 + 2 sin θ cos θ b 1 _____ cos θ  − cos θ ≡ sin θ tan θ c tan x + 1 _____ tan x ≡ 1 _________ sin x cos x d cos2 A − sin2 A ≡ 2 cos2 A − 1 = 1 − 2 sin2 A e (2 sin θ − cos θ )2 + (sin θ + 2 cos θ )2 ≡ 5 f 2 − (sin θ − cos θ )2 ≡ (sin θ + cos θ )2 g sin2 x cos2 y − cos2 x sin2 y ≡ sin2 x − sin2 y 6 Find, without using your calcula tor, the values of: a sin θ and cos θ, given that tan θ = 5 __ 12 and θ is acute. b sin θ and cos θ, given that cos θ = − 3 _ 5 and θ is obtuse. c cos θ and tan θ, given that sin θ = − 7 __ 25 and 270° < θ < 360°. 7 Given tha t sin θ = 2 _ 3 and that θ is obtuse, find the exact value of: a cos θ b tan θ 8 Given that tan θ = − √ __ 3 and that θ is reflex, find the exact value of: a sin θ b cos θ 9 Given that cos θ = 3 _ 4 and that θ is reflex, find the exact value of: a sin θ b tan θ 10 In each of the follo wing, eliminate θ to give an equation relating x and y: a x = sin θ, y = cos θ b x = sin θ, y = 2 cos θ c x = sin θ, y = cos2 θ d x = sin θ, y = tan θ e x = sin θ + cos θ, y = cos θ − sin θ In part e find expressions for x + y and x − y.Problem-solving 11 The diagram sho ws the triangle ABC with AB = 12 cm, ABC 10 cm 8 cm 12 cm BC = 8 cm and AC = 10 cm. a Show that cos B = 9 ___ 16 (3 marks) b Hence find the exact va lue of sin B. (2 marks) Use the cosine rul e: a2 = b2 + c2 − 2bc cos A ← Section 9.1 Hint 12 The diagram sho ws triangle PQR with PR = 8 cm, Q RP6 cm 8 cm30° QR = 6 cm and angle QPR = 30°. a Show that sin Q = 2 __ 3 (3 marks) b Given tha t Q is obtuse, find the exact value of cos Q (2 marks)P P E/P E/P
[ -0.060138676315546036, 0.09009862691164017, 0.05405065789818764, -0.034870605915784836, -0.07936310023069382, 0.044792499393224716, 0.06418002396821976, -0.07624496519565582, -0.04474056512117386, -0.019168876111507416, 0.023969756439328194, -0.00858987681567669, 0.002607664791867137, 0.09572740644216537, 0.09998176246881485, 0.030380386859178543, -0.05251140147447586, 0.023561548441648483, -0.04533667489886284, -0.01954096183180809, -0.009601030498743057, -0.016818739473819733, -0.004121723584830761, 0.007958590984344482, -0.043159861117601395, -0.0052841780707240105, 0.020716417580842972, -0.009168766438961029, 0.03002074547111988, -0.06484920531511307, -0.028620051220059395, -0.036997146904468536, -0.019588682800531387, -0.13051578402519226, -0.022440163418650627, -0.03169473633170128, 0.06422214210033417, -0.0289448294788599, 0.05265863984823227, -0.03766077756881714, -0.04225492104887962, 0.07143759727478027, -0.011695466935634613, 0.038157202303409576, -0.0023632030934095383, 0.050564542412757874, -0.016348211094737053, 0.031001366674900055, -0.020597107708454132, -0.053574372082948685, 0.04701453074812889, -0.01743476092815399, -0.12913915514945984, -0.03967069461941719, -0.013831066899001598, -0.004201154690235853, -0.03556153178215027, 0.0413210466504097, -0.12277564406394958, -0.020522912964224815, 0.010636291466653347, -0.014306644909083843, 0.010660440661013126, 0.02824132703244686, -0.022169332951307297, 0.04608960822224617, 0.05939316377043724, -0.052918341010808945, -0.0049839382991194725, 0.017081817612051964, -0.009596186690032482, 0.0015987622318789363, -0.0012824537698179483, -0.00877076480537653, 0.053506214171648026, 0.022092215716838837, -0.14279241859912872, -0.007679268717765808, 0.008737675845623016, -0.017613839358091354, -0.09226799756288528, -0.06365654617547989, 0.03421816602349281, 0.048891581594944, 0.06924710422754288, 0.03993799909949303, 0.05086372420191765, 0.017665637657046318, 0.10434870421886444, -0.01559123769402504, 0.07994471490383148, -0.10904594510793686, 0.02786162681877613, -0.04255416989326477, 0.020925963297486305, 0.03354690223932266, -0.03511099889874458, 0.06114637106657028, 0.031989067792892456, 0.05909106507897377, 0.008953560143709183, -0.031386543065309525, -0.016336342319846153, 0.02795683592557907, -0.030156070366501808, -0.038390614092350006, 0.08284876495599747, 0.012411484494805336, 0.05971148982644081, -0.002937640529125929, -0.06110774725675583, 0.06572402268648148, 0.02680915966629982, 0.006012272089719772, -0.059464819729328156, -0.028480328619480133, 0.048478007316589355, 0.03139212727546692, -0.011782853864133358, 0.05235789716243744, 0.006573189981281757, 0.022722594439983368, -0.007516241166740656, 0.023999780416488647, 0.03030410408973694, -0.03436799719929695, 0.035522714257240295, -0.009212187491357327, 0.017042962834239006, 0.02287408895790577, 0.028515569865703583, 0.05405254289507866, -0.031083155423402786, 0.00018196769815403968, -0.021823609247803688, -0.06480822712182999, 0.06512662023305893, 0.06247219815850258, -0.1507457047700882, -0.03109498880803585, 0.05837336555123329, 0.06249210610985756, 0.03419775888323784, 0.00223141023889184, 0.02091897837817669, -0.09037437289953232, -0.03440666198730469, -0.06746970117092133, -0.07417348772287369, 0.061470579355955124, 0.004793246742337942, 0.05374600738286972, -0.04440765827894211, 0.01817605085670948, -0.07538145780563354, 0.060027964413166046, 0.017738288268446922, 0.018986785784363747, 0.060538262128829956, 0.045912452042102814, -0.03976665809750557, 0.06840436160564423, 0.006539602763950825, 0.010250762104988098, 0.053271468728780746, 0.0014438364887610078, -0.011389967985451221, 0.005108199082314968, -0.017533062025904655, 0.006638707127422094, -0.024156928062438965, -0.01816459186375141, -0.012531569227576256, 0.02742779068648815, 0.004739776253700256, -0.04176957905292511, 0.07793906331062317, -0.0319906547665596, -0.03283265233039856, -0.000395262090023607, -0.005023773293942213, -0.06615522503852844, 0.01077321544289589, -0.06399949640035629, -0.010755489580333233, -0.008915363810956478, -0.10930513590574265, 0.0635136216878891, -0.09323886036872864, 0.02571529522538185, 0.04792492464184761, -0.07623225450515747, -0.03664879500865936, -0.006134218070656061, -0.09954891353845596, 0.11048563569784164, -0.09128385037183762, -0.14968828856945038, -0.08594843745231628, 0.009885813109576702, 0.034242838621139526, -0.025174109265208244, -0.0544455386698246, 0.009507551789283752, 0.03810426592826843, -0.04933389648795128, 0.02795298583805561, 0.025841133669018745, -0.06295870244503021, 0.017291568219661713, 0.09108185023069382, -0.017847105860710144, -0.0010176529176533222, -0.010966304689645767, 0.00551034277305007, -0.11171089857816696, 0.12162992358207703, 0.005112893879413605, 0.07178021967411041, 0.09131203591823578, -0.05375479906797409, -0.08590459078550339, 0.03335537016391754, -7.124597057252989e-33, -0.08605920523405075, -0.005908142309635878, -0.1103493869304657, -0.06328462064266205, -0.027022436261177063, 0.02371097542345524, 0.09887807816267014, -0.07882089167833328, 0.06601344794034958, -0.005598336458206177, -0.0083314785733819, 0.009585997089743614, -0.039283741265535355, -0.053654421120882034, -0.10279502719640732, -0.026518262922763824, 0.03418464586138725, 0.03741142898797989, 0.03935964033007622, 0.07092167437076569, 0.016587505117058754, 0.027278030291199684, 0.004929293878376484, 0.027909204363822937, 0.02300252951681614, 0.025516793131828308, 0.0667760819196701, -0.08383554220199585, 0.04415241256356239, -0.013498017564415932, 0.05028247460722923, 0.020281819626688957, 0.05566956102848053, 0.0248397346585989, -0.01486628782004118, -0.08758339285850525, 0.05148482695221901, -0.04347597062587738, 0.010344541631639004, 0.01345665380358696, 0.09973215311765671, -0.02343916706740856, 0.021503614261746407, -0.010776306502521038, 0.11935359239578247, -0.07386185228824615, -0.0404001921415329, 0.009588784538209438, -0.028421420603990555, -0.07515531778335571, -0.0284345131367445, -0.09308925271034241, 0.00018633072613738477, -0.046317312866449356, 0.07777325063943863, -0.028801411390304565, -0.00721143139526248, -0.06777708232402802, 0.11419226229190826, 0.016049711033701897, -0.02187313884496689, 0.016975078731775284, -0.029352154582738876, 0.026756059378385544, 0.04417048394680023, -0.04405662417411804, -0.007549697067588568, -0.025892937555909157, 0.023882824927568436, 0.008152463473379612, 0.035390328615903854, 0.05139383301138878, -0.058349210768938065, -0.03745567426085472, -0.05442827567458153, -0.03222980350255966, -0.029773881658911705, -0.006248002871870995, -0.06159607693552971, -0.05847758427262306, -0.03759131580591202, 0.02658456191420555, 0.0500275082886219, -0.10237753391265869, -0.022691380232572556, -0.04278096929192543, 0.06922207027673721, 0.01741061918437481, 0.03480255603790283, -0.005059727001935244, -0.05033884942531586, 0.058055512607097626, -0.013414419256150723, -0.05309794470667839, 0.07064366340637207, 7.604543906917242e-32, 0.02417348511517048, -0.015610950998961926, 0.01570678874850273, -0.009233357384800911, 0.05420345813035965, -0.003960701636970043, 0.11303164809942245, -0.0540102981030941, 0.11513082683086395, -0.09492048621177673, 0.020065899938344955, 0.015580144710838795, 0.036829788237810135, 0.027040502056479454, 0.0022217112127691507, 0.001125977491028607, -0.11975716799497604, 0.06270714104175568, 0.005875891074538231, -0.0326249860227108, -0.039016783237457275, -0.014928817749023438, 0.03424924239516258, 0.036331746727228165, 0.07899338752031326, 0.0020351309794932604, -0.04398488625884056, -0.029318474233150482, -0.07729548215866089, -0.006521094124764204, 0.031089773401618004, -0.07599430531263351, -0.009614178910851479, 0.03979341685771942, -0.0022986996918916702, -0.10670395940542221, 0.02338176779448986, 0.07673027366399765, 0.01579202525317669, 0.0652933344244957, -0.017390673980116844, 0.023616129532456398, -0.02301066182553768, 0.03048195317387581, 0.05250917375087738, -0.007137968670576811, -0.03474133089184761, -0.10436033457517624, -0.011942771263420582, -0.048401929438114166, -0.07493660598993301, 0.05663743615150452, 0.020560888573527336, -0.0012813667999580503, -0.031189557164907455, 0.00039951474172994494, -0.005250776186585426, 0.04814651235938072, -0.013692701235413551, -0.01660354994237423, 0.021019969135522842, 0.06562825292348862, -0.05558742582798004, -0.052753351628780365 ]
213Trigonometric identities and equations Example 10 Find the solutions of the equation sin θ = 1 _ 2 in the interval 0 < θ < 360°. Method 1 sin θ = 1 __ 2 So θ = 30° A CS T30° 150° 30° 30° So x = 30° or x = 180° − 30° = 150° Method 2 y Oy = θ 90° 180° 270° 360°1 2 sin θ = 1 __ 2 where the line y = 1 __ 2 cuts the curve. Hen ce θ = 30° or 150°You can check this by putting sin 150° in your calculat or.Putting 30° in the four positions shown gives the angles 30°, 150°, 210° and 330° but sine is only positive in the 1st and 2nd quadrants. Draw the graph of y = sin θ for the given interval. ■ When you use the inverse trigonometric functions on your calculator, the angle you get is called the princip al value. Your calculator will give principal values in the following ranges: cos−1 in the range 0 < θ < 180° sin−1 in the range −90° < θ < 90° tan−1 in the range −90° < θ < 90° Use the symmetry properties of the y = sin θ graph. ← Sections 9.510.4 Simple trigonometric equations You need to be able to solve simple trigonometric equations of the form sin θ = k and cos θ = k (where −1 < k < 1) and tan θ = p (where p ∈ 핉) for given intervals of θ. ■ Solutions to sin θ = k and cos θ = k only exist when −1 < k < 1. ■ Solutions to tan θ = p exist for all values of p. The graphs of y = sin θ and y = cos θ have a maximum value of 1 and a minimum value of – 1. The graph of y = tan θ has no maximum or minimum value. ← Section 9.5Links The i nverse trigonometric functions are also called arccos , arcsin and arctan .Notation
[ 0.017883963882923126, 0.006526624783873558, 0.029291434213519096, -0.01747271418571472, -0.06323817372322083, -0.011628393083810806, -0.03729813173413277, -0.0200732983648777, -0.033409975469112396, -0.05275741219520569, 0.004155786242336035, -0.03762640804052353, 0.010529776103794575, 0.001146887894719839, 0.12142366170883179, 0.00817026849836111, -0.09418820589780807, -0.0436483733355999, -0.01831766590476036, 0.005341936368495226, 0.024500956758856773, -0.0839759111404419, -0.01610470563173294, -0.041990507394075394, 0.0432153195142746, -0.011838122271001339, -0.004927571397274733, 0.09213034063577652, 0.024031439796090126, -0.006968738045543432, -0.02930366061627865, -0.01960720308125019, -0.049456287175416946, -0.08368853479623795, -0.02684333175420761, 0.004030084237456322, 0.07164869457483292, 0.03370609134435654, -0.03486061841249466, -0.04670222848653793, -0.05751580744981766, 0.023046744987368584, 0.0033404426649212837, 0.02679256908595562, 0.018445495516061783, -0.09797611832618713, -0.09181017428636551, 0.052908990532159805, 0.05506245419383049, 0.0001740345760481432, 0.07338694483041763, 0.054948028177022934, -0.14030848443508148, -0.0025862776674330235, -0.017781998962163925, 0.024005983024835587, -0.07475834339857101, -0.006848873104900122, -0.06815598905086517, -0.04666867479681969, 0.05398079752922058, 0.011967822909355164, -0.008027318865060806, 0.024491557851433754, -0.07556436955928802, -0.04280691593885422, 0.05622633546590805, -0.031504400074481964, 0.016537055373191833, 0.002761794487014413, -0.06102398782968521, -0.007812583819031715, -0.01791779324412346, -0.026203835383057594, -0.027300560846924782, -0.03437007963657379, -0.09687924385070801, 0.07368019223213196, -0.07681561261415482, -0.09051086008548737, -0.07087481021881104, -0.008674842305481434, 0.0853891596198082, -0.04015494883060455, 0.025845332071185112, -0.01575516164302826, 0.036520618945360184, 0.09695670753717422, 0.03129677101969719, -0.044159937649965286, 0.12753106653690338, -0.0461309477686882, -0.07095886766910553, -0.03991394117474556, 0.030842073261737823, 0.017870016396045685, 0.023258427157998085, 0.04303191229701042, 0.03465166315436363, 0.020968012511730194, -0.04629039391875267, -0.048533692955970764, -0.004133914597332478, 0.017169233411550522, -0.004544444847851992, -0.029654130339622498, 0.13269935548305511, -0.05112418904900551, 0.09794367104768753, -0.008279680274426937, -0.06871536374092102, 0.06437517702579498, 0.025112682953476906, -0.023534506559371948, 0.10075090825557709, 0.005264981184154749, -0.007532766088843346, 0.034707389771938324, 0.022668231278657913, 0.003379461821168661, -0.0011408933205530047, 0.025910619646310806, 0.03586948662996292, -0.023669902235269547, 0.0005292979185469449, 0.024710575118660927, -0.010009764693677425, -0.01987324096262455, -0.0004200077382847667, 0.04688316956162453, 0.02908426709473133, -0.019832223653793335, -0.004819793626666069, -0.014905150979757309, 0.005891844164580107, -0.006579461041837931, 0.09228499978780746, 0.12771838903427124, -0.043109696358442307, 0.02181929349899292, 0.053265176713466644, 0.08262956887483597, 0.009068743325769901, -0.03735385835170746, 0.09187699854373932, 0.0097564198076725, -0.09936107695102692, -0.02709326148033142, -0.03838314488530159, 0.0972299799323082, 0.026974201202392578, 0.038456134498119354, -0.018832573667168617, 0.05163939669728279, -0.007134892512112856, 0.06996343284845352, 0.00328154768794775, 0.008400995284318924, 0.00005712933125323616, 0.00496427807956934, -0.03087940625846386, 0.05261225998401642, -0.024154219776391983, 0.04873311147093773, 0.1372496485710144, 0.016624126583337784, 0.0193772129714489, 0.01409048493951559, -0.0019305392634123564, -0.0027474057860672474, 0.0382964089512825, 0.001967004965990782, 0.018605409190058708, -0.019692545756697655, -0.03330018371343613, 0.02642081491649151, 0.048192624002695084, 0.002803151262924075, -0.054519545286893845, -0.005540463607758284, 0.03967829421162605, -0.07022304832935333, -0.0013543026288971305, -0.06325046718120575, -0.017484791576862335, -0.06257672607898712, -0.10215286165475845, 0.013755133375525475, -0.06575983017683029, 0.01857927441596985, -0.028306080028414726, -0.05722177401185036, -0.03145682066679001, 0.0686664804816246, -0.10304969549179077, 0.0012785273138433695, 0.01766134239733219, -0.11391620337963104, -0.10505624115467072, 0.06899359822273254, 0.065126933157444, -0.061479657888412476, 0.018845733255147934, 0.0018760969396680593, 0.09367835521697998, 0.015023564919829369, 0.01469709724187851, -0.0370694063603878, -0.029943007975816727, -0.0010979275684803724, 0.031471602618694305, -0.05612347647547722, 0.029231714084744453, 0.011769565753638744, 0.01015226636081934, -0.05403805151581764, 0.09768222272396088, -0.04037471115589142, 0.012393404729664326, 0.08507976680994034, 0.02940785139799118, -0.053680770099163055, 0.018218183889985085, -7.320470415614476e-33, -0.11703884601593018, -0.019966971129179, -0.12495715916156769, -0.04418806731700897, -0.0212374459952116, -0.027035778388381004, 0.07978498190641403, -0.0428251177072525, 0.08325962722301483, -0.04112572595477104, 0.0716669037938118, -0.10306806117296219, -0.09698629379272461, -0.06091064214706421, -0.060992565006017685, -0.10256519168615341, 0.03259408101439476, 0.026917973533272743, -0.034691113978624344, 0.04952230304479599, 0.05846039578318596, 0.005642873700708151, 0.03322422876954079, -0.016386395320296288, -0.004947508219629526, 0.05640697851777077, 0.047044672071933746, -0.029878446832299232, -0.06157403066754341, 0.04621453583240509, 0.001189486589282751, 0.04994397610425949, 0.1287968009710312, 0.01446519698947668, -0.03715839982032776, -0.02763209491968155, -0.020615288987755775, -0.002665405860170722, 0.005213736090809107, -0.05702211707830429, 0.050316374748945236, 0.049256518483161926, 0.006702366750687361, -0.025044823065400124, 0.048686545342206955, -0.04939514398574829, -0.01443086750805378, 0.01714322157204151, -0.021688075736165047, -0.02972174435853958, 0.001897825626656413, -0.08356833457946777, 0.017837299033999443, -0.04717674478888512, 0.10250009596347809, 0.044522788375616074, -0.03192935138940811, -0.008512316271662712, 0.09469300508499146, -0.05295879766345024, -0.019751369953155518, 0.04892046004533768, -0.0060571953654289246, 0.09671830385923386, 0.037840381264686584, -0.05225013196468353, 0.020829716697335243, -0.015363369137048721, -0.027607185766100883, -0.007968481630086899, -0.0363120436668396, -0.03165879845619202, -0.024984976276755333, -0.026361610740423203, -0.051707010716199875, 0.009850028902292252, 0.03241274505853653, -0.010606665164232254, 0.02665037475526333, -0.051652245223522186, -0.07741047441959381, 0.06327123939990997, -0.02513423003256321, -0.020719099789857864, -0.10749810934066772, -0.04081200063228607, 0.03128812834620476, -0.06356500834226608, 0.01793399080634117, 0.052065275609493256, -0.01725081354379654, 0.0772676020860672, 0.003353658365085721, 0.028317086398601532, 0.08929911255836487, 8.369210622840421e-32, -0.09128960967063904, 0.023071397095918655, 0.012933803722262383, 0.010907989926636219, 0.01853727363049984, 0.05038861557841301, -0.07126670330762863, 0.015884460881352425, 0.011399834416806698, -0.10351020842790604, 0.020147865638136864, 0.05691180005669594, -0.002841300331056118, -0.058942943811416626, -0.06695478409528732, -0.034887079149484634, 0.02352995239198208, 0.07510355859994888, 0.027879904955625534, 0.024372637271881104, -0.01326451264321804, 0.027940470725297928, -0.02702581323683262, -0.024369841441512108, 0.06052093580365181, 0.10115956515073776, -0.03207399323582649, -0.0021569912787526846, -0.07578113675117493, -0.049001965671777725, 0.03871651366353035, -0.11997918039560318, 0.013190136291086674, 0.03797677159309387, 0.05177043005824089, -0.03958023339509964, -0.05197058990597725, 0.060858651995658875, 0.00189849769230932, 0.06836096942424774, -0.07208100706338882, -0.03663095831871033, -0.08641066402196884, 0.007266798056662083, 0.05184309184551239, -0.06060636043548584, 0.009839566424489021, -0.07033362984657288, 0.03995434194803238, 0.0011746537638828158, -0.0674886628985405, 0.02328186295926571, -0.015148507431149483, -0.00667587760835886, 0.00891377404332161, 0.05135933682322502, 0.00878096092492342, 0.009724240750074387, -0.018809210509061813, 0.024034282192587852, -0.039959169924259186, 0.10648882389068604, -0.07997389137744904, -0.05536643788218498 ]
214 Chapter 10 Example 11 Solve, in the interval 0 < x < 360°, 5 sin x = −2. Method 1 5 sin x = −2 sin x = −0.4 Principal value is x = − 23.6° (3 s.f.) 23.6° 23.6°A CS T x = 203.6° (204° to 3 s.f.) or x = 336.4° (336° to 3 s.f.) Method 2 Oy x –1 –2–90° 90° 180° 270° 360°1 sin−1(−0.4) = − 23.578…° x = 203.578…° (204° to 3 s.f.) or x = 336.421…° (336° to 3 s.f.)First rewrite in the form sin x = … Sine is negative so you need to look in the 3rd and 4th quadrants for your solutions. You can now read off the solutions in the given interval. Note that in this case, if α = sin−1(−0.4), the solutions are 180 − α and 360 + α. Draw the graph of y = sin x starting fr om −90° since the principal solution given by sin−1(−0.4) is negative. Use the symmetry properties of the y = sin θ graph. Example 12 Solve, in the interval 0 , x < 360°, cos x = √ __ 3 ___ 2 A student writes down the follo wing working: a The principal solution is correct but the student has found a second solution in the second quadrant where cos is negative.cos −1 ( √ __ 3 ___ 2 ) = 30° So x = 30° or x = 180° − 30° = 150° a Identify the error made by the student. b Write down the corr ect answer.In your exam you might have to analyse student working and identify errors. One strategy is to solve the problem yourself, then compare your working with the incorrect working that has been given.Problem-solving The p rincipal value will not always be a solution to the equation.Watch out
[ 0.02935585379600525, 0.00958210788667202, 0.045546580106019974, -0.016068216413259506, -0.008288867771625519, -0.015551134012639523, -0.07473377883434296, 0.006624842062592506, -0.06459261476993561, 0.04436689242720604, 0.08414311707019806, -0.05507560819387436, -0.023512504994869232, 0.004915568046271801, 0.029085680842399597, 0.026958435773849487, -0.08589060604572296, 0.08393286168575287, -0.00832110084593296, 0.011179374530911446, -0.010653607547283173, -0.049206651747226715, -0.020235253497958183, -0.07070428878068924, 0.03418489545583725, -0.05504617094993591, 0.0113722188398242, -0.051793087273836136, 0.061841655522584915, -0.030351830646395683, -0.03958115726709366, -0.06303384900093079, -0.031548719853162766, -0.08185060322284698, -0.0008578469860367477, 0.004473223350942135, 0.05260143056511879, 0.054655034095048904, -0.054904352873563766, -0.01612132042646408, 0.005614060442894697, 0.01174109149724245, -0.017293430864810944, 0.012558122165501118, 0.06863486766815186, -0.04841688275337219, -0.13698166608810425, -0.01470588892698288, 0.05659619718790054, -0.04657021909952164, 0.020414626225829124, 0.05339508503675461, -0.09998974949121475, 0.008223005570471287, -0.07228472828865051, -0.014007343910634518, -0.033490508794784546, -0.020316366106271744, -0.040447898209095, -0.02185014635324478, 0.07476503401994705, 0.05537937954068184, -0.04002181813120842, 0.017770500853657722, -0.04429437592625618, 0.0018381444970145822, 0.03292743116617203, -0.0729728415608406, -0.0013097330229356885, 0.06863284856081009, -0.08844713866710663, -0.019361034035682678, -0.004406583029776812, -0.038970500230789185, 0.011777956038713455, -0.03358479589223862, -0.07229922711849213, 0.04726490005850792, -0.015206953510642052, -0.09719737619161606, -0.021410398185253143, 0.03403499349951744, 0.07256248593330383, 0.009640277363359928, -0.003369735786691308, -0.005111981648951769, 0.06957622617483139, 0.13418543338775635, -0.021037239581346512, 0.04311457648873329, 0.14479199051856995, -0.050770677626132965, -0.03145914897322655, -0.019477451220154762, 0.060512296855449677, -0.016271870583295822, -0.006433631759136915, -0.01711209863424301, 0.040271926671266556, 0.02578851394355297, -0.07124248892068863, 0.014698130078613758, -0.023870211094617844, 0.08165852725505829, -0.03456970304250717, -0.05734550580382347, 0.089994415640831, -0.02129179984331131, 0.03766244277358055, -0.08215238153934479, -0.014105290174484253, 0.00006900924927322194, 0.017658641561865807, -0.06362476944923401, 0.08470993489027023, -0.04591036215424538, 0.033440131694078445, 0.08351704478263855, 0.00028144550742581487, -0.05169147625565529, 0.008953732438385487, -0.040922895073890686, 0.020294824615120888, -0.018450504168868065, -0.04921518638730049, 0.004132806323468685, 0.07377858459949493, 0.009809384122490883, -0.027987366542220116, -0.005729298572987318, 0.06752987205982208, -0.05312172695994377, -0.0781363993883133, -0.08159028738737106, -0.02667919173836708, 0.03541426360607147, 0.08908553421497345, 0.10247652232646942, 0.03711412101984024, 0.003136687446385622, 0.009997454471886158, 0.04151692986488342, 0.02569367177784443, 0.006278997752815485, 0.03580087423324585, 0.008563249371945858, -0.050991930067539215, -0.05163908004760742, -0.002998035866767168, 0.05398812144994736, 0.031353604048490524, -0.01845276728272438, -0.00409043300896883, 0.07253901660442352, -0.016957974061369896, -0.05196603015065193, -0.01344644371420145, 0.01111077331006527, 0.058558519929647446, -0.03387634456157684, -0.09193385392427444, 0.06088615208864212, 0.026468845084309578, 0.07975956052541733, 0.03509534150362015, 0.009019703604280949, 0.044828061014413834, -0.01962827518582344, -0.04953678324818611, -0.03579913452267647, 0.10345453768968582, 0.04150570183992386, 0.09104467928409576, 0.0761558935046196, -0.033140212297439575, 0.00655632046982646, 0.05208521708846092, 0.018321990966796875, 0.006944444961845875, 0.03661803901195526, 0.037265799939632416, -0.05954347550868988, -0.042304400354623795, -0.004035299178212881, -0.004926798399537802, -0.0929085835814476, -0.03725836053490639, -0.05223000794649124, 0.016703417524695396, -0.0007985014817677438, -0.0183456651866436, -0.0732780322432518, 0.012871348299086094, 0.06501058489084244, -0.14836762845516205, -0.0879402682185173, 0.086924247443676, -0.04107113182544708, -0.08221428096294403, 0.07938079535961151, 0.05883908271789551, -0.06680481880903244, 0.05595206841826439, -0.036662422120571136, 0.048332590609788895, 0.029652802273631096, -0.0367668978869915, -0.016845814883708954, -0.02522599697113037, 0.00980647373944521, -0.0041768294759094715, -0.04094599932432175, -0.012773809023201466, 0.009215602651238441, 0.035715263336896896, -0.05670289322733879, 0.0554020032286644, -0.055012233555316925, -0.02522372454404831, 0.05711044743657112, 0.008632348850369453, 0.03663042560219765, 0.05377492308616638, -2.397842437100413e-33, -0.11238794773817062, 0.008969676680862904, -0.1400482952594757, -0.0023935858625918627, -0.03090200386941433, 0.030860837548971176, 0.05105065554380417, -0.05485019087791443, -0.0074213603511452675, -0.029822546988725662, 0.023954158648848534, 0.02051445282995701, -0.07354496419429779, -0.02750733494758606, -0.02091318927705288, -0.02368282712996006, -0.02945145033299923, 0.01960679329931736, -0.0414927639067173, -0.052497223019599915, -0.003227352164685726, 0.0075429873540997505, 0.0014452518662437797, -0.02794748917222023, 0.0403921902179718, 0.03982912376523018, 0.1319878101348877, -0.056969329714775085, -0.04033876582980156, -0.033048275858163834, -0.02802124433219433, 0.08144498616456985, 0.06664998829364777, 0.00013508893607649952, -0.08218114823102951, -0.027302211150527, -0.02729223296046257, -0.013673078268766403, 0.019814833998680115, -0.017125971615314484, 0.042567070573568344, 0.023261891677975655, 0.022421889007091522, 0.01512151025235653, -0.020800774917006493, 0.0468335784971714, 0.08669360727071762, -0.01104037556797266, -0.062947116792202, 0.024951163679361343, -0.014248945750296116, 0.016324229538440704, 0.07900530844926834, -0.0060805510729551315, 0.09336192160844803, 0.006501787342131138, -0.03267217427492142, 0.018248211592435837, 0.0540161170065403, 0.0400196872651577, 0.0053472029976546764, 0.008891006000339985, 0.053715091198682785, 0.06463968753814697, -0.03491276502609253, 0.034594032913446426, 0.022952789440751076, -0.010585671290755272, 0.008894640021026134, 0.005733358208090067, -0.03495902195572853, 0.01390118058770895, 0.006535666063427925, -0.07327649742364883, -0.0620422437787056, 0.041050978004932404, -0.01359211653470993, 0.01673710346221924, 0.007316933013498783, -0.09105705469846725, -0.09206654131412506, -0.0017711293185129762, -0.024004215374588966, -0.049286991357803345, -0.08241301774978638, -0.006549350917339325, 0.047684602439403534, 0.024581007659435272, -0.0002087879547616467, -0.02510768733918667, 0.0003127991803921759, 0.014708276838064194, -0.01440293900668621, -0.02261374145746231, 0.1219271719455719, 8.992252603882179e-32, -0.1367160975933075, -0.04301884397864342, -0.06957768648862839, 0.06157560646533966, 0.022388113662600517, 0.00018805215950123966, -0.03228676691651344, -0.06071094423532486, 0.03139966353774071, -0.0682472437620163, 0.029317393898963928, 0.0322558730840683, 0.003282450372353196, -0.009456243366003036, -0.08790075778961182, -0.06789948046207428, -0.02210778184235096, 0.06523682922124863, 0.01082543283700943, 0.0027316047344356775, 0.05655459314584732, 0.018818793818354607, -0.031613267958164215, -0.0929354876279831, 0.07904189825057983, 0.10916250199079514, -0.060104724019765854, 0.039581988006830215, 0.012278476729989052, 0.005167224910110235, -0.0003361548879183829, -0.0594511404633522, 0.08805860579013824, -0.014517342671751976, 0.06755930185317993, 0.013116844929754734, 0.023594709113240242, 0.01898518204689026, -0.029364731162786484, 0.012118668295443058, 0.009622041136026382, -0.021688614040613174, -0.07983409613370895, 0.023031463846564293, -0.027305616065859795, -0.12154555320739746, -0.007673718500882387, -0.017278026789426804, 0.07295559346675873, -0.029689276590943336, -0.05669356882572174, 0.11997635662555695, -0.04595146328210831, 0.04204254224896431, 0.0883612409234047, -0.041144248098134995, -0.07182485610246658, -0.0187044907361269, -0.024787895381450653, -0.04657441005110741, -0.03630099818110466, 0.14112021028995514, -0.110938660800457, 0.016405750066041946 ]
215Trigonometric identities and equations b x = 30° from the calculator A CS T30° 30° x = 30° or 330°cos x is positive so you need to look in the 1st and 4th quadr ants. Read off the solutions, in 0 , x < 360°, from your diagram. Note that these results are α and 360° − α where α = cos−1 ( √ __ 3 ___ 2 ) . Example 13 Find the values of θ in the interval 0 < θ < 360° that satisfy the equation sin θ = √ __ 3 cos θ. sin θ = √ __ 3 cos θ So tan θ = √ __ 3 tan−1( √ __ 3 ) = 60° A CS T60° 240°60° θ = 60° or 240°Since cos θ = 0 does not satisfy the equation, divide both sides by cos θ and use the identity tan θ ≡ sin θ _____ cos θ  This is the principal solution. Tangent is positive in the 1st and 3rd quadrants, so insert the angle in the correct positions. Exercise 10D 1 The diagram shows a sketch of y = tan x. a Use your calcula tor to find the principal solution to the equation tan x = −2. b Use the graph and y our answer to part a to find solutions to the equation tan x = −2 in the range 0 < x < 360°. 2 The diagram sho ws a sketch of y = cos x. a Use your calcula tor to find the principal solution to the equation cos x = 0.4. b Use the graph and y our answer to part a to find solutions to the equation cos x = ±0.4 in the range 0 < x < 360°.OAy x –290° 180° 270° 360°2 The principal solution is ma rked A on the diagram.Hint Oy x –190° 180° 270° 360°1You can use the identity tan θ ≡ sin θ _____ cos θ  to solve equations.
[ 0.0164723452180624, 0.05864585191011429, 0.042534563690423965, -0.04179215058684349, -0.055367808789014816, 0.008968864567577839, -0.01829376444220543, -0.002721866127103567, -0.06382793933153152, -0.059466298669576645, 0.07010405510663986, -0.06717757135629654, -0.026195712387561798, 0.0007462002686224878, 0.08965009450912476, 0.07030113786458969, -0.059161242097616196, 0.04799942299723625, -0.001366828684695065, 0.012972160242497921, -0.02741974964737892, -0.11373071372509003, 0.010623551905155182, -0.060436464846134186, 0.029152020812034607, 0.04773629829287529, 0.007721256464719772, 0.07101165503263474, 0.04536206275224686, 0.032204821705818176, -0.04917426034808159, -0.043929003179073334, 0.035600606352090836, -0.13984766602516174, -0.0026061662938445807, -0.03184196725487709, -0.042945072054862976, 0.004084637388586998, -0.022717805579304695, -0.019215837121009827, 0.032075848430395126, 0.018299471586942673, 0.040189363062381744, 0.007500332780182362, -0.015488695353269577, -0.05073658376932144, -0.07987184822559357, 0.004740182776004076, 0.0348285473883152, 0.03926912322640419, 0.04992837831377983, 0.03229165077209473, -0.1303749531507492, -0.023412570357322693, -0.050653841346502304, 0.039610885083675385, -0.042740873992443085, -0.030673660337924957, -0.08840691298246384, -0.08760195225477219, 0.11356449872255325, 0.03759365156292915, 0.004330006428062916, -0.014089410193264484, -0.011844880878925323, -0.014047409407794476, 0.0018092060927301645, -0.035761758685112, 0.0026664412580430508, 0.0233837328851223, 0.029850883409380913, 0.04933003708720207, -0.037918947637081146, -0.046539921313524246, -0.033275436609983444, -0.02512372098863125, -0.04720759391784668, 0.009378744289278984, -0.025952845811843872, -0.07782910019159317, -0.016885489225387573, -0.020641859620809555, 0.08034595102071762, 0.011306819505989552, -0.0053053912706673145, -0.011823419481515884, 0.046202175319194794, 0.1084870994091034, 0.04195595532655716, -0.07035381346940994, 0.02696414105594158, -0.031500834971666336, -0.02115718275308609, -0.08226581662893295, 0.04051818326115608, 0.016972161829471588, 0.04110116884112358, 0.033856045454740524, -0.0019509681733325124, 0.05076931416988373, -0.03959740325808525, -0.016627967357635498, -0.019319375976920128, 0.013333826325833797, -0.0576108917593956, -0.04566426947712898, 0.061789028346538544, -0.039302654564380646, 0.12444575130939484, 0.00528126722201705, -0.13188536465168, 0.03131551295518875, 0.051768288016319275, 0.01759297028183937, -0.0014408332062885165, -0.04631891846656799, -0.015095086768269539, 0.06710989773273468, 0.04578403756022453, 0.028840763494372368, 0.07466448843479156, 0.013650525361299515, 0.06065695732831955, -0.026451725512742996, 0.0031934732105582952, -0.04334806650876999, -0.039360206574201584, 0.03052891604602337, -0.03140446916222572, 0.07042687386274338, 0.04870203137397766, -0.061838965862989426, -0.035089362412691116, -0.07510058581829071, 0.012311759404838085, -0.05189196392893791, 0.026815809309482574, 0.09715051203966141, -0.04080703854560852, 0.03484288230538368, 0.015306604094803333, 0.06762419641017914, -0.015959784388542175, 0.02187514118850231, 0.07149609923362732, -0.035544246435165405, -0.08995141088962555, -0.0402069091796875, -0.06245793029665947, 0.05278361216187477, 0.020020563155412674, 0.05530501529574394, 0.0018273105379194021, 0.08706056326627731, -0.05293343588709831, 0.022145215421915054, -0.06603094935417175, 0.029038431122899055, 0.0181683748960495, 0.05877405405044556, -0.049225255846977234, 0.06315755844116211, -0.007615931797772646, 0.054562319070100784, 0.12296854704618454, 0.04378686845302582, -0.004641676787286997, -0.020854799076914787, 0.038403868675231934, 0.009727043099701405, 0.0255398228764534, -0.05617677420377731, -0.017936887219548225, 0.029713602736592293, -0.03913779556751251, 0.024239618331193924, 0.10573644191026688, 0.046788040548563004, -0.04650953412055969, 0.0019100506324321032, 0.0742950364947319, -0.0977923795580864, 0.035890817642211914, -0.015261521562933922, 0.011346051469445229, -0.023014413192868233, -0.05285918340086937, -0.01565581001341343, -0.011471039615571499, -0.009412002749741077, -0.02045614831149578, -0.048598188906908035, -0.01782546378672123, 0.03212245926260948, -0.05574129894375801, -0.007957564666867256, -0.019620133563876152, -0.09459313005208969, -0.07820543646812439, 0.07270114123821259, 0.0829380452632904, -0.07203797996044159, -0.053244613111019135, -0.03088967502117157, 0.025562165305018425, 0.028667764738202095, -0.04926053062081337, -0.029916590079665184, 0.004094501491636038, -0.028597846627235413, -0.013826806098222733, -0.06745042651891708, 0.04922807589173317, -0.053695742040872574, 0.022815441712737083, -0.04443368688225746, 0.051058363169431686, -0.0812484472990036, -0.030238505452871323, 0.09252624958753586, -0.03690886124968529, 0.03394070640206337, 0.03653010353446007, 1.0228993883802154e-33, -0.031179945915937424, -0.01224274281412363, -0.11322957277297974, -0.0601772703230381, -0.020861642435193062, -0.007528253830969334, 0.11411058902740479, -0.018270257860422134, 0.006082907319068909, 0.018940523266792297, 0.08397328853607178, -0.03774883598089218, -0.05552515760064125, -0.049241889268159866, 0.026434047147631645, -0.01366828940808773, 0.03694937750697136, -0.008741169236600399, -0.00584285007789731, -0.08076764643192291, 0.04794664308428764, 0.016258200630545616, 0.009029143489897251, -0.04554563760757446, 0.0008462467230856419, 0.11101805418729782, 0.09556441754102707, -0.033475443720817566, -0.07385437190532684, 0.0034286014270037413, -0.02803708054125309, 0.0704786404967308, 0.1369626522064209, 0.05996688827872276, -0.003851592540740967, -0.08138640224933624, 0.01619020290672779, -0.052249956876039505, -0.01163504458963871, -0.0981665849685669, 0.047274865210056305, 0.04616235941648483, 0.023508217185735703, 0.029883326962590218, 0.03365909680724144, -0.012339070439338684, 0.03498800843954086, 0.002305794507265091, -0.011426452547311783, 0.08663158863782883, -0.018194226548075676, -0.10125819593667984, 0.031328365206718445, -0.0395447313785553, 0.06598018109798431, 0.023312311619520187, -0.04187694564461708, 0.005741223227232695, 0.1229032501578331, 0.002729021478444338, 0.03367377817630768, 0.012100188992917538, 0.02549646981060505, 0.027631785720586777, 0.0065188053995370865, -0.0069584921002388, 0.027896124869585037, -0.028485609218478203, 0.02909797802567482, 0.07708156853914261, 0.01539569441229105, 0.04150688275694847, -0.058717548847198486, -0.09840544313192368, -0.0868646502494812, 0.03236788883805275, 0.02591906487941742, 0.05810611695051193, 0.057966072112321854, -0.07413215935230255, -0.1329032927751541, 0.08606402575969696, -0.03062439151108265, -0.03178276866674423, -0.10028612613677979, -0.0548553504049778, -0.03556156903505325, 0.003730043303221464, 0.05048853158950806, 0.0350361131131649, 0.017088089138269424, 0.044549357146024704, 0.028084740042686462, -0.02300385758280754, 0.11761219054460526, 7.743957536924766e-32, -0.08985800296068192, 0.06959529221057892, -0.04066712036728859, -0.021831419318914413, 0.011530984193086624, 0.004479443654417992, -0.08413015305995941, -0.024287816137075424, 0.025107674300670624, -0.09441309422254562, 0.018280645832419395, 0.09289759397506714, -0.016611579805612564, -0.03851746395230293, -0.062307313084602356, -0.03303270787000656, -0.021923625841736794, 0.040701232850551605, 0.03418736904859543, -0.034159205853939056, -0.011054427362978458, 0.038136012852191925, 0.028762876987457275, 0.021919650956988335, 0.04753432795405388, 0.05084092915058136, -0.0636255070567131, -0.023887353017926216, -0.024293839931488037, -0.07025781273841858, 0.01436369214206934, -0.05133562907576561, 0.03615583851933479, 0.018011754378676414, 0.0325297974050045, -0.023734334856271744, -0.031677912920713425, -0.008953863754868507, -0.030476413667201996, 0.04810880869626999, 0.018170924857258797, -0.016139304265379906, -0.08866019546985626, 0.0003630305582191795, 0.013271113857626915, -0.10638277977705002, -0.0418948270380497, -0.08732638508081436, 0.06711456179618835, -0.04206261411309242, -0.07360705733299255, 0.04746309667825699, -0.018643248826265335, 0.0004931371076963842, 0.050173986703157425, 0.02230391651391983, -0.006239688955247402, 0.018366362899541855, 0.01968797855079174, 0.028242386877536774, -0.06690957397222519, 0.058122988790273666, -0.08314106613397598, -0.020333323627710342 ]
216 Chapter 10 3 Solve the follo wing equations for θ, in the interval 0 < θ < 360°: a sin θ = −1 b tan θ = √ __ 3 c cos θ = 1 _ 2 d sin θ = sin 15° e cos θ = −cos 40° f tan θ = −1 g cos θ = 0 h sin θ = −0.766 4 Solve the follo wing equations for θ, in the interval 0 < θ < 360°: a 7 sin θ = 5 b 2 cos θ = − √ __ 2 c 3 cos θ = −2 d 4 sin θ = −3 e 7 tan θ = 1 f 8 tan θ = 15 g 3 tan θ = −11 h 3 cos θ = √ __ 5 5 Solve the follo wing equations for θ, in the interval 0 < θ < 360°: a √ __ 3 sin θ = cos θ b sin θ + cos θ = 0 c 3 sin θ = 4 cos θ d 2 sin θ − 3 cos θ = 0 e √ __ 2 sin θ = 2 cos θ f √ __ 5 sin θ + √ __ 2 cos θ = 0 6 Solve the follo wing equations for x, giving your answers to 3 significant figures where appropriate, in the intervals indicated: a sin x = − √ __ 3 ___ 2 , −180° < x < 540° b 2 sin x = −0.3, −180° < x < 180° c cos x = −0.809, −180° < x < 180° d cos x = 0.84, −360° < x < 0° e tan x = − √ __ 3 ___ 3 , 0 < x < 720° f tan x = 2.90, 80° < x < 440° 7 A teacher asks two students to solve the equa tion 2 cos x = 3 sin x f or −180° < x < 180°. The attempts are shown: a Identify the mistake made b y Student A. (1 mark) b Identify the mistake made b y Student B and explain the effect it has on their solution. (2 marks) c Write down the corr ect answers to the question. (1 mark) 8 a Sketch the gra phs of y = 2 sin x and y = cos x on the same set of ax es (0 < x < 360°). b Write down ho w many solutions there are in the given range for the equation 2 sin x = cos x. c Solve the equation 2 sin x = cos x alge braically, giving your answers in exact form. 9 Find all the va lues of θ, to 1 decimal place, in the interval 0 < θ < 360° for which tan2 θ = 9. (5 marks) 10 a Show that 4 sin2 x – 3 cos2 x = 2 can be written as 7 sin2 x = 5. (2 marks) b Hence solve, f or 0 < x < 360°, the equation 4 sin2 x – 3 cos2 x = 2. Give your answers to 1 decimal place. (7 marks) 11 a Show that the equa tion 2 sin2x + 5 cos2x = 1 can be written as 3 sin2x = 4. (2 marks) b Use your result in part a to explain why the equation 2 sin2 x + 5 cos2 x = 1 has no solutions. (1 marks) Give your answers ex actly where possible, or round to 3 significant figures.Hint E/PStudent A: tan x = 3 __ 2 x = 56.3° or x = − 123.7°Student B: 4 cos2x = 9 sin2x 4(1 − sin2x) = 9 sin2x 4 = 13 sin2x sin x = ± √ ___ 4 ___ 13 , x = ±33.7° or x = ±146.3° E/P When you take square roots of both sides of an equation you need to consider both the positive and the negative square roots.Problem-solving E/P E/P
[ -0.008709532208740711, 0.03711675852537155, -0.02448982559144497, -0.08097850531339645, 0.005475939251482487, 0.004336853511631489, -0.05137117579579353, 0.03276880457997322, -0.07737088948488235, 0.014721506275236607, 0.07798916101455688, -0.060665313154459, -0.0023066424764692783, 0.020875805988907814, -0.01112514827400446, 0.0403377003967762, -0.128167062997818, 0.04210501164197922, -0.038457076996564865, 0.06273885816335678, -0.024800406768918037, -0.05278463661670685, -0.007662211079150438, 0.03407401591539383, 0.020148618146777153, 0.008014537394046783, -0.025225196033716202, 0.05871198698878288, 0.007300627883523703, -0.011293183080852032, -0.05475364625453949, 0.03576815128326416, -0.012301982380449772, -0.07151475548744202, -0.006420571822673082, 0.008937879465520382, 0.04197346791625023, -0.01409686915576458, -0.031490448862314224, -0.004839782603085041, -0.06924616545438766, 0.05305065959692001, -0.015202450565993786, 0.03623203933238983, -0.007153358310461044, 0.051744528114795685, -0.054813262075185776, 0.062263332307338715, 0.06540914624929428, -0.021535852923989296, 0.03727481886744499, -0.036943331360816956, -0.13756565749645233, -0.042378611862659454, -0.038314662873744965, 0.015419788658618927, -0.02905723638832569, -0.017383359372615814, -0.09894420206546783, 0.006070615258067846, 0.005450147204101086, 0.05751212686300278, -0.00556382117792964, 0.03095463290810585, -0.046582046896219254, 0.033286068588495255, 0.04522936791181564, -0.09698058664798737, -0.0014321916969493032, 0.060531508177518845, -0.10358189046382904, -0.02931792289018631, -0.06544498354196548, -0.03524569049477577, 0.04510249197483063, 0.029279334470629692, -0.04399477317929268, 0.024181941524147987, -0.0763300433754921, -0.10466250032186508, -0.037562046200037, -0.031468525528907776, 0.07230713218450546, 0.05271695926785469, 0.07400663942098618, 0.015963446348905563, 0.035054855048656464, 0.052696533501148224, 0.043379560112953186, 0.011094053275883198, 0.06461336463689804, -0.05493514612317085, -0.07468493282794952, 0.004491234663873911, 0.007797749247401953, 0.03299641236662865, -0.006181842647492886, -0.03335859254002571, 0.007684011943638325, 0.06945838034152985, 0.026618406176567078, 0.019527338445186615, 0.09362181276082993, 0.02211618237197399, -0.09503563493490219, -0.015506225638091564, 0.09145280718803406, -0.02322153002023697, 0.08071082085371017, -0.12036929279565811, -0.05981196463108063, -0.017398277297616005, 0.0688869059085846, 0.004939288832247257, 0.03612850606441498, -0.016194583848118782, -0.02848057821393013, 0.010154033079743385, -0.06978705525398254, 0.011188779957592487, 0.02045879140496254, 0.03057907149195671, 0.07238293439149857, -0.025559542700648308, -0.034725405275821686, -0.016364460811018944, -0.0037629115395247936, -0.013772972859442234, 0.023042412474751472, 0.05030843988060951, 0.029654132202267647, -0.03608343005180359, -0.074733205139637, -0.008793714456260204, -0.049908265471458435, 0.1418585479259491, 0.08233211934566498, 0.07862557470798492, -0.06790242344141006, -0.03927922248840332, 0.019367732107639313, 0.026603229343891144, -0.0061089638620615005, -0.03573823720216751, 0.022774653509259224, -0.02805907279253006, -0.05732240527868271, -0.005715521518141031, -0.022936619818210602, 0.03948628529906273, 0.01810544542968273, 0.007262804079800844, 0.04543142765760422, 0.08733280748128891, -0.028692452237010002, -0.0008107958710752428, -0.03442661464214325, 0.05313631519675255, 0.04477047547698021, -0.008489014580845833, -0.11804668605327606, 0.031913451850414276, 0.010377769358456135, 0.04112311452627182, 0.10868147760629654, 0.006618572864681482, -0.00015853917284402996, 0.028233271092176437, -0.05115126818418503, 0.04278110712766647, 0.012717741541564465, -0.0491044856607914, -0.010691971518099308, -0.01715059205889702, 0.06522774696350098, -0.004583766218274832, 0.09698116034269333, 0.0005746751558035612, -0.0594671256840229, -0.0008523555006831884, 0.002523857867345214, -0.04106300324201584, 0.05195442587137222, -0.01889188401401043, 0.035445090383291245, -0.05702155455946922, -0.03404516726732254, 0.016058238223195076, -0.03821290656924248, -0.0026822593063116074, -0.011524992063641548, -0.06505097448825836, 0.063927561044693, 0.03352457657456398, -0.11877761781215668, -0.05569009110331535, 0.018767211586236954, -0.07393228262662888, -0.09279114753007889, 0.025189921259880066, 0.04842270538210869, 0.010562200099229813, 0.04007604718208313, 0.03778683766722679, 0.05418258160352707, -0.06818628311157227, -0.03209387883543968, -0.06269726902246475, -0.002816370688378811, 0.06990348547697067, 0.018948949873447418, -0.06427481770515442, -0.03203175961971283, -0.08721359074115753, 0.023898229002952576, -0.03608202934265137, 0.04794766381382942, -0.07296597212553024, -0.054224155843257904, 0.03570783510804176, 0.04666313901543617, -0.05138613283634186, -0.028744688257575035, 5.505427332898703e-34, -0.0611269511282444, -0.008182740770280361, -0.12862448394298553, -0.06637311726808548, 0.01956651732325554, 0.006021341308951378, 0.07788421213626862, 0.005185534246265888, 0.08816385269165039, -0.040513113141059875, 0.010672363452613354, 0.0443199947476387, -0.08888334035873413, -0.009514800272881985, -0.01829974539577961, -0.0752326101064682, 0.03623494878411293, -0.008198852650821209, 0.011345370672643185, -0.000016570133084314875, 0.018153468146920204, -0.004452139604836702, 0.010199734009802341, 0.025348255410790443, -0.019441813230514526, 0.05899735540151596, 0.15661083161830902, -0.043371401727199554, -0.05406965687870979, 0.02877025119960308, -0.0379786342382431, 0.014531767927110195, 0.06798718124628067, 0.03247739374637604, -0.009633396752178669, -0.08408142626285553, 0.06371958553791046, 0.04126594588160515, -0.05286634340882301, -0.037505850195884705, 0.05266929045319557, 0.038515642285346985, 0.05239815264940262, -0.0022979071363806725, -0.01820787787437439, 0.011655080132186413, 0.058723434805870056, 0.0035203867591917515, -0.046528011560440063, 0.04874984920024872, -0.022688699886202812, -0.039676234126091, 0.0630892664194107, 0.009628704749047756, 0.016549214720726013, -0.001440581283532083, -0.045529983937740326, -0.08235146105289459, 0.15847522020339966, -0.029761478304862976, -0.0014573786174878478, 0.009751719422638416, 0.019709959626197815, 0.05625295639038086, 0.01166054792702198, -0.028627144172787666, -0.04454070329666138, -0.020132411271333694, 0.0002910254115704447, 0.06895114481449127, -0.1427387297153473, 0.06306184083223343, -0.02183493971824646, -0.03639073669910431, -0.05052121356129646, -0.013303370214998722, 0.10436037182807922, 0.028107622638344765, 0.07458610832691193, -0.025494758039712906, -0.131299689412117, -0.007896164432168007, 0.01699789986014366, -0.0721687525510788, -0.08685408532619476, -0.044060658663511276, 0.02373763732612133, -0.00867501087486744, 0.06436210870742798, 0.0034507729578763247, 0.016670256853103638, 0.05172063410282135, 0.03826011344790459, 0.03717239201068878, 0.149056077003479, 8.47731789954967e-32, -0.013987035490572453, 0.020015092566609383, 0.02043713629245758, 0.001657069311477244, 0.05602375417947769, 0.042364053428173065, 0.029303576797246933, -0.038552455604076385, 0.019824998453259468, -0.095159150660038, 0.052751388400793076, -0.012445309199392796, -0.02573922835290432, -0.048371847718954086, -0.09235850721597672, -0.05631750822067261, -0.044701531529426575, 0.030089953914284706, 0.027873486280441284, 0.02373850904405117, 0.027612393721938133, 0.07348312437534332, -0.03278294950723648, -0.022664299234747887, 0.06364468485116959, 0.03356143459677696, -0.0724743977189064, -0.04924165457487106, 0.004029945936053991, -0.027187077328562737, -0.02251843363046646, -0.08542105555534363, 0.027459774166345596, -0.004311474040150642, -0.03391443192958832, -0.0706225037574768, -0.026817593723535538, 0.019437046721577644, -0.018772529438138008, 0.04226485639810562, 0.033382415771484375, 0.07959342747926712, -0.09575966745615005, -0.030578941106796265, 0.0376744270324707, -0.028255430981516838, -0.02328835055232048, -0.04627477005124092, 0.021454736590385437, -0.01799154095351696, -0.04767638072371483, 0.09089973568916321, -0.0027680813800543547, -0.058241553604602814, 0.030263716354966164, 0.011433987878262997, -0.04473869130015373, -0.013883682899177074, 0.03745537996292114, -0.061244431883096695, -0.03486389294266701, 0.11623358726501465, -0.07530186325311661, 0.013614518567919731 ]
217Trigonometric identities and equations a Let X = 3θ So cos X° = 0 .766 As X = 3 θ, then as 0 < θ < 360° So 3 × 0 < X < 3 × 360° So the interval for X is 0 < X < 1080° X = 40. 0°, 320°, 400°, 680°, 760°, 1040° i.e. 3θ = 40.0°, 320°, 400°, 680°, 760°, 1040° So θ = 13.3°, 107°, 133°, 227°, 253°, 347° b sin 2θ ______ cos 2θ  = 1 __ 2 , so tan 2θ = 1 __ 2 Let X = 2 θ So tan X = 1 __ 2 As X = 2θ, then as 0 < θ < 360° The interval for X is 0 < X < 720° yy = tan x O X –1 –290° 180° 270° 360° 450° 540° 630° 720°12 The principal solution for X is 26.565…° Add multiples of 180°:X = 26.565…°, 206.565…°, 386.565…°, 566.565…° θ = 13.3°, 103°, 193°, 283°A CS T40° 40°10.5 Harder trigonometric equations You need to be able to solve equations of the form sin nθ = k, cos nθ = k and tan nθ = p. Example 14 a Solve the equation cos 3θ = 0.766, in the interval 0 < θ < 360°. b Solve the equation 2 sin 2θ = cos 2θ, in the interval 0 < θ < 360°. If the r ange of values for θ is 0 < θ < 360°, then the range of values for 3 θ is 0 < 3θ < 1080°.Watch out Remember X = 3 θ.The value of X from your calculator is 40.0. You need to list all values in the 1st and 4th quadrants for three complete revolutions.Replace 3 θ by X and solve. Use the identity for tan to rearrange the equation. Draw a graph of tan X for this int erval. Alternatively, you could use a CAST diagram as in part a .Let X = 2 θ, and double both values to find the interval for X. Convert your values of X back into values of θ. Round each answer to a sensible degree of accuracy at the end.
[ -0.003957527689635754, 0.044421929866075516, 0.07039124518632889, -0.03209157660603523, -0.03311266005039215, 0.030366964638233185, -0.05658510699868202, -0.05084259435534477, -0.06351561844348907, -0.09476904571056366, 0.06298675388097763, -0.06918511539697647, 0.012961742468178272, 0.01847149431705475, 0.1415501832962036, -0.018347283825278282, -0.057812705636024475, 0.026291145011782646, -0.05163132771849632, 0.01647682674229145, 0.011154537089169025, -0.07441497594118118, 0.015908000990748405, -0.07833652943372726, 0.06153463199734688, 0.040533434599637985, -0.0025355913676321507, 0.04727768152952194, 0.0037701549008488655, 0.058207686990499496, -0.029354244470596313, 0.011627905070781708, -0.02870612032711506, -0.13969279825687408, -0.0022544071543961763, -0.026075825095176697, 0.03977115452289581, 0.009764648973941803, -0.04544537886977196, -0.012556273490190506, -0.05653848871588707, 0.056481558829545975, 0.039732083678245544, 0.020044701173901558, 0.026724955067038536, -0.03647072985768318, -0.10296924412250519, 0.03705218434333801, 0.03206031769514084, 0.01780886948108673, 0.05773905664682388, 0.06876728683710098, -0.07253273576498032, -0.04321134835481644, 0.002808881225064397, 0.025444503873586655, -0.02569357305765152, 0.017294634133577347, -0.054294999688863754, -0.10413876175880432, 0.09608834981918335, 0.09252049028873444, -0.007996260188519955, -0.03563784062862396, 0.006711750756949186, -0.014752296730875969, 0.055660899728536606, -0.0868723914027214, 0.031350523233413696, 0.04033598303794861, -0.011550701223313808, 0.015570883639156818, 0.016170309856534004, -0.07585904747247696, -0.0055437530390918255, -0.021242763847112656, -0.047672759741544724, 0.010444014333188534, -0.0301598459482193, -0.04651619493961334, -0.04907318577170372, 0.02375977113842964, 0.09580158442258835, 0.01402142085134983, 0.020072083920240402, 0.027302294969558716, 0.09854275733232498, 0.12001937627792358, -0.030705872923135757, -0.0281978789716959, 0.04335743933916092, -0.06341752409934998, -0.08729483932256699, -0.03605164214968681, 0.07511657476425171, 0.0066744922660291195, 0.040150534361600876, 0.034084539860486984, -0.00845988467335701, 0.021661443635821342, -0.033155351877212524, -0.06428875029087067, -0.08540748059749603, 0.01171236764639616, -0.02575685642659664, -0.013351021334528923, 0.10788923501968384, -0.0390249565243721, 0.0849749818444252, -0.022933034226298332, -0.10177204012870789, 0.10345500707626343, 0.017588287591934204, -0.019330035895109177, 0.02617553062736988, 0.021253693848848343, -0.007974137552082539, 0.03181342035531998, 0.025705326348543167, -0.020268743857741356, 0.0035843010991811752, 0.033199384808540344, 0.04689710587263107, -0.0006495584384538233, -0.041653405874967575, -0.007963549345731735, 0.01441781222820282, -0.029428979381918907, -0.06705931574106216, 0.08001658320426941, 0.06877892464399338, -0.04047491028904915, -0.041238315403461456, -0.024067260324954987, -0.061614327132701874, -0.03469553962349892, 0.025804366916418076, 0.12714678049087524, -0.040043748915195465, 0.03921283408999443, 0.03493177890777588, 0.04084048047661781, 0.0005863718106411397, -0.006087161134928465, 0.05051092430949211, 0.004991877358406782, -0.07694894075393677, -0.01550721563398838, -0.058016665279865265, 0.02923934906721115, 0.006134063936769962, 0.09317867457866669, -0.06597725301980972, 0.0809570774435997, -0.02311357669532299, -0.007654429879039526, -0.05530747026205063, -0.00930883176624775, 0.0497032031416893, -0.014986589550971985, -0.006286336109042168, 0.015528280287981033, 0.017136750742793083, 0.08997946232557297, 0.13950547575950623, 0.02825787104666233, 0.04429930821061134, -0.020831091329455376, 0.009997722692787647, -0.01926952786743641, -0.04527619853615761, -0.030827652662992477, 0.001685518422164023, -0.011297177523374557, 0.008080573752522469, -0.04309798777103424, 0.0332404300570488, -0.0058747571893036366, -0.0587528832256794, 0.0227816179394722, 0.05087118223309517, -0.021897422149777412, 0.035873476415872574, -0.056428179144859314, 0.03591854125261307, -0.01789993606507778, -0.017049824818968773, 0.024385817348957062, -0.011711222119629383, 0.006836243439465761, -0.0022817999124526978, -0.051998261362314224, -0.006216945592314005, 0.0034704136196523905, -0.07214026153087616, 0.0378887802362442, -0.040188129991292953, -0.059131331741809845, -0.0867944210767746, 0.07397110015153885, 0.07474049180746078, -0.10961426794528961, -0.004836166277527809, -0.02283524163067341, 0.07905729115009308, 0.032128121703863144, -0.05127103254199028, 0.0065732416696846485, -0.00947940070182085, 0.025640571489930153, -0.03157862275838852, -0.07026652246713638, 0.02541320025920868, -0.06270457804203033, -0.0065951040014624596, -0.014729845337569714, 0.05849745497107506, -0.09082696586847305, -0.035260383039712906, 0.005994860082864761, -0.014895869418978691, -0.035228509455919266, -0.0030250607524067163, 1.8431323237892631e-34, -0.05947413295507431, -0.035722292959690094, -0.1312357485294342, -0.070706807076931, -0.03918592259287834, 0.009292959235608578, 0.056191809475421906, 0.006776659749448299, 0.040305424481630325, -0.013755771331489086, 0.06611451506614685, -0.022934239357709885, -0.0727643296122551, -0.03476042300462723, -0.0481499508023262, -0.005192277487367392, 0.03522739186882973, -0.03879081457853317, -0.013413502834737301, -0.05320417881011963, 0.0019325872417539358, -0.015593091957271099, -0.005661425646394491, 0.0387682244181633, 0.0340840108692646, 0.05413700267672539, 0.07385515421628952, -0.05255900323390961, -0.0334051288664341, -0.03274207562208176, -0.010410578921437263, 0.049330003559589386, 0.1058424562215805, 0.049089886248111725, 0.010884642601013184, -0.07986874133348465, 0.010283620096743107, -0.03341097757220268, 0.016347190365195274, -0.07737008482217789, 0.0550687350332737, 0.01332105603069067, 0.03525937348604202, 0.06803484261035919, 0.008423231542110443, -0.03025592491030693, -0.029836338013410568, 0.026756344363093376, -0.040285948663949966, 0.00526412483304739, -0.0043644835241138935, -0.1172664687037468, -0.008029412478208542, -0.0357474684715271, 0.10866265743970871, -0.0010114052565768361, -0.034400004893541336, -0.006084105931222439, 0.15464240312576294, -0.09885452687740326, 0.058837343007326126, 0.014978483319282532, -0.006779111921787262, 0.05342312157154083, 0.03127327561378479, -0.007370102684944868, -0.014033257961273193, -0.10544376820325851, 0.0507194809615612, 0.010188153013586998, 0.04638903960585594, -0.03084200993180275, -0.027902159839868546, -0.06326727569103241, -0.08722389489412308, 0.045876313000917435, 0.05267854407429695, 0.08627429604530334, 0.05333702266216278, -0.0476762130856514, -0.0791139230132103, 0.008564871735870838, -0.0341169498860836, -0.024638967588543892, -0.06287480145692825, -0.056570231914520264, 0.05299486964941025, 0.0009610062115825713, 0.0582137294113636, 0.01638484187424183, -0.0040575419552624226, 0.024376574903726578, -0.05918046087026596, 0.0030184590723365545, 0.1617496758699417, 7.847408680510407e-32, -0.13342398405075073, 0.10201480984687805, -0.01846367120742798, 0.0018208295805379748, -0.015507661737501621, -0.01790451630949974, -0.02713441476225853, -0.03618234023451805, 0.05158325657248497, -0.07186190783977509, 0.06320246309041977, -0.021934514865279198, -0.05960206687450409, -0.07708847522735596, -0.07093407958745956, -0.04079299792647362, 0.019292118027806282, 0.04915297403931618, 0.05675607547163963, -0.0438256710767746, 0.022081473842263222, 0.08782430738210678, 0.06795597076416016, -0.04523737356066704, 0.07990594208240509, 0.0032434442546218634, -0.05186838284134865, -0.0037407921627163887, -0.05807428061962128, -0.058392129838466644, 0.04221203550696373, -0.033543892204761505, 0.004324403591454029, 0.03488592430949211, 0.0314154326915741, -0.04936917498707771, -0.014276256784796715, 0.023051073774695396, -0.002304085297510028, 0.028379740193486214, -0.004451381973922253, -0.0021703343372792006, -0.04494887590408325, -0.007539082784205675, 0.0072413417510688305, -0.08194444328546524, -0.007804501336067915, -0.041630346328020096, 0.06856387853622437, -0.029009483754634857, -0.05514305457472801, 0.016055991873145103, 0.05145508423447609, 0.008240913040935993, 0.03670404851436615, 0.01840488612651825, 0.018208272755146027, 0.04978390038013458, -0.0507085956633091, 0.02711385302245617, -0.017729967832565308, 0.10056605190038681, -0.08817911893129349, -0.01689203269779682 ]
218 Chapter 10 You need to be able to solve equations of the form sin (θ + α) = k, cos (θ + α) = k and tan (θ + α) = p. Example 15 Solve the equation sin (x + 60°) = 0.3 in the interval 0 < x < 360°. Let X = x + 60° So sin X = 0.3 The interval for X is 0° + 60° < X < 360° + 60° So 60° < X < 420° 100 Oy X –0.5 –1200 300 4000.51 The principal value for X is 17.45…° X = 162.54…°, 377.45…° Subtract 60° from each value:x = 102.54…°, 317.45…°Hence x = 102.5° or 317.5°Draw a sketch of the sin graph for the given interval. You could also use a CAST diagram to solve this problem.Adjust the interval by adding 60° to both values. Exercise 10E 1 Find the values of θ, in the interval 0 < θ < 360°, for which: a sin 4θ = 0 b cos 3θ = −1 c tan 2θ = 1 d cos 2θ = 1 _ 2 e tan 1 _ 2 θ = − 1 ___ √ __ 3 f sin (−θ ) = 1 ___ √ __ 2 2 Solve the follo wing equations in the interval given: a tan (45° − θ ) = − 1, 0 < θ < 360° b 2 sin (θ − 20°) = 1, 0 < θ < 360° c tan (θ + 75°) = √ __ 3 , 0 < θ < 360° d sin (θ − 10°) = − √ __ 3 ___ 2 , 0 < θ < 360° e cos (70° − x) = 0.6, 0 < θ < 180° 3 Solve the follo wing equations in the interval given: a 3 sin 3θ = 2 cos 3θ, 0 < θ < 180° b 4 sin (θ + 45°) = 5 cos (θ + 45°), 0 < θ < 450° c 2 sin 2x – 7 cos 2x = 0, 0 < x < 180° d √ __ 3 sin (x – 60°) + cos(x – 60°) = 0, –180° < x < 180°This is not in the given interval so it does not correspond to a solution of the equation. Use the symmetry of the sin graph to find other solutions.
[ -0.0073067424818873405, 0.027874384075403214, 0.045753732323646545, -0.0533931665122509, 0.0038575620856136084, 0.0325535349547863, 0.000602048123255372, 0.05274200811982155, -0.08520890772342682, 0.03153535723686218, 0.11659297347068787, -0.02893052250146866, -0.05469546467065811, 0.013791671954095364, 0.11806630343198776, 0.05507207661867142, -0.12576882541179657, 0.08618522435426712, -0.024802736937999725, 0.01820751652121544, -0.042871374636888504, -0.10772163420915604, -0.03208480030298233, -0.06217552348971367, -0.04411594569683075, 0.02575206570327282, 0.10836169868707657, -0.018750322982668877, 0.08322683721780777, 0.06261986494064331, -0.0746140331029892, -0.04790564253926277, -0.01766081340610981, -0.04024486616253853, 0.015418044291436672, -0.0035716064739972353, -0.03467496484518051, -0.04498084634542465, -0.04705192148685455, -0.010889622382819653, -0.03545207902789116, 0.006684572901576757, -0.030627286061644554, -0.03988604247570038, 0.05799838528037071, 0.00002166580998164136, -0.07527431845664978, 0.08353079110383987, 0.06679300218820572, 0.030559014528989792, 0.05073932558298111, 0.005807286594063044, -0.14365102350711823, -0.047201719135046005, -0.028523357585072517, 0.02823060005903244, 0.004164452664554119, -0.0020844617392867804, -0.021924996748566628, -0.024093711748719215, -0.009204003028571606, 0.04952136427164078, 0.03725220263004303, 0.017835721373558044, 0.06353871524333954, -0.01297445222735405, 0.003743820358067751, -0.0326271653175354, 0.014423378743231297, 0.011590471491217613, -0.10185199975967407, 0.04759898781776428, 0.018639538437128067, -0.048144858330488205, -0.047306209802627563, -0.07760383188724518, -0.07734525203704834, 0.06387320905923843, -0.06406724452972412, -0.08821691572666168, 0.00391876557841897, 0.04419490694999695, 0.015529226511716843, 0.025621332228183746, 0.07439082115888596, 0.04267260804772377, 0.02916388399899006, 0.0817207619547844, 0.030951794236898422, 0.0017930740723386407, 0.11416490375995636, -0.031179161742329597, -0.08753938227891922, -0.04073333740234375, 0.06884635984897614, 0.04221188277006149, 0.03622114658355713, 0.01982177048921585, -0.015367545187473297, 0.027577538043260574, 0.004010697361081839, -0.01312338188290596, -0.06545310467481613, 0.02001992054283619, -0.06602682918310165, -0.025733092799782753, 0.06673699617385864, 0.002537108724936843, 0.0033218394964933395, -0.022832797840237617, -0.08788272738456726, 0.030871732160449028, 0.04117822274565697, 0.0027001481503248215, 0.046080853790044785, 0.0012095184065401554, 0.0113364914432168, 0.04069344326853752, 0.03325391188263893, 0.0161727387458086, 0.017856843769550323, -0.030524984002113342, 0.020433686673641205, 0.0242132768034935, -0.04284261167049408, -0.04083407670259476, 0.07363583892583847, -0.05042395368218422, -0.006379041820764542, 0.05122821778059006, 0.07687222957611084, -0.06481575220823288, -0.04392482712864876, -0.10237906873226166, 0.023973023518919945, 0.0896616131067276, 0.03510752692818642, 0.011544787324965, -0.08358731865882874, -0.02231706492602825, -0.00742747588083148, 0.04953562840819359, -0.035157211124897, -0.001474140677601099, 0.008408233523368835, -0.005573620088398457, -0.08881673961877823, 0.04168354719877243, -0.07298752665519714, 0.056417640298604965, 0.029876360669732094, 0.0445539653301239, -0.027264757081866264, 0.1287912130355835, -0.04634948447346687, 0.043223392218351364, -0.06369029730558395, 0.040964558720588684, 0.10480386763811111, 0.005278261844068766, -0.04468536004424095, 0.041412536054849625, 0.02614995278418064, 0.053605519235134125, 0.022730911150574684, 0.02107960358262062, 0.03772137686610222, -0.006482686847448349, -0.04808199778199196, 0.04382646456360817, 0.08812086284160614, 0.03821588307619095, -0.019564595073461533, 0.06988160312175751, 0.020922573283314705, 0.016223404556512833, 0.06745906919240952, 0.0001771976676536724, 0.018733277916908264, -0.029599741101264954, -0.01900416612625122, -0.08402722328901291, -0.0015937600983306766, -0.02518930844962597, 0.033539559692144394, -0.018938448280096054, -0.006240961141884327, 0.020494574680924416, -0.045545585453510284, -0.012587194330990314, 0.030631234869360924, -0.0010589746525511146, 0.0173169057816267, -0.008391905575990677, -0.16658379137516022, -0.07162746787071228, 0.049789417535066605, -0.07541388273239136, -0.09680526703596115, 0.056817710399627686, 0.03650769218802452, -0.0314830057322979, -0.01874691992998123, -0.026945924386382103, 0.04915807768702507, -0.023506993427872658, -0.004265506286174059, -0.0016568227438256145, -0.0421709343791008, 0.03648753836750984, 0.03639134019613266, -0.017227191478013992, -0.0002269492979394272, -0.059103842824697495, 0.02683153934776783, -0.03782731294631958, 0.015591442584991455, -0.1022706851363182, -0.08333775401115417, 0.10727914422750473, 0.003423163667321205, 0.03221394866704941, 0.01677067205309868, -9.391928948356411e-34, -0.126084104180336, -0.007903048768639565, -0.12503352761268616, -0.07016602158546448, -0.04147336632013321, 0.008706134743988514, 0.038194384425878525, -0.03346232324838638, 0.08032699674367905, -0.034392695873975754, 0.04363968223333359, 0.003743204288184643, -0.0645778626203537, -0.011598877608776093, -0.00454677315428853, -0.0386873260140419, 0.04802455008029938, -0.021732861176133156, -0.013085921294987202, -0.01573093608021736, 0.010205109603703022, 0.02293674647808075, -0.023210639134049416, -0.02968577854335308, -0.02487635426223278, 0.017741963267326355, 0.09979823231697083, -0.056494858115911484, -0.08519578725099564, 0.032109104096889496, -0.03774035722017288, 0.07026958465576172, 0.012028492987155914, 0.00033334261388517916, -0.07761478424072266, -0.055117279291152954, 0.023945169523358345, -0.019717589020729065, -0.06082843616604805, -0.01367213111370802, 0.019629308953881264, -0.019829031080007553, 0.03183366358280182, -0.049665529280900955, -0.02974044531583786, 0.02970356121659279, 0.10657987743616104, -0.025205640122294426, -0.05496798828244209, 0.0031912222038954496, 0.043349046260118484, -0.046142611652612686, 0.05067546293139458, -0.006616090890020132, 0.08077362179756165, 0.01024122629314661, -0.05152461677789688, -0.0074165514670312405, 0.056408628821372986, -0.0827653631567955, -0.03319711983203888, -0.005162278190255165, 0.03815384954214096, 0.04765451326966286, -0.04428136348724365, 0.017091384157538414, -0.009752032347023487, 0.032017264515161514, 0.02301943115890026, 0.01085326075553894, -0.09783317148685455, 0.0351288877427578, 0.038734957575798035, 0.028944723308086395, -0.03190670162439346, 0.038261886686086655, 0.001604424207471311, 0.06271578371524811, 0.07875346392393112, -0.08172301203012466, -0.10473725199699402, 0.005298878066241741, 0.023598263040184975, -0.06950309872627258, -0.029267262667417526, 0.0082785002887249, 0.0436379499733448, 0.0321488231420517, 0.04792087897658348, -0.01155908778309822, -0.0034217655193060637, 0.02502894401550293, -0.003794625401496887, -0.025854678824543953, 0.13660229742527008, 9.147273860132745e-32, -0.11356580257415771, -0.009814183227717876, -0.06873597204685211, 0.03639904782176018, 0.08105338364839554, 0.011073630303144455, 0.008767422288656235, -0.04638087749481201, 0.042732078582048416, -0.07521072030067444, 0.016156688332557678, -0.015669820830225945, -0.0004172611515969038, -0.0359380804002285, -0.10556429624557495, -0.05951952934265137, -0.029882313683629036, 0.13083979487419128, 0.013530812226235867, -0.03242306783795357, 0.00884238351136446, 0.009729810990393162, -0.02905406430363655, -0.05467334762215614, 0.04770828038454056, 0.06374780088663101, -0.005516719538718462, 0.002698721829801798, -0.010781578719615936, -0.0485849566757679, 0.03986044600605965, -0.0594819039106369, 0.057101860642433167, 0.0533403605222702, 0.04072871804237366, -0.020109808072447777, 0.009875672869384289, 0.041980985552072525, -0.0650796964764595, -0.004671136848628521, -0.030263610184192657, 0.03618477284908295, -0.058356743305921555, -0.05026702955365181, 0.02417883090674877, -0.04342981055378914, -0.021137341856956482, -0.04626747965812683, 0.08390148729085922, 0.03436807170510292, -0.052379898726940155, 0.08506788313388824, -0.030465058982372284, 0.00015289842849597335, 0.06472284346818924, -0.04864829033613205, -0.0418635755777359, -0.0037043620832264423, -0.06869837641716003, -0.0323336087167263, -0.04073961451649666, 0.07750289887189865, -0.10623564571142197, -0.020589474588632584 ]
219Trigonometric identities and equations Solve the equation sin(3 x − 45°) = 1 _ 2 in the interval 0 < x < 180°.Challenge 10.6 Equations and identities You need to be able to solve quadratic equations in sin θ, cos θ or tan θ. This may give rise to two sets of solutions. 5 sin 2x + 3 sin x – 2 = 0 (5 sin x – 2)(sin x + 1) = 0 5 sin x – 2 = 0 sin x + 1 = 0Setting each factor equal to zero produces two linear equations in sin x.This is a quadratic equation in the form 5A 2 + 3A – 2 = 0 where A = sin x. Factorise Example 16 Solve for θ, in the interval 0 < x < 360°, the equations a 2 cos2 θ − cos θ − 1 = 0 b sin2 (θ − 30°) = 1 _ 2 a 2 cos2 θ − cos θ − 1 = 0 So (2 co s θ + 1)(cos θ − 1) = 0 So cos θ = − 1 __ 2 or cos θ = 1 cos θ = − 1 __ 2 so θ = 120°Compare with 2x2 − x − 1 = (2x + 1)(x − 1) Set each factor equal to 0 to find two sets of solutions.4 Solve for 0 < x < 180° the equations: a sin(x + 20°) = 1 _ 2 (4 marks) b cos 2x = −0.8, giving your answers to 1 decimal place. (4 marks) 5 a Sketch for 0 < x < 360° the graph of y = sin (x + 60°) (2 marks) b Write down the e xact coordinates of the points where the graph meets the coordinate axes. (3 marks) c Solve, f or 0 < x < 360°, the equation sin (x + 60°) = 0.55, giving your answers to 1 decimal place. (5 marks) 6 a Given tha t 4 sin x = 3 cos x, write do wn the value of tan x. (1 mark) b Solve, f or 0 < θ < 360°, 4 sin 2θ = 3 cos 2θ giving your answers to 1 decimal place. (5 marks) 7 The equation tan kx = − 1 ___ √ __ 3 , where k is a constant and k > 0, has a solution at x = 60° a Find a possible va lue of k. (3 marks) b State, with justifica tion, whether this is the only such possible value of k. (1 mark)E E E E/P
[ -0.027302518486976624, 0.06570399552583694, 0.05927257612347603, -0.00813221000134945, -0.052011944353580475, 0.022469691932201385, -0.010977276600897312, -0.12262283265590668, -0.09709782898426056, -0.015477281995117664, 0.011095714755356312, -0.05618630722165108, -0.028892675414681435, 0.07045529782772064, 0.1311996579170227, 0.08951164036989212, -0.05780328810214996, -0.012194004841148853, -0.026067275553941727, -0.015733152627944946, -0.038648154586553574, -0.06401652097702026, -0.012266426347196102, -0.0630960762500763, 0.005210948176681995, -0.00624731183052063, 0.03004845231771469, 0.03743094578385353, -0.009333201684057713, -0.003771011019125581, 0.03041737526655197, -0.046447981148958206, -0.03981877118349075, -0.13209830224514008, -0.013152849860489368, -0.025618862360715866, 0.022185735404491425, 0.05361289903521538, -0.01460353471338749, 0.007260158658027649, -0.05491345375776291, 0.06339728087186813, -0.06189403310418129, 0.008533372543752193, 0.02932243049144745, -0.03553299605846405, -0.019894909113645554, 0.05207093060016632, 0.06984224170446396, -0.02550536021590233, 0.04857471585273743, 0.03739498183131218, -0.1085696592926979, 0.010574442334473133, 0.02600204572081566, -0.03175915405154228, -0.07987116277217865, -0.006127155385911465, -0.13022202253341675, -0.03777439892292023, 0.04695802181959152, -0.02661573328077793, 0.000942676910199225, 0.06675516068935394, -0.046435095369815826, -0.006679798476397991, 0.09033676236867905, -0.020440705120563507, 0.03010578267276287, 0.037990324199199677, -0.043312277644872665, -0.008339205756783485, 0.025703992694616318, -0.017370184883475304, -0.03096412867307663, -0.0032552964985370636, -0.14486238360404968, -0.012863731943070889, -0.036095477640628815, -0.04432561248540878, -0.04959387332201004, 0.006125468760728836, 0.05421210825443268, 0.03782505542039871, 0.023472217842936516, 0.02086271345615387, 0.04063807427883148, 0.16092932224273682, 0.04546429589390755, -0.008326618932187557, 0.0802033320069313, -0.06748811900615692, -0.023978009819984436, -0.01321951299905777, 0.04399798437952995, -0.032092854380607605, -0.0016977740451693535, 0.09284456074237823, -0.04394768178462982, 0.03115631826221943, -0.03148582577705383, -0.031201617792248726, -0.03622698038816452, 0.025970784947276115, -0.0730026438832283, 0.041311949491500854, 0.10445166379213333, -0.01567603275179863, 0.09707645326852798, 0.006417890079319477, -0.062922403216362, 0.02272769995033741, 0.03617855906486511, -0.01963913068175316, 0.013106320053339005, -0.01190367341041565, 0.0031588138081133366, 0.09468777477741241, 0.006162799894809723, -0.0020437482744455338, -0.027171339839696884, -0.052992384880781174, 0.004917547106742859, -0.009999222122132778, -0.005971487611532211, 0.015251750126481056, 0.007160074543207884, -0.026744740083813667, 0.025400782003998756, 0.03871840983629227, 0.02507721818983555, -0.008329232223331928, -0.06337147206068039, -0.08545763045549393, -0.005157194100320339, 0.006743349600583315, 0.04805076867341995, 0.13352979719638824, -0.015483126975595951, 0.027984686195850372, 0.022477520629763603, 0.09734751284122467, 0.03395967185497284, 0.008813593536615372, 0.06405957043170929, 0.0024071321822702885, -0.04965862259268761, -0.00806159246712923, -0.10063011199235916, 0.05904611200094223, 0.020990809425711632, 0.049758486449718475, -0.03701179474592209, 0.10856842249631882, 0.03926241397857666, -0.044454313814640045, 0.0175890251994133, -0.028717827051877975, 0.018874533474445343, 0.024483559653162956, -0.002012763638049364, 0.033537667244672775, -0.0006432973896153271, 0.06930937618017197, 0.03476360812783241, 0.022252971306443214, 0.03833649680018425, -0.05478615313768387, -0.04003897309303284, -0.02520078420639038, 0.021631313487887383, 0.06203752011060715, 0.00158696377184242, 0.05693420022726059, -0.03710705041885376, -0.0405922494828701, 0.0909678041934967, -0.0037929508835077286, 0.008598883636295795, 0.09696204960346222, 0.038115665316581726, -0.05809473246335983, -0.01590004935860634, -0.0592627190053463, -0.0018782889237627387, -0.09011348336935043, 0.006900475360453129, -0.03688015043735504, -0.06127746403217316, -0.039273299276828766, 0.006632644683122635, -0.04568302258849144, 0.024233143776655197, 0.016876155510544777, -0.05681030824780464, 0.01998787932097912, -0.032073725014925, -0.06039944291114807, -0.061369333416223526, 0.027907418087124825, 0.05818495899438858, -0.09229011833667755, 0.042439140379428864, 0.0027009944897145033, 0.07675784081220627, 0.0302890557795763, -0.01207598578184843, -0.03864280879497528, 0.06425485014915466, -0.023304563015699387, -0.00042085687164217234, -0.041116174310445786, -0.006445832084864378, 0.034099921584129333, 0.025212302803993225, -0.08056841790676117, 0.048595890402793884, -0.028561757877469063, 0.010505731217563152, 0.10133244097232819, -0.0113606508821249, -0.06936217844486237, 0.04661789909005165, -1.1522893576530863e-33, -0.08237212896347046, -0.05892126262187958, -0.14668090641498566, -0.08119532465934753, 0.002745612757280469, 0.03807602450251579, 0.07631606608629227, -0.06057659164071083, 0.06316075474023819, 0.0018993328558281064, 0.044956330209970474, -0.056044816970825195, -0.02153330110013485, -0.005113143008202314, -0.05235931649804115, -0.0997120589017868, 0.04492722451686859, 0.004300386179238558, -0.024790067225694656, -0.06837912648916245, 0.06401992589235306, 0.0493193082511425, -0.03370082750916481, 0.0026402820367366076, 0.020989149808883667, 0.08878317475318909, 0.08819440007209778, -0.0641050711274147, -0.00994330644607544, -0.004654544871300459, 0.008828490041196346, 0.034583985805511475, 0.06711817532777786, -0.010167991742491722, 0.0791168361902237, -0.017090629786252975, 0.013546648435294628, -0.0573517307639122, 0.06869778782129288, -0.07442500442266464, 0.023350439965724945, -0.03065420128405094, 0.07854199409484863, 0.05040865018963814, 0.025029662996530533, -0.007669905666261911, 0.015478011220693588, 0.027789544314146042, -0.04717649146914482, 0.008558833971619606, -0.04004544019699097, -0.08027936518192291, -0.037377167493104935, -0.020956946536898613, 0.10221324115991592, -0.02907889150083065, -0.05379033088684082, 0.007749403826892376, 0.09816212207078934, 0.0023330848198384047, 0.00007843497587600723, 0.012004849500954151, -0.003005611477419734, 0.08509540557861328, 0.07646612077951431, -0.034881703555583954, -0.019896237179636955, -0.02486857958137989, 0.01786002889275551, -0.008339212276041508, -0.006170390639454126, -0.014764743857085705, -0.060227323323488235, -0.09301844239234924, -0.08980030566453934, 0.03141120448708534, -0.024569623172283173, 0.05616108328104019, -0.02669704146683216, -0.07284029573202133, -0.030211037024855614, 0.002159115858376026, -0.02417115308344364, -0.040558021515607834, -0.10740093141794205, -0.012678875587880611, 0.03879843279719353, 0.017643051221966743, 0.030286148190498352, -0.004324812442064285, 0.020266951993107796, 0.04202717915177345, -0.03075564280152321, -0.06512092053890228, 0.08980889618396759, 6.563418552095924e-32, -0.1054810881614685, 0.01697126217186451, -0.0726398229598999, 0.02180500514805317, 0.05134611204266548, -0.049232546240091324, 0.004620952066034079, -0.04559474065899849, 0.035564158111810684, -0.07971639931201935, 0.06061055511236191, 0.012356325052678585, -0.0069733355194330215, -0.04837625101208687, -0.06756436079740524, -0.08066262304782867, -0.04219241812825203, 0.10658273845911026, 0.009839817881584167, -0.0554603636264801, 0.03400880843400955, 0.0704447403550148, -0.01679212972521782, -0.040988530963659286, 0.016869734972715378, 0.0635225921869278, -0.05571781098842621, 0.04713490232825279, -0.04196895286440849, -0.02671905979514122, 0.009852094575762749, -0.03156108409166336, 0.007550484966486692, 0.017028575763106346, 0.08412468433380127, 0.02484680525958538, -0.05562399700284004, 0.0812084749341011, -0.030016664415597916, 0.019387152045965195, 0.005706732161343098, -0.036934006959199905, -0.029788896441459656, -0.004669506102800369, 0.0037813568487763405, -0.09642986953258514, 0.01039158646017313, -0.10478249937295914, 0.05498622730374336, -0.036405570805072784, -0.06700284779071808, 0.10086620599031448, -0.02020561695098877, 0.0378970243036747, 0.028148597106337547, 0.07785312831401825, -0.022709133103489876, 0.02867458201944828, -0.04085206985473633, -0.02137845940887928, -0.021784139797091484, 0.08501916378736496, -0.026109468191862106, -0.010414757765829563 ]
220 Chapter 10 A CS T60° 60°60°60° θ = 120° or θ = 240° y O θ 90° 180° 270° 360°y = cos θ Or cos θ = 1 so θ = 0 or 360° So the solutions are θ = 0°, 120°, 240°, 360° b sin2 (θ − 30°) = 1 __ 2 sin (θ − 30°) = 1 ___ √ __ 2 or s in (θ − 30°) = − 1 ___ √ __ 2 So θ − 30° = 45° or θ − 30° = − 45° 45°A CS T45° 45° 45° So from sin (θ − 30°) = 1 ___ √ __ 2 θ − 30° = 45°, 135° a nd from sin (θ − 30°) = − 1 ___ √ __ 2 θ − 30° = 225°, 315° S o the solutions are: θ = 75°, 165°, 255°, 345°120° makes an angle of 60° with the horizontal. But cosine is negative in the 2nd and 3rd quadrants so θ = 120° or θ = 240°. Sketch the graph of y = cos θ. Use your calculator to find one solution for each equation.There are four solutions within the given interval. Draw a diagram to find the quadrants where sine is positive and the quadrants where sine is negative.The solutions of x2 = k are x = ± √ __ k .
[ 0.045183565467596054, 0.06420135498046875, 0.03413212299346924, -0.005349040497094393, -0.05555636063218117, 0.005887928418815136, -0.02538461796939373, -0.009451300837099552, -0.06777816265821457, 0.02748837321996689, 0.030955836176872253, -0.03495802357792854, 0.047869134694337845, 0.03268709406256676, 0.09082327038049698, 0.0429309718310833, -0.0962771400809288, 0.01907964237034321, -0.004418403375893831, 0.01927640475332737, -0.00981095153838396, -0.05530545115470886, 0.011986486613750458, -0.012068746611475945, 0.03004276752471924, -0.01072609331458807, 0.060090817511081696, 0.03356572985649109, 0.04461784288287163, 0.027147483080625534, -0.05783366411924362, -0.0078458022326231, -0.03496141359210014, -0.05369880422949791, 0.01955937221646309, -0.011398149654269218, 0.015093146823346615, 0.02109709568321705, -0.05076167359948158, 0.004247054923325777, 0.0015507979551330209, 0.025925906375050545, -0.021269705146551132, 0.01749921590089798, 0.015649208799004555, -0.010727638378739357, -0.1440272480249405, 0.05372247472405434, 0.03733917698264122, -0.016068823635578156, -0.008193912915885448, 0.003244121791794896, -0.14094404876232147, -0.010262873023748398, -0.02125462517142296, 0.06208314374089241, -0.036770980805158615, 0.0019596219062805176, -0.0587318129837513, -0.047288183122873306, 0.05461656674742699, 0.028897935524582863, 0.04663436487317085, 0.009074092842638493, -0.03806653246283531, 0.001545974868349731, -0.010891548357903957, -0.012551476247608662, -0.04201085865497589, 0.019996104761958122, -0.06277427822351456, 0.0644272193312645, -0.06577419489622116, -0.023880930617451668, 0.05339457094669342, -0.0455789752304554, -0.059115055948495865, 0.030765358358621597, -0.012070711702108383, -0.03822192922234535, -0.04095602035522461, -0.06735917180776596, 0.06292085349559784, 0.008450320921838284, -0.028961682692170143, -0.014741522260010242, -0.021284103393554688, 0.07932578027248383, 0.047135062515735626, 0.009771262295544147, 0.060388680547475815, -0.0950392559170723, -0.0016126881819218397, -0.08364473283290863, -0.026384012773633003, 0.03335031494498253, 0.007878445088863373, 0.014130627736449242, -0.01083209365606308, 0.03930339217185974, -0.05057043954730034, -0.01878301426768303, 0.028564639389514923, 0.014224942773580551, -0.022769631817936897, -0.07677171379327774, 0.08124706149101257, -0.056288860738277435, 0.05897881090641022, -0.040728859603405, -0.05252300575375557, -0.006118506193161011, 0.03900597617030144, -0.01889173313975334, 0.08111897855997086, -0.06231521815061569, 0.025526465848088264, 0.03471674770116806, -0.028194153681397438, 0.004068872891366482, -0.049358297139406204, 0.05112951248884201, 0.0038636350072920322, -0.009483338333666325, -0.047610312700271606, -0.029710790142416954, 0.04362435266375542, 0.030159078538417816, -0.017555441707372665, 0.06686081737279892, 0.07525502890348434, -0.04519065469503403, -0.10531958937644958, -0.032122161239385605, 0.026920674368739128, 0.04357558488845825, 0.046807222068309784, 0.07150665670633316, -0.026386287063360214, -0.00895284116268158, 0.0034457154106348753, 0.10366050153970718, -0.03005770780146122, -0.01881435699760914, 0.06263439357280731, -0.007731485180556774, -0.1254548281431198, -0.01499092299491167, -0.03519105538725853, 0.07354599237442017, 0.02789115160703659, 0.03528576344251633, 0.00279304594732821, 0.09314276278018951, -0.05193789675831795, 0.07721111178398132, -0.016761580482125282, 0.05098322033882141, 0.030362755060195923, 0.024868721142411232, -0.11616618186235428, 0.07173314690589905, 0.016108833253383636, 0.008769511245191097, 0.05297365412116051, 0.0805368423461914, -0.006190070416778326, -0.030412089079618454, -0.011217540130019188, 0.006578170694410801, 0.03546707704663277, -0.06182503700256348, 0.03293624147772789, 0.07281967252492905, -0.008863300085067749, 0.02331835962831974, 0.03493158519268036, 0.0038203131407499313, -0.06420308351516724, -0.02893463522195816, 0.04134431853890419, -0.09870199114084244, 0.010044396854937077, -0.01572272554039955, 0.02580326609313488, -0.04581509903073311, -0.09680937975645065, -0.04926176741719246, -0.04769710451364517, 0.028818363323807716, 0.01496315561234951, -0.07182849198579788, 0.02542429231107235, 0.06021267920732498, -0.1318366527557373, -0.10708886384963989, -0.01020906399935484, -0.08238852024078369, -0.08397924154996872, 0.015343761071562767, 0.0521346740424633, -0.028438042849302292, -0.033315446227788925, -0.03215980529785156, 0.10222937166690826, 0.007904470898211002, -0.006433791480958462, -0.03628423437476158, -0.07373388111591339, -0.008186095394194126, -0.023022906854748726, -0.03379351645708084, -0.013487597927451134, 0.0034301020205020905, 0.0566842295229435, -0.09162025898694992, 0.045624516904354095, -0.09079870581626892, -0.054232656955718994, 0.11915384232997894, 0.008217994123697281, 0.013509955257177353, 0.008506003767251968, -1.1120212558293334e-32, -0.05804675817489624, 0.006891182158142328, -0.12575650215148926, -0.04620007425546646, -0.04218956083059311, -0.03750257194042206, 0.07562188059091568, -0.010085328482091427, 0.011388232000172138, -0.0281947311013937, 0.02067420445382595, -0.05108224228024483, -0.10176354646682739, -0.014448455534875393, -0.05910579860210419, -0.04711266607046127, 0.006321343127638102, 0.003108299570158124, -0.0015230263816192746, 0.05930080637335777, 0.014819326810538769, 0.0036732698790729046, 0.019368456676602364, 0.0018208861583843827, 0.031167587265372276, 0.0879688709974289, 0.090286985039711, -0.04460432752966881, -0.08068998157978058, 0.05874362587928772, -0.04409739747643471, 0.016999391838908195, 0.09476207941770554, 0.05248843878507614, -0.06671851128339767, -0.05543971806764603, -0.0035061631351709366, -0.054633717983961105, -0.007511301431804895, -0.08493674546480179, 0.06063446030020714, 0.014031398110091686, 0.04160919412970543, 0.05458609759807587, -0.016744470223784447, 0.009236709214746952, 0.07310506701469421, 0.00458153523504734, -0.04737962782382965, -0.015599955804646015, -0.01429411768913269, -0.07905342429876328, 0.07569092512130737, 0.00965929962694645, 0.10022168606519699, -0.015805652365088463, -0.06448465585708618, -0.020619114860892296, 0.08299311250448227, -0.018767092376947403, 0.0011933202622458339, -0.006257142871618271, 0.04442771151661873, 0.04200781509280205, 0.02838950790464878, -0.03241817653179169, 0.03480058163404465, -0.005737886298447847, -0.04170430824160576, 0.003685186617076397, -0.0675644800066948, 0.04438662528991699, -0.07369577139616013, -0.06218019500374794, -0.03982659429311752, 0.017740290611982346, -0.0030717875342816114, 0.01439764816313982, 0.011912005953490734, -0.011736166663467884, -0.11009200662374496, 0.0808931440114975, 0.028178701177239418, -0.0501115582883358, -0.12458623945713043, -0.08879411965608597, 0.01632000505924225, -0.056257206946611404, 0.06535125523805618, 0.049646615982055664, 0.005473356228321791, 0.006877445615828037, 0.042297180742025375, 0.013426682911813259, 0.14491847157478333, 9.880072336457956e-32, -0.07969818264245987, 0.01245286874473095, -0.030985742807388306, 0.01533366646617651, 0.05190229415893555, 0.06611542403697968, -0.004395493771880865, -0.03677893429994583, 0.032061826437711716, -0.07420319318771362, -0.0053526246920228004, 0.10242209583520889, -0.04924139752984047, -0.031757038086652756, -0.11450639367103577, -0.025852924212813377, -0.03300932049751282, 0.0698208212852478, 0.05094204843044281, -0.003674413077533245, -0.005002424120903015, 0.01992194727063179, 0.03162428364157677, -0.003828383982181549, 0.038936346769332886, 0.0917254164814949, -0.0350768156349659, -0.041401661932468414, -0.010927409864962101, -0.10465157777070999, 0.06078828498721123, -0.1081525981426239, 0.046749409288167953, -0.0005365439574234188, 0.017662595957517624, -0.024618379771709442, -0.014190762303769588, 0.0012718524085357785, -0.02875182218849659, 0.04135139659047127, -0.042620569467544556, 0.025385677814483643, -0.14032843708992004, 0.02295779064297676, -0.01890593394637108, -0.057376641780138016, 0.0038942063692957163, -0.010883927345275879, 0.008089302107691765, -0.034166015684604645, -0.009472692385315895, 0.06276917457580566, -0.01203368790447712, 0.09778761863708496, 0.06714620441198349, 0.0069562881253659725, -0.054241202771663666, -0.00009932385000865906, -0.017821241170167923, 0.0228225439786911, -0.09227161109447479, 0.10923105478286743, -0.06722227483987808, 0.0038473871536552906 ]
221Trigonometric identities and equations In some equations you may need to use the identity sin2 θ + cos2 θ ≡ 1. Example 17 Find the values of x, in the interval −180° < x < 180°, satisfying the equation 2 cos2 x + 9 sin2 x = 3 sin2 x. 2 cos2 x + 9 sin x = 3 sin2 x 2(1 − sin2 x) + 9 sin x = 3 sin2 x 5 sin2 x − 9 sin x − 2 = 0 So (5 si n x + 1)(sin x − 2) = 0 sin x = − 1 __ 5 11.5° 11.5°A CS T The solutions are − 168.5° and − 11.5° (1 d.p.)As sin2 x + cos2 x ≡ 1, you are able to rewrite cos2 x as (1 − sin2 x), and so form a quadratic equation in sin x. The factor (sin x – 2) do es not produce any solutions, because sin x = 2 has n o solutions.Watch out Your calculator value of x is x = −11.5° (1 d.p.). Insert into the CAST diagram. The smallest angle in the interval, in the 3rd quadrant, is (−180 + 11.5) = −168.5°; there are no values between 0 and 180°. Exercise 10F 1 Solve for θ, in the interval 0 < θ < 360°, the following equations. Give your answers to 3 significant figures where they are not exact. a 4 cos2 θ = 1 b 2 sin2 θ − 1 = 0 c 3 sin2 θ + sin θ = 0 d tan2 θ − 2 tan θ − 10 = 0 e 2 cos2 θ − 5 cos θ + 2 = 0 f sin2 θ − 2 sin θ − 1 = 0 g tan2 2θ = 3 2 Solve for θ, in the interval −180° < θ < 180°, the following equations. Give your answers to 3 significant figures where they are not exact.a sin2 2θ = 1 b tan2 θ = 2 tan θ c cos θ (cos θ − 2) = 1 d 4 sin θ = tan θ 3 Solve for θ, in the interval 0 < θ < 180°, the following equations. Give your answers to 3 significant figures where they are not exact.a 4 (sin2 θ − cos θ ) = 3 − 2 cos θ b 2 sin2 θ = 3(1 − cos θ ) c 4 cos2 θ − 5 sin θ − 5 = 0 4 Solve for θ, in the interval −180° < θ < 180°, the following equations. Give your answers to 3 significant figures where they are not exact.a 5 sin2 θ = 4 cos2 θ b tan θ = cos θ In part c , on ly one factor leads to valid solutions. Hint
[ -0.06931402534246445, 0.06071430444717407, 0.07691103219985962, -0.029394913464784622, -0.06703834980726242, 0.012365635484457016, -0.017557699233293533, -0.08935701847076416, -0.06265708059072495, -0.1074625551700592, 0.02144034579396248, -0.05551455542445183, 0.008152100257575512, 0.09050871431827545, 0.05926681309938431, 0.02072030119597912, -0.053998515009880066, 0.02890756167471409, -0.041398610919713974, -0.04420142620801926, 0.01235204841941595, -0.006313697900623083, -0.046122957020998, -0.08466509729623795, 0.017183344811201096, 0.012143151834607124, 0.03766734153032303, 0.020001573488116264, 0.023437680676579475, -0.02427339181303978, -0.025695692747831345, -0.07903725653886795, -0.01978885754942894, -0.11830928176641464, -0.0013996578054502606, -0.04329574480652809, 0.03415407985448837, 0.023656418547034264, -0.015359417535364628, -0.028653796762228012, -0.05755899101495743, 0.010084598325192928, 0.02554270252585411, 0.03034024126827717, 0.05183444544672966, 0.007653587032109499, -0.06897294521331787, 0.021128108724951744, 0.08377106487751007, 0.03918847069144249, 0.036051757633686066, 0.09796008467674255, -0.11190804839134216, 0.030106786638498306, 0.017009349539875984, -0.03584711626172066, -0.05188741162419319, 0.008391831070184708, -0.010541939176619053, -0.04692425578832626, 0.03241271525621414, -0.0066056265495717525, -0.09032168984413147, -0.030016835778951645, -0.059581343084573746, 0.028811829164624214, 0.07112184911966324, -0.09642507880926132, 0.09544234722852707, 0.023106306791305542, -0.026133915409445763, -0.00004807608638657257, 0.06682559847831726, -0.06425218284130096, -0.053438302129507065, -0.0059019457548856735, -0.0911339521408081, 0.003661702387034893, -0.028486425057053566, -0.07866056263446808, 0.01790774241089821, 0.049017634242773056, 0.06473368406295776, 0.01122664101421833, 0.09614163637161255, 0.052479781210422516, 0.07303895801305771, 0.18073895573616028, 0.008363790810108185, -0.015836963430047035, 0.0830354243516922, -0.07295246422290802, -0.05661679059267044, 0.02399909682571888, 0.09478073567152023, 0.04584070295095444, 0.00961648765951395, 0.08996789902448654, 0.004705529194325209, 0.03863179311156273, 0.051109302788972855, 0.005598255433142185, -0.03907718136906624, 0.0305284783244133, -0.0015905373729765415, 0.03735896944999695, 0.08931594341993332, -0.0196831077337265, 0.05612173303961754, -0.013120192103087902, -0.06690631061792374, 0.10979251563549042, 0.03126543387770653, -0.024022992700338364, 0.0007264991872943938, 0.013817288912832737, 0.03829073905944824, 0.08119585365056992, 0.048964936286211014, -0.016005832701921463, 0.0014838080387562513, -0.0001249870256287977, -0.05377846583724022, 0.0031441631726920605, -0.016994541510939598, -0.010432052426040173, 0.020080268383026123, -0.02915402129292488, 0.01677067205309868, 0.04053747281432152, 0.004361521452665329, 0.023902451619505882, 0.029808031395077705, -0.0747012197971344, -0.008393344469368458, -0.08125073462724686, 0.017899930477142334, 0.1029835045337677, -0.06392842531204224, -0.014588529244065285, -0.0016106510302051902, 0.05751977860927582, 0.017749303951859474, -0.03558241203427315, 0.05786532163619995, 0.026981808245182037, -0.03403914347290993, -0.031831320375204086, -0.020320959389209747, 0.07205066829919815, -0.0014242621837183833, 0.007492773700505495, -0.05674503743648529, 0.030597403645515442, 0.011297651566565037, -0.04610598832368851, -0.022655673325061798, 0.008675946854054928, 0.06867567449808121, -0.01684921234846115, 0.033645711839199066, -0.0014337768079712987, 0.003821037244051695, 0.07615634799003601, 0.07645884156227112, -0.012635658495128155, 0.043695494532585144, -0.08427874743938446, -0.04342559352517128, 0.04241590201854706, 0.0019914754666388035, 0.08884362131357193, 0.02622969076037407, 0.0034990080166608095, 0.008982732892036438, -0.09694889932870865, 0.0997178927063942, -0.006132506299763918, -0.05323019251227379, 0.05563460662961006, 0.0037754138465970755, -0.013509850949048996, 0.026785733178257942, -0.015286151319742203, -0.016035135835409164, -0.07520357519388199, -0.06604204326868057, -0.02462760917842388, -0.07693235576152802, -0.016982384026050568, 0.014591416344046593, -0.017925649881362915, 0.007855113595724106, -0.010363461449742317, -0.07465878874063492, 0.036483004689216614, -0.000718942319508642, -0.06926923990249634, -0.07408459484577179, 0.08318262547254562, 0.058014124631881714, -0.05673322081565857, 0.017462950199842453, -0.02849523536860943, 0.07666462659835815, -0.00910099595785141, -0.054806239902973175, 0.01391802728176117, 0.0727713480591774, -0.029112504795193672, 0.018664054572582245, 0.009764707647264004, -0.0016967090778052807, 0.006524755619466305, 0.05420389026403427, -0.09673769026994705, 0.07654713839292526, -0.015726177021861076, 0.0225369893014431, 0.003556779818609357, -0.02887297421693802, -0.10892966389656067, -0.022453851997852325, -4.0542741385143155e-33, -0.13237018883228302, -0.08655378967523575, -0.07221533358097076, -0.026292091235518456, -0.04295209422707558, 0.05026724934577942, 0.06323868036270142, -0.11698558926582336, 0.08171345293521881, 0.039898861199617386, 0.10885705798864365, -0.004838916007429361, -0.02242032065987587, 0.03310574218630791, -0.0929035022854805, -0.04849330708384514, 0.005966749507933855, 0.009114467538893223, -0.024119485169649124, -0.035755131393671036, 0.06865731626749039, 0.0009384537115693092, 0.0004394046263769269, -0.011958733201026917, 0.07144425809383392, 0.025471944361925125, 0.08364828675985336, -0.061197105795145035, -0.003567454405128956, -0.07488022744655609, -0.03538266196846962, 0.017969148233532906, 0.062090709805488586, 0.031570084393024445, 0.00167544512078166, -0.06103544682264328, 0.021141620352864265, -0.010427667759358883, -0.005926217883825302, -0.05490189418196678, -0.03256840258836746, 0.033870626240968704, 0.002611355157569051, 0.034127287566661835, 0.06494203209877014, -0.030542615801095963, -0.020772313699126244, 0.010857902467250824, -0.05259221792221069, -0.017073359340429306, -0.006335431709885597, -0.062342528253793716, -0.04646963253617287, -0.005685269366949797, 0.05182533711194992, -0.015211937017738819, -0.044918838888406754, 0.0479053296148777, 0.06336531043052673, -0.02892933413386345, -0.056475862860679626, -0.0368853397667408, 0.00318345008417964, 0.056695401668548584, 0.052256952971220016, -0.026235928758978844, 0.010464667342603207, -0.04961010813713074, 0.03774009272456169, 0.02504296787083149, 0.04947071522474289, 0.010249810293316841, -0.011931094340980053, -0.06892850995063782, -0.13663451373577118, -0.0367501825094223, -0.017772706225514412, 0.033381327986717224, -0.01776302419602871, -0.07792007178068161, 0.00011718478344846517, -0.01799495331943035, -0.016083989292383194, -0.0496070459485054, -0.09971517324447632, -0.02358018420636654, 0.06186004355549812, 0.03785945847630501, 0.012791357934474945, 0.016677463427186012, -0.0049698385410010815, 0.026424119248986244, -0.037639256566762924, -0.06760120391845703, 0.13064445555210114, 7.780734640931767e-32, -0.06647814065217972, -0.05308857932686806, -0.041178375482559204, 0.00804809294641018, 0.029536578804254532, -0.01959659717977047, -0.011584602296352386, -0.040119677782058716, 0.09290976822376251, -0.07866151630878448, 0.04181656241416931, 0.026363827288150787, 0.011238760314881802, -0.047197721898555756, -0.06718315929174423, -0.1080993264913559, -0.046348024159669876, 0.1077837198972702, 0.0009264664840884507, 0.02738018147647381, 0.027638398110866547, 0.0778530016541481, -0.0223955400288105, -0.060174379497766495, 0.03345145657658577, 0.0320427305996418, -0.07309717684984207, 0.020026391372084618, -0.11792153120040894, -0.020197022706270218, -0.04972098767757416, -0.04763614758849144, 0.04793933406472206, 0.06303392350673676, 0.03919559344649315, -0.013369312509894371, -0.030419565737247467, 0.057071391493082047, -0.029554231092333794, 0.020875513553619385, -0.03526073321700096, -0.018071871250867844, -0.014338388107717037, 0.031021172180771828, 0.02549014799296856, -0.07499808073043823, -0.032057538628578186, -0.06347457319498062, 0.024747027084231377, 0.0005150034558027983, -0.10248712450265884, 0.054157473146915436, 0.00035537793883122504, 0.029470033943653107, -0.0020733466371893883, 0.09510472416877747, -0.003671509213745594, 0.03535258024930954, 0.029007550328969955, 0.00857747346162796, -0.01919345185160637, 0.026232125237584114, -0.06405425816774368, 0.004237872548401356 ]
222 Chapter 10 1 Solve the equation cos2 3θ – cos 3θ = 2 in the interval −180° < θ < 180°. 2 Sol ve the equation tan2 (θ – 45°) = 1 in the interval 0 < θ < 360°.Challenge5 Find all the solutions, in the interv al 0 < x < 360°, to the equation 8 sin2 x + 6 cos x – 9 = 0 giving each solution to one decimal place. (6 marks) 6 Find, for 0 < x < 360°, all the solutions of sin2 x + 1 = 7 _ 2 cos2 x giving each solution to one decima l place. (6 marks) 7 Show that the equa tion 2 cos2 x + cos x – 6 = 0 has no solutions. (3 marks) 8 a Show that the equa tion cos2 x = 2 – sin x can be written as sin2 x – sin x + 1 = 0. (2 marks) b Hence show that the equa tion cos2 x = 2 – sin x has no solutions. (3 marks) 9 tan2 x – 2 tan x – 4 = 0 a Show that tan x = p ± √ __ q where p and q are numbers to be found. (3 marks) b Hence solve the equation tan2 x – 2 tan x – 4 = 0 in the interval 0 < x < 540°. (5 marks)E E E/P E/P If you have to answer a question involving the number of solutions to a quadratic equation, see if you can make use of the discriminant.Problem-solving E/P 1 Write each of the following as a trigonometric ratio of an acute angle: a cos 237° b sin 312° c tan 190° 2 Without using your ca lculator, work out the values of: a cos 270° b sin 225° c cos 180° d tan 240° e tan 135° 3 Given tha t angle A is obtuse and cos A = − √ ___ 7 ___ 11 , show that tan A = −2 √ __ 7 _____ 7 4 Given tha t angle B is obtuse and tan B = + √ ___ 21 ____ 2 , find the exact value of: a sin B b cos B 5 Simplify the following e xpressions: a cos4 θ − sin4 θ b sin2 3θ − sin2 3θ cos2 3θ c cos4 θ + 2 sin2 θ cos2 θ + sin4 θ 6 a Given that 2 (sin x + 2 cos x) = sin x + 5 cos x, find the e xact value of tan x. b Given tha t sin x cos y + 3 cos x sin y = 2 sin x sin y − 4 cos x cos y, expr ess tan y in terms of tan x. 7 Prov e that, for all values of θ : a (1 + sin θ )2 + cos2 θ ≡ 2(1 + sin θ ) b cos4 θ + sin2 θ ≡ sin4 θ + cos2 θP P PMixed exercise 10
[ -0.007498653139919043, 0.0666094720363617, 0.01585250534117222, -0.0035379657056182623, -0.011304820887744427, 0.024079596623778343, -0.10670746117830276, -0.03912610560655594, -0.09547779709100723, -0.0015183856012299657, 0.06147965043783188, -0.07842094451189041, -0.01717389188706875, 0.06700719892978668, 0.05760465934872627, -0.009986995719373226, -0.06435699015855789, 0.015035620890557766, -0.05463447794318199, 0.021028755232691765, -0.052579306066036224, -0.022198662161827087, 0.05977357551455498, -0.030231324955821037, 0.0411905013024807, -0.04964485391974449, 0.031782276928424835, -0.024285495281219482, -0.012707951478660107, 0.014798812568187714, -0.026782480999827385, -0.02139621414244175, -0.016848720610141754, -0.08216292411088943, -0.005252111703157425, -0.0660812184214592, 0.06910104304552078, 0.05752771347761154, -0.05260153114795685, -0.01940121315419674, -0.052666954696178436, 0.008966976776719093, -0.03478054702281952, 0.004021564964205027, 0.06883849948644638, -0.03005327470600605, -0.06304977089166641, 0.08061014115810394, 0.061722684651613235, -0.05334128811955452, 0.05025000497698784, 0.022688018158078194, -0.11375653743743896, -0.02175290510058403, -0.034129220992326736, 0.021177997812628746, -0.05413096025586128, -0.012323835864663124, -0.06911031156778336, -0.0596906952559948, 0.02497551031410694, 0.02251705899834633, -0.02991553768515587, 0.01906721480190754, -0.034915439784526825, 0.055076029151678085, 0.0255010724067688, -0.0633029118180275, -0.027266694232821465, 0.043784741312265396, -0.0485626682639122, 0.04055856540799141, 0.0026238425634801388, -0.07645737379789352, -0.010282059200108051, -0.0012418233091011643, -0.10930600762367249, -0.008182299323379993, -0.03203245624899864, -0.039122965186834335, -0.04839686304330826, -0.022711973637342453, 0.0660402700304985, 0.04531602934002876, 0.015869181603193283, -0.011804003268480301, 0.07751230895519257, 0.07824509590864182, 0.003392242593690753, 0.004065689165145159, 0.08714031428098679, -0.07814688235521317, -0.05197182670235634, 0.06284727901220322, 0.015596432611346245, 0.01004895567893982, -0.0178151186555624, 0.07074189186096191, 0.02540300041437149, 0.03275877982378006, -0.030410781502723694, -0.03762885183095932, -0.02598625421524048, -0.02148805744946003, -0.015655623748898506, -0.06899791955947876, 0.08428628742694855, -0.07839193940162659, 0.059418387711048126, -0.053281981498003006, -0.03897413983941078, 0.006882827263325453, 0.04211080074310303, -0.013322734273970127, 0.04775766655802727, -0.020398812368512154, 0.03581034392118454, 0.030613048002123833, -0.03658361732959747, 0.013199817389249802, -0.046167727559804916, -0.026212474331259727, 0.04206269606947899, 0.013557346537709236, -0.05833001434803009, -0.0018594720168039203, 0.0281041469424963, -0.026142148301005363, 0.012555881403386593, 0.017537584528326988, 0.017785172909498215, -0.03884848952293396, -0.04854319617152214, -0.054771725088357925, -0.032336730509996414, 0.033693332225084305, 0.008812571875751019, 0.07338898628950119, -0.0018533115508034825, 0.042736463248729706, 0.030540037900209427, 0.030177710577845573, -0.002086227759718895, -0.004364267457276583, 0.07127168774604797, -0.023782983422279358, -0.06289168447256088, -0.01982082799077034, -0.07520677149295807, 0.049462657421827316, 0.009371518157422543, 0.09328333288431168, 0.005344063509255648, 0.13169504702091217, 0.014274796470999718, -0.009466555900871754, -0.012487144209444523, -0.017053185030817986, 0.062139566987752914, -0.026373153552412987, -0.12394601106643677, 0.12486780434846878, 0.014396308921277523, 0.04815603420138359, 0.08387694507837296, 0.05589040368795395, -0.0034200202208012342, -0.054760534316301346, -0.03611104190349579, 0.028513319790363312, 0.005301023367792368, 0.028791440650820732, 0.03134463354945183, 0.07446017116308212, 0.018588418141007423, -0.012125303037464619, 0.06292277574539185, -0.006177438888698816, -0.06253820657730103, 0.06286924332380295, 0.028898388147354126, -0.028245994821190834, -0.015855560079216957, -0.06519028544425964, 0.03729688376188278, -0.06632218509912491, -0.019822385162115097, 0.00033205043291673064, -0.043335992842912674, 0.05038740858435631, -0.016101550310850143, -0.08342313766479492, 0.012283247895538807, 0.06286150217056274, -0.10048471391201019, -0.010602098889648914, 0.009322406724095345, -0.05753875523805618, -0.09647241979837418, 0.02919873408973217, 0.06217530742287636, -0.07472953200340271, 0.04847748205065727, -0.06311853229999542, 0.0963849350810051, -0.030382275581359863, 0.012946248054504395, -0.0012142601190134883, -0.022951100021600723, -0.021208200603723526, -0.004723644815385342, -0.0517510287463665, -0.03285183385014534, -0.040060948580503464, 0.013806473463773727, -0.11032289266586304, 0.11268448084592819, -0.06878930330276489, -0.061370767652988434, 0.07751962542533875, 0.012228225357830524, -0.03966238349676132, 0.017357973381876945, -4.491624525919425e-33, -0.09411942213773727, 0.055105552077293396, -0.16820017993450165, -0.04368939250707626, -0.02969512715935707, -0.0074370610527694225, 0.07740657776594162, 0.011888379231095314, 0.053097307682037354, -0.01214173436164856, 0.045746877789497375, 0.005239403340965509, 0.0002899254614021629, -0.00908528920263052, -0.09538573026657104, -0.06530734896659851, 0.025667008012533188, -0.05644120275974274, 0.04210101068019867, 0.01784718595445156, 0.014491094276309013, 0.04232887551188469, -0.0039002830162644386, -0.02075066603720188, 0.07298600673675537, 0.07645711302757263, 0.12852729856967926, -0.06502081453800201, -0.05015945062041283, 0.05997811630368233, -0.027903512120246887, 0.050077538937330246, 0.07655493170022964, -0.030544748529791832, 0.0058479467406868935, -0.056026916950941086, -0.0008331803255714476, -0.04127909988164902, 0.008813044056296349, -0.06971979886293411, 0.10873468965291977, -0.015996599569916725, 0.019336936995387077, 0.019741222262382507, -0.016629749909043312, -0.011218617670238018, 0.019830776378512383, 0.009990449994802475, -0.07994790375232697, -0.04730430617928505, 0.030250784009695053, -0.07715854048728943, 0.04408539459109306, 0.015953287482261658, 0.0876036062836647, 0.009147007949650288, -0.03597032278776169, 0.007600443437695503, 0.11236709356307983, 0.03749224171042442, -0.04845814406871796, 0.012018649838864803, 0.056589242070913315, 0.06660354882478714, 0.030225718393921852, -0.0005865298444405198, -0.038951575756073, 0.011972852051258087, -0.010994313284754753, -0.0012565292418003082, -0.018244830891489983, 0.000009055893315235153, -0.03539709001779556, -0.09981903433799744, -0.08491247147321701, 0.03143008053302765, 0.015861574560403824, 0.07866360992193222, 0.018983349204063416, -0.08639075607061386, -0.07072558254003525, 0.03659380227327347, 0.0349029041826725, -0.06958285719156265, -0.05952778458595276, -0.001029007020406425, 0.06309696286916733, 0.006780233234167099, 0.05615204572677612, -0.01669362559914589, 0.013548408634960651, 0.02303226664662361, -0.07108000665903091, 0.008286884985864162, 0.17096303403377533, 6.851576298520623e-32, -0.05567597597837448, 0.026058880612254143, -0.07559382170438766, 0.0293923020362854, -0.014415891841053963, 0.034000467509031296, -0.011970468796789646, 0.010491583496332169, 0.043818503618240356, -0.035598743706941605, 0.0312967486679554, 0.0017133099026978016, -0.021010570228099823, -0.04911338537931442, -0.04223592206835747, -0.04526877775788307, -0.028242256492376328, 0.1052061915397644, 0.041056934744119644, -0.043769337236881256, 0.03410898521542549, 0.042499300092458725, -0.001668649259954691, -0.013919507153332233, 0.07282901555299759, 0.049701027572155, -0.05736175924539566, 0.01765546016395092, -0.04910936579108238, -0.03500504791736603, -0.004699967801570892, -0.08752349764108658, 0.0386037640273571, 0.019491970539093018, 0.08660028129816055, -0.05364634841680527, 0.022159643471240997, 0.0792594775557518, -0.012808703817427158, 0.012364042922854424, -0.009209610521793365, -0.03734235092997551, -0.06060206517577171, 0.015430389903485775, -0.004459287039935589, -0.11931079626083374, 0.012608346529304981, -0.08327964693307877, 0.06536266952753067, -0.0298311747610569, -0.08057481050491333, 0.06340392678976059, -0.010146530345082283, 0.0466625802218914, 0.08744991570711136, -0.001700413879007101, -0.041929397732019424, 0.018536172807216644, -0.06433294713497162, 0.027468007057905197, 0.01810891181230545, 0.10556414723396301, -0.07299203425645828, 0.01564835011959076 ]
223Trigonometric identities and equations 8 Without attempting to solv e them, state how many solutions the following equations have in the interval 0 < θ < 360°. Give a brief reason for your answer. a 2 sin θ = 3 b sin θ = − cos θ c 2 sin θ + 3 cos θ + 6 = 0 d tan θ + 1 _____ tan θ  = 0 9 a Factorise 4xy − y2 + 4x − y. (2 marks) b Solve the equation 4 sin θ cos θ − cos2 θ + 4 sin θ − cos θ = 0, in the interval 0 < θ < 360°. (5 marks) 10 a Express 4 cos 3θ − sin (90° − 3θ ) as a single trigonometric function. (1 mark) b Hence solve 4 cos 3θ − sin (90° − 3θ ) = 2 in the interva l 0 < θ < 360°. Give your answers to 3 significant figures. (3 marks) 11 Given that 2 sin 2θ = cos 2θ: a Show that tan 2θ = 0.5. (1 mark) b Hence find the values of θ, to one decimal place, in the interval 0 < θ < 360° for which 2 sin 2θ = cos 2θ. (4 marks) 12 Find all the va lues of θ in the interval 0 < θ < 360° for which: a cos (θ + 75°) = 0.5, b sin 2θ = 0.7, giving your answers to one decimal place. 13 Find the values of x in the interval 0 < x < 270° which satisfy the equation cos 2x + 0.5 ___________ 1 – cos 2x = 2 (6 marks) 14 Find, in degrees, the v alues of θ in the interval 0 < θ < 360° for which 2 cos2 θ – cos θ – 1 = sin2 θ Give your answers to 1 decimal place, where appropriate. (6 marks) 15 A teacher asks one of his students to solve the equa tion 2 sin 3x = 1 for –360° < x < 360°. The attempt is shown below: sin 3x = 1 _ 2 3x = 30° x = 10° Additional solution at 180° − 10° = 170° a Identify two mistak es made by the student. (2 marks) b Solve the equation. (2 marks) 16 a Sketch the gra phs of y = 3 sin x and y = 2 cos x on the same set of axes (0 < x < 360°). b Write down ho w many solutions there are in the given range for the equation 3 sin x = 2 cos x. c Solve the equation 3 sin x = 2 cos x a lgebraically, giving your answers to one decimal place.P E E E/P E E E/P
[ 0.03019065037369728, 0.04462366923689842, 0.0691971555352211, 0.008328454568982124, -0.027961911633610725, 0.011232059448957443, -0.06106271967291832, -0.08211274445056915, -0.09454295039176941, -0.01187760941684246, 0.028349043801426888, -0.058388106524944305, 0.013207442127168179, 0.05969732999801636, 0.08426956832408905, -0.0015683717792853713, -0.08187080919742584, -0.031403545290231705, -0.02028552256524563, 0.010753837414085865, -0.026508834213018417, -0.05807012319564819, 0.02735971100628376, -0.045819662511348724, 0.024782702326774597, -0.06371864676475525, 0.01734713464975357, -0.011357593350112438, 0.01981116086244583, 0.012608234770596027, 0.0028586729895323515, 0.0024367745500057936, 0.024015627801418304, -0.10321743041276932, -0.00045844915439374745, 0.01032381970435381, 0.07732149213552475, 0.03984939306974411, -0.009213406592607498, -0.026801995933055878, -0.055404841899871826, 0.009445727802813053, -0.0007061899523250759, 0.04411035031080246, 0.012299986556172371, -0.07144112139940262, -0.02738064154982567, 0.08202211558818817, 0.04188244044780731, -0.012360867112874985, 0.06856109946966171, 0.0284346304833889, -0.0945507064461708, 0.02687798999249935, -0.024703016504645348, -0.008944732137024403, -0.055342454463243484, -0.0006652041920460761, -0.09347151964902878, -0.06298608332872391, 0.03731629252433777, 0.01285206526517868, -0.026929516345262527, 0.007466989103704691, -0.06315162032842636, 0.01700270175933838, 0.03209025412797928, -0.12058436125516891, 0.018367895856499672, 0.07768338173627853, -0.031158573925495148, 0.01482522115111351, -0.07266298681497574, -0.07593557238578796, -0.0467253103852272, -0.029524341225624084, -0.09974019229412079, 0.04255935549736023, -0.028043020516633987, -0.05939958989620209, -0.10722797363996506, 0.014329658821225166, 0.07327736914157867, 0.052272334694862366, 0.060750193893909454, 0.000408164196414873, 0.038720350712537766, 0.13112188875675201, 0.000004122420250496361, 0.04687260463833809, 0.026396093890070915, -0.0746706947684288, -0.01060936413705349, 0.0008310108678415418, 0.022485626861453056, -0.03701229766011238, 0.03476114198565483, 0.028321389108896255, 0.0241846926510334, 0.04541415348649025, 0.011744797229766846, -0.09232080727815628, -0.026183215901255608, -0.056723449379205704, -0.006963338237255812, 0.02392561174929142, 0.08581405133008957, -0.04672272503376007, 0.044266227632761, -0.05617310479283333, -0.09438148140907288, 0.0806611031293869, 0.043445222079753876, -0.040321726351976395, 0.015480387955904007, 0.0053812842816114426, 0.045197732746601105, 0.01721486821770668, -0.007515521254390478, 0.019444534555077553, -0.049186646938323975, 0.04467761889100075, 0.07282403111457825, -0.01976431906223297, -0.04973429813981056, 0.03140335902571678, -0.0036208329256623983, 0.0036438764072954655, 0.019426943734288216, -0.010913670063018799, 0.10579291731119156, 0.017610859125852585, -0.003472425974905491, -0.05514247342944145, -0.0598892942070961, -0.020600302144885063, 0.06950520724058151, 0.11735578626394272, -0.02866644784808159, 0.013918578624725342, -0.003500560764223337, 0.07703142613172531, 0.07209371775388718, 0.02090511843562126, 0.04075874015688896, -0.004601773340255022, -0.089361272752285, -0.04922971874475479, -0.03658963739871979, 0.03489253297448158, 0.009949530474841595, 0.04100337624549866, -0.09939026087522507, 0.06978005170822144, -0.016984589397907257, -0.005345299374312162, -0.04733177646994591, 0.027484437450766563, 0.09132960438728333, -0.0020327058155089617, -0.016271691769361496, 0.07286752760410309, 0.038224585354328156, 0.07337357848882675, 0.044849175959825516, 0.017169583588838577, -0.021657150238752365, -0.01782386749982834, -0.03209040313959122, 0.018688581883907318, -0.05635693296790123, 0.012007076293230057, 0.06138370558619499, 0.03941872715950012, -0.008932262659072876, -0.04597807675600052, 0.07680212706327438, -0.012529668398201466, -0.056779645383358, 0.05879461020231247, 0.04614530876278877, -0.056121084839105606, -0.025859994813799858, -0.05535144358873367, 0.015096690505743027, -0.015372976660728455, -0.04501447081565857, 0.0008574762032367289, -0.07590290158987045, -0.022690976038575172, -0.01109556294977665, -0.10096031427383423, 0.00601231399923563, 0.042575158178806305, -0.09457939118146896, 0.058697253465652466, 0.002950747963041067, -0.09352105110883713, -0.08032803237438202, 0.07416921854019165, 0.08480658382177353, -0.03725297749042511, 0.029124045744538307, -0.07566182315349579, 0.05990137904882431, 0.0027014892548322678, -0.020509548485279083, 0.00763246975839138, -0.00005202459578868002, 0.0657854676246643, 0.006152549292892218, 0.012720709666609764, 0.016535218805074692, 0.000514896702952683, -0.02293597161769867, -0.06941065192222595, 0.08236632496118546, -0.03833600878715515, -0.012687582522630692, -0.027989070862531662, -0.0024116463027894497, -0.06746503710746765, -0.009026112966239452, -3.598023271315922e-33, -0.08820042759180069, -0.030865130946040154, -0.1267160028219223, -0.037610240280628204, -0.057927727699279785, -0.019624752923846245, 0.06382520496845245, -0.036804795265197754, 0.15125958621501923, -0.042249929159879684, 0.08699598163366318, -0.057913340628147125, -0.058954868465662, -0.030484599992632866, -0.08209815621376038, -0.0788193792104721, -0.006914862431585789, 0.004114275332540274, 0.05724264681339264, 0.025192277505993843, 0.027224337682127953, 0.06012563407421112, -0.02047319896519184, 0.027285702526569366, 0.05426172539591789, 0.05312266945838928, 0.1186632588505745, -0.043119851499795914, -0.05117091163992882, -0.0029222946614027023, 0.04777875170111656, 0.012996253557503223, 0.10434853285551071, -0.01776864007115364, 0.00804384145885706, -0.08039834350347519, -0.011468583717942238, -0.04089048132300377, -0.0049463422037661076, -0.06810229271650314, 0.08210473507642746, -0.006686752662062645, 0.03934602439403534, 0.029691224917769432, 0.059936102479696274, -0.008970608003437519, -0.027488362044095993, 0.033896565437316895, -0.08514939248561859, -0.030757594853639603, -0.04123225063085556, -0.08302062749862671, -0.03789409250020981, -0.01781301386654377, 0.11566827446222305, 0.022175418213009834, -0.03336338698863983, -0.009395680390298367, 0.12988609075546265, 0.015856001526117325, -0.010749122127890587, -0.02141485922038555, 0.03872963413596153, 0.027603980153799057, -0.0012126609217375517, -0.026524115353822708, 0.02004260942339897, -0.06223895400762558, 0.026967015117406845, -0.0031889283563941717, -0.017225874587893486, -0.05595304071903229, -0.09903761744499207, -0.0265186857432127, -0.09663856774568558, -0.015945153310894966, 0.003476545447483659, 0.023352788761258125, -0.012723163701593876, -0.05266357213258743, -0.08191807568073273, 0.0413115993142128, -0.016197269782423973, -0.05850936472415924, -0.1026386022567749, -0.036136407405138016, 0.065301313996315, 0.009252695366740227, 0.0750088021159172, 0.043398406356573105, 0.020032096654176712, 0.020603515207767487, 0.00297144684009254, 0.028280748054385185, 0.10362096130847931, 8.169698668652757e-32, -0.010656255297362804, 0.050296854227781296, -0.03542562574148178, -0.023390160873532295, 0.011049210093915462, -0.03370688110589981, -0.023809917271137238, -0.005574109964072704, 0.06257275491952896, -0.10769511014223099, 0.08892469108104706, -0.0021929910872131586, -0.04522842913866043, -0.060012269765138626, -0.02755057066679001, -0.0207704845815897, -0.03427448496222496, 0.09455841779708862, 0.013762119226157665, -0.03337079659104347, -0.014387059025466442, 0.06798574328422546, 0.052677053958177567, 0.03511306270956993, 0.09620881825685501, 0.08498680591583252, -0.054978542029857635, -0.036060456186532974, -0.09524855762720108, -0.004115391056984663, 0.05119828134775162, -0.049227092415094376, 0.033242642879486084, -0.04888271540403366, 0.0015825934242457151, -0.04684381186962128, -0.03732501342892647, 0.023661239072680473, -0.01355699636042118, 0.06909197568893433, 0.019391890615224838, -0.023672059178352356, -0.028200335800647736, 0.024564268067479134, -0.02074708417057991, -0.04940113425254822, -0.026986660435795784, -0.0502471998333931, 0.012287921272218227, -0.005550816655158997, -0.08695296943187714, 0.027999168261885643, 0.009487742558121681, 0.014108987525105476, 0.05996367335319519, 0.016088219359517097, -0.017104225233197212, 0.0459851436316967, -0.04259620979428291, 0.0019261414417997003, -0.024227408692240715, 0.11412962526082993, -0.05260011553764343, -0.014556584879755974 ]
224 Chapter 10 17 The diagram sho ws the triangle ABC with AB = 11 cm, BC = 6 cm and AC = 7 cm. a Find the exact va lue of cos B, giving y our answer in simplest form. (3 marks) b Hence find the exact va lue of sin B. (2 marks) 18 The diagram sho ws triangle PQR with PR = 6 cm, QR = 5 cm and angle QPR = 45°. a Show that sin Q = 3 √ __ 2 ____ 5 (3 marks) b Given tha t Q is obtuse, find the exact value of cos Q. (2 marks) 19 a Show that the equa tion 3 sin2 x – cos2 x = 2 can be written as 4 sin2 x = 3. (2 marks) b Hence solve the equation 3 sin2 x – cos2 x = 2 in the interval –180° < x < 180°, giving your answers to 1 decimal place. (7 marks) 20 Find all the solutions to the equation 3 cos2 x + 1 = 4 sin x in the interv al –360° < x < 360°, giving your answers to 1 decimal place. (6 marks) E ABC 7 cm 6 cm 11 cm E/P 45° RPQ 5 cm 6 cm E/P E Solve the equation tan4 x – 3 tan2 x + 2 = 0 in the interval 0 < x < 360°.Challenge 1 For a point P(x, y) on a unit circle such that OP 1P x Oy x(x,y) yθ makes an angle θ with the positive x-axis: •  cos θ = x = x-coordinate of P •  sin θ = y = y-coordinate of P •  tan θ = y __ x = gradient of OP 2 You can use the quadrants t o determine whether each of the trigonometric ratios is positive or negative. For an angle θ in the first quadrant, sin θ, cos θ and tan θ are all positive.For an angle θ in the second quadrant, only sin θ is positive. For an angle θ in the third quadrant, only tan θ is positive.For an angle θ in the fourth quadrant, only cos θ is positive.y90° All CosSin Tan 270°0, 360° 180°xSummary of key points
[ -0.03330410644412041, 0.04959657043218613, -0.02925816923379898, -0.04194098711013794, 0.007832659408450127, 0.021461129188537598, 0.004744387697428465, -0.01155386958271265, -0.01771898753941059, -0.05502661317586899, 0.14055678248405457, -0.08660637587308884, 0.024131054058670998, 0.025885000824928284, -0.015406662598252296, 0.03501081094145775, -0.002838688436895609, 0.005137203261256218, -0.018963651731610298, 0.011428320780396461, 0.044505100697278976, -0.009865731000900269, -0.020699478685855865, -0.07295356690883636, 0.011585619300603867, -0.039073143154382706, 0.05338522791862488, -0.0018470203503966331, 0.019263766705989838, -0.0333552360534668, -0.0022556371986865997, -0.03076428547501564, 0.08120507001876831, -0.007667098194360733, 0.02390657179057598, -0.0787254124879837, -0.01085705030709505, 0.0486842580139637, 0.09285661578178406, -0.04087263345718384, -0.01561744511127472, 0.032081734389066696, 0.031327132135629654, 0.019158395007252693, -0.008752139285206795, -0.00905178114771843, -0.04724879190325737, 0.06104549393057823, 0.02568814344704151, -0.006455642636865377, -0.013509783893823624, 0.009020277298986912, -0.16400235891342163, 0.0027190200053155422, 0.005844789557158947, 0.07206164300441742, -0.00796831026673317, 0.04247025027871132, -0.018041381612420082, -0.04256657138466835, 0.02857174165546894, 0.04772470146417618, -0.01595720835030079, 0.030665725469589233, -0.06138979271054268, -0.025893202051520348, 0.035158541053533554, -0.032218270003795624, -0.0105853620916605, 0.000994719099253416, 0.002761661075055599, 0.017100857570767403, -0.043214283883571625, -0.007881689816713333, 0.06488008052110672, 0.0038073095493018627, -0.09276052564382553, 0.02892966754734516, -0.043457992374897, -0.08468221873044968, -0.05123089626431465, -0.012986775487661362, 0.02636982873082161, 0.014530784450471401, 0.02598133310675621, 0.04361538589000702, 0.06612751632928848, 0.0327179878950119, 0.03886276111006737, -0.06987304985523224, 0.0733243077993393, -0.07611273229122162, -0.026057152077555656, -0.011112196370959282, 0.03420518338680267, -0.03458411246538162, -0.016611352562904358, -0.01934070512652397, 0.0014942580601200461, 0.11148683726787567, -0.009286941960453987, 0.0012167793465778232, 0.01224291231483221, 0.1346275955438614, -0.004794051870703697, 0.10800103843212128, 0.10178299248218536, 0.01341986283659935, 0.1132483035326004, 0.005255664698779583, -0.06219341605901718, -0.002731436165049672, 0.029671289026737213, -0.00923926755785942, -0.018132135272026062, 0.014802463352680206, 0.06623027473688126, 0.05183557793498039, -0.01041853055357933, 0.018802784383296967, 0.008573473431169987, -0.05376679077744484, 0.04403213784098625, 0.033264096826314926, 0.008349352516233921, -0.07814648002386093, 0.03813352808356285, -0.0063262819312512875, -0.029871640726923943, 0.13514138758182526, 0.07417957484722137, -0.06074194237589836, -0.07412819564342499, -0.09986412525177002, -0.0863373875617981, -0.03201723098754883, 0.06250754743814468, 0.056048743426799774, -0.03756381943821907, -0.07767094671726227, 0.0054376511834561825, 0.08350691199302673, 0.0420859269797802, 0.0027875236701220274, -0.0186765156686306, -0.009480355307459831, -0.12311887741088867, -0.0610976405441761, -0.07553891837596893, 0.09795864671468735, 0.04103325679898262, -0.04915570840239525, -0.024786822497844696, 0.020791426301002502, -0.03065606951713562, 0.014920872636139393, -0.036581575870513916, -0.012091098353266716, -0.08357065916061401, 0.03430680185556412, -0.05808473005890846, 0.011083253659307957, 0.018917813897132874, 0.02504032850265503, 0.0013342052698135376, 0.06548963487148285, 0.042656075209379196, -0.003000227501615882, 0.05266519635915756, 0.027651868760585785, 0.0698174387216568, 0.032223157584667206, 0.05463327467441559, 0.07897841930389404, -0.01551684271544218, -0.06705046445131302, 0.08179300278425217, 0.018003977835178375, -0.014242526143789291, -0.02302093245089054, 0.07060445845127106, -0.06229760870337486, 0.0423707589507103, 0.013672550208866596, 0.02100643329322338, -0.05568322166800499, -0.0003265780978836119, 0.03582845255732536, -0.07501845061779022, 0.005379588808864355, 0.05052538588643074, -0.022257447242736816, -0.08655215799808502, -0.021153243258595467, -0.14121228456497192, -0.05375798046588898, 0.07038391381502151, -0.03632910177111626, -0.1539640724658966, 0.0679389089345932, 0.022332027554512024, -0.028051313012838364, 0.0032959552481770515, -0.03100208379328251, 0.0502534881234169, -0.0020137238316237926, 0.019299358129501343, -0.038585491478443146, -0.051159292459487915, -0.050633884966373444, -0.018455395475029945, -0.05618814006447792, -0.04454481974244118, 0.008573036640882492, 0.06716686487197876, -0.04567355662584305, -0.003721729852259159, -0.0572706013917923, -0.042469412088394165, 0.04213286191225052, -0.013340591453015804, -0.03588707372546196, 0.06808914244174957, 5.481714030258267e-33, -0.0501193068921566, 0.09969817847013474, -0.10115330666303635, -0.0028468139935284853, -0.027837397530674934, -0.037242695689201355, 0.0686056911945343, -0.03213375434279442, -0.022723518311977386, -0.00928241666406393, 0.01701761782169342, -0.04099258780479431, 0.02709391340613365, -0.06277428567409515, -0.060600850731134415, 0.005529971327632666, -0.010041287168860435, 0.006081098690629005, -0.05480340123176575, -0.047178126871585846, 0.028090396896004677, 0.02442057617008686, -0.0002291251439601183, -0.02367386221885681, 0.021238354966044426, 0.0310122799128294, 0.08809217810630798, -0.0681362897157669, -0.04871883615851402, -0.026466304436326027, -0.014752928167581558, 0.016073990613222122, -0.00533610675483942, 0.04592415690422058, -0.05426529049873352, -0.051952630281448364, 0.04889564588665962, -0.003920748829841614, 0.0065519968047738075, -0.14991800487041473, 0.09996070712804794, 0.06512720137834549, 0.0071662296541035175, -0.013007957488298416, 0.05147504806518555, 0.04080453887581825, 0.12030694633722305, -0.09604119509458542, -0.03426968306303024, -0.017323434352874756, -0.020610442385077477, -0.07265914231538773, 0.039870914071798325, -0.03802448883652687, 0.029135210439562798, -0.0189037062227726, -0.040114179253578186, 0.006476979237049818, 0.02768622897565365, -0.04762176424264908, -0.029111219570040703, -0.02290116250514984, 0.02893500216305256, 0.012781662866473198, 0.0500306598842144, 0.01906573586165905, 0.04442561790347099, 0.06185164675116539, 0.022195035591721535, -0.004348946735262871, -0.010788080282509327, 0.07060745358467102, -0.09520845860242844, -0.10183438658714294, -0.05364897847175598, 0.005990925244987011, -0.005894382018595934, 0.018652407452464104, -0.019354913383722305, -0.021750271320343018, -0.02105182223021984, -0.00020226094056852162, 0.019520822912454605, -0.08165229856967926, -0.061292510479688644, 0.035688094794750214, 0.02443464659154415, -0.024288158863782883, 0.07967561483383179, -0.006178391631692648, -0.036664847284555435, 0.09474598616361618, 0.031177157536149025, -0.061941854655742645, 0.0041681015864014626, 8.388303002086476e-32, -0.033644165843725204, -0.013627370819449425, -0.07511202991008759, -0.010128847323358059, 0.04725442826747894, 0.04989518225193024, 0.030388372018933296, -0.03958630561828613, 0.06919067353010178, -0.023547442629933357, -0.0208475012332201, 0.00824160035699606, -0.025749176740646362, 0.06107921153306961, -0.02025924064218998, -0.03307618573307991, -0.061439767479896545, 0.015417389571666718, 0.07664886116981506, -0.07242134213447571, -0.013881415128707886, 0.021130774170160294, 0.01992121711373329, -0.0040502953343093395, 0.034662146121263504, 0.07426920533180237, -0.12036406248807907, 0.09267967194318771, -0.020944999530911446, -0.08037132024765015, 0.08358535915613174, 0.000022890904801897705, 0.06322582066059113, -0.04325791820883751, -0.03955404832959175, -0.04386458545923233, 0.018990706652402878, 0.025838155299425125, 0.0007076610345393419, 0.11935178935527802, -0.011180402711033821, -0.04005133733153343, 0.02889813669025898, 0.03920300677418709, 0.027716293931007385, -0.012174881994724274, -0.04296047240495682, -0.06793411821126938, 0.02619880810379982, -0.0632125735282898, -0.04495447129011154, -0.0020603251177817583, -0.0281856507062912, 0.004037545062601566, 0.005712742917239666, -0.07466687262058258, -0.06701555848121643, 0.04268605634570122, -0.018406931310892105, -0.03520303592085838, -0.0036168168298900127, 0.16646499931812286, -0.11142764985561371, -0.00964536052197218 ]
225Trigonometric identities and equations 3 You can use these rules to find sin, cos or tan of any positive or negative angle using the corr esponding acute angle made with the x-axis, θ. A CS T360° – θ 180° + θ180° – θ θ θθθ θy x 4 The trigonometric ratios of 30°, 45° and 60° have exact forms, given below: sin 30° = 1 __ 2 cos 30° = √ __ 3 ___ 2 tan 30° = 1 ___ √ __ 3 = √ __ 3 ___ 3 sin 45° = 1 ___ √ __ 2 = √ __ 2 ___ 2 cos 45° = 1 ___ √ __ 2 = √ __ 2 ___ 2 tan 45° = 1 sin 60° = √ __ 3 ___ 2 cos 60° = 1 __ 2 tan 60° = √ __ 3 5 For all values o f θ, sin2 θ + cos2 θ ; 1 6 For all values o f θ such that cos θ ≠ 0, tan θ ; sin θ _____ cos θ  7 •  Solutions  to sin θ = k and cos θ = k only exist when −1 < k < 1 •  Solutions  to tan θ = p exist for all values of p. 8 When you use the inv erse trigonometric functions on your calculator, the angle you get is called the principal value. 9 Your calculat or will give principal values in the following ranges: •  cos−1 in the range 0 < θ < 180° •  sin−1 in the range −90° < θ < 90° •  tan−1 in the range −90° < θ < 90°cos (180° − θ ) = − cos θ cos (180° + θ ) = − cos θ cos (360° − θ ) = cos θtan (180° − θ ) = − tan θ tan (180° + θ ) = tan θ tan (360° − θ ) = − tan θsin (180° − θ ) = sin θ sin (180° + θ ) = − sin θ sin (360° − θ ) = − sin θ
[ -0.03457292914390564, 0.019327063113451004, 0.023233668878674507, 0.00841791182756424, -0.057557400315999985, 0.02296893112361431, -0.015583604574203491, -0.04273909330368042, -0.08170225471258163, -0.028272204101085663, 0.02820177935063839, -0.055274754762649536, 0.021342337131500244, 0.008458820171654224, 0.12180272489786148, 0.012913866899907589, -0.07475815713405609, 0.025876743718981743, -0.006065658293664455, 0.01069747656583786, 0.030397780239582062, -0.02512170560657978, -0.00788103137165308, -0.04434961825609207, 0.019718380644917488, 0.015062674880027771, 0.022015320137143135, 0.03226080909371376, 0.03649481013417244, 0.023510878905653954, -0.026897884905338287, -0.05630885437130928, 0.009044339880347252, -0.17601899802684784, -0.06592246890068054, -0.07124929875135422, -0.017150381579995155, 0.04240991175174713, -0.022276215255260468, 0.029900403693318367, -0.026704255491495132, 0.09992286562919617, 0.009393109939992428, 0.06967036426067352, -0.003881825366988778, -0.05909851938486099, -0.10070069879293442, 0.027591926977038383, 0.01628156565129757, 0.0706729143857956, 0.02209213376045227, 0.11845850199460983, -0.0991562083363533, -0.001663293456658721, -0.030448369681835175, 0.047544483095407486, -0.038842957466840744, 0.0011431860039010644, -0.07443749159574509, -0.09906570613384247, 0.09173718839883804, 0.0451432541012764, -0.0013713338412344456, 0.006816651206463575, -0.051357701420784, -0.02611236833035946, 0.044799406081438065, -0.05658024176955223, 0.03805752098560333, -0.001780879800207913, -0.038920141756534576, 0.018924161791801453, -0.03565654903650284, -0.04573279619216919, -0.032845478504896164, 0.010817235335707664, -0.06413303315639496, 0.018135836347937584, -0.0642503947019577, -0.046109043061733246, -0.05814580246806145, -0.011210349388420582, 0.08088865876197815, 0.0032901198137551546, 0.0749012678861618, 0.03611244633793831, 0.00879670213907957, 0.13052093982696533, 0.03761617839336395, 0.011398324742913246, 0.0622643418610096, -0.06507451832294464, -0.014858060516417027, -0.06757852435112, 0.04759810119867325, 0.049675263464450836, 0.043379176408052444, 0.01963639259338379, -0.007006575353443623, 0.008103400468826294, 0.0013087360421195626, -0.08298236131668091, -0.019166694954037666, 0.029486389830708504, -0.06222344934940338, -0.011357007548213005, 0.10156357288360596, -0.037303376942873, 0.05801738426089287, -0.007839702069759369, -0.10691390186548233, 0.12471766769886017, 0.03386390581727028, -0.07976651936769485, -0.0022687881719321012, -0.017662160098552704, 0.004517561290413141, 0.06739556044340134, 0.07123244553804398, 0.03884172812104225, 0.018124889582395554, 0.05211639776825905, -0.01814926043152809, -0.02079378068447113, -0.01862819865345955, -0.008669791743159294, -0.0473865307867527, 0.011109978891909122, -0.008541523478925228, 0.09759911894798279, 0.05054172873497009, 0.0049146669916808605, -0.06363598257303238, -0.02893969416618347, 0.012983860448002815, -0.033331599086523056, 0.12439493089914322, 0.08741395175457001, -0.021264707669615746, 0.01142268069088459, 0.04589753970503807, 0.0679151713848114, -0.014138276688754559, -0.00024998062872327864, 0.0556362122297287, -0.02719123661518097, -0.14394325017929077, -0.020869478583335876, -0.038299817591905594, 0.07403942942619324, 0.06917862594127655, 0.028821351006627083, -0.02220478467643261, 0.0947628989815712, -0.027844998985528946, 0.050848379731178284, 0.020306061953306198, 0.06344947963953018, 0.05140288174152374, 0.021891463547945023, 0.04333339259028435, 0.033398181200027466, 0.04487942159175873, 0.039495475590229034, 0.04477132484316826, -0.01959616132080555, 0.006328863557428122, -0.023357028141617775, -0.018412724137306213, 0.07689633965492249, 0.006535838358104229, -0.02828327566385269, -0.05433889478445053, 0.03606756776571274, -0.03698550537228584, -0.06980212777853012, 0.06071213260293007, -0.008052032440900803, -0.05702856928110123, 0.005498153623193502, -0.02071366459131241, -0.05914303660392761, -0.012969259172677994, -0.0270371176302433, 0.029119810089468956, -0.044175926595926285, -0.051534850150346756, 0.004847582429647446, -0.042589250952005386, -0.022146204486489296, 0.03960590809583664, -0.05274273455142975, -0.04221094399690628, -0.004302565008401871, -0.07375017553567886, 0.038399145007133484, -0.07491131126880646, -0.05052900314331055, -0.07426121085882187, 0.06893787533044815, 0.018719078972935677, -0.08970014750957489, 0.018444664776325226, -0.007194885052740574, 0.06981847435235977, -0.018140701577067375, -0.020106790587306023, -0.014941894449293613, -0.046200428158044815, 0.010184830985963345, -0.014187476597726345, -0.07165172696113586, 0.07292967289686203, -0.02370091713964939, 0.019921282306313515, -0.05777562037110329, 0.03657137602567673, -0.09073755890130997, -0.053232405334711075, 0.06989564746618271, 0.015754783526062965, -0.04565698280930519, 0.016841990873217583, -3.819752362607715e-33, -0.04748990014195442, -0.08831042051315308, -0.1177748367190361, -0.056882064789533615, -0.03865353763103485, -0.04150436446070671, 0.11600461602210999, -0.04731147363781929, 0.08608908951282501, -0.006546405144035816, 0.06599246710538864, -0.03766510263085365, -0.07218283414840698, -0.04852135851979256, -0.05876210704445839, -0.06003299728035927, -0.002321291249245405, 0.015168101526796818, 0.008562976494431496, -0.03111325204372406, 0.014999967999756336, -0.0145187359303236, -0.01918339729309082, 0.04245579242706299, -0.020194606855511665, 0.04181435704231262, 0.06718544661998749, -0.08736849576234818, -0.06140327453613281, 0.03977108374238014, -0.025114139541983604, 0.031170863658189774, 0.07972481846809387, 0.05258972942829132, -0.03859622776508331, -0.08325203508138657, -0.007577696815133095, -0.01813686452805996, -0.0169678945094347, -0.05830197036266327, 0.057035308331251144, 0.02092619426548481, 0.058457568287849426, 0.02218421921133995, 0.06131833791732788, -0.054019056260585785, 0.012481670826673508, -0.03994538262486458, -0.04984303563833237, 0.015858665108680725, -0.012694654986262321, -0.11152321845293045, -0.019138552248477936, -0.032557565718889236, 0.09747002273797989, -0.021282825618982315, -0.05953532084822655, 0.0013607782311737537, 0.11071551591157913, -0.026092207059264183, 0.01635027676820755, 0.03518570959568024, 0.012369636446237564, 0.03109501302242279, 0.004894279409199953, -0.04769066348671913, 0.0626104325056076, -0.05620723217725754, 0.01745939441025257, 0.045836783945560455, 0.03861752152442932, 0.019033776596188545, -0.05139230191707611, -0.04592036083340645, -0.06801769137382507, 0.005545739084482193, 0.025193896144628525, 0.07843726873397827, 0.006056026089936495, 0.004482676275074482, -0.0517057329416275, 0.03364289924502373, 0.02794506959617138, -0.03646158427000046, -0.10012852400541306, -0.03136578947305679, 0.009814208373427391, 0.009972281754016876, 0.06026271730661392, 0.05744421109557152, -0.07258585840463638, 0.026023415848612785, 0.02775605395436287, 0.004527959506958723, 0.07887173444032669, 9.06603250681154e-32, -0.10093286633491516, 0.04199589788913727, -0.06038836017251015, 0.0450185090303421, -0.04291532561182976, 0.03440658003091812, -0.04156804457306862, -0.024194881319999695, 0.030868634581565857, -0.07335112243890762, 0.05731407552957535, 0.025969069451093674, 0.018230728805065155, -0.06366127729415894, -0.06105760112404823, -0.04895033687353134, -0.01660844497382641, 0.12235702574253082, -0.00443230988457799, -0.02558160200715065, 0.017660846933722496, 0.041447822004556656, 0.044912151992321014, -0.009853199124336243, 0.025808293372392654, 0.06244629994034767, -0.04163428023457527, 0.022939881309866905, -0.05151309072971344, -0.0763368308544159, 0.06255326420068741, -0.05252566561102867, 0.015145527198910713, 0.04523203521966934, 0.006796576082706451, -0.03062358871102333, -0.06152298301458359, 0.06710024178028107, -0.004869833588600159, 0.09244734793901443, -0.04949994757771492, -0.03268080949783325, -0.07719246298074722, 0.0026844069361686707, 0.023868611082434654, -0.10638246685266495, -0.08875367045402527, -0.05859527736902237, 0.0281336922198534, -0.04612449184060097, -0.05851193889975548, 0.06173732876777649, -0.02435930445790291, 0.03538527339696884, 0.0501151867210865, 0.03687494993209839, -0.008026370778679848, 0.016719019040465355, -0.016926035284996033, 0.01721249520778656, -0.006477185059338808, 0.08146753162145615, -0.029815614223480225, -0.03298884630203247 ]
226Review exercise2 1 Find the equation of the line w hich passes through the points A(−2, 8) and B(4, 6), in the form ax + by + c = 0. (3 marks) ← Section 5.2 2 The line l passes thr ough the point (9, −4) and has gradient 1 _ 3 . Find an equation for l, in the form ax + by + c = 0, where a, b and c are integers. (3 marks) ← Section 5.2 3 The points A(0, 3), B(k, 5) and C(10, 2k), where k is a constant, lie on the same straight line. Find the two possible values of k. (5 marks) ← Section 5.1 4 The scatter graph shows the height, h cm, and inseam leg measurement, l cm, of six adults. A line of best fit has been added to the scatter graph. 1501551601651701751801856870727476788082Inseam leg measurement (cm)Height (cm) a Use two points on the scatter graph to calcula te the gradient of the line. (2 marks) b Use your answ er to part a to write a linear model relating height and inseam in the form l = kh, where k is a constant to be found. (1 mark) c Comment on the validity of your model for small values of h. (1 mark) ← Section 5.5E E E/p E/p5 The line l1 has equation y = 3x − 6. The line l2 is perpendicular to l1 and passes through the point (6, 2). a Find an equation for l2 in the form y = mx + c, where m and c are constants (3 marks) The lines l1 and l2 intersect at the point C. b Use algebr a to find the coordinates of C. (2 marks) The lines l1 and l2 cross the x-axis at the points A and B respectively. c Calculate the e xact area of triangle ABC. (4 marks) ← Sections 5.3, 5.4 6 The lines y = 2 x and 5y + x − 33 = 0 intersect at the point P. Find the distance of the point from the origin O, giving your answer as a surd in its simplest form. (4 marks) ← Sections 5.2, 5.4 7 The perpendicular bisector of the line segment joining (5, 8) and (7, −4) crosses the x-axis at the point Q. Find the coordinates of Q. (4 marks) ← Section 6.1 8 The circle C has centre (−3, 8) and passes through the point (0, 9). Find an equa tion for C. (4 marks) ← Section 6.2 9 a Show that x2 + y2 − 6x + 2y − 10 = 0 can be written in the form (x − a) 2 + (y − b)2 = r2, where a, b and r are numbers to be found. (2 marks) b Hence write down the centre and r adius of the circle with equation x2 + y2 − 6x + 2y − 10 = 0. (2 marks) ← Section 6.2E E E/p E E/p
[ -0.009185361675918102, 0.09424050897359848, -0.0024613174609839916, 0.01704336889088154, 0.04042156785726547, 0.04533959552645683, -0.018993670120835304, -0.055371589958667755, -0.07095731049776077, 0.05170753598213196, 0.027492264285683632, -0.05954413488507271, 0.03593229502439499, -0.038950249552726746, -0.07472532242536545, 0.020412033423781395, -0.050113577395677567, -0.02385641448199749, -0.06192454695701599, -0.00716641079634428, -0.039925456047058105, -0.03133183717727661, -0.08438095450401306, -0.020332463085651398, 0.015670010820031166, -0.09430089592933655, 0.001083164825104177, 0.026982799172401428, -0.014976279810070992, -0.04892192408442497, -0.014073570258915424, 0.048082295805215836, 0.08292996138334274, 0.050196997821331024, 0.0984383225440979, -0.00015313470794353634, 0.049913424998521805, 0.0489916168153286, -0.005370046477764845, -0.014894076623022556, -0.09390678256750107, -0.004168868996202946, -0.027330201119184494, -0.03173663467168808, 0.04115835949778557, -0.01196120586246252, -0.01369448471814394, -0.018126806244254112, 0.015430453233420849, 0.013676751405000687, 0.030522646382451057, -0.026449814438819885, 0.011401794850826263, 0.003929519094526768, 0.01918308064341545, -0.0042954254895448685, 0.031244538724422455, 0.056881826370954514, 0.00769277848303318, 0.09243713319301605, -0.03477219119668007, -0.016207095235586166, 0.0006046265480108559, 0.07590781152248383, -0.05450339987874031, 0.10440976917743683, 0.0007651908090338111, -0.016491498798131943, -0.019511237740516663, -0.039187923073768616, -0.09969811141490936, 0.016979370266199112, 0.03595514968037605, -0.057912226766347885, 0.0010831805411726236, -0.012264606542885303, 0.007904412224888802, -0.00042193219996988773, 0.038644757121801376, -0.07244601845741272, 0.00962337851524353, 0.06295452266931534, 0.01772855781018734, 0.06066052243113518, 0.03909847140312195, 0.025151275098323822, -0.007634911220520735, -0.02279483713209629, 0.019029613584280014, -0.024113167077302933, 0.05883434787392616, 0.03814045339822769, -0.1054525151848793, 0.03892183303833008, -0.012070727534592152, -0.10182221233844757, -0.03283264487981796, -0.07475674152374268, -0.009804603643715382, 0.11144701391458511, 0.04254313185811043, 0.017899567261338234, -0.08475453406572342, 0.03998212516307831, -0.004789432045072317, 0.07662545144557953, 0.10090301930904388, -0.07816461473703384, 0.04028168320655823, -0.020619181916117668, -0.0351828895509243, -0.04164933040738106, -0.03322480246424675, -0.02628031000494957, 0.04270040616393089, -0.044941890984773636, 0.07810141146183014, -0.003298836760222912, -0.023113297298550606, -0.02145042084157467, 0.004774022381752729, -0.10226943343877792, 0.08742952346801758, -0.06325291842222214, -0.05248703807592392, 0.0009920410811901093, -0.017589464783668518, 0.01997832953929901, -0.03027145192027092, -0.0027774940244853497, 0.02840028516948223, -0.08087439090013504, -0.061869069933891296, -0.12520650029182434, -0.04359285533428192, 0.013820630498230457, -0.08601540327072144, 0.028999904170632362, -0.021205978468060493, -0.14738070964813232, 0.06340888887643814, 0.06809236109256744, 0.024611713364720345, -0.02659416012465954, -0.06335914134979248, -0.05573420226573944, -0.05757061392068863, -0.008170682936906815, 0.0006203744560480118, -0.022228745743632317, 0.0007810882525518537, -0.03438568487763405, 0.004166942555457354, 0.04944035783410072, -0.030936650931835175, 0.01598937064409256, -0.04868491739034653, -0.014201713725924492, 0.001767036272212863, 0.014837696217000484, -0.09408914297819138, 0.07145664840936661, -0.02019854635000229, 0.08385547995567322, 0.011609554290771484, 0.046406254172325134, 0.03476244956254959, 0.06185013800859451, 0.05479675903916359, 0.0007425305666401982, 0.014149865135550499, -0.005784530658274889, -0.046488359570503235, 0.08763384073972702, 0.012058431282639503, -0.012987594120204449, 0.076156385242939, 0.07430349290370941, 0.0525023378431797, 0.0036656775046139956, 0.04174008220434189, 0.001988546224310994, -0.027799051254987717, -0.03575124964118004, 0.039966825395822525, -0.014231926761567593, 0.07461316138505936, 0.10996925830841064, -0.0511753149330616, 0.0770053118467331, 0.008131606504321098, -0.029858749359846115, -0.021934933960437775, -0.034487366676330566, -0.19446676969528198, -0.033445749431848526, 0.05851055309176445, -0.01713889092206955, -0.06145235523581505, -0.05709449574351311, -0.008305211551487446, 0.07077822089195251, 0.06039885804057121, 0.026754936203360558, -0.06974250078201294, -0.03567105531692505, 0.059175875037908554, -0.030848832800984383, 0.007236539386212826, 0.006787412334233522, 0.04975204914808273, 0.0648188516497612, -0.04201888665556908, -0.07568544894456863, 0.018372168764472008, -0.04874312877655029, 0.028805866837501526, -0.01235805731266737, -0.06861564517021179, 0.02121819369494915, 0.025499429553747177, 0.0055123320780694485, 0.09684006124734879, -1.1243569486481602e-33, -0.03782826289534569, 0.06391826272010803, -0.08192393183708191, -0.05194671452045441, -0.02576284483075142, 0.03157925605773926, 0.0771384909749031, -0.0401420071721077, 0.0985734760761261, 0.14770717918872833, 0.0269167423248291, -0.04466153308749199, 0.010708366520702839, 0.09992974251508713, 0.04567229747772217, -0.03153423219919205, -0.08652607351541519, 0.05206891521811485, 0.009525870904326439, 0.005127063486725092, -0.019423307850956917, 0.060779716819524765, -0.027402998879551888, -0.05428461357951164, 0.06069943681359291, 0.04273436218500137, 0.0475800447165966, -0.04960368573665619, -0.031336359679698944, 0.02629857510328293, 0.032759133726358414, -0.03315940871834755, 0.04614892601966858, -0.0023719423916190863, -0.034309498965740204, -0.049442142248153687, 0.018599580973386765, 0.009845197200775146, -0.0018884155433624983, -0.037735648453235626, -0.015243373811244965, 0.11532975733280182, 0.09151865541934967, -0.04994010552763939, 0.021337203681468964, 0.07042504101991653, 0.041842129081487656, 0.0047745490446686745, 0.013009226880967617, 0.06438377499580383, -0.0362694077193737, 0.0015875709941610694, -0.02726522460579872, 0.06111789122223854, 0.006232507526874542, -0.03649977594614029, -0.005278687924146652, -0.0839693695306778, 0.05070418119430542, -0.05220205709338188, -0.08093535900115967, -0.0804072692990303, -0.03067239746451378, 0.025012195110321045, 0.05259547382593155, -0.013202505186200142, -0.09205222874879837, -0.00760740227997303, 0.01961829513311386, -0.11834884434938431, -0.029551105573773384, 0.05988619104027748, -0.03965524584054947, -0.026587627828121185, 0.013689115643501282, -0.024215443059802055, 0.013774042017757893, 0.047342170029878616, 0.017514795064926147, -0.08282434195280075, -0.04467896372079849, 0.029088059440255165, 0.04830821231007576, -0.006276302505284548, 0.02014877460896969, -0.01497409027069807, 0.018298489972949028, 0.0279153473675251, 0.04963995888829231, -0.0025167439598590136, -0.04266001284122467, -0.02254382148385048, -0.062311116605997086, -0.05604676902294159, 0.03783419355750084, 7.576633556798493e-32, -0.05533561110496521, -0.019152484834194183, -0.024555126205086708, 0.005453435704112053, 0.016239333897829056, 0.04176674783229828, 0.006693596486002207, -0.053390711545944214, 0.010868238285183907, 0.0003296973882243037, 0.10333363711833954, -0.07731263339519501, -0.06739041954278946, 0.09991618245840073, -0.03519121930003166, 0.009079460985958576, -0.016439523547887802, -0.029407545924186707, -0.03019419126212597, -0.03440222889184952, -0.06791950017213821, -0.00240289606153965, 0.000301621068501845, 0.0662989541888237, 0.060082968324422836, 0.02422226220369339, -0.05188240483403206, -0.0016305926255881786, 0.03226270526647568, -0.09282366186380386, 0.07804179191589355, 0.013889673165977001, 0.00131334294565022, 0.03217989578843117, 0.04693029820919037, -0.002423802623525262, -0.018782978877425194, -0.023539360612630844, 0.00482820812612772, 0.08014310896396637, -0.02332395128905773, -0.04776139184832573, -0.029996801167726517, -0.0771590918302536, 0.05501589551568031, 0.042072657495737076, -0.07066041976213455, -0.07770377397537231, -0.008353052660822868, -0.0030171165708452463, -0.03784797713160515, 0.07749433815479279, 0.031245095655322075, 0.00819596741348505, 0.03265257179737091, -0.19830788671970367, 0.004565089475363493, -0.00578793790191412, 0.019380982965230942, -0.023793306201696396, -0.04484008997678757, 0.00406095152720809, -0.07291010022163391, 0.02253904566168785 ]
227 Review exercise 2 10 The line 3x + y = 14 intersects the cir cle (x − 2)2 + (y − 3)2 = 5 at the points A and B. a Find the coordinates of A and B. (4 marks) b Determine the length of the chor d AB. (2 marks) ← Section 6.3 11 The line with equation y = 3x − 2 does not intersect the circle with centre (0, 0) and radius r. Find the range of possible values of r. (8 marks) ← Section 6.3 12 The circle C has centre (1, 5) and passes through the point P (4, −2). Find: a an equation for the cir cle C. (4 marks) b an equation for the tangent to the cir cle at P. (3 marks) ← Section 6.4 13 The points A(2, 1), B(6, 5) and C(8, 3) lie on a circle. a Show that ∠ABC = 90°. (2 marks) b Deduce a geometrical property of the line segment AC . (1 mark) c Hence find the equation of the cir cle. (4 marks) ← Section 6.5 14 2 x 2 + 20x + 42 _______________ 224x + 4 x 2 − 4 x 3 = x + a ________ bx(x + c) where a, b and c are constants. Work out the values of a, b and c. (4 marks) ← Section 7.1 15 a Show that (2x − 1) is a factor of 2x3 − 7x2 − 17x + 10. (2 marks) b Factorise 2x3 − 7x2 − 17x + 10 completely. (4 marks) c Hence, or otherwise, sk etch the graph of y = 2x3 − 7x2 − 17x + 10, labelling any intersections with the coordinate axes clearly. (2 marks) ← Section 7.3E/p E/p E/p E/p E/p E16 f(x) = 3 x3 + x2 − 38x + c Given that f(3) = 0, a find the value of c, (2 marks) b factorise f(x) complete ly, (4 marks) ← Section 7.3 17 g(x) = x3 − 13x + 12 a Use the factor theorem to show tha t (x − 3) is a factor of g(x). (2 marks) b Factorise g(x ) completely. (4 marks) ← Section 7.3 18 a It is claimed that the follo wing inequality is true for all real numbers a and b. Use a counter-example to show that the claim is false: a 2 + b2 < (a + b)2 (2 marks) b Specify conditions on a and b that make this inequality true. Prove your result. (4 marks) ← Section 7.5 19 a Use proof b y exhaustion to prove that for all prime numbers p, 3 < p < 20, p2 is one greater than a multiple of 24. (2 marks) b Find a counterexample tha t disproves the statement ‘ All numbers which are one greater than a multiple of 24 are the squares of prime numbers.’ (2 marks) ← Sections 7.5 20 a Show that x2 + y2 − 10x − 8y + 32 = 0 can be written in the form (x − a) 2 + (y − b)2 = r2, where a, b and r are numbers to be found. (2 marks) b Circle C has equation x2 + y2 − 10x − 8y + 32 = 0 and circle D has equation x 2 + y2 = 9. Calculate the distance between the centre of circle C and the centre of circle D. (3 marks) c Using your answ er to part b, or otherwise, prove that circles C and D do not touch. (2 marks) ← Sections 6.4, 7.5E/p E E/p E/p E/p
[ 0.003044706303626299, 0.05201176181435585, -0.021641768515110016, -0.014711277559399605, 0.03549176827073097, 0.04944372549653053, -0.05338750407099724, 0.04168127104640007, -0.09402193874120712, -0.056846871972084045, 0.03402604162693024, -0.0726269856095314, 0.06103646755218506, 0.01359621062874794, -0.049451135098934174, -0.09908226877450943, 0.01428084634244442, -0.01053162757307291, 0.00766142550855875, -0.016168348491191864, 0.021978648379445076, -0.09988142549991608, 0.010959899052977562, 0.003986441530287266, -0.0010440421756356955, -0.05293707177042961, -0.014172688126564026, -0.04242392256855965, -0.06609981507062912, -0.0043729376047849655, -0.0028856866993010044, 0.017153870314359665, 0.044298674911260605, -0.08484675735235214, 0.08775760233402252, -0.02641761302947998, 0.08534836769104004, -0.0010729482164606452, 0.06397752463817596, -0.09660924971103668, -0.11882733553647995, -0.043889328837394714, 0.028040939942002296, 0.027925733476877213, 0.04422614723443985, 0.02359231561422348, 0.026290273293852806, 0.011352498084306717, 0.02800646238029003, -0.038014039397239685, 0.031538303941488266, 0.005170075222849846, -0.09608757495880127, -0.012133914045989513, 0.059864357113838196, 0.054089486598968506, -0.07008324563503265, 0.027285292744636536, 0.0036894138902425766, 0.04324009642004967, 0.0038667514454573393, 0.04240830987691879, -0.010832675732672215, 0.018483100458979607, -0.012394608929753304, 0.021684421226382256, 0.041051555424928665, -0.06754721701145172, 0.05344843119382858, 0.05629095062613487, -0.08462689816951752, 0.018378378823399544, -0.05595487728714943, -0.09478691220283508, 0.07515385746955872, 0.031101953238248825, -0.12083765119314194, -0.030096448957920074, 0.07146620005369186, -0.043582502752542496, -0.04606173560023308, 0.024118926376104355, 0.04006325826048851, 0.07106374949216843, 0.04365741088986397, 0.06324858218431473, 0.019657453522086143, -0.0197342149913311, 0.017077600583434105, 0.02627408504486084, 0.04394735395908356, -0.017718538641929626, -0.08608490973711014, -0.013079442083835602, -0.03499474376440048, -0.03989603370428085, 0.03022797778248787, -0.08202755451202393, 0.008585970848798752, 0.12374819815158844, 0.04355483874678612, 0.0028181064408272505, -0.01672324351966381, -0.0036510040517896414, 0.006130574271082878, 0.0288271252065897, 0.08007774502038956, -0.013990412466228008, 0.030425801873207092, -0.02576787769794464, 0.009615807794034481, 0.0019594342447817326, -0.009188652038574219, 0.013070037588477135, 0.028275175020098686, 0.02510121278464794, 0.07183998078107834, 0.01719072088599205, 0.015851246193051338, -0.020490707829594612, -0.01675010472536087, -0.04088987410068512, -0.0070552215911448, -0.0010870672995224595, -0.025828246027231216, -0.06054677441716194, 0.029654277488589287, -0.004073512274771929, 0.008215168491005898, -0.03656831011176109, -0.023959854617714882, -0.005934639368206263, -0.0624496228992939, -0.06627019494771957, -0.02824598178267479, 0.0358535535633564, -0.06517999619245529, -0.013621168211102486, -0.001080941641703248, -0.09581904113292694, 0.05701485276222229, -0.006453807465732098, 0.02994457446038723, -0.037703223526477814, 0.006913989316672087, 0.01722588576376438, -0.07615048438310623, 0.07925347983837128, 0.016217008233070374, 0.0012691256124526262, -0.052899520844221115, 0.015510804019868374, 0.03781241551041603, 0.13638822734355927, -0.007856808602809906, -0.027347778901457787, -0.03824766352772713, -0.06892666965723038, 0.05004199594259262, 0.04331805557012558, -0.09085001051425934, 0.1110975444316864, 0.014363141730427742, 0.07862815260887146, 0.06488858908414841, 0.007653696928173304, 0.02909940853714943, -0.0002685747167561203, 0.0390637069940567, -0.0010060271015390754, -0.019565803930163383, 0.032740913331508636, -0.00931188277900219, 0.026365630328655243, 0.08062946796417236, -0.030599582940340042, 0.10581349581480026, 0.10096253454685211, -0.029665909707546234, 0.10575398057699203, 0.025310056284070015, -0.03479321300983429, 0.003443304682150483, -0.004368259571492672, -0.0505722351372242, -0.027687594294548035, 0.005510028917342424, 0.013287320733070374, -0.050029899924993515, 0.12757152318954468, 0.012270207516849041, -0.04721015691757202, -0.017038557678461075, 0.002140733413398266, -0.14431805908679962, -0.07228780537843704, 0.09272436797618866, 0.03957483917474747, -0.07556390017271042, -0.0024796754587441683, 0.013179167173802853, 0.04755835235118866, 0.026245053857564926, -0.02697129175066948, 0.012057151645421982, -0.005833686329424381, 0.06102965027093887, -0.0357997864484787, 0.023443281650543213, 0.046888332813978195, 0.033471137285232544, -0.030066082254052162, -0.07446171343326569, -0.12776359915733337, 0.07088576257228851, -0.0636378601193428, 0.03056456707417965, -0.06011629477143288, -0.10114558041095734, 0.005431193858385086, -0.026632199063897133, 0.021208638325333595, 0.03800147771835327, 1.60396351106495e-33, -0.05092701315879822, 0.07618337124586105, -0.09582220017910004, -0.05311864614486694, -0.005822241771966219, -0.08040877431631088, 0.046376053243875504, 0.004008876625448465, 0.08973086625337601, 0.026908423751592636, 0.005742063745856285, -0.002001501154154539, 0.00630234694108367, 0.0008451435714960098, 0.06801396608352661, -0.026818975806236267, -0.0871092677116394, -0.007258951663970947, -0.025321802124381065, -0.007814504206180573, -0.00964127853512764, 0.0012826240854337811, 0.03575614094734192, -0.03719959035515785, -0.043264321982860565, 0.041580043733119965, 0.07097011059522629, -0.12006419152021408, -0.08167967200279236, 0.05210423842072487, -0.07219475507736206, -0.013471557758748531, 0.012067977339029312, 0.07010453194379807, -0.03290615230798721, -0.0642470121383667, 0.025132229551672935, -0.018215537071228027, 0.07189721614122391, -0.08814658969640732, 0.018794292584061623, 0.05954700708389282, 0.08097061514854431, 0.007129589095711708, -0.03796902298927307, 0.07696450501680374, 0.06067624315619469, 0.07939326763153076, -0.05219733715057373, 0.0076342117972671986, 0.022004781290888786, -0.04315881431102753, -0.004535045009106398, -0.014393149875104427, 0.09157972037792206, -0.02649543434381485, -0.0020897716749459505, -0.03165517747402191, 0.026388129219412804, -0.07531452924013138, -0.030283428728580475, 0.019788958132267, -0.03395044803619385, 0.039928171783685684, 0.0329655297100544, 0.028254978358745575, -0.010391931049525738, 0.014597541652619839, -0.03378590941429138, -0.024518685415387154, 0.042180296033620834, -0.006667517591267824, -0.041799455881118774, -0.0247492715716362, -0.004997833166271448, -0.0163728017359972, -0.034971531480550766, 0.00604436406865716, 0.09292256087064743, -0.039035141468048096, -0.04507087543606758, 0.03645148128271103, -0.012176906690001488, -0.038181353360414505, -0.02166054956614971, 0.0912620797753334, -0.00425720727071166, 0.017220038920640945, 0.05906050279736519, 0.05364111810922623, 0.010847528465092182, 0.011708133853971958, -0.03644551709294319, -0.057060107588768005, 0.1002286970615387, 7.074856160734738e-32, -0.08051630854606628, -0.015871984884142876, -0.10488496720790863, 0.06316156685352325, 0.05415782704949379, 0.005493687465786934, 0.03227950260043144, -0.04662163183093071, -0.015395683236420155, 0.03517919406294823, -0.006141803693026304, 0.02240573801100254, -0.11616804450750351, 0.06821918487548828, -0.09248580783605576, 0.004739085678011179, -0.022077418863773346, -0.05370122939348221, -0.038006678223609924, -0.04989389702677727, -0.059020932763814926, -0.022723082453012466, 0.040295716375112534, -0.007804972119629383, 0.017303384840488434, 0.026472391560673714, -0.14636078476905823, 0.02292134426534176, -0.008044146932661533, -0.0653194785118103, 0.08315180987119675, -0.006667340639978647, -0.05721134692430496, 0.003563946345821023, 0.0310945026576519, -0.043609604239463806, 0.005351798143237829, 0.052435502409935, 0.03308584541082382, 0.052257999777793884, 0.010222211480140686, -0.07768355309963226, -0.05666258558630943, -0.026977287605404854, 0.05165074020624161, -0.0837290957570076, -0.011551741510629654, -0.07125450670719147, -0.014821323566138744, 0.00829088781028986, -0.023404398933053017, 0.0205466840416193, 0.015845786780118942, 0.021585911512374878, 0.03763623163104057, -0.04450979828834534, 0.03654903918504715, 0.039195917546749115, -0.052843160927295685, -0.06105966866016388, -0.006625230889767408, 0.16089104115962982, -0.08345088362693787, 0.054449159651994705 ]
228 Review exercise 2 21 a Expand (1 − 2x)10 in ascending powers of x up to and including the term in x3. (3 marks) b Use your answ er to part a to evaluate (0.98)10 correct to 3 decimal places. (1 mark) ← Sectio n 8.5 22 If x is so small tha t terms of x3 and higher can be ignored, (2 − x)(1 + 2x)5 ≈ a + bx + cx2. Find the values of the constants a, b and c. (5 marks) ← Section 8.4 23 The coefficient of x in the binomial expansion of (2 − 4x)q, where q is a positive integer, is −32q. Find the value of q. (4 marks) ← Section 8.4 24 The diagram shows triangle ABC, with AB = √ __ 5 cm, ∠ABC = 45° and ∠BCA = 30°. Find the exact length of AC. (3 marks) 5 cm Not to scale 45° 30° B CA ← Section 9.2 25 The diagram shows triangle ABC, with AB = 5 cm, BC = (2 x − 3) cm, CA = ( x + 1) cm and ∠ABC = 60°. (x + 1) cm(2x – 3) cm 5 cm Not to scale60° C AB a Show that x satisfies the equation x 2 − 8x + 16 = 0. (3 marks) b Find the value of x. (1 mark) c Calculate the ar ea of the triangle, giving your answer to 3 significant figures. (2 marks) ← Section 9.4E E/p E/p E E/p26 Ship B is 8 km, on a bearing of 030°, from ship A. Ship C is 12 km, on a bearing of 140°, from ship B. a Calculate the distance of ship C from ship A. (4 marks) b Calculate the bearing of ship C from ship A. (3 marks) ← Section 9.4 27 The triangle ABC has v ertices A(−2, 4), B(6, 10) and C(16, 10). a Prov e that ABC is an isosceles triangle. (2 marks) b Calculate the siz e of ∠ABC . (3 marks) ← Sections 5.4, 9.4 28 The diagram shows ΔABC. Calcula te the area of ΔABC. (6 marks) 3.5 cm4.3 cm 8.6 cm40°B AD C ← Section 9.4 29 The circle C has centre (5, 2) and radius 5. The points X (1, −1), Y (10, 2) and Z (8, k) lie on the circle, where k is a positive integer. a Write down the equa tion of the circle. (2 marks) b Calculate the v alue of k. (1 mark) c Show that cos ∠XYZ = √ __ 2 ___ 10 (5 marks) ← Sections 6.2, 9.4 30 a On the same set of axes , in the interval 0 < x < 360°, sketch the graphs of y = tan (x − 90°) and y = sin x. Labe l clearly any points at which the graphs cross the coordinate axes. (5 marks) b Hence write down the number of solutions of the equation tan (x − 90°) = sin x in the interva l 0 < x < 360°. (1 mark) ← Section 9.6E/p E/p E/p E/p E
[ -0.06631626188755035, 0.13035814464092255, 0.07419974356889725, 0.026210933923721313, -0.019311651587486267, 0.07075368613004684, -0.04782409220933914, 0.013677211478352547, -0.08793962001800537, 0.0309456754475832, -0.06936056911945343, -0.11137841641902924, -0.03532185032963753, -0.01971719227731228, 0.0169499721378088, -0.020967280492186546, 0.028304412961006165, -0.02835807204246521, -0.10081330686807632, 0.027762630954384804, 0.012071572244167328, -0.08772169053554535, 0.041033368557691574, 0.029189033433794975, 0.06191817298531532, -0.08541343361139297, -0.00655722850933671, -0.00018698873464018106, -0.029090307652950287, -0.03938768431544304, -0.0057055046781897545, 0.023923367261886597, 0.09090963751077652, -0.1094866469502449, -0.01977897249162197, 0.0015932812821120024, 0.08109842985868454, 0.012496324256062508, 0.02246110327541828, 0.019952675327658653, -0.02346777357161045, 0.04738674685359001, 0.06862223148345947, -0.048262353986501694, 0.012569616548717022, -0.06104759871959686, -0.02967909350991249, 0.0025323107838630676, 0.0450453981757164, -0.02433549240231514, 0.0057803052477538586, 0.0002690580440685153, -0.0605558417737484, 0.07262440025806427, -0.03644152730703354, -0.08843207359313965, -0.04204441234469414, -0.046822674572467804, -0.07548937201499939, -0.01862369291484356, -0.03833412006497383, 0.002179199131205678, -0.0050314911641180515, 0.026164844632148743, -0.013237210921943188, 0.08033977448940277, -0.0020304094068706036, -0.04397765174508095, 0.014840840362012386, 0.06998555362224579, -0.019611183553934097, 0.0016284789890050888, 0.05730461701750755, -0.06687918305397034, 0.07511447370052338, -0.00006985900836298242, -0.12971588969230652, 0.01033981516957283, 0.021749980747699738, -0.037912774831056595, -0.03098524734377861, -0.022822275757789612, 0.07803089171648026, -0.01698995754122734, 0.04164210706949234, 0.037134621292352676, 0.06810786575078964, 0.06154051795601845, -0.02699783258140087, 0.010441594757139683, 0.09241317957639694, -0.045629292726516724, -0.038697678595781326, -0.005778074264526367, 0.00263994256965816, -0.04289096221327782, -0.05381430685520172, -0.10470251739025116, -0.0016640749527141452, 0.11815572530031204, 0.043804991990327835, -0.07634757459163666, -0.017960434779524803, -0.006995528936386108, -0.1183779165148735, -0.09846655279397964, -0.0006042290478944778, 0.00332474778406322, 0.04060590639710426, -0.06678829342126846, 0.035718269646167755, 0.017965242266654968, 0.019706709310412407, 0.06048843264579773, 0.04819091409444809, -0.020249953493475914, 0.12311559170484543, 0.0038450337015092373, -0.02631472982466221, -0.022392362356185913, 0.03702651336789131, -0.05160508677363396, 0.031020505353808403, -0.017000984400510788, -0.0028606648556888103, -0.07542510330677032, 0.05740669369697571, 0.03074571117758751, -0.06053224951028824, -0.060765475034713745, -0.0062921070493757725, 0.018721554428339005, -0.026929562911391258, 0.023707322776317596, 0.005971772130578756, -0.0911044031381607, -0.04135417193174362, 0.07874423265457153, -0.022519920021295547, 0.05104172229766846, 0.08070380240678787, -0.005827472545206547, 0.04454585164785385, -0.03568632900714874, 0.05842667445540428, 0.08237513899803162, -0.00311413686722517, -0.05521683022379875, 0.02498549595475197, -0.0011017763754352927, 0.006873490288853645, 0.010455269366502762, 0.06311098486185074, -0.0015476987464353442, 0.02603098563849926, -0.058721236884593964, -0.0023495745845139027, -0.07195080071687698, 0.006273059174418449, -0.05457768216729164, -0.09617899358272552, 0.025262203067541122, -0.08104100823402405, 0.07508989423513412, 0.1317308396100998, 0.0010380400344729424, 0.05911753326654434, 0.02185479737818241, -0.08465392887592316, 0.014891151338815689, 0.06989140063524246, 0.015265138819813728, -0.02566453069448471, 0.05962191894650459, 0.004027721006423235, -0.024513237178325653, 0.10922215133905411, 0.02264929749071598, -0.03286486864089966, 0.012873160652816296, 0.04264501482248306, -0.041499361395835876, -0.02302049659192562, -0.0006165361846797168, -0.040828973054885864, 0.0070837452076375484, -0.06771887838840485, 0.007022831588983536, 0.042175740003585815, 0.07440205663442612, 0.0060241795144975185, -0.061123307794332504, -0.05460166931152344, 0.07204034179449081, -0.01993829384446144, -0.022031594067811966, -0.017039859667420387, -0.014608682133257389, -0.0807945653796196, -0.0013073482550680637, 0.03324538469314575, -0.013260654173791409, 0.06544210761785507, 0.0292661115527153, -0.009639456868171692, 0.005426658783107996, -0.038886941969394684, -0.030590025708079338, 0.05977128446102142, 0.046169135719537735, -0.01582959294319153, -0.01818722113966942, -0.04373093321919441, -0.058917246758937836, -0.0244272630661726, 0.040360625833272934, 0.054428841918706894, -0.0341222882270813, -0.05875268206000328, -0.032471247017383575, 0.018774867057800293, -0.05053146556019783, 0.01289985328912735, -4.228689857691999e-34, -0.09133093059062958, 0.08337531983852386, -0.055465858429670334, -0.02672061324119568, 0.017985250800848007, -0.04401886463165283, 0.02845056727528572, -0.03751959651708603, 0.08733499050140381, -0.014859785325825214, 0.04059942811727524, 0.04363894835114479, -0.0005547167966142297, -0.028623495250940323, -0.08120489865541458, -0.02957955189049244, -0.04197727143764496, 0.03964604064822197, 0.03256872668862343, -0.0499202236533165, 0.05763779208064079, -0.05725189670920372, -0.0273248553276062, 0.05265381932258606, -0.014255168847739697, 0.053156618028879166, 0.025604140013456345, -0.05002669617533684, 0.030254211276769638, 0.029086599126458168, -0.01617666520178318, -0.007660166826099157, 0.03774145990610123, -0.008212395012378693, 0.027524396777153015, -0.13580331206321716, 0.05580917000770569, 0.013037150725722313, 0.06728199869394302, 0.005635702982544899, 0.07046160846948624, -0.043781787157058716, 0.015020010061562061, -0.024394255131483078, 0.02770278789103031, -0.08544696867465973, -0.05353805795311928, 0.1014709398150444, 0.05320042371749878, -0.01338366698473692, 0.0459454208612442, -0.06733039021492004, -0.044290121644735336, 0.02225671522319317, 0.06715837866067886, 0.05792858824133873, 0.060883454978466034, 0.0256794523447752, -0.052044328302145004, -0.06394591927528381, -0.07759817689657211, 0.019135508686304092, -0.0105286231264472, 0.03194039314985275, -0.01868593506515026, 0.016784140840172768, -0.13779549300670624, 0.012091117911040783, -0.06565417349338531, -0.0008087898604571819, 0.029665760695934296, 0.05000445246696472, -0.034661196172237396, -0.10329707711935043, -0.09869880229234695, 0.0013686250895261765, 0.010894966311752796, 0.013588096015155315, 0.000299826730042696, -0.0899110659956932, 0.012627176940441132, 0.00788500253111124, 0.037896301597356796, 0.01577811874449253, -0.017081040889024734, 0.029087869450449944, 0.11489453166723251, 0.006349288858473301, -0.028784427791833878, 0.0058700270019471645, -0.025622664019465446, 0.028833884745836258, 0.012032613158226013, -0.1081448420882225, 0.04753146320581436, 9.007408252547331e-32, 0.011067391373217106, -0.012308030389249325, -0.06550728529691696, -0.014126022346317768, 0.022319674491882324, 0.02270421013236046, -0.031823717057704926, -0.05520996078848839, -0.001834737602621317, -0.05669373646378517, 0.08938334137201309, 0.01764254830777645, -0.02278956025838852, 0.040532223880290985, -0.10817981511354446, -0.05378648266196251, -0.007672686129808426, 0.03676140308380127, -0.07225878536701202, 0.03878280520439148, -0.025268105790019035, -0.006513301748782396, -0.006120145320892334, 0.04080261290073395, 0.04763137549161911, -0.015054050832986832, -0.06427296996116638, 0.01557276863604784, -0.03294464945793152, 0.018723247572779655, 0.01158994622528553, -0.0004849928373005241, -0.03014298528432846, -0.01583527773618698, 0.027916869148612022, 0.06058749184012413, 0.04394172132015228, 0.06338384747505188, 0.07502460479736328, 0.03290960565209389, -0.04260171577334404, -0.10443402081727982, -0.02814757451415062, 0.005231882445514202, 0.043338727205991745, -0.11988554149866104, 0.005490576848387718, -0.06817123293876648, 0.025957176461815834, -0.009215581230819225, -0.06879028677940369, 0.058923106640577316, 0.041389040648937225, 0.01900455169379711, 0.12499608844518661, 0.02252797596156597, 0.004750462248921394, 0.0033976275008171797, -0.10374825447797775, 0.018404241651296616, 0.0018903844757005572, 0.10618411749601364, -0.07525472342967987, 0.04469958692789078 ]
229 Review exercise 2 31 The graph sho ws the curve y = sin (x + 45°), −360° < x < 360°. y = sin(x + 45°) Oy x a Write down the coordinates of each point wher e the curve crosses the x-axis. (2 marks) b Write down the coor dinates of the point where the curve crosses the y-axis. (1 mark) ← Section 9.6 32 A pyramid has four triangular faces and a square base . All the edges of the pyramid are the same length, s cm. Show that the total surface area of the pyramid is ( √ __ 3 + 1)s2 cm2. (3 marks) ← Sections 9.4, 10.2 33 a Given that sin θ = cos θ, find the value of tan θ. (1 mark) b Find the values of θ in the interval 0 < θ < 360° for which sin θ = cos θ. (2 marks) ← Sections 10.3, 10.4 34 Find all the values of x in the interval 0 < x < 360° for which 3 tan2x = 1. (4 marks) ← Section 10.4 35 Find all the values of θ in the interva l 0 < θ < 360° for which 2 sin (θ − 30°) = √ __ 3 . (4 marks) ← Section 10.5 36 a Show that the equation 2 cos2 x = 4 − 5 sin x ma y be written as 2 sin2 x − 5 sin x + 2 = 0. (2 marks) b Hence solve, f or 0 < x < 360°, the equation 2 cos2 x = 4 − 5 sin x. (4 marks)E E/p E E E E37 Find all of the solutions in the interval 0 < x < 360° of 2 tan2 x − 4 = 5 tan x giving each solution, in degrees , to one decimal place. (6 marks) ← Section 10.6 38 Find all of the solutions in the interval 0 < x < 360° of 5 sin2 x = 6(1 − cos x) giving each solution, in degrees, to one decimal place. (7 marks) ← Section 10.6 39 Prove that cos2 x (tan2 x + 1) = 1 for all values of x where cos x and tan x are defined. (4 marks) ← Sections 7.4, 10.3E E E/p 1 The diagram shows a sq uare ABCD on a set of coordinate axes. The square intersects the x -axis at the points B and S, and the equation of the line which passes through B and C is y = 3 x − 12. a Cal culate the area of the square. b Fin d the coordinates of S . ← Sections 5.2, 5.4 2 Prove that the circle ( x + 4)2 + (y – 5)2 = 82 lies completely inside the circle x 2 + y2 + 8x – 10 y = 59. ← Sections 1.5, 6.2 3 Prove that for all positive integers n and k , ( n k ) + ( n k + 1 ) = ( n + 1 k + 1 ) . ← Sections 7.4, 8.2 4 Solve for 0° < x < 360° the equation 2 sin3 x – sin x + 1 = co s2 x. ← Section 10.6B S CDA Oy xChallenge
[ 0.03696100041270256, 0.03221121430397034, -0.04707975685596466, -0.07145076990127563, -0.08015643060207367, 0.016630632802844048, 0.00223378068767488, -0.0013065810780972242, -0.08953610062599182, -0.05020107328891754, 0.059420812875032425, -0.05412749946117401, -0.024717174470424652, 0.02815667726099491, 0.00044883694499731064, -0.013916434720158577, -0.06512843072414398, 0.03247160091996193, -0.05123850703239441, -0.06740023195743561, 0.07985330373048782, -0.026936179026961327, 0.015023973770439625, -0.04483780637383461, 0.003955096006393433, -0.02721254713833332, -0.02735721878707409, -0.0564083456993103, 0.005240713711827993, -0.01981222629547119, -0.06058864668011665, -0.019443923607468605, 0.0358278825879097, -0.038867607712745667, 0.005048804450780153, -0.0018727374263107777, 0.026125306263566017, 0.07580924034118652, 0.04325602203607559, 0.0069305007345974445, -0.04696790874004364, 0.08483738452196121, -0.015544148162007332, 0.030371667817234993, 0.014866048470139503, -0.029647652059793472, -0.02194107137620449, -0.031704891473054886, 0.011785243637859821, 0.013865284621715546, 0.0533420704305172, -0.03813117370009422, -0.1551564335823059, -0.02568325400352478, -0.02002027817070484, 0.07218862324953079, -0.016258560121059418, 0.03327091783285141, -0.02798796072602272, 0.0003749635361600667, 0.07317721843719482, 0.043176546692848206, -0.02844202145934105, 0.07631082087755203, -0.05551411211490631, -0.030306067317724228, 0.06465499103069305, -0.06776633113622665, -0.026965737342834473, 0.05199522152543068, -0.021452646702528, -0.005798110738396645, -0.03959336504340172, -0.03355765342712402, 0.02377806417644024, -0.06968751549720764, -0.05870935320854187, 0.034095875918865204, -0.0532090961933136, -0.066370889544487, -0.05732516944408417, 0.050631724298000336, 0.0998716652393341, 0.037918467074632645, 0.08935229480266571, 0.029223652556538582, -0.008013643324375153, 0.05661347880959511, -0.044158365577459335, 0.0018575798021629453, 0.060238081961870193, -0.003666386939585209, -0.041818056255578995, -0.032503675669431686, -0.0248878076672554, -0.004365171771496534, -0.01685364916920662, -0.06945623457431793, -0.016318989917635918, 0.10948272049427032, -0.08422058820724487, -0.008718926459550858, 0.004848891869187355, 0.1071036085486412, 0.010165532119572163, 0.056794844567775726, 0.07271800935268402, 0.0678112804889679, 0.07148027420043945, 0.006352280732244253, -0.03784109279513359, -0.023931151255965233, 0.06805402785539627, 0.09822572022676468, 0.026781782507896423, -0.10833628475666046, 0.04075570032000542, -0.006810097023844719, -0.039177022874355316, -0.030704056844115257, 0.09586311131715775, -0.05963963270187378, 0.061195071786642075, 0.009416301734745502, -0.05017020180821419, -0.09688498824834824, -0.013255688361823559, 0.0633714571595192, 0.001981313806027174, 0.047131530940532684, 0.15153798460960388, -0.042767781764268875, -0.0051077865064144135, -0.14553986489772797, 0.008939851075410843, -0.018494945019483566, 0.05849071592092514, 0.11714950203895569, -0.017862407490611076, -0.11433245986700058, -0.004132917616516352, 0.11023873090744019, -0.006396268494427204, -0.019805917516350746, 0.0745125338435173, 0.009977876208722591, -0.08774600923061371, -0.060957733541727066, 0.03870287537574768, 0.05104030668735504, 0.02844187058508396, -0.014892032369971275, -0.013548070564866066, 0.04292502999305725, -0.03688163682818413, 0.042270928621292114, -0.03824543207883835, -0.007920794188976288, -0.011723129078745842, -0.012766879051923752, -0.07348870486021042, 0.05390011519193649, -0.011291839182376862, 0.022663168609142303, 0.00696890102699399, 0.012201853096485138, 0.0011015594936907291, 0.035390596836805344, 0.028638646006584167, -0.026047110557556152, 0.04816349595785141, 0.02417367696762085, -0.0008598857093602419, 0.1384253203868866, 0.0068863434717059135, -0.03833417221903801, 0.06657616049051285, 0.08695342391729355, 0.047663602977991104, -0.012217349372804165, 0.07653862982988358, -0.09046392142772675, -0.006132998503744602, -0.040897466242313385, -0.01405857503414154, -0.03336014598608017, -0.031144188717007637, -0.0020128486212342978, -0.03901896998286247, 0.013441118411719799, 0.012267258949577808, -0.01484626904129982, -0.11429154872894287, 0.04679900407791138, -0.13353118300437927, -0.043448638170957565, -0.013965168967843056, 0.021901432424783707, -0.09466612339019775, 0.026989737525582314, 0.0104276854544878, 0.013224597088992596, 0.04113055020570755, 0.010150262154638767, -0.028803713619709015, 0.016025997698307037, 0.049333859235048294, -0.035310931503772736, 0.007305733859539032, -0.037110306322574615, -0.02466670796275139, -0.11891739815473557, -0.0460638701915741, 0.012532146647572517, 0.08236049860715866, -0.0112362215295434, 0.03002387471497059, -0.08634281158447266, -0.09381116181612015, 0.035752732306718826, 0.018379585817456245, 0.04078607261180878, 0.013604122214019299, 4.3749728746476366e-33, 0.009838604368269444, 0.0743410661816597, -0.01326211728155613, -0.04453200846910477, -0.005871975794434547, 0.037772949784994125, 0.08269650489091873, 0.02044103853404522, -0.11043445020914078, 0.10124405473470688, 0.01628061942756176, -0.01185852661728859, 0.01905735582113266, -0.031670860946178436, -0.03285034000873566, -0.032327450811862946, 0.012250417843461037, -0.02102178893983364, -0.05108841881155968, -0.06319072097539902, -0.032368943095207214, 0.0486680343747139, -0.03739446401596069, -0.001766983768902719, 0.03231206163764, 0.048846535384655, 0.0694975033402443, -0.08903144299983978, -0.015148447826504707, -0.02248542383313179, -0.10355886071920395, 0.0021822082344442606, -0.02966819703578949, 0.0727110281586647, -0.0658482164144516, 0.0000786478485679254, 0.025960339233279228, -0.05290648341178894, 0.0111208725720644, -0.04951988160610199, 0.04001770541071892, 0.08470093458890915, 0.06016018986701965, 0.0338931605219841, 0.04404835402965546, 0.036674562841653824, 0.06659546494483948, -0.04754449427127838, -0.07936687022447586, -0.06283506006002426, -0.0008293689461424947, -0.03007565811276436, 0.06193900853395462, -0.03916550800204277, 0.11540229618549347, 0.041605155915021896, -0.06329548358917236, -0.024087168276309967, 0.020162805914878845, -0.029903098940849304, -0.005160778760910034, -0.025474175810813904, -0.03450969606637955, 0.07333792746067047, 0.08592807501554489, -0.042220279574394226, 0.029676908627152443, -0.06094561144709587, 0.024213716387748718, 0.05066249147057533, 0.0032184936571866274, 0.016415517777204514, -0.057365354150533676, -0.08053912967443466, -0.011511077173054218, -0.03314676508307457, -0.045716747641563416, 0.09714207798242569, 0.01568596623837948, -0.02227214351296425, -0.04171876609325409, 0.039577458053827286, 0.04731319844722748, -0.07349827885627747, -0.024257687851786613, -0.05229876562952995, 0.07388424873352051, 0.018941089510917664, 0.05732647702097893, 0.00431068055331707, 0.019094394519925117, -0.05689305067062378, -0.042431097477674484, -0.011508801020681858, 0.05496302619576454, 9.131347087173454e-32, -0.04205476865172386, -0.032482028007507324, -0.03015195205807686, -0.01177885476499796, -0.017186498269438744, -0.037409715354442596, 0.1063074991106987, -0.06254294514656067, 0.038709089159965515, -0.04496212676167488, 0.05904146283864975, 0.04091636463999748, -0.041680708527565, 0.059357449412345886, -0.05067989602684975, -0.075546033680439, -0.03812790289521217, 0.036952823400497437, -0.01009391713887453, -0.07948242872953415, -0.017742816358804703, -0.05015658214688301, -0.014934387058019638, -0.002214580774307251, -0.06594156473875046, 0.08115243166685104, -0.03698815032839775, 0.03989377245306969, -0.02856752835214138, -0.1318419873714447, 0.032396771013736725, 0.0102741913869977, 0.030617598444223404, -0.025815291330218315, 0.006594143807888031, 0.011450658552348614, -0.08171262592077255, 0.043006978929042816, 0.008615837432444096, 0.01733955182135105, 0.005969621706753969, -0.04662347212433815, 0.04705222323536873, 0.049940597265958786, 0.03634548559784889, 0.011265554465353489, -0.004363852087408304, -0.013842497020959854, 0.005933552049100399, 0.02690439485013485, -0.0019032395211979747, 0.007484567351639271, -0.03334628418087959, 0.008793244138360023, 0.06672405451536179, 0.0003586013917811215, -0.0068283299915492535, -0.03965245187282562, -0.06457093358039856, 0.05419100821018219, -0.043200958520174026, 0.06509782373905182, -0.073220394551754, -0.018263734877109528 ]
23011Vectors After completing this chapter you should be able to: ● Use vectors in t wo dimensions → pages 231–235 ● Use column vectors and carry out arithmetic operations on vect ors → pages 235–238 ● Calculate the magnitude and direction of a vector → pages 239–242 ● Understand and use position vect ors → pages 242–244 ● Use vectors to solve geometric problems → pages 244–247 ● Understand vector magnit ude and use vectors in speed and distance calculations → pages 248–251 ● Use vectors to solve problems in context → pages 248–251Objectives 1 Write the column vector for AB CD the translation of shape a A to B b A to C c A to D ← GCSE Mathematics 2 P divides the line AB in the ratio AP : PB = 7 : 2. A PB Find: a AP ___ AB b PB ___ AB c AP ___ PB ← GCSE Mathematics 3 Find x to one decimal place. a b 79138 5 187 370°30°40° 110° xxxx c d 79138 5 187 370°30°40° 110° xxxx ← Sections 9.1, 9.2Prior knowledge check Pilots use vector addition to work out the resultant vector for their speed and heading when a plane encounters a strong cross-wind. Engineers also use vectors to work out the resultant forces acting on structures in construction.
[ 0.025005022063851357, -0.01579180732369423, -0.008918183855712414, -0.08755729347467422, -0.03894795849919319, 0.005673043895512819, -0.09762173146009445, 0.06928750872612, -0.10424664616584778, 0.10550964623689651, 0.025021549314260483, -0.09188618510961533, -0.026333849877119064, 0.017888778820633888, -0.06283427029848099, 0.024167831987142563, -0.06466799974441528, 0.18544267117977142, 0.03607418015599251, -0.019918963313102722, 0.01590985432267189, 0.002559439744800329, 0.01697264052927494, -0.06876195222139359, 0.02684042975306511, -0.007247177883982658, 0.0628579780459404, -0.044630613178014755, 0.02534445747733116, -0.0395301952958107, 0.009446959011256695, 0.0027163755148649216, 0.034102387726306915, 0.03204077482223511, -0.09418919682502747, 0.05278217792510986, 0.05856597051024437, 0.0016736369580030441, -0.00003239324360038154, -0.04579339921474457, -0.06748596578836441, 0.06739552319049835, -0.0003563253558240831, 0.06704004853963852, 0.026782512664794922, -0.006594159174710512, -0.024517986923456192, -0.04282861948013306, 0.06300532817840576, -0.05143839120864868, -0.010508744977414608, -0.07672090828418732, -0.009004860185086727, -0.011245349422097206, 0.03631870821118355, 0.012939592823386192, 0.02698655240237713, 0.06919174641370773, -0.04206689074635506, -0.11395424604415894, 0.04002479091286659, -0.04097716137766838, -0.008215563371777534, 0.008297509513795376, -0.006723685655742884, 0.007837964221835136, -0.05635931342840195, 0.08970677107572556, -0.014914073050022125, 0.024701794609427452, -0.1224512830376625, 0.005791304167360067, -0.04307544603943825, 0.025198975577950478, 0.01711229979991913, -0.05421913415193558, -0.011991355568170547, 0.018227234482765198, 0.02887512929737568, -0.025795068591833115, 0.030156807973980904, 0.08906763046979904, -0.013327060267329216, 0.012348974123597145, 0.06536240130662918, 0.0703844502568245, -0.009455954656004906, 0.047728411853313446, 0.04166843369603157, -0.06934444606304169, 0.056576188653707504, -0.05247862637042999, 0.04393913596868515, -0.02869189903140068, -0.0059865908697247505, 0.01839485950767994, 0.03431006148457527, -0.06007016450166702, 0.07681964337825775, 0.06624586880207062, 0.05693511664867401, -0.041339773684740067, -0.0191012155264616, 0.04536678269505501, -0.040015771985054016, -0.0431344099342823, 0.08861362189054489, -0.019280334934592247, 0.03144465759396553, 0.009392867796123028, 0.016108833253383636, 0.045098453760147095, -0.0767378956079483, -0.04755774140357971, 0.10461226105690002, -0.010882364585995674, -0.039965756237506866, 0.037328705191612244, 0.03268541768193245, -0.010380033403635025, -0.022021761164069176, -0.026471910998225212, 0.0025448661763221025, 0.03530431166291237, 0.042997099459171295, -0.01817420870065689, 0.08322972059249878, -0.025847289711236954, -0.004490485414862633, 0.03462868556380272, -0.013897126540541649, 0.032790426164865494, -0.06427422910928726, 0.030203387141227722, -0.024767395108938217, 0.14803694188594818, 0.05052436515688896, -0.007579437457025051, -0.016907742246985435, -0.03748869523406029, -0.01742427796125412, 0.08556946367025375, 0.03708959370851517, -0.10678654909133911, 0.04441716521978378, 0.018523475155234337, -0.06560689210891724, 0.008299157954752445, 0.042569950222969055, 0.06491696834564209, 0.03078618086874485, -0.04730665683746338, 0.029010189697146416, 0.06201070547103882, -0.0535031333565712, 0.05045491084456444, -0.047301311045885086, -0.019905705004930496, -0.0034077013842761517, -0.01887493208050728, -0.03202931582927704, -0.03529675304889679, -0.006767977960407734, 0.06447507441043854, 0.01856871135532856, 0.036440424621105194, -0.055723581463098526, 0.03104582242667675, 0.002093743300065398, -0.005724537186324596, 0.05321529880166054, 0.004097295925021172, -0.0146406264975667, 0.1351376622915268, 0.04391125962138176, -0.049114350229501724, 0.09330321103334427, -0.0029919189400970936, -0.046544019132852554, -0.0540919229388237, 0.0413406565785408, -0.0912085697054863, 0.06731481850147247, -0.029753582552075386, -0.05323643609881401, -0.0029997830279171467, -0.01893741264939308, -0.0007174393977038562, -0.10855087637901306, 0.031004322692751884, 0.10136698186397552, -0.06359024345874786, -0.03871847316622734, -0.07120799273252487, -0.14532946050167084, -0.07887936383485794, 0.05549130588769913, -0.03277445584535599, -0.051435962319374084, -0.048336658626794815, -0.00647254241630435, -0.038074471056461334, 0.0019801652524620295, 0.040638454258441925, -0.0037242788821458817, -0.022767338901758194, -0.021792421117424965, -0.06878042966127396, -0.005946607794612646, 0.0907551497220993, -0.03952566906809807, -0.10698820650577545, 0.0782708153128624, -0.05156749486923218, 0.07264988124370575, -0.07091864198446274, -0.025645136833190918, -0.08644811064004898, -0.01689431257545948, 0.019497575238347054, -0.018160387873649597, 0.021739182993769646, 0.01811651512980461, 1.3721940449782041e-33, -0.09199993312358856, -0.007788748946040869, -0.040272120386362076, -0.1001233458518982, -0.006977996323257685, -0.001861445140093565, 0.0362541563808918, -0.05796051397919655, 0.04101797938346863, -0.0653894767165184, -0.09724888950586319, -0.026370808482170105, -0.07298208028078079, 0.051056601107120514, 0.011051485314965248, -0.029073618352413177, -0.03764130920171738, -0.08180177956819534, -0.06160884350538254, -0.03315693885087967, -0.0337698757648468, -0.07624752819538116, -0.04290153086185455, -0.06168871745467186, -0.007763950154185295, 0.0005530892522074282, 0.08293554931879044, -0.057702820748090744, -0.08800212293863297, 0.021697569638490677, -0.044177912175655365, -0.024934951215982437, 0.03041362576186657, 0.06324220448732376, -0.0014307909877970815, 0.0029240287840366364, 0.055456358939409256, 0.03609301522374153, -0.047814324498176575, -0.08322843909263611, 0.10700863599777222, 0.05165848135948181, -0.008406260050833225, -0.058137934654951096, -0.03952999785542488, -0.001996383536607027, 0.09259127080440521, 0.0177808478474617, 0.0009743525879457593, 0.01485932432115078, -0.017010418698191643, -0.031453393399715424, 0.0732850730419159, -0.06338676065206528, 0.02941562794148922, 0.0048394035547971725, 0.057434238493442535, -0.06497873365879059, 0.09208493679761887, 0.00985468365252018, -0.04242175072431564, 0.005251970607787371, 0.07161781936883926, 0.03192148357629776, 0.04173925891518593, -0.06326979398727417, 0.04785647615790367, -0.015408993698656559, -0.07576283067464828, -0.08467497676610947, -0.05716552957892418, 0.09090684354305267, 0.03647193685173988, 0.03140205144882202, -0.00044149041059426963, -0.006141361780464649, 0.06573038548231125, -0.018378091976046562, 0.00025434960843995214, 0.02557353489100933, -0.037456315010786057, -0.025337887927889824, 0.047046203166246414, -0.003081290517002344, -0.06472406536340714, 0.039067018777132034, 0.04104413464665413, 0.01381829846650362, 0.0006374552031047642, -0.004883088171482086, -0.003352870000526309, 0.01873002015054226, 0.019556015729904175, 0.029209645465016365, 0.08242623507976532, 7.956552155489906e-32, -0.029993582516908646, 0.017031705006957054, -0.0950101986527443, 0.011700410395860672, 0.029915789142251015, 0.024236606433987617, 0.042018696665763855, 0.04669275879859924, -0.04502040520310402, -0.0030120043084025383, 0.025269512087106705, 0.031227661296725273, -0.007359120063483715, -0.0182651299983263, -0.06390011310577393, -0.09361889213323593, -0.012646477669477463, 0.00046227913117036223, -0.024552686139941216, -0.056548409163951874, 0.033816300332546234, 0.015124290250241756, -0.01898825727403164, 0.0031263018026947975, 0.04753163084387779, 0.06984759867191315, -0.10170231759548187, 0.047924768179655075, 0.07767543196678162, 0.01456817053258419, 0.07687463611364365, 0.029469920322299004, -0.028560997918248177, 0.04398176446557045, -0.06030520424246788, 0.029260190203785896, 0.010118404403328896, 0.035438280552625656, 0.0005133397644385695, 0.05410254746675491, -0.03467480465769768, -0.010168013162910938, 0.011266800574958324, 0.0005133909289725125, 0.056363750249147415, 0.02738896571099758, -0.05374651029706001, -0.03400846943259239, 0.040936704725027084, -0.04750420153141022, 0.015426065772771835, 0.001997158629819751, 0.06139814481139183, 0.051482293754816055, -0.007099486887454987, 0.015020354650914669, -0.038782618939876556, -0.013226453214883804, 0.0767211765050888, -0.05910291522741318, 0.007817394100129604, 0.03981204703450203, -0.1376776099205017, -0.08991916477680206 ]
231Vectors 11.1 Vectors A vector has both magnitude and direction. You can represent a vector using a directed line segment. This is vector ⟶ PQ . It starts at P and finishes at Q.This is vector ⟶ QP . It starts at Q and finishes at P.Q PQ P The direction of the arrow shows the direction of the vector. Small (lower case) letters are also used to represent vectors. In print, the small letter will be in bold type. In writing, you should underline the small letter to show it is a vector: a or a ~ ■ If ⟶ PQ = ⟶ RS then the line segments PQ and RS are equal in length and are parallel. ■ ⟶ AB = − ⟶ BA as the line segment AB is equal in length, parallel and in the opposite direction to BA. You can add two vectors together using the triangle law for vector addition. ■ Triangle la w for vector addition: ⟶ AB + ⟶ BC = ⟶ AC If ⟶ AB = a, ⟶ BC = b and ⟶ AC = c, then a + b = ca R SQP B AB –aa A B C A cb a The res ultant is the vector sum of two or more vectors. ⟶ AB + ⟶ BC + ⟶ CD = ⟶ AD Notation ADC B Example 1 The diagram shows vectors a, b and c. Draw a diagram to illustrate the vector addition a + b + c. c/a.ss01 /a.ss01 + b /a.ss01 + b + cb First use the triangle law for a + b, then use it again for ( a + b ) + c . The resultant goes from the start of a to the end of c.c ba Explore vector addition using GeoGe bra.Online
[ 0.04062908515334129, -0.01759522221982479, -0.004290326964110136, -0.07569000124931335, -0.09903721511363983, 0.003453226061537862, -0.040559522807598114, -0.023300280794501305, -0.04176913946866989, 0.07260175049304962, 0.02293035015463829, -0.03371328487992287, 0.006657063961029053, -0.01917254738509655, -0.05218978971242905, 0.017374970018863678, -0.05403992161154747, 0.08258131891489029, 0.09394014626741409, 0.02677009627223015, 0.04349910095334053, 0.0039830696769058704, -0.04316573217511177, -0.0015197372995316982, 0.03091040626168251, -0.0005079147522337735, 0.07284443080425262, 0.058925479650497437, -0.024193789809942245, -0.05437677353620529, -0.00729210814461112, 0.020696507766842842, 0.09082607924938202, 0.03539184480905533, 0.009150711819529533, 0.023512128740549088, 0.04631096497178078, 0.028485886752605438, -0.0009892657399177551, 0.01867377571761608, 0.024663180112838745, 0.021869592368602753, 0.010938838124275208, 0.03312193974852562, 0.016322728246450424, -0.007233430631458759, -0.025183947756886482, -0.018301546573638916, 0.01736215502023697, 0.039905499666929245, 0.018302282318472862, 0.016120506450533867, -0.022268902510404587, 0.04908869415521622, 0.026950862258672714, -0.032980479300022125, 0.007693187333643436, 0.025019299238920212, -0.049644388258457184, -0.12409193813800812, -0.008882365189492702, 0.016379259526729584, -0.011086377315223217, -0.005400258582085371, -0.027513990178704262, -0.004793972242623568, -0.07531207799911499, 0.055441197007894516, 0.0009271520539186895, 0.07400298118591309, -0.049460865557193756, -0.009045409969985485, 0.016680806875228882, 0.04706839099526405, -0.05302417278289795, -0.08873075991868973, 0.009414390660822392, -0.008708512410521507, 0.006449646782130003, -0.0506349615752697, -0.06429553031921387, 0.04341064766049385, -0.036527469754219055, 0.03692528232932091, -0.005707595497369766, 0.1047012209892273, 0.03652581945061684, 0.05091328173875809, 0.07499691098928452, -0.057964205741882324, -0.007788238115608692, 0.007693897932767868, 0.08264786750078201, -0.016451464965939522, 0.09496892243623734, 0.03859898820519447, 0.038889285176992416, -0.05947579815983772, -0.011141568422317505, 0.03507475554943085, 0.0576036274433136, -0.076820507645607, -0.06023489683866501, 0.03474598005414009, 0.011518895626068115, 0.017008788883686066, 0.09466247260570526, -0.07323592156171799, 0.0402144119143486, -0.0035091754980385303, -0.014543196186423302, 0.02852417156100273, 0.004823134280741215, -0.10541582852602005, 0.0600980669260025, -0.031168527901172638, -0.0946447029709816, 0.10667576640844345, 0.037719838321208954, 0.012229298241436481, -0.002672753995284438, -0.05534060671925545, -0.03330172970890999, -0.028166191652417183, 0.06801725178956985, 0.001258660340681672, 0.06759560108184814, -0.002255992731079459, -0.00032098102383315563, 0.04005421698093414, 0.03958338499069214, -0.0014019468799233437, -0.03299561142921448, 0.002085543004795909, -0.0186209287494421, 0.04454420506954193, -0.014133801683783531, 0.018591785803437233, 0.01197885163128376, -0.07029683887958527, 0.03896106779575348, 0.1478346586227417, 0.05602633208036423, -0.001801924780011177, -0.03191613405942917, 0.01075785979628563, -0.13499754667282104, -0.018524974584579468, 0.0072426339611411095, 0.04937414079904556, -0.0004475539899431169, -0.03259905055165291, -0.0015183258801698685, 0.02663029357790947, -0.061102088540792465, 0.04664168879389763, -0.04323141276836395, -0.003822863567620516, 0.019025282934308052, 0.04023769497871399, -0.060960400849580765, -0.05221044644713402, -0.07728104293346405, 0.018975146114826202, 0.002805753843858838, 0.051290787756443024, -0.036024969071149826, 0.05089646577835083, 0.07693953812122345, -0.051062505692243576, 0.04209761321544647, -0.004874418023973703, -0.010640562511980534, -0.0008380461949855089, 0.009153286926448345, -0.052664950489997864, -0.03217959776520729, -0.027285568416118622, -0.008117003366351128, -0.02954232320189476, 0.041205547749996185, -0.033732179552316666, 0.048525381833314896, -0.07629905641078949, -0.04968775436282158, 0.048440322279930115, -0.07260599732398987, 0.00413891626521945, -0.025435181334614754, 0.0001971761230379343, 0.14394687116146088, -0.043752461671829224, -0.07917862385511398, -0.02526288665831089, -0.1100524440407753, -0.021313929930329323, -0.025441989302635193, 0.02363981306552887, -0.01635432057082653, -0.0028991014696657658, -0.015341189689934254, -0.05410491302609444, -0.026332050561904907, 0.08510435372591019, -0.05052236467599869, 0.003927728161215782, -0.0015239769127219915, -0.05321628227829933, -0.07704044133424759, 0.04733498394489288, -0.05406895652413368, 0.008178151212632656, 0.048145540058612823, -0.09018144756555557, -0.0202723927795887, -0.03782119229435921, -0.05519392713904381, -0.09705930948257446, 0.010392224416136742, 0.010051882825791836, 0.018112879246473312, 0.06881119310855865, 0.021534541621804237, 8.830772740857814e-33, -0.07520389556884766, -0.004355223849415779, -0.03254179656505585, -0.001738712191581726, -0.05157560482621193, -0.03582466393709183, 0.0982627123594284, -0.026192912831902504, -0.0457775704562664, -0.027491997927427292, -0.046673789620399475, -0.02140592224895954, -0.06476759910583496, 0.054424721747636795, 0.016527937725186348, 0.027177177369594574, -0.04539269581437111, 0.0005274919676594436, -0.033036235719919205, -0.02291969768702984, -0.02372889406979084, -0.1382102370262146, -0.06246094033122063, -0.034684840589761734, 0.011872701346874237, 0.011563396081328392, 0.12628355622291565, -0.07777994126081467, -0.07261206209659576, -0.02104286104440689, 0.05453711003065109, 0.01658446341753006, 0.026388168334960938, 0.09246595203876495, -0.028988081961870193, 0.025385020300745964, 0.06660865992307663, -0.02091367170214653, -0.007992264814674854, -0.07266673445701599, 0.0978909432888031, 0.04127924516797066, 0.06152964010834694, 0.022214218974113464, -0.0806126520037651, -0.0010364598128944635, 0.1144418716430664, 0.000614240241702646, 0.021923938766121864, 0.005238219164311886, -0.042650651186704636, -0.020827682688832283, 0.08912487328052521, -0.034769706428050995, -0.03781295567750931, -0.04063231498003006, -0.03197373449802399, 0.0006814122316427529, 0.09966348111629486, -0.06180717051029205, -0.03621205687522888, 0.004985111299902201, 0.08698804676532745, 0.07137012481689453, 0.036075398325920105, -0.060660336166620255, 0.08207795023918152, 0.0046316590160131454, 0.021121172234416008, -0.13393156230449677, 0.04691149666905403, 0.07552757114171982, -0.03283194825053215, 0.026906056329607964, -0.11556671559810638, 0.012615762650966644, 0.03747953847050667, 0.038455069065093994, 0.04701189324259758, 0.0224321112036705, -0.013018355704843998, 0.0017826484981924295, 0.016897067427635193, 0.060760390013456345, -0.036404240876436234, -0.02811381220817566, 0.020594799891114235, 0.026775192469358444, -0.026587089523673058, -0.019874459132552147, 0.012538601644337177, 0.10825706273317337, -0.03542061150074005, -0.01485564187169075, 0.012028436176478863, 6.959533111952966e-32, -0.018228450790047646, -0.0245922040194273, -0.06571550667285919, -0.1078488826751709, 0.08378338813781738, 0.018273834139108658, 0.04525037854909897, -0.041950684040784836, -0.02350837178528309, -0.046344492584466934, 0.03308737650513649, 0.05248783156275749, -0.071591816842556, -0.04316530376672745, 0.008061792701482773, -0.047594670206308365, 0.04947516322135925, -0.024772565811872482, 0.009122317656874657, -0.06732664257287979, 0.05682998150587082, 0.023712174966931343, -0.019462360069155693, 0.03561389446258545, -0.009370096027851105, 0.03253205493092537, -0.054227590560913086, 0.15870656073093414, 0.007228414993733168, -0.010407492518424988, 0.0740584060549736, 0.09205453097820282, -0.006211460568010807, 0.014745688997209072, -0.0279002096503973, 0.03223864361643791, 0.02632756158709526, 0.021937785670161247, 0.012572776526212692, 0.012498948723077774, -0.03157856687903404, -0.1635877937078476, 0.011614130809903145, -0.004453450907021761, 0.05875366926193237, 0.018708135932683945, -0.024654043838381767, -0.08536820858716965, 0.017599962651729584, -0.11674295365810394, 0.017926955595612526, 0.0322740338742733, 0.04153892397880554, 0.011014978401362896, -0.05881261080503464, -0.018565775826573372, -0.08253695070743561, 0.031413767486810684, 0.07203959673643112, -0.06674230843782425, 0.04501204565167427, 0.09959204494953156, -0.08217130601406097, -0.08588219434022903 ]
232 Chapter 11 ■ Subtracting a vect or is equivalent to ‘adding a negative vector’: a − b = a + (−b) If you travel from P to Q, then back from Q to P, you are back where you started, so your displacement is zero. ■ Adding the vect ors ⟶ PQ and ⟶ QP gives Q P ⟶ QP = − ⟶ PQ . So ⟶ PQ + ⟶ QP = ⟶ PQ − ⟶ PQ = 0.Hint the zero v ector 0: ⟶ PQ + ⟶ QP = 0ba–b a – ba To subtract b, you reverse the d irection of b then add.Hint Example 2 In the diagram, ⟶ QP = a , ⟶ QR = b , ⟶ QS = c and ⟶ RT = d . Find in terms of a, b, c and d: a ⟶ PS b ⟶ RP c ⟶ PT d ⟶ TS RQ P TSca b dYou can multiply a vector by a scalar (or number). a 3a 1 2ab –2b 12 – b ■ Any vector parallel to the vector a may be Real n umbers are examples of scalars . They have magnitude but no direction.Notation written as λa, where λ is a non-zero scalar. If the number is positive (≠ 1) the n ew vector has a different length but the same direction.If the number is negative (≠ − 1) the new vector has a different length and the opposite direction. a ⟶ PS = ⟶ PQ + ⟶ QS = −a + c = c − a b ⟶ RP = ⟶ RQ + ⟶ QP = −b + a = a − b c ⟶ PT = ⟶ PR + ⟶ RT = (b − a) + d = b + d − a d ⟶ TS = ⟶ TR + ⟶ RS = −d + ( ⟶ RQ + ⟶ QS ) = −d + (−b + c) = c − b − dAdd vectors using △ PQS . Add vectors using △ RQP . Add vectors using △ PRT . Use ⟶ PR = − ⟶ RP = −(a − b) = b − a . Add vectors using △ TRS and △ RQS .
[ 0.001238883240148425, 0.03219946473836899, -0.013150774873793125, -0.02002209611237049, -0.03340228646993637, 0.020176496356725693, -0.05468110367655754, -0.03823411837220192, -0.06301996856927872, 0.07297851890325546, 0.06581316143274307, -0.058116428554058075, -0.00007100145739968866, 0.017196519300341606, -0.045328233391046524, 0.029386360198259354, -0.05704271048307419, 0.09959962218999863, 0.045926183462142944, 0.0443035326898098, 0.04210212826728821, -0.043439846485853195, -0.11636416614055634, 0.03131333738565445, 0.060058847069740295, 0.044431671500205994, 0.03762566298246384, 0.014469537883996964, 0.05191029608249664, -0.09117278456687927, 0.019230598583817482, 0.01810685358941555, 0.0021123006008565426, 0.027674714103341103, 0.07997521758079529, 0.04930364340543747, -0.06614691019058228, 0.0166105255484581, -0.018611952662467957, -0.01034134067595005, 0.00015772186452522874, -0.0029882730450481176, 0.0020757759921252728, 0.02394746243953705, -0.02641158364713192, 0.03616900369524956, 0.004284025635570288, -0.025670481845736504, 0.06601190567016602, -0.02335154265165329, 0.11481201648712158, -0.044259894639253616, -0.016523515805602074, 0.04449218139052391, -0.08203127235174179, -0.033798567950725555, 0.04656662791967392, 0.022256841883063316, 0.009580899029970169, -0.09690988063812256, -0.004010360687971115, -0.018451789394021034, -0.035176362842321396, 0.026117637753486633, -0.0242502149194479, -0.03091977909207344, -0.03381311148405075, 0.015050359070301056, -0.07680100947618484, 0.09557006508111954, -0.08909770101308823, 0.05492605268955231, -0.027419980615377426, -0.035054758191108704, 0.06898438185453415, -0.06928069144487381, -0.01919667236506939, 0.10237355530261993, 0.033752817660570145, -0.011888404376804829, 0.044537611305713654, -0.002151698339730501, -0.03218844532966614, 0.06704551726579666, -0.024504374712705612, 0.0014020490925759077, 0.010491099208593369, 0.04258625954389572, -0.014711721800267696, 0.04255295544862747, 0.02076135203242302, -0.030198199674487114, 0.09501852095127106, -0.010313593782484531, 0.08269716054201126, -0.04974919557571411, -0.03298545628786087, 0.043553538620471954, 0.04372015967965126, 0.07392969727516174, 0.06547123938798904, 0.005350831430405378, -0.03262096270918846, 0.03424903377890587, 0.014994675293564796, 0.018899615854024887, 0.02691962942481041, -0.03624264895915985, 0.09076846390962601, 0.02570619434118271, -0.00015092387911863625, -0.04615669697523117, 0.003414823906496167, 0.019972743466496468, -0.05559767782688141, 0.013445505872368813, -0.02350229024887085, 0.14524109661579132, -0.02590889111161232, -0.008251070976257324, -0.055772725492715836, -0.13720619678497314, -0.02771124057471752, -0.008964360691606998, 0.012546938844025135, -0.06729650497436523, 0.1138143390417099, -0.033097658306360245, -0.0536101832985878, -0.005020478740334511, 0.03016672097146511, -0.04926082491874695, -0.00017901982937473804, -0.03872593864798546, -0.10143609344959259, 0.029726846143603325, -0.07005660235881805, -0.05432962253689766, -0.002215499524027109, -0.11938951164484024, -0.03572768718004227, 0.06995748728513718, 0.03986458480358124, -0.0684342086315155, -0.010426023975014687, -0.0478876493871212, 0.008449905551970005, -0.0033379371743649244, 0.04763787239789963, -0.002652724040672183, 0.00346709368750453, -0.036101002246141434, 0.028919823467731476, 0.049385324120521545, -0.059716373682022095, 0.0018087560310959816, 0.009784993715584278, -0.043839726597070694, -0.013197870925068855, 0.05175190418958664, -0.11001158505678177, -0.061287447810173035, -0.01587051711976528, 0.034175559878349304, -0.08148057013750076, -0.026660200208425522, -0.05991080775856972, 0.06403898447751999, 0.012981083244085312, -0.04642706364393234, 0.00019310765492264181, -0.013384385965764523, -0.0766986683011055, 0.04922210052609444, 0.06545107066631317, -0.006109923589974642, -0.048415351659059525, 0.08443669229745865, -0.018338879570364952, -0.0286497063934803, 0.0068586464039981365, -0.07265684008598328, -0.006035997532308102, -0.051851533353328705, -0.012174095958471298, 0.0538259819149971, -0.07305140048265457, 0.05334591120481491, 0.008410782553255558, 0.0004363476182334125, 0.12449414283037186, -0.11727308481931686, 0.008952267467975616, -0.019371051341295242, -0.10483437031507492, 0.023019276559352875, 0.0006997861200943589, 0.013816989958286285, -0.036429744213819504, -0.032759442925453186, 0.04387792944908142, 0.06916084885597229, 0.008924941532313824, -0.014694852754473686, -0.09749089181423187, -0.0745365098118782, 0.08342280238866806, -0.10598421096801758, -0.04875796288251877, 0.09848964959383011, 0.036168333142995834, -0.010586072690784931, 0.08893661946058273, -0.09752172976732254, 0.004823349416255951, -0.05186593532562256, -0.007976023480296135, -0.03433660790324211, 0.013304637745022774, -0.019594557583332062, -0.0834178701043129, 0.04928680881857872, 0.0465315617620945, -4.513403773010773e-34, -0.11081306636333466, 0.03906897082924843, -0.03636879101395607, -0.047997552901506424, -0.016875941306352615, 0.03469458594918251, 0.07688585668802261, 0.06482106447219849, -0.004675642121583223, 0.009006342850625515, -0.12616582214832306, -0.009192803874611855, -0.03964364901185036, 0.005015263333916664, 0.006192377768456936, -0.01823517493903637, 0.03949284180998802, -0.029817815870046616, -0.0135314567014575, 0.0005956405657343566, 0.033464446663856506, -0.023614879697561264, -0.13097791373729706, -0.0016071940772235394, -0.03914967179298401, 0.0355873666703701, 0.08807281404733658, -0.033813461661338806, 0.004486836027354002, 0.003078598529100418, -0.0020440861117094755, -0.030462663620710373, 0.003369078738614917, 0.0952700600028038, -0.05088943988084793, 0.04558554291725159, -0.050905097275972366, 0.033897556364536285, -0.04209276661276817, -0.03784412145614624, 0.03224140405654907, 0.03855501115322113, 0.038208648562431335, -0.0061588529497385025, 0.06041017174720764, 0.047702375799417496, 0.05607738345861435, 0.06961370259523392, 0.08265627920627594, -0.03151590749621391, 0.023960262537002563, 0.011873285286128521, 0.06253890693187714, 0.0914110392332077, -0.04646104946732521, -0.0005985572934150696, -0.028674690052866936, -0.05732166767120361, 0.041782330721616745, -0.02870456501841545, -0.0031972157303243876, 0.021968699991703033, 0.05897126346826553, 0.06251057237386703, 0.073173888027668, -0.009375819936394691, 0.017388347536325455, 0.0334908664226532, 0.0209309421479702, -0.12711182236671448, 0.02457788586616516, 0.0678548514842987, 0.006184067577123642, -0.02515764720737934, -0.017358191311359406, -0.015471519902348518, -0.04482618719339371, -0.0041047511622309685, -0.019477365538477898, 0.03616804629564285, -0.05189824476838112, -0.03148066624999046, 0.08382798731327057, -0.05978427454829216, -0.04818657040596008, -0.012622756883502007, -0.039019547402858734, 0.06974354386329651, 0.020586660131812096, 0.04307524487376213, 0.03272344544529915, -0.00586993433535099, 0.050582244992256165, 0.014649995602667332, -0.059876855462789536, 8.003469661514276e-32, 0.046862609684467316, -0.030910300090909004, -0.06798334419727325, -0.05788036063313484, 0.06299307197332382, 0.020572593435645103, 0.08220896124839783, 0.008324885740876198, -0.017270568758249283, 0.012364673428237438, -0.03215509653091431, 0.059379566460847855, -0.10017700493335724, 0.04263158515095711, -0.008132808841764927, 0.03943735733628273, 0.006470133550465107, -0.002059359336271882, -0.04226275160908699, -0.056344401091337204, -0.012263231910765171, -0.01949857920408249, 0.009637747891247272, 0.022416720166802406, 0.0362282358109951, 0.03491185978055, -0.1337611824274063, 0.053363144397735596, 0.04487163946032524, -0.06286095082759857, 0.06295759230852127, 0.044040799140930176, 0.05138407275080681, 0.021378716453909874, -0.04966488108038902, -0.02401047945022583, 0.027101606130599976, 0.02256469801068306, 0.018056144937872887, -0.010507257655262947, -0.08454161882400513, -0.004943480249494314, -0.02776666358113289, -0.03531334549188614, -0.02589680626988411, -0.01708742417395115, 0.07105664908885956, -0.06983022391796112, -0.04996697977185249, -0.1070246770977974, 0.025323010981082916, 0.08495388180017471, -0.05418581888079643, 0.048683807253837585, -0.009986508637666702, -0.08465667814016342, -0.06729290634393692, -0.005832688417285681, 0.057992082089185715, -0.03491115942597389, -0.003089727135375142, 0.05768100172281265, -0.050774551928043365, -0.09809564799070358 ]
233Vectors Example 4 Show that the vectors 6a + 8b and 9a + 12b are parallel. 9a + 12 b = 3 __ 2 (6a + 8 b) ∴ the vectors are parallel.Here λ = 3 _ 2 Thi s is called the parallelogram law for vector addition.NotationExample 3 ABCD is a parallelogram. ⟶ AB = a , ⟶ AD = b . Find ⟶ AC . ADC B ab ⟶ AC = ⟶ AB + ⟶ BC ⟶ BC = ⟶ AD = b So ⟶ AC = a + bUsing the triangle law for addition of vectors. AD and BC are opposite sides of a parallelogram so they are parallel and equal in magnitude. Example 5 In triangle ABC, ⟶ AB = a and ⟶ AC = b . P is the midpoint of AB. Q divides AC in the ratio 3 : 2. Write in terms of a and b: a ⟶ BC b ⟶ AP c ⟶ AQ d ⟶ PQ BQ CPA a ⟶ BC = ⟶ BA + ⟶ AC = − ⟶ AB + ⟶ AC ⟶ BC = b − a b ⟶ AP = 1 _ 2 ⟶ AB = 1 _ 2 a c ⟶ AQ = 3 _ 5 ⟶ AC = 3 _ 5 b d ⟶ PQ = ⟶ PA + ⟶ AQ = − ⟶ AP + ⟶ AQ = 3 _ 5 b − 1 _ 2 a ⟶ BA = − ⟶ AB AP is the l ine segment between A and P , whereas ⟶ AP is the vector from A to P .Watch outAP = 1 _ 2 AB so ⟶ AP = 1 _ 2 a Q divides AC in the ratio 3 : 2 so A Q = 3 _ 5 AC. Going from P to Q is the same as going from P to A, then from A to Q .
[ 0.04612082988023758, -0.0026882158126682043, 0.002365644322708249, -0.05062064155936241, -0.031101375818252563, 0.02188156172633171, -0.06443235278129578, -0.08068928122520447, 0.007016538642346859, 0.0946122258901596, -0.00004867401730734855, -0.0813499391078949, -0.019492262974381447, -0.02663540281355381, -0.023853829130530357, -0.02944757044315338, -0.0427907332777977, 0.05568910762667656, -0.06602559238672256, -0.03407972678542137, 0.0669841319322586, -0.03364192321896553, -0.06742945313453674, -0.04405687004327774, 0.06818386167287827, -0.051555510610342026, 0.03223080933094025, -0.032678622752428055, 0.01909634657204151, -0.014839105308055878, 0.000027372854674467817, 0.0056287855841219425, 0.11342986673116684, -0.05295519903302193, 0.000968793174251914, -0.05693373456597328, -0.02422783523797989, 0.05108430236577988, 0.039284683763980865, -0.017989758402109146, -0.08944829553365707, 0.06563673913478851, 0.06124448776245117, 0.05264056846499443, -0.044833410531282425, -0.026224814355373383, 0.03503667190670967, 0.0618952140212059, 0.009483672678470612, -0.04071107134222984, 0.027397653087973595, -0.053244855254888535, -0.02365090884268284, 0.04748070612549782, -0.05924111604690552, 0.0064159659668803215, 0.00023911826428957283, 0.13636991381645203, 0.012723172083497047, -0.011648234911262989, 0.055602606385946274, -0.044132448732852936, 0.014461678452789783, 0.05425048619508743, 0.034722182899713516, 0.016849005594849586, -0.04535679519176483, 0.007026468403637409, -0.01998678408563137, 0.030927008017897606, -0.033761247992515564, 0.08189470320940018, -0.047322794795036316, 0.010752740316092968, 0.015911245718598366, -0.010392189025878906, 0.014102097600698471, -0.033848267048597336, 0.07799585908651352, -0.06306640058755875, -0.0910719633102417, 0.07672477513551712, 0.02113485336303711, 0.05054531991481781, 0.018241364508867264, 0.024238640442490578, 0.05953303724527359, 0.002512503881007433, -0.022139687091112137, -0.07212474197149277, 0.04117414727807045, -0.010072863660752773, 0.04237201437354088, -0.05807771533727646, -0.00943194143474102, -0.08647935092449188, -0.00642361817881465, -0.028793280944228172, -0.005417814012616873, 0.059570252895355225, 0.07952761650085449, -0.012405027635395527, -0.038588352501392365, 0.04940719157457352, -0.014719858765602112, 0.050475139170885086, 0.014074786566197872, -0.07816615700721741, 0.09299401938915253, 0.04753045737743378, -0.028108244761824608, 0.07421223074197769, -0.016342896968126297, -0.031428512185811996, -0.07299662381410599, -0.018589595332741737, -0.011946936137974262, 0.0346587672829628, -0.010201046243309975, -0.001441061613149941, -0.013730395585298538, -0.027456780895590782, 0.10544298589229584, -0.028086157515645027, -0.035190753638744354, -0.05596780776977539, -0.02515505440533161, -0.06461735814809799, 0.013428550213575363, -0.012690362520515919, 0.05956520140171051, -0.0029400635976344347, -0.07372032850980759, -0.026849405840039253, -0.04276244714856148, -0.017267471179366112, -0.0803295448422432, 0.0071680280379951, -0.021330973133444786, -0.04290212318301201, 0.045867256820201874, 0.09799255430698395, 0.021136431023478508, -0.1030411571264267, -0.06909739971160889, 0.020472368225455284, -0.09828433394432068, -0.021423975005745888, -0.014635470695793629, 0.05965946987271309, 0.15554308891296387, -0.05598631128668785, 0.021003790199756622, 0.08764813095331192, -0.05564647912979126, 0.0406181700527668, -0.08066948503255844, 0.03592206537723541, -0.04534844309091568, 0.01371937058866024, -0.023228144273161888, 0.020482830703258514, 0.027280719950795174, 0.0472569540143013, 0.055186863988637924, 0.03867865353822708, 0.02667292393743992, 0.047346048057079315, 0.05516309291124344, -0.08081381767988205, 0.06717261672019958, -0.03721053525805473, 0.026829419657588005, 0.04891704022884369, 0.03219149261713028, -0.10585875064134598, 0.03795436769723892, -0.039497699588537216, 0.004027035087347031, 0.022782281041145325, 0.05586057901382446, -0.04443616420030594, 0.0006969615933485329, -0.02127164788544178, -0.025572404265403748, 0.04812013357877731, 0.009163076058030128, 0.10390765964984894, -0.14113324880599976, 0.018101366236805916, 0.06451026350259781, -0.046637315303087234, -0.12452962249517441, -0.03671449422836304, -0.09612994641065598, -0.013434482738375664, 0.019215356558561325, -0.02557208016514778, -0.05117575079202652, -0.0580819770693779, -0.023069040849804878, 0.025421857833862305, 0.03772948682308197, -0.02387685887515545, -0.039918795228004456, -0.07579691708087921, -0.01745573803782463, 0.02660462073981762, 0.05498907342553139, 0.007023276761174202, 0.0035476258490234613, -0.018135270103812218, 0.09130148589611053, -0.010212963446974754, 0.05165143683552742, -0.0748351663351059, 0.017109012231230736, -0.031066937372088432, -0.003456597914919257, -0.032967619597911835, -0.018658431246876717, 0.028792481869459152, 0.09417565166950226, -5.083409524425643e-33, -0.034677207469940186, -0.021489160135388374, -0.027760908007621765, -0.05363331735134125, 0.016826851293444633, -0.016182513907551765, 0.06394801288843155, -0.028775654733181, -0.02671224996447563, -0.02847246825695038, -0.07446248084306717, -0.03228761628270149, -0.04445323720574379, -0.0441492460668087, 0.003506613429635763, -0.07312391698360443, -0.02161826752126217, -0.07487653195858002, -0.026249544695019722, -0.049801625311374664, 0.07553604245185852, -0.04983821138739586, -0.042358189821243286, 0.008136467076838017, -0.0029871100559830666, 0.003576258197426796, -0.0005304901860654354, -0.07635366916656494, -0.02563624456524849, -0.00503893755376339, 0.01983341947197914, -0.04655376076698303, 0.046710316091775894, 0.09247404336929321, -0.06629444658756256, -0.06014871224761009, 0.07011660188436508, 0.06348057836294174, -0.022864865139126778, -0.0716804713010788, 0.013315794058144093, 0.0840127021074295, -0.015514583326876163, -0.03286144882440567, -0.04108631983399391, 0.047891952097415924, 0.03503415733575821, 0.04799419268965721, -0.021680571138858795, -0.006650709081441164, -0.03087565489113331, -0.11881117522716522, -0.014341700822114944, -0.1103912815451622, -0.029523877426981926, -0.020772036164999008, 0.04434237629175186, -0.010177191346883774, 0.07075734436511993, 0.052697502076625824, -0.0760076716542244, -0.06446249037981033, 0.10384281724691391, -0.022702064365148544, 0.06496988236904144, -0.08252603560686111, -0.03497232869267464, -0.011888934299349785, 0.04542722553014755, -0.08501686900854111, 0.02871374972164631, 0.05645154416561127, -0.08445578068494797, -0.021439602598547935, 0.032141003757715225, 0.025390835478901863, -0.005329321138560772, 0.05757030099630356, 0.0180300734937191, -0.008239158429205418, -0.04055706784129143, -0.026151316240429878, 0.09691618382930756, 0.02222491428256035, -0.0524691566824913, 0.014067048206925392, 0.15722016990184784, 0.07982051372528076, 0.011049593798816204, -0.062218647450208664, -0.0036858879029750824, 0.09742636978626251, -0.03534432128071785, -0.024737006053328514, 0.10088510811328888, 8.523738171463642e-32, 0.043360866606235504, 0.02589786797761917, -0.01163376122713089, -0.07090669125318527, 0.007557913661003113, -0.010374033823609352, -0.008359046652913094, 0.049725085496902466, 0.011788897216320038, -0.05626372620463371, 0.03682154044508934, -0.015421712771058083, -0.023828744888305664, -0.01335732638835907, 0.012050464749336243, -0.05326294153928757, -0.038030799478292465, 0.06216823309659958, 0.023666750639677048, -0.015916498377919197, -0.0381346233189106, 0.008687072433531284, -0.014687737450003624, 0.10653579980134964, 0.013672430999577045, 0.09488965570926666, -0.05774186924099922, 0.05535867065191269, 0.016449876129627228, -0.05679067596793175, 0.07861898839473724, 0.030642161145806313, -0.057304561138153076, 0.049080248922109604, 0.016767406836152077, 0.0009101451141759753, 0.06397635489702225, 0.026062417775392532, 0.0011005222331732512, 0.0593390092253685, -0.0039487057365477085, -0.06411988288164139, -0.0070206038653850555, -0.0252639502286911, 0.1277710646390915, -0.031227361410856247, -0.05567324161529541, -0.02066107653081417, 0.04348384216427803, -0.07711177319288254, -0.03392614424228668, 0.06609543412923813, 0.040474455803632736, -0.03975531831383705, -0.043031685054302216, -0.043539613485336304, -0.0341205932199955, 0.004773534834384918, 0.03086164966225624, -0.07290001213550568, -0.02464834786951542, -0.0030031476635485888, -0.09319579601287842, -0.047661785036325455 ]
234 Chapter 11 Exercise 11A 1 The diagram shows the vectors a, b, c and d. Dra w a diagram to illustrate these vectors: a a + c b −b c c − d d b + c + d e a − 2b f 2c + 3d g a + b + c + d 2 ACGI is a squar e, B is the midpoint of AC , F is the midpoint AIEBCG HF Db d of CG, H is the midpoint of GI, D is the midpoint of AI. ⟶ AB = b and ⟶ AD = d. Find, in terms of b and d: a ⟶ AC b ⟶ BE c ⟶ HG d ⟶ DF e ⟶ AE f ⟶ DH g ⟶ HB h ⟶ FE i ⟶ AH j → BI k → EI l ⟶ FB 3 OACB is a par allelogram. M, Q, N and P are OPBNCQA MD m p the midpoints of OA , AC , BC and OB respectively. Vectors p and m are equal to ⟶ OP and ⟶ OM respecti vely. Express in terms of p and m. a ⟶ OA b ⟶ OB c ⟶ BN d ⟶ DQ e ⟶ OD f ⟶ MQ g ⟶ OQ h ⟶ AD i ⟶ CD j ⟶ AP k ⟶ BM l ⟶ NO 4 In the diagram, ⟶ PQ = a , ⟶ QS = b , ⟶ SR = c and ⟶ PT = d . Find in terms of a, b, c and d: a ⟶ QT b ⟶ PR c ⟶ TS d ⟶ TR 5 In the triangle PQR, PQ = 2a and QR = 2b. The midpoint of PR is M. Find, in terms of a and b: a ⟶ PR b ⟶ PM c ⟶ QM 6 ABCD is a tra pezium with AB parallel to DC and DC = 3AB. M divides DC such that DM : MC = 2 : 1. ⟶ AB = a and ⟶ BC = b. Find, in terms of a and b: a ⟶ AM b ⟶ BD c ⟶ MB d ⟶ DA ab dc Q P RSTa d cb P Draw a sketch to show the information given in the question.Problem-solving
[ -0.03834836557507515, 0.004759977571666241, -0.007363012991845608, -0.11487159878015518, 0.008037004619836807, 0.03798384964466095, -0.023217132315039635, -0.031469084322452545, -0.13457566499710083, 0.08900336921215057, 0.029158461838960648, 0.023197636008262634, -0.0024151981342583895, -0.007900792174041271, -0.11362207680940628, 0.07633806765079498, -0.07785695046186447, 0.05823938921093941, 0.002390757668763399, -0.012699884362518787, 0.04739900678396225, -0.10508225858211517, -0.019965760409832, -0.02134409174323082, 0.03278142586350441, -0.05125657841563225, 0.12260450422763824, -0.0004094050673302263, -0.035867415368556976, -0.07768978178501129, -0.0018286092672497034, -0.011519808322191238, 0.06868787109851837, -0.012403788045048714, 0.014949306845664978, -0.028125112876296043, 0.022143550217151642, 0.045702215284109116, 0.08963359892368317, -0.08069141954183578, -0.023179279640316963, 0.04326670989394188, 0.014110338874161243, 0.022149313241243362, 0.010317869484424591, 0.02266463078558445, -0.01432105153799057, 0.03325800597667694, 0.0035182491410523653, -0.0224612969905138, -0.0022150471340864897, -0.0568159855902195, -0.09240777045488358, 0.02080351673066616, 0.04716213420033455, 0.023063693195581436, 0.033653657883405685, 0.02201727218925953, -0.01766383834183216, -0.024312080815434456, 0.03500960394740105, -0.014572926796972752, -0.023268619552254677, 0.0167020745575428, 0.00854087807238102, 0.04476598650217056, 0.018946655094623566, 0.05305859073996544, -0.027998290956020355, 0.058292992413043976, -0.044570472091436386, 0.026401124894618988, -0.06676869094371796, -0.05493384227156639, 0.09165562689304352, -0.0326819121837616, -0.07544376701116562, 0.01374841295182705, 0.11863622814416885, -0.061429720371961594, 0.0038878493942320347, 0.029601534828543663, 0.039028435945510864, 0.03557918593287468, 0.013500272296369076, 0.04349415749311447, 0.005004378966987133, -0.09560953080654144, 0.017319684848189354, -0.04569709300994873, 0.017840057611465454, -0.02595169097185135, 0.04410206526517868, -0.05427570641040802, -0.02635352313518524, -0.02320990338921547, 0.015267149545252323, -0.027599362656474113, 0.032286692410707474, 0.10309041291475296, 0.031249871477484703, -0.0005126610631123185, 0.008583550341427326, 0.07640191912651062, -0.08170956373214722, 0.0018759550293907523, 0.0034192248713225126, -0.026358891278505325, 0.05544258654117584, 0.019202768802642822, 0.037900980561971664, -0.0220484621822834, -0.0072640469297766685, 0.0621633417904377, -0.04923025146126747, -0.07332904636859894, -0.009717145003378391, -0.001681732595898211, -0.015512404032051563, -0.025008108466863632, -0.03329828381538391, -0.08398142457008362, 0.0443267896771431, 0.042596545070409775, 0.04858063533902168, -0.09358508139848709, -0.03197188302874565, 0.010044224560260773, -0.00479448726400733, -0.06989379227161407, 0.03447117283940315, -0.03695692494511604, -0.07492934912443161, -0.02619532309472561, -0.025564461946487427, 0.010377409867942333, 0.025349099189043045, 0.007284705992788076, -0.06412887573242188, -0.12146423012018204, -0.023774363100528717, 0.09047563374042511, 0.006903851870447397, -0.006051855161786079, -0.0021948476787656546, 0.010150698944926262, -0.09682024270296097, -0.04176035895943642, 0.00633396627381444, 0.05456659570336342, 0.08085978776216507, -0.06338443607091904, 0.007335588801652193, 0.08846577256917953, -0.12532660365104675, 0.04837046563625336, -0.052363429218530655, -0.054734405130147934, 0.01807725429534912, 0.02321784757077694, -0.012665419839322567, 0.040758438408374786, -0.009083348326385021, 0.05092572048306465, 0.05629537254571915, 0.059443648904561996, -0.033138569444417953, 0.0806981697678566, 0.09413071721792221, -0.035569313913583755, 0.03730897605419159, -0.062027886509895325, 0.021502884104847908, 0.11344168335199356, 0.06472589075565338, -0.0795808807015419, 0.05629492923617363, 0.035784292966127396, -0.013907904736697674, -0.01394170243293047, 0.08980908244848251, -0.09269782155752182, 0.024466445669531822, -0.07695470750331879, -0.07327167689800262, 0.07393419742584229, -0.017799196764826775, 0.08166900277137756, -0.06224396452307701, 0.07175014913082123, 0.03527369350194931, -0.02242899313569069, -0.0955154150724411, -0.0012816119706258178, -0.16468265652656555, -0.08200433850288391, 0.016137881204485893, -0.02545628696680069, -0.07913436740636826, 0.004706847481429577, 0.028537381440401077, 0.032172877341508865, 0.0026099802926182747, 0.006367360707372427, -0.060365550220012665, -0.048830244690179825, 0.05107622593641281, -0.07989568263292313, -0.015553701668977737, 0.0127481734380126, -0.043029703199863434, -0.06794269382953644, -0.058467891067266464, -0.046917714178562164, 0.1017274335026741, -0.06282837688922882, -0.003888014703989029, -0.020052354782819748, 0.0017659253207966685, -0.014541604556143284, 0.035708263516426086, 0.056681159883737564, 0.07618071138858795, -3.738545539433065e-33, -0.051736123859882355, 0.0414242148399353, -0.06440382450819016, -0.04878159612417221, 0.0246573518961668, 0.004147651139646769, 0.09209025651216507, -0.006075229495763779, -0.021770093590021133, 0.0015101471217349172, -0.049210332334041595, -0.03312501311302185, -0.08239912986755371, -0.0113762728869915, 0.0056565371342003345, -0.01723487861454487, -0.048590097576379776, -0.011422382667660713, -0.0022311804350465536, -0.012736930511891842, 0.023711737245321274, -0.027656422927975655, 0.0033319154754281044, -0.006350328680127859, 0.0015729765873402357, 0.00711903115734458, 0.08345447480678558, -0.07066108286380768, -0.02775290049612522, 0.006924797780811787, 0.016584057360887527, 0.028401754796504974, -0.01528085581958294, 0.1214807778596878, -0.07464958727359772, -0.03654101863503456, 0.061817366629838943, 0.04192293807864189, -0.03863352909684181, -0.04956880584359169, 0.056958600878715515, 0.047503162175416946, -0.02470560371875763, 0.013477073982357979, 0.0033066198229789734, 0.01533074676990509, 0.07939896732568741, 0.042593348771333694, 0.019142022356390953, -0.032672133296728134, -0.06832700222730637, -0.057751793414354324, 0.10050632059574127, -0.0890834704041481, 0.0024169867392629385, 0.0052780043333768845, 0.07669494301080704, -0.14307475090026855, 0.09542564302682877, 0.025111116468906403, -0.048575449734926224, 0.003727253060787916, 0.018402229994535446, 0.03988897055387497, 0.059223148971796036, -0.09712840616703033, -0.00561652984470129, 0.020659051835536957, -0.0010845604119822383, -0.07328825443983078, 0.01736317202448845, 0.0905415266752243, -0.049182239919900894, -0.037556588649749756, 0.03446207568049431, 0.024555625393986702, -0.044134583324193954, 0.027934396639466286, -0.005379343871027231, -0.05271172896027565, -0.08106093853712082, -0.00685459841042757, 0.028809132054448128, -0.026545237749814987, 0.025707533583045006, 0.06405959278345108, 0.020390475168824196, 0.08554931730031967, 0.035588063299655914, -0.0025411355309188366, 0.04990798234939575, 0.08249107748270035, 0.015237352810800076, -0.006523266434669495, 0.05180112272500992, 9.118247965875066e-32, 0.009638854302465916, -0.08757869154214859, -0.09053606539964676, -0.012810132466256618, 0.03528406471014023, -0.008854332379996777, 0.07877957075834274, -0.03953021392226219, 0.013117987662553787, 0.035269223153591156, 0.0615643709897995, 0.05245029926300049, -0.021185491234064102, 0.052122220396995544, 0.020042087882757187, -0.003613929031416774, -0.041573479771614075, -0.02057911455631256, -0.024201763793826103, -0.02613072656095028, 0.021863944828510284, -0.09924804419279099, -0.00358174042776227, 0.01842893660068512, -0.0053297169506549835, 0.06880411505699158, -0.037919625639915466, 0.02677421271800995, 0.0266022440046072, -0.02691337652504444, 0.08474940061569214, -0.005455826874822378, -0.05234265699982643, -0.029773909598588943, 0.013037977740168571, -0.00988532230257988, 0.01359513495117426, -0.0019139242358505726, -0.01657870225608349, 0.005594548303633928, -0.0034936098381876945, -0.04222499579191208, 0.041196875274181366, -0.05116946995258331, 0.11194497346878052, -0.012296270579099655, 0.0026196343824267387, -0.09464895725250244, -0.023171447217464447, -0.09029722213745117, -0.05182058736681938, -0.011972179636359215, 0.020589269697666168, -0.013823497109115124, -0.025450950488448143, -0.03205766901373863, -0.015025054104626179, 0.00888601690530777, 0.0707247406244278, -0.04963792860507965, -0.034678395837545395, 0.06917502731084824, -0.0972345620393753, 0.015730520710349083 ]
235Vectors 7 OABC is a par allelogram. ⟶ OA = a and ⟶ OC = b. The point P divides OB in the ratio 5:3. Find, in terms of a and b:a ⟶ OB b ⟶ OP c ⟶ AP 8 State with a reason w hether each of these vectors is parallel to the vector a − 3b: a 2a − 6b b 4a − 12b c a + 3b d 3b − a e 9b − 3a f 1 _ 2 a − 2 _ 3 b 9 In triangle ABC, ⟶ AB = a and ⟶ AC = b . P is the midpoint of AB and Q is the midpoint of AC . a Write in terms of a and b: i ⟶ BC ii ⟶ AP iii ⟶ AQ iv ⟶ PQ b Show that PQ is parallel to BC. 10 OABC is a quadrila teral. ⟶ OA = a, ⟶ OC = 3 b and ⟶ OB = a + 2b. a Find, in terms of a and b: i ⟶ AB ii ⟶ CB b Show that AB is parallel to OC. 11 The vectors 2a + kb and 5a + 3b are parallel. Find the value of k.A B P C Oa b P BQ CPA P AB CO P 11.2 Representing vectors A vector can be described by its change in position or displacement relative to the x- and y-axes. a 4 3 a = ( 3 4 ) where 3 is the change in the x-direction and 4 is the change in the y-direction. This is called column vector form. ■ To multiply a column v ector by a scalar, multiply each component by the scalar: λ ( p q ) = ( λp λq ) ■ To add tw o column vectors, add the x-components and the y-components: ( p q ) + ( r s ) = ( p + r q + s ) The t op number is the x -component and the bottom number is the y-component.Notation Example 6 a = ( 2 6 ) and b = ( 3 −1 ) Find a 1 _ 3 a b a + b c 2a − 3b
[ -0.008913731202483177, 0.031700726598501205, 0.025224531069397926, -0.064027339220047, 0.02078738808631897, 0.0627160295844078, -0.03858461603522301, 0.03497915342450142, -0.08117462694644928, 0.05999080091714859, 0.06569579988718033, -0.1261410266160965, -0.05735474079847336, 0.04760696738958359, -0.03360351175069809, -0.012842568568885326, -0.023650893941521645, 0.005173633806407452, -0.029948502779006958, -0.048415470868349075, 0.012407473288476467, -0.044137731194496155, 0.0008069188916124403, -0.026168834418058395, 0.02340400591492653, -0.03026345558464527, 0.050710514187812805, -0.06202758848667145, -0.006887651514261961, -0.012872662395238876, -0.0405656062066555, 0.006942078936845064, 0.17254692316055298, -0.004604165442287922, 0.06209298223257065, -0.006466605234891176, 0.014536014758050442, -0.0004441275668796152, 0.06333883106708527, -0.015225589275360107, -0.09026079624891281, 0.018631990998983383, 0.09270445257425308, 0.06498318165540695, -0.054478030651807785, -0.052071962505578995, -0.02134445123374462, 0.09430700540542603, 0.0504026785492897, -0.014199035242199898, -0.0183839350938797, -0.06799495220184326, -0.03124646283686161, 0.06816403567790985, 0.014983018860220909, 0.009426291100680828, 0.024405965581536293, 0.08359532803297043, -0.04374086856842041, -0.04522731527686119, -0.05081339180469513, -0.03621231019496918, -0.026340950280427933, 0.03410691022872925, 0.0250981654971838, 0.014640460722148418, -0.014671964570879936, 0.004246582742780447, -0.014837963506579399, 0.026795154437422752, -0.061271827667951584, 0.06858383119106293, -0.04436353221535683, -0.040535688400268555, -0.029819795861840248, 0.03737723454833031, -0.03503432869911194, -0.05736194923520088, 0.013080316595733166, -0.08487309515476227, -0.0549607090651989, 0.08769769966602325, 0.05822870135307312, 0.030692752450704575, 0.013265473768115044, 0.04414059594273567, 0.059471677988767624, -0.008814137428998947, -0.026065906509757042, -0.09594063460826874, 0.03033537045121193, -0.03265974298119545, 0.06533205509185791, -0.026099776849150658, 0.020497530698776245, 0.011009673587977886, -0.030887143686413765, -0.06274363398551941, -0.04530391842126846, 0.12720532715320587, 0.061645958572626114, 0.048542335629463196, 0.029574835672974586, -0.018922513350844383, -0.04226382449269295, 0.04184993728995323, -0.013506412506103516, -0.0825367346405983, 0.04642900079488754, 0.005178208462893963, -0.09273301810026169, 0.01591555029153824, 0.05326305702328682, -0.025909965857863426, -0.02081986702978611, -0.01716388575732708, 0.010939412750303745, 0.04158547520637512, -0.051211997866630554, -0.030147342011332512, 0.0031853457912802696, -0.03414494916796684, 0.04638717696070671, 0.013927556574344635, 0.018103042617440224, -0.06327652186155319, 0.04986501485109329, -0.0568164624273777, 0.03440767526626587, -0.006602378562092781, 0.06460005044937134, -0.00004805275602848269, -0.08162717521190643, -0.05267026275396347, -0.10501455515623093, 0.00991898961365223, -0.11513399332761765, -0.0075935907661914825, -0.020892847329378128, -0.08090321719646454, 0.05083500221371651, 0.06574706733226776, 0.05054374784231186, -0.09792532026767731, 0.005745814647525549, 0.025107180699706078, -0.10142139345407486, 0.025268180295825005, -0.07201720029115677, 0.051106568425893784, 0.12989391386508942, -0.03538611903786659, 0.007714361418038607, 0.12161730974912643, -0.11033467948436737, 0.036392830312252045, -0.03626812994480133, 0.00238790363073349, -0.018230173736810684, 0.02143712528049946, -0.07700393348932266, -0.006191030610352755, 0.013246932066977024, 0.050889402627944946, 0.0705372542142868, 0.055034514516592026, -0.015903908759355545, 0.08660107851028442, 0.015473096631467342, -0.07207483798265457, 0.08106435835361481, -0.013884061947464943, -0.029084505513310432, 0.03165249153971672, 0.07496602088212967, -0.01721457950770855, 0.06592929363250732, -0.0103939613327384, -0.016579758375883102, 0.007813292555510998, 0.01276049017906189, -0.038284607231616974, 0.035685110837221146, -0.015734966844320297, -0.050194356590509415, 0.026420490816235542, 0.050800688564777374, 0.07285171747207642, -0.06414133310317993, -0.018510745838284492, 0.046816207468509674, -0.05482138693332672, -0.06154920905828476, 0.00004847923628403805, -0.12197840958833694, 0.0170537568628788, 0.07390633225440979, 0.036859333515167236, -0.07971586287021637, 0.038681622594594955, -0.002892873017117381, 0.08930639177560806, -0.009587845765054226, 0.005379764828830957, -0.028254849836230278, -0.043988198041915894, -0.039911553263664246, -0.039471372961997986, -0.039856333285570145, -0.01657303050160408, -0.11483246088027954, -0.027526646852493286, 0.05730390548706055, -0.017015213146805763, 0.032623499631881714, -0.09776678681373596, 0.019650321453809738, -0.021160423755645752, 0.007993909530341625, -0.02891574054956436, 0.03450392559170723, -0.03662234544754028, 0.1380768120288849, -6.1512892041400734e-33, -0.0365295484662056, -0.01859860122203827, -0.010438934899866581, -0.08182073384523392, -0.0031100360210984945, -0.04869765788316727, -0.008642744272947311, -0.051129210740327835, -0.02712479792535305, -0.04066090285778046, 0.06026393920183182, -0.010445407591760159, 0.003015696071088314, -0.008404003456234932, -0.004916869569569826, 0.022398512810468674, -0.0028752610087394714, 0.01452473271638155, -0.0458737276494503, -0.009342201985418797, 0.051736731082201004, -0.08283955603837967, -0.028176531195640564, 0.034052684903144836, -0.05014751851558685, 0.024154985323548317, -0.0025255864020437002, -0.08399512618780136, -0.03574267029762268, 0.01577748730778694, 0.02116396091878414, -0.07921430468559265, -0.0016771536320447922, 0.06163613870739937, -0.036137182265520096, -0.06462694704532623, -0.02513439580798149, 0.017226731404662132, 0.02155994065105915, -0.08435242623090744, 0.04223661497235298, 0.07440617680549622, 0.0077545358799397945, -0.04492606967687607, -0.05300341919064522, 0.06906791031360626, 0.05721263587474823, 0.014117559418082237, 0.046056561172008514, 0.00027229340048506856, -0.04995177313685417, -0.0584789477288723, 0.02825559675693512, -0.04994634538888931, -0.012480253353714943, -0.006393867079168558, 0.019821997731924057, -0.026306098327040672, 0.027702389284968376, 0.021406538784503937, -0.046467870473861694, -0.022265417501330376, 0.09406432509422302, -0.012174084782600403, 0.04075363278388977, -0.03228108957409859, -0.02396089769899845, 0.003404452931135893, 0.07240866124629974, -0.07030673325061798, -0.030800960958003998, 0.05867582932114601, -0.0847831591963768, 0.03185548633337021, -0.035371243953704834, 0.019230522215366364, 0.014471540227532387, 0.05986831337213516, 0.0133789898827672, -0.004973595961928368, -0.11332106590270996, -0.01925360970199108, 0.07793891429901123, 0.03934870660305023, -0.017458995804190636, 0.05746905505657196, 0.1394282877445221, -0.014911701902747154, 0.046449001878499985, -0.013561466708779335, -0.06661517173051834, 0.031824707984924316, 0.0051085022278130054, 0.026873137801885605, 0.05048883333802223, 9.625238091637543e-32, -0.07354219257831573, 0.031022345647215843, -0.040191635489463806, -0.051433321088552475, 0.05367041379213333, 0.021728968247771263, -0.0020862629171460867, -0.01581914909183979, 0.007055450696498156, -0.030321141704916954, -0.004801861476153135, -0.011273344047367573, -0.11458520591259003, 0.061512306332588196, 0.04017815738916397, 0.027423471212387085, -0.04778566211462021, -0.021335139870643616, 0.013013839721679688, -0.00690412987023592, 0.02680244669318199, -0.02090677246451378, -0.06136038899421692, 0.08709685504436493, -0.009306288324296474, 0.0745827853679657, -0.08409475535154343, 0.015743935480713844, 0.0554567314684391, 0.005172303877770901, 0.08005835115909576, 0.019401954486966133, -0.09490638971328735, 0.09169193357229233, 0.03726927563548088, 0.019144374877214432, 0.06143408268690109, 0.0017158726695924997, -0.01802847906947136, 0.08255614340305328, -0.059085290879011154, -0.08537875860929489, -0.003847977379336953, 0.022322364151477814, 0.06745248287916183, -0.050320833921432495, -0.023127302527427673, -0.08975126594305038, 0.012682832777500153, -0.0974513590335846, -0.04666274040937424, 0.05253077670931816, -0.0193424504250288, -0.03469030186533928, -0.007581929210573435, -0.10785380005836487, -0.0007397173321805894, -0.011698691174387932, 0.02221747301518917, -0.0610443577170372, 0.01796344481408596, 0.027922755107283592, -0.09408621490001678, -0.059585221111774445 ]
236 Chapter 11 a 1 __ 3 a = ( 2 __ 3 2 ) b a + b = ( 2 6 ) + ( 3 −1 ) = ( 5 5 ) c 2a − 3b = 2 ( 2 6 ) − 3 ( 3 −1 ) = ( 4 12 ) − ( 9 −3 ) = ( 4 − 9 12 + 3 ) = ( −5 15 ) Both of the components are divided by 3. Add the x-components and the y-components. Multiply each of the vectors by the scalars then subtract the x- and y-components. You can use unit vectors to represent vectors in two dimensions. ■ A unit vector is a v ector of length 1. The unit vectors (0, 1) (1, 0) ij Oy x along the x - and y -axes are usually denoted by i and j respectively. • i = ( 1 0 ) j = ( 0 1 ) ■ You can write an y two-dimensional vector in the form pi + qj. By the triangle law of addition: 5i5i + 2j 2j AC B ⟶ AC = ⟶ AB + ⟶ BC = 5i + 2j You can also write this as a column vector: 5i + 2j = ( 5 2 ) ■ For any t wo-dimensional vector: ( p q ) = pi + qj Example 7 a 1 __ 2 a = 1 __ 2 (3i − 4j) = 1.5i − 2j b a + b = 3i − 4j + 2i + 7j = (3 + 2)i + (− 4 + 7) j = 5i + 3j c 3a − 2b = 3(3i − 4j) − 2(2i + 7j) = 9i − 12j − (4i + 14j) = (9 − 4)i + (−12 − 14)j = 5i − 26ja = 3i − 4j, b = 2i + 7j Find a 1 _ 2 a b a + b c 3a − 2b Divide the i component and the j component by 2. Add the i components and the j components. Multiply each of the vectors by the scalar then subtract the i and j components.
[ -0.07015806436538696, -0.015085387974977493, -0.047300633043050766, -0.09736853837966919, 0.040446650236845016, 0.025401080027222633, -0.021294299513101578, -0.04768820106983185, -0.0850469097495079, 0.11032646894454956, -0.03383564576506615, -0.08823936432600021, -0.003998155239969492, -0.08656968921422958, -0.008554108440876007, -0.0076746088452637196, -0.062234655022621155, 0.1225520446896553, 0.0009540037717670202, -0.007373055908828974, 0.010515790432691574, -0.05709419772028923, -0.058267515152692795, 0.03353186696767807, 0.08072267472743988, 0.0036209174431860447, 0.021187182515859604, 0.02133762650191784, -0.05684589222073555, -0.06451904773712158, 0.04713970050215721, -0.00012243290257174522, 0.05348575487732887, -0.038859326392412186, -0.004903477616608143, 0.037246569991111755, 0.031247412785887718, 0.06072801351547241, -0.007065752986818552, -0.010076894424855709, -0.06711926311254501, 0.035485271364450455, -0.01056364644318819, 0.02426263503730297, -0.04254653677344322, 0.058754973113536835, 0.012148850597441196, -0.00779139157384634, 0.06510477513074875, -0.019909270107746124, -0.04356745630502701, -0.049353379756212234, -0.012683559209108353, 0.02856157161295414, -0.0043978141620755196, -0.040647294372320175, 0.06597891449928284, 0.059514448046684265, -0.07686436921358109, -0.008608127944171429, -0.003132396610453725, -0.020634936168789864, 0.016857819631695747, 0.02036515437066555, -0.019660584628582, 0.04349331557750702, -0.06994190067052841, -0.07509457319974899, -0.05016627162694931, 0.02631296217441559, -0.0900200828909874, 0.05873336270451546, 0.01695387065410614, -0.03094344586133957, 0.05362074822187424, 0.005690853577107191, -0.052082572132349014, -0.04540962725877762, 0.04622698202729225, 0.027906324714422226, -0.03004380315542221, 0.1154656708240509, 0.07757452875375748, 0.0461069718003273, 0.06701468676328659, 0.018863223493099213, 0.015861202031373978, -0.0012570484541356564, 0.05098031833767891, -0.03546512871980667, -0.03372976556420326, 0.013590779155492783, 0.09012123942375183, -0.0030306046828627586, 0.0026117723900824785, -0.07968395203351974, 0.05821359157562256, -0.03757545351982117, 0.09631408005952835, 0.07957348972558975, 0.10427194833755493, -0.016226496547460556, -0.019130531698465347, -0.050026070326566696, -0.048463720828294754, 0.026381351053714752, 0.019923651590943336, -0.05887291207909584, 0.069805808365345, -0.02769445814192295, -0.038841910660266876, -0.005996559280902147, -0.024635594338178635, -0.04494831711053848, 0.027759702876210213, -0.03359723836183548, 0.0061548189260065556, 0.10487913340330124, 0.056723397225141525, -0.041582852602005005, 0.03461194783449173, -0.06797080487012863, 0.059722475707530975, 0.007145283743739128, 0.003861033357679844, -0.029606763273477554, 0.007528660818934441, -0.050414521247148514, 0.006142376456409693, -0.029029905796051025, -0.09116574376821518, -0.0388963520526886, -0.10094673931598663, 0.056161049753427505, 0.01815074123442173, 0.06356223672628403, -0.030816128477454185, -0.0012170540867373347, -0.04089997336268425, -0.08205550909042358, 0.031436987221241, 0.08833402395248413, 0.05994098260998726, -0.04006199538707733, 0.015323029831051826, -0.02005154639482498, -0.0299580879509449, -0.046723123639822006, 0.06170260161161423, 0.07385969161987305, 0.047042787075042725, -0.03180234879255295, 0.0096912682056427, 0.029782140627503395, -0.11855374276638031, -0.04662645235657692, -0.1046111062169075, -0.018443796783685684, 0.04017704725265503, -0.017095062881708145, -0.06822863966226578, -0.01809721253812313, -0.020001323893666267, 0.03398797661066055, 0.04907720535993576, 0.07563614100217819, -0.02000558003783226, 0.08077652752399445, 0.03833353519439697, -0.04307551681995392, 0.0015414716908708215, 0.003631593193858862, -0.03739779815077782, 0.08779072761535645, 0.06076289713382721, -0.001713673584163189, 0.033728890120983124, 0.006521380040794611, -0.10536285489797592, 0.006449589505791664, 0.056207139045000076, -0.0362086296081543, 0.02203872799873352, 0.03025544434785843, -0.022277068346738815, -0.0361776240170002, 0.0059883021749556065, -0.017442097887396812, -0.09283867478370667, 0.03693614900112152, 0.08503973484039307, -0.034561753273010254, -0.05248129367828369, -0.018054287880659103, -0.13860061764717102, -0.04069734364748001, -0.08983772993087769, -0.013971664011478424, -0.10077700018882751, -0.02201073244214058, 0.012966855429112911, 0.02899591624736786, 0.027941562235355377, -0.014898995868861675, -0.04435335099697113, 0.001825313433073461, -0.03947778418660164, -0.027032572776079178, 0.01661766692996025, 0.044883545488119125, 0.032106246799230576, -0.05170515924692154, 0.051570385694503784, -0.05494482442736626, 0.10132420808076859, -0.05001363158226013, -0.012111580930650234, -0.061585020273923874, -0.01398374978452921, 0.019983764737844467, -0.06002027168869972, -0.021945353597402573, 0.05326066166162491, -3.347422202058011e-33, -0.04734393209218979, 0.0416252501308918, -0.06366997957229614, -0.052454590797424316, 0.00032848987029865384, -0.03807978332042694, 0.08904196321964264, -0.10022957623004913, 0.006130133289843798, 0.04764755815267563, -0.0413263700902462, -0.06304656714200974, -0.04471714422106743, -0.0014837592607364058, 0.042492642998695374, -0.06930524855852127, -0.060837455093860626, -0.02373708225786686, 0.048981089144945145, -0.062392547726631165, 0.01237229909747839, -0.07806258648633957, -0.08924436569213867, -0.02923046424984932, -0.010789299383759499, 0.023752667009830475, 0.07803748548030853, -0.07715275883674622, 0.00575249781832099, -0.03537062183022499, -0.01585923507809639, -0.03718418627977371, 0.0760757252573967, 0.07488814741373062, -0.000392731191823259, 0.01448559295386076, 0.011916004121303558, 0.007254266645759344, -0.032689016312360764, -0.13492754101753235, 0.08372298628091812, 0.042801178991794586, -0.04689280688762665, -0.013130027800798416, -0.049273762851953506, 0.0654418095946312, 0.08712837100028992, 0.05032225325703621, -0.021454056724905968, 0.058635417371988297, -0.03043484501540661, -0.054821088910102844, 0.021475449204444885, 0.024049272760748863, 0.06752054393291473, -0.019302241504192352, 0.05566531792283058, -0.011447376571595669, 0.07826679944992065, -0.01172992680221796, -0.05357928201556206, -0.03859688714146614, 0.02377285249531269, -0.001361554954200983, 0.1043132022023201, 0.000396087794797495, 0.04057992622256279, -0.03370153158903122, -0.01674235798418522, -0.014514134265482426, 0.02842956967651844, 0.09512271732091904, 0.005618331953883171, -0.0465255081653595, 0.01527218148112297, -0.023974774405360222, -0.05055485665798187, 0.014325503259897232, -0.0054116277024149895, -0.09272763878107071, -0.024048583582043648, -0.061129532754421234, 0.03272506594657898, -0.00462912954390049, -0.04140256717801094, 0.04142574965953827, 0.12987275421619415, 0.11293288320302963, 0.07045406848192215, -0.044032011181116104, -0.011364400386810303, 0.06606350839138031, 0.06685099005699158, -0.013218140229582787, 0.0979681983590126, 8.093692379422939e-32, 0.04976970702409744, 0.03422744199633598, -0.07969779521226883, -0.00035072758328169584, 0.01545138843357563, -0.020286528393626213, 0.024328039959073067, 0.08611451089382172, -0.015426784753799438, -0.02369927056133747, 0.014635849744081497, 0.004335994832217693, -0.0337819866836071, 0.020446402952075005, -0.04500756412744522, -0.006622457876801491, -0.031775735318660736, 0.013478752225637436, -0.028057685121893883, -0.02356155589222908, -0.007536440622061491, -0.010075529105961323, -0.025058910250663757, -0.010975983925163746, 0.08672380447387695, 0.0006132210255600512, -0.09553955495357513, 0.08596007525920868, 0.0508854016661644, -0.005115133710205555, 0.057372260838747025, -0.01827683486044407, -0.053763486444950104, 0.04605453833937645, 0.05080610513687134, 0.05996174365282059, 0.018323170021176338, 0.06620486825704575, 0.018254362046718597, -0.0039004115387797356, -0.06063474342226982, 0.0013180595124140382, -0.06288739293813705, -0.007830744609236717, 0.05228520929813385, -0.0043416437692940235, -0.0639789029955864, -0.022928839549422264, 0.012901603244245052, -0.09384090453386307, -0.004101675469428301, 0.053145356476306915, 0.024795666337013245, 0.02777262032032013, -0.07909653335809708, -0.08372263610363007, -0.012030964717268944, -0.020949266850948334, 0.08579568564891815, -0.08898130804300308, 0.0030924456659704447, 0.06669384986162186, -0.06970860064029694, -0.05294196680188179 ]
237Vectors Example 8 a Draw a diagram to represent the vector −3i + j b Write this as a column vector . a –3i–3i + j j b −3i + j = ( −3 1 ) 3 units in the direction of the unit vector −i and 1 unit in the direction of the unit vector j. Example 9 Given that a = 2i + 5j, b = 12i − 10j and c = −3i + 9j, find a + b + c, using column vector notation in your working. a + b + c = ( 2 5 ) + ( 12 −10 ) + ( −3 9 ) = ( 11 4 ) Add the numbers in the top line to get 11 (the x-component), and the bottom line to get 4 (the y-component). This is 11i + 4j. Exercise 11B 1 These vectors are drawn on a grid of unit squares. v1 v2 v5v3v4 v6 Express the vectors v1, v2, v3, v4, v5 and v6 in: (i) i, j notation (ii) column vector for mExample 10 Given a = 5i + 2j and b = 3i − 4j, find 2a − b in terms of i and j. 2a = 2 ( 5 2 ) = ( 10 4 ) 2a − b = ( 10 4 ) − ( 3 −4 ) = ( 10 − 3 4 − (−4) ) = ( 7 8 ) 2a − b = 7i + 8jTo find the column vector for vector 2a multiply the i and j components of vector a by 2. To find the column vector for 2a − b subtract the components of vector b from those of vector 2a. Remember to give your answer in terms of i and j. Explore this solution as a vector dia gram on a coordinate grid using GeoGebra.Online
[ 0.0037805314641445875, -0.004121602047234774, 0.048771969974040985, -0.11100907623767853, -0.041454240679740906, -0.002287721261382103, -0.05985318496823311, -0.047410592436790466, -0.11219077557325363, 0.11581569910049438, -0.061649806797504425, -0.0658707395195961, 0.0243300162255764, 0.010527389124035835, -0.06285984069108963, 0.01545374933630228, -0.03656065836548805, 0.16858510673046112, -0.028774892911314964, -0.013022907078266144, -0.002092573791742325, -0.016692981123924255, -0.018236061558127403, 0.0032928045839071274, 0.029269615188241005, -0.03317130729556084, 0.09242981672286987, -0.017785660922527313, -0.020969776436686516, -0.025603987276554108, -0.03883548825979233, -0.0369354784488678, 0.11883851885795593, -0.0066870735026896, 0.00782528705894947, -0.017729222774505615, 0.01946253702044487, 0.11329477280378342, 0.03474334627389908, -0.013948529958724976, 0.0010163610568270087, 0.013049274682998657, 0.05954436585307121, 0.023067256435751915, 0.003679801942780614, -0.006596277933567762, -0.027711503207683563, 0.03851214796304703, 0.04607928916811943, 0.009131457656621933, 0.03246024250984192, 0.0031228750012815, 0.01362889539450407, 0.044795744121074677, -0.008240526542067528, 0.0026345844380557537, 0.021016258746385574, 0.09095469117164612, 0.009595327079296112, -0.07791593670845032, 0.03508490324020386, -0.02138255350291729, -0.02047937549650669, 0.013276269659399986, -0.05242827162146568, 0.012597080320119858, -0.025647474452853203, -0.024906735867261887, -0.06256642937660217, 0.01143465656787157, -0.039850614964962006, 0.053130146116018295, -0.01399354450404644, -0.05554162710905075, -0.0009074155823327601, -0.08441472798585892, 0.0020132071804255247, -0.06673544645309448, 0.02773152105510235, -0.017169540748000145, -0.03311315178871155, 0.06204945594072342, 0.04163380339741707, 0.03050825372338295, 0.05860985442996025, 0.028529250994324684, 0.014767029322683811, 0.07318545132875443, 0.033698394894599915, -0.055883634835481644, -0.03587871417403221, -0.007611274719238281, 0.0662805512547493, -0.014519092626869678, 0.003538551041856408, -0.020302485674619675, 0.06058284267783165, -0.02996985614299774, 0.007719299755990505, 0.036027178168296814, 0.13531313836574554, -0.10560974478721619, -0.029622046276926994, 0.005602595396339893, 0.00957494881004095, -0.04924597963690758, -0.001855739508755505, -0.03369470313191414, 0.023208806291222572, 0.002345099113881588, -0.006707790773361921, 0.08800825476646423, -0.018737267702817917, -0.08539659529924393, 0.04348770156502724, 0.011619364842772484, -0.027091659605503082, 0.10028062015771866, 0.040361758321523666, 0.062018975615501404, 0.018200373277068138, -0.0516357421875, 0.0006926660425961018, 0.006783871445804834, -0.0683443695306778, -0.011087581515312195, -0.010919868014752865, -0.029791541397571564, 0.04508091136813164, -0.016607075929641724, -0.009979142807424068, -0.004601569380611181, -0.08306269347667694, -0.03341398760676384, -0.000647636828944087, 0.03560469299554825, 0.025405773892998695, 0.03742729499936104, -0.009458066895604134, -0.06943175196647644, 0.048570502549409866, 0.17109587788581848, 0.06473641842603683, -0.0515991672873497, 0.010895317420363426, -0.06396637111902237, -0.12871281802654266, 0.049330271780490875, 0.00026705648633651435, 0.08298417925834656, 0.07682676613330841, -0.05914723873138428, 0.09335101395845413, 0.07708576321601868, -0.042200274765491486, -0.030827799811959267, -0.07663983851671219, -0.048912253230810165, -0.036471471190452576, 0.002688446082174778, -0.025260653346776962, -0.022587433457374573, -0.005450475960969925, 0.10637439787387848, 0.06286368519067764, 0.035433996468782425, 0.007484971545636654, 0.009905087761580944, 0.053173765540122986, -0.040203627198934555, -0.026905426755547523, 0.036105070263147354, 0.024891501292586327, 0.059689875692129135, 0.038651786744594574, -0.11269575357437134, 0.022826213389635086, -0.00032483277027495205, -0.06200004369020462, 0.002778125461190939, 0.02576465904712677, -0.030362693592905998, 0.013173012062907219, 0.003964618779718876, -0.008824602700769901, 0.01828625798225403, -0.01977718435227871, 0.02521861158311367, -0.13418523967266083, 0.04508926719427109, 0.059251341968774796, -0.08511332422494888, -0.07788719236850739, -0.03819385915994644, -0.1388363242149353, -0.08847513049840927, -0.0032451197039335966, 0.040349140763282776, -0.06283340603113174, -0.04275262728333473, 0.014051834121346474, -0.01944022998213768, 0.07232214510440826, 0.061948586255311966, -0.07038233429193497, -0.028435004875063896, -0.03187692165374756, -0.03816832974553108, 0.008814191445708275, 0.06186236813664436, -0.1032184436917305, -0.03583911433815956, 0.04462933540344238, -0.0444108210504055, 0.09721150994300842, -0.05098035931587219, 0.04679161682724953, -0.05480538681149483, 0.021043570712208748, 0.03606739640235901, -0.007757984101772308, -0.0251658596098423, 0.05248090997338295, -9.688400194906308e-33, -0.03198099508881569, 0.018780868500471115, -0.07249680906534195, -0.0744900032877922, -0.030003337189555168, -0.04542433097958565, 0.030049212276935577, -0.10001807659864426, 0.0482013039290905, 0.02023455686867237, -0.03862040489912033, -0.03476136177778244, -0.05899418890476227, 0.023099303245544434, 0.03326454758644104, -0.08369051665067673, -0.04490448907017708, 0.0003305249265395105, 0.04431556165218353, -0.09030365943908691, -0.014498626813292503, -0.06427988409996033, -0.04802803322672844, -0.0021590436808764935, -0.011691202409565449, 0.0060619935393333435, 0.06442074477672577, -0.14035290479660034, -0.07485505938529968, 0.0032151590567082167, 0.03255715221166611, -0.002858841558918357, 0.10100330412387848, 0.09128458797931671, 0.008198880590498447, -0.042119089514017105, 0.03902405500411987, -0.029049023985862732, 0.0039728861302137375, -0.0861956849694252, 0.030547061935067177, -0.009773284196853638, -0.018658384680747986, 0.041443832218647, -0.009618943557143211, 0.015834158286452293, -0.0077751195058226585, -0.008871795609593391, -0.007279838901013136, -0.041211728006601334, -0.02415328472852707, -0.10477884858846664, -0.05363655835390091, -0.07768440246582031, -0.0031837360002100468, 0.014328498393297195, 0.006762867793440819, -0.036892056465148926, 0.11224453151226044, 0.00626087561249733, -0.0585923045873642, -0.027829531580209732, 0.09592504054307938, -0.05205714702606201, 0.026657134294509888, -0.00828708428889513, 0.0044433483853936195, -0.028852803632616997, -0.029598228633403778, -0.07864034175872803, 0.08245375752449036, 0.10047880560159683, -0.052690938115119934, -0.015128375962376595, -0.01086672954261303, 0.011577567085623741, 0.026013482362031937, 0.019080324098467827, 0.02379738911986351, -0.020464763045310974, -0.0017650151858106256, -0.02307179756462574, 0.018712172284722328, 0.03379107639193535, 0.03796997666358948, -0.03883945941925049, 0.07633699476718903, 0.05674631893634796, 0.006730683147907257, 0.049944955855607986, 0.046519774943590164, 0.05284492298960686, -0.04412153735756874, -0.024138379842042923, 0.10191847383975983, 7.940506657601182e-32, 0.05961914360523224, 0.03033643588423729, -0.06332177668809891, 0.023223480209708214, -0.04499143362045288, -0.03390108421444893, -0.0017377218464389443, -0.006682800594717264, 0.03641381859779358, 0.0047181034460663795, 0.07958371192216873, 0.053430210798978806, -0.03571094945073128, 0.05942774564027786, -0.011670062318444252, -0.0539952777326107, -0.03945601359009743, 0.01791686750948429, 0.013344410806894302, 0.000984571990557015, -0.03902633115649223, -0.006827384699136019, -0.04394276812672615, 0.06332362443208694, 0.052596550434827805, 0.05887371301651001, -0.07566410303115845, -0.001565781538374722, 0.009411685168743134, 0.00106300157494843, 0.06989897042512894, 0.04409860819578171, 0.059265609830617905, 0.04130779206752777, -0.014473593793809414, 0.03574897721409798, 0.022875696420669556, 0.0066793072037398815, -0.017015807330608368, 0.0028854645788669586, 0.0070563266053795815, -0.10877355188131332, -0.021088052541017532, -0.016120893880724907, 0.029027709737420082, 0.03159801661968231, -0.04257078468799591, -0.08525265008211136, -0.04251967743039131, -0.09821492433547974, -0.08406506478786469, 0.020230762660503387, 0.0631173774600029, 0.033631786704063416, 0.004465400706976652, -0.04880893602967262, -0.03469765931367874, -0.01070608664304018, 0.044338811188936234, -0.07587184756994247, 0.01191634964197874, 0.0006498386501334608, -0.12020043283700943, -0.04979609698057175 ]
238 Chapter 11 2 Given tha t a = 2i + 3j and b = 4i − j, find these vectors in terms of i and j. a 4a b 1 _ 2 a c −b d 2b + a e 3a − 2b f b − 3a g 4b − a h 2a − 3b 3 Given tha t a = ( 9 7 ) , b = ( 11 −3 ) and c = ( −8 −1 ) find: a 5a b − 1 _ 2 c c a + b + c d 2a − b + c e 2b + 2c − 3a f 1 _ 2 a + 1 _ 2 b 4 Given tha t a = 2i + 5j and b = 3i − j, find: a λ if a + λb is parallel to the vector i b μ if μa + b is parallel to the vector j 5 Given tha t c = 3i + 4j and d = i − 2j, find: a λ if c + λd is parallel to i + j b μ if μc + d is parallel to i + 3j c s if c − sd is parallel to 2i + j d t if d − tc is parallel to −2i + 3j 6 In triangle ABC, ⟶ AB = 4 i + 3j and ⟶ AC = 5i + 2j. AB C Find BC. (2 marks) 7 OABC is a par allelogram. AB P C O P divides AC in the ratio 3 : 2. ⟶ OA = 2 i + 4j, ⟶ OC = 7 i. Find in i, j format and column vector format: a ⟶ AC b ⟶ OP c ⟶ AP 8 a = ( j 3 ) , b = ( 10 k ) , c = ( 2 5 ) Given tha t b − 2a = c, find the values of j and k. (2 marks) 9 a = ( p −q ) , b = ( q p ) , c = ( 7 4 ) Given tha t a + 2b = c, find the values of p and q. (2 marks) 10 The resultant of the v ectors a = 3i − 2j and b = pi − 2pj is parallel to the vector c = 2i − 3j. Find: a the value of p (4 marks) b the resultant of v ectors a and b. (1 mark)P P E P E/P E/P E/PYou can consider b – 2 a = c as two linear equations. One for the x -components and one for the y -components.Problem-solving
[ -0.07565922290086746, 0.035143688321113586, 0.020206985995173454, -0.08580482751131058, 0.01210551243275404, -0.03998926281929016, -0.013960635289549828, 0.044045835733413696, -0.07563894987106323, 0.07908333837985992, 0.04063819721341133, -0.04949714615941048, -0.0810493603348732, -0.012111719697713852, -0.04557642713189125, -0.006738143973052502, -0.08966030180454254, 0.06840761750936508, -0.007209673058241606, -0.03193741664290428, 0.024597512558102608, 0.0043534161522984505, -0.018458940088748932, 0.014894938096404076, 0.07155535370111465, -0.05449901893734932, 0.03963020071387291, 0.02239236980676651, -0.01535809226334095, -0.05462243780493736, 0.01714380271732807, -0.003551553236320615, 0.1015733852982521, -0.0026017138734459877, 0.06239670515060425, 0.010555646382272243, 0.020418602973222733, 0.04683276638388634, 0.1257002204656601, -0.06406216323375702, 0.014593809843063354, -0.026756884530186653, 0.020293235778808594, 0.0016274908557534218, -0.020616361871361732, -0.02838744781911373, -0.054554473608732224, -0.0008613624959252775, 0.004324224777519703, 0.01815170980989933, -0.005876664537936449, -0.036019209772348404, -0.02558409795165062, 0.03924795612692833, 0.02159261889755726, -0.03867427259683609, 0.02037748135626316, 0.08691205084323883, -0.02820276841521263, -0.050541091710329056, 0.01813405007123947, -0.02298632077872753, -0.007200665306299925, 0.020085521042346954, -0.006349683273583651, 0.08074817061424255, -0.0595363974571228, -0.027864500880241394, 0.022746780887246132, -0.017702607437968254, -0.04081469401717186, 0.07946237176656723, -0.005420861765742302, -0.09910419583320618, -0.027505360543727875, -0.03437206894159317, -0.021642934530973434, -0.06511716544628143, 0.08323679864406586, -0.0065750922076404095, 0.0023199599236249924, 0.03203841671347618, 0.09890812635421753, -0.040568236261606216, 0.08270494639873505, -0.019496619701385498, 0.008830392733216286, 0.04755023494362831, 0.10176041722297668, 0.0006198475020937622, -0.015945862978696823, 0.007368385326117277, 0.07187395542860031, 0.02350694127380848, -0.017077280208468437, -0.02587207593023777, 0.015817750245332718, -0.029241207987070084, 0.06345754861831665, 0.1204007938504219, 0.07133574783802032, -0.10985004156827927, -0.02926160767674446, 0.038116589188575745, -0.014480321668088436, 0.04266728088259697, 0.004538528621196747, -0.0034469361416995525, -0.007282600738108158, -0.01768302731215954, 0.010418830439448357, 0.008345508016645908, 0.013891671784222126, -0.044756509363651276, 0.07037205249071121, -0.006515895947813988, 0.006864395458251238, 0.07655861228704453, -0.0006690225563943386, -0.053316060453653336, 0.011357058770954609, -0.040630441159009933, 0.03661314770579338, -0.022754836827516556, -0.04120507463812828, -0.013839236460626125, -0.0326017402112484, -0.01926310360431671, -0.018065404146909714, -0.046663735061883926, -0.023525623604655266, 0.024444134905934334, -0.11670024693012238, 0.00849958322942257, -0.02189285308122635, 0.05709027498960495, -0.07860167324542999, 0.017545467242598534, -0.02492380328476429, -0.10974657535552979, -0.02417946234345436, 0.07107242941856384, 0.03690358251333237, 0.0010252679930999875, 0.04117598757147789, -0.0071015795692801476, -0.0830758661031723, -0.04529154300689697, 0.03951241448521614, 0.05030272901058197, 0.08723437041044235, -0.02320941910147667, -0.013893719762563705, 0.015295804478228092, -0.036138761788606644, -0.07774701714515686, -0.059834014624357224, -0.08877736330032349, -0.05488371476531029, -0.0720595270395279, -0.04510057717561722, -0.02888321317732334, 0.008873851969838142, 0.04932693764567375, 0.16522663831710815, 0.052296336740255356, -0.003962032496929169, 0.03168158978223801, 0.07950950413942337, 0.0073729343712329865, 0.00752056622877717, -0.06420248001813889, -0.0040140640921890736, 0.05352235957980156, 0.09368237107992172, -0.03868008777499199, 0.07100040465593338, 0.02222767099738121, -0.12537874281406403, -0.003599582239985466, 0.03459140285849571, -0.04916622117161751, 0.010341350920498371, 0.05610407516360283, 0.035015810281038284, 0.01096918061375618, -0.008295392617583275, 0.09791575372219086, -0.08549037575721741, 0.011292494833469391, 0.0722879096865654, -0.022277792915701866, -0.007929150015115738, -0.008344396017491817, -0.1290869116783142, -0.09124041348695755, -0.028675993904471397, 0.013436778448522091, -0.07021033763885498, 0.008003342896699905, 0.08574175834655762, 0.017577001824975014, 0.06220417469739914, 0.04435701668262482, -0.040081243962049484, -0.06546010822057724, -0.01028268039226532, -0.032032474875450134, 0.01610240712761879, 0.015901127830147743, -0.07528221607208252, -0.022955946624279022, 0.0038149445317685604, -0.012282665818929672, 0.04435659945011139, -0.12523868680000305, 0.025809621438384056, -0.02032497338950634, 0.046751320362091064, 0.009734991006553173, -0.04873131588101387, -0.061086028814315796, 0.05410059913992882, -1.5054736883237475e-32, 0.028897739946842194, -0.050422269850969315, -0.05155380442738533, -0.027025040239095688, -0.028284508734941483, -0.036493830382823944, -0.011089026927947998, -0.13642169535160065, 0.06930278241634369, 0.018691644072532654, -0.02085430920124054, -0.031962521374225616, -0.09784076362848282, 0.04239972308278084, 0.00811318401247263, -0.03633484989404678, -0.043106451630592346, 0.060423970222473145, 0.02643500082194805, -0.06544855982065201, 0.023180361837148666, -0.04146546497941017, -0.08291935920715332, -0.03867463767528534, -0.040818486362695694, -0.02179037593305111, 0.028881805017590523, -0.13885536789894104, -0.06924595683813095, -0.028574202209711075, 0.0527314767241478, -0.03882025554776192, 0.0756259560585022, 0.043551087379455566, -0.00937524251639843, -0.0363759808242321, 0.01627160795032978, 0.0032211733050644398, -0.04686325788497925, -0.07202944159507751, 0.03222575783729553, 0.06201842799782753, -0.02654767595231533, -0.0074439095333218575, 0.0021379475947469473, 0.04370946064591408, -0.008073657751083374, 0.05367570370435715, -0.01044487301260233, 0.04238751903176308, -0.01854284480214119, -0.06087253615260124, -0.025673463940620422, -0.01904085837304592, -0.021896716207265854, -0.018811559304594994, 0.09923780709505081, -0.11318723857402802, 0.07196205109357834, 0.05187125504016876, -0.04605262726545334, -0.04132331535220146, 0.024592824280261993, -0.055079489946365356, 0.059861160814762115, -0.06700561195611954, 0.014162708073854446, -0.006769076455384493, -0.020718680694699287, -0.03238575533032417, 0.007869414985179901, 0.08195696026086807, -0.04053623974323273, -0.012076472863554955, -0.00794998463243246, -0.019610479474067688, 0.010881748981773853, 0.047854289412498474, -0.021046703681349754, -0.07255377620458603, -0.053974252194166183, -0.009848124347627163, 0.02239777147769928, -0.00902671180665493, 0.03450087457895279, -0.0004013655998278409, 0.036095377057790756, 0.06066238135099411, -0.08043405413627625, -0.031727079302072525, 0.04081697762012482, 0.10632874816656113, 0.03137669339776039, -0.00973871536552906, 0.07587704062461853, 1.015918289061155e-31, 0.06533712148666382, -0.014291070401668549, -0.036771077662706375, 0.03709828108549118, 0.051719676703214645, -0.03946844860911369, 0.05002078041434288, 0.03410563990473747, 0.03145767003297806, -0.061110641807317734, 0.09200616925954819, 0.035384926944971085, -0.04620341584086418, 0.10012218356132507, -0.0030991770327091217, -0.05333881080150604, -0.08411247283220291, -0.03480350598692894, -0.06023205444216728, 0.0017425700789317489, -0.032355159521102905, -0.0020506561268121004, -0.028162119910120964, 0.03793179243803024, 0.11076773703098297, 0.004633059725165367, -0.09453589469194412, 0.004158466123044491, -0.026083599776029587, -0.02383522503077984, 0.04607464745640755, 0.03370248153805733, 0.052941806614398956, -0.03596639633178711, -0.043464016169309616, 0.012398658320307732, 0.06304040551185608, -0.02567005529999733, -0.02080710232257843, 0.043375469744205475, -0.039534520357847214, 0.007855091243982315, -0.058301981538534164, -0.0021844569128006697, 0.059502340853214264, -0.016635792329907417, 0.0004503094532992691, -0.08092732727527618, -0.00912813376635313, -0.14197038114070892, -0.06978556513786316, 0.0632183775305748, 0.0248608086258173, 0.022871293127536774, 0.02614249661564827, -0.09113333374261856, -0.01776043511927128, -0.005006934981793165, 0.08095166087150574, -0.08560412377119064, -0.0019184884149581194, -0.06926292181015015, -0.1070496216416359, -0.01573641411960125 ]
239Vectors 11.3 Magnitude and direction You can use Pythagoras’ theorem to calculate the magnitude of a vector. ■ For the vect or a = xi + yj = ( x y ) , the magnitude of the vector is given by: |a | = √ ______ x2 + y2 You need to be abl e to find a unit vector in the direction of a given vector. ■ A unit vector in the dir ection of a is a ___ |a| If |a| = 5 then a unit vector in the direction of a is a __ 5 . a a 5 You u se straight lines on either side of the vector: |a| = |xi + y j| = | ( x y ) |Notation A unit vector is any vector with magnitude 1. A unit vector in the direction of a is sometimes written as a ^.Notation Example 11 Given that a = 3i + 4j and b = −2i − 4j: a find |a| b find a unit vector in the direction of a c find the exact va lue of |2a + b | a a = ( 3 4 ) |a| = √ ________ 32 + 42 |a| = √ ___ 25 = 5 b a unit v ector is a ____ |a| = 3i + 4j _______ 5 = 1 __ 5 (3i + 4j) or ( 0.6 0.8 ) c 2a + b = 2 ( 3 4 ) + ( –2 –4 ) = ( 6 – 2 8 – 4 ) = ( 4 4 ) |2a + b| = √ ________ 42 + 42 = √ ___ 32 = 4 √ __ 2 Unless specified in the question it is acceptable to give your answer in i, j form or column vector form. You need to give an exact answer, so leave your answer in surd form: √ ___ 32 = √ ______ 16 × 2 = 4 √ __ 2 ← Section 1.5It is often quicker and easier to convert from i, j form to column vector form for calculations. Using Pythagoras. a4 3 Explore the magnitude of a vector us ing GeoGebra.Online
[ 0.022144107148051262, -0.04686625301837921, 0.001691351761110127, -0.10809078067541122, -0.0787372812628746, 0.0134972482919693, -0.04992883652448654, -0.024995610117912292, -0.06005128100514412, 0.0695619136095047, 0.008152863010764122, -0.04183708131313324, -0.009290764108300209, 0.06397572159767151, 0.02273164689540863, 0.005498018115758896, -0.030159618705511093, 0.0750979483127594, -0.003096118802204728, -0.0012961241882294416, 0.09512948244810104, -0.0007126213167794049, 0.04305492714047432, -0.02781536430120468, -0.0056052375584840775, 0.004971695132553577, 0.06391558051109314, -0.05164533853530884, -0.026296548545360565, 0.011839546263217926, 0.01726803556084633, -0.027551928535103798, 0.10888756066560745, -0.0009247743291780353, 0.006636012811213732, -0.015420583076775074, 0.08216901868581772, 0.1081230491399765, 0.018029360100626945, -0.05829041451215744, -0.01773497648537159, 0.036146506667137146, 0.0020097438246011734, 0.019643811509013176, 0.010308496654033661, -0.016913816332817078, -0.004289297852665186, -0.0022671225015074015, 0.09256095439195633, 0.028151661157608032, 0.06709771603345871, -0.009980236180126667, -0.03165925666689873, 0.003592891851440072, -0.012972033582627773, 0.03871489688754082, 0.036555882543325424, 0.04100071266293526, -0.002412377391010523, -0.13396058976650238, 0.03751518577337265, -0.014719023369252682, -0.022458290681242943, -0.05284763500094414, 0.0023005225230008364, -0.03616473451256752, -0.03094443306326866, -0.04117739573121071, -0.03300302475690842, 0.022409245371818542, 0.041695624589920044, 0.02166733331978321, 0.003959302790462971, -0.022987984120845795, -0.029999908059835434, -0.04887532815337181, -0.003299965988844633, -0.027277348563075066, 0.0075530558824539185, -0.04197821766138077, -0.0821555033326149, 0.06789974868297577, -0.06442370265722275, 0.011374445632100105, 0.06671500205993652, 0.06066933274269104, 0.011934496462345123, 0.06193225085735321, 0.03252122551202774, -0.054089728742837906, 0.03702961280941963, -0.008434170857071877, 0.020352080464363098, -0.027252983301877975, 0.06538475304841995, -0.02327088452875614, 0.0834486335515976, -0.0294185820966959, -0.040941886603832245, 0.03669896349310875, 0.06874626129865646, -0.06283693015575409, -0.07034602016210556, 0.04210842400789261, 0.004847284406423569, -0.050955649465322495, 0.07236132025718689, -0.026440804824233055, 0.020834753289818764, 0.009532222524285316, -0.014662233181297779, 0.07297877222299576, 0.03298084810376167, -0.05669722333550453, 0.12151964753866196, 0.029778527095913887, -0.03460681810975075, 0.1052757203578949, 0.019118404015898705, -0.04344850406050682, 0.03009992465376854, -0.08281450718641281, -0.024991827085614204, -0.0565170980989933, 0.004778258036822081, 0.03830099478363991, 0.037746038287878036, -0.02407705970108509, 0.03855215385556221, 0.03268079087138176, 0.017578531056642532, 0.015586691908538342, -0.12162955105304718, -0.013292493298649788, -0.1004733145236969, 0.11008214205503464, 0.04309733584523201, 0.010357420891523361, -0.02133795991539955, -0.04845750704407692, 0.05878119170665741, 0.07373695075511932, 0.055337972939014435, -0.010638538748025894, 0.07703164219856262, 0.002972822170704603, -0.07280881702899933, -0.03733796998858452, 0.015071796253323555, 0.03188329190015793, 0.024927377700805664, -0.035727422684431076, -0.017516877502202988, 0.023586921393871307, -0.05018052086234093, 0.046034350991249084, -0.07367449998855591, 0.0129945557564497, 0.017535477876663208, 0.012057458981871605, -0.047763925045728683, -0.001989650307223201, -0.02284948341548443, 0.050683144479990005, 0.014343800954520702, 0.04817349091172218, -0.06081493943929672, 0.06725716590881348, 0.010968616232275963, -0.015214876271784306, 0.0376717746257782, -0.021052731201052666, -0.009914959780871868, 0.05776389315724373, 0.006352393887937069, -0.08253196626901627, 0.04991355538368225, -0.03481431305408478, -0.030633065849542618, -0.05724159628152847, 0.06713691353797913, -0.06779146939516068, 0.05857409909367561, -0.014975637197494507, -0.020806236192584038, 0.04499488323926926, -0.044243209064006805, -0.03140968456864357, -0.10781338065862656, 0.04773690178990364, 0.15661706030368805, -0.0899822860956192, -0.10551024973392487, 0.0023505166172981262, -0.07471689581871033, -0.03486722707748413, -0.025620970875024796, -0.015967434272170067, -0.0886295884847641, -0.0012180781923234463, 0.025362329557538033, -0.06023894250392914, 0.04906615614891052, 0.03711258992552757, -0.007592102978378534, 0.02620692551136017, -0.009716589003801346, -0.015039891935884953, -0.04066682606935501, 0.06687919050455093, -0.01934800297021866, -0.061012376099824905, 0.10918430238962173, -0.058149486780166626, 0.010149365290999413, -0.0849548950791359, -0.03187907859683037, -0.0856299176812172, 0.00817181821912527, 0.013871517032384872, -0.002169762970879674, 0.06345291435718536, 0.06825222074985504, 4.537554028941929e-33, -0.03441215679049492, 0.022836677730083466, -0.04103859141469002, -0.026553943753242493, -0.011488138698041439, -0.01854809559881687, 0.06074316427111626, -0.05374688655138016, -0.02764083445072174, -0.029812172055244446, -0.06226734444499016, -0.015065406449139118, -0.07446067780256271, 0.06668991595506668, 0.053969606757164, 0.03976845741271973, -0.06883890181779861, -0.041413795202970505, -0.06336414813995361, -0.06152641773223877, -0.00800952035933733, -0.12613292038440704, -0.01045332569628954, -0.06960441917181015, -0.037301111966371536, 0.014076871797442436, 0.0925733745098114, -0.07221396267414093, -0.09765999019145966, -0.009828533977270126, 0.02792385034263134, 0.02161788009107113, 0.023899581283330917, 0.08915950357913971, -0.02496984973549843, -0.005074945744127035, -0.002663369756191969, -0.000407016632379964, -0.010779893957078457, -0.05991799756884575, 0.04164436459541321, 0.08277148753404617, 0.02863370254635811, 0.005784188397228718, -0.03351260721683502, -0.028577836230397224, 0.10709025710821152, 0.002067893510684371, -0.04340755566954613, 0.005655298475176096, 0.013829600997269154, -0.09079787880182266, 0.08374803513288498, -0.03667041286826134, -0.0013209375320002437, 0.010155119933187962, 0.010830179788172245, 0.012803477235138416, 0.10735223442316055, 0.03058655560016632, -0.003954450134187937, -0.01924167014658451, 0.06955878436565399, 0.019593559205532074, -0.014716030098497868, -0.03687184303998947, 0.02411324717104435, 0.02317207306623459, 0.028680669143795967, -0.0712929293513298, 0.05158336088061333, 0.08674155920743942, -0.027714505791664124, 0.047657303512096405, -0.029208684340119362, 0.006333992816507816, 0.006628009956330061, 0.033820927143096924, 0.02022368460893631, -0.0485418438911438, -0.049147602170705795, -0.022474108263850212, 0.024378076195716858, 0.030966510996222496, -0.045939624309539795, -0.056700341403484344, 0.041478004306554794, 0.02920139580965042, -0.003653067396953702, -0.01166254561394453, -0.04538979008793831, 0.07143530994653702, -0.0831601545214653, -0.006467665079981089, 0.128343403339386, 7.142592259459346e-32, -0.02059042453765869, 0.05273618921637535, -0.06034848466515541, 0.015370335429906845, -0.002395255956798792, 0.040633875876665115, 0.013203953392803669, 0.029224257916212082, -0.03968954458832741, -0.05164171755313873, 0.013068603351712227, 0.019534356892108917, -0.12935014069080353, 0.05254824087023735, -0.08607477694749832, -0.09864701330661774, 0.03031771071255207, 0.004761621821671724, 0.005347148049622774, -0.016615984961390495, 0.06623385846614838, -0.014872787520289421, -0.04394521564245224, -0.006267067510634661, 0.02233518287539482, 0.07595808058977127, -0.05251360684633255, 0.045595683157444, 0.019778260961174965, -0.03318381309509277, 0.04569730907678604, 0.01262249518185854, -0.10203167796134949, 0.03306476026773453, -0.03801518306136131, 0.03624439239501953, -0.03414847329258919, 0.04576646536588669, -0.052475228905677795, 0.03461575135588646, -0.029799064621329308, -0.10569704324007034, -0.0007148990989662707, 0.0460340715944767, 0.05742085352540016, 0.060216259211301804, -0.05318119004368782, -0.10513830184936523, 0.05423770099878311, -0.08158764243125916, -0.007874136790633202, 0.06480506807565689, 0.06936386227607727, 0.13452598452568054, -0.04925709217786789, -0.04899072274565697, -0.07015120983123779, 0.02604280412197113, 0.05111846700310707, -0.051217854022979736, 0.027191005647182465, 0.05288424342870712, -0.0980459451675415, -0.09001782536506653 ]
240 Chapter 11 You can define a vector by giving its magnitude, and the angle between the vector and one of the coordinate axes. This is called magnitude-direction form. θ4i + 5j Oy x tan θ = 5 __ 4 θ = tan−1 ( 5 __ 4 ) = 51.3° (3 s.f.)Identify the angle that you need to find. A diagram always helps. You have a right-angled triangle with base 4 units and height 5 units, so use trigonometry.Example 12 Find the angle between the vector 4i + 5j and the positive x-axis.This might be referred to as the angle between the vector and i. Example 13 Vector a has magnitude 10 and makes an angle of 30° with j. Find a in i, j and column vector format.30° a Oy x 60°30°10 Oy xxy cos 60° = x ___ 10 x = 10 co s 60 ° = 5 sin 60 ° = y ____ 10 y = 10 si n 60 ° = 5 √ __ 3 a = 5 i + 5 √ __ 3 j or a = ( 5 5 √ __ 3 ) The d irection of a vector can be given relative to either the positive x -axis (the i direction) or the positive y -axis (or the j direction).Watch outUse trigonometry to find the lengths of the x- and y-components for vector a. Exercise 11C 1 Find the magnitude of each of these vectors. a 3i + 4j b 6i − 8j c 5i + 12j d 2i + 4j e 3i − 5j f 4i + 7j g −3i + 5j h −4i − j
[ -0.029484575614333153, -0.057661283761262894, -0.00357726844958961, -0.1309952735900879, -0.025521982461214066, 0.04268478602170944, -0.003951233811676502, 0.05411916598677635, -0.05379980802536011, 0.08711190521717072, 0.07375721633434296, -0.10739995539188385, -0.06352902203798294, 0.14682209491729736, -0.0030271881259977818, 0.004971406888216734, -0.07602903246879578, 0.14702799916267395, -0.009001833386719227, 0.014811595901846886, 0.026273097842931747, -0.01976166106760502, -0.00617450475692749, -0.0325787328183651, -0.036030784249305725, 0.019244130700826645, 0.11428672820329666, -0.01930297166109085, 0.02676253579556942, 0.028440233319997787, -0.010840428061783314, -0.043409742414951324, 0.05037540942430496, -0.06780045479536057, -0.0933949276804924, -0.014851958490908146, -0.01093874592334032, 0.02672434225678444, 0.03183412924408913, 0.041338805109262466, 0.036192093044519424, -0.015157968737185001, 0.005926153622567654, -0.010366328991949558, -0.06636768579483032, 0.01570175215601921, -0.022761719301342964, 0.004841275978833437, 0.046904273331165314, 0.06412510573863983, 0.04126819223165512, -0.032016776502132416, -0.04413265734910965, -0.0019332770025357604, 0.013189459219574928, 0.09698856621980667, 0.0660318061709404, -0.021651649847626686, -0.02562207356095314, -0.07287683337926865, 0.11728840321302414, 0.04065770283341408, -0.013298402540385723, -0.06757286936044693, -0.040615420788526535, 0.04303651303052902, -0.01867278292775154, -0.07421468198299408, -0.0009599336772225797, -0.002917225006967783, -0.05062628164887428, -0.02864757552742958, 0.04616093635559082, -0.07490392029285431, -0.07117510586977005, -0.06957169622182846, 0.007452724035829306, 0.017549067735671997, -0.041782479733228683, -0.04697749763727188, -0.03990146890282631, 0.07718029618263245, 0.01704687997698784, -0.00781330931931734, 0.07959067076444626, 0.012690933421254158, -0.005868982058018446, 0.09337663650512695, 0.08127901703119278, -0.008680573664605618, 0.0509972907602787, -0.002653898438438773, 0.006948839407414198, -0.057234987616539, 0.13663634657859802, -0.005114084575325251, 0.08907794952392578, 0.0005584874888882041, 0.0002290794946020469, 0.014985553920269012, 0.022989701479673386, -0.0835462287068367, -0.07615356892347336, 0.022884367033839226, -0.04267653450369835, -0.018924251198768616, 0.07128802686929703, -0.0031186749693006277, -0.06495290249586105, -0.013326935470104218, -0.013791641220450401, 0.07827948033809662, -0.020790182054042816, -0.02826165221631527, 0.023770200088620186, 0.014665264636278152, -0.021897893399000168, 0.12437237054109573, 0.027608048170804977, -0.00537851033732295, 0.007010140921920538, -0.0712282657623291, -0.05665092170238495, 0.024948177859187126, -0.07488586753606796, -0.0285172201693058, 0.06637648493051529, -0.053214237093925476, -0.014529005624353886, 0.01671716198325157, 0.0468587800860405, -0.012505211867392063, -0.07356666028499603, -0.09344171732664108, -0.020104942843317986, 0.07135467976331711, 0.05159352719783783, 0.025899529457092285, -0.06436421722173691, -0.04776226356625557, -0.026719724759459496, 0.06321857124567032, 0.039234090596437454, -0.015552335418760777, 0.0006049405201338232, -0.01922701857984066, -0.086820088326931, 0.0007197841187007725, 0.04319637268781662, 0.03980323299765587, 0.00842240545898676, -0.04599173739552498, -0.05645475536584854, 0.08328547328710556, -0.07319807261228561, 0.019186917692422867, -0.12371054291725159, -0.007863432168960571, 0.017716439440846443, -0.03499104455113411, -0.02286144532263279, -0.03909900039434433, 0.010829765349626541, 0.027511626482009888, -0.03139420971274376, 0.04271769896149635, -0.03280093893408775, 0.03726121410727501, 0.04174862429499626, -0.02237645350396633, 0.03566284105181694, 0.01182788796722889, -0.010046797804534435, 0.11174192279577255, 0.03694966807961464, -0.06841332465410233, 0.020733635872602463, 0.03412938490509987, -0.05682266131043434, -0.051097165793180466, 0.02509368024766445, -0.06211375817656517, 0.012895063497126102, 0.021085523068904877, 0.04925725981593132, 0.013243886642158031, -0.009399738162755966, -0.06068935990333557, -0.10845716297626495, 0.005502878222614527, 0.09804891794919968, -0.010958022437989712, -0.023130830377340317, -0.024666905403137207, -0.16742396354675293, 0.0067129903472959995, -0.034468136727809906, 0.025145715102553368, 0.005685173906385899, 0.008282282389700413, -0.029371485114097595, -0.04680302366614342, 0.02789241075515747, 0.04850100725889206, -0.014660586602985859, -0.007829595357179642, -0.013752101920545101, -0.057782433927059174, -0.04755396023392677, 0.06826775521039963, -0.053072743117809296, 0.007724390830844641, 0.03645719587802887, -0.031701769679784775, 0.07908125966787338, -0.08646377176046371, 0.03613705933094025, -0.037926215678453445, -0.00742506654933095, 0.04497072473168373, -0.039821889251470566, -0.003746498841792345, 0.015441205352544785, 1.9574300705824038e-33, -0.008053378202021122, -0.01585499942302704, -0.061354584991931915, -0.09311670809984207, -0.013134117238223553, -0.0006935878773219883, 0.06929662823677063, -0.07741863280534744, -0.009557107463479042, -0.012162718921899796, -0.057395365089178085, -0.009891468100249767, -0.0710594654083252, 0.036445390433073044, 0.02098330482840538, 0.004380933474749327, -0.05222000926733017, 0.042753785848617554, 0.022752990946173668, -0.03525596857070923, -0.03003584034740925, -0.10446734726428986, -0.030662205070257187, -0.06726091355085373, 0.010780096054077148, 0.007556580938398838, 0.07972459495067596, -0.0764545276761055, -0.1268979161977768, -0.008979990147054195, -0.02206246182322502, 0.03333933278918266, 0.043021004647016525, 0.05379500985145569, 0.09282372146844864, -0.0215836763381958, 0.06063868850469589, -0.0635497197508812, 0.017705315724015236, -0.06389783322811127, 0.00448336498811841, 0.01897500269114971, 0.045536283403635025, 0.006122309248894453, -0.035492487251758575, -0.013532090932130814, 0.0715801864862442, 0.050975192338228226, -0.02461332269012928, -0.02494521252810955, -0.03408779576420784, -0.07513980567455292, 0.07159482687711716, -0.03349672257900238, -0.0021966048516333103, -0.04693157225847244, 0.03988853469491005, 0.02037630043923855, 0.07896949350833893, -0.01743890717625618, -0.03859226033091545, -0.01828506775200367, 0.09786821156740189, -0.018296945840120316, -0.00960452202707529, -0.005979062989354134, 0.02802434377372265, 0.04228449985384941, 0.037710633128881454, -0.08658643811941147, -0.0021091937087476254, 0.10049297660589218, -0.05991271883249283, 0.04038895666599274, -0.06024307385087013, 0.029919840395450592, 0.01825699210166931, 0.026745092123746872, 0.06033485010266304, 0.014485041610896587, -0.0143272178247571, 0.017977852374315262, -0.022655878216028214, 0.002349307993426919, -0.021669812500476837, -0.045157913118600845, 0.03011273220181465, 0.030723584815859795, 0.015926068648695946, 0.01588943973183632, -0.06532996147871017, 0.035691212862730026, -0.07210355997085571, -0.015933265909552574, 0.04530998691916466, 6.114201034940486e-32, -0.04471537098288536, 0.005441751331090927, -0.01353219524025917, 0.041693590581417084, 0.016703259199857712, 0.009033259935677052, 0.043568260967731476, -0.043568193912506104, 0.0705031305551529, -0.03464607894420624, 0.017868271097540855, 0.020006749778985977, -0.04117026552557945, -0.00462137209251523, -0.025299200788140297, -0.0808454155921936, 0.0014388560084626079, 0.03569639101624489, -0.053776875138282776, -0.039605047553777695, 0.064939945936203, 0.0000064795899561431725, -0.04837855324149132, 0.005479738581925631, 0.0822136327624321, 0.07382757216691971, -0.03512683883309364, 0.06624528765678406, -0.018626198172569275, -0.024398699402809143, -0.006662682164460421, -0.004013312980532646, 0.07194473594427109, 0.063632071018219, -0.0070272996090352535, 0.0351753868162632, 0.014668882824480534, 0.10614477097988129, 0.020236147567629814, 0.04900740087032318, 0.004280473571270704, 0.008178489282727242, 0.012661527842283249, -0.011148999445140362, 0.05335185304284096, -0.007636388298124075, -0.01586349681019783, -0.09064516425132751, 0.036112137138843536, -0.08545493334531784, -0.004676692187786102, 0.14061041176319122, 0.09825911372900009, 0.1727837771177292, 0.01950739324092865, -0.008548111654818058, 0.025524307042360306, 0.03227876126766205, 0.026237063109874725, -0.038199275732040405, -0.051422812044620514, -0.01203226763755083, -0.07364747673273087, -0.0618455745279789 ]
241Vectors 2 a = 2i + 3j, b = 3i − 4j and c = 5i − j. Find the exact value of the magnitude of: a a + b b 2a − c c 3b − 2c 3 For each of the f ollowing vectors, find the unit vector in the same direction. a a = 4i + 3j b b = 5i − 12j c c = −7i + 24j d d = i − 3j 4 Find the angle that each of these v ectors makes with the positive x-axis. a 3i + 4j b 6i − 8j c 5i + 12j d 2i + 4j 5 Find the angle that each of these v ectors makes with j. a 3i − 5j b 4i + 7j c −3i + 5j d −4i − j 6 Write these vectors in i, j and column vector form. a b c d 60°45° 15 Oy x20° 8 Oy x Oy x25° 205 Oy x 7 Draw a sketch for each vector and work out the exact value of its magnitude and the angle it mak es with the positive x-axis to one decimal place. a 3i + 4j b 2i − j c −5i + 2j 8 Given tha t |2i − kj | = 2 √ ___ 10 , find the exact va lue of k. (3 marks) 9 Vector a = pi + qj has magnitude 10 and makes an angle θ with the positive x-axis where sin θ = 3 _ 5 . Find the possible va lues of p and q. (4 marks) 10 In triangle ABC, ⟶ AB = 4 i + 3j, ⟶ AC = 6 i − 4j. B A Ca Find the angle between ⟶ AB and i. b Find the angle between ⟶ AC and i. c Hence find the size of ∠BAC , in degrees, to one decimal place. 11 In triangle PQR, ⟶ PQ = 4 i + j, ⟶ PR = 6 i − 8j. Q P Ra Find the size of ∠QPR, in degrees, to one decimal place. (5 marks) b Find the area of triangle PQR. (2 marks)E/P E/P E/P The area of a tri angle is 1 _ 2 ab sin θ. ← Section 9.3Hint θa bMake sure you consider all the possible cases.Problem-solving
[ 0.004277675878256559, -0.011714023537933826, 0.01028799545019865, -0.10400412976741791, -0.015074500814080238, -0.011863152496516705, -0.05112283304333687, 0.04171120747923851, -0.06422419846057892, 0.058954060077667236, 0.0646265298128128, -0.11563097685575485, -0.016037791967391968, 0.03312353417277336, -0.009064767509698868, 0.006647647824138403, -0.039189014583826065, 0.08685432374477386, -0.03689116612076759, 0.030047956854104996, 0.022437497973442078, -0.023512963205575943, 0.012819258496165276, -0.06005574390292168, -0.031414106488227844, 0.013119267299771309, 0.057764969766139984, -0.014670063741505146, 0.028300421312451363, -0.01904025860130787, -0.04449261724948883, -0.03419150784611702, 0.09214826673269272, -0.08792699128389359, 0.012398668564856052, 0.016780467703938484, 0.051468294113874435, 0.0726601630449295, 0.03051036410033703, -0.07705646753311157, -0.024573151022195816, 0.011724485084414482, 0.0029865833930671215, 0.04423452913761139, 0.014625570736825466, 0.013937920331954956, -0.05496329814195633, -0.025636138394474983, 0.07835488021373749, 0.0291602686047554, 0.03412981703877449, -0.013921938836574554, -0.020813805982470512, -0.0240473710000515, 0.012765816412866116, 0.019052579998970032, 0.011753822676837444, 0.047366783022880554, -0.02327563427388668, -0.07766075432300568, 0.09730652719736099, 0.0442948192358017, -0.005223042331635952, 0.019653018563985825, -0.01243543904274702, -0.03817329928278923, 0.00585443340241909, -0.05286272615194321, 0.0071435291320085526, 0.02751074731349945, -0.028590671718120575, -0.003164723515510559, -0.01086731068789959, -0.12135708332061768, -0.031049104407429695, -0.019166743382811546, -0.014730049297213554, -0.02293422818183899, 0.007804280146956444, -0.030396725982427597, -0.0364355742931366, -0.004146203398704529, 0.07895157486200333, -0.027935871854424477, 0.09329012781381607, 0.02759450487792492, 0.0675635039806366, 0.06041647121310234, 0.03579599782824516, -0.021424513310194016, -0.02118653990328312, -0.04930788651108742, 0.015110100619494915, -0.019651830196380615, 0.048394907265901566, -0.027994578704237938, 0.10916900634765625, -0.03289194405078888, 0.008758649230003357, 0.07191655784845352, 0.08561880886554718, -0.0614035427570343, -0.038088854402303696, 0.048426251858472824, -0.00040855223778635263, -0.013204190880060196, 0.06093904748558998, -0.034846168011426926, -0.017022838816046715, 0.035960305482149124, -0.07047854363918304, 0.08131470531225204, 0.015465308912098408, -0.06101210415363312, 0.07091217488050461, 0.014479687437415123, -0.013996549881994724, 0.11996746063232422, 0.023380380123853683, -0.05003540590405464, 0.05121700465679169, -0.01107417419552803, -0.005523394327610731, -0.005060771945863962, -0.020298434421420097, -0.02713371068239212, 0.03284486010670662, -0.06032513827085495, -0.02681080810725689, 0.0033100321888923645, 0.008159257471561432, 0.01740368828177452, -0.13624221086502075, -0.059557072818279266, -0.06678145378828049, 0.09621064364910126, 0.05257083848118782, 0.027184611186385155, -0.02171691507101059, -0.036029890179634094, 0.04978157579898834, 0.13134793937206268, 0.05719982460141182, -0.04553819075226784, 0.053066931664943695, -0.046030085533857346, -0.1318148523569107, -0.011418577283620834, 0.010481349192559719, 0.06791501492261887, 0.0472135953605175, -0.05503455549478531, 0.006713964976370335, 0.02222941443324089, -0.04764210432767868, -0.0030927045736461878, -0.09859012812376022, -0.07426124811172485, -0.005107350181788206, -0.002757122041657567, -0.09992966055870056, -0.02167242206633091, -0.005794495809823275, 0.07126566022634506, 0.11857268214225769, 0.0622643306851387, -0.041342128068208694, 0.06203005090355873, 0.0005916765076108277, -0.05381181463599205, 0.032283470034599304, -0.05027838796377182, 0.009270905517041683, 0.04252183437347412, 0.008311093784868717, -0.05142061039805412, 0.05935239791870117, 0.07118947058916092, -0.03379826247692108, -0.057755179703235626, 0.011511453427374363, -0.0599282830953598, 0.039548248052597046, 0.0013338151620700955, 0.014498553238809109, 0.015256940387189388, 0.02097996510565281, 0.009896039962768555, -0.14368154108524323, 0.01168398093432188, 0.05209267511963844, -0.044061217457056046, -0.07905222475528717, -0.005114447791129351, -0.13836465775966644, 0.017771519720554352, -0.003334443084895611, 0.003540810663253069, -0.06318194419145584, 0.05538645014166832, 0.06641659140586853, -0.05814812332391739, 0.10071738809347153, 0.05018113926053047, -0.05457589402794838, -0.036877941340208054, -0.052328091114759445, -0.026208501309156418, -0.12402689456939697, 0.03179173916578293, -0.02420865371823311, -0.0760502740740776, 0.07216554880142212, -0.04403318092226982, -0.018598169088363647, -0.06554248183965683, 0.012355435639619827, -0.06206256523728371, 0.0013512647710740566, 0.046694669872522354, -0.00045840145321562886, -0.009028665721416473, 0.06791692972183228, -6.202470228174876e-33, -0.062128014862537384, -0.027669476345181465, -0.08156215399503708, -0.02527642250061035, 0.003824456362053752, -0.012506132945418358, -0.0025146540720015764, -0.08113530278205872, 0.011037374846637249, -0.026257729157805443, 0.09456661343574524, -0.012411730363965034, -0.0872892215847969, -0.00130736012943089, 0.04012162610888481, 0.014522205106914043, -0.05060044676065445, 0.05494675412774086, -0.015764091163873672, -0.03720979019999504, 0.044823139905929565, -0.09789256751537323, 0.0008769877022132277, -0.04089902341365814, -0.034488510340452194, 0.004013304132968187, 0.09547067433595657, -0.116164930164814, -0.0702492967247963, -0.022769583389163017, 0.07168594002723694, 0.0035413140431046486, 0.048666030168533325, 0.10063163191080093, -0.012468978762626648, -0.014598483219742775, 0.0028597780037671328, 0.016007713973522186, -0.03869367763400078, -0.08095236122608185, 0.004951072856783867, 0.07966713607311249, -0.012010130099952221, 0.004893570672720671, 0.004088269546627998, -0.025229671970009804, 0.061293743550777435, -0.009121681563556194, 0.007805683184415102, 0.026173647493124008, 0.019086286425590515, -0.08905184268951416, 0.003436089726164937, -0.057524245232343674, -0.0021998384036123753, 0.013078108429908752, 0.008050496689975262, -0.006033551413565874, 0.09197741001844406, 0.020467940717935562, -0.012422225438058376, -0.05884624272584915, 0.023861484602093697, 0.05259540677070618, -0.007571027148514986, -0.02384340949356556, 0.046115510165691376, 0.010538707487285137, 0.018558496609330177, -0.06466586887836456, 0.02983064390718937, 0.04311057925224304, -0.012002472765743732, 0.026708297431468964, -0.08454527705907822, -0.0128146568313241, 0.02944355271756649, 0.05966093763709068, 0.014461247250437737, -0.02875615283846855, -0.06225581467151642, 0.012948359362781048, 0.006160528864711523, -0.011281981132924557, 0.0014688100200146437, -0.00788093265146017, 0.06559700518846512, 0.006689329165965319, 0.10469941794872284, 0.01912301778793335, -0.03785402700304985, 0.03629341349005699, -0.007833914831280708, -0.010382135398685932, 0.04547552391886711, 9.407226207356638e-32, -0.030883220955729485, 0.0431075282394886, -0.08012454211711884, 0.021607063710689545, 0.04794909432530403, -0.03777378797531128, -0.04559668153524399, -0.021577060222625732, -0.03326210752129555, -0.08772116154432297, 0.05957424268126488, -0.007051214575767517, -0.12337695062160492, 0.012470297515392303, 0.0345778614282608, -0.047082558274269104, -0.054275888949632645, 0.02036009542644024, -0.014246832579374313, -0.05509859323501587, 0.028204210102558136, 0.05942916125059128, -0.024941492825746536, -0.01721058413386345, 0.06447921693325043, 0.09358794242143631, -0.04835174232721329, 0.002270000521093607, -0.01850660890340805, 0.017132021486759186, 0.0701034814119339, 0.023981165140867233, -0.026116617023944855, 0.027602165937423706, -0.05043762922286987, -0.00921723898500204, 0.019204288721084595, 0.030961405485868454, -0.052302129566669464, 0.08560223877429962, -0.015497409738600254, -0.06574362516403198, -0.04764320328831673, 0.03228384628891945, -0.013182143680751324, 0.02694261260330677, -0.034668274223804474, -0.11591947078704834, 0.043290864676237106, -0.07848230004310608, -0.03419046476483345, 0.08557476103305817, 0.12499929219484329, 0.06255607306957245, -0.008338386192917824, -0.06216486170887947, -0.058535631746053696, 0.012141246348619461, 0.06230752542614937, -0.05168899893760681, 0.002368365414440632, 0.010590357705950737, -0.12856535613536835, -0.10314677655696869 ]
242 Chapter 11 In the diagram below ⟶ AB = pi + q j and ⟶ AD = ri + s j. ABCD is a parallelogram. Prove that the area of ABCD is ps − qr .Challenge ABC DDraw the parallelogram on a coordinate grid, and choose a position for the origin that will simplify your calculations.Problem-solving 11.4 Position vectors You need to be able to use vectors to describe the position of a point in two dimensions. Position vectors are vectors giving the position of a point, relative to a fixed origin. The position vector of a point A is the vector ⟶ OA , where O is the origin. Oy A xIf ⟶ OA = ai + bj then the position vector of A is ( a b ) . ■ In general , a point P with coordinates ( p, q) has a position vector ⟶ OP = pi + qj = ( p q ) . ■ ⟶ AB = ⟶ OB − ⟶ OA , where ⟶ OA and Oy BA x ⟶ OB are the position vectors of A and B respectively. Use the triangle law: ⟶ AB = ⟶ AO + ⟶ OB = − ⟶ OA + ⟶ OB So ⟶ AB = ⟶ OB − ⟶ OA ← Sec tion 11.1Link Example 14 The points A and B in the diagram have coordinates (3, 4) Oy x2 4 6 8 10 12246 A B and (11, 2) respectively. Find, in terms of i and j: a the position vector of A b the position vector of B c the vector ⟶ AB a ⟶ OA = 3i + 4j b ⟶ OB = 11i + 2j c ⟶ AB = ⟶ OB − ⟶ OA = ( 11i + 2j) − (3i + 4j) = 8i − 2jIn column vector form this is ( 3 4 ) . In column vector form this is ( 11 2 ) . In column vector form this is ( 8 −2 ) .
[ -0.02276705391705036, 0.017447808757424355, 0.021190010011196136, -0.06433277577161789, -0.058741386979818344, 0.03146833926439285, -0.06792069226503372, 0.02360422909259796, -0.03908625990152359, 0.05815693363547325, -0.01737956888973713, -0.035319678485393524, -0.018835216760635376, -0.06017578765749931, -0.07823994755744934, -0.017221486195921898, -0.013555933721363544, 0.04604744911193848, -0.048947010189294815, -0.031727004796266556, 0.11991634964942932, -0.12545634806156158, -0.008169993758201599, -0.04747568443417549, -0.008000328205525875, -0.04359063878655434, 0.10579328238964081, 0.014516741037368774, 0.023887718096375465, -0.0009473545360378921, 0.00785804633051157, 0.016142982989549637, 0.059730689972639084, -0.02712234854698181, 0.00650924164801836, -0.037193186581134796, -0.028777558356523514, 0.07598906755447388, 0.16370511054992676, 0.020360080525279045, -0.007975722663104534, 0.10042814910411835, 0.03080359287559986, 0.01834235154092312, -0.05573703721165657, 0.0017127624014392495, -0.0508972629904747, 0.03480369225144386, 0.04210503771901131, -0.06255752593278885, 0.0648714005947113, -0.03992117941379547, -0.06841107457876205, 0.001340540824458003, -0.0520622581243515, 0.02279036119580269, 0.022634530439972878, 0.011170669458806515, -0.0348033532500267, 0.05236387252807617, 0.05951032415032387, 0.01816878654062748, -0.016004012897610664, 0.055179525166749954, 0.005321357399225235, -0.014306668192148209, -0.02027135156095028, 0.024121945723891258, -0.0112597132101655, 0.04870307072997093, -0.0741988867521286, 0.0370449423789978, 0.01625954359769821, -0.06510406732559204, 0.10626977682113647, -0.09701032936573029, -0.06689878553152084, 0.015000563114881516, 0.100281722843647, -0.059790465980768204, 0.0016516837058588862, 0.08311787247657776, -0.028293829411268234, 0.023480651900172234, -0.04471270367503166, 0.031142016872763634, 0.10156276077032089, -0.01893046125769615, 0.018809689208865166, -0.0687052384018898, 0.04845542088150978, -0.04173724353313446, 0.041610270738601685, -0.043454013764858246, 0.04581260308623314, -0.06818202137947083, 0.008227226324379444, -0.03655712679028511, -0.0478723868727684, 0.06768827140331268, 0.05848781019449234, 0.032338887453079224, 0.029834583401679993, -0.028928108513355255, -0.005537802819162607, 0.0353507474064827, -0.02471063658595085, -0.02746208757162094, 0.09882412850856781, 0.04517829790711403, 0.005249084439128637, -0.00920908898115158, -0.06206671893596649, 0.05125388503074646, 0.004414801951497793, -0.006249119061976671, 0.024376628920435905, 0.07168101519346237, -0.027233991771936417, -0.03628658130764961, -0.007785136811435223, -0.020892618224024773, 0.028862537816166878, 0.003553281305357814, 0.03103712387382984, -0.03126737102866173, 0.0012286304263398051, -0.014466896653175354, 0.019185157492756844, 0.009477480314671993, 0.05341009795665741, -0.020774025470018387, -0.04019375890493393, -0.012521056458353996, 0.01502100471407175, 0.08540716022253036, -0.03845162317156792, 0.018277615308761597, -0.003804012667387724, -0.033749502152204514, 0.06781619042158127, 0.060563791543245316, 0.002661375794559717, -0.03067905642092228, -0.014167394489049911, 0.058761708438396454, -0.05783722177147865, -0.0091690793633461, -0.014216132462024689, 0.00322456331923604, 0.10489735752344131, 0.026097897440195084, -0.011780721135437489, 0.06292383372783661, -0.03265406936407089, 0.06502945721149445, -0.06985800713300705, -0.030155891552567482, 0.018987279385328293, -0.03288000822067261, -0.03860782831907272, 0.0005017286748625338, 0.0023419936187565327, 0.029158586636185646, 0.0012023806339129806, 0.006399152334779501, -0.010538207367062569, 0.05215950310230255, 0.061703603714704514, 0.011967666447162628, 0.047893647104501724, -0.03529872000217438, -0.010819983668625355, 0.06745735555887222, -0.009958639740943909, -0.06305573880672455, 0.0660073384642601, -0.011046980507671833, 0.011586375534534454, 0.05639292672276497, 0.007029301952570677, -0.15984657406806946, 0.06652946025133133, 0.029835395514965057, -0.08549806475639343, 0.008105345070362091, 0.007978696376085281, 0.0686950832605362, -0.07656244933605194, 0.004758494906127453, 0.08736999332904816, -0.021023865789175034, -0.0501326285302639, -0.05103017017245293, -0.12626208364963531, 0.0018550115637481213, -0.0019896847661584616, 0.052850376814603806, -0.05263471230864525, -0.09302255511283875, 0.007737528532743454, 0.01703064888715744, -0.005524517502635717, -0.006495973095297813, -0.011625988408923149, 0.03585301339626312, 0.03883550316095352, -0.06260628998279572, -0.039503034204244614, -0.009637679904699326, -0.04282315447926521, -0.0908406600356102, 0.049909189343452454, -0.05696067959070206, 0.09241005778312683, -0.04776231199502945, -0.05223577097058296, -0.030172159895300865, -0.06439260393381119, -0.03467848524451256, -0.03007485717535019, 0.05674900859594345, 0.005373664200305939, 2.304102272752105e-33, -0.06843498349189758, -0.014718163758516312, -0.005702916532754898, -0.10328298807144165, 0.01726330816745758, 0.03910486772656441, 0.09244947880506516, 0.005066507030278444, -0.060823921114206314, 0.03847450017929077, -0.08493156731128693, 0.04686415567994118, -0.035215552896261215, 0.030260922387242317, 0.0024476165417581797, 0.002277346095070243, -0.03077450580894947, -0.05387454107403755, -0.11886004358530045, -0.042338307946920395, 0.025305267423391342, -0.048468004912137985, -0.0015806471928954124, 0.024181369692087173, -0.032261673361063004, 0.02174707129597664, 0.062101103365421295, -0.08322744816541672, -0.011000515893101692, -0.0086479177698493, -0.03166377171874046, -0.07172421365976334, 0.007116390857845545, 0.0925244390964508, -0.09674177318811417, -0.015777334570884705, 0.005154143553227186, 0.026441432535648346, 0.006959582678973675, -0.06037193909287453, 0.04259651526808739, -0.004725898616015911, 0.028586754575371742, -0.04820217564702034, -0.004588066600263119, 0.08420175313949585, 0.08612145483493805, 0.12867829203605652, 0.0648437887430191, -0.004898945335298777, -0.04144110530614853, -0.09901244938373566, 0.08647421002388, -0.08251894265413284, 0.008698293007910252, -0.027331938967108727, 0.021039718762040138, -0.136103093624115, 0.03630088269710541, -0.0037330258637666702, -0.03649723902344704, 0.023892199620604515, 0.055996134877204895, -0.0005786410765722394, 0.10510405153036118, -0.024654895067214966, 0.05909634009003639, 0.0006131488480605185, 0.10489728301763535, -0.1189386248588562, -0.049642473459243774, 0.02966722659766674, 0.0013356927083805203, 0.016427062451839447, -0.06220562756061554, 0.07426145672798157, -0.012840375304222107, 0.06360846012830734, 0.055127985775470734, 0.031693145632743835, -0.02842157892882824, -0.0042321644723415375, 0.04029969871044159, 0.024600019678473473, -0.009822757914662361, 0.09671053290367126, 0.06853853166103363, 0.003557521151378751, -0.03954530879855156, -0.10473661869764328, 0.020520005375146866, 0.10129169374704361, -0.05263066664338112, 0.013304789550602436, 0.04370845481753349, 5.553992753433231e-32, -0.013850335031747818, 0.016007428988814354, -0.048699069768190384, -0.03345591202378273, 0.05860750377178192, -0.003056821646168828, 0.06821683049201965, 0.05503467097878456, -0.022194992750883102, 0.03567170351743698, -0.02600041963160038, 0.00872604176402092, -0.029378091916441917, 0.001924593816511333, -0.0621068999171257, -0.07426027953624725, 0.03854972869157791, 0.04406147450208664, 0.0010699676349759102, -0.04023629054427147, 0.043635301291942596, -0.06447310745716095, -0.0011266592191532254, 0.07896919548511505, 0.0006510883686132729, 0.11506842076778412, -0.04833598807454109, 0.05121264234185219, -0.02051965892314911, -0.08557635545730591, 0.045994170010089874, -0.027655024081468582, -0.0375995896756649, 0.016416411846876144, -0.038649190217256546, -0.040162380784749985, 0.03438561037182808, -0.010271206498146057, 0.02763521857559681, -0.04527749493718147, -0.04932113364338875, -0.05936799570918083, 0.009648323059082031, -0.022504165768623352, 0.0613463930785656, -0.04749305546283722, -0.02816624566912651, -0.04498946666717529, -0.028779661282896996, -0.05767600238323212, -0.03722454234957695, 0.03208496421575546, 0.03258247673511505, 0.030267557129263878, -0.006423112936317921, 0.013111730106174946, -0.029983025044202805, 0.0037140955682843924, 0.04410808905959129, 0.007601806428283453, -0.0695921927690506, 0.08085617423057556, -0.15697434544563293, -0.026008613407611847 ]
243Vectors Example 15 ⟶ OA = 5 i − 2j and ⟶ AB = 3 i + 4j. Find: a the position vector of B b the exact va lue of | ⟶ OB | in simplified surd for m. x ABy O a ⟶ OA = ( 5 −2 ) and ⟶ AB = ( 3 4 ) ⟶ OB = ⟶ OA + ⟶ AB = ( 5 −2 ) + ( 3 4 ) = ( 8 2 ) b | ⟶ OB | = √ ________ 82 + 22 = √ _______ 64 + 4 = √ ___ 68 = 2 √ ___ 17 It is usually quicker to use column vector form for calculations. √ ___ 68 = √ ______ 4 × 17 = 2 √ ___ 17 in simplified surd form.In i, j form the answer is 8 i + 2 j. Exercise 11D 1 The points A , B and C ha ve coordinates (3, − 1), (4, 5) and (− 2, 6) respectively, and O is the origin. Find, in terms of i and j: a i the position vectors of A, B and C ii ⟶ AB iii ⟶ AC b Find, in surd for m: i | ⟶ OC | ii | ⟶ AB | iii | ⟶ AC | 2 ⟶ OP = 4i − 3j, ⟶ OQ = 3i + 2j a Find ⟶ PQ b Find, in surd for m: i | ⟶ OP | ii | ⟶ OQ | iii | ⟶ PQ | 3 ⟶ OQ = 4i − 3j, ⟶ PQ = 5i + 6j a Find ⟶ OP b Find, in surd for m: i | ⟶ OP | ii | ⟶ OQ | iii | ⟶ PQ | 4 OABCDE is a r egular hexagon. The points A and B have position vectors a and b respectively, where O is the origin. Find, in terms of a and b, the position vectors ofa C b D c E.P
[ -0.04516260698437691, -0.010824974626302719, -0.002312145894393325, -0.07821246981620789, 0.057018447667360306, -0.010846172459423542, -0.023247655481100082, 0.008278094232082367, -0.009302924387156963, 0.07442537695169449, 0.11658822745084763, -0.15025849640369415, -0.03664077818393707, 0.016261694952845573, -0.06004789099097252, -0.004439137410372496, 0.030017126351594925, 0.11972344666719437, 0.010279267095029354, 0.025232339277863503, 0.05594250187277794, -0.005719522479921579, 0.051051877439022064, -0.06353282183408737, 0.0016928990371525288, -0.005601492244750261, 0.03041224554181099, -0.03527740016579628, 0.016424141824245453, -0.08882282674312592, 0.038002338260412216, -0.02772931568324566, 0.14799818396568298, 0.03741772472858429, -0.007502280175685883, 0.042609911412000656, -0.028752945363521576, 0.03558782860636711, 0.07175615429878235, -0.06579063832759857, -0.021088626235723495, -0.03246544301509857, 0.015359711833298206, 0.028110140934586525, -0.0589103177189827, -0.04126446321606636, -0.0016313439700752497, 0.031697265803813934, 0.040363602340221405, 0.01146172359585762, 0.009545707143843174, -0.018267294391989708, -0.02179766818881035, 0.03718642517924309, 0.004092241637408733, -0.0007690457277931273, 0.01587775908410549, 0.04557415470480919, 0.005924449767917395, -0.07107112556695938, 0.0541863888502121, 0.013654431328177452, 0.028242407366633415, 0.01831658184528351, -0.05186539888381958, -0.036401256918907166, -0.03990589454770088, -0.03619449585676193, -0.02771114744246006, 0.002357809105888009, -0.03309888765215874, -0.00034717805101536214, -0.05184391885995865, -0.07547272741794586, 0.0012144531356170774, 0.035369496792554855, -0.051794905215501785, -0.0584823414683342, 0.027264002710580826, -0.02132163755595684, -0.06263826042413712, 0.012163576669991016, 0.09161236137151718, 0.027458904311060905, 0.0010558080393821, 0.04509726166725159, 0.021833617240190506, 0.07229509204626083, 0.060921069234609604, -0.0815783441066742, 0.021911917254328728, 0.008612998761236668, 0.038466546684503555, -0.05631275475025177, 0.03894444555044174, -0.024721356108784676, 0.05239475890994072, -0.013970209285616875, -0.0036109834909439087, 0.09065034240484238, 0.009371827356517315, 0.01050134003162384, -0.017503950744867325, 0.06154157966375351, -0.06570402532815933, 0.05017853528261185, 0.012911463156342506, -0.010261619463562965, 0.04471521079540253, 0.05121512711048126, -0.04039260745048523, 0.03845209255814552, -0.02826383337378502, -0.051412928849458694, 0.013777824118733406, 0.015303255058825016, 0.02985699288547039, 0.11901085823774338, -0.004181071184575558, -0.022420590743422508, 0.010118353180587292, -0.07962077856063843, 0.04161098226904869, -0.05509299039840698, -0.043195899575948715, -0.07603507488965988, 0.005429844371974468, -0.055168427526950836, 0.019417764618992805, 0.03009209781885147, -0.005582889541983604, -0.01437673531472683, -0.11207325011491776, -0.02960510551929474, -0.12108419835567474, 0.018067501485347748, -0.02979612909257412, 0.04049278795719147, -0.044866666197776794, -0.0851740762591362, -0.009712830185890198, 0.08524434268474579, 0.07558415830135345, -0.012048297561705112, 0.02272729016840458, 0.002104944782331586, -0.09665033221244812, 0.02744714729487896, 0.03310886397957802, 0.05940648540854454, 0.006550001446157694, -0.06405169516801834, -0.0005998993292450905, 0.04007171839475632, -0.027094032615423203, -0.014109368436038494, -0.07681568711996078, -0.01709890551865101, -0.10060442984104156, -0.0037255478091537952, -0.025691568851470947, -0.04818638414144516, -0.027862107381224632, 0.0772366002202034, 0.05785170942544937, 0.06830859929323196, -0.022527534514665604, 0.07934805005788803, 0.0314827635884285, -0.0161947812885046, 0.05416753143072128, 0.04854584485292435, 0.03515828400850296, 0.050709959119558334, -0.007413288578391075, -0.014355694875121117, 0.10449492186307907, 0.06986743211746216, -0.11111553758382797, -0.01774469017982483, 0.004351072944700718, -0.07565110176801682, 0.10255557298660278, 0.040759190917015076, -0.017362231388688087, -0.05797949060797691, 0.034405406564474106, 0.019126877188682556, -0.07763171195983887, -0.0011232520919293165, 0.05824781209230423, -0.07591985911130905, -0.09855671226978302, -0.06385178118944168, -0.15054115653038025, -0.04381585866212845, 0.02592247724533081, -0.0033149560913443565, -0.06492743641138077, 0.0820951759815216, 0.03633992001414299, 0.028559615835547447, 0.027109399437904358, -0.05590332671999931, 0.014011685736477375, -0.015759116038680077, -0.02147514931857586, 0.0008967941394075751, -0.024096444249153137, 0.04017654433846474, -0.07281764596700668, 0.008634290657937527, 0.02104519121348858, 0.014489206485450268, 0.04191834479570389, -0.09610004723072052, -0.04247011989355087, -0.04993656650185585, 0.012918302789330482, -0.07952708005905151, -0.05834160000085831, -0.07448555529117584, 0.0794837549328804, -2.755680917247964e-33, 0.002780488459393382, -0.020244179293513298, -0.06113629788160324, -0.06384909898042679, -0.03387993946671486, -0.08659317344427109, 0.029176825657486916, -0.06889282912015915, -0.025994593277573586, -0.02047882042825222, -0.01456821896135807, -0.014227353036403656, 0.016005318611860275, 0.035111624747514725, 0.04461979120969772, 0.06691902130842209, -0.028277765959501266, 0.019479647278785706, -0.008477024734020233, -0.04265620559453964, 0.05407300963997841, -0.039309874176979065, 0.01245234813541174, -0.059092484414577484, -0.015596299432218075, 0.08602967858314514, 0.018983183428645134, -0.06188102439045906, -0.04257075488567352, 0.010387408547103405, -0.01637600176036358, -0.05417787656188011, 0.02536572515964508, 0.07944049686193466, 0.004594539292156696, -0.03472330793738365, 0.012808237224817276, 0.032807525247335434, 0.011245341040194035, -0.16970640420913696, 0.027531152591109276, 0.07324139773845673, 0.06914357095956802, 0.009538348764181137, -0.002343930071219802, 0.05300041288137436, 0.09946246445178986, 0.01923246495425701, -0.014070950448513031, -0.0134658832103014, -0.05361393094062805, -0.03579213470220566, -0.05025779455900192, -0.0008924580179154873, 0.01485749427229166, -0.0235893651843071, 0.02465997077524662, -0.017211154103279114, 0.016227705404162407, 0.039736196398735046, -0.008538386784493923, -0.015483193099498749, 0.06773814558982849, 0.035960931330919266, 0.014800241217017174, 0.014734809286892414, 0.04885626584291458, 0.06679955124855042, -0.04419092833995819, -0.05040784180164337, 0.01754920370876789, 0.04120517894625664, -0.1348428875207901, -0.03863822668790817, 0.014278961345553398, -0.015301057137548923, 0.01809503324329853, 0.06441876292228699, 0.003507656045258045, -0.0030821359250694513, -0.10045501589775085, 0.02682148851454258, -0.05792630836367607, -0.02678629569709301, -0.08144565671682358, 0.06316214799880981, 0.023664671927690506, -0.016549810767173767, 0.028429172933101654, -0.08212301880121231, 0.005141088739037514, 0.1129603162407875, 0.011416984722018242, -0.011134215630590916, -0.026325944811105728, 9.529079127257228e-32, -0.01938273385167122, 0.06071275845170021, -0.03269447758793831, 0.006212595384567976, 0.02993851900100708, 0.008755289949476719, -0.039154812693595886, -0.056042905896902084, 0.036074500530958176, -0.07210200279951096, 0.024912908673286438, 0.01919570192694664, -0.07474946975708008, 0.05972966179251671, 0.035758957266807556, -0.04419597610831261, -0.06442633271217346, -0.03343148157000542, -0.012295360676944256, -0.035088345408439636, 0.04651152342557907, 0.018437521532177925, 0.022876523435115814, 0.03580225259065628, -0.010623985901474953, 0.014744940213859081, -0.12945474684238434, 0.042699676007032394, 0.0180647112429142, -0.010356948710978031, 0.07174096256494522, 0.07501236349344254, -0.018744811415672302, 0.030307266861200333, -0.03266708925366402, 0.07586932927370071, 0.03026260994374752, 0.056801024824380875, -0.024229783564805984, 0.06001652404665947, -0.02550376020371914, -0.07489359378814697, -0.01965886726975441, 0.040100883692502975, 0.04278147220611572, -0.02909846603870392, -0.02389351837337017, -0.08078886568546295, 0.0039255497977137566, -0.14667342603206635, -0.0643794983625412, 0.06162019819021225, 0.05826016142964363, 0.08441708236932755, -0.026351608335971832, -0.08700186759233475, -0.024563433602452278, 0.03317881375551224, 0.09054412692785263, -0.020042413845658302, -0.04318160563707352, 0.02164873108267784, -0.12147000432014465, -0.024556580930948257 ]
244 Chapter 11 5 The position vectors of 3 v ertices of a parallelogram Use a sketch to check that you have considered all the possible positions for the fourth vertex.Problem-solving are ( 4 2 ) , ( 3 5 ) and ( 8 6 ) . Find the possible position vectors of the fourth vertex. 6 Given tha t the point A has position vector 4i − 5j and the point B has position vector 6i + 3j, a find the vector ⟶ AB . (2 marks) b find | ⟶ AB | giving your answer as a simplified surd. (2 marks) 7 The point A lies on the cir cle with equation x2 + y2 = 9. Given that ⟶ OA = 2ki + kj, find the exact value of k. (3 marks)P E E/P The point B lies on the line with equation 2 y = 12 − 3 x. Given that | OB| = √ ___ 13 , find p ossible expressions for ⟶ OB in the form p i + qj.Challenge 11.5 Solving geometric probl ems You need to be able to use vectors to solve geometric problems and to find the position vector of a point that divides a line segment in a given ratio. ■ If the point P divides the line segment AB in the ratio λ : μ, then A B AP : PB = λ : P O m ⟶ OP = ⟶ OA + λ ______ λ + μ ⟶ AB = ⟶ OA + λ ______ λ + μ ( ⟶ OB − ⟶ OA ) Example 16 In the diagram the points A and B have A OBP ba position vectors a and b respectively (referred to the origin O). The point P divides AB in the ratio 1 : 2. Find the position vector of P. ⟶ OP = ⟶ OA + 1 __ 3 ⟶ AB = ⟶ OA + 1 __ 3 ( ⟶ OB − ⟶ OA ) = 2 __ 3 ⟶ OA + 1 __ 3 ⟶ OB = 2 __ 3 a + 1 __ 3 b Give your final answer in terms of a and b.There are 3 parts in the ratio in total, so P is 1 _ 3 of the wa y along the line segment AB. Rewrite ⟶ AB in terms of the position vectors for A and B .
[ 0.012362947687506676, 0.025287562981247902, -0.013545703142881393, -0.11473420262336731, 0.0053300438448786736, 0.04620837792754173, -0.05309167131781578, -0.003060348564758897, 0.0062494827434420586, 0.08878674358129501, 0.05178995802998543, -0.06017650291323662, -0.04769153520464897, 0.022572780027985573, -0.052705638110637665, 0.00032329102396033704, -0.08827181905508041, 0.09932595491409302, -0.017971839755773544, -0.028730981051921844, 0.04842090234160423, -0.04280287027359009, 0.015308143571019173, -0.10744332522153854, 0.09573465585708618, -0.05110720545053482, 0.05916973575949669, -0.0706559345126152, 0.02710917964577675, -0.04085373878479004, 0.0439426489174366, -0.015572122298181057, 0.07046780735254288, -0.04249114915728569, -0.010606355033814907, -0.00333457812666893, -0.052603188902139664, 0.03405199199914932, 0.08803579956293106, -0.03294718638062477, -0.002856209874153137, 0.04153849929571152, 0.04089994728565216, -0.02041667327284813, -0.005451125092804432, 0.0466168113052845, -0.05339381843805313, 0.030933963134884834, 0.011120141483843327, -0.05254853516817093, 0.0045799207873642445, -0.08623368293046951, -0.02165181376039982, 0.002769824117422104, -0.007217832840979099, -0.025587400421500206, 0.031847454607486725, 0.04624065011739731, -0.027706248685717583, 0.05326315015554428, 0.15844938158988953, 0.01303423848003149, -0.031256578862667084, 0.01924932934343815, 0.012766683474183083, -0.0016411353135481477, 0.017339017242193222, -0.027469052001833916, 0.015072622336447239, 0.09662774950265884, -0.050804708153009415, 0.033214569091796875, -0.0656820610165596, -0.05119921639561653, 0.003121226327493787, 0.005192974116653204, 0.009894326329231262, 0.016996296122670174, -0.027413683012127876, -0.053954560309648514, -0.09774916619062424, 0.02629242278635502, 0.09159068763256073, 0.018463805317878723, 0.0065172575414180756, 0.027406053617596626, 0.010129173286259174, 0.05234689638018608, 0.05127204209566116, -0.07185150682926178, 0.04885643348097801, 0.004487201571464539, 0.018914703279733658, -0.05750486999750137, 0.045983098447322845, -0.10937393456697464, 0.019467856734991074, -0.014683740213513374, 0.0001991526660276577, 0.09550565481185913, -0.03165475279092789, 0.04964335262775421, 0.038299962878227234, 0.05615870654582977, -0.048218756914138794, 0.04483206942677498, 0.01131576020270586, -0.02969607338309288, 0.018799833953380585, -0.03787200525403023, -0.02813486009836197, 0.013386907987296581, 0.0029099497478455305, -0.0016026487573981285, 0.0058363256976008415, -0.037550900131464005, -0.00614489521831274, -0.0010538446949794888, -0.012826930731534958, -0.012887511402368546, -0.013008148409426212, 0.015026980079710484, 0.0783156156539917, 0.014933940023183823, -0.024418845772743225, -0.05562324449419975, 0.0012432594085112214, -0.036784157156944275, -0.040480755269527435, 0.0037768555339425802, 0.08364591002464294, -0.04472034052014351, -0.06644309312105179, -0.00037929226527921855, -0.04355240240693092, 0.010994723998010159, -0.01083698682487011, 0.011912262067198753, -0.05690081790089607, -0.1363644152879715, 0.015418291091918945, 0.09817977994680405, 0.03645562008023262, -0.07292121648788452, -0.012002061121165752, -0.01073495764285326, -0.11814990639686584, -0.02197844721376896, 0.05277475714683533, -0.03616786375641823, 0.11083406955003738, 0.022728001698851585, -0.010913996957242489, 0.10280381888151169, -0.04635445401072502, -0.05338624119758606, -0.06935349851846695, -0.010666473768651485, -0.033700671046972275, -0.019335730001330376, 0.02548392117023468, 0.009288182482123375, 0.0006261664093472064, 0.0352577343583107, 0.06568429619073868, 0.06679198145866394, -0.04724756255745888, 0.0875563994050026, 0.013972551561892033, -0.04156222566962242, 0.08986280858516693, -0.03259539604187012, 0.028433743864297867, 0.1432792693376541, -0.001640820293687284, -0.024872245267033577, 0.11466530710458755, 0.04354414716362953, -0.05358362942934036, 0.01622331514954567, 0.00987364910542965, -0.12458465993404388, 0.058682702481746674, 0.05567289516329765, -0.007766172755509615, -0.02226634882390499, -0.007781770545989275, 0.0842290148139, -0.10747537761926651, 0.02607792243361473, 0.0038575956132262945, -0.05483083799481392, -0.03193928673863411, -0.057416871190071106, -0.1465618759393692, -0.03799206763505936, 0.02932673878967762, 0.010206347331404686, -0.061222802847623825, -0.06389286369085312, 0.0643000453710556, 0.006849144585430622, 0.03491674363613129, -0.036054909229278564, -0.058185599744319916, -0.029900358989834785, -0.03514682874083519, -0.01513292919844389, -0.010592689737677574, -0.01565416529774666, -0.0857836902141571, -0.0395529679954052, 0.03622645139694214, -0.029630783945322037, 0.09076928347349167, -0.15213029086589813, 0.014168287627398968, -0.02217944525182247, -0.02132517099380493, -0.01362211350351572, -0.04560590162873268, -0.009951279498636723, 0.029681790620088577, 1.609989572651845e-33, -0.007848899811506271, -0.015166312456130981, -0.011336800642311573, -0.049571890383958817, 0.0297554824501276, -0.022819828242063522, 0.07066839933395386, -0.08675742894411087, -0.03455768898129463, -0.00010591275349725038, -0.08662828058004379, -0.02176661603152752, -0.012354851700365543, 0.05815787985920906, 0.014511428773403168, 0.05004977434873581, -0.01841743104159832, -0.002321955282241106, -0.06257211416959763, -0.027376437559723854, 0.05842752009630203, -0.07124876976013184, -0.03874220326542854, -0.04873437434434891, -0.02183428220450878, 0.043061763048172, 0.07212387770414352, -0.10618920624256134, -0.06274061650037766, 0.007437778636813164, -0.005918088834732771, -0.03054783120751381, 0.007483215071260929, 0.059093281626701355, -0.02166741155087948, -0.02575697936117649, 0.03445781022310257, 0.034698132425546646, 0.017113015055656433, -0.06193048506975174, 0.02833085134625435, 0.031109867617487907, -0.02428164705634117, -0.02597222290933132, -0.033216748386621475, 0.08360479772090912, 0.06312832236289978, 0.09324978291988373, -0.002949855988845229, -0.00896467175334692, -0.03879183903336525, -0.08426222205162048, 0.08767713606357574, -0.06318159401416779, 0.05713741481304169, -0.07152366638183594, 0.0704135149717331, -0.03206711262464523, 0.10352445393800735, 0.018722187727689743, -0.044934287667274475, -0.024836009368300438, 0.11318518221378326, -0.030833503231406212, 0.06287304311990738, -0.08177152276039124, -0.013246803544461727, 0.050893425941467285, 0.0493505522608757, -0.11253540962934494, -0.05594407767057419, 0.0028686325531452894, -0.04563697800040245, -0.013584236614406109, 0.034083519130945206, 0.00356199499219656, 0.0023149228654801846, 0.0321822315454483, -0.0010828424710780382, -0.006603992078453302, -0.06125488132238388, -0.0009188174735754728, 0.05623048171401024, 0.03667766600847244, -0.008007464930415154, 0.04609661549329758, 0.12202469259500504, 0.030663836747407913, 0.04583659768104553, -0.029441330581903458, 0.026308048516511917, 0.10054820030927658, -0.00992658268660307, 0.024543708190321922, 0.021708207204937935, 7.079703899437529e-32, 0.0358077734708786, 0.03319269046187401, -0.030477648600935936, -0.012303370982408524, 0.04440248757600784, -0.05831072852015495, 0.017897257581353188, -0.004697434604167938, -0.030196910724043846, -0.017241431400179863, 0.06515897810459137, -0.00039783783722668886, -0.07749819755554199, -0.012459004297852516, -0.01761079952120781, -0.04120512306690216, -0.014248095452785492, 0.06606101244688034, -0.026909034699201584, -0.058791983872652054, 0.04054209217429161, -0.042878903448581696, 0.03413332253694534, 0.07980495691299438, 0.045077402144670486, 0.12844665348529816, -0.10278500616550446, -0.008730748668313026, -0.004753890447318554, -0.05086738243699074, 0.027382154017686844, 0.02572251670062542, 0.012591608799993992, 0.04070744290947914, -0.005889549385756254, 0.04135043919086456, -0.0025832324754446745, 0.00988543126732111, 0.03686300292611122, 0.058100469410419464, -0.022492682561278343, -0.060454633086919785, -0.002477708039805293, 0.003834508126601577, 0.07931096106767654, -0.04466500133275986, -0.015137821435928345, -0.058866217732429504, -0.004939717706292868, -0.09958339482545853, -0.06656946986913681, 0.0856861099600792, 0.05134202912449837, 0.01564011164009571, -0.02332306280732155, -0.02005719766020775, -0.026277128607034683, 0.010291442275047302, 0.02907494828104973, -0.03162287175655365, -0.04212532192468643, 0.04358066990971565, -0.09330202639102936, -0.022970568388700485 ]
245Vectors Example 17 OABC is a parallelogram. P is the point where A OCB P the diagonals OB and AC intersect. The vectors a and c are equal to ⟶ OA and ⟶ OC respecti vely. Prove that the diagonals bisect each other. If the diagonals bisect each other, then P must be the midpoint of OB and the midpoint of AC . From the diagram, ⟶ OB = ⟶ OC + ⟶ CB = c + a and ⟶ AC = ⟶ AO + ⟶ OC . = − ⟶ OA + ⟶ OC = −a + c P lies on OB ⇒ ⟶ OP = λ(c + a) P lies on AC ⇒ ⟶ OP = ⟶ OA + ⟶ AP = a + μ(−a + c) ⇒ λ(c + a) = a + μ(−a + c) ⇒ λ = 1 − μ and λ = μ ⇒ λ = μ = 1 __ 2 , so P is the midpoint of both diagonals, so the diagonals bisect each other.If P is halfway along the line segment then it must be the midpoint.The two expressions for ⟶ OP must be equal.Express ⟶ OB and ⟶ AC in terms of a and c. Use the fact that P lies on both diagonals to find two different routes from O to P, giving two different forms of ⟶ OP . Form and solve a pair of simultaneous equations by equating the coefficients of a and c. Example 18 In triangle ABC, ⟶ AB = 3 i − 2j and ⟶ AC = i − 5j, Find the exact size of ∠BAC in degrees. CBAWork out what information you would need to find the angle. You could: ● find the lengths of all three sides then use the co sine rule ● convert ⟶ AB and ⟶ AC to magnitude-direction for m The working here shows the first method.Problem-solving Use GeoGebra to show that di agonals of a parallelogram bisect each other.OnlineYou can solve geometric problems by comparing coefficients on both sides of an equation: ■ If a and b are two non-parallel vectors and pa + qb = ra + sb then p = r and q = s.
[ -0.038875874131917953, 0.03227316215634346, 0.009734873659908772, -0.06888306140899658, 0.005809166468679905, 0.0479385070502758, -0.03518497943878174, 0.02204795740544796, -0.09565571695566177, 0.04132601246237755, -0.018182117491960526, -0.11930627375841141, -0.019465215504169464, 0.030031125992536545, -0.024708928540349007, 0.0032787274103611708, -0.04319654032588005, 0.055102404206991196, 0.014035823754966259, 0.02580331638455391, 0.028378935530781746, -0.057477373629808426, -0.009175540879368782, -0.06404995173215866, -0.028615517541766167, -0.03147654980421066, 0.04633831977844238, -0.04211142286658287, 0.02612694725394249, -0.00959634780883789, -0.09867175668478012, 0.03685561567544937, 0.08205528557300568, 0.009307327680289745, -0.013941384851932526, -0.020680438727140427, -0.01861104927957058, -0.025732191279530525, 0.10151027143001556, -0.030858097597956657, -0.08948522061109543, 0.009224513545632362, 0.005113528575748205, 0.07277816534042358, -0.051366619765758514, -0.018658174201846123, -0.011412283405661583, 0.12753522396087646, -0.019088992848992348, -0.0006978260353207588, 0.02941274270415306, -0.05329866707324982, -0.0873863697052002, 0.03134758770465851, -0.05502757430076599, 0.05487378314137459, -0.04528999328613281, 0.10171718895435333, -0.01566314697265625, -0.06485248357057571, 0.0817880630493164, -0.014567026868462563, -0.02172539383172989, 0.07045198231935501, 0.00012916848936583847, -0.02309424988925457, 0.034326549619436264, 0.03485545143485069, 0.030580824241042137, 0.020021390169858932, -0.08939813077449799, 0.028715331107378006, 0.010480000637471676, -0.05068560689687729, -0.000521854788530618, 0.026950564235448837, -0.031181329861283302, 0.005083137191832066, 0.002858388004824519, -0.08621098846197128, -0.07800285518169403, 0.08223254233598709, 0.06221732869744301, -0.008708595298230648, -0.013684982433915138, 0.012974483892321587, 0.07912756502628326, 0.020492395386099815, -0.085693359375, -0.07905196398496628, 0.04783446714282036, -0.0380287691950798, 0.0434449277818203, -0.06804842501878738, -0.03201419860124588, -0.017028793692588806, -0.009531271643936634, -0.005616522394120693, -0.0012736032949760556, 0.09804172813892365, -0.025791902095079422, -0.01190956775099039, 0.016101744025945663, -0.034300852566957474, -0.017130684107542038, 0.09638932347297668, 0.011651384644210339, -0.0683150663971901, 0.04015962406992912, 0.06815651059150696, -0.07067479938268661, 0.04844731464982033, 0.01221580058336258, 0.04134771600365639, -0.07433480769395828, 0.027171989902853966, 0.024833358824253082, 0.012301236391067505, -0.006197773851454258, -0.03131832182407379, -0.00014483145787380636, -0.039896879345178604, 0.02962588518857956, -0.0069895037449896336, 0.02624771185219288, -0.08820082992315292, 0.036584969609975815, -0.0436679907143116, 0.01608925685286522, 0.004123521503061056, 0.07093077152967453, -0.021693825721740723, -0.015258347615599632, -0.0594242699444294, -0.04368661716580391, 0.03926979750394821, -0.03012584149837494, 0.036844201385974884, 0.01779864728450775, -0.1276659518480301, 0.08780459314584732, 0.003957840614020824, 0.053270887583494186, -0.06067705899477005, -0.010715986602008343, -0.010630739852786064, -0.09704971313476562, -0.011762279085814953, -0.019857948645949364, 0.02788710966706276, 0.1468876749277115, -0.050934359431266785, 0.006009635981172323, 0.11353731155395508, -0.0434391014277935, 0.05592344328761101, -0.049309417605400085, 0.026725027710199356, -0.04807847738265991, 0.05785198509693146, -0.01627049595117569, 0.027546780183911324, -0.10350719839334488, 0.0280931256711483, 0.04998887702822685, -0.001682035275734961, -0.02269420213997364, 0.09352952986955643, 0.05038720369338989, -0.014263831079006195, 0.08767318725585938, -0.01855231635272503, 0.004082759842276573, 0.05372143164277077, 0.029835106804966927, -0.0853520855307579, 0.06411862373352051, -0.024441713467240334, 0.04011721909046173, -0.08221185207366943, -0.004837034270167351, -0.06083046644926071, 0.056867923587560654, -0.0760224387049675, 0.007521478924900293, 0.05000784993171692, 0.02219230681657791, 0.05006832629442215, -0.08337341994047165, -0.004163573496043682, 0.027161719277501106, -0.03501683473587036, -0.10454467684030533, 0.04029350355267525, -0.15676641464233398, -0.003143772017210722, 0.07995854318141937, 0.06553105264902115, -0.043616883456707, -0.018191516399383545, 0.008963103406131268, 0.031209399923682213, -0.052616678178310394, 0.016036534681916237, -0.05325411632657051, -0.03964705392718315, 0.030604254454374313, 0.005084414500743151, -0.025277674198150635, 0.023334883153438568, -0.08772339671850204, -0.024483568966388702, 0.041674043983221054, 0.012110328301787376, 0.07492543756961823, -0.09850010275840759, -0.0482572466135025, 0.00001781981518433895, -0.012984462082386017, 0.00014642202586401254, -0.01965363509953022, 0.0534428134560585, 0.10195131599903107, -1.3608352798004068e-33, 0.050192851573228836, -0.023172693327069283, 0.0006312226178124547, -0.10260690748691559, -0.011292068287730217, -0.014518043026328087, 0.02719344198703766, -0.023020999506115913, -0.07355666160583496, -0.012787173502147198, 0.03225858882069588, -0.03254770115017891, 0.011661723256111145, -0.08160737156867981, 0.000597289006691426, 0.02030649222433567, 0.018553640693426132, 0.002328460803255439, -0.07026492804288864, -0.07462232559919357, 0.09128018468618393, -0.05354902893304825, -0.0025402596220374107, 0.014795100316405296, -0.05238041654229164, 0.00867364089936018, 0.03207480534911156, -0.07468745112419128, -0.040518637746572495, 0.0037552446592599154, -0.010430662892758846, -0.01714606210589409, -0.005868029315024614, 0.09213442355394363, -0.024325845763087273, -0.06534049659967422, -0.029934244230389595, 0.03897267207503319, 0.0015942929312586784, -0.1356765776872635, -0.0013767826603725553, 0.08104772120714188, 0.02584664151072502, -0.006251069251447916, -0.0030835389625281096, 0.028699351474642754, 0.015930863097310066, -0.004903597291558981, 0.022768743336200714, -0.05142897367477417, -0.03139456361532211, -0.06173568218946457, 0.05060548707842827, -0.09407182782888412, -0.01814052276313305, 0.039636339992284775, 0.04643132910132408, -0.04356164485216141, 0.08396728336811066, -0.02591376192867756, 0.018983827903866768, 0.0014897547662258148, 0.09754980355501175, 0.01880725286900997, 0.1150476336479187, -0.040711984038352966, 0.004936969839036465, 0.030158555135130882, 0.06219097599387169, -0.08198697119951248, -0.015984755009412766, 0.026259655132889748, -0.09010941535234451, 0.019041305407881737, 0.00407295161858201, 0.09098881483078003, -0.0040724691934883595, 0.05765556916594505, 0.08563152700662613, 0.02434953674674034, -0.10545337945222855, 0.05406302958726883, 0.03455939143896103, 0.031511157751083374, -0.04560951143503189, 0.08749502897262573, 0.0559806190431118, -0.004118084907531738, 0.02090366743505001, -0.048957861959934235, -0.03031644970178604, 0.03527308255434036, 0.0020473930053412914, -0.005381390918046236, 0.04723435267806053, 8.181474771059295e-32, -0.04412972927093506, -0.040525536984205246, -0.011506925337016582, -0.012257936410605907, 0.008934465236961842, -0.0078043811954557896, 0.05475623160600662, -0.026812316849827766, 0.003605749225243926, -0.02826705016195774, 0.011071023531258106, 0.014676998369395733, -0.022840948775410652, 0.011981667950749397, 0.08832050859928131, -0.0010111088631674647, -0.04825127124786377, 0.019243482500314713, 0.0016495479503646493, -0.0743587389588356, -0.035926565527915955, -0.07719003409147263, 0.018729349598288536, 0.0264472384005785, -0.04737607762217522, 0.11295171082019806, -0.06332617253065109, 0.03439565747976303, -0.0011733559658750892, -0.0508665032684803, 0.08538004755973816, 0.02041945420205593, -0.046295415610075, 0.063676618039608, 0.03512297570705414, -0.036880165338516235, 0.032569583505392075, 0.020768113434314728, -0.01974748633801937, 0.04006786644458771, -0.051439736038446426, -0.12708909809589386, -0.04167404770851135, -0.021324900910258293, 0.06245609372854233, -0.04239419475197792, -0.00017891265451908112, -0.04256236553192139, 0.02321731485426426, -0.05226054787635803, 0.009466580115258694, 0.08983883261680603, 0.027908874675631523, -0.0023747540544718504, -0.03151281550526619, -0.04674912989139557, 0.017235739156603813, -0.00944162905216217, 0.043294407427310944, 0.02489209733903408, -0.021043846383690834, 0.06976756453514099, -0.149587482213974, -0.041958026587963104 ]
246 Chapter 11 Exercise 11E 1 In the diagram, ⟶ WX = a, ⟶ WY = b and X WZ Y c ba ⟶ WZ = c. It is given tha t ⟶ XY = ⟶ YZ . Prov e that a + c = 2b. 2 OAB is a triangle. P, Q and R are the midpoints O RBQ PA of OA, AB and OB respectively. OP and OR are equal to p and r respectively. a Find i ⟶ OB ii ⟶ PQ b Hence prov e that triangle PAQ is similar to triangle OAB . 3 OAB is a triangle. ⟶ OA = a and ⟶ OB = b. MNA B O The point M divides OA in the ratio 2 : 1. MN is par allel to OB. a Express the vector ⟶ ON in terms of a and b . b Show that AN : NB = 1 : 2P P P ⟶ BC = ⟶ AC − ⟶ AB = ( 1 −5 ) − ( 3 −2 ) = ( −2 −3 ) | ⟶ AB | = √ __________ 32 + (−2)2 = √ ___ 13 | ⟶ AC | = √ _________ 12 + (−5)2 = √ ___ 26 | ⟶ BC | = √ ____________ (−2)2 + (−3)2 = √ ___ 13 cos ∠BAC = | ⟶ AB |2 + | ⟶ AC |2 − | ⟶ BC |2 _______________________ 2 × | ⟶ AB | × | ⟶ AC | = 13 + 26 − 13 ______________ 2 × √ ___ 13 × √ ___ 26 = 26 ______ 26 √ __ 2 = 1 ___ √ __ 2 ∠BAC = cos−1 ( 1 ___ √ __ 2 ) = 45°Use the triangle law to find ⟶ BC . Leave your answers in surd form. cos A = b2 + c2 − a2 __________ 2bc ← Sec tion 9.1 Check your answer by entering the ve ctors directly into your calculator.Online
[ -0.011685410514473915, 0.08683216571807861, -0.0016839035088196397, -0.060049328953027725, -0.012255455367267132, 0.05335879698395729, 0.03509117290377617, 0.08266430348157883, -0.10498149693012238, -0.0088519137352705, 0.0316321924328804, -0.014298641122877598, 0.006077084224671125, -0.020526960492134094, -0.08643890172243118, 0.05371586233377457, -0.05818881094455719, 0.006129091139882803, -0.058098483830690384, 0.00010298717097612098, 0.01486870739609003, -0.07665226608514786, -0.04547853767871857, -0.0019664964638650417, -0.006099561229348183, -0.09897244721651077, 0.07839838415384293, 0.06337033212184906, 0.005200039595365524, -0.03877692297101021, -0.0258361604064703, 0.09749356657266617, 0.04706723988056183, 0.007411494851112366, 0.06235530972480774, -0.03921504318714142, 0.009898643009364605, 0.002820700639858842, 0.0659167543053627, -0.03442484885454178, -0.0462334044277668, 0.010124308988451958, 0.006453063804656267, 0.0449991449713707, -0.09047583490610123, -0.03585120663046837, -0.03849409520626068, 0.043531522154808044, -0.034748222678899765, -0.008652174845337868, 0.0016261995770037174, -0.08620718121528625, -0.11473064124584198, -0.03037264384329319, 0.03903341665863991, 0.0932529866695404, -0.0028894292190670967, 0.09444153308868408, -0.027010520920157433, -0.07923512905836105, -0.0025952733121812344, -0.015172593295574188, -0.0038395882584154606, 0.044714685529470444, 0.011235485784709454, 0.03164640814065933, 0.04787050932645798, -0.005461172200739384, -0.014401215128600597, -0.010598774068057537, -0.05915658548474312, 0.0839865505695343, -0.09080532938241959, -0.04049290344119072, 0.03276120126247406, -0.00010921811917796731, -0.035813137888908386, 0.0019815596751868725, 0.015673525631427765, -0.08865732699632645, -0.03407282754778862, 0.015716852620244026, 0.010600973851978779, 0.01665399596095085, -0.018247311934828758, 0.04463290050625801, 0.07378688454627991, -0.082607701420784, 0.0014099802356213331, -0.10026180744171143, 0.07055926322937012, -0.053949952125549316, 0.023546526208519936, -0.04622500762343407, 0.006927561946213245, 0.009755010716617107, -0.051982928067445755, -0.06627514213323593, 0.039413269609212875, 0.1347580999135971, 0.04437125846743584, 0.031087879091501236, 0.0529794804751873, 0.06513514369726181, -0.04175592213869095, 0.020082872360944748, 0.021049603819847107, -0.02829102799296379, 0.09171012043952942, 0.007410802878439426, -0.06483892351388931, -0.05708466097712517, 0.017534565180540085, 0.0872393324971199, -0.048580724745988846, -0.09526734799146652, 0.08620678633451462, 0.018048448488116264, -0.022726312279701233, -0.027153797447681427, 0.014795039780437946, -0.03595207259058952, 0.06004565581679344, 0.013578461483120918, 0.024118704721331596, -0.13373598456382751, 0.013008126989006996, -0.0024890732020139694, -0.011712905950844288, -0.0025174065958708525, 0.07342885434627533, -0.03772909939289093, -0.06659610569477081, -0.04111768305301666, -0.0008576010586693883, 0.03199128061532974, -0.032859429717063904, -0.024358531460165977, -0.08796045184135437, -0.09402630478143692, 0.017830580472946167, 0.0194880198687315, 0.020680801942944527, -0.041035737842321396, -0.027179447934031487, 0.03576422855257988, -0.1099565327167511, -0.04340437799692154, 0.032233309000730515, 0.03689732030034065, 0.05972686782479286, -0.06641432642936707, 0.006374981254339218, 0.07402589917182922, -0.05678720772266388, 0.0643867626786232, -0.0743735283613205, -0.020968392491340637, -0.021786080673336983, -0.003611599327996373, -0.06542691588401794, 0.005655416753143072, -0.08393301069736481, 0.007075910456478596, 0.016433285549283028, -0.008848099038004875, -0.028528843075037003, 0.09095903486013412, 0.044693723320961, 0.005896361544728279, 0.08265319466590881, 0.006299798842519522, 0.0734964981675148, 0.07200409471988678, 0.06815797835588455, -0.046043869107961655, 0.03600628674030304, -0.005055123474448919, 0.02773340791463852, -0.026395276188850403, 0.06310964375734329, -0.0595644973218441, -0.0028789136558771133, -0.05368177965283394, -0.05959412455558777, 0.09022046625614166, -0.015290919691324234, 0.05681675300002098, -0.08103638142347336, 0.10220994800329208, 0.052219413220882416, -0.027910135686397552, -0.045233797281980515, 0.0024647025857120752, -0.131570965051651, -0.0626322329044342, 0.05800225958228111, -0.010869338177144527, -0.05111677944660187, -0.0036795425694435835, -0.00306174298748374, 0.06710441410541534, 0.0014046475989744067, -0.005205567926168442, -0.006565413903445005, -0.040218014270067215, 0.06272440403699875, -0.04858490824699402, -0.014422917738556862, -0.031687453389167786, -0.03346067667007446, -0.043968476355075836, -0.09241124242544174, -0.06223881617188454, 0.11960320174694061, -0.0544566847383976, -0.03233347460627556, -0.00784850399941206, -0.012252455577254295, 0.020431742072105408, 0.05009046196937561, 0.029096418991684914, 0.0802081748843193, -7.265325771565495e-33, 0.003347728867083788, 0.061315182596445084, -0.026888296008110046, -0.08833649754524231, 0.009732864797115326, -0.043689876794815063, 0.05071209743618965, -0.05041496083140373, -0.0399322584271431, 0.03793303295969963, -0.020578239113092422, -0.03873718902468681, -0.007889977656304836, -0.0533156581223011, -0.021767614409327507, -0.02867738902568817, 0.013602090999484062, 0.08670658618211746, -0.04594837874174118, -0.04967815428972244, 0.06974564492702484, 0.02926715463399887, -0.02372489869594574, -0.0017094198847189546, -0.03615204244852066, 0.04915530979633331, 0.025269003584980965, -0.08668624609708786, -0.02374868094921112, 0.017910584807395935, -0.0421077199280262, -0.004322315566241741, 0.02004418522119522, 0.043072208762168884, -0.05984969064593315, -0.12120036780834198, 0.07298433780670166, 0.030320748686790466, 0.026426775380969048, -0.09785192459821701, 0.08175239711999893, 0.04061901941895485, -0.02636047452688217, 0.02299361117184162, -0.006433017551898956, 0.022246208041906357, 0.05733218789100647, -0.07791925966739655, 0.051535267382860184, -0.09235179424285889, -0.018606381490826607, -0.06327904015779495, 0.04817630350589752, -0.09732473641633987, 0.0034601895604282618, 0.040423646569252014, 0.0349399708211422, -0.07530270516872406, 0.048993293195962906, -0.017392145469784737, -0.050583966076374054, 0.034837912768125534, 0.01718113198876381, 0.07423029094934464, 0.07193103432655334, -0.015290815383195877, -0.025689026340842247, 0.0014460859820246696, -0.004043376538902521, -0.05292542278766632, -0.027564574033021927, 0.0573694072663784, -0.07091284543275833, -0.04915306344628334, -0.018212050199508667, 0.0598478764295578, -0.01752319373190403, 0.02338160015642643, -0.03233429417014122, 0.05232411250472069, -0.052322424948215485, 0.05848301202058792, 0.061732761561870575, -0.030039791017770767, -0.042939864099025726, 0.09068120270967484, 0.050188321620225906, -0.010024969466030598, -0.0038794700521975756, -0.03285964950919151, 0.0032535053323954344, 0.05621268227696419, -0.001560974633321166, -0.014491425827145576, 0.04288347437977791, 9.394817101242183e-32, -0.0030111633241176605, -0.11084632575511932, -0.044631291180849075, -0.052958302199840546, -0.0008639043080620468, 0.061691172420978546, -0.011243748478591442, -0.04532422870397568, 0.04871450364589691, 0.031229982152581215, 0.02013433165848255, 0.07828497886657715, -0.008073333650827408, 0.07608706504106522, -0.016667013987898827, 0.0189132671803236, -0.03909212350845337, -0.02369019016623497, 0.04098891839385033, -0.034422729164361954, -0.023356003686785698, -0.0735243409872055, 0.01829071342945099, 0.04982510954141617, -0.008820797316730022, 0.08121098577976227, -0.08808854222297668, 0.050788894295692444, 0.02169368788599968, -0.04990297183394432, 0.07108054310083389, -0.0158425010740757, -0.054495807737112045, -0.01841759867966175, -0.02347603812813759, -0.024649567902088165, 0.05795050784945488, -0.008460293523967266, -0.03910400718450546, 0.027179373428225517, -0.008013157173991203, -0.06609133630990982, 0.03322971612215042, 0.0285638440400362, 0.0907050371170044, -0.03273963928222656, 0.007122852839529514, -0.06697163730859756, 0.02981034852564335, -0.07772251963615417, -0.009353332221508026, 0.050231389701366425, -0.00001663402326812502, -0.0414489209651947, -0.03600990027189255, -0.06452685594558716, 0.04408545419573784, -0.00884613674134016, 0.01006455160677433, -0.008068190887570381, -0.017196202650666237, 0.11874337494373322, -0.11829935014247894, -0.02204717881977558 ]
247Vectors 4 OABC is a squar e. M is the midpoint of OA , and Q divides BC A B Q C OMP in the ratio 1 : 3. AC and MQ meet at P . a If ⟶ OA = a and ⟶ OC = c, express ⟶ OP in terms of a and c . b Show that P divides AC in the ratio 2 : 3. 5 In triangle ABC the position v ectors of the vertices A, B and C are ( 5 8 ) , ( 4 3 ) and ( 7 6 ) . Find: a | ⟶ AB | b | ⟶ AC | c | ⟶ BC | d the size of ∠BAC , ∠ABC and ∠ACB to the nearest degree. 6 OPQ is a triangle. O QP RS a b2 ⟶ PR = ⟶ RQ and 3 ⟶ OR = ⟶ OS ⟶ OP = a and ⟶ OQ = b. a Show that ⟶ OS = 2 a + b. b Point T is added to the diagram such that ⟶ OT = −b. Prove that points T, P and S lie on a straight line.P P OPQR is a parallelogram. N is the midpoint of PQ and M is the midpoint of QR . ⟶ OP = a and ⟶ OR = b. The lines ON and OM intersect the diagonal PR at points X and Y respectively. a Exp lain why ⟶ PX = −j a + j b, w here j is a constant. b Sho w that ⟶ PX = (k − 1) a + 1 _ 2 kb, where k is a constant. c Exp lain why the values of j and k must satisfy these simultaneous equations: k − 1 = − j 1 _ 2 k = j d Hen ce find the values of j and k . e Ded uce that the lines ON and OM divide the diagonal PR into 3 equal parts.Challenge ORQ MN P X Ya bTo show that T , P and S lie on the same straight line you need to show that any two of the vectors ⟶ TP , ⟶ TS or ⟶ PS are parallel.Problem-solving
[ 0.01120834145694971, 0.051842089742422104, -0.02010309509932995, -0.05375223606824875, -0.005393057595938444, 0.07344502955675125, -0.04207450896501541, 0.04633847251534462, -0.07775949686765671, -0.0019129524007439613, 0.060169704258441925, -0.13044196367263794, -0.008673401549458504, 0.03923624008893967, -0.013698347844183445, -0.011810608208179474, 0.02059377171099186, 0.004059698898345232, -0.028861822560429573, -0.002183288801461458, -0.014629915356636047, -0.04591882973909378, 0.03813767060637474, -0.037309832870960236, 0.011736863292753696, -0.07609284669160843, 0.04937601462006569, -0.04368261992931366, 0.002565657487139106, -0.017804043367505074, -0.00232878839597106, 0.0629718080163002, 0.12749351561069489, 0.10265053808689117, 0.0455503948032856, -0.04976748302578926, 0.013212808407843113, -0.019142737612128258, 0.04647567495703697, 0.012119323015213013, -0.08204024285078049, -0.004861749242991209, 0.022485526278614998, 0.045780327171087265, -0.016216924414038658, -0.032694414258003235, -0.022510500624775887, 0.07886259257793427, 0.006653537508100271, 0.018830060958862305, 0.0033414377830922604, -0.052733466029167175, -0.07044331729412079, -0.005792653653770685, -0.035286396741867065, 0.09128090739250183, 0.003221146995201707, 0.04246878623962402, -0.05749649554491043, -0.0634898990392685, -0.003383074188604951, 0.05027546361088753, 0.01438279077410698, 0.021226780489087105, 0.020270882174372673, -0.01738051511347294, 0.01578817516565323, 0.025074103847146034, -0.03893188014626503, -0.005443772301077843, -0.012352967634797096, 0.05310830846428871, -0.05952078476548195, -0.054925788193941116, 0.04600335285067558, 0.006388350855559111, -0.07730814069509506, -0.06392277777194977, -0.0012738272780552506, -0.09232302755117416, -0.07918158918619156, 0.038875531405210495, 0.07274017482995987, 0.018566330894827843, -0.023242322728037834, 0.024802129715681076, 0.09986265003681183, -0.016263967379927635, 0.0044108000583946705, -0.11284516751766205, 0.031208854168653488, -0.03475651517510414, 0.01883874461054802, -0.1052885502576828, -0.013409578241407871, 0.006801484152674675, 0.012025060132145882, -0.03831193596124649, 0.007494370918720961, 0.09860542416572571, 0.03688345476984978, 0.0030836660880595446, 0.008200997486710548, -0.008513271808624268, -0.08274104446172714, 0.015621008351445198, 0.016023986041545868, -0.046724338084459305, 0.06914832442998886, 0.06176222860813141, -0.13821132481098175, 0.0408831350505352, 0.04915936291217804, -0.015098800882697105, -0.012309635058045387, -0.05017857998609543, 0.05962303653359413, 0.011245174333453178, 0.004064238164573908, -0.026551051065325737, 0.013567677699029446, -0.04644377529621124, 0.0779394656419754, 0.03849884867668152, 0.06928950548171997, -0.07711094617843628, 0.04923933744430542, 0.0034990953281521797, -0.006800577975809574, -0.019218744710087776, 0.07942981272935867, 0.014904220588505268, -0.03045387752354145, -0.05698714032769203, -0.05025970935821533, 0.006793462671339512, -0.030935533344745636, 0.041727058589458466, -0.042743340134620667, -0.10444710403680801, 0.08665032684803009, 0.03977610915899277, 0.03948310390114784, -0.07027164846658707, 0.0073224520310759544, -0.030130654573440552, -0.12383414804935455, -0.006489007733762264, -0.022896671667695045, 0.01623890921473503, 0.12442300468683243, -0.002526247641071677, 0.003478973638266325, 0.09320420771837234, -0.054771292954683304, 0.01057168934494257, -0.011175010353326797, -0.05578651279211044, -0.0021826145239174366, 0.06996627151966095, -0.04765947908163071, -0.016511330381035805, -0.1211530864238739, 0.07595961540937424, 0.0036757229827344418, 0.04226859286427498, -0.01253478229045868, 0.12052682042121887, 0.05069439858198166, -0.036273058503866196, 0.03284476324915886, -0.035096775740385056, 0.012031801976263523, -0.03148595616221428, 0.002436248818412423, -0.05025281757116318, 0.041776303201913834, -0.002807837212458253, -0.014593295753002167, -0.0008157683187164366, 0.042022135108709335, -0.02648145705461502, 0.008390828967094421, -0.017577897757291794, -0.018521588295698166, 0.0179913230240345, 0.03383467718958855, 0.029689939692616463, -0.040557291358709335, 0.03807603567838669, 0.05455169081687927, -0.07710978388786316, -0.08327220380306244, -0.044536203145980835, -0.1574183702468872, 0.01618925854563713, 0.05457763373851776, -0.009063716977834702, -0.10255218297243118, 0.007756502833217382, 0.010331219993531704, 0.000942168349865824, -0.01684378832578659, -0.00861272495239973, -0.03720030561089516, -0.015005627647042274, -0.021856818348169327, -0.015172344632446766, -0.03670065477490425, -0.020382871851325035, -0.013255740515887737, -0.002240977482870221, 0.06019214168190956, -0.08507855236530304, 0.07925902307033539, -0.04676021263003349, 0.004406571388244629, -0.03140038996934891, 0.008684984408318996, -0.02573266439139843, 0.04492056369781494, 0.04810456186532974, 0.10907363891601562, -3.6210335732332686e-33, -0.027693405747413635, -0.048856958746910095, -0.09040549397468567, -0.06289421021938324, 0.003132165875285864, 0.009632622823119164, 0.029209908097982407, -0.002653556177392602, -0.03543610870838165, 0.0023358610924333334, 0.010060765780508518, 0.03035961277782917, 0.05766688287258148, -0.10670517385005951, -0.03827812522649765, 0.013704359531402588, -0.00935217086225748, 0.03606406971812248, -0.04836929589509964, 0.01222254242748022, 0.08710190653800964, -0.056109823286533356, 0.02026287280023098, -0.03133657947182655, -0.03260679915547371, 0.061841413378715515, 0.05074010789394379, -0.1268749237060547, -0.04938489943742752, 0.044823057949543, -0.017107989639043808, -0.04560976102948189, 0.012736503034830093, 0.030685119330883026, -0.054608382284641266, -0.10454056411981583, 0.00993889756500721, 0.01096564531326294, -0.00644164951518178, -0.0949425920844078, 0.10678751021623611, 0.06760289520025253, 0.01105197612196207, 0.003963008522987366, -0.017323991283774376, 0.00904021505266428, 0.06503167748451233, -0.08402395993471146, 0.005720732267946005, -0.0774303525686264, -0.01554376445710659, -0.01776610128581524, 0.02022397704422474, -0.06103779375553131, 0.005144194699823856, 0.012785805389285088, 0.03778627887368202, -0.010536388494074345, 0.13096347451210022, -0.0032040311489254236, -0.01370745524764061, 0.0023022936657071114, 0.07302667945623398, 0.025979211553931236, 0.040164828300476074, -0.0017423335229977965, -0.02176264114677906, 0.07630988955497742, 0.019218945875763893, -0.03364463895559311, -0.04496031627058983, 0.038862574845552444, -0.07236536592245102, 0.028950300067663193, -0.04758290946483612, 0.010609923861920834, 0.011490588076412678, 0.07880041748285294, 0.0360301174223423, 0.03712189942598343, -0.08696646243333817, 0.04801046475768089, -0.023223834112286568, -0.0183122418820858, -0.08010267466306686, 0.058369606733322144, 0.13276810944080353, -0.011615078896284103, 0.026363616809248924, -0.056340355426073074, -0.09936701506376266, 0.05835635960102081, -0.007504028733819723, 0.03261834383010864, 0.0010306534823030233, 8.9027210766518e-32, 0.012500266544520855, 0.0252891406416893, -0.04453779011964798, -0.038866497576236725, 0.029813485220074654, 0.08315470814704895, 0.05055674910545349, 0.015712328255176544, 0.020404450595378876, -0.010472281835973263, 0.02267606370151043, 0.01365384366363287, -0.09078777581453323, 0.014333665370941162, 0.011052419431507587, -0.013616996817290783, -0.04607992619276047, -0.02856200374662876, 0.01617489382624626, -0.01673109270632267, 0.0360557846724987, -0.004774387460201979, -0.016703901812434196, 0.03713230416178703, 0.002421235665678978, 0.042769063264131546, -0.1268138289451599, 0.014550900086760521, -0.005321856122463942, -0.0919722244143486, 0.09363681823015213, 0.021851014345884323, -0.10626961290836334, 0.07109348475933075, 0.020368332043290138, 0.0055900439620018005, 0.05891128256917, 0.011177221313118935, 0.012910416349768639, 0.05759795382618904, -0.008714959025382996, -0.12660008668899536, -0.04430699348449707, 0.047991298139095306, 0.013718551956117153, -0.0709504634141922, -0.006340388208627701, -0.027145549654960632, -0.009096688590943813, -0.08853979408740997, -0.04180942475795746, 0.05399264767765999, 0.018158210441470146, -0.050115376710891724, 0.006413934752345085, -0.11537282168865204, -0.02084980346262455, -0.004703837912529707, 0.01584641821682453, 0.01318148709833622, -0.00446721026673913, 0.10689611732959747, -0.1152181550860405, -0.0005387854762375355 ]
248 Chapter 11 11.6 Modelling with vectors You need to be able to use vectors to solve problems in context. In mechanics, vector quantities have both magnitude and direction. Here are three examples:● vel ocity ● displacement ● for ce You can also refer to the magnitude of these vectors. The magnitude of a vector is a scalar quantity − it has size but no direction: ● speed is the magnitude o f the velocity vector ● distance in a st raight line between A and B is the magnitude of the displacement vector ⟶ AB When modelling with vectors in mechanics , it is common to use the unit vector j to represent North and the unit vector i to represent East. Example 19 A girl walks 2 km due east from a fixed point O to A, and then 3 km due south from A to B. Find: a the total distance tra velled b the position vector of B relative to O c | ⟶ OB | d the bearing of B from O. a The distance the girl has walked is 2 km + 3 km = 5 km b Rep resenting the girl’s journey on a diagram: θO A B3 km2 kmN ⟶ OB = (2 i − 3 j) km c | ⟶ OB | = √ ________ 22 + 32 = √ ___ 13 = 3.61 km (3 s.f.) d tan θ = 3 __ 2 θ = 56.3° The bearing of B from O is 56.3° + 90° = 146.3° = 146°Note that the distance of B from O is not the same as the distance the girl has walked. Remember to include the units with your answer. ⟶ OB is the length of the line segment OB in th e diagram and represents the girl’s distance from the starting point.j represents North, so 3 km south is written as –3 j km. A three-figure bearing is always measured clockwise from north.
[ 0.02515784278512001, -0.028131749480962753, 0.03349294513463974, -0.09638581424951553, -0.01962324231863022, -0.06718854606151581, -0.027514245361089706, 0.07450667768716812, 0.008953303098678589, 0.07578858733177185, 0.014329138211905956, -0.04475840553641319, -0.018840830773115158, 0.060582391917705536, -0.04241834580898285, 0.012263551354408264, -0.08486214280128479, 0.11586525291204453, 0.009716959670186043, 0.017949676141142845, 0.042008381336927414, 0.08075565844774246, -0.04820999503135681, 0.005699632689356804, 0.0025366528425365686, 0.01174057275056839, 0.05434621870517731, 0.03410082682967186, 0.0175694078207016, -0.052191831171512604, -0.03736479580402374, 0.04511455073952675, 0.046562984585762024, 0.04012623056769371, -0.022777803242206573, 0.01555404532700777, 0.026049675419926643, 0.0363185778260231, -0.0358571894466877, 0.002673014532774687, -0.01640048250555992, 0.0243351012468338, 0.006107129156589508, 0.06368081271648407, 0.008092128671705723, 0.16327951848506927, 0.007799657993018627, -0.03519520163536072, 0.010166863910853863, 0.08058544993400574, 0.05770314112305641, -0.011480881832540035, -0.0027732274029403925, 0.003425111761316657, 0.061486780643463135, 0.07620663195848465, 0.03520017862319946, 0.039366692304611206, 0.007475078105926514, -0.09660423547029495, -0.007600646000355482, -0.014568832702934742, -0.02800857089459896, -0.050535064190626144, -0.012490677647292614, -0.05010606348514557, -0.04335268959403038, 0.04971258342266083, -0.013219457119703293, 0.08763929456472397, -0.03914949670433998, -0.00820147804915905, 0.03788995370268822, 0.01384973619133234, 0.005154235288500786, -0.08168356120586395, 0.057162679731845856, -0.0011971276253461838, 0.06997725367546082, -0.05152999609708786, -0.0003502110776025802, 0.04679407551884651, -0.07742024958133698, -0.027803929522633553, 0.005187683273106813, 0.00912578497081995, -0.005129865370690823, 0.02013375610113144, 0.06101860851049423, -0.010954674333333969, 0.016456259414553642, 0.03549707308411598, 0.08642677962779999, -0.018916811794042587, 0.10755981504917145, -0.019283028319478035, 0.026429256424307823, -0.030033376067876816, -0.007565783802419901, -0.007212179247289896, 0.009752285666763783, -0.04260324314236641, -0.03142690658569336, 0.08100879937410355, -0.014005382545292377, -0.019760901108384132, -0.003598427399992943, -0.014339645393192768, 0.007055939175188541, 0.07282274961471558, 0.030204303562641144, 0.07737351953983307, -0.05795663967728615, -0.09119513630867004, 0.06817807257175446, -0.02749510668218136, -0.07383430749177933, 0.004852878861129284, 0.048560481518507004, -0.022650299593806267, -0.029375335201621056, -0.09887687861919403, -0.04846782982349396, -0.028702033683657646, 0.010020374320447445, -0.03183920681476593, 0.08493904024362564, -0.04180126264691353, -0.08374394476413727, -0.044665224850177765, 0.004938012920320034, -0.03494184836745262, -0.1164107546210289, 0.030890632420778275, -0.04769230633974075, 0.10369415581226349, 0.08920546621084213, -0.037496522068977356, -0.026367630809545517, -0.01007949747145176, 0.07205701619386673, 0.08637901395559311, 0.1289830207824707, 0.01886940561234951, 0.04140622168779373, 0.0010760690784081817, -0.12096206098794937, 0.05303430184721947, 0.008531546220183372, -0.03326686844229698, -0.014106953516602516, 0.03448489308357239, 0.0034509743563830853, 0.021489523351192474, -0.021445274353027344, 0.0225515216588974, -0.0553593747317791, -0.029807468876242638, -0.040732186287641525, 0.015658177435398102, -0.04171879589557648, 0.0034791429061442614, 0.043646614998579025, 0.03478623181581497, -0.04308977723121643, 0.045017581433057785, -0.05451781302690506, 0.06691733747720718, 0.05793677642941475, -0.0941682681441307, 0.025890221819281578, -0.0019015453290194273, -0.02788533829152584, 0.0065980530343949795, 0.040646206587553024, 0.009301134385168552, -0.01002274826169014, -0.020164282992482185, -0.05120677500963211, 0.0021982360631227493, 0.040416471660137177, -0.06809661537408829, 0.03435473516583443, -0.024928230792284012, -0.0007719661225564778, -0.0222316924482584, -0.07874716073274612, 0.03491990268230438, -0.12139013409614563, 0.06203668564558029, 0.14065256714820862, -0.040789563208818436, 0.00862131267786026, 0.005376292392611504, -0.13316571712493896, -0.03175138309597969, -0.01898595690727234, -0.018560297787189484, -0.008754784241318703, -0.020219577476382256, -0.043598722666502, -0.052148859947919846, 0.032159432768821716, 0.055698513984680176, -0.05793356895446777, 0.0035910869482904673, -0.0174527820199728, -0.04648996889591217, -0.07158707827329636, 0.07091973721981049, -0.06862436980009079, -0.02970275469124317, 0.007930179126560688, -0.047505974769592285, 0.040582358837127686, -0.05975765362381935, -0.024434059858322144, -0.05227944627404213, 0.01897442154586315, 0.06081137806177139, -0.0026381965726614, 0.04631171375513077, -0.015367787331342697, 1.0816824813185794e-32, -0.06972818821668625, 0.006004150956869125, -0.03255043923854828, -0.012146315537393093, -0.035600446164608, 0.03550614044070244, 0.08117280155420303, -0.0650406926870346, 0.01811484806239605, -0.09275896847248077, -0.11589373648166656, 0.010038225911557674, -0.13894471526145935, 0.050061434507369995, 0.030262138694524765, -0.022293157875537872, -0.059172824025154114, -0.12450706213712692, -0.017156029120087624, 0.01871238648891449, -0.07477670162916183, -0.11648815870285034, -0.04049346223473549, -0.03754841908812523, -0.017420746386051178, -0.05149926617741585, 0.06637442857027054, -0.07001010328531265, -0.12514446675777435, 0.03613763675093651, 0.014641005545854568, 0.01575102098286152, 0.0651886984705925, 0.0527305006980896, 0.000828250776976347, 0.016250556334853172, 0.06710228323936462, 0.020263196900486946, -0.033555351197719574, -0.0684753805398941, -0.009177926927804947, 0.07210101187229156, 0.06594181805849075, -0.06062699854373932, 0.00443902425467968, 0.06380364298820496, 0.0895494669675827, 0.02082514762878418, 0.004566819407045841, -0.029263300821185112, 0.02828308567404747, 0.007889329455792904, 0.005850626155734062, -0.007773208897560835, -0.015147572383284569, -0.036671511828899384, -0.013747798278927803, -0.07805442810058594, 0.05862382426857948, -0.02518453635275364, -0.03683086857199669, -0.008154098875820637, 0.116370789706707, 0.02807733044028282, -0.008620395325124264, -0.06783705949783325, 0.027834825217723846, 0.000413585570640862, -0.027396073564887047, -0.18192730844020844, 0.02369491383433342, 0.09252709150314331, 0.06780849397182465, 0.06043637543916702, -0.005296336952596903, -0.03818889707326889, 0.053451597690582275, -0.0533529631793499, 0.00425423588603735, 0.029050417244434357, 0.012354479171335697, 0.06126140058040619, 0.07407959550619125, 0.006318803410977125, -0.050551533699035645, -0.03505650907754898, 0.03570781275629997, 0.03594648465514183, 0.0015028698835521936, 0.005444005597382784, 0.04941906780004501, 0.05139469355344772, -0.05714285001158714, -0.014061076566576958, 0.009560822509229183, 5.65482372011089e-32, 0.016987230628728867, 0.05990124121308327, -0.008770493790507317, -0.005468066781759262, -0.0007960251532495022, 0.02774868719279766, 0.04399407282471657, 0.0347403921186924, -0.0008614957332611084, 0.03845396637916565, -0.035669345408678055, 0.016907937824726105, -0.06519709527492523, -0.00028862350154668093, -0.03418424725532532, -0.027770748361945152, 0.024273570626974106, 0.02651073969900608, -0.020190618932247162, -0.0031633374746888876, 0.050414156168699265, 0.0357653982937336, -0.06965724378824234, -0.008814554661512375, 0.0561891533434391, 0.0020072702318429947, -0.04466376081109047, 0.06751536577939987, 0.007422350812703371, -0.03383814916014671, 0.029011648148298264, 0.050137314945459366, 0.009412363171577454, 0.09822104871273041, -0.021337945014238358, 0.007075491361320019, 0.04548255354166031, 0.0677921324968338, -0.02680710330605507, 0.06212335452437401, -0.011737165041267872, -0.031491491943597794, 0.017980976030230522, -0.0032383070793002844, 0.03946183621883392, 0.06963209062814713, -0.05231256037950516, -0.050398487597703934, -0.026570290327072144, -0.09381943941116333, 0.034205660223960876, 0.05905178561806679, 0.038624584674835205, 0.09871078282594681, 0.017764383926987648, -0.051100317388772964, -0.05669926106929779, 0.005677407141774893, 0.08246802538633347, -0.05376121774315834, 0.0021489160135388374, -0.0043278769589960575, -0.012979860417544842, -0.13474033772945404 ]
249Vectors Example 20 In an orienteering exercise, a cadet leaves the starting point O and walks 15 km on a bearing of 120° to reach A, the first checkpoint. From A he walks 9 km on a bearing of 240° to the second checkpoint, at B. From B he returns directly to O. Find:a the position vector of A relative to O b | ⟶ OB | c the bearing of B from O d the position vector of B relative to O. a θO A B9 km15 km120° 240°N N The position vector of A relative to O is ⟶ OA . AO30°15 cos 30° 15 km15 sin 30° ⟶ OA = (15 cos 30 °i + 15 si n 30 °j) km = (13.0i − 7.5 j) km b θO A B9 km15 km 240°60°30° 60°N N | ⟶ OB |2 = 152 + 92 − 2 × 15 × 9 × cos 60° = 171 | ⟶ OB | = √ ____ 171 = 1 3.1 km (3 s.f.)Start by drawing a diagram. Draw a right angled triangle to work out the lengths of the i and j components for the position vector of A relative to O. | ⟶ OB | is the length of OB in triangle OAB . Use the co sine rule in triangle OAB .∠OAB = 360° − (240° + 60°) = 60°
[ 0.053414054214954376, 0.03037256747484207, 0.036959208548069, -0.0727737545967102, -0.007749298587441444, 0.04671185836195946, -0.08807694166898727, -0.005215668585151434, -0.06909162551164627, 0.0004133709880989045, 0.041935134679079056, -0.06791659444570541, -0.037248652428388596, 0.0027938364073634148, -0.039140935987234116, 0.023783531039953232, -0.018117768689990044, 0.16054430603981018, 0.03894879296422005, 0.021506238728761673, -0.007629083469510078, -0.0625658631324768, 0.07056817412376404, 0.0029335394501686096, -0.048764828592538834, 0.014992676675319672, 0.03483262658119202, -0.05844361335039139, 0.026649093255400658, -0.029118765145540237, -0.05513196438550949, -0.025061821565032005, -0.040859077125787735, -0.0029409758280962706, -0.006029242184013128, 0.05011726915836334, -0.01949751004576683, 0.024664852768182755, -0.010522962547838688, -0.0008666125941090286, -0.031251829117536545, -0.027710357680916786, 0.06635791808366776, 0.008870946243405342, 0.013888183981180191, -0.02905924618244171, -0.041731879115104675, 0.059978995472192764, 0.06323262304067612, -0.0019372792448848486, 0.06247293949127197, -0.03045850805938244, -0.036647140979766846, 0.03105870634317398, -0.014560762792825699, 0.07209593057632446, -0.007536841556429863, 0.03663451969623566, -0.00015759312373120338, -0.05526881664991379, -0.002369033871218562, -0.02225206419825554, 0.01801382750272751, -0.03499167039990425, 0.0004292309458833188, -0.0021185600198805332, -0.038657356053590775, -0.02772410772740841, -0.010110062547028065, 0.05661403760313988, -0.0668732300400734, 0.02024497464299202, -0.05001472309231758, -0.0494694747030735, -0.02192307822406292, -0.0495242215692997, -0.058299802243709564, 0.021442705765366554, -0.04006850719451904, -0.1638241410255432, -0.08388031274080276, 0.005572759546339512, 0.00716171320527792, -0.0004362405452411622, 0.035629648715257645, 0.04506297409534454, 0.04016038030385971, 0.07037040591239929, 0.06106092780828476, -0.03400940075516701, 0.043366264551877975, -0.042326733469963074, 0.047650132328271866, -0.004794362932443619, 0.050553832203149796, 0.0367886908352375, 0.031216545030474663, 0.010981911793351173, 0.019561387598514557, 0.06160794198513031, 0.07821200788021088, 0.00040766497841104865, -0.05364729091525078, 0.020860854536294937, -0.041502173990011215, 0.030466560274362564, 0.04238875210285187, -0.08029484748840332, 0.00038509463774971664, 0.04645872116088867, -0.0416097454726696, 0.039032284170389175, 0.015860026702284813, 0.00003408922930248082, 0.008146775886416435, 0.013872533105313778, -0.0410296693444252, 0.043658461421728134, -0.03177430480718613, 0.02971230074763298, 0.04946376383304596, -0.07343789935112, 0.08740812540054321, -0.01239261869341135, -0.016395894810557365, -0.0718626081943512, 0.051065001636743546, 0.007870977744460106, 0.018145106732845306, 0.01865100860595703, 0.037595029920339584, 0.014336621388792992, -0.05460859462618828, -0.02445010095834732, -0.08523232489824295, -0.002848757430911064, 0.0321180485188961, 0.058380164206027985, -0.03362364321947098, -0.047667935490608215, 0.039768896996974945, 0.06897591054439545, 0.05072769150137901, -0.06744828820228577, -0.004896504804491997, 0.017582885921001434, -0.16494037210941315, -0.05769794061779976, 0.0190591961145401, 0.0416097454726696, 0.08965346962213516, -0.0337219275534153, -0.0020369812846183777, 0.08404365181922913, -0.04564362391829491, 0.03526656702160835, -0.027913518249988556, -0.041334111243486404, -0.02143835835158825, 0.050415609031915665, -0.020662575960159302, -0.041074566543102264, 0.019599802792072296, 0.019175587221980095, 0.08177459985017776, 0.01297402661293745, -0.06970133632421494, 0.029393306002020836, -0.002899490762501955, -0.014243789948523045, 0.08665266633033752, -0.030524322763085365, -0.01016599778085947, -0.01788206584751606, 0.06102306768298149, -0.011933715082705021, 0.033477138727903366, 0.02871822565793991, -0.07191279530525208, -0.0262465663254261, 0.06490016728639603, -0.08228031545877457, 0.06702570617198944, -0.06690268218517303, 0.00426256051287055, 0.06632731109857559, -0.06282519549131393, 0.04938870668411255, -0.02211875095963478, 0.0678708553314209, 0.05403256416320801, -0.0713447853922844, -0.033465784043073654, -0.030051644891500473, -0.14809821546077728, -0.001739679486490786, 0.07442084699869156, 0.04003892466425896, 0.05972952023148537, 0.020116064697504044, 0.01259713526815176, 0.01326759159564972, -0.051920440047979355, -0.05210820958018303, -0.06329066306352615, 0.04308846592903137, 0.02251068688929081, -0.10426957905292511, -0.10355592519044876, 0.04717257618904114, -0.07412555813789368, -0.0040017953142523766, 0.07478486746549606, -0.023919345811009407, 0.01862305775284767, -0.10780556499958038, -0.004744489677250385, -0.03873153403401375, -0.036260440945625305, 0.011372501030564308, -0.044369496405124664, 0.04638400301337242, 0.054599273949861526, 6.750697283511374e-33, -0.07923503965139389, 0.04494418203830719, -0.0032477888744324446, -0.0896475538611412, -0.0032308734953403473, -0.017720825970172882, 0.09400715678930283, 0.032338012009859085, -0.06218266859650612, -0.043686393648386, -0.046943627297878265, -0.08026251196861267, 0.006495004985481501, 0.05025385692715645, 0.015236584469676018, 0.025281907990574837, 0.03703506290912628, 0.0487971305847168, -0.028379470109939575, 0.009488680399954319, 0.08050252497196198, -0.08215368539094925, 0.005120203364640474, 0.005250552669167519, 0.009737019427120686, 0.10032260417938232, 0.11504001170396805, -0.03178086504340172, -0.11071709543466568, 0.017486359924077988, 0.010545155964791775, -0.0377596914768219, 0.09232524782419205, 0.12023815512657166, -0.054706741124391556, -0.02132287435233593, -0.009764701128005981, 0.026154320687055588, 0.003084320342168212, -0.007183259353041649, 0.10204032808542252, 0.026659270748496056, 0.07968523353338242, 0.0039499178528785706, -0.052890095859766006, -0.00728975422680378, -0.0299387089908123, 0.008443421684205532, 0.007908662781119347, -0.04265150800347328, -0.004488529171794653, 0.005735758226364851, 0.04863753542304039, -0.02333507128059864, 0.04775484278798103, 0.004668425302952528, -0.06200871616601944, -0.09100284427404404, 0.07816939800977707, 0.013325130566954613, -0.02124563232064247, -0.0007589527522213757, 0.0690346360206604, 0.04476789012551308, 0.00181669183075428, -0.05658852308988571, 0.00760903675109148, 0.09383237361907959, -0.03757308050990105, -0.10251116007566452, -0.06954649835824966, 0.09343966841697693, -0.08291980624198914, 0.006105094216763973, -0.031787700951099396, 0.0008987769251689315, 0.07042966037988663, 0.008101919665932655, 0.02769213728606701, 0.004807543009519577, -0.12393180280923843, 0.004747272934764624, 0.02964678406715393, 0.08132727444171906, -0.07104451954364777, 0.01105020847171545, -0.028255516663193703, -0.07946808636188507, 0.042082514613866806, -0.022616224363446236, 0.00879168976098299, 0.054122444242239, -0.0751686617732048, 0.04742972180247307, 0.05331351235508919, 7.642604650755342e-32, -0.055921055376529694, 0.050687748938798904, -0.024921000003814697, 0.03685066103935242, 0.04182993993163109, 0.09904447197914124, 0.012625649571418762, -0.05442580580711365, 0.047610849142074585, -0.023168545216321945, -0.008320767432451248, 0.053581077605485916, -0.031428948044776917, 0.02128768153488636, -0.10692189633846283, -0.009186559356749058, -0.06989628821611404, -0.056409385055303574, -0.029446689411997795, -0.010712704621255398, 0.007213271223008633, 0.004009260330349207, -0.033488478511571884, 0.05281520634889603, -0.007037780247628689, 0.06928859651088715, -0.07866273075342178, 0.04139683395624161, -0.018178293481469154, -0.06572013348340988, 0.07238145917654037, 0.04499603807926178, -0.02742992341518402, 0.059460584074258804, -0.05335209518671036, -0.00934935174882412, 0.06757789105176926, 0.029919825494289398, -0.023162078112363815, 0.043577197939157486, -0.05324133113026619, -0.04339694604277611, -0.04645394906401634, 0.05155331641435623, 0.0052979327738285065, -0.0033965713810175657, -0.03286788612604141, -0.08881593495607376, -0.004883623216301203, -0.1274615377187729, -0.008606918156147003, -0.006383814383298159, 0.01478626299649477, 0.08844511955976486, 0.04783112555742264, -0.033589791506528854, -0.05226265266537666, -0.03579189255833626, 0.041648343205451965, 0.020537015050649643, -0.01609935238957405, 0.06305800378322601, -0.1318361610174179, -0.03619793429970741 ]
250 Chapter 11 Exercise 11F 1 Find the speed of a particle moving with these v elocities: a (3i + 4j) m s−1 b (24i − 7j) km h−1 c (5i + 2j) m s−1 d (−7i + 4j) cm s−1 2 Find the distance moved b y a particle which travels for: a 5 hours at ve locity (8i + 6j) km h−1 b 10 seconds at ve locity (5i − j) m s−1 c 45 minutes at velocity (6i + 2j) km h−1 d 2 minutes at velocity (− 4i − 7j) cm s−1. 3 Find the speed and the distance trav elled by a particle moving in a straight line with: a velocity ( −3i + 4j) m s−1 for 15 seconds b velocity (2 i + 5j) m s−1 for 3 seconds c velocity (5 i − 2j) km h−1 for 3 hours d velocity (12 i − 5j) km h−1 for 30 minutes. 4 A particle P is acce lerating at a constant speed. When t = 0, P has velocity u = (2i + 3j) m s−1 and at time t = 5 s, P has velocity v = (16i − 5j) m s−1. The acceleration vector of the particle is given by the formula: a = v − u _____ t Find the accelera tion of P in terms of i and j. Speed is the magnitude of th e velocity vector.Hint Find the speed in each case the n use: Distance travelled = speed × timeHint The units of acceleration wi ll be m/s2 or m s−2.Hintc sin θ ____ 9 = sin 60° _______ √ ____ 171 sin θ = 9 × sin 60° ___________ √ ____ 171 = 0. 596… θ = 36.6° = 37° (3 s.f.) The bearing of B from O = 120 + 37 = 157° d BO13.1 cos 67° 13.1 sin 67° 13.1 km67°N N ⟶ OB = (5.1i − 12. 1j ) kmUse the sine rule to work out θ. 157° − 90° = 67° Draw a right angled triangle to work out the lengths of the i and j components for the position vector of B relative to O.
[ 0.03758266940712929, 0.009631291031837463, 0.016412869095802307, -0.03480171412229538, -0.002178119495511055, -0.0010817316360771656, 0.00920837465673685, -0.0812297910451889, -0.08547723293304443, 0.06557045131921768, 0.11569410562515259, -0.09322608262300491, -0.04467717930674553, -0.012505465187132359, -0.044269368052482605, -0.029165178537368774, -0.015696099027991295, 0.036830198019742966, -0.10738575458526611, 0.02033085562288761, 0.050394657999277115, 0.008097742684185505, -0.029582466930150986, 0.025395812466740608, 0.03427041321992874, -0.015077267773449421, 0.05871277675032616, -0.02066991478204727, -0.02244648151099682, -0.028426339849829674, -0.02335435524582863, -0.05205170065164566, 0.09535051882266998, -0.05341433361172676, 0.016412794589996338, 0.030844787135720253, 0.03292836621403694, 0.08431780338287354, 0.03541702404618263, -0.05739837884902954, -0.018214527517557144, -0.023082196712493896, 0.05067359283566475, -0.005399119108915329, 0.03835645690560341, 0.006410546135157347, -0.08421099185943604, -0.04359336942434311, -0.024032041430473328, -0.02573678083717823, -0.02517935447394848, -0.02889351174235344, -0.0780428871512413, -0.029323898255825043, -0.028694141656160355, 0.014629116281867027, 0.04281435161828995, 0.06540660560131073, 0.0852004662156105, -0.0747210755944252, -0.022360920906066895, 0.001085453201085329, 0.009426821023225784, 0.046416040509939194, -0.030520077794790268, -0.041615281254053116, 0.026216721162199974, 0.020649924874305725, -0.014826614409685135, 0.02728680893778801, -0.06134864687919617, 0.036886412650346756, -0.11696552485227585, -0.029889676719903946, 0.009808245114982128, -0.05196322128176689, -0.012496375478804111, 0.007123550865799189, -0.0014931793557479978, -0.037010274827480316, 0.05444563552737236, -0.09953287988901138, -0.02196781150996685, -0.007152586244046688, 0.009747263975441456, 0.07941687852144241, -0.0313180536031723, 0.027668483555316925, 0.03304550424218178, -0.09736839681863785, 0.05810229480266571, -0.0496939942240715, 0.034855734556913376, 0.005836627911776304, -0.018807271495461464, -0.06027861312031746, 0.056511156260967255, 0.0031546500977128744, 0.07806839793920517, 0.12767930328845978, 0.03488701581954956, -0.0038715831469744444, -0.05885789543390274, 0.0961657166481018, 0.004415260627865791, -0.010116378776729107, 0.022751888260245323, -0.04889671504497528, 0.0389881432056427, 0.06506690382957458, 0.08760138601064682, 0.06254234910011292, 0.022579561918973923, 0.004932139068841934, 0.05886813998222351, -0.02544749714434147, 0.01566152088344097, 0.016512710601091385, -0.08966734260320663, -0.00378626910969615, -0.050658274441957474, -0.0987882986664772, -0.01848497986793518, -0.048087745904922485, 0.013810096308588982, -0.07729731500148773, 0.09092258661985397, 0.029638124629855156, -0.06818200647830963, 0.01986287161707878, 0.025787493214011192, -0.004662164952605963, -0.047288428992033005, -0.03460093215107918, -0.02038019523024559, 0.020730163902044296, -0.0035375780425965786, 0.002615717938169837, -0.07098769396543503, -0.03242550790309906, -0.08027227967977524, 0.10048835724592209, 0.03911334648728371, -0.015041744336485863, 0.07415704429149628, -0.007361335679888725, -0.010330251418054104, 0.01878308318555355, 0.007544903550297022, 0.06646981835365295, 0.003908475395292044, -0.05101233348250389, 0.04503072425723076, 0.001721022417768836, -0.09072405099868774, 0.026086322963237762, 0.03166823089122772, -0.029301565140485764, -0.09002663940191269, -0.022902246564626694, -0.06864866614341736, 0.03619234636425972, 0.09400539845228195, 0.07348504662513733, 0.05176447331905365, 0.037614449858665466, 0.029247531667351723, -0.004114591982215643, 0.043835729360580444, 0.022082405164837837, -0.01990000158548355, -0.027666125446558, -0.03130008280277252, 0.022312862798571587, 0.03700928017497063, -0.023857921361923218, 0.058171823620796204, 0.0340530127286911, -0.044159963726997375, -0.011056792922317982, 0.05808228626847267, -0.13004012405872345, 0.0612148642539978, 0.05170680209994316, 0.015455148182809353, -0.014519862830638885, -0.09405060112476349, 0.02465083822607994, -0.0071627674624323845, 0.11637390404939651, 0.13075445592403412, -0.08262282609939575, -0.005664334632456303, 0.021484658122062683, -0.14222152531147003, -0.010323655791580677, 0.012211455032229424, 0.0022759372368454933, -0.08214055001735687, -0.0069912392646074295, 0.07083252817392349, -0.006480395793914795, 0.11008094251155853, 0.03038848750293255, -0.04842888563871384, -0.06967373192310333, -0.04553215950727463, -0.1324622631072998, -0.06642192602157593, 0.04188716039061546, -0.03927534818649292, -0.010858994908630848, -0.05201674625277519, -0.036302391439676285, 0.056559450924396515, -0.05902697518467903, -0.020009228959679604, -0.04898211359977722, 0.00305800954811275, 0.020477082580327988, -0.040758755058050156, 0.010481493547558784, 0.0836777612566948, -9.415630404217842e-33, -0.0636228546500206, 0.061926379799842834, -0.04233461618423462, 0.025341734290122986, 0.07091812789440155, -0.016958659514784813, 0.016984963789582253, -0.014859308488667011, 0.024455759674310684, -0.03441285341978073, -0.07551877945661545, -0.021799342706799507, -0.03463109955191612, 0.023880628868937492, -0.0003953802224714309, 0.007412830833345652, 0.0892535150051117, -0.009245912544429302, -0.00336295529268682, 0.007557406555861235, 0.0034572393633425236, -0.04528380185365677, -0.010772091336548328, -0.025862079113721848, -0.00717575429007411, -0.0005869685555808246, 0.06754807382822037, -0.09493732452392578, -0.05442836880683899, -0.018087616190314293, 0.0014061502879485488, -0.045392826199531555, 0.02781466394662857, 0.06808557361364365, -0.008159206248819828, -0.05764450132846832, 0.015268690884113312, 0.027818715199828148, 0.027153190225362778, -0.0027006093878299, 0.039876434952020645, 0.043861906975507736, -0.019607722759246826, -0.041143711656332016, 0.004076787736266851, 0.05462351441383362, 0.046991799026727676, 0.05742505192756653, 0.018064478412270546, -0.010960198007524014, -0.005781767889857292, -0.056334320455789566, -0.051357805728912354, 0.00973342452198267, 0.04703901335597038, -0.005612758919596672, -0.012991623021662235, -0.11644590646028519, 0.031106796115636826, -0.08829470723867416, -0.028927724808454514, -0.0061614555306732655, 0.04669879004359245, 0.12070683389902115, 0.030527859926223755, -0.019563613459467888, -0.013224528171122074, 0.020986387506127357, -0.035953640937805176, -0.11952517181634903, -0.03256891667842865, 0.07347850501537323, 0.0008924277499318123, 0.005681105423718691, -0.03273855149745941, -0.13813765347003937, 0.03742126002907753, 0.02149137482047081, 0.028509395197033882, 0.0006753734196536243, -0.050571538507938385, 0.0019821138121187687, 0.07821197062730789, -0.030271481722593307, -0.10918799787759781, 0.07064756006002426, 0.0031235795468091965, -0.054994113743305206, 0.012515473179519176, 0.05172280967235565, 0.06400872766971588, 0.01898033916950226, 0.04434772953391075, -0.028212474659085274, 0.013065535575151443, 8.334360741821592e-32, 0.07984209060668945, 0.013568682596087456, -0.018125107511878014, -0.07884210348129272, 0.07748423516750336, 0.06026177480816841, 0.018599942326545715, 0.009032015688717365, 0.0035660341382026672, 0.03586167097091675, 0.11745050549507141, 0.02138407528400421, -0.005543456878513098, 0.048601265996694565, -0.09494026005268097, -0.1227898970246315, -0.09052278846502304, -0.01003566849976778, 0.012820135802030563, 0.008188821375370026, -0.050030168145895004, -0.004583378322422504, -0.010426070541143417, 0.020947027951478958, 0.008765192702412605, 0.04611176624894142, -0.0743558332324028, -0.05898398905992508, 0.04159336909651756, -0.0847449079155922, 0.018231218680739403, 0.035416871309280396, -0.011870747432112694, -0.04050825908780098, -0.10239853709936142, -0.002230302197858691, 0.04623392969369888, 0.008216632530093193, -0.0263967402279377, 0.04444511607289314, -0.046279389411211014, 0.011011311784386635, -0.021882139146327972, 0.0021936798002570868, 0.03643080219626427, -0.009855872951447964, -0.043260592967271805, -0.09004542976617813, -0.010380269028246403, -0.0399266853928566, -0.05901893600821495, 0.018687937408685684, 0.06109218671917915, 0.06037500128149986, 0.04628824442625046, 0.028709808364510536, -0.046868667006492615, 0.019477659836411476, 0.009775051847100258, -0.05095164105296135, -0.050730254501104355, 0.03648070618510246, -0.14327634871006012, 0.00725643802434206 ]
251Vectors 5 A particle P of mass m = 0.3 kg moves under the action of a single constant force F newtons. The acceleration of P is a = (5i + 7j) m s−2. a Find the angle between the acceler ation and i. (2 marks) Force , mass and acceleration are related by the formula F = ma. b Find the magnitude of F. (3 marks) 6 Two f orces, F1 and F2, are given by the vectors F1 = (3i − 4j) N and F2 = ( pi + qj) N. The resultant f orce, R = F1 + F2 acts in a direction which is parallel to the vector (2i − j). a Find the angle between R and the vector i. (2 marks) b Show that p + 2q = 5. (3 marks) c Given tha t p = 1, find the magnitude of R. (3 marks) 7 The diagram sho ws a sketch of a field in the shape of a triangle ABC. B A CGiven ⟶ AB = 30 i + 40j metres and ⟶ AC = 40 i − 60j metres, a find ⟶ BC (2 marks) b find the size of ∠BAC , in degrees, to one decimal place (4 marks) c find the area of the fie ld in square metres. (3 marks) 8 A boat has a position vector of (2i + j) km and a buoy has a position v ector of (6i − 4j) km, re lative to a fixed origin O. a Find the distance of the boat fr om the buoy. b Find the bearing of the boat fr om the buoy. The boat travels with constant velocity (8i − 10j) km/h. c Verify that the boa t is travelling directly towards the buoy d Find the speed of the boat. e Work out ho w long it will take the boat to reach the buoy.E E/P E/P P Draw a sketch showing the initial positions of the boat, the buoy and the origin.Problem-solving 1 Two f orces F1 and F2 act on a particle. F1 = −3i + 7j newtons F2 = i − j newtons The resultant force R acting on the particle is given by R = F1 + F2. a Calculate the ma gnitude of R in newtons. (3 marks) b Calculate , to the nearest degree, the angle between the line of action of R and the vector j. (2 marks)EMixed exercise 11
[ -0.0034278398379683495, 0.02331121265888214, -0.016362184658646584, -0.032197169959545135, -0.0033362354151904583, 0.01996871456503868, 0.027930954471230507, -0.006654248107224703, -0.03476482257246971, 0.08206915110349655, 0.1400941014289856, -0.10520898550748825, -0.03174063190817833, 0.04504683241248131, 0.013259664177894592, 0.02293800376355648, 0.011787633411586285, 0.038406047970056534, -0.028058283030986786, 0.031311534345149994, 0.03202119842171669, -0.00311215128749609, -0.005196602549403906, 0.03229299932718277, -0.04398835077881813, 0.033405646681785583, 0.04237007349729538, 0.018377570435404778, 0.016732245683670044, -0.050646256655454636, -0.003211975796148181, -0.04903598129749298, 0.06018275395035744, -0.04469280317425728, 0.032378777861595154, -0.010297572240233421, 0.00041284976759925485, -0.008230775594711304, -0.0019133633468300104, -0.05066761374473572, -0.07496586441993713, -0.026194002479314804, 0.020685872063040733, -0.031493812799453735, 0.08925217390060425, 0.08372249454259872, -0.012151407077908516, -0.06804989278316498, 0.025061018764972687, 0.035851914435625076, -0.023403119295835495, -0.03201727941632271, -0.07921713590621948, -0.05140309035778046, 0.033552009612321854, 0.002412013243883848, 0.01172037236392498, 0.006411917507648468, 0.009343135170638561, -0.08661630749702454, 0.012810325250029564, 0.016457566991448402, -0.03206101432442665, 0.01134035550057888, -0.02959854155778885, 0.010067205876111984, -0.039790015667676926, -0.046159129589796066, -0.006397563498467207, 0.08073899149894714, -0.06184205412864685, 0.0420578196644783, -0.010346801951527596, -0.028924018144607544, 0.027343105524778366, -0.10235432535409927, 0.009527221322059631, -0.011540042236447334, -0.056725528091192245, -0.0071495394222438335, -0.048764243721961975, 0.008911185897886753, -0.04123508185148239, -0.0294895488768816, -0.042314305901527405, 0.12252321094274521, -0.004674624651670456, 0.06641675531864166, 0.04827354848384857, -0.030374852940440178, -0.038254350423812866, -0.016455911099910736, 0.03421614319086075, 0.04187489300966263, 0.08833154290914536, 0.006392885465174913, 0.04857240617275238, -0.03009161539375782, -0.04123463109135628, 0.11495523154735565, 0.004708200227469206, -0.03590300679206848, -0.096370629966259, 0.06044643744826317, -0.00897509977221489, 0.003912992775440216, 0.0328424833714962, -0.05377862602472305, 0.034372471272945404, 0.09037278592586517, 0.03715928643941879, 0.04097655415534973, 0.006655381992459297, 0.051568418741226196, 0.0393659807741642, 0.02546463906764984, -0.023938992992043495, 0.04018740728497505, -0.04190611094236374, -0.028363803401589394, 0.052007608115673065, -0.06745914369821548, 0.004017589148133993, -0.018252644687891006, 0.0046129426918923855, -0.05708153173327446, 0.0017794634914025664, -0.033309970051050186, -0.03196744620800018, -0.027866501361131668, 0.08584525436162949, -0.03151288256049156, -0.0577520988881588, -0.10689552873373032, 0.02915504388511181, 0.0502593107521534, -0.02159396931529045, 0.04122437164187431, -0.041271619498729706, 0.02117551863193512, 0.02644331008195877, 0.04048297554254532, 0.0030089481733739376, -0.07813367247581482, 0.0775425136089325, 0.013784172013401985, -0.07182556390762329, 0.027997365221381187, -0.04802514240145683, 0.07466700673103333, 0.008735100738704205, -0.02312419004738331, 0.008198431693017483, 0.08673502504825592, -0.052025504410266876, 0.022770049050450325, -0.045170221477746964, -0.036592282354831696, -0.01293873880058527, -0.06962957233190536, -0.11319057643413544, -0.008584565483033657, -0.03244314715266228, 0.11544373631477356, 0.10683265328407288, -0.00325606158003211, 0.012026123702526093, 0.04598681628704071, 0.01783614419400692, -0.07378386706113815, 0.023517020046710968, -0.0509670227766037, -0.0026207007467746735, 0.015521674416959286, 0.04201369360089302, -0.031063519418239594, 0.07652738690376282, 0.04012738913297653, 0.0006645295070484281, -0.0492388941347599, 0.062391497194767, -0.06831614673137665, 0.08375352621078491, 0.017556210979819298, -0.010122147388756275, -0.061038486659526825, -0.08149769902229309, 0.045012690126895905, -0.055878981947898865, -0.000026081272153533064, 0.12698616087436676, -0.016937250271439552, -0.008101259358227253, 0.02808571793138981, -0.1844020038843155, 0.008268865756690502, -0.03737856075167656, 0.06839370727539062, -0.0691586434841156, -0.017686370760202408, 0.06711416691541672, -0.037170104682445526, 0.055609699338674545, 0.09844297915697098, -0.09096942096948624, -0.012747314758598804, -0.09290862083435059, 0.03771837055683136, -0.07696642726659775, 0.0059036919847130775, -0.0069452691823244095, -0.04576585069298744, 0.026259297505021095, -0.046137064695358276, -0.006118870340287685, -0.07945834845304489, -0.014707174152135849, -0.06356649845838547, -0.06854971498250961, 0.023051144555211067, -0.033247675746679306, 0.07404082268476486, 0.052066098898649216, 4.628330478158226e-33, -0.07082067430019379, -0.01094655692577362, -0.03285830095410347, 0.006078995298594236, 0.03838648274540901, 0.03049550950527191, -0.032117728143930435, -0.054434433579444885, 0.025098107755184174, -0.0027023754082620144, -0.02988351322710514, 0.11005033552646637, -0.028187673538923264, 0.04608481749892235, 0.04979166388511658, 0.005063535645604134, 0.015444280579686165, -0.02030397579073906, -0.06290021538734436, 0.006241212133318186, 0.025450246408581734, -0.04754495248198509, 0.08613662421703339, -0.040291089564561844, -0.023832079023122787, -0.0020369302947074175, 0.0815533921122551, -0.12030204385519028, -0.039815474301576614, -0.061628688126802444, 0.009520207531750202, -0.011762047186493874, 0.060142677277326584, 0.08558959513902664, -0.011011752299964428, -0.04715128242969513, 0.038107339292764664, 0.09839092195034027, 0.03825999051332474, -0.07301555573940277, -0.008095838129520416, 0.09236841648817062, 0.012034839019179344, -0.005505062639713287, -0.027477893978357315, -0.040355049073696136, 0.10480602085590363, 0.01551361009478569, 0.026150209829211235, 0.004983359947800636, -0.03311364725232124, -0.09666281938552856, -0.008717215619981289, 0.0037577932234853506, 0.019499177113175392, 0.03192036226391792, 0.05152376368641853, -0.04684727266430855, 0.10475649684667587, -0.07974852621555328, -0.0435362309217453, 0.00431774603202939, -0.002760727424174547, 0.06867041438817978, 0.030549194663763046, -0.03347330912947655, 0.03806281089782715, -0.0016936211613938212, -0.012049075216054916, -0.10240066051483154, -0.02908681146800518, 0.07619690150022507, 0.06590332090854645, 0.07580094784498215, -0.07068312168121338, -0.038544073700904846, 0.017720522359013557, 0.016341257840394974, 0.007524946704506874, -0.04455254226922989, -0.03297829255461693, 0.0034726255107671022, 0.09451581537723541, -0.033413175493478775, -0.0930987149477005, -0.02392941527068615, -0.006507774814963341, 0.05631623789668083, 0.10043811053037643, 0.03780476748943329, -0.03359377756714821, 0.04051384702324867, 0.0780952051281929, -0.07914086431264877, -0.013995080254971981, 7.316507236410679e-32, 0.01857677474617958, 0.030166175216436386, -0.045047156512737274, -0.005126933101564646, 0.05536828935146332, 0.04053962975740433, 0.0015245574759319425, -0.061048734933137894, 0.05744112655520439, -0.058719001710414886, 0.07965137809515, 0.017526347190141678, -0.045284099876880646, -0.02240838296711445, -0.11384779959917068, -0.08277817815542221, -0.002297258237376809, 0.029163097962737083, -0.05815640836954117, -0.014855927787721157, 0.0635388046503067, 0.03232423588633537, -0.10782190412282944, 0.040762826800346375, 0.039020296186208725, -0.007329312618821859, -0.07058221101760864, -0.030650850385427475, -0.020795604214072227, -0.026667192578315735, 0.027216464281082153, -0.006951198447495699, -0.009199910797178745, 0.005468732677400112, -0.02664247900247574, 0.023159293457865715, 0.046852607280015945, 0.0029231104999780655, -0.06484000384807587, 0.06456612050533295, -0.002489959355443716, -0.04547688364982605, 0.000569758063647896, 0.005336811766028404, -0.015393671579658985, 0.031913869082927704, -0.08781382441520691, -0.14364619553089142, 0.052682433277368546, -0.04253191873431206, -0.012566656805574894, 0.07572947442531586, 0.061204563826322556, 0.0295266006141901, 0.011163114570081234, 0.03277267515659332, -0.0032343941275030375, 0.026854196563363075, 0.048748929053545, -0.065017931163311, 0.008121644146740437, -0.014606760814785957, -0.12010713666677475, 0.0016001268522813916 ]
252 Chapter 11 2 A small boat S, drifting in the sea, is modelled as a particle moving in a straight line at constant speed. When first sighted at 09:00, S is at a point with position vector (−2i − 4j) km rela tive to a fixed origin O, where i and j are unit vectors due east and due north respectively. At 09:40, S is at the point with position vector (4i − 6j) km. a Calculate the bearing on w hich S is drifting. b Find the speed of S . 3 A football pla yer kicks a ball from point A on a flat football field. The motion of the ball is modelled as that of a particle travelling with constant velocity (4i + 9j) m s−1. a Find the speed of the ball. b Find the distance of the ball fr om A after 6 seconds. c Comment on the validity of this model for large values of t. 4 ABCD is a tra pezium with AB parallel to DC and DC = 4AB. M divides DC such that DM : MC = 3 : 2, ⟶ AB = a and ⟶ BC = b. Find, in terms of a and b: a ⟶ AM b ⟶ BD c ⟶ MB d ⟶ DA 5 The vectors 5a + kb and 8a + 2b are parallel. Find the value of k. (3 marks) 6 Given tha t a = ( 7 4 ) , b = ( 10 −2 ) and c = ( −5 −3 ) find: a a + b + c b a − 2b + c c 2a + 2b − 3c 7 In triangle ABC, ⟶ AB = 3 i + 5j and ⟶ AC = 6 i + 3j, find: B ACa ⟶ BC (2 marks) b ∠BAC (4 marks) c the area of the triangle . (2 marks) 8 The resultant of the v ectors a = 4i − 3j and b = 2 pi − pj is parallel to the vector c = 2i − 3j. Find: a the value of p (3 marks) b the resultant of v ectors a and b. (1 mark) 9 For each of the f ollowing vectors, find i a unit vector in the same direction ii the angle the vector mak es with i a a = 8i + 15j b b = 24i − 7j c c = −9i + 40j d d = 3i − 2jP P P E/P E E/P
[ 0.004687814973294735, 0.027991794049739838, 0.03238503634929657, 0.025806495919823647, 0.04265283793210983, -0.05387207120656967, -0.006289628800004721, -0.005950962658971548, -0.03913070261478424, 0.06271026283502579, 0.03849753364920616, -0.030436357483267784, 0.019827311858534813, -0.03474537283182144, -0.11110631376504898, -0.011862367391586304, -0.04072771593928337, 0.024473702535033226, 0.04107775166630745, -0.00744620943441987, -0.006154533009976149, 0.06844771653413773, -0.051817428320646286, -0.053122006356716156, -0.028595516458153725, -0.05561113357543945, 0.10745452344417572, -0.024357983842492104, -0.04144502058625221, -0.10171233117580414, -0.010799149051308632, 0.010971317067742348, -0.044660165905952454, 0.0805434063076973, -0.008537286892533302, -0.0037478036247193813, 0.07662774622440338, 0.04163472354412079, 0.052504509687423706, -0.00848404411226511, -0.05567621439695358, -0.016735436394810677, 0.046088818460702896, 0.050754427909851074, 0.058538977056741714, 0.10273762792348862, -0.06827530264854431, 0.08079396933317184, 0.033340226858854294, 0.06858102977275848, -0.018645919859409332, 0.0014213360846042633, -0.021090734750032425, -0.02879033051431179, 0.04288160428404808, 0.030669821426272392, 0.056254226714372635, -0.004653398413211107, 0.027486972510814667, -0.07285798341035843, 0.03356290981173515, 0.06462696939706802, 0.015326294116675854, -0.006647592876106501, -0.0019286819733679295, 0.006015857681632042, -0.039454005658626556, 0.018741870298981667, -0.0513061098754406, 0.07094214856624603, -0.09812849760055542, 0.0465640127658844, -0.021485399454832077, 0.012762038968503475, 0.06338446587324142, -0.12963666021823883, 0.04014613851904869, 0.009161390364170074, 0.039300937205553055, -0.09813985228538513, -0.06877969950437546, -0.03410191461443901, -0.06396330147981644, -0.024265887215733528, 0.05270150676369667, 0.07273103296756744, -0.021762847900390625, 0.025596484541893005, 0.03815697133541107, -0.060428328812122345, 0.016242871060967445, -0.052089277654886246, -0.010822320356965065, 0.008872836828231812, -0.002054109936580062, 0.03198632597923279, 0.011225104331970215, -0.05073286592960358, 0.021577471867203712, 0.17672966420650482, 0.027102001011371613, 0.05634921044111252, -0.0076344250701367855, 0.05142395570874214, 0.01973593421280384, -0.03175162151455879, 0.067950040102005, -0.06518952548503876, 0.00957613904029131, 0.02633635886013508, 0.009566622786223888, 0.07558062672615051, -0.05298555642366409, 0.02483106032013893, 0.009294435381889343, -0.019209273159503937, -0.02921122871339321, 0.017529111355543137, -0.07870735228061676, -0.06021997332572937, 0.02310214377939701, -0.049074236303567886, 0.023609038442373276, 0.0375819094479084, -0.003914563450962305, -0.052819110453128815, 0.10996716469526291, -0.023200640454888344, -0.016909396275877953, -0.012557005509734154, -0.024391736835241318, -0.0364440493285656, -0.08402881026268005, -0.003182074287906289, -0.03322680667042732, 0.04245839640498161, 0.0037556830793619156, 0.08861836045980453, -0.018402861431241035, -0.02480534464120865, -0.06922215223312378, 0.005839177872985601, 0.053656142204999924, -0.10052094608545303, 0.04029269516468048, -0.04238012805581093, -0.0654665157198906, -0.03144393116235733, 0.020969020202755928, 0.08617058396339417, 0.013594580814242363, -0.08171934634447098, -0.004041221924126148, 0.03546566143631935, 0.003937091212719679, 0.013030889444053173, 0.026202721521258354, -0.0007643164717592299, -0.03888872638344765, -0.003155105747282505, -0.07106736302375793, -0.009991574101150036, 0.06006139889359474, -0.04163257032632828, 0.04859979450702667, 0.02272101864218712, -0.08543635159730911, 0.008405416272580624, -0.010403831489384174, -0.02010088413953781, -0.049511536955833435, -0.0017084850696846843, -0.04658607393503189, 0.10910657048225403, 0.026948144659399986, 0.008855811320245266, 0.041441597044467926, 0.06739909201860428, 0.024652842432260513, -0.0296348724514246, 0.03651866689324379, 0.046865448355674744, 0.05748933181166649, 0.009865772910416126, -0.007657310459762812, -0.021093055605888367, -0.10463203489780426, 0.042153846472501755, -0.07701347768306732, 0.07840590924024582, 0.14374811947345734, -0.07742562890052795, 0.030727241188287735, 0.007681481074541807, -0.11603790521621704, -0.06292570382356644, 0.011251007206737995, 0.05944449454545975, -0.010342059656977654, -0.03186320513486862, 0.00569539749994874, -0.03136589378118515, 0.01733928732573986, -0.0133137796074152, -0.04136258736252785, 0.052169375121593475, -0.04267265647649765, -0.10558898746967316, -0.07137410342693329, 0.0685332641005516, -0.0007825819193385541, -0.03953530639410019, -0.01443937886506319, -0.05794082581996918, 0.06026117131114006, -0.06135667487978935, -0.07731859385967255, -0.09282638877630234, -0.06093147397041321, 0.034943945705890656, -0.0028386430349200964, -0.003071631072089076, 0.038941968232393265, 2.5661111473427616e-33, -0.07849268615245819, 0.07719901204109192, -0.06492213904857635, -0.04812661558389664, -0.04613927751779556, -0.021807506680488586, 0.08361698687076569, 0.012273871339857578, 0.005987142212688923, -0.05419805645942688, -0.0815090462565422, -0.0037931681144982576, -0.05975806713104248, 0.03517824783921242, 0.03609037399291992, -0.055939216166734695, 0.027349447831511497, 0.007706705946475267, -0.0007296897820197046, 0.018590806052088737, 0.03983115777373314, -0.07000291347503662, 0.008768671192228794, 0.030014848336577415, -0.031730715185403824, 0.05730161815881729, 0.04306228458881378, -0.048173025250434875, -0.14041940867900848, -0.048170316964387894, 0.00801844336092472, 0.0023597741965204477, 0.07023286819458008, 0.024168500676751137, -0.012055322527885437, -0.015933863818645477, 0.027525773271918297, 0.017591025680303574, -0.05904451385140419, -0.04357464984059334, 0.056676529347896576, -0.015261699445545673, 0.0422360897064209, -0.09956102073192596, -0.05474553257226944, -0.015366712585091591, 0.035130150616168976, 0.07797668874263763, 0.05134151130914688, 0.08341658115386963, 0.04424959793686867, -0.04897775501012802, 0.08601680397987366, -0.0013212851481512189, -0.002027640352025628, 0.003495270386338234, 0.034942202270030975, -0.11288904398679733, 0.057499319314956665, -0.059902388602495193, 0.026219014078378677, 0.030292514711618423, 0.0016544266836717725, 0.026943406090140343, 0.027768300846219063, -0.03597649931907654, -0.04226655513048172, 0.01016676239669323, -0.02689877711236477, -0.06587495654821396, -0.05718574300408363, 0.08405832201242447, -0.025722304359078407, 0.0356944240629673, -0.06359440833330154, -0.01664496585726738, 0.04857184365391731, -0.02612300030887127, 0.013774756342172623, -0.01454826258122921, -0.057587821036577225, -0.09093554317951202, 0.08848898857831955, 0.043412432074546814, -0.07655330747365952, -0.023886321112513542, 0.02507675811648369, -0.014548412524163723, 0.08333002775907516, 0.051998622715473175, 0.0782754197716713, 0.012980017811059952, -0.08770519495010376, -0.028005331754684448, -0.01000977959483862, 7.671560603099147e-32, 0.031633634120225906, 0.06173431873321533, -0.004811854567378759, 0.03017636574804783, 0.0605064332485199, 0.04918390139937401, 0.0727573111653328, -0.06744053959846497, 0.06364301592111588, -0.014172731898725033, 0.06165998801589012, -0.018420828506350517, -0.008513193577528, -0.03687334805727005, -0.07596059888601303, -0.09590928256511688, -0.1383502036333084, -0.03906971961259842, -0.005704289767891169, -0.05878463014960289, 0.086361363530159, -0.015360484831035137, -0.07728539407253265, 0.04118964821100235, -0.029379509389400482, 0.018963143229484558, -0.04842696711421013, 0.0016738796839490533, -0.010653281584382057, -0.032941121608018875, -0.02280004508793354, 0.044383954256772995, -0.02895020693540573, -0.000607158406637609, -0.06150548532605171, -0.009003402665257454, 0.03144971281290054, 0.06929514557123184, -0.04034969210624695, 0.06378549337387085, -0.016493311151862144, 0.03555616736412048, -0.03638613224029541, -0.040342725813388824, 0.023207303136587143, 0.04143494740128517, -0.014845361933112144, -0.031676676124334335, 0.029343655332922935, -0.050287578254938126, -0.006914130412042141, 0.024241123348474503, 0.09988732635974884, 0.09076762199401855, 0.02961323969066143, -0.02010475844144821, -0.0866345539689064, 0.00787370465695858, 0.0311192087829113, -0.014850173145532608, -0.07812409102916718, 0.07066652178764343, -0.04041387885808945, 0.05046470835804939 ]
253Vectors 10 The vector a = pi + qj, where p and q are positive constants, is such that |a| = 15. Given that a makes an angle of 55° with i, find the values of p and q. 11 Given tha t |3i − kj | = 3 √ __ 5 , find the value of k. (3 marks) 12 OAB is a triangle . ⟶ OA = a and ⟶ OB = b. The point M divides OA in the ratio 3 : 2. MN is par allel to OB. a Express the vector ⟶ ON in terms of a and b. (4 marks) MNA B Ob Find vector ⟶ MN . (2 marks) c Show that AN : NB = 2 : 3. (2 marks) 13 Two f orces, F1 and F2, are given by the vectors F1 = (4i − 5j) N and F2 = ( pi + qj) N. The resultant f orce, R = F1 + F2 acts in a direction which is parallel to the vector (3i − j) a Find the angle between R and the vector i. (3 marks) b Show that p + 3q = 11. (4 marks) c Given tha t p = 2, find the magnitude of R. (2 marks) 14 A particle P is acce lerating at a constant speed. When t = 0, P has velocity u = (3i + 4j) m s−1 and at time t = 2 s, P has velocity v = (15i − 3j) m s−1. The acceleration vector of the particle is given by the formula: a = v − u _____ t Find the magnitude of the acce leration of P. (3 marks)P E/P E/P E/P E The point B lies on the line with equation 3 y = 15 − 5 x. Given that | ⟶ OB | = √ ___ 34 ____ 2 , find two possible expressions for ⟶ OB In the form p i + qj.Challenge
[ -0.002372327959164977, 0.026118125766515732, 0.04655126854777336, -0.08171463012695312, 0.008176189847290516, 0.025616036728024483, -0.03467079624533653, 0.015207808464765549, -0.1137067973613739, 0.05999048426747322, 0.046292826533317566, -0.08624127507209778, 0.0019370658555999398, 0.01599215157330036, -0.0111991623416543, 0.05525902658700943, -0.006512193009257317, 0.07995852082967758, -0.012924556620419025, 0.013303880579769611, 0.017651088535785675, -0.025767898187041283, 0.017505144700407982, -0.03149469941854477, 0.01267076563090086, 0.0044481027871370316, 0.08225705474615097, -0.03898630291223526, -0.00832853838801384, -0.018252186477184296, -0.05443911626935005, -0.033800046890974045, 0.1108289435505867, -0.017068469896912575, 0.002543121576309204, -0.017161058261990547, -0.03628912568092346, 0.016852088272571564, 0.08388741314411163, 0.010534729808568954, -0.054500456899404526, -0.0026004791725426912, 0.020433101803064346, -0.029758363962173462, 0.012387407012283802, -0.0431700125336647, -0.025188473984599113, 0.053239624947309494, 0.026699485257267952, 0.05242287740111351, 0.019401708617806435, -0.0396244116127491, -0.09062866866588593, 0.0727510005235672, 0.009577784687280655, 0.03632787987589836, 0.020566094666719437, 0.05964371934533119, -0.026049744337797165, -0.10830231010913849, 0.031441580504179, 0.010325901210308075, -0.01326153613626957, 0.026487747207283974, -0.005217003636062145, -0.018728453665971756, -0.0014179663266986609, -0.04247327521443367, -0.01411770936101675, 0.0024284108076244593, -0.037051230669021606, 0.08066842705011368, -0.012196427211165428, -0.07665453106164932, -0.01861324906349182, -0.07608964294195175, -0.07341668009757996, -0.08209121227264404, -0.014747434295713902, -0.0972367376089096, -0.07887325435876846, 0.011760229244828224, 0.006472621578723192, 0.018449746072292328, 0.026645071804523468, 0.0912356749176979, 0.066741943359375, 0.09018725156784058, 0.01930803433060646, -0.041916392743587494, 0.10598746687173843, -0.0473010428249836, 0.04530059173703194, -0.016110649332404137, 0.04155604913830757, 0.04403475672006607, 0.017020871862769127, -0.001230493187904358, -0.009179646149277687, 0.09813336282968521, 0.07187701761722565, -0.03142303600907326, -0.015850866213440895, 0.028375007212162018, -0.02864864654839039, 0.0658545196056366, 0.0841711089015007, -0.03108418919146061, 0.05086047947406769, 0.006602127570658922, -0.10485000163316727, 0.02632613480091095, 0.08792637288570404, -0.04795994609594345, 0.058926597237586975, 0.013686948455870152, 0.03803003951907158, 0.06213575601577759, -0.020358629524707794, 0.010337986052036285, -0.01431083120405674, -0.03345634043216705, 0.018214058130979538, 0.021221084520220757, -0.0019269551848992705, -0.03553629294037819, 0.04333779960870743, 0.0137737225741148, 0.009594454430043697, 0.01629389263689518, 0.0756245106458664, -0.00911655928939581, -0.06473580747842789, -0.05760295316576958, -0.07634416967630386, 0.04653254896402359, 0.02111111581325531, 0.033246960490942, -0.04006987437605858, -0.11559738963842392, 0.021146703511476517, 0.13707831501960754, 0.051617007702589035, -0.03608802333474159, 0.042965080589056015, 0.0009620607597753406, -0.11711836606264114, 0.03834860771894455, -0.03487364202737808, 0.042849112302064896, 0.060094237327575684, -0.010751527734100819, -0.020218413323163986, 0.08883938193321228, -0.053010933101177216, -0.00871133990585804, -0.02975955232977867, -0.028345713391900063, -0.03735819831490517, 0.04404487833380699, -0.03104514069855213, -0.014713718555867672, -0.06050991639494896, 0.07951539754867554, 0.08008535951375961, 0.06945861876010895, 0.06928540766239166, 0.03142988681793213, 0.008179260417819023, -0.018060622736811638, 0.04895555600523949, 0.041396912187337875, 0.0007403253694064915, 0.07526476681232452, 0.03665653616189957, -0.036241691559553146, 0.06305583566427231, -0.03970605134963989, -0.029682742431759834, -0.01126292534172535, 0.0033450352493673563, -0.053553976118564606, 0.013937272131443024, 0.0011207670904695988, -0.04566621035337448, 0.020256182178854942, -0.01895693503320217, 0.033203113824129105, -0.0986846461892128, -0.03454846143722534, 0.08974160254001617, -0.04808909446001053, -0.037247832864522934, -0.038607608526945114, -0.14729341864585876, -0.005886065773665905, -0.0077434200793504715, 0.015325388871133327, -0.08156723529100418, 0.027624471113085747, -0.011174624785780907, -0.023058855906128883, -0.01221506204456091, 0.0385032519698143, 0.0018829224864020944, 0.01766134798526764, -0.022269895300269127, -0.03456156700849533, -0.05753125995397568, -0.011691730469465256, -0.021492958068847656, -0.06286398321390152, 0.04496699944138527, -0.08115477114915848, 0.06292807310819626, -0.06252540647983551, -0.026286311447620392, -0.10463105142116547, -0.02128235623240471, 0.03048299252986908, -0.006918282248079777, 0.010518867522478104, 0.08366949111223221, 8.608357454738729e-33, -0.035751231014728546, 0.036581434309482574, -0.1190197765827179, -0.07471884042024612, -0.004470949526876211, -0.06875656545162201, 0.001580729614943266, -0.06405492126941681, -0.01906350441277027, -0.022779522463679314, -0.004677732940763235, -0.018323970958590508, 0.016174059361219406, 0.017749778926372528, -0.029810376465320587, 0.010930059477686882, 0.002387542510405183, 0.06858351826667786, -0.03444748744368553, -0.06779541820287704, 0.0005137379630468786, -0.020017346367239952, -0.02232159487903118, -0.009210542775690556, -0.029392490163445473, 0.07577166706323624, 0.08745457231998444, -0.10494962334632874, -0.09567081183195114, 0.029458457604050636, 0.01493032369762659, -0.006099369842559099, 0.04455002769827843, 0.07658025622367859, -0.07641121745109558, -0.06536690890789032, 0.059707723557949066, -0.011519206687808037, 0.0318622961640358, -0.05934501066803932, 0.08831075578927994, -0.014057127758860588, -0.01272678468376398, -0.022385811433196068, -0.018964659422636032, 0.005231108516454697, 0.1291205883026123, -0.022289743646979332, -0.03356392681598663, -0.017898274585604668, 0.006728377193212509, -0.054854460060596466, 0.0010659380350261927, -0.0849543884396553, 0.0031898797024041414, 0.0015438477275893092, -0.029737655073404312, 0.002148929750546813, 0.12100885808467865, 0.032412491738796234, -0.0782378762960434, -0.009123805910348892, 0.07314593344926834, 0.017364026978611946, 0.010712144896388054, -0.033650390803813934, 0.0712316706776619, 0.026011882349848747, 0.038100000470876694, -0.03733110800385475, -0.025239769369363785, 0.06398949027061462, -0.04981498792767525, 0.0032014171592891216, -0.06955426186323166, 0.052249062806367874, -0.0030072114896029234, 0.07791480422019958, 0.0050944010727107525, -0.023076660931110382, -0.06122753396630287, 0.0003410210192669183, 0.05306314304471016, -0.015959884971380234, -0.035824716091156006, 0.02821030095219612, 0.06694525480270386, -0.02045154944062233, 0.03855544701218605, 0.005600692238658667, 0.02264014445245266, 0.12298734486103058, -0.0391848050057888, 0.04234583303332329, 0.03340280055999756, 6.151086872174938e-32, -0.01816418580710888, -0.01098728645592928, -0.10250712931156158, -0.00212844111956656, 0.08591817319393158, -0.0039911712519824505, 0.0013555532786995173, -0.05254470184445381, 0.05983401834964752, -0.023710165172815323, 0.07555962353944778, 0.004100724123418331, -0.09216201305389404, 0.0021922250743955374, -0.03017602488398552, -0.09352631866931915, -0.04352033883333206, 0.025322290137410164, 0.010322362184524536, -0.03795826435089111, 0.07244493812322617, -0.012982315383851528, -0.045297592878341675, 0.067558653652668, -0.013772392645478249, 0.057563696056604385, -0.10973147302865982, 0.05522642284631729, -0.021137723699212074, -0.06220337748527527, 0.10092250257730484, 0.030893681570887566, 0.010029688477516174, 0.07422004640102386, -0.06654392182826996, -0.005363574717193842, 0.0091406786814332, 0.011236833408474922, -0.01844971440732479, 0.06631248444318771, -0.05276496708393097, -0.12124389410018921, -0.05875711143016815, 0.029863035306334496, 0.0322730578482151, -0.04142552241683006, -0.0054629030637443066, -0.10728758573532104, 0.035829149186611176, -0.09366442263126373, -0.030518239364027977, 0.11622903496026993, 0.015511304140090942, 0.02477993629872799, -0.08352317661046982, -0.03236091509461403, -0.0005383803509175777, 0.06017206236720085, 0.027920257300138474, -0.039568789303302765, 0.05521903559565544, 0.08026079833507538, -0.06871344149112701, -0.002107277512550354 ]
254 Chapter 11 1 If ⟶ PQ = ⟶ RS then the line segments PQ and RS are equal in length and are parallel. 2 ⟶ AB = − ⟶ BA as the line segment AB is equal in length, parallel and in the opposite direction to BA. 3 Triangle la w for vector addition: ⟶ AB + ⟶ BC = ⟶ AC If ⟶ AB = a, ⟶ BC = b and ⟶ AC = c, then a + b = c 4 Subtracting a v ector is equivalent to ‘adding a negative vector’: a − b = a + (−b) 5 Adding the vect ors ⟶ PQ and ⟶ QP gives the zero vector 0: ⟶ PQ + ⟶ QP = 0. 6 Any vect or parallel to the vector a may be written as λa, where λ is a non-zero scalar. 7 To multiply a column v ector by a scalar, multiply each component by the scalar: λ ( p q ) = ( λp λq ) 8 To add tw o column vectors, add the x-components and the y-components ( p q ) + ( r s ) = ( p + r q + s ) 9 A unit vector is a v ector of length 1. The unit vectors along the x- and y-axes are usually denoted by i and j respectively. i = ( 1 0 ) j = ( 0 1 ) 10 For any t wo-dimensional vector: ( p q ) = pi + qj 11 For the vect or a = xi + yj = ( x y ) , the magnitude of the vector is given by: |a| = √ ______ x2 + y2 12 A unit vector in the dir ection of a is a ___ |a| 13 In general , a point P with coordinates ( p, q ) has position vector: ⟶ OP = pi + qj = ( p q ) 14 ⟶ AB = ⟶ OB − ⟶ OA , where ⟶ OA and ⟶ OB are the position vectors of A and B respectively. 15 If the point P divides the line segment AB in the ratio λ : μ, then A B AP : PB = λ : P O m ⟶ OP = ⟶ OA + λ _____ λ + μ ⟶ AB = ⟶ OA + λ _____ λ + μ ( ⟶ OB − ⟶ OA ) 16 If a and b are two non-parallel vectors and pa + qb = ra + sb then p = r and q = sSummary of key points
[ -0.038080666214227676, 0.044777534902095795, -0.04153566062450409, -0.06327030062675476, -0.019678298383951187, 0.01159821730107069, -0.031110072508454323, 0.014363858848810196, -0.07755477726459503, 0.042681433260440826, 0.01681922934949398, -0.031385388225317, 0.056949373334646225, 0.0006063194014132023, -0.02477327547967434, -0.004411632195115089, -0.08325574547052383, 0.11686427146196365, -0.01660706102848053, -0.03318799287080765, 0.015160261653363705, -0.05597406625747681, -0.1262049823999405, -0.00858138594776392, 0.024191854521632195, -0.00730219716206193, 0.016686206683516502, 0.016074834391474724, -0.000031979536288417876, -0.06482792645692825, 0.015622909180819988, 0.032646771520376205, 0.054100800305604935, 0.0038920568767935038, 0.05646635964512825, -0.033870141953229904, 0.005046580918133259, 0.04365711286664009, 0.018849341198801994, -0.07346636056900024, -0.08753789216279984, 0.052932120859622955, 0.048549834638834, 0.06673548370599747, -0.06862988322973251, 0.007272822316735983, -0.01447107084095478, -0.03932321071624756, -0.008421617560088634, -0.023285143077373505, 0.04308342561125755, -0.019871043041348457, -0.09572595357894897, 0.06839076429605484, -0.05542412027716637, 0.013820946216583252, -0.04101420193910599, 0.05321763828396797, -0.056607943028211594, -0.09334362298250198, 0.02092086337506771, 0.0007953312015160918, -0.009251312352716923, 0.07177206873893738, -0.014842569828033447, 0.029484527185559273, -0.003898604540154338, -0.040352750569581985, -0.043139100074768066, 0.05903412029147148, -0.10615164041519165, 0.005091231781989336, -0.04148458316922188, -0.01921953447163105, 0.011361084878444672, -0.03833683952689171, -0.00947947520762682, 0.005425919778645039, 0.0015402025310322642, -0.04275466874241829, -0.053811151534318924, 0.0060633160173892975, 0.024312205612659454, 0.0614970400929451, 0.002120271557942033, -0.0026053981855511665, 0.04749782383441925, -0.00515849981456995, 0.03561067953705788, -0.04410344734787941, 0.059614866971969604, -0.061574045568704605, 0.09634992480278015, -0.0407293401658535, 0.06791619956493378, -0.05769536644220352, 0.0037654114421457052, -0.0171581469476223, -0.015412087552249432, 0.06191781163215637, 0.021641261875629425, -0.019458919763565063, 0.007968849502503872, 0.01819063536822796, 0.034586746245622635, 0.032356660813093185, 0.040612220764160156, -0.05476344749331474, 0.11241208016872406, -0.0014488293090835214, -0.02503735013306141, 0.022248368710279465, 0.0233723483979702, -0.013357154093682766, 0.025685397908091545, -0.059624481946229935, 0.055136725306510925, 0.10713769495487213, 0.04382620006799698, -0.00009870427311398089, -0.024551866576075554, -0.04184393584728241, 0.021879838779568672, -0.017102768644690514, -0.009268568828701973, -0.07391458749771118, 0.040074560791254044, 0.018075020983815193, -0.006280264351516962, 0.012228362262248993, 0.06952039152383804, -0.017666373401880264, -0.07539814710617065, -0.06756272912025452, -0.00989663228392601, 0.005388657096773386, -0.021318228915333748, -0.03956746309995651, -0.008429759182035923, -0.10301381349563599, 0.04104422405362129, 0.1207616999745369, 0.052470821887254715, -0.01847795955836773, -0.08427977561950684, -0.012891678139567375, -0.07998636364936829, -0.011470356024801731, 0.0706382542848587, -0.0071485610678792, 0.050844911485910416, -0.09145612269639969, 0.03789926692843437, 0.07672304660081863, -0.04317958652973175, 0.03065837360918522, -0.06022444739937782, 0.01622677594423294, 0.03720809891819954, 0.0033764594700187445, -0.08750063180923462, 0.06443122029304504, -0.07549251616001129, 0.005086347460746765, -0.04678411781787872, 0.00741324620321393, -0.07658833265304565, 0.08626214414834976, 0.07453783601522446, -0.03547795116901398, 0.058896079659461975, 0.032243840396404266, 0.050807252526283264, 0.08066525310277939, 0.0519302599132061, -0.07385999709367752, 0.019669853150844574, 0.017472125589847565, -0.058881379663944244, -0.045751262456178665, 0.045666635036468506, -0.04048255831003189, 0.03067447617650032, -0.06250555068254471, -0.04428587853908539, 0.03311753645539284, -0.046639394015073776, 0.10534194856882095, -0.08859885483980179, 0.08830884099006653, 0.09240787476301193, -0.06488660722970963, -0.09740118682384491, -0.00016860720643308014, -0.15324397385120392, -0.0006614456069655716, -0.008216113783419132, -0.02312052994966507, -0.10507870465517044, -0.07439710944890976, -0.050386037677526474, 0.049881838262081146, 0.01733681559562683, -0.0162490364164114, -0.04327019304037094, -0.04089926555752754, 0.07829666137695312, -0.048036932945251465, -0.013386746868491173, 0.028953267261385918, 0.056115057319402695, -0.010304157622158527, 0.046440787613391876, -0.09910805523395538, 0.04194750636816025, -0.05773096904158592, 0.02253684401512146, -0.03357239067554474, -0.002561112865805626, 0.050283368676900864, 0.0001595572248334065, 0.07655727863311768, 0.031073380261659622, -7.189593905165296e-34, -0.07974081486463547, 0.009581799618899822, -0.10393283516168594, -0.04354260116815567, 0.014609817415475845, -0.023452794179320335, 0.12729690968990326, -0.029238488525152206, 0.002566710812970996, -0.04075249284505844, -0.06910647451877594, 0.011052499525249004, -0.039408598095178604, -0.03508497774600983, 0.025649022310972214, -0.03986428305506706, -0.04929240420460701, -0.004981150384992361, -0.02666235715150833, -0.02473188191652298, 0.032994162291288376, -0.036790430545806885, -0.05320672318339348, -0.008890352211892605, -0.04036737605929375, -0.019803093746304512, 0.09775017946958542, -0.0829138308763504, 0.011211206205189228, -0.026194781064987183, 0.0174849946051836, 0.009076863527297974, 0.013436594977974892, 0.07160036265850067, -0.041928067803382874, -0.07569222897291183, 0.05718550086021423, 0.06980565935373306, -0.042205795645713806, -0.08245394378900528, 0.012314368970692158, 0.0501752533018589, 0.028148503974080086, -0.05364549160003662, -0.005343338940292597, 0.035155996680259705, 0.10883423686027527, 0.06651464849710464, -0.01591174490749836, -0.049303337931632996, -0.025442829355597496, -0.010741030797362328, 0.056534770876169205, 0.016937894746661186, -0.0055824327282607555, -0.054215703159570694, 0.00027878262335434556, -0.028075547888875008, 0.039334893226623535, 0.020516740158200264, -0.05201999098062515, 0.005864799953997135, 0.08406763523817062, 0.08859386295080185, 0.0730397179722786, -0.04320273920893669, 0.02385040931403637, -0.013419602066278458, 0.07400143891572952, -0.08589068800210953, 0.057875558733940125, 0.0807337686419487, -0.06749534606933594, -0.00611356645822525, -0.047250501811504364, 0.0787850096821785, -0.06936489790678024, 0.014263881370425224, 0.03372419625520706, 0.032018885016441345, -0.005594164598733187, -0.00863687228411436, 0.07365798205137253, -0.004264400340616703, -0.0336361862719059, 0.025065599009394646, 0.036480702459812164, 0.10660290718078613, 0.012080996297299862, -0.005830275826156139, 0.0008512926287949085, 0.0387590266764164, -0.020068587735295296, -0.04274815693497658, 0.030309440568089485, 7.460435352472535e-32, 0.017557719722390175, -0.050821453332901, -0.05419363081455231, -0.07328759133815765, 0.03078121319413185, 0.02774621546268463, 0.05853315070271492, 0.006595855578780174, 0.0018875740934163332, -0.005980721674859524, 0.0072343964129686356, 0.020534515380859375, -0.04262484610080719, 0.06535182893276215, -0.014985274523496628, -0.005049174651503563, -0.01130346953868866, 0.026501024141907692, -0.021278107538819313, -0.006928770802915096, -0.04118402674794197, -0.052281469106674194, 0.010131203569471836, 0.008078116923570633, 0.00778407184407115, 0.08690852671861649, -0.12422757595777512, 0.12542784214019775, 0.020090503618121147, -0.05705070495605469, 0.07429557293653488, 0.040221747010946274, 0.022567173466086388, 0.0397806242108345, 0.004186582285910845, -0.056623414158821106, 0.042955465614795685, 0.03705194219946861, 0.033167093992233276, 0.0050043934024870396, -0.01856868900358677, -0.02073441632091999, -0.0018810102483257651, -0.03051242046058178, 0.13056747615337372, 0.023430945351719856, -0.0034909259993582964, -0.0748397707939148, 0.007657687179744244, -0.08278209716081619, 0.009852733463048935, 0.095107302069664, -0.03879581391811371, -0.02312580868601799, -0.028540104627609253, -0.08627898246049881, -0.07034338265657425, -0.0029884567484259605, 0.08151660859584808, -0.03422095626592636, 0.010621875524520874, 0.08997584879398346, -0.0773501992225647, -0.08562245965003967 ]
255 Differentiation After completing this chapter you should be able to: ● Find the derivative, f 9(x) or dy ___ dx , of a simple function → pages 259–268 ● Use the derivative t o solve problems involving gradients, tangents and normals → pages 268–270 ● Identify increasing and decreasing functions → pages 270–271 ● Find the second order deriv ative, f 0(x ) or d 2 y ____ d x 2 , of a simple function → pages 271–272 ● Find stationary points of functions and det ermine their nature → pages 273–276 ● Sketch the gradient function of a given function → pages 277–278 ● Model real-life situations with differentiation → pages 279–281Objectives 1 Find the gradients of these lines . 1 –5y xab c 64y x(6, 6) 4y xO OO ← Sec tion 5.1 2 Write each of these expressions in the form xn where n is a positive or negative real number. a x3 × x7 b 3 √ __ x2 c x 2 × x 3 ______ x 6 d √ ___ x 2 ___ √ __ x ← Sections 1.1, 1.4 3 Find the equation of the str aight line that passes through: a (0, −2) and (6, 1) b (3, 7) and (9, 4) c (10, 5) and (−2, 8) ← Section 5.2 4 Find the equation of the perpendicular to the line y = 2x − 5 at the point (2, 1). ← Section 5.3Prior knowledge check Differentiation is part of calculus, one of the most powerful tools in mathematics. You will use differentiation in mechanics to model rates of change, such as speed and acceleration. → Exercise 12K Q512
[ 0.0009528724476695061, 0.043320611119270325, -0.017280912026762962, -0.0033084091264754534, 0.010023534297943115, 0.04627092927694321, -0.09116639196872711, 0.024461882188916206, -0.05848410725593567, 0.0470445342361927, 0.06751221418380737, -0.04018401727080345, -0.05456769838929176, 0.017075778916478157, -0.06931585818529129, 0.004395694937556982, -0.05940324068069458, 0.045678380876779556, -0.03243812173604965, -0.05874042958021164, 0.02189021185040474, 0.006458706688135862, -0.026636358350515366, -0.09807667881250381, 0.034551143646240234, 0.048328105360269547, -0.024057725444436073, -0.005775222554802895, -0.007865436375141144, -0.06857146322727203, -0.09451571851968765, -0.010151125490665436, 0.07156725227832794, -0.058225687593221664, -0.030825475230813026, 0.012300572358071804, 0.09721313416957855, -0.021369772031903267, 0.021014424040913582, -0.03099142760038376, -0.09492877870798111, 0.06498607993125916, -0.04094187915325165, 0.06476433575153351, 0.09897613525390625, -0.05649207532405853, -0.0453750342130661, -0.08600727468729019, -0.004543755203485489, -0.10343529284000397, -0.01376202329993248, 0.0022260311525315046, -0.0824950635433197, 0.021851634606719017, 0.051127899438142776, -0.08264347910881042, 0.02962225116789341, 0.06033037230372429, 0.04126913845539093, -0.016374927014112473, 0.02769925817847252, 0.010328254662454128, -0.013976799324154854, 0.03932930529117584, -0.006481493357568979, 0.012015925720334053, 0.027437372133135796, 0.0038080383092164993, 0.025042204186320305, 0.08197515457868576, -0.13253632187843323, -0.03337495028972626, 0.012134104035794735, -0.005256548523902893, 0.05640966445207596, 0.0081962700933218, -0.023280896246433258, 0.031647518277168274, -0.028337951749563217, -0.05305016040802002, -0.008652005344629288, 0.07728442549705505, 0.0649925097823143, 0.059121545404195786, 0.03254095837473869, -0.02419418841600418, -0.053319141268730164, 0.042169149965047836, 0.019423943012952805, -0.0036583661567419767, 0.06391347199678421, -0.0063341776840388775, -0.08375556021928787, -0.02190922386944294, -0.013686323538422585, 0.0072746966034173965, -0.06551463156938553, -0.0920405387878418, 0.08564460277557373, 0.08204396069049835, 0.006607190705835819, 0.040027447044849396, -0.007304773200303316, 0.07721821218729019, -0.004439546260982752, -0.03307989612221718, 0.08694598078727722, -0.05766022950410843, 0.041236359626054764, -0.12173459678888321, -0.012925910763442516, -0.03484172001481056, -0.03553430736064911, -0.07456148415803909, 0.11729980260133743, -0.058523330837488174, -0.009847809560596943, -0.043904997408390045, -0.0066814906895160675, 0.05447911098599434, 0.029355766251683235, -0.0425746776163578, 0.04417244717478752, -0.021859580650925636, -0.051581911742687225, 0.027543244883418083, -0.025937722995877266, 0.04665448144078255, 0.027084922417998314, -0.023276105523109436, -0.017987189814448357, 0.020528234541416168, -0.02678859792649746, -0.03950202465057373, -0.03944845125079155, 0.06090575084090233, -0.0432780385017395, 0.04069779813289642, 0.04377835988998413, -0.026663554832339287, -0.05210645869374275, 0.016110114753246307, 0.0225093774497509, -0.04013284668326378, 0.02665771171450615, -0.05112282931804657, 0.03461602330207825, -0.026554523035883904, -0.017920326441526413, 0.049484383314847946, 0.055420491844415665, -0.055874742567539215, 0.06095651537179947, 0.07517148554325104, -0.004532031714916229, -0.013301178812980652, 0.05386900156736374, -0.03387319669127464, -0.003127958858385682, -0.07708962261676788, -0.10698667913675308, 0.040856871753931046, 0.0747603103518486, 0.09100586175918579, -0.005269839894026518, 0.010841323994100094, 0.060368843376636505, -0.034118738025426865, -0.05987808480858803, 0.05445944517850876, 0.08343130350112915, 0.023269344121217728, -0.010713343508541584, 0.1463826298713684, -0.0015482248272746801, 0.02775251679122448, 0.13941854238510132, 0.013919912278652191, 0.004115082323551178, -0.05932575836777687, 0.012861239723861217, -0.08974695950746536, 0.022377777844667435, -0.03920310363173485, 0.003897106973454356, 0.02140618860721588, -0.05428026616573334, 0.0983848124742508, 0.018863122910261154, -0.009053969755768776, 0.018686646595597267, -0.022638557478785515, 0.028111282736063004, 0.04470177739858627, -0.17217959463596344, -0.039656396955251694, 0.039597947150468826, -0.09121286869049072, -0.09192685782909393, 0.03113970346748829, 0.08633879572153091, -0.04218330979347229, 0.03346248343586922, 0.044273849576711655, -0.030942782759666443, -0.026818299666047096, -0.020337237045168877, -0.08394268155097961, 0.03198590129613876, -0.0063207452185451984, -0.005416262894868851, -0.05241936445236206, -0.010534890927374363, -0.002396420342847705, 0.033111900091171265, -0.04420775920152664, -0.03621719032526016, -0.018850116059184074, -0.08467927575111389, 0.0003589009866118431, 0.007603824604302645, -0.0226329006254673, 0.028820762410759926, 3.973332168910585e-33, -0.056018415838479996, 0.0065036616288125515, -0.02921898476779461, 0.023426588624715805, 0.0563899427652359, -0.04224305972456932, 0.05587562918663025, -0.003251626854762435, 0.06987407058477402, 0.0443568080663681, -0.04993287846446037, 0.034967586398124695, -0.0590321309864521, 0.03179053217172623, -0.08049165457487106, -0.05699616298079491, -0.007617949042469263, 0.0623171366751194, -0.06835100054740906, 0.025593897327780724, -0.07373528927564621, 0.057786546647548676, -0.006929505616426468, 0.006206977181136608, 0.022930452600121498, 0.004841508809477091, 0.02811652049422264, 0.03917462006211281, -0.09950896352529526, 0.011496705003082752, -0.027140820398926735, 0.001439897227101028, -0.029549650847911835, -0.028547920286655426, -0.01785968989133835, -0.011581450700759888, 0.03113637864589691, 0.0007274123490788043, -0.0645570456981659, -0.02069671079516411, 0.168460413813591, 0.08552052080631256, 0.0930979773402214, -0.1464073807001114, -0.019008120521903038, 0.03317917138338089, -0.005767168942838907, -0.020129762589931488, -0.033874720335006714, 0.06767571717500687, 0.06126377359032631, -0.11881467700004578, 0.07846780121326447, 0.051237743347883224, 0.02253604121506214, 0.013832933269441128, -0.021931443363428116, -0.03913768753409386, 0.0561445951461792, 0.008269606158137321, -0.061890359967947006, 0.04936600476503372, -0.029412537813186646, 0.011302458122372627, -0.06011177971959114, -0.06705107539892197, -0.09576588124036789, -0.03423246741294861, 0.011633322574198246, 0.005041891243308783, -0.074999138712883, 0.11186718195676804, 0.04780564457178116, -0.014637991786003113, -0.013755817897617817, -0.0673801600933075, 0.014727960340678692, -0.02295263111591339, 0.014620785601437092, -0.019686460494995117, -0.039870601147413254, 0.0038827452808618546, 0.020441530272364616, 0.027330975979566574, -0.04459429532289505, 0.02576679177582264, 0.047910016030073166, 0.012138801626861095, 0.07696311920881271, -0.03396647050976753, -0.04260500520467758, 0.06997069716453552, 0.014849073253571987, -0.03917254880070686, 0.027982721105217934, 6.619105245977429e-32, -0.042632054537534714, -0.005026667844504118, 0.02720450982451439, -0.004794859327375889, -0.0033395213540643454, 0.04069846495985985, -0.04396820440888405, 0.0075056408531963825, -0.002158274408429861, -0.03685014694929123, 0.03976309299468994, -0.010607456788420677, -0.06064842268824577, 0.011897413991391659, -0.03890765830874443, -0.07528091967105865, -0.026641124859452248, 0.024212947115302086, 0.0032670232467353344, -0.09035313874483109, 0.08542423695325851, 0.04262213781476021, -0.010733094997704029, -0.0009998849127441645, 0.07506652176380157, 0.0627003088593483, 0.018806403502821922, -0.023756520822644234, -0.024742789566516876, -0.05057458207011223, 0.07472366094589233, 0.02335764653980732, 0.06944349408149719, -0.06915266811847687, 0.05299490690231323, 0.03976938873529434, 0.0014614899409934878, 0.037006933242082596, -0.03139209747314453, 0.10490244626998901, -0.03560849279165268, -0.0054104262962937355, -0.0040878597646951675, -0.01060551218688488, 0.004132016561925411, -0.019869457930326462, -0.09926524013280869, -0.020425302907824516, -0.005076355300843716, 0.005173853598535061, 0.03489745408296585, 0.010558776557445526, 0.10336548835039139, -0.03398270905017853, 0.037169765681028366, 0.04570314660668373, 0.03366094455122948, 0.020467806607484818, -0.026404988020658493, -0.011903385631740093, -0.029361631721258163, 0.09475685656070709, -0.06889815628528595, -0.039832908660173416 ]
256 Chapter 12 12.1 Gradients of curves The gradient of a curve is constantly changing. You can use a tangent to find the gradient of a curve at any point on the curve. The tangent to a curve at a point A is the straight line that just touches the curve at A. ■ The gradient of a curve at a given point is defined as the gradient of the tangent to the curv e at that point. The diagram shows the curve with equation y = x2. The tangent, T, to the curve at the point A(1, 1) is shown. Point A is joined to point P by the chord AP. a Calculate the gr adient of the tangent, T. b Calculate the gr adient of the chord AP when P has coordinates: i (2, 4) ii (1.5, 2.25) iii (1.1, 1.21) iv (1.01, 1.0201) v (1 + h, (1 + h)2) c Comment on the rela tionship between your answers to parts a and b.Example 1 y x –1–0.5 0.5 1 1.52 2.5 3 –1 –1.51 O23456 –2–3 –4AP T (1, 1)y = x2y x –0.5–0.5 0.5y = x3 – 2x + 1 1 1.5 2 2.5 –1 –1.50.511.522.5 –1 –1.5OThe tangent to the curve at (1, 0) has gradient 1, so the gradient of the curve at the point (1, 0) is equal to 1. The tangent just touches the curve at (1, 0). It does not cut the curve at this point, although it may cut the curve at another point.
[ -0.02279318869113922, 0.08728340268135071, 0.028825532644987106, -0.019523276016116142, -0.05104001984000206, 0.07803194224834442, 0.006411666050553322, -0.010502159595489502, 0.03607599064707756, 0.06873584538698196, 0.09363330900669098, 0.05671586096286774, -0.0032731725368648767, 0.02871488407254219, -0.020789939910173416, 0.014590860344469547, -0.059706300497055054, -0.008029939606785774, -0.05304310470819473, -0.06422451138496399, 0.012592613697052002, -0.027355266734957695, -0.09104043245315552, 0.039321351796388626, -0.05022706091403961, -0.03752436861395836, 0.01991482824087143, -0.000114029498945456, -0.023034177720546722, -0.0368746742606163, -0.020430205389857292, -0.014190644025802612, 0.039671022444963455, 0.078327476978302, 0.04626692831516266, 0.0013625746360048652, 0.021260077133774757, 0.019716670736670494, 0.06895487010478973, 0.030782092362642288, -0.059908002614974976, 0.05049929767847061, -0.08583538979291916, 0.011773315258324146, 0.02134496532380581, 0.03375518321990967, 0.015801042318344116, -0.04717365279793739, -0.07462206482887268, -0.025220075622200966, 0.029783528298139572, -0.032215870916843414, -0.08502788096666336, -0.025143448263406754, -0.013687514699995518, 0.05426023527979851, 0.01684185303747654, -0.0025540334172546864, 0.06660443544387817, 0.03238207474350929, 0.005035271402448416, 0.009166975505650043, 0.05178151652216911, 0.09065575897693634, -0.03144920617341995, -0.03482787311077118, -0.005574964452534914, -0.04132959619164467, 0.014415984973311424, 0.03817617893218994, -0.07457874715328217, -0.06619572639465332, 0.07496152818202972, -0.045034222304821014, -0.03389420360326767, 0.0015929739456623793, 0.034638162702322006, 0.010891941376030445, -0.07250205427408218, -0.08304846286773682, -0.045042019337415695, 0.058656804263591766, -0.025292430073022842, 0.014490844681859016, -0.00015409727348014712, -0.0005895583890378475, 0.05496644601225853, -0.013735239394009113, 0.0015742892865091562, -0.00646162498742342, 0.04557403177022934, -0.02298744209110737, -0.0762171596288681, 0.00484038470312953, 0.006607770454138517, 0.00645839050412178, -0.05277687683701515, -0.05233537778258324, 0.0665556862950325, -0.04259488731622696, -0.0177061278373003, -0.008214759640395641, -0.08594979345798492, 0.1491873562335968, 0.032312702387571335, 0.06774143129587173, 0.01698528602719307, -0.04104011505842209, 0.004312451463192701, 0.0031019700691103935, -0.04672902077436447, 0.002091306494548917, 0.057221006602048874, -0.015983568504452705, 0.12611711025238037, -0.08749807626008987, -0.03983486071228981, -0.03974342346191406, -0.0019710108172148466, 0.025800004601478577, 0.04772603511810303, -0.06575136631727219, 0.01933075301349163, 0.05065256357192993, -0.07208120077848434, 0.04663269966840744, -0.004451691638678312, 0.028331410139799118, 0.009175706654787064, -0.0282997228205204, 0.021794335916638374, -0.02542274445295334, -0.08109524101018906, -0.022204343229532242, 0.03567972034215927, 0.016005659475922585, -0.06816595792770386, 0.03133494406938553, -0.04125059396028519, -0.06321875005960464, 0.028210414573550224, 0.02411595545709133, -0.00952273141592741, 0.02507549710571766, 0.02142663300037384, -0.002439243020489812, -0.029847707599401474, 0.021455232053995132, -0.05845591798424721, 0.006781415082514286, 0.06020660698413849, -0.016484353691339493, -0.02363516390323639, 0.015319284051656723, -0.03974001854658127, 0.01357424259185791, -0.02826336957514286, -0.003785866079851985, 0.008126185275614262, -0.06433958560228348, -0.08241588622331619, 0.04205155745148659, -0.011609822511672974, 0.023850392550230026, 0.09053581207990646, -0.004366070497781038, 0.042924124747514725, 0.06886742264032364, 0.0021748184226453304, 0.06901855021715164, 0.05645746365189552, 0.05177716538310051, -0.05333585664629936, 0.05377264693379402, -0.12753258645534515, 0.030669113621115685, 0.05300864949822426, 0.019497809931635857, 0.05326566845178604, -0.050139471888542175, 0.04647210240364075, 0.0234986525028944, 0.034484732896089554, -0.08602411299943924, 0.006768274586647749, 0.01967172510921955, 0.010492225177586079, 0.07346923649311066, -0.005572655703872442, -0.011552934534847736, -0.031498022377491, -0.06656546145677567, -0.024816155433654785, 0.08940624445676804, -0.12456538528203964, 0.02958216518163681, -0.03878365457057953, -0.00024571584071964025, 0.04784097895026207, -0.04118654131889343, 0.0028557039331644773, -0.012130510993301868, -0.04797160625457764, 0.037731900811195374, -0.03541296720504761, 0.011691824533045292, 0.031303681433200836, -0.05908762291073799, -0.1492658406496048, 0.010305345989763737, 0.043872494250535965, 0.044369470328092575, 0.03339412063360214, 0.03810949623584747, -0.03214368596673012, -0.0632282942533493, -0.0053551048040390015, -0.05777817592024803, -0.04000020772218704, 0.03774673119187355, -0.05159801244735718, 0.07008294016122818, 0.01785128377377987, 7.947951504135321e-33, -0.03462040424346924, 0.049797043204307556, -0.001756902551278472, 0.029125455766916275, 0.021983910351991653, -0.021341100335121155, 0.08395689725875854, -0.026976654306054115, 0.001176662975922227, 0.10102589428424835, -0.07376523315906525, 0.05223780870437622, -0.013148678466677666, 0.04586748033761978, -0.008215589448809624, 0.002287378069013357, -0.0016599191585555673, 0.09417421370744705, -0.020444612950086594, -0.023091034963726997, -0.046480290591716766, -0.04809447005391121, -0.025501282885670662, 0.006499013863503933, 0.0716077908873558, 0.006345495115965605, 0.04492200165987015, -0.00967661663889885, -0.03528575599193573, 0.011583805084228516, -0.01317043136805296, -0.07372279465198517, -0.01760903373360634, -0.05950154736638069, -0.04241160303354263, 0.012092771008610725, -0.04394709691405296, -0.04966551810503006, -0.05559493601322174, -0.035115037113428116, 0.0714181438088417, 0.06522972136735916, 0.12121964991092682, -0.10070953518152237, -0.045909129083156586, 0.042050059884786606, -0.005786010064184666, 0.015584445558488369, -0.004995707422494888, 0.03413206711411476, -0.058812711387872696, -0.09445329755544662, 0.0882929190993309, 0.03112797625362873, -0.010966834612190723, -0.0004847343952860683, -0.04942493513226509, -0.05387040972709656, 0.023567309603095055, -0.007765932008624077, -0.014676617458462715, -0.03616274893283844, -0.08674275130033493, 0.06458794325590134, -0.022499240934848785, -0.024589277803897858, -0.08641909062862396, -0.008151230402290821, -0.009797826409339905, -0.01920996606349945, -0.04920235276222229, 0.14850552380084991, 0.06350035220384598, -0.03905758261680603, -0.02943725511431694, -0.06560730934143066, 0.0013015222502872348, -0.028254501521587372, 0.0523517020046711, -0.04441366717219353, 0.062257785350084305, 0.029963484033942223, 0.10909963399171829, -0.004452856257557869, 0.053305745124816895, -0.019151441752910614, -0.015449468977749348, 0.015351486392319202, 0.11445064097642899, -0.006628356408327818, -0.07269125431776047, 0.034279510378837585, -0.09692321717739105, -0.006139951292425394, -0.016345249488949776, 5.37584952330199e-32, -0.09801702201366425, -0.045061565935611725, 0.0225229375064373, 0.012586238794028759, 0.01978118158876896, 0.04844769462943077, 0.05700302496552467, 0.00249106134288013, -0.01754799671471119, -0.05933232977986336, -0.02547479420900345, -0.004053538199514151, -0.048449091613292694, 0.1276373565196991, 0.02998501993715763, 0.06452924013137817, 0.05398009717464447, -0.04216061159968376, -0.07722913473844528, -0.025899270549416542, -0.018073372542858124, -0.009387842379510403, -0.06946668028831482, 0.02719765529036522, 0.028550103306770325, -0.07498441636562347, 0.08708079904317856, 0.019916905090212822, 0.028430841863155365, -0.11216233670711517, -0.0033952973317354918, -0.019094005227088928, 0.05323908478021622, 0.07293841987848282, 0.07124651223421097, 0.01021285355091095, 0.0054229688830673695, -0.006087569519877434, 0.015310841612517834, 0.11266938596963882, -0.043912146240472794, -0.05788836255669594, 0.021956391632556915, -0.017684826627373695, -0.017836809158325195, 0.06275080889463425, -0.05135767534375191, -0.0070910705253481865, -0.14153702557086945, -0.02874462865293026, 0.13263146579265594, 0.02133798412978649, 0.11614155769348145, 0.05806752294301987, -0.043395034968853, -0.09624896198511124, 0.14014039933681488, -0.02238037995994091, -0.054028965532779694, 0.023910265415906906, -0.028739716857671738, 0.09837117046117783, 0.008036153391003609, -0.009719514288008213 ]
257Differentiation This time (x1, y1) is (1, 1) and (x2, y2) is (1.5, 2.25).Use the formula for the gradient of a straight line between points ( x1, y1) and ( x2, y2). ← Section 5.1 This point is closer to (1, 1) than (1.1, 1.21) is. This gradient is closer to 2. This becomes h(2 + h) _______ h You can use this formula to confirm the answers to questions i to iv. For example, when h = 0.5, (1 + h, (1 + h) 2) = (1.5, 2.25) and the gradient of the chord is 2 + 0.5 = 2.5. As h gets closer to zero, 2 + h gets closer to 2, so the gradient of the chord gets closer to the gradient of the tangent.The points used are (1, 1) and (2, 3).a Gradient of tangent = y2 − y1 _______ x2 − x1 = 3 − 1 ______ 2 − 1 = 2 b i Gra dient of chord joining (1, 1) to ( 2, 4) = 4 − 1 ______ 2 − 1 = 3 ii Gra dient of the chord joining (1, 1) to ( 1.5, 2.25) = 2.2 5 − 1 _________ 1.5 − 1 = 1 .2 5 ____ 0.5 = 2.5 iii Gra dient of the chord joining (1, 1) to ( 1.1, 1.21) = 1.21 − 1 _________ 1.1 − 1 = 0.21 _____ 0.1 = 2.1 iv Gra dient of the chord joining (1, 1) to ( 1.01, 1.0201) = 1.02 01 − 1 ___________ 1.01 − 1 = 0.02 01 ________ 0.01 = 2.01 v Gra dient of the chord joining (1, 1) to ( 1 + h, (1 + h )2) = (1 + h)2 − 1 ____________ (1 + h) − 1 = 1 + 2 h + h2 − 1 ________________ 1 + h − 1 = 2h + h2 ________ h = 2 + h c As P gets closer to A , the gradient of the chord AP gets closer to the gradient of the tangent at A .h is a constant. (1 + h)2 = (1 + h)(1 + h) = 1 + 2h + h2 Explore the gradient of the chord AP us ing GeoGebra.Online
[ 0.0758010596036911, 0.047043755650520325, -0.0001327585632679984, -0.07190245389938354, -0.06863921880722046, 0.04398687556385994, -0.005878149531781673, 0.022327812388539314, -0.020699361339211464, -0.03698641061782837, 0.04195931553840637, -0.06439541280269623, 0.02832835726439953, -0.0345781072974205, -0.03604196384549141, -0.01430264487862587, 0.002923038089647889, 0.016440708190202713, -0.08705174922943115, -0.03092888742685318, 0.04807934910058975, -0.061229392886161804, -0.06026875600218773, -0.020937833935022354, 0.013796244747936726, 0.012082228437066078, 0.013988052494823933, 0.03473088890314102, -0.02201688662171364, -0.01018543727695942, -0.08953794836997986, -0.015565306879580021, 0.04586312547326088, -0.08279770612716675, 0.04473526030778885, 0.003565535880625248, 0.04124237969517708, 0.08224581182003021, -0.00782217737287283, 0.023577960208058357, -0.02045815996825695, 0.006745532155036926, -0.024755103513598442, 0.03377094864845276, -0.04823760688304901, -0.026825465261936188, -0.010564220137894154, 0.013753608800470829, -0.002747042803093791, 0.025411318987607956, 0.0456901490688324, 0.01242026500403881, -0.05622215196490288, 0.0050137764774262905, -0.02247733622789383, 0.03461961820721626, 0.005520510487258434, 0.012291351333260536, 0.01207740418612957, 0.0381438173353672, -0.02998092584311962, -0.013932563364505768, 0.006656002253293991, 0.08230936527252197, -0.031324759125709534, -0.033581946045160294, -0.036206360906362534, -0.07496748864650726, -0.018845191225409508, 0.08024296909570694, -0.06997174024581909, -0.05608402192592621, 0.023135557770729065, -0.12629149854183197, -0.006493798922747374, -0.0027975128032267094, -0.0018978363368660212, 0.046550702303647995, -0.035975854843854904, -0.14030387997627258, -0.04408394917845726, 0.08717241883277893, -0.0013756712432950735, 0.005972299259155989, 0.0032842473592609167, 0.041826408356428146, -0.030847474932670593, 0.06527812033891678, 0.026134410873055458, -0.01507476530969143, 0.05535070598125458, 0.0261992160230875, -0.111626997590065, 0.012566144578158855, -0.05013734847307205, 0.014173770323395729, 0.06349761039018631, -0.09624311327934265, 0.10215077549219131, 0.08460355550050735, 0.0048070731572806835, -0.02897142618894577, -0.0837872177362442, 0.003271672176197171, 0.018208133056759834, 0.02102447673678398, 0.04394126310944557, 0.0057130856439471245, 0.07073147594928741, -0.02795184589922428, -0.02560095302760601, -0.015999779105186462, 0.027964096516370773, 0.012281023897230625, 0.106296107172966, -0.04248720780014992, 0.03989388048648834, -0.041134726256132126, 0.029509712010622025, -0.023099280893802643, 0.017825845628976822, -0.058558207005262375, 0.07083223760128021, -0.0009517007856629789, -0.02452802285552025, -0.02732323855161667, -0.03225883096456528, -0.033288128674030304, -0.03685646131634712, -0.019971992820501328, -0.04497892037034035, -0.013305328786373138, -0.03213440626859665, 0.0001547509164083749, 0.02883329801261425, 0.015216600149869919, -0.029088923707604408, 0.025169996544718742, 0.0027374301571398973, -0.07261360436677933, 0.052492037415504456, 0.012705961242318153, 0.010707438923418522, -0.009637420065701008, -0.016035374253988266, 0.03960515558719635, -0.07889772206544876, 0.06283288449048996, 0.050291258841753006, 0.021856635808944702, 0.009882770478725433, -0.015252885408699512, -0.032194506376981735, -0.028959443792700768, -0.055462516844272614, 0.03233017772436142, -0.013961291871964931, -0.0049776253290474415, -0.021892625838518143, -0.04170334339141846, -0.0884869396686554, -0.017900072038173676, -0.03559114411473274, 0.0819418728351593, 0.11703657358884811, 0.009250321425497532, -0.020720133557915688, -0.0003272708272561431, 0.04950106889009476, 0.0698457583785057, 0.10847878456115723, -0.002905146451666951, -0.03587769716978073, 0.06874709576368332, -0.054425012320280075, 0.04861537367105484, 0.030270572751760483, 0.06514245271682739, 0.04399610683321953, -0.035122182220220566, 0.08027103543281555, -0.06617271155118942, 0.03447900339961052, 0.0008343153167515993, 0.02596627175807953, -0.042253248393535614, -0.06631337106227875, 0.06354106962680817, -0.0865030363202095, 0.09425214678049088, 0.04916440695524216, -0.023067781701683998, -0.016814563423395157, 0.05712569132447243, -0.12380684167146683, 0.035988688468933105, -0.030231356620788574, 0.04351431876420975, -0.018277525901794434, -0.00828857347369194, 0.07632189989089966, -0.014238923788070679, -0.01475913729518652, -0.014285892248153687, -0.0062566278502345085, -0.01170902419835329, 0.04793919622898102, -0.06893899291753769, -0.11357612162828445, 0.09689722955226898, 0.025842096656560898, -0.05343806371092796, -0.04412166029214859, -0.017273496836423874, 0.0020308156963437796, -0.046686794608831406, -0.029565947130322456, -0.03647792339324951, -0.08523155748844147, 0.013832325115799904, -0.0021863740403205156, 0.054295387119054794, -0.01703951321542263, 2.702187842761888e-33, -0.048499252647161484, 0.06472690403461456, -0.011825335212051868, -0.040064021944999695, 0.014399227686226368, -0.0460330955684185, 0.06564771384000778, 0.04913332685828209, 0.06949631124734879, 0.13990731537342072, -0.02162645384669304, 0.01281757466495037, -0.0460682213306427, 0.030633095651865005, -0.036179058253765106, -0.041503362357616425, 0.052908673882484436, 0.02251804620027542, -0.05385312810540199, 0.002026279689744115, 0.06302386522293091, -0.04406005144119263, -0.022163139656186104, 0.07470520585775375, 0.0038421612698584795, 0.04597395285964012, 0.07308777421712875, -0.04321940615773201, -0.008252818137407303, -0.0026733032427728176, -0.00704913679510355, -0.062038954347372055, 0.03286966681480408, 0.041176822036504745, -0.03064817003905773, -0.08094677329063416, -0.00036423682468011975, -0.01731705665588379, -0.05017979070544243, -0.09880281984806061, 0.0703408271074295, 0.13056328892707825, 0.06463958323001862, -0.009615357033908367, -0.014062508009374142, -0.007202840410172939, -0.03668134659528732, -0.058889709413051605, -0.05360567569732666, 0.12345001101493835, -0.02933100238442421, -0.1015627533197403, 0.025436105206608772, 0.055274926126003265, 0.012663464993238449, -0.05080341547727585, -0.047279320657253265, -0.024743080139160156, 0.05936232954263687, -0.045034945011138916, -0.04255082830786705, -0.022530943155288696, 0.014121528714895248, 0.10649678111076355, -0.0291256345808506, 0.00688145449385047, -0.02953305095434189, -0.02270948700606823, 0.016112448647618294, 0.055105309933423996, -0.05321367084980011, 0.09703084826469421, 0.04544268921017647, -0.0640745684504509, -0.06722535192966461, -0.06270362436771393, 0.05018886551260948, 0.00414769584313035, 0.018825769424438477, -0.001240610727109015, -0.08832837641239166, 0.05412232503294945, 0.07526454329490662, 0.077626533806324, -0.032132167369127274, 0.005995836108922958, 0.006095725577324629, 0.020898787304759026, 0.07030650973320007, 0.01842140220105648, -0.0935366228222847, 0.07111114263534546, -0.03498155251145363, -0.08834917843341827, -0.019099945202469826, 8.100165239065742e-32, -0.10098658502101898, -0.015149565413594246, -0.01344429049640894, 0.012073444202542305, -0.023724200204014778, 0.08801042288541794, -0.010130973532795906, -0.021786542609333992, -0.08189476281404495, -0.07018160074949265, -0.003489244729280472, 0.012409460730850697, 0.005247842520475388, 0.07208021730184555, -0.022554341703653336, 0.01942042075097561, -0.000032459833164466545, -0.087549589574337, -0.05062276870012283, -0.02544153667986393, 0.013858092948794365, 0.011560334824025631, -0.03233443200588226, 0.07613150030374527, -0.0172127652913332, 0.02350614033639431, -0.011262820102274418, 0.026095034554600716, 0.021153023466467857, -0.17180894315242767, 0.05979297682642937, 0.0017499360255897045, -0.04209820181131363, 0.03164989873766899, 0.05831023305654526, 0.0016363270115107298, -0.11583375930786133, 0.04335619881749153, -0.031045768409967422, 0.0728357806801796, -0.05929579958319664, -0.06524813175201416, -0.0005151440273039043, -0.018444202840328217, 0.07097697257995605, 0.02511901967227459, 0.020801996812224388, -0.060969430953264236, -0.05113592371344566, -0.036859750747680664, 0.010831526480615139, 0.051034413278102875, 0.1516074389219284, 0.1038048192858696, -0.015729065984487534, -0.08484218269586563, 0.07046385854482651, -0.013382523320615292, -0.04045409709215164, -0.0002011052129091695, -0.03076537884771824, 0.07392733544111252, -0.06523210555315018, -0.05967171490192413 ]
258 Chapter 12 1 The diagram sho ws the curve with equation y = x2 − 2x. y O x–1 1234 –2 –11234 –2a Copy and complete this table showing estimates for the gradient of the curve. x-coordinate −1 0 1 2 3 Estimate for gradient of curve b Write a hypothesis a bout the gradient of the curve at the point where x = p. c Test your h ypothesis by estimating the gradient of the graph at the point (1.5, −0.75). 2 The diagram sho ws the curve with equation y = √ ______ 1 − x2 . The point A has coor dinates (0.6, 0.8). The points B, C and D lie on the curve with x-coordinates 0.7, 0.8 and 0.9 respectively. xy O–0.2 –0.4 –0.6 –0.8 –1.0 0.2 0.4 0.6 0.8 1.0 –0.20.20.40.60.81.0 A B C Dy = 1 – x2 a Verify that point A lies on the curve. b Use a ruler to estimate the gradient of the curve at point A. c Find the gradient of the line segments: i AD ii AC iii AB d Comment on the rela tionship between your answers to parts b and c. Place a ruler on the graph to a pproximate each tangent.HintExercise 12A Use algebra for part c . Hint
[ -0.028354132547974586, 0.0745006650686264, 0.008716126903891563, -0.07967345416545868, -0.04001491516828537, 0.08400769531726837, 0.004016008693724871, 0.06275711953639984, -0.0638917088508606, 0.02093605324625969, 0.06198914349079132, 0.0005971722421236336, 0.01704634726047516, -0.04678844287991524, -0.08461271971464157, 0.0014400327345356345, -0.005388876423239708, 0.0367424339056015, -0.08147788047790527, -0.06942473351955414, -0.00637449836358428, -0.0847623199224472, -0.02092832885682583, -0.0007712342194281518, -0.014800550416111946, -0.07372516393661499, 0.022916825488209724, -0.012789939530193806, -0.03675162047147751, -0.01891307160258293, 0.0027833532076328993, -0.013856548815965652, 0.026028448715806007, -0.007127817254513502, 0.11721916496753693, 0.01696527563035488, 0.030334265902638435, 0.027760455384850502, 0.04552066698670387, -0.009160095825791359, -0.047355931252241135, 0.0038094674237072468, -0.09850586205720901, -0.037286821752786636, 0.041793301701545715, -0.021573379635810852, -0.019259285181760788, -0.04988172650337219, -0.011984892189502716, 0.010352817364037037, 0.03452647104859352, -0.002754250541329384, -0.09356670826673508, -0.07312247157096863, -0.003947913181036711, -0.049459028989076614, -0.006944009568542242, 0.005183440167456865, 0.07600962370634079, 0.06711514294147491, 0.013663025572896004, 0.017002779990434647, 0.020493565127253532, 0.08860211819410324, -0.010002967901527882, 0.05185386911034584, -0.016796842217445374, 0.006208166480064392, 0.025237509980797768, 0.07922256737947464, -0.02403705194592476, -0.015237171202898026, 0.05055740848183632, -0.09712916612625122, 0.016372332349419594, -0.044401418417692184, -0.05134688690304756, 0.014846552163362503, -0.020337866619229317, -0.15828542411327362, 0.0027462111320346594, 0.04641776159405708, 0.004775804467499256, -0.019264817237854004, -0.041829030960798264, 0.050272054970264435, -0.00013431365368887782, 0.0322207435965538, -0.008007648400962353, 0.03033483400940895, 0.03384384512901306, -0.0367281548678875, -0.1464916467666626, 0.03923015668988228, 0.0051630581729114056, 0.003883153898641467, 0.005416195373982191, -0.12843617796897888, 0.10223312675952911, 0.08277776092290878, -0.04814548045396805, -0.030853040516376495, -0.07324253022670746, 0.034753862768411636, 0.04414431378245354, 0.012592338025569916, -0.0016095408936962485, 0.02561081387102604, 0.007027076091617346, -0.019925232976675034, -0.039222851395606995, -0.01534593291580677, 0.016155855730175972, 0.09987052530050278, 0.11209877580404282, -0.07690757513046265, 0.05148274824023247, -0.01053963229060173, -0.09340333193540573, -0.06604897230863571, 0.04075055196881294, -0.08609329909086227, 0.06683140993118286, 0.023504851385951042, -0.04525662213563919, -0.006979919970035553, -0.004705553408712149, 0.0012704128166660666, -0.0294149499386549, -0.04918449744582176, -0.04204666614532471, -0.03550873324275017, -0.00833655521273613, -0.025074411183595657, 0.01339338906109333, -0.014598139561712742, -0.02129242941737175, 0.11237253993749619, -0.021530939266085625, -0.07924912869930267, 0.04721968248486519, -0.030621591955423355, -0.01042876299470663, 0.047677695751190186, -0.006498317234218121, 0.022532448172569275, -0.05617319047451019, 0.021205561235547066, 0.02077282778918743, -0.06757696717977524, 0.023609943687915802, -0.04106594994664192, 0.003697700798511505, 0.04323595389723778, 0.000470308237709105, -0.057384200394153595, -0.06476032733917236, 0.0066854339092969894, -0.010467750020325184, -0.07706455141305923, -0.11143754422664642, 0.012719521299004555, -0.006583623122423887, -0.006506691221147776, 0.06773994863033295, 0.021189125254750252, 0.015111840330064297, 0.02599242329597473, 0.07738932967185974, 0.04715895652770996, 0.05264614522457123, 0.11649344116449356, -0.08223918825387955, 0.04252689331769943, -0.043897368013858795, -0.046005602926015854, 0.09613098949193954, 0.05378960072994232, 0.058515455573797226, -0.048913244158029556, 0.06550179421901703, 0.00039946765173226595, 0.0375482402741909, -0.024094967171549797, -0.016066744923591614, 0.012791589833796024, 0.0011965001467615366, 0.0506768561899662, -0.022582784295082092, 0.08230503648519516, -0.048595771193504333, -0.040615130215883255, -0.02187102846801281, 0.09900719672441483, -0.13331769406795502, -0.039505526423454285, -0.0313434824347496, 0.03830858692526817, -0.06625501066446304, -0.008228284306824207, 0.06488775461912155, 0.03638360649347305, 0.02017178013920784, 0.04506790637969971, -0.016354486346244812, 0.03307485580444336, 0.003593090223148465, -0.0004112253664061427, -0.10826856642961502, -0.002599941799417138, 0.025289099663496017, -0.018868571147322655, 0.006122109480202198, 0.026403840631246567, -0.0033884113654494286, -0.07012922316789627, 0.024636229500174522, -0.01738828793168068, -0.06048177182674408, 0.015618124045431614, -0.07319812476634979, 0.014237242750823498, 0.010136554948985577, -3.2099352807598826e-34, -0.0437864325940609, 0.029422175139188766, 0.03777944669127464, -0.017285864800214767, 0.009678758680820465, -0.03930894657969475, 0.05735696852207184, 0.009294040501117706, 0.06867176294326782, 0.15381856262683868, -0.014153103344142437, 0.058979280292987823, -0.011098538525402546, 0.07396215945482254, 0.01779247261583805, 0.016014475375413895, -0.021400215104222298, 0.05619753524661064, -0.009276241064071655, -0.05702023580670357, 0.0128643698990345, -0.03860441595315933, -0.006138360593467951, -0.019649436697363853, 0.08338842540979385, 0.06802380084991455, 0.052095480263233185, -0.03909824416041374, 0.0018872310174629092, 0.008827519603073597, -0.044027287513017654, -0.07800374180078506, -0.026389703154563904, -0.0009532683761790395, -0.0263449065387249, -0.03679277002811432, -0.02534589171409607, -0.01630123145878315, -0.025527462363243103, -0.060428865253925323, 0.05417056754231453, 0.12463834136724472, 0.028832213953137398, -0.04512619227170944, -0.028069673106074333, 0.015190768986940384, 0.05110829323530197, -0.03624419867992401, 0.014850309118628502, 0.11395328491926193, -0.005494801793247461, -0.05859830230474472, 0.07792792469263077, 0.06787873059511185, 0.051242340356111526, 0.02165764756500721, -0.015555675141513348, -0.05951162800192833, 0.0018493256065994501, -0.053707417100667953, -0.023812884464859962, 0.007630425505340099, -0.03326817974448204, 0.11043376475572586, -0.012124475091695786, -0.025126490741968155, -0.08935637772083282, -0.04800882562994957, 0.019299529492855072, 0.05239526927471161, -0.07918501645326614, 0.05323811620473862, 0.021698441356420517, -0.04114498943090439, -0.08086270838975906, -0.05400710552930832, -0.03462374955415726, 0.010706055909395218, 0.025421304628252983, -0.05574657768011093, -0.024926776066422462, 0.06669270992279053, 0.09502465277910233, 0.003548651933670044, 0.03444439545273781, -0.009901558049023151, -0.031024541705846786, 0.04140934348106384, 0.041149504482746124, -0.012385721318423748, -0.04045341908931732, 0.08770835399627686, -0.05065673217177391, -0.035411637276411057, 0.00672195153310895, 7.965734529611354e-32, -0.06889943778514862, -0.03950768709182739, 0.059270378202199936, 0.0155167942866683, 0.0002639074227772653, 0.039968397468328476, -0.05280265957117081, -0.03352870047092438, -0.08365310728549957, -0.06652294844388962, 0.0008675636490806937, 0.06473324447870255, -0.03595881164073944, 0.051597028970718384, -0.0742018073797226, 0.0863719955086708, 0.0054090023040771484, 0.0030120962765067816, -0.05153126269578934, -0.06878113001585007, -0.006870049051940441, -0.017733817920088768, -0.07935964316129684, 0.08281809091567993, -0.02747395448386669, -0.006181057076901197, -0.04156295955181122, -0.02379492111504078, -0.00911655928939581, -0.06093677505850792, -0.018933268263936043, -0.0072469403967261314, 0.030766047537326813, 0.002915685996413231, 0.06491821259260178, 0.016564372926950455, -0.10082514584064484, 0.08033999800682068, 0.023687241598963737, 0.051357097923755646, -0.0061026993207633495, -0.03852986544370651, -0.01219657901674509, 0.0060994927771389484, 0.015852544456720352, 0.01518263015896082, 0.025301504880189896, -0.05750409886240959, -0.033673565834760666, 0.03461489826440811, 0.029921500012278557, 0.001516258460469544, 0.1761721819639206, 0.09200496226549149, -0.001687154988758266, -0.05613148212432861, 0.061361365020275116, -0.0279002133756876, -0.06032949313521385, -0.06932558864355087, -0.04810472950339317, 0.06675873696804047, -0.12016858905553818, -0.030357157811522484 ]
259Differentiation 3 F is the point with coordina tes (3, 9) on the curve with equation y = x2. a Find the gradients of the chor ds joining the point F to the points with coordinates: i (4, 16) ii (3.5, 12.25) iii (3.1, 9.61) iv (3.01, 9.0601) v (3 + h, (3 + h)2) b What do y ou deduce about the gradient of the tangent at the point (3, 9)? 4 G is the point with coordina tes (4, 16) on the curve with equation y = x2. a Find the gradients of the chor ds joining the point G to the points with coordinates: i (5, 25) ii (4.5, 20.25) iii (4.1, 16.81) iv (4.01, 16.0801) v (4 + h, (4 + h)2) b What do y ou deduce about the gradient of the tangent at the point (4, 16)? y = f(x) xy OAB You can formalise this approach by letting the x-coordinate of A be x0 and the x-coordinate of B be x0 + h. Consider what happens to the gradient of AB as h gets smaller. y = f(x) xy A x0 x0 + hB O12.2 Finding the derivative You can use algebra to find the exact gradient of a curve at a given point. This diagram shows two points, A and B, that lie on the curve with equation y = f(x). As point B moves closer to point A the gradient of chord AB gets closer to the gradient of the tangent to the curve at A. h rep resents a small change in the value of x. You can also use dx to represent this small change. It is pronounced ‘delta x ’.NotationPoint B has coordinates (x0 + h, f(x0 + h)). Point A has coordinates (x0, f(x0)).
[ 0.05790619179606438, 0.08613777160644531, 0.010358507744967937, -0.05873865261673927, -0.03958775848150253, 0.06029767915606499, 0.01735677197575569, -0.04800715297460556, -0.0004080428334418684, 0.031791508197784424, 0.10342828929424286, -0.033854905515909195, -0.01622486487030983, 0.0054862420074641705, -0.059697918593883514, -0.05407295003533363, -0.03557458147406578, 0.044605694711208344, -0.1524258553981781, -0.03555138036608696, -0.05126935988664627, -0.011517822742462158, -0.06271976232528687, -0.0587867870926857, -0.01597699336707592, -0.01692807488143444, 0.005681546404957771, -0.02244356833398342, -0.039152827113866806, -0.02788003906607628, -0.04250813648104668, -0.028200538828969002, 0.04098249599337578, -0.04064949229359627, 0.04093634709715843, 0.018173038959503174, 0.05263727158308029, 0.03912336751818657, 0.043743252754211426, 0.02821318805217743, -0.07061737775802612, -0.033609092235565186, 0.0077699520625174046, -0.0009369777399115264, 0.0675773099064827, -0.006537886336445808, -0.045148223638534546, 0.03097030706703663, -0.0610097199678421, -0.023155577480793, 0.007342658005654812, -0.02019033581018448, -0.09818685054779053, 0.012612381018698215, -0.006178402807563543, 0.049346763640642166, 0.06938612461090088, 0.03681885823607445, 0.019534463062882423, 0.0008190714870579541, 0.05991212651133537, 0.07101814448833466, -0.0014617078704759479, 0.05411568284034729, -0.060174088925123215, -0.044476430863142014, -0.008274435065686703, -0.07005525380373001, -0.03218580037355423, 0.09324666857719421, -0.032182421535253525, -0.008255453780293465, -0.004785093478858471, -0.08134261518716812, 0.006051207892596722, 0.07894841581583023, 0.0599389523267746, -0.0488317497074604, -0.03330931439995766, -0.09861316531896591, 0.02992289699614048, 0.07561694085597992, 0.03938012942671776, 0.06053605303168297, 0.012147815898060799, -0.007344081997871399, -0.019201237708330154, -0.009212223812937737, 0.010331559926271439, -0.021083053201436996, -0.02171212248504162, -0.04833965003490448, -0.0956924557685852, 0.03659604489803314, -0.06459864228963852, 0.04168911278247833, -0.05229990929365158, -0.08383926004171371, 0.06017925217747688, 0.12941497564315796, -0.009563353843986988, 0.050261374562978745, -0.0849640890955925, 0.05589723214507103, 0.03776104748249054, 0.020693069323897362, 0.040091030299663544, 0.007458693813532591, 0.03585735708475113, 0.018274107947945595, -0.07938694953918457, 0.044448330998420715, -0.012098444625735283, -0.052688371390104294, 0.028509845957159996, -0.03743341565132141, 0.013892811723053455, -0.0400380939245224, -0.03479344770312309, -0.05714896693825722, 0.07793396711349487, -0.05833964794874191, 0.04297439008951187, 0.001520653604529798, -0.04131437838077545, -0.023895710706710815, -0.0257404875010252, 0.011985212564468384, -0.013507150113582611, 0.013044500723481178, 0.038039129227399826, -0.07515371590852737, -0.04630036652088165, -0.06569020450115204, 0.0017853383906185627, 0.029240969568490982, -0.11223380267620087, 0.028079312294721603, -0.019690994173288345, -0.08226501941680908, 0.06331109255552292, 0.03394205495715141, -0.006401808932423592, -0.05418357625603676, -0.0010914824670180678, -0.027187982574105263, -0.06589488685131073, 0.005903073586523533, -0.04410972073674202, 0.08816763758659363, 0.07159991562366486, -0.025271497666835785, -0.014614216983318329, 0.018259134143590927, -0.07946930825710297, -0.039574336260557175, -0.016745135188102722, -0.03662029281258583, -0.017809689044952393, -0.0703384205698967, -0.08621881902217865, 0.05607074871659279, 0.05308082699775696, 0.07327862828969955, 0.14306020736694336, -0.0041590300388634205, 0.024900346994400024, 0.017672665417194366, 0.018830321729183197, 0.08699549734592438, 0.030613364651799202, -0.012015975080430508, -0.06112848222255707, 0.10997354984283447, -0.035655491054058075, -0.023462168872356415, 0.0667630136013031, 0.008696810342371464, 0.03334381431341171, -0.029541343450546265, 0.13368017971515656, -0.01831083558499813, 0.028505003079771996, -0.11317624896764755, -0.000880955602042377, 0.04721800237894058, 0.05174051225185394, 0.0729920044541359, -0.07712038606405258, -0.037872277200222015, -0.020082419738173485, -0.07263539731502533, -0.01627873070538044, 0.01976633071899414, -0.09467127174139023, 0.004258604254573584, -0.036120280623435974, 0.04142167791724205, -0.02085340954363346, 0.018902748823165894, 0.06940033286809921, -0.022918738424777985, -0.008849014528095722, 0.07438346743583679, -0.060248151421546936, 0.008730529807507992, 0.01891673356294632, -0.04587554931640625, -0.11515926569700241, 0.02053201198577881, -0.027239682152867317, 0.025414885953068733, 0.002028087619692087, -0.020135119557380676, -0.058400288224220276, -0.07048245519399643, -0.01876090094447136, 0.01995965838432312, -0.08551474660634995, 0.03790012374520302, -0.06452922523021698, 0.08016086369752884, 0.04461272060871124, -2.619717179489112e-33, -0.0656776875257492, 0.06251971423625946, 0.00466930354014039, -0.05805647745728493, 0.019636623561382294, -0.015158101916313171, 0.0606667697429657, 0.04232928529381752, -0.009638024494051933, 0.10982115566730499, -0.03472823277115822, -0.013728540390729904, 0.005910858977586031, 0.046059608459472656, -0.026506662368774414, 0.023869214579463005, 0.06708807498216629, 0.07005713135004044, -0.028773238882422447, 0.0038787825033068657, -0.020220022648572922, 0.028392761945724487, -0.04376460984349251, 0.05082973837852478, 0.09663549065589905, 0.019671160727739334, 0.012716561555862427, -0.02829092927277088, -0.09087193757295609, 0.06418372690677643, 0.033252354711294174, -0.0578574500977993, -0.015363571234047413, -0.0030098208226263523, -0.004008892457932234, 0.01103270798921585, -0.06320485472679138, 0.007267469074577093, -0.034323759377002716, -0.048380278050899506, 0.10654330998659134, 0.11112494766712189, 0.07408586144447327, -0.08251280337572098, -0.026731906458735466, 0.007956381887197495, -0.09265138953924179, -0.04848262295126915, 0.028149427846074104, 0.07123175263404846, -0.004588882904499769, -0.1572544127702713, 0.005034751258790493, 0.02898459881544113, -0.030777115374803543, -0.03355788812041283, -0.01577891781926155, -0.07519403845071793, 0.07573314011096954, -0.01323000993579626, -0.036619074642658234, 0.0002470638428349048, -0.04614492133259773, 0.01448032446205616, -0.0250445194542408, -0.039445530623197556, -0.07140882313251495, 0.01923386938869953, 0.00008018322114367038, 0.04297675937414169, -0.05530079826712608, 0.08050701767206192, 0.024250593036413193, -0.08527947962284088, -0.05591826140880585, -0.060814645141363144, 0.06345052272081375, 0.02590763382613659, 0.04985586181282997, -0.04166686162352562, -0.006555864587426186, 0.041501257568597794, 0.058972593396902084, 0.06176808103919029, 0.04025882109999657, -0.004096875432878733, 0.02664189040660858, -0.0010918559273704886, 0.053458407521247864, -0.04252183064818382, -0.062354687601327896, 0.09441415965557098, -0.04952546954154968, -0.004789839964359999, 0.000482763018226251, 9.097771442030917e-32, -0.09058423340320587, 0.008432090282440186, -0.027323083952069283, 0.031053097918629646, -0.006285780109465122, 0.018236225470900536, -0.017928889021277428, 0.0014089932665228844, -0.03127017617225647, 0.054071515798568726, 0.023517819121479988, -0.04211367294192314, -0.07568041980266571, 0.017849745228886604, 0.029435543343424797, -0.041259147226810455, 0.018758783116936684, -0.04217499494552612, -0.04130396246910095, -0.09573814272880554, -0.024981176480650902, 0.05264560133218765, -0.0051539926789700985, 0.0452587828040123, 0.03019089065492153, -0.01731133833527565, 0.04511507228016853, -0.009438971988856792, -0.004270059987902641, -0.10535012930631638, 0.03435831889510155, -0.00706481421366334, 0.05160335451364517, -0.016663886606693268, 0.07517500966787338, 0.0060094138607382774, 0.0010011181002482772, 0.015232719480991364, -0.007299324963241816, 0.0621260330080986, 0.008811019361019135, -0.010385366156697273, 0.03162720799446106, 0.0030245089437812567, -0.018939821049571037, -0.025931470096111298, -0.09104621410369873, -0.035689856857061386, -0.1099046841263771, -0.007562149316072464, 0.04865938052535057, -0.0015565491048619151, 0.1115906834602356, 0.003302524331957102, -0.03213223069906235, -0.0417473129928112, 0.13843058049678802, 0.049538690596818924, -0.01678360439836979, -0.013090250082314014, -0.017316533252596855, 0.07595469057559967, -0.05956455320119858, -0.02212587557733059 ]
260 Chapter 12 The vertical distance from A to B is f(x0 + h) − f(x0). AB f(x 0 + h) – f(x 0) h The horizontal distance is x0 + h − x0 = h. So the gradient of AB is f ( x 0 + h) − f ( x 0 ) ______________ h As h g ets smaller, the gradient of AB gets closer to the gradient of the tangent to the curve at A. This means that the gradient of the curve at A is the limit of this expression as the value of h tends to 0. You can use this to define the gradient function. ■ The gradient function, or derivative, of the curve y = f(x) is written as f9( x) or dy ___ dx . f 9 (x ) = lim h → 0 f(x + h) − f(x) _____________ h The gradient function can be used to find the gr adient of the curve for any value of x. Using this rule to find the derivative is called differentiating from first principles. lim h → 0 means ‘the limit as h tends to 0’. You can’t evaluate the expression when h = 0, but as h gets smaller the expression gets closer to a fixed (or limiting ) value.Notation The point A with coordinates ( 4, 16 ) lies on the curve with equation y = x2. At point A the curve has gradient g. a Show that g =  lim h → 0 (8 + h) . b Deduce the value of g.Example 2 a g =   lim h → 0 f(4 + h) − f(4) _____________ h =  lim h → 0 (4 + h)2 − 42 ____________ h = lim h → 0 16 + 8h + h2 − 16 ___________________ h = lim h → 0 8h + h2 ________ h = lim h → 0 (8 +  h) b g = 8Use the definition of the derivative with x  = 4. As h → 0 the limiting value is 8, so the gradient at point A is 8.The 16 and the −16 cancel, and you can cancel h in the fraction.The function is f(x ) = x2. Remember to square everything inside the brackets. ← Section 2.3
[ 0.03444387763738632, 0.10872754454612732, -0.004970457870513201, -0.04066607728600502, -0.04129614308476448, 0.0393415130674839, -0.018656805157661438, 0.02222255803644657, 0.039297886192798615, 0.042143020778894424, 0.10130821168422699, 0.017751256003975868, -0.005604993551969528, 0.03823669254779816, -0.12260876595973969, 0.03893529251217842, -0.011115999892354012, -0.01497394684702158, -0.06688220798969269, -0.07646134495735168, -0.001994134159758687, 0.020924748852849007, -0.024639515206217766, -0.053642045706510544, -0.09244416654109955, -0.0845271646976471, -0.008363580331206322, -0.0004130066663492471, 0.017599500715732574, -0.07330196350812912, -0.010044754482805729, -0.00030718150082975626, 0.08452355116605759, -0.010343915782868862, 0.07761091738939285, 0.03199522942304611, 0.008288497105240822, -0.01624716818332672, 0.05435244366526604, 0.06231088936328888, -0.02889239229261875, 0.0737033486366272, -0.08840223401784897, 0.04535163193941116, -0.02171200141310692, 0.033277492970228195, 0.03214561939239502, -0.0006988777313381433, -0.05970306694507599, 0.004537356551736593, 0.023692455142736435, -0.06079215183854103, -0.07065626978874207, -0.029774731025099754, -0.037956420332193375, -0.02179703302681446, 0.07991030812263489, 0.03291657939553261, -0.0013401925098150969, 0.10408918559551239, 0.004300930071622133, -0.06005973368883133, 0.033898819237947464, 0.07736056298017502, -0.03345741704106331, -0.06433591991662979, -0.04327371343970299, -0.04020916670560837, -0.059808116406202316, 0.09085316956043243, -0.09502829611301422, -0.05450677126646042, 0.033486999571323395, -0.08749566227197647, 0.00754010584205389, 0.01244234386831522, 0.06929203122854233, 0.07755530625581741, -0.020313961431384087, -0.12018962949514389, -0.03601641580462456, 0.05766218900680542, 0.03003154881298542, 0.08462771028280258, 0.0016484238440170884, 0.0076326653361320496, 0.03703828155994415, -0.01883249171078205, 0.0005352876614779234, -0.04234742000699043, -0.014866321347653866, -0.02649226225912571, -0.0772964134812355, -0.0004846030205953866, -0.014287000522017479, -0.054947011172771454, -0.0737118273973465, -0.0957358106970787, 0.05902829393744469, 0.03771286457777023, 0.003094131825491786, -0.004509531427174807, -0.09156924486160278, 0.08060267567634583, 0.03370608389377594, 0.02836492843925953, -0.03198415786027908, 0.04887984320521355, -0.02551800012588501, 0.03203072026371956, 0.041110582649707794, 0.01843586005270481, 0.01687757857143879, -0.008641443215310574, 0.07433129101991653, -0.0977332666516304, -0.008409044705331326, -0.023840535432100296, -0.014902537688612938, -0.02852623350918293, -0.01150363776832819, -0.08171122521162033, 0.03459129482507706, 0.0016081315698102117, -0.07320527732372284, 0.006219529081135988, -0.011764458380639553, 0.03707905486226082, -0.022563941776752472, -0.019023343920707703, 0.01458679884672165, -0.035893309861421585, -0.07646153122186661, -0.035799916833639145, 0.03463852405548096, -0.05884607508778572, -0.10649117827415466, 0.03464606776833534, -0.006759240757673979, -0.014536119066178799, 0.003613275708630681, -0.0019479107577353716, 0.024222590029239655, -0.007413514424115419, 0.0234847329556942, -0.01706472598016262, -0.016145672649145126, 0.027577005326747894, 0.01336396299302578, -0.01740577630698681, 0.06543131172657013, -0.005285228136926889, -0.029556240886449814, -0.0011328180553391576, -0.030354093760252, 0.062115397304296494, -0.021255264058709145, 0.036793097853660583, -0.03922204300761223, -0.023008374497294426, -0.034405265003442764, 0.010286848992109299, 0.037821631878614426, 0.047152966260910034, 0.00969722867012024, -0.04702054336667061, 0.02762552537024021, 0.015138293616473675, -0.004264283925294876, 0.01483988482505083, 0.1084374263882637, 0.006632970180362463, -0.03810804337263107, 0.12561272084712982, -0.0962127298116684, 0.08013761043548584, 0.03339161351323128, 0.07041975110769272, 0.00444655679166317, 0.006359694991260767, 0.05726660415530205, -0.06626374274492264, 0.058961398899555206, -0.028555937111377716, -0.02998172678053379, 0.06913110613822937, -0.06173466518521309, 0.07841940969228745, -0.014040146954357624, 0.012149604968726635, 0.0034901525359600782, -0.03100246749818325, -0.05462232604622841, 0.027422893792390823, -0.07954040914773941, -0.005438164342194796, -0.038319677114486694, 0.012532449327409267, -0.020088573917746544, -0.016063299030065536, 0.007506322115659714, 0.010273803025484085, -0.07450864464044571, 0.020602429285645485, -0.06212703138589859, -0.021122680976986885, 0.09074820578098297, -0.08395314961671829, -0.13100390136241913, 0.031114578247070312, -0.007185175083577633, -0.022581765428185463, -0.00327388197183609, 0.006527686957269907, -0.0506415031850338, -0.03518146649003029, 0.007857279852032661, 0.007760865148156881, -0.08934006094932556, 0.00990291591733694, -0.04838242381811142, 0.05450432375073433, 0.043109994381666183, 3.779681596898106e-33, -0.0016501422505825758, -0.001463990076445043, -0.004364882130175829, -0.05693504214286804, 0.05786944925785065, 0.013666044920682907, 0.05650227144360542, 0.14253239333629608, 0.007294260431081057, 0.08763761073350906, -0.08148033171892166, 0.013359075412154198, -0.05179780721664429, 0.007033577188849449, -0.008593539707362652, -0.09140601754188538, 0.07822735607624054, -0.0032834766898304224, -0.012883439660072327, -0.005936645437031984, 0.01974380761384964, 0.015507079660892487, -0.024706747382879257, 0.01901259459555149, 0.029242150485515594, 0.01288911234587431, 0.019592802971601486, 0.023700520396232605, -0.026182249188423157, -0.027315830811858177, 0.048238519579172134, -0.027676302939653397, -0.032491352409124374, -0.0005620055599138141, 0.023310083895921707, 0.003163855755701661, -0.028085526078939438, 0.00814526155591011, -0.020467596128582954, -0.06702695041894913, 0.0433957614004612, 0.09296531975269318, 0.13452638685703278, -0.10348551720380783, 0.03546435758471489, 0.02762545831501484, -0.043090034276247025, -0.05036194622516632, 0.0034180383663624525, 0.00828978419303894, 0.0010578087531030178, -0.12083958834409714, 0.00395751791074872, 0.06331643462181091, 0.002143650781363249, 0.025042777881026268, -0.022534608840942383, -0.0985817164182663, 0.04337397217750549, 0.013075413182377815, 0.0110464533790946, 0.03931461274623871, -0.0467207133769989, 0.12199541181325912, -0.027652857825160027, 0.055961500853300095, -0.05673854425549507, -0.02039143815636635, 0.03312108665704727, -0.0011144729796797037, -0.04319817200303078, 0.1553153693675995, 0.04301353543996811, -0.04224129021167755, -0.01769658736884594, -0.06567774713039398, 0.06600765138864517, -0.021453768014907837, 0.040449973195791245, -0.034192297607660294, 0.0040265643037855625, 0.0723206102848053, 0.09176874905824661, -0.017915327101945877, -0.011668173596262932, -0.03741176426410675, -0.06673016399145126, 0.00315465172752738, 0.07929601520299911, -0.02484896592795849, -0.02976764179766178, 0.02488705888390541, -0.09497116506099701, -0.10749569535255432, -0.05419429764151573, 5.721554183418369e-32, -0.11782670766115189, 0.013670853339135647, -0.04020266234874725, -0.017353415489196777, 0.011955258436501026, 0.08743862062692642, 0.0426759347319603, -0.0893528014421463, 0.01845712959766388, 0.010492876172065735, -0.025798814371228218, 0.03087124228477478, 0.03815512731671333, 0.10343601554632187, 0.07984154671430588, 0.03785538300871849, 0.01918109506368637, -0.05812004208564758, 0.011279361322522163, -0.04053080454468727, -0.0031480002216994762, 0.01801343262195587, -0.05901576206088066, 0.01999603770673275, -0.005706312600523233, -0.03738938271999359, 0.002580496249720454, 0.040958039462566376, 0.054197922348976135, -0.0640290230512619, -0.021454140543937683, 0.013635970652103424, 0.06965425610542297, 0.05375886708498001, 0.019203519448637962, -0.0022466133814305067, -0.05054927617311478, 0.02185649424791336, -0.05106611177325249, 0.11226831376552582, 0.021393554285168648, -0.06329353898763657, 0.09974914789199829, -0.026425892487168312, -0.03718201071023941, -0.006768695544451475, -0.06005140393972397, 0.057005397975444794, -0.07479508221149445, 0.02265293337404728, 0.06890322268009186, 0.06553806364536285, 0.08045636862516403, 0.049807675182819366, -0.010063931345939636, -0.05849265679717064, 0.11969361454248428, -0.01883622817695141, -0.019953172653913498, -0.03511204943060875, -0.03127067908644676, -0.001835616072639823, -0.062059760093688965, -0.001077356399036944 ]
261Differentiation Prove, from first principles, that the derivative of x3 is 3x2.Example 3 f(x) = x3 f9(x) =  lim h → 0   f(x + h) − f( x) ____________ h =  lim h → 0   (x + h)3 − (x)3 _____________ h =  lim h → 0   x3 + 3 x2h + 3 xh2 + h3 − x3 _________________________ h =  lim h → 0   3x2h + 3 xh2 + h3 _________________ h =  lim h → 0   h(3x2 + 3 xh + h2) _________________ h =  lim h → 0 (3x2 + 3 xh + h2) As h → 0, 3 xh → 0 and h2 → 0. So f9(x) = 3 x2(x + h)3 = (x + h)(x + h)2 = (x + h)(x2 + 2hx + h2) which expands to give x3 + 3x2h + 3xh2 + h3‘From first principles’ means that you have to use the definition of the derivative. You are starting your proof with a known definition, so this is an example of a proof by deduction. Any terms containing h, h2, h3, etc will have a limiting value of 0 as h → 0. 1 For the function f(x) = x2, use the definition of the derivative to show that: a f9 (2) = 4 b f9 (−3) = −6 c f9 (0) = 0 d f9 (50) = 100 2 f(x ) = x2 a Show that f 9 (x) = lim h → 0 (2x + h) . b Hence deduce that f9 (x) = 2x. 3 The point A with coor dinates (−2, −8) lies on the curve with equation y = x3. At point A the curve has gradient g. a Show that g = lim h → 0 (12 − 6h + h 2 ) . b Deduce the value of g. 4 The point A with coor dinates (−1, 4) lies on the curve with equation y = x3 − 5x. The point B also lies on the curve and has x -coordinate (− 1 + h). a Show that the gr adient of the line segment AB is given by h2 − 3h − 2. b Deduce the gradient of the curv e at point A. 5 Prov e, from first principles, that the derivative of 6x is 6. (3 marks) 6 Prov e, from first principles, that the derivative of 4x2 is 8x. (4 marks) 7 f(x ) = ax2, where a is a constant. Prove, from first principles, that f9(x) = 2ax. (4 marks)P Draw a sketch showing points  A and B and the chord between them.Problem-solving E/P E/P E/PExercise 12BDifferentiation Factorise the numerator.
[ 0.0046971701085567474, 0.05172157287597656, 0.013381105847656727, -0.05180977284908295, -0.05967383459210396, 0.03421381488442421, 0.013849047012627125, 0.007181062828749418, -0.030647210776805878, 0.030145954340696335, 0.06259773671627045, -0.08757885545492172, 0.03474423289299011, -0.06187707558274269, 0.02732144296169281, -0.021793775260448456, -0.035444289445877075, 0.0027152777183800936, -0.09117872267961502, -0.057022180408239365, 0.020532330498099327, -0.05294647812843323, -0.056219469755887985, -0.0997527614235878, 0.05045538395643234, -0.04259458929300308, 0.010925049893558025, 0.001658873981796205, -0.0017591683426871896, -0.09277522563934326, -0.07500457018613815, 0.07159606367349625, 0.055475588887929916, -0.11055197566747665, 0.021365433931350708, 0.04525706544518471, 0.05893654376268387, -0.0010235755471512675, -0.00804823637008667, 0.008407637476921082, 0.0022011229302734137, 0.10840079933404922, 0.003245735540986061, -0.03482504189014435, 0.050273142755031586, 0.023721931502223015, 0.04824569821357727, -0.0414678230881691, -0.026846442371606827, -0.04491187259554863, -0.011527464725077152, 0.03295157849788666, -0.03965416178107262, 0.02192201465368271, -0.026330793276429176, -0.11588386446237564, 0.07421069592237473, 0.05605185031890869, -0.026335984468460083, -0.03749551624059677, -0.00013481988571584225, 0.022758791223168373, 0.016708722338080406, 0.05986790359020233, 0.01426005270332098, 0.07617578655481339, -0.01671442948281765, -0.03373025357723236, -0.0006486058700829744, 0.10767294466495514, -0.010138232260942459, -0.018504632636904716, 0.05161943659186363, -0.10406762361526489, 0.0725085511803627, -0.006664438638836145, 0.023476753383874893, -0.04905078187584877, 0.041787516325712204, -0.021579625084996223, -0.11076652258634567, 0.0234760083258152, 0.1122564971446991, 0.09541534632444382, 0.01693667657673359, 0.05147498846054077, -0.060877393931150436, -0.044614408165216446, -0.017603429034352303, -0.0024310562293976545, -0.02373589389026165, 0.017128048464655876, -0.02808389626443386, -0.024099038913846016, -0.04882115498185158, -0.0002916055964305997, 0.019552700221538544, -0.04799114912748337, 0.11523504555225372, 0.08833421021699905, -0.002008056966587901, 0.0038549378514289856, -0.07457523792982101, 0.07426939904689789, -0.020100802183151245, -0.026787158101797104, 0.04915225878357887, 0.0395662747323513, 0.0417579784989357, 0.021023893728852272, -0.05718245357275009, 0.07216544449329376, -0.003141310764476657, -0.08636151254177094, 0.013010420836508274, -0.03628076612949371, -0.013351636938750744, -0.028654687106609344, 0.036881327629089355, -0.03877503052353859, 0.03981487825512886, -0.061540767550468445, 0.05865461006760597, 0.0020128004252910614, -0.04232564941048622, 0.01359521970152855, -0.010182325728237629, 0.04082920029759407, -0.057149384170770645, -0.013253237120807171, -0.01897842437028885, -0.04263162612915039, -0.049882158637046814, -0.0480777882039547, -0.024230634793639183, 0.054595544934272766, -0.09647460281848907, 0.05423218756914139, 0.03448255732655525, -0.028528543189167976, 0.007212422322481871, -0.04834567382931709, -0.014701404608786106, -0.002393085043877363, -0.014670275151729584, -0.05834100395441055, 0.008548040874302387, 0.014566758647561073, -0.014607063494622707, -0.011209610849618912, 0.08467390388250351, -0.014091584831476212, -0.02590726874768734, -0.011227136477828026, -0.01572396606206894, -0.01785372756421566, 0.03720798343420029, -0.0657862201333046, 0.011626222170889378, -0.003177671693265438, -0.06079251319169998, -0.008637859486043453, -0.045446254312992096, 0.0755198523402214, 0.05903821438550949, -0.0367242693901062, 0.07485833764076233, 0.0008211940876208246, 0.04057755693793297, -0.003184628440067172, 0.04947570338845253, 0.013856959529221058, -0.006268629804253578, 0.06309986114501953, -0.061536986380815506, -0.013531794771552086, 0.00012698791397269815, -0.022400707006454468, 0.060139693319797516, 0.06271810084581375, 0.09965746849775314, -0.06939605623483658, 0.06272216886281967, -0.03657672181725502, -0.0009918671566992998, 0.07877811789512634, -0.033591028302907944, 0.15547028183937073, -0.007363339886069298, -0.01726973056793213, 0.07909785211086273, -0.009423281066119671, -0.021365845575928688, -0.002687570871785283, -0.07893180847167969, -0.002760619157925248, -0.10379276424646378, 0.023299511522054672, -0.06301568448543549, 0.044128309935331345, 0.0858708843588829, -0.0229463130235672, -0.024233760312199593, 0.015314738266170025, -0.1237645372748375, -0.021218713372945786, 0.007936220616102219, -0.08090674877166748, 0.014402009546756744, 0.058414824306964874, -0.0775410458445549, -0.01417993102222681, 0.036599092185497284, -0.027305178344249725, -0.015881000086665154, 0.01277380995452404, -0.015456483699381351, 0.02209417149424553, -0.02031853422522545, -0.010800544172525406, 0.03464064747095108, 0.023251941427588463, 0.04803130775690079, -1.4331624370160445e-33, -0.006882386282086372, -0.04897763207554817, -0.06957732886075974, -0.07352298498153687, 0.07363928109407425, 0.02569793350994587, -0.013095114380121231, 0.02533695101737976, -0.021484946832060814, 0.09413708001375198, 0.01473530475050211, 0.07452194392681122, -0.06590496003627777, 0.003378459019586444, -0.0865657851099968, -0.04684491083025932, -0.0066951303742825985, -0.013239968568086624, -0.09932980686426163, -0.04155351221561432, 0.03616964444518089, 0.018792711198329926, -0.12479671835899353, 0.05738125741481781, -0.023056956008076668, -0.002593096112832427, 0.026524526998400688, -0.009260007180273533, 0.06804780662059784, -0.004972186870872974, 0.028233518823981285, -0.02128533646464348, 0.02608499303460121, 0.03538541868329048, 0.042313095182180405, -0.05798282101750374, 0.04054001346230507, 0.031663283705711365, -0.005009350832551718, 0.03560953587293625, 0.06925006955862045, 0.015185827389359474, 0.04596201330423355, -0.009467417374253273, 0.04174429550766945, -0.0023270570673048496, -0.12618903815746307, -0.03088328242301941, -0.021576547995209694, 0.12478071451187134, 0.04729537293314934, -0.22751611471176147, -0.038153305649757385, 0.027291756123304367, 0.019857415929436684, 0.0169883593916893, 0.019663386046886444, -0.03263687342405319, 0.06583622097969055, -0.061711862683296204, 0.007793655153363943, 0.08672094345092773, -0.04244052991271019, 0.07896099984645844, 0.0005346127436496317, -0.01433683279901743, -0.106992706656456, 0.01118912547826767, -0.0004132302710786462, 0.06789835542440414, -0.0351773276925087, 0.10696879029273987, -0.012818336486816406, -0.04730090871453285, -0.022635266184806824, -0.00033288003760389984, 0.003211327362805605, 0.06090332940220833, 0.027600720524787903, 0.008108374662697315, -0.002001492539420724, 0.03503403812646866, 0.05214788392186165, 0.0703243687748909, -0.05501692369580269, 0.013950604014098644, -0.004739949479699135, 0.032323095947504044, 0.012996370904147625, -0.02193206362426281, -0.014055737294256687, 0.038534119725227356, -0.06076382100582123, -0.11498898267745972, -0.03956202045083046, 5.439677103310114e-32, -0.0732269212603569, -0.05556758493185043, -0.01509180385619402, -0.027319371700286865, -0.04547767713665962, 0.030923202633857727, 0.011354299262166023, -0.10671890527009964, -0.02788902446627617, -0.07161828130483627, 0.019745750352740288, -0.022013332694768906, 0.03473344445228577, 0.03916564956307411, -0.04875575751066208, -0.061605967581272125, 0.008616229519248009, -0.04613247886300087, 0.010530401021242142, -0.041041407734155655, 0.007296361029148102, 0.049952853471040726, -0.01029973290860653, 0.00011457607615739107, 0.08874113112688065, -0.06869599223136902, 0.006579979322850704, -0.012517905794084072, 0.01355114858597517, -0.08698003739118576, 0.0512983538210392, 0.03510482981801033, 0.008026047609746456, 0.02034294791519642, 0.04128419607877731, -0.03354761004447937, -0.07023558765649796, 0.00074261415284127, -0.04065030440688133, 0.02336263097822666, 0.010867607779800892, -0.04054383561015129, 0.005029403138905764, -0.04343688115477562, 0.021951885893940926, -0.013586941175162792, -0.08409690111875534, 0.0005709317047148943, -0.008573551662266254, -0.07395263761281967, -0.004976241383701563, 0.03506052866578102, 0.1779554784297943, 0.04307032749056816, 0.04189426824450493, -0.005466300528496504, 0.10708657652139664, 0.026034407317638397, -0.04227606952190399, 0.013236602768301964, 0.029382167384028435, 0.05670531839132309, 0.009219229221343994, 0.052580300718545914 ]
262 Chapter 12 Find the derivative, f 9(x ), when f(x) equals: a x6 b x 1 _ 2 c x−2 d x2 × x3 e x __ x5 Example 412.3 Differentiating x n You can use the definition of the derivative to find an expression for the derivative of x n where n is any number. This is called differentiation. ■ For all real values of n, and for a constant a : ● If f(x) = x n then f 9 (x) = n x n − 1 If y  =  x n then dy ___ dx =  nx n − 1 ● If f(x) = ax n then f 9 (x) =  anx n − 1 If y = ax n then dy ___ dx = anx n − 1 a f(x) = x6 So f9(x) = 6x5 b f(x) = x 1 __ 2 So f9(x) = 1 __ 2 x − 1 __ 2 = 1 ____ 2 √ __ x c f(x) = x−2 So f9(x) = −2x−3 = − 2 __ x3 d f(x) = x2 × x3 = x5 So f9(x) =  5x4You can leave your answer in this form or write it as a fraction. You need to write the function in the form x n before you can use the rule. x2 × x3 = x 2 + 3 = x5 f9(x) and dy ___ dx both represent the derivative. You usually use dy ___ dx whe n an expression is given in the form y = …Notation Multiply by the power, then subtract 1 from the power: 6 × x 6 − 1 = 6x 5 The new power is 1 _ 2 − 1 = − 1 _ 2 x − 1 _ 2 = 1 ___ √ __ x ← Section 1.4f(x) = 1 __ x a Giv en that f 9 (x)  =  lim h → 0 f (x + h) − f (x) ______________ h , show that f 9 (x) = lim h → 0 −1 _______ x 2 + xh b Ded uce that f 9 (x) = − 1 __ x 2 Challenge
[ -0.03476310521364212, 0.09939083456993103, 0.0402657650411129, 0.03485766798257828, 0.012130330316722393, 0.02812100574374199, 0.048979587852954865, -0.014095032587647438, 0.04737777262926102, 0.045380085706710815, 0.06666013598442078, -0.02306460402905941, 0.014071312732994556, -0.02562166377902031, -0.05380983650684357, -0.04686499387025833, -0.07518090307712555, 0.021253196522593498, -0.10137682408094406, -0.08082404732704163, 0.050373416393995285, 0.03173021227121353, -0.09318901598453522, -0.05207446590065956, 0.07891981303691864, -0.02189086750149727, 0.03590293973684311, -0.016705036163330078, -0.050269827246665955, -0.10262777656316757, -0.08230850100517273, 0.06725645065307617, 0.0647737979888916, -0.023717427626252174, 0.004033457487821579, 0.01786624826490879, 0.05500473827123642, 0.02781686745584011, 0.0072816344909369946, -0.01433202438056469, -0.0026171517092734575, 0.06058261916041374, -0.030301565304398537, 0.01948179304599762, 0.019586466252803802, -0.005642362404614687, -0.025700654834508896, -0.01513728778809309, -0.005350349936634302, -0.040760401636362076, -0.010617290623486042, 0.008100071921944618, -0.10266546159982681, 0.0030012461356818676, -0.0021773690823465586, -0.10629566758871078, 0.07604225724935532, 0.01732158288359642, 0.056468747556209564, -0.02246159501373768, -0.0820857584476471, -0.020721526816487312, -0.031461428850889206, 0.03803837299346924, -0.061133477836847305, 0.05907706171274185, 0.02266334556043148, -0.07181049138307571, 0.0018456466495990753, 0.07826448231935501, -0.09345842152833939, -0.04768645018339157, 0.09734397381544113, -0.01623784378170967, 0.06434705853462219, 0.032241061329841614, -0.01363212801516056, -0.013781114481389523, 0.05072493851184845, 0.01924564130604267, -0.04005640000104904, 0.03898504003882408, 0.08207958191633224, 0.07464994490146637, 0.047566208988428116, -0.04664299637079239, 0.02592615969479084, -0.034732140600681305, 0.029311327263712883, 0.0400325208902359, 0.02639947086572647, -0.04813298210501671, -0.013568900525569916, -0.06414811313152313, -0.030878836289048195, -0.06022022292017937, -0.05691869556903839, -0.07305734604597092, 0.07901272177696228, 0.057607416063547134, 0.006914603523910046, 0.07284128665924072, -0.04518219083547592, 0.07544625550508499, -0.07065028697252274, -0.04141058772802353, 0.03502361848950386, -0.03304235637187958, 0.07105640321969986, -0.05632605031132698, -0.03410171717405319, -0.07412535697221756, -0.021698877215385437, -0.0959399938583374, 0.07808758318424225, -0.054209981113672256, 0.024391403421759605, -0.10154895484447479, 0.0606846921145916, -0.02264455519616604, 0.022062858566641808, -0.08790535479784012, 0.021199939772486687, 0.03115078993141651, -0.08095463365316391, 0.06570947915315628, 0.00038441873039118946, 0.053181033581495285, -0.06657610088586807, -0.0463530607521534, 0.05218430981040001, -0.029506999999284744, -0.060995541512966156, 0.006944602821022272, -0.07323574274778366, 0.06961321830749512, -0.09485374391078949, 0.0131352748721838, 0.009678286500275135, 0.013312432914972305, -0.06445156037807465, 0.018064625561237335, 0.00668506883084774, 0.025594893842935562, -0.011509456671774387, -0.02352953888475895, 0.03492842987179756, -0.026960095390677452, -0.03467787429690361, 0.02726254053413868, 0.04254729673266411, 0.02832517772912979, -0.024417109787464142, 0.033223576843738556, -0.03629171475768089, -0.017338639125227928, 0.07207193970680237, -0.012686888687312603, -0.005966479424387217, -0.07644450664520264, -0.051734939217567444, 0.03157272934913635, 0.059255387634038925, 0.08291981369256973, -0.004845726769417524, 0.050780389457941055, 0.12969064712524414, 0.04133184254169464, -0.032111261039972305, -0.009045679122209549, 0.029783716425299644, 0.03635333105921745, 0.012682605534791946, 0.0874798372387886, -0.06624915450811386, 0.0008090369519777596, 0.05564297363162041, -0.00017044664127752185, 0.05440416932106018, 0.029334714636206627, 0.02983679249882698, -0.03683636337518692, -0.01452005933970213, -0.03773735836148262, -0.02206365577876568, 0.03570752218365669, -0.0343426950275898, 0.11862016469240189, 0.03544967621564865, -0.0459335558116436, 0.06748560816049576, -0.0314234234392643, -0.010263470001518726, 0.013139932416379452, -0.07669775933027267, 0.019541626796126366, -0.07639146596193314, -0.04342739284038544, -0.0828671008348465, -0.0165616013109684, 0.07648962736129761, -0.04313882812857628, 0.011066149920225143, 0.03885086625814438, -0.07805616408586502, -0.037537239491939545, -0.014558501541614532, -0.09835503250360489, 0.039356399327516556, 0.039582785218954086, -0.066530242562294, 0.02275186963379383, 0.06180727854371071, 0.07182294875383377, -0.03885146975517273, -0.07415259629487991, 0.04985175281763077, 0.033423714339733124, -0.02376861497759819, -0.058326803147792816, 0.004449350293725729, -0.027058599516749382, 0.012243405915796757, -7.314711227979416e-33, -0.026355907320976257, -0.010652665048837662, -0.01029297150671482, -0.026011863723397255, 0.06607472151517868, 0.015150175429880619, 0.045066654682159424, -0.05989489704370499, 0.0326211117208004, 0.04592897370457649, -0.07898372411727905, 0.0913938656449318, -0.01322118565440178, -0.002661453327164054, -0.13442127406597137, -0.02239501290023327, -0.08236674219369888, 0.004748151171952486, -0.06410523504018784, -0.02400745078921318, -0.07314890623092651, -0.07222729176282883, -0.022054152563214302, 0.029605191200971603, 0.0463472455739975, -0.04691893234848976, 0.01908101700246334, 0.0017282397020608187, 0.03304562345147133, -0.024238968268036842, -0.04376451298594475, 0.010130331851541996, 0.02715127542614937, 0.0347307026386261, 0.026171894744038582, -0.05015945807099342, 0.031973473727703094, 0.00315126427449286, -0.11083013564348221, 0.008926874957978725, 0.13517987728118896, 0.026425698772072792, 0.07003530859947205, -0.056583259254693985, 0.01764458604156971, -0.003992587793618441, -0.05965252220630646, 0.036570023745298386, 0.028803344815969467, 0.049414169043302536, 0.0002759687486104667, -0.19446887075901031, 0.035020798444747925, 0.0527871698141098, -0.02562945894896984, -0.019266635179519653, -0.008324319496750832, -0.015223750844597816, 0.02822001837193966, 0.010550415143370628, -0.013069539330899715, 0.025245582684874535, -0.04180889204144478, 0.05581337586045265, -0.04365992546081543, 0.008019580505788326, -0.09614914655685425, -0.01892212964594364, -0.012909376062452793, 0.026295874267816544, -0.018789999186992645, 0.10625645518302917, -0.05637966841459274, -0.031998470425605774, -0.03417160362005234, -0.03386780619621277, -0.006583486218005419, 0.04957462474703789, 0.06337320804595947, 0.0570799820125103, 0.015287981368601322, 0.02088555134832859, 0.0599534809589386, 0.01555187813937664, -0.0650629997253418, -0.02683098241686821, 0.09415800124406815, 0.046117499470710754, 0.03704667091369629, 0.018283329904079437, -0.027392862364649773, 0.020136142149567604, -0.09309709072113037, -0.11863897740840912, 0.03579331189393997, 8.024331159758319e-32, -0.01610032469034195, -0.00225576083175838, 0.026581140235066414, -0.028391925618052483, 0.012184245511889458, 0.07650962471961975, -0.014106730930507183, -0.015008064918220043, 0.019658299162983894, -0.05930859223008156, -0.01197717897593975, -0.010920439846813679, 0.001312002306804061, 0.06614597886800766, -0.06976600736379623, -0.12386941909790039, -0.005310981534421444, -0.008570686914026737, 0.03253350034356117, 0.027829216793179512, -0.015105784870684147, 0.03622078150510788, -0.023472122848033905, -0.03474436327815056, 0.09935662150382996, -0.039208125323057175, 0.0017183319432660937, -0.01918375864624977, -0.09555114805698395, -0.018474634736776352, 0.010750839486718178, 0.008689639158546925, 0.049116190522909164, -0.01976899802684784, 0.044798269867897034, 0.06978817284107208, 0.02682742290198803, 0.009003597311675549, 0.004558689892292023, 0.06336263567209244, 0.012689408846199512, -0.04795566201210022, 0.018183041363954544, -0.05973675847053528, 0.0385080985724926, -0.012562583200633526, -0.13659892976284027, -0.03222043067216873, -0.04310879483819008, -0.07113824039697647, -0.004215086344629526, 0.027682343497872353, 0.09766347706317902, 0.030183255672454834, 0.030868811532855034, -0.053206268697977066, 0.05611909553408623, -0.01832341030240059, -0.061266180127859116, 0.006843003910034895, -0.04270785301923752, 0.056833770126104355, 0.030779410153627396, 0.01571059226989746 ]
263Differentiation e f(x) = x  ÷ x5 = x−4 So f9(x) = −4x−5 = − 4 __ x5 Find dy ___ dx when y equals: a 7x3 b −4 x 1 _ 2 c 3x−2 d 8 x 7 ____ 3x e √ ____ 36 x 3 Example 5 1 Find f 9(x ) given that f(x) equals: a x7 b x8 c x4 d x 1 _ 3 e x 1 _ 4 f 3 √ __ x g x−3 h x−4 i 1 __ x 2 j 1 __ x 5 k 1 ___ √ __ x l 1 ___ 3 √ __ x m x3 × x6 n x2 × x3 o x × x2 p x 2 __ x 4 q x 3 __ x 2 r x 6 __ x 3 2 Find dy ___ dx given that y equals: a 3x2 b 6x9 c 1 _ 2 x 4 d 20 x 1 _ 4 e 6 x 5 _ 4 f 10x−1 g 4 x 6 ____ 2 x 3 h x ____ 8 x 5 i − 2 ___ √ __ x j √ _________ 5 x 4 × 10x _________ 2 x 2 Exercise 12CUse the laws of indices to simplify the fraction: x1 ÷ x5 = x 1 − 5 = x −4 Use the rule for differentiating ax n with a = 7 and n = 3. Multiply by 3 then subtract 1 from the power.a dy ___ dx  = 7 × 3x3 − 1 = 21x2 b dy ___ dx  = −4 × 1 __ 2 x − 1 __ 2 = −2 x − 1 __ 2 = − 2 ___ √ __ x c dy ___ dx  = 3 × −2x−3 = −6x−3 = − 6 ___ x 3 d y = 8 __ 3 x 6 dy ___ dx = 6 × 8 __ 3 x 5 = 16 x 5 e y = √ ___ 36 × √ ___ x 3 = 6 × (x3 ) 1 __ 2 = 6 x 3 __ 2 dy ___ dx = 6 × 3 __ 2 x 1 __ 2 = 9 x 1 __ 2 = 9 √ __ x Simplify the number part as much as possible.This is the same as differentiating x 1 _ 2 then multiplying the result by −4. Write the expression in the form ax n. Remember a can be any number, including fractions. 3 _ 2 − 1 = 1 _ 2 Make sure that the fu nctions are in the form x n before you differentiate.Hint
[ 0.01373356394469738, 0.06604833900928497, 0.0330975241959095, -0.018002688884735107, 0.00032862371881492436, 0.027202708646655083, 0.06947272270917892, -0.014265363104641438, -0.04618728905916214, 0.07320968806743622, 0.0692266896367073, -0.1263413280248642, 0.022794941440224648, -0.0236124936491251, -0.009348029270768166, -0.05950943008065224, -0.06287656724452972, 0.03444961830973625, -0.137051522731781, -0.01723174750804901, 0.07239636778831482, -0.06819161027669907, -0.046162623912096024, -0.008651086129248142, 0.046633146703243256, -0.0031872205436229706, -0.004461695905774832, 0.013348975218832493, -0.07084187865257263, -0.07197904586791992, -0.058975525200366974, 0.010308688506484032, 0.11944140493869781, -0.08499433100223541, 0.04211857542395592, 0.05238461121916771, 0.045488692820072174, 0.10194134712219238, -0.007465492468327284, -0.05907249450683594, -0.013892432674765587, 0.023055335506796837, 0.011658802628517151, 0.011593625880777836, 0.045644860714673996, -0.07829916477203369, -0.0649852454662323, 0.0017841628286987543, 0.05001119524240494, -0.05143160745501518, 0.040958281606435776, 0.026580149307847023, -0.15557901561260223, 0.009172403253614902, 0.013474265113472939, -0.07301708310842514, 0.08493490517139435, 0.028499994426965714, -0.016977496445178986, 0.014779429882764816, -0.04096498712897301, 0.02586257830262184, -0.023779183626174927, 0.01783498004078865, -0.03487290069460869, 0.057446159422397614, 0.03745972365140915, -0.09917759150266647, -0.04208127409219742, 0.08037678897380829, -0.07208066433668137, -0.008274822495877743, -0.03968373313546181, -0.03651213273406029, 0.09827311336994171, 0.023859573528170586, -0.03752575069665909, -0.022883005440235138, 0.0006169087719172239, -0.011349432170391083, -0.03542540222406387, 0.05752719193696976, 0.058683376759290695, 0.0452360175549984, 0.020904047414660454, 0.0034154229797422886, 0.017666207626461983, 0.029895659536123276, -0.01977180689573288, 0.09276475012302399, -0.0017382170772179961, 0.006489182356745005, -0.07347822189331055, -0.06432413309812546, -0.06168084591627121, -0.04955403134226799, 0.024065539240837097, -0.08190479874610901, 0.009501393884420395, 0.09516650438308716, -0.030421579256653786, 0.07446148246526718, -0.014557317830622196, 0.06339028477668762, -0.03514379635453224, -0.08789471536874771, -0.008385197259485722, -0.039591122418642044, 0.0899980291724205, -0.06863526999950409, -0.040925558656454086, -0.10341500490903854, -0.0237745251506567, -0.058968666940927505, 0.032727260142564774, -0.052065618336200714, 0.018442677333950996, -0.0011519023682922125, 0.008893059566617012, -0.038189660757780075, 0.02818945050239563, -0.00029330674442462623, 0.050734978169202805, -0.015906156972050667, -0.0012130377581343055, -0.03883911296725273, -0.042848747223615646, 0.06314890086650848, -0.04047728329896927, -0.07656653970479965, 0.09928137063980103, -0.06771380454301834, -0.06541334092617035, 0.0008490340551361442, -0.06183857098221779, 0.023729700595140457, -0.03763654828071594, 0.010742112062871456, 0.01291004940867424, 0.009634662419557571, -0.04331221431493759, 0.06858262419700623, 0.1022113636136055, 0.0026557284872978926, -0.013925151899456978, 0.003560040844604373, -0.0397195890545845, 0.0011989177437499166, 0.01336828526109457, 0.05196438357234001, 0.06826961785554886, -0.04977339878678322, -0.030790871009230614, 0.04861825332045555, -0.07809000462293625, -0.03936563804745674, 0.022312570363283157, 0.002925979206338525, -0.06758251041173935, -0.06327501684427261, -0.06384778022766113, 0.033990778028964996, 0.042627811431884766, 0.10350342839956284, 0.07351817935705185, 0.07328985631465912, -0.004810976795852184, 0.034350279718637466, 0.004090235102921724, -0.04148145765066147, -0.008106616325676441, -0.014264014549553394, 0.025061698630452156, 0.03251960501074791, -0.01575118862092495, -0.01388204749673605, 0.0877213403582573, 0.03840593621134758, 0.013774609193205833, -0.031068477779626846, 0.09523185342550278, -0.07466007769107819, -0.007264925632625818, 0.011654266156256199, -0.0005361284129321575, -0.013619592413306236, -0.012049510143697262, 0.033829215914011, 0.011318442411720753, -0.026747310534119606, 0.04851199686527252, -0.029100138694047928, -0.0013135649496689439, 0.012628358788788319, -0.06384573131799698, 0.012758912518620491, -0.07563906162977219, -0.07326474040746689, -0.113722063601017, 0.09728869795799255, 0.09852712601423264, 0.01627819426357746, 0.0978899598121643, 0.055284902453422546, -0.06562639027833939, -0.021403320133686066, -0.044789478182792664, -0.027005648240447044, -0.0008304982329718769, 0.038944292813539505, -0.10141311585903168, 0.038436468690633774, -0.000374524446669966, 0.015263090841472149, 0.01534793060272932, -0.09708324819803238, -0.0005411285674199462, 0.015899883583188057, -0.024330340325832367, -0.002127789193764329, 0.006385729182511568, 0.012060025706887245, 0.1211395263671875, -1.1727973259711196e-32, -0.012490455061197281, 0.0007792875985614955, -0.06365533173084259, -0.03067433089017868, 0.047118525952100754, 0.029081756249070168, 0.054405104368925095, -0.07701081782579422, 0.047677237540483475, 0.05825871229171753, -0.024814262986183167, 0.07643161714076996, -0.009469350799918175, 0.006844602059572935, -0.12397532165050507, 0.03751588985323906, -0.0791616439819336, -0.037389375269412994, -0.057288721203804016, 0.009983879514038563, -0.04975907504558563, -0.0449058823287487, -0.0320657417178154, 0.03457342088222504, 0.04960021376609802, 0.06372470408678055, -0.025597380474209785, -0.03749584034085274, 0.007482942193746567, -0.02754240855574608, -0.03449975326657295, -0.016588222235441208, 0.05076812207698822, 0.06576770544052124, 0.007910757325589657, -0.05590609833598137, -0.0028221402317285538, -0.011877019889652729, -0.008206714875996113, 0.04572303593158722, 0.04259076341986656, 0.08687805384397507, 0.05667170509696007, -0.007565248757600784, 0.024476051330566406, -0.02238139696419239, -0.05070612579584122, 0.021842626854777336, 0.05627991631627083, 0.06851492077112198, -0.03435133770108223, -0.13457950949668884, -0.03943300247192383, 0.0575924888253212, -0.0226135291159153, -0.03013858012855053, -0.011404940858483315, -0.0583622045814991, -0.013201209716498852, 0.016274189576506615, -0.04068233445286751, -0.024310022592544556, 0.017319807782769203, 0.01488815899938345, -0.06731049716472626, 0.01595490425825119, -0.04430486261844635, -0.07852386683225632, -0.027994070202112198, 0.05198042839765549, 0.01330634020268917, 0.064723439514637, -0.06934575736522675, -0.039326444268226624, -0.06295152753591537, -0.011802680790424347, -0.04854285344481468, 0.06407588720321655, 0.06103020906448364, 0.11569347232580185, -0.08804114907979965, 0.070908322930336, -0.01801886036992073, 0.061292052268981934, -0.10087813436985016, -0.03595026582479477, 0.09975481778383255, 0.014930110424757004, 0.028226064518094063, 0.020370345562696457, -0.02749585174024105, 0.047314710915088654, 0.04849521443247795, -0.010623416863381863, 0.044147834181785583, 9.446242628101956e-32, -0.09554384648799896, 0.02497265115380287, 0.03110949881374836, 0.029724497348070145, 0.01264534704387188, -0.012477783486247063, -0.02049923688173294, -0.03468983620405197, 0.027238693088293076, -0.11669011414051056, 0.02350757084786892, 0.058631524443626404, -0.08956731110811234, 0.08205267041921616, -0.05192514508962631, -0.05286664143204689, -0.008456128649413586, 0.007801440078765154, -0.03728169575333595, 0.01463097520172596, 0.02596566639840603, 0.008377287536859512, -0.08052031695842743, -0.021521955728530884, 0.03682917356491089, 0.01814904622733593, -0.018573762848973274, -0.023498419672250748, -0.10157504677772522, -0.04463096335530281, 0.001974718412384391, 0.0026106862351298332, 0.04654836654663086, -0.061694517731666565, 0.0719936415553093, 0.04824603348970413, -0.03905884921550751, 0.018144330009818077, -0.06511887162923813, 0.0385703518986702, -0.005872288718819618, -0.03116535022854805, 0.009750853292644024, -0.055936042219400406, 0.02787231095135212, 0.0015237136976793408, -0.040403787046670914, -0.08165912330150604, 0.010891326703131199, -0.0829564556479454, -0.006813455373048782, 0.008551118895411491, -0.0203310027718544, 0.001965663395822048, 0.02859088033437729, -0.0025018295273184776, 0.0013633681228384376, -0.004652529954910278, 0.019529707729816437, 0.00297525804489851, -0.09699438512325287, 0.07627668976783752, -0.010033288039267063, 0.0020107089076191187 ]
264 Chapter 12 3 Find the gradient of the curv e with equation y = 3 √ __ x at the point where: a x =  4 b x =  9 c x =   1 _ 4 d x =   9 __ 16 4 Given tha t 2y2 − x3 = 0 and y > 0, find dy ___ dx (2 marks) 12.4 Differentiating quadratics You can differentiate a function with more than one term by differentiating the terms one-at-a-time. The highest power of x in a quadratic function is x 2, so the highest power of x in its derivative will be x. You can find this expression for dy ___ dx by differentiating each of the terms one-at-a-time: ax2Differentiate 2ax1 = 2ax bx = bx1Differentiate 1bx0 = bc Differentiate The quadratic term tells you the slope of thegradient function.An x term differentiatesto give a constant.Constant termsdisappear whenyou differentiate. 0E/P The derivative is a straight line with gra dient 2 a. It crosses the x -axis once, at the point where the quadratic curve has zero gradient. This is the turning point of the quadratic curve. ← Section 5.1Links Find dy ___ dx given that y equals: a x2 + 3x b 8x  − 7 c 4x2 − 3x + 5Example 6 a y = x2 + 3 x So dy ___ dx = 2x + 3 b y = 8x − 7 So dy ___ dx = 8 c y = 4x2 − 3 x + 5 So dy ___ dx = 8 x − 3Differentiate the terms one-at-a-time. The constant term disappears when you differentiate. The line y = −7 would have zero gradient. The derivative is 2ax + b = 2 × 4x − 3 = 8x − 3.4x2 − 3x + 5 is a quadratic expression with a = 4, b = −3 and c = 5.Try rearranging unfamiliar equations into a form you recognise.Problem-solving ■ For the quadratic curve with equation y = ax2 + bx + c, the derivative is given by dy ___ dx  = 2ax + b
[ 0.03908907622098923, 0.127048522233963, 0.022875163704156876, -0.0013093098532408476, 0.011182256042957306, 0.016975929960608482, -0.0346963070333004, 0.0055518182925879955, -0.030499190092086792, 0.049966197460889816, 0.08024712651968002, -0.0367974229156971, 0.022301601245999336, 0.0005013676709495485, -0.02568163350224495, 0.0008941253763623536, -0.06200128793716431, 0.08350478112697601, -0.08154429495334625, -0.012164718471467495, 0.054570674896240234, -0.05051484331488609, -0.040498409420251846, -0.016539931297302246, 0.04278337582945824, -0.048071421682834625, -0.021268591284751892, -0.017798762768507004, -0.05456399917602539, -0.09735162556171417, -0.026186339557170868, -0.026197316125035286, 0.048519764095544815, -0.01691277138888836, 0.0016191067406907678, 0.04232531785964966, 0.04728987067937851, 0.039552707225084305, 0.03622671589255333, -0.05640442669391632, -0.0017515800427645445, 0.009607135318219662, -0.07144968956708908, 0.009296610951423645, 0.08385103940963745, -0.016816729679703712, -0.03441527113318443, -0.08169904351234436, -0.019659006968140602, -0.08320885896682739, 0.0278159286826849, -0.044420164078474045, -0.10858611017465591, 0.025327136740088463, 0.019285259768366814, -0.0994592234492302, 0.04855918884277344, 0.061044733971357346, 0.11777772009372711, 0.04288265481591225, 0.027801821008324623, 0.012764898128807545, 0.017178628593683243, 0.04592272639274597, -0.018193842843174934, -0.017224743962287903, -0.008510691113770008, -0.020326577126979828, -0.004275883082300425, 0.11104913055896759, -0.10097970813512802, -0.03232242539525032, -0.020794635638594627, -0.03735138103365898, 0.03745388239622116, -0.010175314731895924, -0.0037600232753902674, 0.01707596890628338, 0.02814904972910881, -0.03983587771654129, -0.02241424471139908, 0.0339910089969635, 0.007122848182916641, -0.021729374304413795, 0.023974653333425522, -0.040594298392534256, 0.017883680760860443, -0.03951499983668327, 0.005360205192118883, 0.021574363112449646, -0.0006512769032269716, -0.04063516482710838, -0.023287402465939522, 0.033566392958164215, -0.019164908677339554, -0.06610103696584702, -0.07756776362657547, -0.09917015582323074, 0.07153768837451935, 0.07946509122848511, -0.013931680470705032, 0.002696613548323512, -0.08474022150039673, 0.09883614629507065, 0.0027382955886423588, -0.007375181186944246, 0.08505348861217499, -0.004306780640035868, 0.1012520119547844, -0.06797857582569122, -0.11993574351072311, -0.04707130417227745, -0.0039061184506863356, 0.015944786369800568, 0.0812668576836586, -0.035654038190841675, -0.00015425201854668558, -0.10516714304685593, -0.009506160393357277, -0.0004630343755707145, 0.011606204323470592, 0.0008572392980568111, 0.08123648911714554, -0.030087748542428017, -0.045772477984428406, 0.020343735814094543, -0.0206470750272274, 0.0915396437048912, -0.039721813052892685, -0.046053171157836914, 0.03505554795265198, -0.09812568128108978, -0.045004237443208694, 0.03534185513854027, -0.04915354773402214, 0.019884830340743065, -0.06825418770313263, 0.08355315029621124, 0.02082205004990101, -0.06245145574212074, 0.033721283078193665, 0.07999558746814728, -0.0002920822589658201, -0.02938881888985634, -0.015406985767185688, -0.052676498889923096, -0.0089576356112957, -0.0209078136831522, -0.05607132986187935, 0.0037127577234059572, 0.003055587410926819, -0.023205505684018135, -0.03256555646657944, 0.014660045504570007, -0.052973534911870956, -0.0677969828248024, 0.020286383107304573, -0.05230887606739998, -0.026475025340914726, -0.05768294632434845, -0.1149272695183754, 0.07017625868320465, 0.03915926814079285, 0.06401574611663818, 0.06718651950359344, 0.032478004693984985, 0.09787635505199432, 0.025764646008610725, 0.011524630710482597, 0.05488540977239609, 0.05471973866224289, 0.01648692972958088, -0.05431541055440903, 0.10211754590272903, -0.08947375416755676, -0.06288791447877884, 0.06635890901088715, 0.07185932248830795, 0.10148915648460388, -0.03142207860946655, 0.05409233272075653, -0.03416191786527634, -0.020454922690987587, -0.034863606095314026, 0.047608569264411926, 0.07201668620109558, 0.06232554465532303, 0.08003544062376022, -0.007970482110977173, -0.013821881264448166, -0.00033528421772643924, -0.07714594900608063, 0.006284819450229406, 0.03032786026597023, -0.08739453554153442, 0.0027029274497181177, -0.02774200215935707, -0.030492199584841728, -0.09681712090969086, 0.03383176773786545, 0.07742403447628021, -0.03658168390393257, 0.04532131925225258, 0.01151272002607584, -0.03783649206161499, -0.03923983871936798, -0.01818831078708172, -0.06491570174694061, -0.05119653791189194, 0.010165374726057053, 0.02364932931959629, -0.009655419737100601, -0.01173301599919796, 0.004886263981461525, -0.058427464216947556, -0.08390256762504578, -0.014067428186535835, -0.02912854589521885, -0.06770770251750946, 0.0260329432785511, -0.03672829270362854, 0.031607046723365784, 0.03034800849854946, -2.1867954670507256e-33, 0.04432303458452225, 0.07539807260036469, -0.023971306160092354, -0.002481843112036586, 0.01406924519687891, -0.04789932817220688, 0.03854891657829285, -0.002862992463633418, 0.02032465487718582, 0.10476338863372803, -0.0483226403594017, -0.0021088309586048126, -0.01465142797678709, 0.030214950442314148, -0.03200312331318855, 0.07470449060201645, -0.09077144414186478, 0.12664151191711426, -0.02996768429875374, -0.03150850906968117, -0.0968690738081932, 0.006872209720313549, -0.00723927142098546, 0.034293364733457565, -0.005653339438140392, 0.06081758812069893, 0.054666340351104736, 0.003421950154006481, -0.05143812671303749, 0.04703423008322716, -0.03464919328689575, -0.031630367040634155, 0.02059931308031082, 0.0315333791077137, -0.02990378998219967, -0.011836102232336998, 0.011470841243863106, -0.048768579959869385, -0.012469369918107986, 0.01736026629805565, 0.19091153144836426, 0.14690706133842468, 0.08938538283109665, -0.05315316468477249, -0.0333775170147419, 0.02724548615515232, 0.024907618761062622, -0.0060706110671162605, 0.02694232389330864, 0.03599809110164642, 0.000866647926159203, -0.13333404064178467, 0.05126121640205383, 0.07564900070428848, -0.05100347474217415, -0.01524413749575615, 0.049464575946331024, -0.03939219191670418, 0.025082485750317574, 0.014471709728240967, -0.0010493954177945852, -0.002272070851176977, -0.0210393276065588, 0.06732932478189468, -0.046146806329488754, 0.03734932094812393, -0.04941976070404053, -0.03586657717823982, -0.021989155560731888, 0.007566014304757118, -0.044375818222761154, 0.06865490227937698, -0.07026254385709763, -0.09029971808195114, -0.044099245220422745, -0.09155348688364029, -0.012595536187291145, 0.021994993090629578, 0.05796784907579422, 0.004949737805873156, -0.09798994660377502, 0.07617960125207901, 0.04598796367645264, 0.028791647404432297, -0.045632969588041306, -0.030479641631245613, 0.08155426383018494, 0.025543218478560448, 0.07175233215093613, -0.0472114197909832, -0.03607785701751709, 0.05265594273805618, -0.02094273269176483, -0.00009816212696023285, 0.018230320885777473, 7.932563842272676e-32, -0.056676626205444336, 0.05116419866681099, -0.013321936130523682, 0.0020735100843012333, -0.005251079332083464, -0.001478159218095243, -0.026695461943745613, -0.021964794024825096, -0.015259639360010624, -0.050501611083745956, 0.03174244612455368, -0.00972241722047329, -0.0360172800719738, 0.02633429318666458, -0.05598856136202812, -0.021288789808750153, -0.01810527592897415, -0.02385442703962326, -0.014777219854295254, -0.034654125571250916, -0.007811577059328556, 0.051878124475479126, -0.034211255609989166, 0.018309345468878746, 0.010031566023826599, 0.02410637028515339, -0.02341090701520443, -0.021748313680291176, -0.01878173090517521, -0.10129086673259735, 0.025493938475847244, 0.01664322055876255, 0.0015558941522613168, -0.014052452519536018, 0.037615299224853516, 0.08398719131946564, 0.0028591554146260023, -0.05216744914650917, 0.0022516006138175726, 0.12268922477960587, 0.03388120234012604, -0.06500519812107086, 0.008966957218945026, -0.03006390668451786, -0.015685589984059334, -0.04380916804075241, -0.06570770591497421, -0.0691526010632515, -0.040685806423425674, -0.006565351504832506, 0.050733234733343124, -0.014366034418344498, 0.12222348898649216, 0.06905434280633926, -0.00381080131046474, -0.08845417201519012, 0.037665244191884995, 0.0005836625350639224, -0.059464626014232635, -0.02127040922641754, -0.03678293526172638, 0.07135028392076492, -0.06382095068693161, -0.0354325957596302 ]
265Differentiation 1 Find dy ___ dx when y equals: a 2x2 − 6x + 3 b 1 _ 2 x2 + 12x c 4x2 − 6 d 8x2 + 7x + 12 e 5 +  4x − 5x2 2 Find the gradient of the curv e with equation: a y = 3 x2 at the point (2, 12) b y = x2 + 4x at the point (1, 5) c y = 2 x2 − x − 1 at the point (2, 5) d y =  1 _ 2 x2 + 3 __ 2 x at the point (1, 2) e y = 3  − x2 at the point (1, 2) f y = 4  − 2x2 at the point (−1, 2) 3 Find the y-coor dinate and the value of the gradient at the point P with x-coordinate 1 on the curve with equation y = 3 + 2x − x2. 4 Find the coordinates of the point on the curve with equation y  = x2 + 5x − 4 where the gradient is 3.Let f(x) = 4x2 − 8x + 3. a Find the gradient of y = f(x) at the point ( 1 _ 2 , 0) . b Find the coordinates of the point on the graph of y = f(x) where the gradient is 8. c Find the gradient of y  = f(x) at the points where the curve meets the line y = 4x − 5.Example 7 Exercise 12Da As y =  4x2 − 8 x + 3 dy ___ dx  = f9(x) = 8x − 8 + 0 So f9 ( 1 __ 2 )  = −4 b dy ___ dx  = f9(x) = 8x − 8 = 8 So x = 2 So y = f(2) = 3The point where the gradient is 8 is (2, 3). c 4x2 − 8 x + 3 = 4 x − 5 4x2 − 12 x + 8 = 0 x2 − 3 x + 2 = 0 (x − 2)( x − 1) = 0 So x = 1 or x = 2At x = 1, the gradient is 0.At x = 2, the gradient is 8, as in part b .Differentiate to find the gradient function. Then substitute the x -coordinate value to obtain the gradient. Put the gradient function equal to 8. Then solve the equation you have obtained to give the value of x . Substitute this value of x into f(x) to give the value of y and interpret your answer in words. To find the points of intersection, set the equation of the curve equal to the equation of the line. Solve the resulting quadratic equation to find the x-coordinates of the points of intersection. ← Section 4.4 Substitute the values of x into f9(x) = 8x − 8 to give the gradients at the specified points. Use your calculator to check so lutions to quadratic equations quickly.Online
[ 0.024645080789923668, 0.04479121044278145, 0.08906380087137222, -0.06594657152891159, -0.04466661438345909, 0.007266992703080177, 0.00783770065754652, -0.03277609869837761, 0.009543223306536674, 0.059896986931562424, 0.03504301235079765, -0.06637509167194366, 0.012991795316338539, -0.03868262842297554, -0.07922011613845825, -0.016750477254390717, -0.01211550459265709, 0.01937536709010601, -0.08963564783334732, -0.050659067928791046, 0.03421761468052864, -0.05791233852505684, -0.031129421666264534, -0.0096191531047225, -0.002490248763933778, -0.06386211514472961, -0.003909341059625149, 0.03112231194972992, -0.03638097271323204, -0.04496682062745094, -0.08308473229408264, -0.030638063326478004, 0.05522355064749718, -0.03895045816898346, 0.06443500518798828, 0.10814657807350159, 0.061226196587085724, 0.07797547429800034, 0.02211986482143402, -0.06191479042172432, -0.051193054765462875, 0.00918685644865036, -0.05638769641518593, 0.031359802931547165, 0.06051602214574814, -0.004649064503610134, -0.08012644201517105, -0.035431236028671265, 0.00426968140527606, -0.02993551455438137, 0.10441993176937103, -0.013869505375623703, -0.06780397146940231, 0.05282441899180412, -0.040985189378261566, -0.03919731825590134, 0.08168939501047134, 0.05477254092693329, 0.03741980716586113, 0.04668673127889633, -0.021858369931578636, -0.0027452129870653152, -0.003891668049618602, 0.06541009992361069, -0.046828970313072205, -0.025819512084126472, 0.04705777391791344, -0.02919972687959671, -0.011405828408896923, 0.042724546045064926, -0.06738800555467606, -0.033852655440568924, 0.017905374988913536, -0.10000528395175934, 0.07349548488855362, 0.006767137907445431, 0.0015566062647849321, -0.0011483021080493927, 0.02702466957271099, -0.057571426033973694, -0.035808172076940536, 0.10081636905670166, 0.0076965587213635445, 0.049123335629701614, 0.009725319221615791, -0.01256327610462904, -0.0011650648666545749, -0.02970406599342823, -0.012150171212852001, 0.08524182438850403, 0.07803290337324142, -0.015292191877961159, -0.10178553313016891, -0.008962656371295452, -0.08049790561199188, -0.07832926511764526, 0.024144716560840607, -0.08231718093156815, 0.06574789434671402, 0.08530642837285995, 0.07709669321775436, 0.08081812411546707, -0.062250807881355286, 0.10939163714647293, 0.027955809608101845, -0.021211940795183182, 0.029145022854208946, -0.025869233533740044, 0.08359421789646149, -0.04745110869407654, -0.07533470541238785, -0.06900868564844131, 0.01738858036696911, -0.004314078018069267, 0.06474307924509048, 0.014153375290334225, -0.016127701848745346, -0.0745014175772667, 0.007162939757108688, -0.03590400516986847, 0.02252073399722576, -0.0689653679728508, 0.05491888150572777, -0.02131376974284649, -0.02193332463502884, -0.05718054249882698, -0.023081090301275253, 0.04701974615454674, -0.052636705338954926, -0.061053402721881866, -0.007232234813272953, -0.04133155941963196, -0.0030353821348398924, -0.016777345910668373, -0.019721046090126038, 0.049712732434272766, -0.012337819673120975, -0.002302988898009062, -0.0017181056318804622, -0.05915971100330353, 0.0033525836188346148, 0.09003095328807831, 0.045455045998096466, -0.0745471715927124, -0.009018556214869022, 0.012130515649914742, -0.07978864014148712, 0.01827320270240307, -0.048806481063365936, 0.018433863297104836, 0.06492827832698822, -0.05314018204808235, -0.006331669632345438, 0.034328583627939224, -0.09839271008968353, 0.01563294231891632, -0.04715284705162048, -0.023822078481316566, -0.030529428273439407, -0.03039476089179516, -0.1410534381866455, 0.03415856510400772, 0.03955971822142601, 0.0982389971613884, 0.04288903996348381, 0.06925062090158463, 0.01627426967024803, 0.041142433881759644, 0.019407669082283974, 0.01756563037633896, 0.029617127031087875, 0.02556774578988552, -0.08199059963226318, 0.05679437518119812, -0.0923347994685173, -0.033917926251888275, 0.06467477977275848, 0.07374609261751175, 0.0792442262172699, -0.027425972744822502, 0.026080423966050148, -0.015440338291227818, 0.0027580438181757927, -0.024320300668478012, -0.03997454419732094, 0.007762144319713116, 0.009893804788589478, 0.015575067140161991, -0.02054888941347599, 0.02742268517613411, 0.012574572116136551, -0.06140970066189766, 0.008647359907627106, 0.04971596226096153, -0.0911826640367508, 0.04889862611889839, -0.025008419528603554, -0.05581507086753845, -0.08696237206459045, 0.020959796383976936, 0.1389269381761551, 0.012834139168262482, 0.07883050292730331, 0.025620613247156143, -0.03904313966631889, -0.030362404882907867, -0.0004780022136401385, 0.013001487590372562, -0.07021358609199524, 0.04946109279990196, 0.03189045190811157, 0.015199841931462288, 0.008786363527178764, 0.05052545294165611, -0.012800164520740509, -0.06784594058990479, 0.034110117703676224, -0.010995136573910713, -0.041190795600414276, 0.006257624831050634, -0.025157157331705093, 0.011129692196846008, 0.08546086400747299, -9.591654805781726e-33, -0.010176132433116436, 0.07135984301567078, -0.02720831334590912, -0.05566837266087532, 0.025670085102319717, -0.004319941159337759, 0.03995451331138611, -0.054794792085886, 0.04987090453505516, 0.08078683912754059, -0.0013449896359816194, -0.0007425145013257861, -0.0411158911883831, 0.0034105286467820406, -0.04060794413089752, 0.022721393033862114, -0.05313453823328018, 0.09122420847415924, -0.04241841658949852, 0.0023945728316903114, -0.04366188496351242, -0.016336960718035698, -0.026583541184663773, -0.005352289881557226, 0.08556164056062698, 0.06102820858359337, 0.01990283839404583, -0.0349557027220726, -0.06575056910514832, 0.017828306183218956, -0.03156294301152229, 0.0022341152653098106, 0.059090446680784225, 0.03339840844273567, -0.04110878333449364, -0.05043283849954605, -0.013261719606816769, -0.042456306517124176, -0.028539571911096573, -0.025443056598305702, 0.05838202312588692, 0.14461587369441986, 0.016573142260313034, -0.03238629177212715, -0.024606795981526375, -0.00227774353697896, -0.007579910568892956, -0.033861033618450165, 0.01868729293346405, 0.07011283189058304, -0.012276630848646164, -0.10855227708816528, -0.009218326769769192, 0.05584054812788963, -0.006136743351817131, 0.013021605089306831, 0.02909843809902668, -0.0023159359116107225, 0.04593493789434433, 0.034417059272527695, -0.04620908200740814, -0.07503974437713623, -0.04743972048163414, 0.022466599941253662, -0.02366546168923378, 0.04279544577002525, -0.029560770839452744, -0.08349597454071045, -0.0921192318201065, -0.005631021223962307, -0.06495609879493713, 0.02736317180097103, -0.024176841601729393, -0.05465616658329964, -0.016741212457418442, -0.05226362869143486, -0.012671193107962608, 0.04765642061829567, 0.04041038081049919, 0.021507946774363518, -0.15805907547473907, 0.03423658758401871, 0.07348468899726868, 0.021422958001494408, -0.05957020819187164, -0.00945279747247696, 0.06580258160829544, 0.013091336004436016, 0.0722370445728302, 0.028902798891067505, -0.12542623281478882, 0.08000493794679642, -0.0011033760383725166, 0.002675490453839302, 0.06063580885529518, 9.190444477913869e-32, -0.10028290748596191, 0.030693868175148964, 0.02287958189845085, 0.024887507781386375, 0.014850161969661713, 0.003293864196166396, -0.01575053669512272, -0.04842601716518402, -0.05178520828485489, -0.07786696404218674, 0.01852615736424923, -0.03685755282640457, -0.05836877599358559, 0.08676780760288239, -0.0005084031145088375, 0.0031617118511348963, -0.039033692330121994, -0.029713550582528114, -0.032473497092723846, -0.059102632105350494, -0.0040759132243692875, 0.02911832183599472, -0.06106432527303696, -0.003512093098834157, -0.048186738044023514, 0.00028572941664606333, 0.01530824787914753, -0.052005834877491, -0.02110367827117443, -0.06472014635801315, 0.024261238053441048, -0.007066773250699043, -0.053623802959918976, 0.025561125949025154, 0.022723307833075523, 0.0822891891002655, -0.024362463504076004, 0.006637610029429197, -0.012336885556578636, 0.1324058175086975, -0.005255962256342173, -0.04734937474131584, -0.0019673567730933428, -0.039311908185482025, 0.03898056223988533, 0.0536942258477211, -0.08125472068786621, -0.053254012018442154, -0.04682011157274246, -0.08859916776418686, 0.04581311717629433, 0.03174980357289314, 0.14919789135456085, 0.07260151952505112, -0.021623993292450905, -0.08724220842123032, 0.03372112661600113, 0.051876652985811234, -0.03906320407986641, -0.06082440912723541, -0.060943663120269775, 0.06136875972151756, -0.06912226974964142, -0.07122430950403214 ]
266 Chapter 12 5 Find the gradients of the curv e y = x2 − 5x + 10 at the points A and B where the curve meets the line y = 4. 6 Find the gradients of the curv e y = 2x2 at the points C and D where the curve meets the line y = x + 3. 7 f(x ) = x2 − 2x − 8 a Sketch the gra ph of y = f(x). b On the same set of axes , sketch the graph of y = f9(x). c Explain why the x-coordinate of the turning point of y = f(x) is the same as the x-coordinate of the point where the graph of y = f9(x) crosses the x-axis. 12.5 Differentiating functions with two or more terms You can use the rule for differentiating ax n to differentiate functions with two or more terms. You need to be able to rearrange each term into the form ax n, where a is a constant and n is a real number. Then you can differentiate the terms one-at-a-time. ■ If y = f(x) ± g( x), then dy ___ dx  = f9(x) ± g9( x).P P P Find dy ___ dx given that y equals: a 4x3 + 2x b x3 + x2 −  x 1 _ 2 c 1 _ 3 x 1 _ 2 + 4 x 2 Example 8 a y = 4 x3 + 2x So dy ___ dx  = 12x2 + 2 b y = x3 + x2 −  x 1 __ 2 So dy ___ dx  = 3x2 + 2x −  1 __ 2 x − 1 __ 2 c y =  1 __ 3 x 1 __ 2  + 4x2 So dy ___ dx  =  1 __ 3  ×  1 __ 2 x − 1 __ 2  + 8x =  1 __ 6 x − 1 __ 2  + 8xDifferentiate the terms one-at-a-time. Be careful with the third term. You multiply the term by 1 _ 2 and then reduce the power by 1 to get − 1 _ 2 Check that each term is in the form axn before differentiating.
[ -0.032000329345464706, 0.10889829695224762, 0.01341982837766409, -0.023537056520581245, -0.0021177581511437893, 0.039925090968608856, 0.008774988353252411, 0.013910114765167236, -0.017120052129030228, 0.06552106887102127, 0.03409064933657646, -0.0706656277179718, -0.003833746537566185, -0.0027359570376574993, -0.10935763269662857, -0.05285404622554779, -0.03667183965444565, 0.03960799053311348, -0.09059406071901321, -0.028397349640727043, 0.0016816457500681281, -0.031414538621902466, -0.07760859280824661, -0.04851632937788963, 0.017600884661078453, -0.05465960502624512, -0.03315505385398865, -0.0009489998919889331, -0.06523431837558746, -0.06825438141822815, 0.005549033172428608, -0.03323608636856079, 0.03374645486474037, -0.008211121894419193, 0.031043440103530884, 0.03239724785089493, 0.03964865580201149, 0.01821371540427208, 0.028898609802126884, -0.012794013135135174, -0.0424993671476841, 0.03828217461705208, -0.04250749200582504, 0.002612578682601452, 0.062372200191020966, 0.03676588460803032, -0.06343179941177368, -0.013311579823493958, 0.03793966397643089, -0.07207078486680984, 0.033592622727155685, -0.011132990941405296, -0.07756385952234268, 0.05726248398423195, 0.007868013344705105, -0.03653569146990776, 0.10260063409805298, 0.03503701090812683, 0.09630927443504333, 0.08770008385181427, -0.020317288115620613, -0.0022940479684621096, -0.0063613164238631725, 0.07691919803619385, -0.019336814060807228, -0.017547953873872757, 0.02968735247850418, -0.06840281933546066, -0.008713619783520699, 0.04187948629260063, -0.11849404126405716, -0.05001048371195793, 0.009748409502208233, -0.09341640770435333, 0.05258837342262268, 0.013906610198318958, 0.024940069764852524, 0.011270171031355858, -0.008244742639362812, -0.10138203203678131, 0.024717140942811966, 0.0694473534822464, 0.05610021948814392, 0.03965868428349495, 0.03537881001830101, -0.001587329781614244, 0.017782926559448242, -0.06072501093149185, -0.025167277082800865, 0.03147813677787781, 0.06254349648952484, 0.01595567725598812, -0.07291660457849503, 0.020219000056385994, 0.00013356356066651642, -0.026859242469072342, -0.001695900922641158, -0.09284743666648865, 0.03907475993037224, 0.1290377378463745, 0.02118535153567791, 0.030529644340276718, -0.03431202098727226, 0.05617377161979675, 0.0345894955098629, -0.02512350305914879, 0.07165753841400146, -0.025873234495520592, 0.013115854933857918, -0.08288674801588058, -0.019123077392578125, -0.029932904988527298, 0.01035985816270113, 0.02841854840517044, 0.08051923662424088, -0.05896567925810814, 0.02634568326175213, -0.006882426328957081, -0.00708216056227684, -0.027301622554659843, 0.008357941173017025, -0.12410993874073029, 0.0010508737759664655, 0.004565387032926083, -0.05268971621990204, -0.055777136236429214, -0.04922221601009369, 0.03259403258562088, 0.0276703629642725, -0.02055431716144085, 0.015260865911841393, -0.07072687894105911, 0.011212804354727268, -0.045270148664712906, -0.051239706575870514, -0.06944277882575989, -0.06141698360443115, 0.036974694579839706, -0.027238350361585617, -0.021766288205981255, 0.05777381360530853, 0.12201748788356781, -0.007016572169959545, 0.010467112064361572, 0.018572866916656494, -0.0128268888220191, -0.018497314304113388, -0.003017862793058157, 0.02021672949194908, 0.02909955196082592, 0.015361309051513672, -0.04074457660317421, 0.01844501867890358, 0.039117179811000824, -0.016014738008379936, -0.00400701817125082, -0.04435163736343384, -0.03771113231778145, -0.03643081337213516, -0.03401143103837967, -0.0919039398431778, 0.06734702736139297, 0.01687677577137947, 0.07454981654882431, 0.0623282790184021, 0.017528504133224487, 0.088743194937706, 0.03678397461771965, -0.02606716752052307, 0.06839940696954727, 0.03645830973982811, 0.038822758942842484, -0.025398891419172287, 0.1344471573829651, -0.0224172230809927, 0.001734236953780055, 0.09591639786958694, 0.0854681134223938, 0.021163685247302055, 0.0033164741471409798, 0.05158163607120514, -0.035231757909059525, -0.009715673513710499, -0.0058997259475290775, -0.05214742571115494, -0.037729065865278244, 0.010263762436807156, 0.1217484399676323, -0.04433896020054817, 0.05664179474115372, 0.009782692417502403, -0.04205235093832016, -0.03763547167181969, 0.1287401020526886, -0.14055120944976807, -0.026923678815364838, 0.04572926461696625, -0.036921266466379166, -0.11359908431768417, 0.019199088215827942, 0.056074149906635284, -0.029860876500606537, 0.07956258952617645, 0.03363925591111183, -0.05435669794678688, 0.03901156410574913, -0.024788061156868935, -0.0012767348671332002, -0.08985807746648788, 0.006921481341123581, 0.02670683152973652, 0.003410892328247428, -0.06802614778280258, 0.049894239753484726, 0.041903771460056305, -0.04698728770017624, 0.08358134329319, -0.042379215359687805, -0.13447952270507812, -0.0291900672018528, 0.008256248198449612, -0.013166358694434166, 0.01259638462215662, 3.4928606079554834e-33, -0.01623203232884407, 0.059057120233774185, -0.03513157740235329, -0.012773526832461357, 0.06098301336169243, -0.07499625533819199, 0.09377209097146988, 0.0030410161707550287, 0.06832157075405121, 0.08706486970186234, -0.00026639935094863176, 0.03491484001278877, -0.014157713390886784, 0.025838743895292282, -0.008793752640485764, 0.011387917213141918, -0.04334186390042305, 0.11450902372598648, -0.04989319294691086, -0.03160854056477547, -0.10422515869140625, 0.006184876896440983, 0.02550530433654785, 0.03593328967690468, 0.11379573494195938, 0.047141265124082565, 0.061911579221487045, -0.08962531387805939, -0.04437581077218056, -0.025235041975975037, -0.03185464069247246, -0.012593649327754974, -0.022355061024427414, 0.015117320232093334, -0.025054054334759712, -0.041117873042821884, -0.0323668047785759, -0.06862661987543106, -0.004330518189817667, -0.04592457041144371, 0.06654708832502365, 0.1299288421869278, 0.09705941379070282, -0.08346861600875854, -0.03261713683605194, 0.05468296632170677, 0.014709914103150368, 0.0003226030385121703, 0.01078546792268753, 0.09784844517707825, 0.02885318174958229, -0.11207597702741623, 0.0378677099943161, 0.03370310366153717, 0.02051893062889576, 0.011171243153512478, 0.037899598479270935, -0.027334079146385193, 0.003924056421965361, -0.008149337023496628, -0.05836838483810425, -0.0736858993768692, -0.0389401949942112, 0.008151658810675144, -0.07515577226877213, -0.011926543898880482, -0.08410853892564774, -0.02674783207476139, 0.005669554229825735, -0.01411243062466383, 0.005389061756432056, 0.0785829946398735, 0.05005801469087601, -0.0829717293381691, -0.03064357116818428, -0.09510363638401031, -0.04306265339255333, -0.013275697827339172, 0.09059154987335205, -0.010171868838369846, -0.04757508635520935, 0.008067585527896881, 0.02837837114930153, 0.03225194290280342, -0.00040820814319886267, -0.015776492655277252, -0.013069633394479752, 0.021822279319167137, 0.11102629452943802, -0.029115663841366768, -0.04385851323604584, 0.006939875893294811, -0.048706818372011185, -0.016217537224292755, 0.10417389124631882, 6.538170108934612e-32, -0.06739450246095657, -0.013159637339413166, 0.01706872694194317, 0.05054127424955368, 0.06521821022033691, 0.022382520139217377, 0.02715565264225006, -0.049970753490924835, -0.06121145561337471, -0.03217422962188721, 0.05035635083913803, 0.00018619054753798991, -0.0749555379152298, 0.06544243544340134, -0.01367049291729927, 0.01078348234295845, -0.055248621851205826, 0.03602883219718933, -0.0029996244702488184, -0.030176544561982155, -0.0659705176949501, 0.001056389999575913, -0.10735874623060226, 0.04038451239466667, -0.04540995508432388, 0.004354873206466436, 0.004569024313241243, -0.0520828552544117, -0.02008516900241375, -0.03807719796895981, -0.03244917467236519, -0.04749032109975815, 0.005246659275144339, -0.011780787259340286, 0.044339414685964584, 0.029060669243335724, 0.0001068743658834137, 0.04097514972090721, -0.030389968305826187, 0.08001375943422318, -0.013921665027737617, -0.02390112727880478, 0.013625264167785645, -0.07634719461202621, -0.04088425263762474, -0.00554724782705307, -0.021611228585243225, -0.018280038610100746, -0.022129222750663757, 0.02992197498679161, -0.018684417009353638, 0.06733483821153641, 0.08780580759048462, 0.026834838092327118, -0.008116304874420166, -0.013121034018695354, 0.022576890885829926, -0.017332131043076515, -0.036568257957696915, -0.08696720749139786, 0.013986710458993912, 0.11735270917415619, -0.08234485983848572, -0.030991466715931892 ]
267Differentiation 1 Differentia te: a x 4 + x−1 b 2x5 + 3x−2 c 6 x 3 _ 2 + 2 x − 1 _ 2 + 4 2 Find the gradient of the curv e with equation y = f(x) at the point A where: a f(x ) = x3 − 3x + 2 and A is at (−1, 4) b f(x ) = 3x2 + 2x−1 and A is at (2, 13) 3 Find the point or points on the curve with equation y = f(x), where the gradient is zero: a f(x ) = x2 − 5x b f(x ) = x3 − 9x2 + 24x − 20 c f(x ) =  x 3 _ 2  − 6x + 1 d f(x ) = x−1 + 4x 4 Differentia te: a 2 √ __ x b 3 __ x2 c 1 ___ 3x3 d 1 _ 3 x3(x − 2) e 2 __ x3  +  √ __ x f 3 √ __ x  +  1 ___ 2x g 2x +  3 ______ x h 3x2 − 6 _______ x i 2x3 + 3x ________ √ __ x j x(x2 − x + 2) k 3x2(x2 + 2x) l (3x  − 2) (4x + 1 __ x ) Exercise 12Ea Let y =  1 ____ 4 √ __ x =  1 __ 4 x − 1 __ 2 The refore dy ___ dx  = − 1 __ 8 x − 3 __ 2 b Le t y = x3(3x + 1) = 3x4 + x3 Therefore dy ___ dx  = 12 x3 + 3x2 = 3x2(4x + 1) c Le t y =  x − 2 ______ x2 =  1 __ x  −  2 __ x2 = x−1 − 2x−2 Therefore dy ___ dx  = −x−2 + 4x−3 = − 1 __ x2  +  4 __ x3 =  4 − x ______ x3 Differentiate: a 1 ____ 4 √ __ x b x3(3x + 1) c x − 2 _____ x2 Multiply out the brackets to give a polynomial function.Example 9 Use the laws of indices to write the expression in the form ax n. 1 ____ 4 √ __ x = 1 __ 4 × 1 ___ √ __ x = 1 __ 4 × 1 ___ x 1 _ 2 = 1 __ 4 x − 1 _ 2 Express the single fraction as two separate fractions, and simplify: x __ x2 = 1 __ x Differentiate each term. Write each term in the form ax n then differentiate. You can write the answer as a single fraction with denominator x 3.
[ 0.011055950075387955, 0.08838456869125366, -0.0019119130447506905, -0.011773900128901005, -0.009889899753034115, 0.04079638421535492, -0.028773058205842972, 0.006010227371007204, 0.027708008885383606, 0.015253998339176178, 0.05280586704611778, -0.06630959361791611, -0.01915043592453003, -0.03340156376361847, -0.013429788872599602, -0.01854773610830307, -0.03558911755681038, 0.036963313817977905, -0.061221782118082047, -0.05587064102292061, 0.001444184104911983, -0.03205754980444908, -0.04222626984119415, -0.04070024937391281, -0.02059003710746765, -0.10245466977357864, -0.04403837025165558, -0.006485920865088701, -0.038600534200668335, -0.0698973760008812, -0.06284087151288986, -0.0315721370279789, 0.07291477918624878, -0.010211926884949207, 0.05663171038031578, 0.0755019262433052, 0.0411495603621006, 0.0708789974451065, 0.0411965474486351, -0.044252075254917145, -0.037487853318452835, 0.02067360281944275, -0.08592145144939423, 0.018260780721902847, 0.019607950001955032, -0.03117475099861622, -0.035720136016607285, -0.0488770566880703, -0.0019326627952978015, -0.03988012298941612, 0.07459244877099991, 0.012198751792311668, -0.06213953346014023, 0.06091967225074768, -0.00012439647980500013, -0.024129895493388176, 0.10355639457702637, 0.08098557591438293, 0.0464034229516983, 0.05884937196969986, -0.023945193737745285, 0.024696944281458855, 0.00403760839253664, 0.04925007373094559, -0.060403306037187576, 0.015240832231938839, 0.021938571706414223, -0.03923189267516136, 0.0003116954758297652, 0.04102163016796112, -0.054718147963285446, -0.045168813318014145, 0.044556476175785065, -0.07298777252435684, 0.04299238696694374, 0.027323966845870018, 0.004007820505648851, 0.016424579545855522, -0.013231595046818256, -0.02779611200094223, -0.04009200260043144, 0.010620974004268646, 0.028601499274373055, 0.06383465975522995, 0.019696544855833054, 0.02878051996231079, 0.01768512651324272, -0.035820119082927704, -0.024311676621437073, 0.025072788819670677, -0.002181870397180319, 0.016154468059539795, -0.07257191836833954, -0.011121995747089386, -0.04425555095076561, -0.10469528287649155, 0.014224312268197536, -0.11259068548679352, 0.05170968919992447, 0.11130577325820923, 0.01308957114815712, 0.07152529060840607, -0.050483714789152145, 0.10197565704584122, -0.014531887136399746, 0.005720043554902077, 0.032004281878471375, -0.050994884222745895, 0.01470249518752098, -0.05690399184823036, -0.09376110136508942, -0.05806063115596771, -0.007488167379051447, -0.02284367009997368, 0.07769332081079483, -0.025541501119732857, -0.003512460272759199, -0.054961301386356354, 0.03519922122359276, -0.055292338132858276, 0.04082265496253967, -0.05703122913837433, 0.05734574794769287, -0.027010008692741394, -0.03578566387295723, -0.010386614128947258, -0.019893061369657516, 0.07425300031900406, -0.001657662563957274, -0.01252809353172779, 0.06382103264331818, -0.06113895773887634, -0.0296477098017931, -0.013836157508194447, -0.014220143668353558, -0.02957189455628395, -0.03613191097974777, 0.009505589492619038, 0.01227283850312233, -0.08518620580434799, 0.01592157408595085, 0.10184364765882492, 0.01039817649871111, -0.060673899948596954, 0.02565382979810238, -0.026829466223716736, -0.10627996176481247, -0.011105998419225216, -0.046624813228845596, 0.0022095590829849243, 0.060343123972415924, -0.015087851323187351, -0.005073280073702335, 0.04406404495239258, -0.09067695587873459, -0.030062871053814888, -0.03379664570093155, -0.045634154230356216, 0.003193883690983057, -0.008595909923315048, -0.12141184508800507, 0.05122574791312218, 0.028271963819861412, 0.11630411446094513, 0.09839461743831635, -0.020844290032982826, 0.043371912091970444, 0.052545227110385895, 0.025074239820241928, 0.08297013491392136, 0.04453025385737419, 0.04249357432126999, -0.0555640272796154, 0.09919895231723785, -0.06432084739208221, 0.008768749423325062, 0.054160404950380325, 0.10201027244329453, 0.0025274588260799646, -0.016373418271541595, 0.08270246535539627, -0.02314097248017788, 0.012693721801042557, -0.012399113737046719, -0.03013606183230877, 0.0345044881105423, 0.07293695956468582, 0.05364592745900154, 0.02694999799132347, 0.026003001257777214, 0.024891912937164307, -0.06778742372989655, 0.01361805759370327, 0.053227804601192474, -0.1321733146905899, 0.07609118521213531, -0.014635346829891205, 0.01973552070558071, -0.038695164024829865, 0.04618312045931816, 0.12331917136907578, -0.03623415157198906, 0.06684157997369766, 0.035176973789930344, -0.06575870513916016, -0.042132772505283356, -0.0014506409643217921, -0.016755936667323112, -0.10044742375612259, 0.028980884701013565, 0.021842367947101593, 0.057351965457201004, -0.010762329213321209, 0.025412961840629578, -0.030120110139250755, -0.06490159034729004, 0.0874074175953865, -0.003440552158281207, -0.08364003896713257, 0.006784324534237385, -0.05139487236738205, -0.010238025337457657, 0.07905574142932892, -2.6256493851989336e-33, 0.007812727242708206, 0.011659632436931133, -0.0439012348651886, -0.05039147660136223, 0.04561547189950943, -0.004582144320011139, 0.04148537665605545, -0.04193897172808647, 0.03842524439096451, 0.11141054332256317, 0.011326655745506287, 0.005090742371976376, -0.012828527018427849, 0.01783854328095913, -0.01625460758805275, 0.057029444724321365, -0.06754185259342194, 0.10941455513238907, -0.0187330711632967, -0.029713505879044533, -0.02372068352997303, -0.030580362305045128, -0.016221385449171066, 0.009154414758086205, 0.04411333054304123, 0.0562867633998394, 0.03881138935685158, -0.08058211207389832, -0.05494970455765724, -0.02239634096622467, -0.01753194071352482, -0.05699961632490158, 0.05053618922829628, 0.013872512616217136, -0.020538369193673134, -0.030107367783784866, -0.01461408194154501, -0.03882523253560066, 0.023099368438124657, -0.011817346327006817, 0.05542077124118805, 0.13537675142288208, 0.08397901058197021, -0.017169799655675888, -0.02291063778102398, -0.0025688151363283396, -0.023320484906435013, -0.05900193005800247, 0.07474913448095322, 0.10139700770378113, 0.0030431749764829874, -0.15091919898986816, 0.01939888298511505, 0.059296417981386185, 0.0007077952031977475, -0.0005192509852349758, -0.001025203033350408, -0.054757341742515564, 0.019235458225011826, 0.007177380844950676, 0.04312870651483536, -0.030034804716706276, -0.10190675407648087, 0.017844241112470627, -0.04620800167322159, 0.027842838317155838, -0.05993726849555969, -0.09453228116035461, -0.0462770089507103, -0.021246030926704407, -0.03880893066525459, 0.059871647506952286, -0.01805037446320057, -0.09205278009176254, -0.021430326625704765, -0.045245762914419174, 0.022590452805161476, 0.06466781347990036, 0.022163167595863342, 0.028648825362324715, -0.07967894524335861, 0.08501772582530975, 0.04920648783445358, 0.03542739525437355, -0.009021716192364693, -0.023213831707835197, 0.03634931519627571, -0.004970991984009743, 0.11036297678947449, 0.005208573304116726, -0.08079888671636581, 0.02847900614142418, -0.017157696187496185, -0.015695245936512947, -0.004632175900042057, 8.549270496510677e-32, -0.1395937204360962, 0.033814433962106705, 0.011863341554999352, 0.06165023520588875, 0.013782831840217113, 0.010184903629124165, -0.009220954962074757, -0.08982054144144058, -0.011830460280179977, -0.06706233322620392, 0.005300409626215696, -0.032958824187517166, -0.06409115344285965, 0.1297902762889862, -0.02223358489573002, 0.009379819966852665, -0.01677473448216915, -0.03275527432560921, 0.0056585706770420074, -0.07712522149085999, -0.013652944006025791, 0.019230736419558525, -0.02060668356716633, -0.01910727098584175, -0.025571994483470917, -0.045449044555425644, -0.011657209135591984, -0.04260822385549545, -0.015618674457073212, -0.10199418663978577, 0.0013339921133592725, -0.0305843073874712, -0.024771247059106827, 0.028387319296598434, 0.0015594282886013389, 0.055319592356681824, -0.06153923645615578, -0.045797064900398254, -0.0347285270690918, 0.0986940860748291, 0.01498616486787796, -0.06033027172088623, -0.01983458362519741, -0.051714520901441574, 0.0008101248531602323, 0.018560947850346565, -0.0889454185962677, -0.023737607523798943, -0.07069819420576096, -0.07693369686603546, 0.029238823801279068, 0.05812103673815727, 0.14504076540470123, 0.025655733421444893, -0.002265684539452195, -0.10283885896205902, 0.03999767452478409, -0.0022694002836942673, -0.02738277241587639, -0.0068161822855472565, -0.03827129304409027, 0.06376735866069794, -0.046914003789424896, -0.01332472451031208 ]
268 Chapter 12 5 Find the gradient of the curv e with equation y = f(x) at the point A where: a f(x ) = x(x + 1) and A is at (0, 0) b f(x ) =  2x −  6 ______ x2 and A is a t (3, 0) c f(x ) =  1 ___ √ __ x and A is at ( 1 _ 4 , 2) d f(x ) = 3x  −  4 __ x2 and A is a t (2, 5) 6 f(x ) = 12 ____ p √ __ x + x , where p is a real constant and x > 0. Given that f9(2) = 3, find p, giving your answer in the form a √ __ 2 where a is a rational number. (4 marks) 7 f(x ) = (2 − x)9 a Find the first 3 terms, in ascending po wers of x, of the binomial expansion of f(x), giving each term in its simplest form. b If x is small, so that x2 and higher powers can be ignored, show that f9(x) < 9216x − 2304.E/P P Use the binomial ex pansion with a = 2, b = − x and n = 9. ← Sec tion 8.3Hint 12.6 Gradients, tangents and normals You can use the derivative to find the equation of the tangent to a curve at a given point. On the curve with equation y = f(x), the gradient of the tangent at a point A with x-coordinate a will be f9(a). ■ The tangent to the curve y = f(x) at the point with coordinates ( a, f(a)) has equation y − f(a) = f9(a)(x − a) The equation of a straight line with gra dient m that passes through the point ( x1, y1) is y − y1 = m (x − x1). ← Section 5.2Links The normal to a curve at point A is the straight line through A which is perpendicular to the tangent to the curve at A. The gradient of the normal will be − 1 ____ f 9 (a ) ■ The normal to the curv e y = f(x) at the point with coordinates ( a, f(a)) has equation y − f(a ) = − 1 _____ f 9 (a ) (x − a ) y = f(x)Normal at A Tangent at A A xy O
[ 0.012095384299755096, 0.08793006837368011, 0.031102538108825684, -0.03584098443388939, 0.014770867303013802, 0.06984058022499084, -0.016980094835162163, -0.019016703590750694, 0.016895517706871033, 0.06319601833820343, 0.09794049710035324, -0.026831910014152527, 0.0038875332102179527, 0.013099136762320995, -0.020042508840560913, 0.02384631149470806, -0.04827301949262619, 0.02676788531243801, -0.01759997010231018, -0.06864885240793228, -0.008760123513638973, -0.02077464945614338, -0.03650333359837532, -0.014090308919548988, -0.028371179476380348, -0.05335141718387604, -0.03108792193233967, -0.016623826697468758, -0.031145254150032997, -0.07697467505931854, -0.060747627168893814, -0.05987389385700226, 0.05864819511771202, -0.0010996611090376973, 0.029655886813998222, 0.06791906803846359, 0.035256702452898026, 0.046851616352796555, 0.07658445090055466, -0.021067487075924873, -0.04382064566016197, 0.03211253881454468, -0.08532994985580444, 0.008688491769134998, 0.06362110376358032, 0.05552862584590912, -0.04862276464700699, -0.07090786099433899, -0.04363608360290527, -0.0825132206082344, 0.01431026216596365, 0.005840660538524389, -0.05514327809214592, 0.01382435392588377, -0.016449859365820885, -0.0346292182803154, 0.11182550340890884, 0.054724957793951035, 0.07541535794734955, 0.11127284169197083, -0.024807266891002655, -0.006851621437817812, 0.017333906143903732, 0.05028550699353218, -0.010806393809616566, -0.017341380938887596, 0.024717334657907486, -0.015612914226949215, -0.03346735239028931, 0.041794344782829285, -0.11413820832967758, -0.04770032316446304, 0.0019928256515413523, -0.01741560362279415, 0.011560339480638504, 0.05397668480873108, 0.043094996362924576, 0.046239446848630905, 0.011692891828715801, -0.020254531875252724, -0.024580199271440506, 0.07678326964378357, 0.0009065803023986518, 0.03849319368600845, 0.03260721638798714, -0.009397106245160103, 0.04807732626795769, -0.06082877516746521, -0.007675099186599255, 0.03348357975482941, 0.046757012605667114, -0.02148025669157505, -0.06391377747058868, 0.005374508444219828, 0.016596239060163498, -0.0910119116306305, -0.01118538435548544, -0.11866787821054459, 0.0355340838432312, 0.07675144821405411, -0.007201995234936476, 0.03272554650902748, -0.04328116029500961, 0.12439120560884476, 0.003606270533055067, 0.022525185719132423, 0.08606112748384476, -0.023551184684038162, 0.03283112123608589, -0.0829327404499054, -0.05560760945081711, -0.0852886289358139, -0.014000171795487404, 0.014620563946664333, 0.08142989873886108, -0.04506165161728859, -0.02673744596540928, -0.08508631587028503, 0.02424958534538746, -0.03311791270971298, 0.005391675978899002, -0.05254151299595833, 0.053734131157398224, -0.00535251758992672, -0.05785593017935753, -0.04650649428367615, 0.00895661860704422, 0.04971497505903244, -0.0028855553828179836, 0.008352180011570454, 0.03889216482639313, -0.08745516836643219, 0.0039030262269079685, 0.02548975870013237, -0.004690192174166441, -0.0026575138326734304, -0.019620342180132866, -0.016718396916985512, -0.03596879541873932, -0.03341744467616081, 0.012993138283491135, 0.08864660561084747, -0.04254637658596039, -0.06572475284337997, 0.03477129340171814, -0.035878609865903854, -0.06008699908852577, 0.0002678191813174635, -0.02904440090060234, -0.0034849788062274456, 0.03408544510602951, 0.007169797550886869, -0.027651552110910416, 0.025333648547530174, -0.0963660180568695, -0.0009812458883970976, -0.08267249912023544, -0.006825546734035015, -0.04194052889943123, -0.03127400577068329, -0.151716411113739, 0.01936221681535244, 0.020117275416851044, 0.08365528285503387, 0.06844086945056915, -0.004707504995167255, 0.027791466563940048, 0.044016461819410324, -0.038810957223176956, 0.0774158239364624, 0.04833453521132469, -0.010623088106513023, -0.05375741049647331, 0.09513119608163834, -0.12860113382339478, 0.017176147550344467, 0.07006341218948364, 0.12315955013036728, 0.0545491948723793, -0.001233353978022933, 0.04078999161720276, -0.021135369315743446, -0.031192155554890633, -0.030391624197363853, -0.04302765801548958, 0.0056077418848872185, 0.02175876684486866, 0.0526953786611557, 0.0008925220463424921, 0.014213028363883495, 0.031985633075237274, -0.07498368620872498, 0.01786631904542446, 0.05378875136375427, -0.11842424422502518, 0.0007747595082037151, -0.01859242469072342, -0.024550482630729675, -0.04304484277963638, -0.013921128585934639, 0.08851436525583267, -0.028948619961738586, 0.06279643625020981, 0.06430277228355408, -0.048785753548145294, -0.06688307225704193, -0.008376960642635822, -0.035336825996637344, -0.08885933458805084, 0.033015377819538116, 0.0013698686379939318, 0.0435209684073925, -0.023926284164190292, 0.05600181594491005, -0.033335525542497635, -0.06324605643749237, 0.05443317070603371, -0.05906067416071892, -0.050883419811725616, 0.04907737299799919, 0.0011342467041686177, 0.014872497878968716, 0.051367733627557755, -3.093688073013174e-33, 0.019214171916246414, 0.08269791305065155, -0.007727334741503, -0.020342890173196793, 0.03780839219689369, -0.050959836691617966, 0.04395459592342377, -0.012322904542088509, 0.004629934206604958, 0.09450550377368927, -0.07057493925094604, 0.057135116308927536, -0.03349047899246216, 0.003398558124899864, -0.008807179518043995, 0.03725234419107437, -0.06859443336725235, 0.1110825464129448, -0.034778520464897156, 0.03268454223871231, -0.052872758358716965, -0.030684910714626312, 0.008478877134621143, 0.012778356671333313, 0.03826594352722168, 0.06529571115970612, 0.05788619443774223, -0.07424318045377731, -0.05099203437566757, -0.006624758709222078, -0.04747765511274338, -0.0041147381998598576, 0.06685147434473038, 0.031639426946640015, -0.008506602607667446, 0.009250862523913383, 0.02689976803958416, -0.05493193864822388, -0.0006721803219988942, -0.013319122605025768, 0.1074783131480217, 0.13675498962402344, 0.07617373764514923, -0.02468826062977314, -0.03350374102592468, 0.0051129283383488655, 0.01335965283215046, -0.04575073719024658, 0.03632993623614311, 0.05988705903291702, -0.00892360508441925, -0.12857002019882202, 0.04666576534509659, 0.05821502208709717, -0.045598678290843964, -0.0018337928922846913, 0.02069835737347603, -0.045228153467178345, 0.04610736668109894, 0.04439247027039528, -0.007901804521679878, -0.04541463404893875, -0.06719551235437393, 0.015465269796550274, -0.039064355194568634, 0.027766063809394836, -0.08270414918661118, -0.04928170144557953, -0.09364473074674606, -0.05853773280978203, 0.006250112783163786, 0.07928414642810822, 0.012763388454914093, -0.09297741204500198, 0.0011082873679697514, -0.06299373507499695, 0.025164520367980003, 0.0105396443977952, 0.05198707804083824, 0.025193259119987488, -0.08778320997953415, 0.09074407070875168, 0.07276532799005508, 0.01286390796303749, 0.0045650978572666645, -0.03681138902902603, 0.050913065671920776, 0.008871086873114109, 0.1147145926952362, 0.003963497467339039, -0.11041013151407242, 0.04154999554157257, -0.023979058489203453, -0.020815551280975342, 0.026332885026931763, 8.124264636499125e-32, -0.09823546558618546, 0.022325308993458748, 0.0059310379438102245, 0.045832253992557526, 0.02295181341469288, -0.019199568778276443, 0.03224366903305054, -0.10892188549041748, -0.01850954070687294, -0.039551861584186554, 0.00027173018315806985, -0.020109746605157852, -0.04176380857825279, 0.08569512516260147, -0.03172273188829422, -0.025829821825027466, -0.011051594279706478, -0.03413689509034157, -0.037425681948661804, -0.057027194648981094, -0.009629013016819954, 0.0028811730444431305, -0.07438983023166656, 0.00579368881881237, -0.005240787751972675, -0.03186819702386856, 0.020157665014266968, -0.04823928698897362, 0.03834332525730133, -0.08061208575963974, -0.03078245185315609, -0.02739553712308407, -0.007207592949271202, 0.048013605177402496, 0.00522972084581852, 0.060205090790987015, -0.025561166927218437, -0.048966772854328156, -0.037029191851615906, 0.10122662037611008, 0.006338826380670071, -0.03717067465186119, -0.0020645440090447664, -0.06512060016393661, -0.01980917528271675, 0.04046575725078583, -0.08931905776262283, -0.004410145804286003, -0.08252295106649399, -0.03592760115861893, 0.06136284023523331, 0.04287170618772507, 0.12365255504846573, 0.0914042517542839, -0.0060434103943407536, -0.08961432427167892, 0.0300565417855978, -0.0182721596211195, -0.04768647998571396, -0.054128341376781464, -0.04357850179076195, 0.0694982260465622, -0.07862810045480728, -0.030197611078619957 ]
269Differentiation Find the equation of the tangent to the curve y = x3 − 3x2 + 2x − 1 at the point (3, 5).Example 10 Find the equation of the normal to the curve with equation y = 8 − 3 √ __ x at the point where x = 4.Example 11 1 Find the equation of the tangent to the curv e: a y = x2 − 7x + 10 at the point (2, 0) b y = x  +  1 __ x at the point (2, 2 1 _ 2 ) c y = 4 √ __ x at the point (9, 12) d y =  2x − 1 ______ x at the point (1, 1) e y = 2 x3 + 6x + 10 at the point (−1, 2) f y = x2 − 7 __ x2 at the point (1, −6) 2 Find the equation of the nor mal to the curve: a y = x2 − 5x at the point (6, 6) b y = x2 −  8 ___ √ __ x at the point (4, 12) 3 Find the coordinates of the point where the tangent to the curve y = x2 + 1 at the point (2, 5) meets the normal to the same curve at the point (1, 2).PExercise 12Fy = x3 − 3x2 + 2x − 1 dy ___ dx  = 3x2 − 6x + 2 When x = 3, the gradient is 11. So the equation of the tangent at (3, 5) is y − 5 = 11( x − 3) y = 11 x − 28First differentiate to determine the gradient function. Then substitute for x to calculate the value of the gradient of the curve and of the tangent when x = 3. You can now use the line equation and simplify. y = 8 − 3 √ __ x = 8 −  3 x 1 __ 2 dy ___ dx  = − 3 __ 2 x − 1 __ 2 Whe n x = 4, y = 2 and gradient of curve and of tangent  = − 3 __ 4 So gr adient of normal is 4 __ 3 . Equa tion of normal is y − 2 =  4 __ 3 (x − 4 ) 3y − 6 = 4 x − 16 3y − 4 x + 10  = 0Write each term in the form ax n and differentiate to obtain the gradient function, which you can use to find the gradient at any point. Find the y-coordinate when x = 4 by substituting into the equation of the curve and calculating 8 − 3 √ __ 4 = 8 − 6 = 2. Find the gradient of the curve, by calculating dy ___ dx  = − 3 __ 2 (4 ) − 1 _ 2  = − 3 __ 2  ×  1 __ 2 = − 3 __ 4 Gradient of normal = − 1 _______________ gradient of curve   = − 1 ____ (− 3 _ 4 )  = 4 __ 3 Simplify by multiplying both sides b y 3 and collecting terms. Explore the tangent and normal to the c urve using GeoGebra.Online
[ 0.005873055662959814, 0.05656995624303818, 0.07041271030902863, -0.04068222641944885, -0.010473676025867462, 0.06818141788244247, -0.01930898241698742, -0.014217070303857327, -0.004005999770015478, 0.0490807481110096, 0.08344332873821259, -0.059313416481018066, 0.004980350844562054, 0.00936844665557146, -0.025891924276947975, -0.014751167967915535, -0.0518820695579052, 0.021320652216672897, -0.07709956169128418, 0.015943478792905807, 0.04076002165675163, -0.02417922392487526, -0.010894780047237873, -0.022712228819727898, -0.02623557858169079, -0.056750938296318054, -0.03190110996365547, -0.04153117164969444, -0.07716754823923111, -0.021337395533919334, -0.02744170092046261, -0.0056678177788853645, 0.0743526890873909, -0.023946652188897133, 0.06879208236932755, -0.0050870878621935844, -0.003774780547246337, 0.05497828125953674, 0.036104485392570496, -0.0030000414699316025, 0.024201156571507454, 0.004445977043360472, -0.09874230623245239, 0.0027371621690690517, 0.09063743054866791, -0.03863679617643356, -0.00926018413156271, -0.03633261099457741, -0.003529841545969248, -0.028922192752361298, 0.05670936033129692, 0.022021599113941193, -0.05464513972401619, -0.02312457002699375, 0.03782360628247261, 0.05786789581179619, -0.03973589837551117, 0.035109903663396835, 0.03763250634074211, 0.004848056938499212, -0.028650209307670593, 0.04947545751929283, 0.033805690705776215, 0.03235482797026634, -0.008011956699192524, 0.010743780992925167, 0.050878461450338364, -0.055647753179073334, 0.05651538446545601, 0.013204541057348251, -0.04958774894475937, -0.00721114594489336, 0.015032951720058918, -0.0725710466504097, 0.023598769679665565, -0.0027712059672921896, 0.032404035329818726, -0.06390491127967834, -0.08003144711256027, -0.05086490139365196, -0.04197465628385544, 0.04842159152030945, 0.11141196638345718, 0.028070833534002304, -0.01155147049576044, 0.0016890950500965118, -0.020084336400032043, 0.025023439899086952, 0.049561336636543274, -0.028791051357984543, 0.041546259075403214, 0.016420718282461166, -0.12727153301239014, -0.04214535281062126, -0.0018229027045890689, -0.014078175649046898, -0.03383707255125046, -0.08938340842723846, 0.07048261165618896, 0.027555016800761223, 0.011284624226391315, -0.017372185364365578, -0.05165668949484825, 0.14813630282878876, -0.01590651459991932, 0.02567754127085209, -0.05050542950630188, -0.05122286081314087, -0.007068093400448561, -0.07185293734073639, -0.0648772194981575, -0.006055905949324369, -0.02323259599506855, -0.030713269487023354, 0.06826306134462357, -0.007857240736484528, -0.012226121500134468, 0.04529851675033569, -0.04102227836847305, -0.005570767447352409, 0.022300131618976593, -0.03909577056765556, 0.05843114107847214, -0.011861737817525864, -0.046174775809049606, 0.00892892386764288, -0.058860696852207184, 0.03451110050082207, 0.013154392130672932, -0.03569498285651207, -0.08444840461015701, -0.0890703871846199, -0.06211564689874649, -0.06458475440740585, -0.05301164090633392, 0.02183276042342186, -0.07493547350168228, 0.033368825912475586, 0.0065915570594370365, -0.05108137056231499, 0.03592140972614288, 0.013030476868152618, -0.018460258841514587, 0.021118462085723877, 0.030588345602154732, 0.041081495583057404, -0.0807216465473175, -0.028984714299440384, -0.02360813319683075, 0.11128111183643341, 0.07653511315584183, -0.008791374042630196, 0.017574084922671318, 0.06333967298269272, -0.031102679669857025, -0.003695422550663352, -0.03447761759161949, -0.05412653461098671, -0.008539078757166862, 0.017977988347411156, -0.09770417213439941, 0.08192520588636398, -0.030409391969442368, 0.1037137433886528, 0.1092524304986, -0.004820413887500763, 0.016767434775829315, 0.0077301799319684505, 0.006269926205277443, 0.06321384757757187, 0.04976741597056389, 0.09113841503858566, -0.06522796303033829, 0.09829555451869965, 0.027889246121048927, 0.012368188239634037, 0.12479781359434128, 0.04491791874170303, -0.009991140104830265, -0.033184826374053955, 0.11133983731269836, -0.008405722677707672, -0.004758916795253754, -0.08395014703273773, 0.03412303328514099, -0.0393059104681015, 0.017472730949521065, 0.08178897202014923, -0.02635171264410019, -0.01395212858915329, -0.004259845707565546, -0.12120602279901505, 0.01301382016390562, 0.0910363644361496, -0.1104636862874031, 0.026145290583372116, 0.012271691113710403, -0.013917937874794006, -0.03842737153172493, 0.05166333168745041, 0.0445101372897625, 0.006003274582326412, 0.09317050129175186, -0.017160266637802124, 0.016764357686042786, 0.036904774606227875, -0.006513555068522692, 0.013712421990931034, -0.060701820999383926, 0.02515535242855549, 0.00018678067135624588, 0.07988277822732925, -0.029166799038648605, 0.0020993168000131845, -0.03911939263343811, -0.14845196902751923, -0.0071526882238686085, -0.014104313217103481, -0.06441477686166763, 0.04850561544299126, -0.0442681722342968, 0.02301914431154728, 0.01405556034296751, -3.531130663256426e-33, -0.0019397246651351452, 0.05250546708703041, -0.09574522078037262, -0.06528278440237045, 0.02320258319377899, -0.01314563024789095, 0.06613780558109283, 0.0010906636016443372, 0.029496390372514725, 0.024110499769449234, -0.015508687123656273, 0.010153844021260738, 0.02879679948091507, 0.07473213225603104, -0.045481834560632706, 0.04919577017426491, -0.0668361485004425, 0.03144864737987518, -0.06338504701852798, -0.023512987419962883, -0.0658661425113678, -0.03814093768596649, -0.0522308424115181, -0.02501610293984413, 0.03873370960354805, 0.07145176827907562, 0.019327616319060326, -0.021521681919693947, -0.10632763057947159, 0.05488332360982895, -0.11381708085536957, -0.04130075126886368, 0.006478610448539257, -0.023069309070706367, 0.012633213773369789, -0.04012797772884369, -0.02373630367219448, -0.006076777819544077, 0.055797278881073, -0.044052962213754654, 0.062318820506334305, 0.08694206178188324, 0.05129915848374367, -0.05721539258956909, -0.01886061765253544, 0.03997829183936119, -0.061246357858181, 0.030897924676537514, -0.03951890021562576, 0.07252202183008194, -0.024211719632148743, -0.11410633474588394, -0.011609407141804695, 0.0023773990105837584, 0.03003908321261406, -0.03146428242325783, -0.01561430748552084, 0.017400003969669342, 0.0898287370800972, -0.03893725201487541, -0.04165158048272133, -0.04899866133928299, -0.02156057022511959, 0.0019899464678019285, -0.07635501772165298, 0.004986754152923822, -0.02846728451550007, 0.026749905198812485, -0.03714853152632713, -0.0008262912160716951, 0.02147805690765381, 0.06795228272676468, -0.07059825211763382, -0.07017284631729126, -0.04164407402276993, -0.02476135455071926, 0.008399956859648228, 0.08649598062038422, 0.1110321655869484, -0.01007735077291727, -0.0245368555188179, 0.04893945902585983, 0.0194022785872221, 0.05929458886384964, -0.027131956070661545, -0.029576797038316727, 0.06582863628864288, 0.021741347387433052, 0.010167491622269154, 0.031047513708472252, -0.01661815121769905, 0.10413389652967453, -0.005799025297164917, 0.03063051588833332, 0.015340231359004974, 7.049225681909409e-32, -0.11510234326124191, -0.025334985926747322, -0.03306427597999573, 0.018256982788443565, -0.01651618257164955, 0.020908184349536896, -0.037157680839300156, 0.00019689637701958418, -0.048121970146894455, -0.09150935709476471, 0.005907369311898947, 0.028532983735203743, -0.15318189561367035, 0.07222968339920044, -0.05652455613017082, -0.02191961742937565, 0.020316941663622856, -0.012746201828122139, -0.03204251080751419, -0.059367671608924866, -0.01488660927861929, 0.029178878292441368, -0.09945719689130783, 0.039219409227371216, 0.027572395280003548, -0.012380641885101795, -0.06455256044864655, -0.019447989761829376, -0.07364556938409805, -0.04539328068494797, 0.051493093371391296, 0.005329602863639593, -0.008705493994057178, 0.015872498974204063, 0.09013446420431137, 0.11970601975917816, -0.03686526417732239, 0.07053083181381226, 0.002096485812216997, 0.12278177589178085, -0.006914692930877209, -0.03726820647716522, -0.022495891898870468, -0.07108298689126968, 0.02951027639210224, -0.05193792283535004, -0.08122721314430237, -0.08423707634210587, -0.018173279240727425, -0.04443829506635666, 0.016091860830783844, 0.08261657506227493, 0.04898659139871597, 0.01658511534333229, 0.03527790307998657, -0.02325749583542347, 0.08902838826179504, 0.020159631967544556, -0.022117799147963524, -0.02110837958753109, -0.021825561299920082, 0.11898017674684525, -0.02489553391933441, 0.07659144699573517 ]
270 Chapter 12 4 Find the equations of the nor mals to the curve y = x + x3 at the points (0, 0) and (1, 2), and find the coordinates of the point where these normals meet. 5 For f(x ) = 12 − 4x + 2x2, find the equations of the tangent and the normal at the point where x = −1 on the curve with equation y = f(x). 6 The point P with x-coordinate 1 _ 2 lies on the curve with equa tion y = 2x2. The normal to the curve at P intersects the curve at points P and Q. Find the coordinates of Q. (6 marks)P P E/P Draw a sketch showing the curve, the point P and the normal. This will help you check that your answer makes sense.Problem-solving 12.7 Increasing and decreasing functions You can use the derivative to determine whether a function is increasing or decreasing on a given interval. ■ The function f( x) is increasing on the interval [ a, b] if f9( x) > 0 for all values of x such that a < x < b. ■ The function f( x) is decreasing on the interval [ a, b] if f9( x) < 0 for all values of x such that a < x < b. The inter val [a, b] is the set of all real numbers, x, that satisfy a < x < b .Notationy = x3 + xy = x4 – 2x2 (–1, –1)OO xy xy (1, –1) The function f(x) = x3 + x is increasing for all real values of x.The function f(x) = x 4 − 2x2 is increasing on the interval [−1, 0] and decreasing on the interval [0, 1]. Show that the function f(x) = x3 + 24x + 3 is increasing for all real values of x.Example 12 f(x) = x3 + 24 x + 3 f9(x) = 3 x2 + 24 x2 > 0 for all real values of x So 3 x2 + 24 > 0 fo r all real values of x . So f( x) is increasing for all real values of x .First differentiate to obtain the gradient function. State that the condition for an increasing function is met. In fact f9 (x) > 24 for all real values of x .The line L is a tangent to the curve with equation y = 4 x 2 + 1. L cuts the y -axis at (0, − 8) and has a positive gradient. Find the equation of L in the form y = mx  + c.Challenge Use the discriminant to find the value of m wh en the line just touches the curve. ← Section 2.5Hint
[ 0.01874510571360588, 0.06435774266719818, -0.051173143088817596, -0.017296787351369858, 0.00439302995800972, 0.023425357416272163, -0.059616297483444214, 0.012654739432036877, -0.09157358855009079, 0.016284549608826637, 0.0789838433265686, -0.03795613348484039, 0.009795049205422401, -0.030641915276646614, -0.03134841471910477, -0.012148411944508553, -0.09451322257518768, 0.04207848757505417, -0.011636314913630486, -0.005924142897129059, 0.025993390008807182, -0.026815205812454224, -0.05347340553998947, -0.05476094037294388, -0.010599239729344845, -0.04128100723028183, -0.009450527839362621, -0.051930636167526245, -0.009961220435798168, 0.022739332169294357, 0.000514845596626401, -0.02964594215154648, 0.004857824184000492, 0.04062816500663757, 0.08648809790611267, 0.0047354367561638355, 0.06966671347618103, 0.07237955927848816, 0.015444928780198097, -0.04861229285597801, -0.04420763999223709, 0.013472035527229309, -0.12233997136354446, -0.004240646958351135, 0.06743628531694412, -0.04753502830862999, -0.008401555940508842, -0.07656015455722809, -0.002759794006124139, -0.05891410633921623, 0.05164026468992233, -0.0077101076021790504, -0.11019278317689896, 0.03901509568095207, 0.04113878309726715, 0.08238617330789566, -0.02994055673480034, 0.032240625470876694, 0.03521884232759476, 0.05387365072965622, 0.019716612994670868, 0.08540593832731247, -0.03851880878210068, 0.008415442891418934, 0.034928493201732635, 0.015146046876907349, -0.04036440700292587, -0.0587158240377903, -0.01861242763698101, 0.0778878778219223, -0.13454122841358185, 0.033139653503894806, -0.004541742615401745, -0.051325440406799316, 0.027978312224149704, -0.06024394556879997, 0.03646733611822128, -0.04453064128756523, -0.06954403966665268, -0.0639762431383133, -0.052564408630132675, 0.04991785064339638, 0.05001506209373474, 0.04313434660434723, 0.05187045410275459, 0.09630073606967926, -0.003291927045211196, -0.03286457061767578, 0.026395685970783234, -0.037473633885383606, 0.09492333978414536, -0.01279318518936634, -0.11239799112081528, -0.006735991220921278, -0.01884070783853531, -0.04889319837093353, -0.026439331471920013, -0.019500477239489555, 0.09408347308635712, 0.13184267282485962, 0.021490490064024925, 0.03962157666683197, -0.01994319260120392, 0.037974316626787186, 0.056367550045251846, 0.050474267452955246, 0.00795651227235794, -0.06585563719272614, 0.026328781619668007, -0.07783962786197662, -0.0015086913481354713, -0.04230158403515816, -0.012730848975479603, 0.010192610323429108, 0.07263777405023575, -0.05599156767129898, 0.011544731445610523, 0.032138001173734665, -0.03073335625231266, -0.027026861906051636, -0.00325465458445251, -0.05816812813282013, 0.0464305616915226, -0.009570373222231865, -0.04906041920185089, -0.0014849823201075196, -0.021526385098695755, -0.026580139994621277, 0.02567741461098194, -0.020676307380199432, -0.010148751549422741, -0.06332571059465408, -0.06236882135272026, -0.05514919012784958, 0.019509943202137947, 0.07442396879196167, -0.08477242290973663, 0.06993920356035233, 0.041734617203474045, -0.09899310022592545, 0.028513839468359947, 0.009014178067445755, -0.035332631319761276, -0.006763710640370846, 0.02244693599641323, 0.003610235871747136, -0.05965931713581085, -0.014755216427147388, 0.010195061564445496, 0.07593516260385513, 0.05305127799510956, -0.0271762628108263, 0.02307049371302128, 0.11253660172224045, 0.01673487201333046, 0.008090700954198837, -0.013515071012079716, -0.04536662995815277, 0.055226072669029236, -0.02237287349998951, -0.0989796444773674, 0.09763624519109726, -0.02259458787739277, 0.11778004467487335, 0.05771629884839058, 0.008260618895292282, 0.025303959846496582, 0.040540311485528946, 0.0035140516702085733, 0.09203381836414337, 0.04101572930812836, 0.026158461347222328, -0.055914390832185745, 0.1281431019306183, 0.06809935718774796, 0.03324289247393608, 0.11007479578256607, 0.03180163353681564, -0.010442801751196384, -0.031491704285144806, 0.020815817639231682, -0.03669419884681702, 0.031919945031404495, 0.00380924460478127, -0.06158405542373657, 0.01388960238546133, -0.0403146930038929, 0.05750779062509537, 0.02700364962220192, 0.03498411551117897, 0.05166539177298546, -0.04388727992773056, 0.01982511393725872, 0.061116017401218414, -0.11256110668182373, -0.045363396406173706, 0.052025001496076584, -0.00442717457190156, -0.10518307238817215, 0.013204415328800678, 0.0467035286128521, -0.008167813532054424, 0.05858057737350464, -0.0032604443840682507, -0.012130698189139366, -0.0840722918510437, -0.05631781369447708, -0.014737154357135296, -0.014944624155759811, 0.03476836904883385, -0.002440929878503084, 0.00665729446336627, -0.05560845881700516, -0.04620441049337387, -0.04539888724684715, -0.11286123096942902, 0.0027994029223918915, -0.03629235178232193, -0.06439970433712006, 0.024982690811157227, -0.05384217947721481, 0.04353249445557594, 0.005368453916162252, 2.532514049428322e-33, -0.05428335443139076, 0.08174242079257965, -0.13077110052108765, -0.046066999435424805, 0.029555119574069977, -0.04168276488780975, 0.10145718604326248, -0.015094120055437088, 0.09284598380327225, 0.05919725075364113, -0.006128811277449131, -0.017003925517201424, -0.035134170204401016, 0.016637371852993965, 0.0030379488598555326, -0.02726025879383087, -0.044376667588949203, 0.02816099300980568, -0.0314057283103466, -0.003580288263037801, -0.05419308319687843, 0.04610656574368477, -0.04561839625239372, 0.0048140911385416985, -0.009663977660238743, 0.038120418787002563, 0.039047032594680786, 0.005523395724594593, -0.16197814047336578, 0.05245652049779892, -0.11961426585912704, 0.02816171571612358, 0.05258837714791298, -0.04095456004142761, 0.00189988745842129, -0.043606728315353394, 0.011530999094247818, 0.04764670506119728, 0.010652726516127586, -0.06493842601776123, 0.061815839260816574, 0.09761310368776321, 0.029162831604480743, -0.10016244649887085, -0.05576064810156822, 0.05865159630775452, 0.0360211618244648, -0.02639538049697876, -0.004611320327967405, 0.04630434513092041, -0.030766302719712257, -0.08518528938293457, 0.07237663865089417, 0.020606573671102524, 0.05514136329293251, 0.011010217480361462, -0.04568284749984741, -0.0790790542960167, 0.0878128632903099, -0.0989961251616478, -0.003037529531866312, 0.059750501066446304, -0.01744004525244236, 0.0048932963982224464, 0.004449054598808289, -0.04004068300127983, -0.03868703544139862, -0.024080630391836166, 0.036361999809741974, 0.0470154695212841, -0.05887111276388168, 0.06560996919870377, -0.04078531637787819, -0.10281160473823547, -0.01668872870504856, 0.0011722532799467444, -0.051883500069379807, -0.01820043846964836, 0.0678594708442688, -0.08648186922073364, -0.008670379407703876, 0.017294684424996376, 0.025789489969611168, 0.03114563226699829, -0.05271422490477562, 0.0759517252445221, 0.05266900733113289, 0.047735974192619324, 0.05963348597288132, 0.0003072454419452697, -0.00877621490508318, 0.10223329812288284, -0.025366608053445816, -0.012213841080665588, 0.018282726407051086, 6.964501926573892e-32, -0.09370696544647217, -0.020760515704751015, -0.03290028125047684, 0.009966069832444191, 0.008554241620004177, 0.05487073212862015, -0.02396145835518837, 0.012582295574247837, 0.0009882531594485044, -0.003958611749112606, -0.018643278628587723, 0.03204125538468361, -0.09307290613651276, 0.023930255323648453, -0.08879394084215164, 0.006386053282767534, 0.030578194186091423, -0.011489891447126865, -0.054175782948732376, -0.04382317513227463, 0.020637957379221916, 0.009202358312904835, -0.09201062470674515, 0.011655231937766075, 0.06018504500389099, 0.02824975922703743, -0.008248250931501389, -0.051634397357702255, 0.03765721991658211, -0.024954959750175476, 0.0852353423833847, -0.08628169447183609, 0.02700001560151577, 0.03718191757798195, 0.02065788395702839, 0.03092590533196926, -0.04550490155816078, 0.06935989111661911, -0.01384113822132349, 0.02088090591132641, -0.024411708116531372, -0.023589501157402992, -0.013526161201298237, -0.038517389446496964, 0.02301347814500332, 0.008680427446961403, -0.0034744529984891415, -0.05130302906036377, 0.022982170805335045, 0.02941735088825226, 0.010351019911468029, 0.07265041768550873, 0.08229117840528488, -0.0454157218337059, 0.020236141979694366, -0.05463436618447304, 0.026572411879897118, 0.007269390393048525, -0.006388711277395487, -0.022607699036598206, -0.06465986371040344, 0.08766854554414749, -0.09063265472650528, -0.006183700170367956 ]
271Differentiation 1 Find the values of x for which f(x) is an increasing function, given that f(x) equals: a 3x2 + 8x + 2 b 4x  − 3x2 c 5 −  8x − 2x2 d 2x3 − 15x2 + 36x e 3 +  3x − 3x2 + x3 f 5x3 + 12x g x4 + 2x2 h x4 − 8x3 2 Find the values of x for which f(x) is a decreasing function, given that f(x) equals: a x2 − 9x b 5x  − x2 c 4 −  2x − x2 d 2x3 − 3x2 − 12x e 1 −  27x + x3 f x +   25 ___ x g x 1 _ 2  + 9 x − 1 _ 2 h x2(x + 3) 3 Show that the function f( x) = 4 − x (2x2 + 3) is decreasing for all x ∈ R . (3 marks) 4 a Given tha t the function f(x) = x2 + px is increasing on the interval [−1, 1], find one possible value for p. (2 marks) b State with justification w hether this is the only possible value for p. (1 mark)E/P E/P 12.8 Second order derivatives You can find the rate of change of the gradient function by differentiating a function twice. = 15x2dy dx= 30xd2y dx2 Differentiate y = 5x3Differentiate This is the rate of change of the gradient function. It is called the second order derivative. It can also be written as f0(x).This is the gradient function. It describes the rate of change of the function with respect to x.Exercise 12GFind the interval on which the function f(x) = x3 + 3x2 − 9x is decreasing.Example 13 f(x) = x3 + 3 x2 − 9 x f9(x) = 3 x2 + 6 x − 9 If f9(x) < 0 then 3 x2 + 6 x − 9 < 0 So 3(x2 + 2x − 3) < 0 3(x  + 3)( x − 1) < 0 So −3 <  x < 1 So f( x) is decreasing on the interval [ −3, 1].Write the answer clearly.Find f9(x) and put this expression < 0.  The d erivative is also called the first order derivative or first derivative . The second order derivative is sometimes just called the second derivative .Notation ■ Differentiating a function y  = f(x) twice gives you the second order derivative, f 0(x) or d 2 y ____ d x 2 Explore increasing and decreasing fun ctions using GeoGebra.OnlineSolve the inequality by considering the three regions x < −3, −3 < x < 1 and x > 1, or by sketching the curve with equation y = 3(x + 3)(x − 1) ← Section 3.5
[ 0.04924332723021507, 0.10340869426727295, 0.040375933051109314, -0.002396893687546253, -0.0581330806016922, 0.023663945496082306, -0.016507083550095558, 0.052913736552000046, -0.05283796042203903, 0.0333092100918293, 0.0677429586648941, -0.06862161308526993, 0.015798619017004967, -0.050089165568351746, 0.024943944066762924, -0.047429606318473816, 0.014850638806819916, -0.011561655439436436, -0.13072235882282257, -0.04911120980978012, 0.022149812430143356, -0.08728906512260437, -0.040995679795742035, -0.06322189420461655, 0.08336753398180008, -0.15543317794799805, -0.07079839706420898, -0.05069916695356369, -0.01933169923722744, -0.01127728819847107, -0.14228561520576477, -0.00017963685968425125, 0.10361914336681366, -0.10151930898427963, 0.021508188918232918, 0.06035735830664635, 0.025992929935455322, 0.016199776902794838, 0.05034833773970604, -0.007246439810842276, -0.06193101033568382, -0.004904677625745535, -0.02905736118555069, -0.01250881515443325, 0.031721893697977066, -0.06757979840040207, -0.037810929119586945, -0.01193006057292223, -0.0039588031359016895, -0.038287948817014694, 0.03262517228722572, 0.06252618879079819, 0.006699799560010433, 0.11953087151050568, -0.06404765695333481, 0.004187152720987797, 0.051301706582307816, -0.062473852187395096, -0.0731995701789856, 0.05734161287546158, -0.06847012042999268, 0.06731732189655304, -0.0435791052877903, 0.04824236407876015, 0.023136349394917488, 0.04128188267350197, -0.0016086645191535354, -0.05194783955812454, -0.0031653130427002907, 0.07447268068790436, -0.04302927106618881, 0.01984911412000656, 0.007652508094906807, -0.08081033080816269, 0.009192794561386108, -0.0019844179041683674, -0.009730265475809574, -0.01733369193971157, 0.03885188326239586, -0.03419288620352745, -0.012678653933107853, 0.05908577889204025, -0.0007774559198878706, 0.08128900825977325, -0.017808042466640472, 0.05430861562490463, 0.07146597653627396, 0.031377553939819336, -0.058504149317741394, -0.03808620944619179, -0.04320726543664932, 0.04153753072023392, -0.006084059365093708, 0.02368352562189102, -0.052304454147815704, -0.08620434254407883, 0.0044747707433998585, -0.06938531249761581, -0.000024178065359592438, 0.059681277722120285, -0.009169499389827251, -0.00392813328653574, -0.022107580676674843, 0.008357643149793148, -0.013206040486693382, -0.0691666528582573, -0.049904171377420425, -0.10468783229589462, 0.008926031179726124, -0.08104793727397919, -0.04126612842082977, -0.0481562465429306, 0.022370371967554092, 0.011892592534422874, 0.06784001737833023, 0.007449953351169825, 0.012549626640975475, -0.019375178962945938, -0.038171228021383286, -0.018356291577219963, 0.08148584514856339, -0.04642723500728607, 0.0017139906994998455, -0.019906532019376755, -0.012169198133051395, -0.021580543369054794, 0.02339957281947136, 0.004909160081297159, -0.033376652747392654, -0.07855924218893051, 0.0923987552523613, -0.0027161554899066687, -0.006152949761599302, -0.0708131417632103, -0.05543157458305359, -0.10177228599786758, -0.06318085640668869, 0.0394115149974823, 0.038946732878685, 0.02489808015525341, -0.0014936599181964993, 0.04786224663257599, 0.0615517757833004, -0.021537791937589645, 0.03237694129347801, 0.011586302891373634, -0.07693441212177277, -0.0632416233420372, -0.014395230449736118, -0.03366925194859505, -0.0015840023988857865, -0.014814377762377262, -0.041504815220832825, 0.04003753140568733, -0.050416309386491776, -0.03911742568016052, -0.025320271030068398, -0.06041862070560455, 0.033737000077962875, 0.0038831064011901617, -0.07314804941415787, 0.030578387901186943, -0.006531414110213518, 0.09696781635284424, 0.09029343724250793, 0.012513654306530952, 0.05060622841119766, 0.047211144119501114, -0.02353123016655445, 0.0048698848113417625, 0.09794766455888748, -0.06290752440690994, 0.007914516143500805, 0.07018012553453445, -0.013668820261955261, -0.015839790925383568, 0.03700857609510422, 0.03937286511063576, 0.01956087350845337, -0.0009030511719174683, 0.11872828006744385, -0.04979167878627777, 0.03213224560022354, -0.02260197326540947, -0.03069588541984558, 0.03209473192691803, 0.03563642501831055, -0.03888116776943207, -0.0023261155001819134, 0.004850585479289293, 0.018831277266144753, -0.03776172921061516, 0.024741897359490395, 0.0553586408495903, -0.0698661357164383, 0.016716038808226585, -0.07236259430646896, 0.044356051832437515, -0.06412617117166519, 0.06807788461446762, 0.13932503759860992, -0.04362397640943527, 0.08777851611375809, 0.055340368300676346, -0.08913634717464447, -0.047206975519657135, -0.07728154212236404, 0.024348106235265732, 0.015962813049554825, 0.04004017636179924, -0.023940222337841988, 0.036454156041145325, -0.05521799623966217, 0.0013937121257185936, -0.011984474956989288, -0.0673213079571724, 0.04293495789170265, 0.0012621351052075624, -0.04978666827082634, 0.007623271085321903, -0.00866617914289236, -0.004655418451875448, 0.10084565728902817, -9.688805005773372e-33, 0.02046268992125988, 0.0298723466694355, -0.037241678684949875, -0.07632280886173248, 0.026262864470481873, -0.026235157623887062, -0.0061931610107421875, -0.06450844556093216, 0.03417760133743286, -0.048419155180454254, 0.08161419630050659, 0.03445247560739517, -0.05466979369521141, -0.006989017128944397, -0.07727636396884918, -0.04687388986349106, -0.00008193936810130253, 0.022593848407268524, 0.007878169417381287, -0.010112985037267208, 0.03405723720788956, -0.013159540481865406, 0.018620437011122704, 0.045997779816389084, 0.02130615897476673, 0.021120483055710793, 0.10903193801641464, -0.002504460047930479, 0.0010660828556865454, -0.00913101527839899, 0.050139252096414566, -0.015574944205582142, 0.07786712050437927, 0.061067454516887665, 0.02544427663087845, -0.10299347341060638, 0.05457616597414017, -0.021843547001481056, -0.003320681396871805, -0.014395564794540405, 0.11198493093252182, 0.0576239675283432, 0.059713926166296005, -0.00041506168781779706, 0.0282679945230484, -0.005687932018190622, -0.11778085678815842, -0.01829417236149311, 0.10268466174602509, 0.11365640163421631, 0.013127726502716541, -0.09352783113718033, -0.03607760742306709, 0.026373988017439842, 0.02955634519457817, 0.040983691811561584, -0.04029601812362671, -0.03603315353393555, 0.025517955422401428, 0.01957942545413971, 0.028612278401851654, -0.008558685891330242, -0.03179047256708145, 0.01427249051630497, -0.04831872507929802, -0.013318277895450592, -0.043616462498903275, -0.1091092973947525, 0.009620089083909988, 0.0788583755493164, -0.005265558138489723, 0.02948562614619732, -0.05344953015446663, -0.0785287395119667, -0.03423890843987465, 0.009824832901358604, -0.013897784985601902, 0.06351406872272491, -0.0012713797623291612, -0.02500857226550579, -0.0606364943087101, 0.06940015405416489, 0.02590564452111721, 0.00628847349435091, -0.13047456741333008, -0.054530855268239975, 0.05378992110490799, -0.009075786918401718, 0.10902931541204453, 0.04261475056409836, -0.03456759452819824, 0.010749000124633312, 0.004596673417836428, -0.04183449596166611, -0.002983326558023691, 8.578529138649819e-32, -0.04240082949399948, -0.0019628757145255804, -0.11188166588544846, 0.047376491129398346, 0.0610053651034832, -0.016015568748116493, -0.015898436307907104, -0.022105948999524117, 0.044546980410814285, -0.13901475071907043, 0.09919729828834534, 0.01829458400607109, -0.05605420097708702, 0.03893693536520004, -0.017926175147294998, -0.040264029055833817, -0.05237602815032005, -0.05890854448080063, -0.03581097349524498, -0.056006502360105515, -0.010386274196207523, 0.06552731245756149, -0.002983685350045562, 0.03881983831524849, 0.0038427936378866434, -0.08433636277914047, -0.04685218259692192, -0.028777023777365685, 0.01277446374297142, -0.03567466139793396, 0.02250874787569046, 0.03429697826504707, 0.015121673233807087, -0.05589781329035759, 0.07829295098781586, 0.041549909859895706, -0.09079277515411377, -0.02753487043082714, -0.044238779693841934, 0.01341400295495987, -0.018444973975419998, 0.032002177089452744, -0.053998664021492004, 0.0060651423409581184, 0.00008991167123895139, -0.029358169063925743, 0.011391770094633102, 0.008540095761418343, 0.04425850138068199, -0.05041448771953583, -0.03868695721030235, 0.09362287074327469, 0.12544351816177368, -0.03455238416790962, -0.011949569918215275, 0.02466348186135292, -0.018409734591841698, -0.011384588666260242, -0.034500088542699814, 0.02016817405819893, 0.028483480215072632, 0.04145589843392372, -0.06049804389476776, 0.01574738882482052 ]
272 Chapter 12 Given that y = 3x5 +  4 __ x2 find: a dy ___ dx b d2y ___ dx2 a y = 3 x5 +  4 __ x2 = 3x5 + 4x−2 So dy ___ dx  = 15 x4 − 8x−3 = 15x4 −  8 __ x3 b d2y ____ dx2  = 60 x3 + 24 x−4 = 60 x3 +  24 ___ x4 Express the fraction as a negative power of x . Differentiate once to get the first order derivative. Differentiate a second time to get the second order derivative.Example 14 a f(x) = 3 √ __ x  +  1 ____ 2 √ __ x = 3 x 1 __ 2  +  1 __ 2 x − 1 __ 2 f9(x) =  3 __ 2 x − 1 __ 2  −  1 __ 4 x − 3 __ 2 b f0(x) = − 3 __ 4 x − 3 __ 2   +  3 __ 8 x − 5 __ 2 Given that f(x) = 3 √ __ x  +  1 ____ 2 √ __ x , find: a f9 (x) b f 0( x)Example 15 1 Find dy ___ dx and d2y ___ dx2 when y equals: a 12x2 + 3x + 8 b 15x  + 6 +  3 __ x c 9 √ __ x  −  3 __ x2 d (5x  + 4)(3x − 2) e 3x + 8 ______ x2 2 The displacement of a particle in metres a t time t seconds is modelled by the function f(t) = t 2 + 2 _____ √ _ t The accelera tion of the particle in m s−2 is the second derivative of this function. Find an expression for the acceleration of the particle at time t seconds. 3 Given tha t y = (2x − 3)3, find the value of x when d 2 y ____ d x 2  = 0. 4 f(x ) = px 3 − 3px 2 + x 2 − 4 When x = 2, f 0( x) = −1. Find the value of p.P PExercise 12HDon’t rewrite your expression for f9(x ) as a fraction. It will be easier to differentiate again if you leave it in this form. The velocity of the particle will be f9 (t) and its ac celeration will be f 0(t). → Statistics and Mechanics Year 2, Section 6.2LinksThe coefficient for the second term is (− 3 __ 2 ) × (− 1 __ 4 ) = + 3 __ 8 The new power is − 3 __ 2 − 1 = − 5 __ 2 When you differentiate with respect to x , you treat any other letters as constants.Problem-solving
[ -0.03164226934313774, 0.07194360345602036, 0.031164199113845825, -0.04241379722952843, 0.04123389720916748, 0.03804660588502884, 0.042182281613349915, 0.03721296787261963, -0.03331374004483223, 0.056092843413352966, 0.004433308262377977, -0.1001049056649208, 0.0014004029799252748, -0.07207082211971283, -0.07852120697498322, -0.0052419863641262054, -0.023923518136143684, 0.00884359609335661, -0.09996283799409866, 0.059047576040029526, 0.06018872186541557, -0.031246159225702286, -0.0898037925362587, -0.022763699293136597, 0.02443321794271469, -0.01480272226035595, -0.08378416299819946, -0.004136891104280949, -0.02554747834801674, -0.1096295565366745, -0.02480156533420086, 0.015460646711289883, 0.07935655117034912, -0.0005627391510643065, 0.04501296579837799, 0.06114405766129494, -0.0012156609445810318, 0.037512604147195816, -0.014902443625032902, -0.024301299825310707, -0.07312583923339844, 0.015849845483899117, -0.06705160439014435, -0.00017686908540781587, -0.020622674375772476, -0.09372895956039429, -0.07187486439943314, 0.01222620252519846, 0.060239989310503006, -0.08301076292991638, 0.04334675148129463, -0.02191806025803089, -0.026779014617204666, 0.03628581762313843, -0.00032032988383434713, -0.07964837551116943, 0.05264420807361603, 0.001292094006203115, 0.03770553320646286, 0.007428375538438559, -0.04342298582196236, 0.09058827906847, -0.010712224058806896, 0.03622131794691086, -0.005379898473620415, 0.0074299112893640995, -0.03523867204785347, -0.04210595414042473, -0.02396177500486374, 0.029761353507637978, -0.08286147564649582, -0.08499123901128769, 0.029664352536201477, -0.11850804835557938, 0.11005653440952301, -0.05534566938877106, 0.0024890259373933077, -0.03490706533193588, 0.011665258556604385, -0.03806247562170029, -0.016617149114608765, 0.031509362161159515, 0.0838594138622284, 0.05381450429558754, -0.019901860505342484, -0.04569665715098381, -0.026913011446595192, 0.03541655093431473, -0.013241466134786606, 0.05366215109825134, -0.008075161837041378, -0.04472735524177551, -0.01740381307899952, -0.07222337275743484, -0.013233588077127934, -0.11016405373811722, -0.002639547921717167, -0.06825947761535645, 0.023661691695451736, 0.09041426330804825, 0.05429462343454361, 0.048070888966321945, -0.0827588438987732, 0.05109584704041481, -0.06662315875291824, -0.08921608328819275, 0.014895247295498848, -0.040116824209690094, 0.013094805181026459, -0.05696188658475876, -0.08300520479679108, 0.009899681434035301, -0.05777678266167641, -0.056279923766851425, 0.11100144684314728, -0.006974766030907631, 0.07860301434993744, -0.07356242090463638, 0.00810159556567669, -0.0682261511683464, -0.020502112805843353, -0.012238970957696438, 0.057955265045166016, -0.023185214027762413, -0.036551520228385925, 0.011559263803064823, 0.03966609016060829, 0.05901138857007027, -0.02298729121685028, -0.06720617413520813, 0.012579456903040409, -0.0338655449450016, -0.07177925854921341, -0.028426075354218483, -0.0779247060418129, -0.0388687327504158, -0.09868860244750977, 0.04272019863128662, 0.04976796358823776, -0.026108944788575172, -0.058256685733795166, 0.04518220201134682, 0.042958326637744904, -0.014639673754572868, -0.05583377927541733, 0.003999435342848301, 0.011250578798353672, 0.02776401676237583, -0.029010392725467682, -0.0022323590237647295, 0.04107949510216713, -0.027354760095477104, -0.02707275003194809, -0.0058724707923829556, 0.010703803971409798, -0.006128521636128426, 0.02701004594564438, -0.023112760856747627, 0.02743297629058361, -0.10445822775363922, -0.08294910937547684, 0.10655318200588226, 0.035811398178339005, 0.08892959356307983, 0.029330838471651077, 0.018539415672421455, 0.008070194162428379, 0.11078710108995438, -0.013347095809876919, -0.03438104689121246, 0.02697412110865116, 0.03461352735757828, -0.01776626519858837, 0.11476222425699234, 0.007190885953605175, -0.024791190400719643, 0.04905082657933235, 0.04644495248794556, 0.0009164091316051781, -0.014821076765656471, -0.003662633942440152, -0.070915088057518, -0.012556570582091808, 0.026173215359449387, 0.07777983695268631, 0.05195153132081032, -0.02151542156934738, 0.03658243268728256, 0.03719880059361458, -0.03454723581671715, 0.07491010427474976, -0.033579371869564056, 0.004035473335534334, 0.046421539038419724, -0.08638092130422592, -0.030740994960069656, -0.03125062584877014, -0.01835038885474205, -0.08263679593801498, 0.04675830900669098, 0.08600728958845139, 0.025230664759874344, 0.04093684256076813, -0.013532405719161034, -0.05521537736058235, -0.01215790119022131, -0.006115796510130167, -0.05081694573163986, -0.029921147972345352, 0.02098148688673973, 0.030924823135137558, 0.06818995624780655, -0.0001090723235392943, 0.04105329141020775, 0.08166500926017761, 0.0077142068184912205, 0.040487054735422134, -0.007795766461640596, -0.05161729454994202, -0.018776770681142807, -0.0420561246573925, -0.0037539375480264425, 0.06311825662851334, -5.7933754188856726e-33, -0.056997619569301605, 0.0029454724863171577, -0.0669976994395256, -0.10950253158807755, 0.02115119993686676, -0.06974031031131744, 0.05684215947985649, -0.04439602047204971, 0.06786063313484192, 0.06741071492433548, -0.0020648911595344543, 0.009280893951654434, 0.01472574844956398, -0.008695198222994804, -0.053992923349142075, 0.02639085426926613, -0.06558191776275635, 0.0020850629080086946, -0.029676297679543495, 0.0054461280815303326, -0.05422938987612724, -0.06732185930013657, -0.0005827672430314124, 0.014227202162146568, -0.011096789501607418, 0.021603668108582497, 0.043933991342782974, -0.02883978933095932, -0.0016988832503557205, 0.033403199166059494, -0.006359198596328497, -0.04480207338929176, 0.08202292770147324, 0.07677162438631058, -0.04104877635836601, -0.13160520792007446, 0.01536029577255249, -0.008014355786144733, 0.014838829636573792, 0.006798258051276207, 0.09553457796573639, 0.03952447324991226, 0.06931450217962265, -0.050019677728414536, -0.00368305086158216, 0.03666083514690399, -0.015306046232581139, 0.01046736165881157, 0.0538066104054451, 0.043972309678792953, -0.012587239034473896, -0.11485615372657776, 0.045782409608364105, 0.06205546483397484, 0.014960266649723053, -0.03633807599544525, 0.03604390472173691, -0.025899946689605713, 0.04275188967585564, 0.027461867779493332, 0.03514588996767998, -0.05641494318842888, -0.026146354153752327, 0.004918677732348442, -0.028996247798204422, 0.03140280023217201, -0.09600125998258591, -0.012126046232879162, 0.05241620913147926, 0.011736712418496609, -0.043359704315662384, 0.06744436174631119, -0.017237463966012, 0.01855435036122799, -0.03765920549631119, -0.03648889809846878, -0.06499307602643967, 0.05404118821024895, 0.12235255539417267, 0.016948962584137917, -0.025587663054466248, 0.023752780631184578, 0.044111400842666626, -0.05205804854631424, -0.13032479584217072, -0.06223263964056969, 0.05818193405866623, 0.03766068071126938, 0.08834315836429596, -0.03976655751466751, -0.012792395427823067, -0.02827172912657261, 0.037147123366594315, -0.009563038125634193, -0.03115261346101761, 9.261094627134166e-32, -0.03980761766433716, 0.0408753901720047, 0.0036827733274549246, 0.019274257123470306, -0.009695489890873432, 0.1049545481801033, -0.061434101313352585, 0.024680545553565025, 0.06999251246452332, -0.044939205050468445, -0.009273159317672253, 0.019911305978894234, -0.08518347144126892, 0.11289241909980774, -0.07217706739902496, -0.020856671035289764, -0.045459263026714325, -0.0179266519844532, -0.06557324528694153, -0.037302952259778976, -0.013714001514017582, -0.00901111587882042, -0.012143419124186039, 0.006262935232371092, 0.036728180944919586, 0.03740570694208145, -0.03496639057993889, -0.016931699588894844, -0.09153055399656296, -0.08904359489679337, 0.07680635154247284, -0.00267808442004025, 0.01945021189749241, -0.007293588016182184, 0.040180936455726624, 0.048696912825107574, 0.03086274303495884, 0.0765271782875061, 0.002793435240164399, 0.09300176054239273, -0.028979914262890816, -0.008170266635715961, 0.03395181521773338, -0.009304475970566273, -0.05602192133665085, -0.05654246360063553, -0.058828096836805344, -0.05648346245288849, -0.03762097656726837, -0.05543234944343567, 0.015106373466551304, 0.09801982343196869, 0.07747591286897659, 0.11857431381940842, 0.0748889297246933, -0.1403656005859375, 0.013937525451183319, 0.006196154747158289, 0.008686758577823639, 0.037070952355861664, -0.01731709949672222, 0.06948769837617874, -0.033431075513362885, -0.013244474306702614 ]
273Differentiation 12.9 Stationary points A stationary point on a curve is any point where the curve has gradient zero. You can determine whether a stationary point is a local maximum, a local minimum or a point of inflection by looking at the gradient of the curve on either side. Oy A BxPoint A is a local maximum. The origin is a point of inflection. Point B is a local minimum. Point A is c alled a local maximum because it is not the largest value the function can take. It is just the largest value in that immediate vicinity.Notation a Find the coordinates of the stationary point on the curve with equation y = x 4 − 32x. b By considering points on either side of the stationary point, deter mine whether it is a local maximum, a local minimum or a point of inflection.Example 16 a y = x4 − 32 x dy ___ dx = 4 x3 − 32 Let dy ___ dx  = 0 T hen 4 x3 − 32 = 0 4x3 = 32 x3 = 8 x = 2 So y = 24 − 32 × 2 = 16 − 64 = −48 So (2, − 48) is a stationary point.Differentiate and let dy ___ dx  = 0. Solve the equation to find the value of x. Substitute the value of x into the original equation to find the value of y.■ Any point on the curve y = f(x) where f9 (x) = 0 is called a stationary point. For a small positive value h: Type of stationary point f9(x 2 h) f9( x) f9( x 1 h) Local maximum Positive 0 Negative Local minimum Negative 0 Positive Point of inflectionNegative 0 Negative Positive 0 Positive The p lural of maximum is maxima and the plural of minimum is minima .Notation
[ 0.059739850461483, 0.04299519211053848, 0.019319044426083565, 0.0019086882239207625, -0.010413730517029762, 0.0030788020230829716, -0.08590899407863617, -0.004896543920040131, -0.0497145801782608, 0.006664295680820942, 0.07000648975372314, -0.006107461638748646, -0.0395393930375576, 0.08683371543884277, -0.033462103456258774, 0.04134736582636833, -0.05414065718650818, 0.022928275167942047, 0.010890772566199303, -0.007970012724399567, -0.05617137998342514, -0.03569177910685539, -0.0019430533284321427, -0.016026122495532036, 0.04358569532632828, -0.012722963467240334, 0.03163851425051689, -0.02765665389597416, 0.00889668334275484, 0.0025291787460446358, -0.09156515449285507, -0.03222497180104256, 0.056890614330768585, 0.0003687308344524354, 0.10838455706834793, 0.01978801190853119, 0.023801062256097794, 0.005623883102089167, 0.029478510841727257, -0.01569499261677265, 0.03834470361471176, 0.06144389882683754, 0.0021570774260908365, -0.03378957137465477, 0.02359810471534729, -0.014136209152638912, 0.002451468026265502, -0.036813877522945404, -0.10122031718492508, 0.03292416036128998, -0.009281289763748646, -0.027833273634314537, -0.07469754666090012, 0.09338068962097168, 0.027934130281209946, -0.028839245438575745, 0.008844996802508831, 0.01597001403570175, 0.030433988198637962, 0.03541891649365425, 0.06525836139917374, 0.06936118751764297, 0.04868028312921524, 0.010366423986852169, 0.042902324348688126, -0.04209544509649277, 0.03990021347999573, 0.009136375971138477, -0.02194078639149666, 0.13467107713222504, -0.00516807846724987, -0.08129502087831497, 0.07339528948068619, -0.0019769473001360893, 0.01321941614151001, -0.009279897436499596, 0.0515684075653553, 0.0014449734007939696, 0.010431688278913498, -0.016119306907057762, 0.038570985198020935, 0.018449613824486732, 0.013971391133964062, 0.026910709217190742, -0.009127725847065449, 0.014623463153839111, 0.0699460580945015, -0.04567114636301994, 0.06797675788402557, 0.01631043665111065, -0.02009078487753868, 0.07497096061706543, -0.1057405099272728, 0.02166266180574894, -0.018528347834944725, -0.10194561630487442, -0.05345040559768677, -0.032832201570272446, 0.017385629937052727, 0.015608707442879677, -0.05093354731798172, 0.03799418359994888, -0.0901123508810997, 0.1009271889925003, 0.06949757039546967, -0.025304527953267097, 0.02811182476580143, -0.06783831119537354, -0.03800501674413681, -0.04003855586051941, -0.07398942857980728, 0.023954039439558983, -0.020672239363193512, 0.02192951925098896, 0.09145389497280121, -0.0514114685356617, 0.015207861550152302, 0.007552811410278082, -0.02356705255806446, -0.05436926707625389, 0.008575920015573502, -0.03214778006076813, -0.036328498274087906, -0.027260707691311836, -0.06888985633850098, 0.007819388061761856, -0.015613376162946224, 0.02780701406300068, -0.0008702382328920066, -0.02159574069082737, 0.0847020298242569, -0.05034730210900307, -0.10719208419322968, 0.009257758036255836, -0.0026527554728090763, 0.035106439143419266, -0.0630694329738617, 0.048017509281635284, 0.0350949652493, -0.09150279313325882, 0.052936479449272156, 0.038055241107940674, 0.024509603157639503, -0.023791423067450523, -0.003863502759486437, -0.03580959141254425, -0.02625320851802826, -0.005239440593868494, 0.008802449330687523, -0.07665277272462845, 0.04996826872229576, -0.08470138907432556, -0.026737485080957413, 0.08429956436157227, -0.005896439775824547, -0.0031443312764167786, -0.037867747247219086, -0.060552552342414856, 0.044351816177368164, -0.029813716188073158, -0.08899866789579391, 0.08252112567424774, 0.04319562762975693, 0.030093859881162643, -0.0823032334446907, -0.011261766776442528, 0.07637959718704224, 0.00008054662612266839, 0.005377782043069601, 0.03984399139881134, 0.025368688628077507, -0.001850630040280521, -0.06570443511009216, 0.07233967632055283, -0.08113089203834534, 0.02541453018784523, 0.04635249450802803, 0.006944828666746616, 0.0339595265686512, -0.011972572654485703, 0.020806685090065002, -0.059206895530223846, -0.02404106594622135, 0.008069260977208614, 0.037208765745162964, 0.005605362355709076, -0.017152884975075722, 0.021283244714140892, -0.008555658161640167, -0.037934061139822006, 0.022774340584874153, -0.11836989969015121, -0.025292519479990005, 0.01826348714530468, -0.13225632905960083, -0.046884968876838684, 0.01153834443539381, -0.0022741907741874456, 0.017111562192440033, -0.015381407923996449, 0.08078295737504959, -0.003822816302999854, -0.016861002892255783, 0.03554064780473709, -0.01094766240566969, 0.06415111571550369, 0.007241186685860157, -0.037707485258579254, -0.14376381039619446, -0.029285287484526634, 0.03998710587620735, 0.005012417212128639, 0.009467176161706448, 0.05652463063597679, 0.04097508639097214, 0.016743583604693413, 0.02848518081009388, -0.07097267359495163, -0.095535509288311, 0.01350448653101921, -0.025682872161269188, -0.008512670174241066, 0.0651138573884964, 5.8724204344807634e-33, 0.029113130643963814, -0.01704770140349865, -0.039005015045404434, 0.07209321111440659, -0.021430760622024536, 0.022788653150200844, 0.09730380028486252, 0.059814367443323135, -0.006773432716727257, 0.05989723652601242, 0.021828103810548782, 0.03272206336259842, -0.04725882411003113, 0.01962345466017723, 0.011318215169012547, -0.03292064741253853, -0.06944555044174194, 0.07373705506324768, -0.00043712888145819306, 0.038705676794052124, -0.04644455388188362, -0.006233260966837406, 0.010804016143083572, 0.1311028152704239, 0.07658354192972183, 0.047016359865665436, 0.03693026304244995, 0.01716838777065277, -0.09176637977361679, -0.0074190013110637665, -0.014083250425755978, -0.00017374154413118958, -0.011315742507576942, 0.04739782586693764, -0.08627255260944366, 0.03044387698173523, -0.0014228250365704298, -0.09879535436630249, 0.05669016018509865, -0.048357926309108734, 0.04030448570847511, 0.10959874093532562, 0.15867628157138824, -0.045464977622032166, 0.04401993378996849, 0.047274500131607056, 0.03228785842657089, 0.019248221069574356, -0.032475292682647705, 0.031134817749261856, -0.029183391481637955, -0.04867994412779808, 0.020222142338752747, 0.05519932880997658, 0.04822785407304764, -0.0024595963768661022, -0.10743765532970428, 0.049294281750917435, 0.03356839343905449, -0.08555153012275696, 0.006364951375871897, 0.00802917592227459, -0.07585402578115463, 0.09800458699464798, -0.06443995982408524, 0.025938892737030983, -0.08582843840122223, 0.014733624644577503, 0.053067050874233246, -0.04007512703537941, -0.06513233482837677, 0.0036617780569940805, -0.00437654135748744, -0.03806157410144806, -0.13016104698181152, -0.034898869693279266, 0.017796119675040245, 0.005114012397825718, -0.018695395439863205, -0.15339148044586182, -0.024229930713772774, 0.0766388550400734, -0.03067930042743683, -0.0097144590690732, -0.05354563891887665, -0.012318075634539127, -0.05154618248343468, 0.02123945765197277, 0.16633039712905884, 0.06775307655334473, -0.05272405967116356, 0.0332266241312027, -0.08363942056894302, -0.014261767268180847, -0.023332566022872925, 6.630802002515286e-32, -0.11110279709100723, 0.02899017743766308, -0.010130926966667175, 0.026731811463832855, 0.005203703884035349, 0.01915949396789074, 0.024611245840787888, -0.10061263293027878, 0.020148521289229393, -0.032234255224466324, 0.05329899117350578, 0.024155080318450928, -0.036159925162792206, 0.03164059668779373, -0.06660594791173935, 0.03524971380829811, 0.013740299269557, -0.04898199439048767, -0.005333323962986469, 0.025218583643436432, 0.051542073488235474, 0.01846041902899742, -0.03317898511886597, -0.011813582852482796, -0.03164232149720192, -0.05229899287223816, 0.08408810198307037, 0.07548151910305023, 0.02432728372514248, 0.007827234454452991, -0.038663145154714584, 0.004927564412355423, 0.05000041052699089, 0.0017839109059423208, 0.0034820616710931063, 0.003600201802328229, -0.012745445594191551, 0.02908484637737274, -0.08967838436365128, 0.06204002723097801, 0.004232171457260847, -0.09049850702285767, -0.07840519398450851, -0.017764000222086906, -0.049351610243320465, -0.03203380107879639, -0.06670071184635162, -0.03688457980751991, -0.057761237025260925, 0.039824146777391434, -0.04926186427474022, 0.0559253990650177, 0.08662895858287811, 0.06528320163488388, -0.020243197679519653, -0.001563547644764185, 0.03202146291732788, -0.05456579104065895, -0.0370861180126667, 0.00476674223318696, -0.11370784044265747, 0.11706217378377914, -0.06161516532301903, 0.02044646069407463 ]
274 Chapter 12 b Now consider the gradient on either side of ( 2, −48). Value of xx = 1.9 x = 2 x = 2.1 Gradient−4.56 which is − ve05.04 which is +ve Shape of curve From the shape of the curve, the point (2, − 48) is a local minimum point.Make a table where you consider a value of x slightly less than 2 and a value of x slightly greater than 2. Calculate the gradient for each of these values of x close to the stationary point. Deduce the shape of the curve. In some cases you can use the second derivative, f 0(x), to determine the nature of a stationary point. f 0(x) t ells you the rate of change of the gradient function. When f 9(x) = 0 and f 0(x) > 0 th e gradient is increasing from a negative value to a positive value, so the stationary point is a minimum .Hint a Find the coordinates of the stationary points on the curve with equation y =  2x3 − 15x2 + 24x + 6 b Find d 2 y ____ d x 2 and use it to determine the nature of the stationary points.Example 17 a y = 2x3 − 15 x2 + 24 x + 6 dy ___ dx = 6 x2 − 30 x + 24 Putting 6 x2 − 30 x + 24 = 0 6(x − 4)( x − 1) = 0 So x =  4 or x = 1 When x = 1, y = 2 − 15 + 24 + 6 = 17When x = 4, y = 2 × 64 − 15 × 16 + 24 × 4 + 6 =  −10 So the stationary points are at (1, 17) and (4, − 10).Differentiate and put the derivative equal to zero. Solve the equation to obtain the values of x for the stationary points. Substitute x = 1 and x = 4 into the original equation of the curve to obtain the values of y which correspond to these values.■ If a function f( x) has a stationary point when x = a, then: ● if f 0(a) . 0, the point is a local minimum ● if f 0(a) , 0, the point is a local maximum If f 0(a) = 0, the point could be a local minimum, a local maximum or a point of inflection. You will need to look at points on either side to determine its nature. Explore the solution using GeoGe bra.Online
[ 0.02936205454170704, 0.0525096170604229, -0.01994895190000534, -0.02517310529947281, 0.005505033768713474, 0.05583016201853752, -0.05214155465364456, 0.016795581206679344, -0.06501811742782593, 0.03795088455080986, 0.07669127732515335, -0.006813224870711565, -0.021983817219734192, -0.02152119390666485, -0.08773458003997803, 0.029845666140317917, -0.05652657523751259, 0.045592475682497025, -0.0476330928504467, -0.05305129662156105, -0.029959876090288162, -0.0022921583149582148, -0.058875590562820435, -0.016239432618021965, 0.05214882642030716, -0.04260988160967827, 0.012917338870465755, -0.03430473059415817, 0.022167880088090897, -0.021411245688796043, 0.008919586427509785, -0.07462530583143234, 0.038321010768413544, 0.018572913482785225, 0.043428998440504074, -0.01979369856417179, 0.046342816203832626, 0.030850229784846306, 0.018105823546648026, -0.005017020273953676, -0.06252817064523697, 0.04627285525202751, -0.09289498627185822, -0.003917563706636429, -0.0035424409434199333, 0.022049399092793465, -0.05831281468272209, -0.03440023958683014, -0.05387198179960251, 0.002034939592704177, 0.015538723208010197, 0.004465295001864433, -0.0464397631585598, 0.014292635023593903, -0.032739393413066864, -0.008223290555179119, 0.053327757865190506, 0.03694086894392967, 0.06475257128477097, 0.0023810649290680885, 0.02280845120549202, 0.035559311509132385, -0.029521577060222626, 0.05523553863167763, -0.025791561231017113, -0.01357307843863964, 0.014191565103828907, -0.011255817487835884, -0.0544847697019577, 0.10583380609750748, -0.07090895622968674, -0.03579407557845116, 0.03613194823265076, -0.060957249253988266, -0.013311204500496387, 0.0026994289364665747, 0.04052465409040451, 0.017421703785657883, 0.004623847547918558, -0.11321462690830231, 0.03117312490940094, 0.07141715288162231, -0.01365663018077612, 0.03799145668745041, -0.029720384627580643, 0.08880429714918137, 0.02059324085712433, -0.04549464210867882, 0.058058109134435654, 0.05330038443207741, 0.033299654722213745, 0.045579854398965836, -0.1492561250925064, 0.016927585005760193, 0.01635177992284298, -0.08064744621515274, -0.016694175079464912, -0.03467200696468353, 0.08088358491659164, 0.0808992013335228, 0.008193000219762325, 0.01487776543945074, -0.07107372581958771, 0.09089066088199615, 0.03231862187385559, -0.026655355468392372, 0.03970953822135925, -0.07380487024784088, 0.010194448754191399, -0.01955333724617958, 0.014689644798636436, -0.03314434364438057, -0.04577402025461197, 0.01836622692644596, 0.08984323590993881, -0.0373326912522316, 0.02661284990608692, 0.005982757546007633, -0.055906835943460464, -0.05792909488081932, 0.01329000759869814, -0.09566773474216461, 0.025061599910259247, -0.002498461166396737, -0.06672924011945724, -0.04026934877038002, 0.033024296164512634, 0.01601605862379074, 0.012105096131563187, -0.019659068435430527, 0.00430523045361042, -0.07067877054214478, -0.07600799202919006, -0.05224433168768883, 0.03507348522543907, 0.016824141144752502, -0.04909118637442589, 0.06133127212524414, 0.01762286387383938, -0.11850833892822266, -0.023022031411528587, 0.002307577757164836, 0.034738413989543915, -0.05363817512989044, -0.030825963243842125, 0.02061993069946766, 0.022876784205436707, -0.002558574778959155, -0.003564917715266347, -0.03857238218188286, 0.012055115774273872, -0.11338351666927338, 0.01234573032706976, 0.03713373839855194, 0.02151988260447979, -0.028812259435653687, -0.02848600596189499, -0.008511951193213463, 0.015288029797375202, -0.07606945186853409, -0.08799687027931213, 0.08130522817373276, 0.07903682440519333, 0.04942205920815468, 0.0011494432110339403, 0.004297396633774042, 0.006527978461235762, -0.05007996782660484, 0.027631280943751335, 0.01330843660980463, 0.04085078090429306, 0.053595878183841705, -0.03439194709062576, 0.14288586378097534, -0.08482934534549713, -0.023872317746281624, 0.10755649954080582, 0.005527343135327101, 0.06098068505525589, -0.018409812822937965, 0.041461795568466187, -0.03827537223696709, -0.008285995572805405, -0.026047926396131516, 0.004902505781501532, 0.008299659937620163, 0.01840919256210327, 0.04149863123893738, -0.01592383161187172, 0.04058363288640976, 0.01693287119269371, -0.04181291535496712, 0.009730438701808453, 0.06351667642593384, -0.1632901281118393, -0.05783838406205177, 0.003317100228741765, -0.02871551178395748, -0.00640422198921442, -0.023692958056926727, 0.06715010106563568, -0.03641944378614426, 0.014738630503416061, 0.0669015571475029, 0.009075270034372807, -0.0023553497157990932, 0.0716584101319313, -0.10545477271080017, -0.13746102154254913, 0.01152974646538496, 0.013229815289378166, -0.056891847401857376, -0.03803258761763573, 0.056249093264341354, 0.05912930518388748, -0.005816192831844091, 0.009053782559931278, -0.02535232901573181, -0.08503833413124084, -0.0024953940883278847, -0.04443289339542389, 0.039978377521038055, 0.011327248066663742, 3.404354699546196e-33, -0.08769158273935318, 0.006584438029676676, -0.028903868049383163, 0.004943567328155041, 0.040036290884017944, 0.006583086214959621, 0.06903839856386185, 0.030895687639713287, -0.027279583737254143, 0.15309607982635498, -0.08535032719373703, 0.03460768237709999, 0.005822525359690189, -0.0017195126274600625, -0.011719835922122002, -0.05717116594314575, -0.001407734933309257, 0.06091174855828285, 0.026741016656160355, 0.013786538504064083, -0.020285161212086678, -0.009611913003027439, -0.005924577824771404, 0.1125587522983551, 0.12894070148468018, 0.07228025794029236, 0.06936564296483994, -0.017227375879883766, -0.04480523243546486, -0.009516946971416473, -0.09459707140922546, 0.010452527552843094, -0.01999068446457386, -0.023023538291454315, -0.07702699303627014, 0.004051727242767811, 0.007715445477515459, -0.06668565422296524, 0.01481892541050911, -0.08289244771003723, 0.07977985590696335, 0.06493249535560608, 0.0605928897857666, -0.08516152203083038, -0.0014440243830904365, -0.006562637630850077, 0.0825015977025032, -0.007473021745681763, -0.02585960552096367, 0.05995223671197891, 0.010764201171696186, -0.06734101474285126, 0.08809046447277069, 0.11519036442041397, 0.04496641084551811, -0.04261969402432442, -0.07268434762954712, -0.006994724273681641, 0.054197296500205994, -0.03549157455563545, -0.006377017591148615, -0.01294745597988367, -0.060559116303920746, 0.08679371327161789, 0.006400450132787228, -0.027419889345765114, -0.059147849678993225, -0.01884227618575096, 0.030093055218458176, 0.0007248048787005246, -0.0764051303267479, 0.07769547402858734, 0.08228753507137299, -0.0628819540143013, -0.043897394090890884, -0.053609758615493774, -0.007283237297087908, -0.028330892324447632, 0.04891568422317505, -0.10230638831853867, -0.07260911166667938, 0.04278333857655525, 0.056884896010160446, -0.03400539606809616, -0.029529746621847153, 0.01147372368723154, -0.056016791611909866, 0.025478146970272064, 0.12760302424430847, 0.020954785868525505, -0.01863573119044304, 0.010495495051145554, -0.04593962803483009, -0.02980884537100792, -0.027621136978268623, 7.286676128522686e-32, -0.0545736700296402, 0.007530624978244305, 0.03384445235133171, 0.02574470452964306, 0.018655119463801384, 0.07029981166124344, 0.02166358381509781, -0.05373271182179451, -0.0552145354449749, -0.004292593337595463, 0.03957067430019379, 0.025941981002688408, -0.042977090924978256, 0.11300687491893768, -0.048722852021455765, -0.01683642715215683, -0.04255073890089989, -0.01273628231137991, -0.041143182665109634, -0.028427662327885628, 0.05757030099630356, -0.027582328766584396, -0.05870620906352997, -0.006003303918987513, -0.003930327948182821, -0.046126216650009155, 0.04364803433418274, 0.06474465876817703, 0.022581886500120163, -0.0350288487970829, -0.027032693848013878, 0.05388697236776352, 0.04149356856942177, -0.03369247168302536, 0.005188402719795704, -0.026690533384680748, -0.039709825068712234, 0.06942965090274811, -0.03574308007955551, 0.08432121574878693, -0.03485207259654999, -0.016971932724118233, -0.011382125318050385, -0.028734654188156128, 0.009748823009431362, -0.0021242392249405384, -0.009261094965040684, -0.010537433438003063, -0.05085296928882599, 0.025796914473176003, 0.04036596789956093, 0.031431205570697784, 0.16008612513542175, 0.12105094641447067, 0.005903750658035278, -0.05211710184812546, 0.008805569261312485, -0.046100914478302, -0.05369279533624649, -0.019684411585330963, -0.08188477903604507, 0.11018288135528564, -0.10297061502933502, 0.0060665179044008255 ]
275Differentiation b d2y ____ dx2  =  12 x − 30 When x = 1, d2y ____ dx2  = −18 which is , 0 So (1, 17) i s a local maximum point. When x = 4, d2y ____ dx2  = 1 8 which is . 0 So (4, −10) i s a local minimum point.Differentiate again to obtain the second derivative. Substitute x = 1 and x = 4 into the second derivative expression. If the second derivative is negative then the point is a local maximum point. If it is positive then the point is a local minimum point. a The curve with equation y =  1 __ x + 27 x 3 has stationary points at x = ±a. Find the value of a. b Sketch the gra ph of y =  1 __ x + 27 x 3 .Example 18 a y =  x−1 + 27 x3 dy ___ dx  = −x−2 + 81 x2 =  − 1 __ x 2 + 81 x 2 Whe n dy ___ dx = 0: − 1 __ x 2 + 81 x 2 = 0 81 x 2 = 1 __ x 2 81 x 4 = 1 x 4 = 1 ___ 81 x = ± 1 __ 3 So a  =  1 __ 3 b d 2 y ____ d x 2 = 2 x −3 + 162x = 2 __ x 3 + 162x Whe n x = − 1 __ 3 , y =  1 _____ (− 1 __ 3 ) + 27 (− 1 __ 3 ) 3 = −4 and d 2 y ____ d x 2 = 2 ______ (− 1 __ 3 ) 3 + 162 (− 1 __ 3 ) = −108 which is negative. So the curve has a local maximum at (− 1 __ 3 , −4) . When x =  1 __ 3 , y =   1 ____ ( 1 __ 3 ) + 27 ( 1 __ 3 ) 3 = 4 and d 2 y ____ d x 2 = 2 _____ ( 1 __ 3 ) 3 + 162 ( 1 __ 3 ) = 108 which is positive.Write 1 __ x as x −1 to differentiate. You need to consider the positive and negative roots: (− 1 _ 3 ) 4 = (− 1 _ 3 ) × (− 1 _ 3 ) × (− 1 _ 3 ) × (− 1 _ 3 ) = 1 __ 81 Set dy ___ dx  = 0 to determine the x-coordinates of the stationary points. To sketch the curve, you need to find the coordinates of the stationary points and determine their natures. Differentiate your expression for dy ___ dx to find d 2 y ____ d x 2 Substitute x = − 1 _ 3 and x  =  1 _ 3 into the equation of the cur ve to find the y-coordinates of the stationary points. Check your solution using your ca lculator.Online
[ 0.0794287696480751, 0.034189485013484955, 0.025797462090849876, -0.061484191566705704, -0.02883606031537056, -0.02434409223496914, 0.019275017082691193, 0.05651194602251053, -0.09551556408405304, 0.01584555394947529, 0.058406829833984375, -0.09017116576433182, -0.016205845400691032, -0.021177615970373154, -0.07192663848400116, 0.02313028834760189, -0.011301176622509956, 0.02004576474428177, -0.0639830231666565, 0.015420423820614815, 0.005544398911297321, -0.088721863925457, 0.01142566092312336, -0.05795474722981453, 0.07042992860078812, 0.0058131953701376915, -0.001524779829196632, 0.040644560009241104, 0.0033528022468090057, -0.019677266478538513, -0.08294705301523209, -0.04858671501278877, -0.0016442521009594202, -0.041102293878793716, 0.10758749395608902, 0.0006100452155806124, 0.029248936101794243, 0.01339672226458788, -0.012432888150215149, -0.0497296117246151, 0.007112342398613691, -0.012599892914295197, 0.02072940394282341, -0.03634386882185936, 0.010577741079032421, -0.06469324231147766, -0.023497555404901505, 0.0412755124270916, 0.012561546638607979, -0.035015448927879333, 0.05854032188653946, 0.017807738855481148, -0.046031318604946136, 0.08143333345651627, 0.012608996592462063, -0.0004460853524506092, 0.036944977939128876, 0.010653023608028889, -0.03004481829702854, 0.0008223281474784017, 0.010661094449460506, 0.01778857782483101, 0.02282242849469185, 0.04980930685997009, 0.010951553471386433, 0.014518716372549534, -0.00888027623295784, -0.04567655175924301, -0.015663644298911095, 0.06446226686239243, -0.04550497233867645, -0.01337860245257616, 0.06514523923397064, -0.07948261499404907, 0.04298263043165207, -0.019551528617739677, 0.031907957047224045, -0.008021583780646324, 0.05748710781335831, -0.08008572459220886, 0.01054666843265295, 0.03525789454579353, 0.043141674250364304, 0.027492718771100044, -0.026089711114764214, 0.012374176643788815, -0.006496067624539137, -0.026700707152485847, -0.020159712061285973, 0.04649956524372101, 0.05463084205985069, 0.061775997281074524, -0.10125203430652618, 0.0037989686243236065, -0.01477375254034996, -0.14184680581092834, -0.0027121510356664658, -0.0709083154797554, 0.07384147495031357, 0.10390918701887131, -0.06512975692749023, 0.10814161598682404, -0.06826362758874893, 0.0614076629281044, 0.040450211614370346, -0.02369985356926918, -0.02606895938515663, -0.053143374621868134, 0.028939491137862206, -0.07320214807987213, -0.058526020497083664, -0.002860819222405553, 0.02217261679470539, 0.05303732678294182, 0.05112818256020546, 0.05235349014401436, 0.05393701791763306, -0.024738838896155357, -0.05187027156352997, -0.024097684770822525, 0.026694124564528465, -0.028776224702596664, -0.009465036913752556, -0.07771620899438858, -0.04057735577225685, 0.05092848837375641, -0.03754125162959099, 0.0378272570669651, -0.03237508609890938, -0.03381681814789772, -0.029390430077910423, -0.12492064386606216, -0.053304269909858704, 0.016221405938267708, -0.02710702270269394, 0.016346612945199013, -0.07999013364315033, 0.018322573974728584, 0.02414611540734768, -0.1274072676897049, 0.007089185994118452, 0.02205631136894226, 0.0700678676366806, -0.08331847935914993, -0.007582612335681915, 0.02858266420662403, -0.0767887681722641, 0.036073748022317886, -0.025085071101784706, -0.002464041579514742, -0.0020939395762979984, -0.09095925092697144, 0.024593524634838104, 0.07353851944208145, -0.009873400442302227, -0.029933035373687744, -0.038159146904945374, -0.020958730950951576, 0.017402615398168564, -0.060154106467962265, -0.10603079199790955, 0.07377197593450546, 0.05476916581392288, 0.07813979685306549, -0.028775978833436966, 0.06700550764799118, 0.06274904310703278, 0.04088089242577553, 0.0604727566242218, 0.05550434812903404, 0.06190004572272301, 0.024417465552687645, -0.06834989041090012, 0.06752213835716248, -0.06919775903224945, 0.011585372500121593, -0.015830235555768013, -0.01016940176486969, 0.022111328318715096, -0.05519719049334526, -0.006129852030426264, -0.053753312677145004, -0.03210043907165527, -0.023939624428749084, 0.007800532504916191, -0.030179040506482124, -0.00149658287409693, 0.009640752337872982, -0.031997743993997574, 0.031224466860294342, 0.02305685169994831, -0.04966926574707031, 0.008949859999120235, 0.022203125059604645, -0.1069052517414093, -0.0277789905667305, 0.035105470567941666, -0.049938470125198364, -0.04424899443984032, 0.06485777348279953, 0.12313399463891983, 0.017543170601129532, 0.016118647530674934, 0.027968497946858406, 0.060990557074546814, 0.021139979362487793, -0.004084440413862467, -0.04875042662024498, -0.1216944232583046, -0.00007859952165745199, 0.0546451136469841, -0.005741380155086517, 0.0023683372419327497, 0.018453065305948257, 0.04093590006232262, -0.02839423157274723, -0.005217432510107756, -0.05430462211370468, -0.1435704231262207, -0.005092530976980925, -0.01467262301594019, 0.0026309837121516466, 0.05975298583507538, -8.94994215409227e-34, 0.027941998094320297, 0.021072939038276672, -0.027143942192196846, -0.06655443459749222, -0.00810161791741848, -0.02376425638794899, 0.08304980397224426, 0.011631975881755352, 0.06010211631655693, 0.11617674678564072, 0.0008995555690489709, 0.059312302619218826, -0.04012095555663109, 0.002398472046479583, -0.008853178471326828, 0.015119568444788456, -0.04123539850115776, 0.03444771468639374, -0.04744953662157059, -0.007924421690404415, -0.032172251492738724, 0.006470423191785812, 0.0034397640265524387, 0.06346454471349716, 0.030775833874940872, 0.07005332410335541, 0.0438474677503109, 0.06822026520967484, -0.07206223160028458, 0.009471660479903221, 0.002515277359634638, -0.017034005373716354, 0.03559981659054756, 0.06088411062955856, -0.11510821431875229, -0.05647103115916252, 0.0008533942745998502, -0.05868440493941307, 0.0109861483797431, -0.039441611617803574, 0.10400880873203278, 0.08229056000709534, 0.03719545155763626, -0.029785579070448875, 0.07213164865970612, 0.02504836767911911, 0.01483054831624031, -0.09296640753746033, 0.00205888575874269, 0.05177479237318039, -0.02727590873837471, -0.07713799178600311, 0.03896915912628174, 0.07591183483600616, 0.028796620666980743, -0.04949917271733284, -0.024442672729492188, 0.050059881061315536, 0.024477411061525345, -0.013984046876430511, 0.04738255590200424, -0.012750389985740185, 0.022521909326314926, 0.06818165630102158, -0.07163290679454803, 0.06848753988742828, 0.024837912991642952, -0.028855012729763985, 0.006742147263139486, 0.03163128346204758, -0.12994737923145294, 0.07021801918745041, -0.04712685942649841, -0.06506085395812988, -0.10513652116060257, -0.012915528379380703, 0.011352280154824257, 0.03361605480313301, 0.042760323733091354, -0.07394881546497345, -0.07638121396303177, 0.03428039327263832, -0.01831464096903801, 0.0033907147590070963, -0.10983952134847641, 0.044643521308898926, -0.012571069411933422, -0.015335265547037125, 0.10651743412017822, 0.048985861241817474, -0.07340914011001587, 0.05043227598071098, -0.004544805735349655, 0.014967123046517372, 0.02872583456337452, 7.585227595997355e-32, -0.09524209797382355, 0.06010900065302849, -0.045920610427856445, -0.0004827630764339119, -0.033310629427433014, 0.0972047746181488, -0.051423098891973495, -0.022218210622668266, -0.0030414958018809557, -0.08307140320539474, 0.012788353487849236, 0.04409555718302727, -0.03464105352759361, 0.07043082267045975, -0.09343796968460083, -0.012562086805701256, 0.0010882980423048139, -0.08693703263998032, -0.00961009319871664, -0.010114162229001522, 0.02327345870435238, 0.0302500631660223, -0.07715407758951187, -0.001274240086786449, -0.06566961109638214, 0.009488096460700035, 0.031215006485581398, -0.00014974855002947152, -0.048114243894815445, -0.05951925739645958, 0.011726665310561657, -0.057037193328142166, 0.018435275182127953, -0.007305572275072336, 0.04403497651219368, -0.028343645855784416, -0.12183601409196854, 0.07563389837741852, -0.038822196424007416, 0.09863775223493576, 0.02268223837018013, -0.05862969532608986, -0.007073352113366127, -0.02859206311404705, 0.033644985407590866, -0.02146437205374241, -0.0021065014880150557, -0.04329071566462517, -0.02868308313190937, -0.0016370192170143127, -0.045984506607055664, 0.06236063316464424, 0.12366951256990433, 0.10524533689022064, -0.026017121970653534, -0.0024932485539466143, 0.02795424871146679, 0.020809482783079147, 0.011287439614534378, 0.033847689628601074, -0.0871879979968071, 0.10523238778114319, -0.08112067729234695, -0.009024735540151596 ]
276 Chapter 12 So the curve has a local minimum at ( 1 __ 3 , 4) . The curve has an asymptote at x = 0. As x → ∞ , y → ∞ . As x → − ∞, y → − ∞. 1 31 x 13/four.ss01 –/four.ss01– xy Oy = + 27 x3 1 Find the least value of the following functions: a f(x ) = x2 − 12x + 8 b f(x ) = x2 − 8x − 1 c f(x ) = 5x2 + 2x 2 Find the greatest v alue of the following functions: a f(x ) = 10 − 5x2 b f(x) = 3 + 2x − x2 c f(x) = (6 +  x)(1  − x) 3 Find the coordinates of the points where the gradient is zero on the curves with the given equations. Establish whether these points are local maximum points, local minimum points or points of inflection in each case. a y =  4x2 + 6x b y =  9 + x − x2 c y =  x3 − x2 − x + 1 d y =  x (x2 − 4x − 3) e y =  x +  1 __ x f y =  x2 +  54 ___ x g y =  x − 3 √ __ x h y =   x 1 _ 2 (x − 6) i y =  x 4 − 12x2 4 Sketch the curves with equations given in question 3 parts a, b, c and d, labelling any stationary points with their coordina tes. 5 By considering the gradient on either side of the sta tionary point on the curve y = x3 − 3x2 + 3x, show that this point is a point of inflection. Sketch the curve y = x3 − 3x2 + 3x. 6 Find the maximum va lue and hence the range of values for the function f(x) = 27 − 2x4. 7 f(x)  = x 4 + 3x3 − 5x2 − 3x + 1 a Find the coordinates of the stationary points of f(x), and determine the nature of each. b Sketch the gra ph of y = f(x).P P PExercise 12I For each part of qu estions 1 and 2 : ● Fin d f9(x). ● Set f 9 (x) = 0 and solve to find the value of x at the stationary point. ● Fin d the corresponding value of f( x).Hint Use the factor theorem wi th small positive integer values of x to find one factor of f9(x). ← Section 7.2Hint 1 __ x → ± ∞ as x → 0 so x = 0 is an asymptote of the curve. Mark the coordinates of the stationary points on your sketch, and label the curve with its equation. You could check dy ___ dx at specific points to help with your sketch: ● When x  =  1 _ 4 , dy ___ dx  = −10.9375 which is negative. ● When x  = 1, dy ___ dx = 80 which is positive.
[ 0.036003902554512024, 0.06004474684596062, -0.031926464289426804, -0.02965027280151844, -0.04144991934299469, -0.03659671172499657, -0.035623736679553986, 0.08752728253602982, -0.0783684104681015, 0.006719214841723442, 0.048183560371398926, -0.07993266731500626, -0.0326470322906971, 0.017239801585674286, -0.04994397982954979, 0.006319977808743715, -0.018075307831168175, -0.03341824933886528, -0.08691921085119247, 0.021194279193878174, -0.032695457339286804, -0.024741072207689285, -0.046880852431058884, 0.007578858640044928, 0.044420842081308365, -0.09215454757213593, -0.039687301963567734, -0.1256774663925171, -0.029809536412358284, -0.024754926562309265, -0.03954807296395302, -0.049567293375730515, 0.06340748071670532, 0.010584545321762562, 0.12307833880186081, -0.027470877394080162, 0.0752735286951065, 0.06312990188598633, 0.021868446841835976, 0.014035908505320549, -0.0655483677983284, 0.07189883291721344, -0.016945481300354004, 0.0006885596667416394, 0.07146424055099487, -0.10123935341835022, -0.03800184652209282, -0.018044382333755493, -0.05618606507778168, 0.03447858244180679, 0.026706255972385406, 0.034553855657577515, -0.042501747608184814, 0.06815419346094131, 0.01713050715625286, -0.019651873037219048, -0.06242560222744942, -0.032887957990169525, 0.024558784440159798, 0.056316763162612915, -0.06441500037908554, -0.0036914327647536993, -0.007603608537465334, 0.04411767050623894, 0.004190016072243452, 0.08912652730941772, 0.06186541169881821, -0.007331774570047855, 0.0074361106380820274, 0.13103261590003967, -0.11251793801784515, -0.008602344430983067, -0.01314870361238718, -0.060184333473443985, 0.03511475771665573, -0.03107585944235325, -0.00014887950965203345, -0.09762660413980484, -0.008577004075050354, -0.05687738582491875, -0.04694071412086487, 0.013258892111480236, 0.03082951344549656, 0.10390199720859528, -0.03364073112607002, 0.057995233684778214, 0.08386873453855515, -0.04595587030053139, 0.0009272671886719763, -0.014668908901512623, -0.008873765356838703, 0.04327257350087166, -0.024600494652986526, -0.00652722641825676, 0.0002903991553466767, -0.16019882261753082, 0.029316600412130356, -0.1044594943523407, 0.07076680660247803, 0.12085003405809402, -0.07651099562644958, 0.05134693905711174, -0.0221236664801836, 0.08042677491903305, 0.007344978395849466, 0.00971263274550438, -0.017089618369936943, -0.06251160800457001, 0.017184868454933167, -0.07573926448822021, -0.02962500974535942, -0.071444071829319, -0.023621393367648125, 0.04548530653119087, 0.08886539191007614, 0.005915470886975527, 0.0033893559593707323, 0.030274715274572372, -0.04961160197854042, -0.03618264198303223, -0.018848717212677002, -0.034443873912096024, 0.03187872841954231, -0.00018534500850364566, -0.04405098780989647, 0.020851578563451767, -0.027082480490207672, 0.06007679924368858, 0.06252346932888031, -0.03280871361494064, -0.0018348736921325326, -0.138356551527977, -0.04899970069527626, -0.02019544504582882, 0.012784910388290882, -0.0145570058375597, -0.1488000899553299, 0.08555634319782257, -0.00441667390987277, -0.07074128836393356, 0.06407497823238373, -0.0017268541269004345, -0.01469365507364273, -0.020555097609758377, 0.013360263779759407, -0.0025384381879121065, -0.019756145775318146, -0.06640046089887619, -0.045991089195013046, -0.0334211029112339, 0.011313685216009617, -0.07454773783683777, 0.001083356561139226, 0.10982158035039902, 0.06389039754867554, -0.011958478949964046, -0.05397261679172516, -0.06284032762050629, 0.02633347176015377, -0.043066997081041336, -0.04439888894557953, 0.09044943004846573, 0.0871196761727333, 0.04855702817440033, 0.01404473464936018, 0.016920089721679688, 0.07675761729478836, 0.05762772262096405, 0.005060533061623573, 0.04415757954120636, 0.037679873406887054, 0.003978351596742868, 0.022200651466846466, 0.062113773077726364, 0.010804648511111736, 0.04384148120880127, 0.09510336816310883, 0.0473305843770504, 0.0004932310548610985, 0.039605576545000076, 0.014301620423793793, 0.012138677760958672, -0.02800776995718479, -0.037857383489608765, -0.03711913526058197, -0.010625074617564678, 0.0015095766866579652, 0.01879994012415409, -0.01644986867904663, 0.009093781933188438, 0.005635942332446575, -0.10168500989675522, 0.020665451884269714, 0.018598398193717003, -0.07589716464281082, -0.03769897669553757, 0.044947411864995956, -0.051147449761629105, -0.05784755200147629, 0.07786138355731964, 0.020577192306518555, -0.0016281367279589176, 0.043325770646333694, 0.07201555371284485, 0.03268638253211975, 0.021590208634734154, -0.034504033625125885, -0.10928688943386078, -0.06315116584300995, -0.03285437077283859, 0.06171198934316635, -0.02025608904659748, -0.04465867951512337, 0.022515010088682175, 0.017683111131191254, -0.05418332293629646, 0.1012650579214096, 0.019256535917520523, -0.11121999472379684, 0.0013862450141459703, -0.023574281483888626, -0.060608454048633575, 0.07566837221384048, -8.712078668151472e-33, 0.00901698600500822, 0.0034720066469162703, -0.02182689867913723, -0.030166955664753914, 0.05709175020456314, -0.11170635372400284, 0.03228582441806793, -0.024158822372555733, 0.04042942449450493, 0.03313573822379112, 0.061230093240737915, 0.013280014507472515, 0.007909910753369331, -0.07119310647249222, 0.022011103108525276, -0.02256161719560623, -0.027700819075107574, -0.02382255159318447, 0.06190020218491554, -0.01452028937637806, -0.010093293152749538, 0.03593490272760391, 0.030152615159749985, 0.0835254043340683, 0.018698517233133316, 0.03477688878774643, 0.005075131077319384, -0.017426403239369392, -0.10261725634336472, 0.019496722146868706, 0.01802716590464115, 0.06591872125864029, 0.04751691222190857, -0.018912723287940025, -0.010510941967368126, 0.005792050622403622, -0.025693299248814583, -0.08683738857507706, 0.05555398389697075, -0.02499777264893055, 0.1092742532491684, 0.0699138194322586, 0.06196662038564682, -0.05350959300994873, 0.029012205079197884, 0.014345338568091393, 0.037373412400484085, -0.029126998037099838, 0.012366434559226036, -0.0016808216460049152, 0.007276954594999552, -0.054736193269491196, 0.004171510227024555, 0.05841214954853058, 0.05535304173827171, -0.0253132451325655, -0.04179972782731056, -0.014081854373216629, 0.03587864339351654, -0.05006787180900574, 0.00846789125353098, -0.02240900695323944, -0.06396272778511047, 0.013775221072137356, -0.06517557054758072, -0.014396597631275654, -0.03214327618479729, -0.011602523736655712, 0.015145518817007542, -0.012772987596690655, -0.04306278005242348, -0.048941656947135925, -0.002812311751767993, -0.0855802446603775, -0.07545681297779083, 0.009281203150749207, -0.0366019681096077, -0.032697368413209915, 0.06627484411001205, -0.09131710976362228, -0.09161656349897385, -0.006306125782430172, -0.014846536330878735, 0.006166089326143265, -0.09368520975112915, 0.012548133730888367, 0.011019145138561726, 0.07001670449972153, 0.11771292239427567, 0.09108782559633255, -0.04842813313007355, 0.032063569873571396, -0.02330402098596096, -0.005510183982551098, -0.023305844515562057, 9.59723605295943e-32, -0.07468711584806442, 0.01776696927845478, -0.039435457438230515, -0.01207831408828497, 0.0526236966252327, 0.08190681040287018, -0.03351215645670891, -0.012808183208107948, 0.05738769471645355, -0.06894193589687347, 0.07685299217700958, 0.07139837741851807, -0.09957179427146912, 0.08060629665851593, -0.052766818553209305, -0.034547191113233566, 0.03608699515461922, -0.023970576003193855, 0.001630508340895176, 0.008764203637838364, -0.043465565890073776, 0.04139053449034691, -0.06954074651002884, -0.025532865896821022, 0.002403687685728073, -0.010506602935492992, 0.006326410919427872, 0.0300688985735178, 0.004440059885382652, 0.0025885405484586954, -0.040420982986688614, -0.01582152396440506, 0.020958585664629936, -0.006581161171197891, -0.003759169951081276, -0.07374575734138489, -0.020834870636463165, 0.03545325994491577, -0.04951018467545509, 0.04279160872101784, -0.020880993455648422, -0.07879295945167542, -0.06779662519693375, -0.03800133615732193, -0.022041097283363342, -0.06214489787817001, 0.036306772381067276, -0.0256432443857193, 0.037951841950416565, 0.03418673202395439, -0.01448938436806202, 0.07655756920576096, 0.09202003479003906, -0.007099804002791643, 0.02198139950633049, -0.0425235852599144, -0.006109532434493303, -0.035537708550691605, -0.0759579986333847, 0.002210834063589573, -0.06691057235002518, 0.035379014909267426, -0.05050962045788765, 0.08981940150260925 ]
277Differentiation 12.10 Sketching gradient functions You can use the features of a given function to sketch the corresponding gradient function. This table shows you features of the graph of a function, y = f(x), and the graph of its gradient function, y = f9(x), at corresponding values of x. y = f (x) y = f9(x) Maximum or minimum Cuts the x-axis Point of inflection Touches the x-axis Positive gradient Above the x-axis Negative gradient Below the x-axis Vertical asymptote Vertical asymptote Horizontal asymptote Horizontal asymptote at the x-axisy = f(x) y = f /acute.sc(x)O xy O xy The diagram shows the curve with equation y = f(x). The curve has stationary points at (−1, 4) and (1, 0), and cuts the x-axis at (−3, 0). Sketch the gradient function, y = f 9( x), showing the coordinates of any points where the curve cuts or meets the x-axis.Example 19 y = f(x) 1(–1, 4) –3 O xy O –11y = f/caron.alt( x) xy Ignore any points wher e the curve y = f(x) cuts the x-axis. These will not tell you anything about the features of the graph of y = f9(x).Watch outx y = f( x) y = f9( x) x , −1 Positive gradient Above x-axis x = −1 Maximum Cuts x-axis −1 , x , 1 Negativ e gradient Below x-axis x = 1 Minimum Cuts x-axis x > 1 Positive gradient Above x-axis Use GeoGebra to explore the key fe atures linking y = f(x) and y = f9(x).Online
[ 0.08862057328224182, 0.10639328509569168, 0.0490429513156414, -0.06737717241048813, -0.0668855682015419, -0.04618651047348976, -0.024728238582611084, 0.007077357731759548, -0.046958811581134796, 0.04410206526517868, 0.03740862384438515, 0.036588914692401886, 0.014011599123477936, 0.0994652733206749, -0.04436515271663666, 0.014359508641064167, -0.06241580471396446, 0.0654488280415535, -0.08922919631004333, -0.03454191982746124, 0.005632495041936636, -0.04116421937942505, -0.060781434178352356, -0.12216038256883621, 0.06548766791820526, -0.04341529309749603, -0.01894467882812023, -0.04258500412106514, -0.05920344963669777, 0.0017510284669697285, -0.02957724966108799, -0.015346810221672058, 0.06455620378255844, -0.005095456261187792, -0.01133881974965334, -0.015340740792453289, 0.047200363129377365, 0.023895589634776115, 0.016492778435349464, 0.033215779811143875, -0.02974623441696167, 0.1033448725938797, -0.0049265846610069275, -0.03340323641896248, 0.0717005655169487, 0.02235967479646206, 0.009467778727412224, -0.014715352095663548, -0.010002819821238518, 0.00752061465755105, -0.0094261784106493, -0.00626255851238966, -0.07201693207025528, 0.06116315722465515, -0.020678209140896797, -0.054678112268447876, -0.00332439411431551, -0.009006685577332973, 0.03515670821070671, 0.025795046240091324, 0.03910749778151512, -0.028337262570858, -0.0555117093026638, 0.05844520777463913, 0.005356829613447189, 0.0023375090677291155, 0.027778033167123795, -0.06655050814151764, -0.016949741169810295, 0.12050649523735046, -0.056531649082899094, -0.038472216576337814, 0.05085604637861252, -0.01281451154500246, 0.02459729090332985, 0.008441178128123283, 0.09006534516811371, 0.05945897474884987, -0.06506922841072083, -0.08184365928173065, -0.007494250312447548, 0.09346479177474976, 0.04583550989627838, 0.05402949079871178, 0.03293251246213913, -0.031490713357925415, 0.08610653132200241, -0.05348912626504898, 0.0038883956149220467, -0.006184529047459364, -0.09457456320524216, 0.05835733190178871, -0.12727311253547668, 0.04090394452214241, -0.038162726908922195, -0.04122716560959816, -0.02106785587966442, -0.07951750606298447, 0.02763533964753151, 0.04112517461180687, -0.026330703869462013, 0.04039726406335831, -0.06221851333975792, 0.07226279377937317, -0.0005781440413556993, -0.03237548843026161, 0.08616305887699127, -0.007031186483800411, -0.0294971764087677, -0.10544487833976746, -0.05731901153922081, -0.01222025416791439, 0.04432498663663864, -0.00432131253182888, 0.10135538130998611, -0.09288729727268219, -0.03335389494895935, -0.05633614957332611, 0.017276832833886147, 0.035417310893535614, 0.036335840821266174, -0.013713539578020573, -0.02018917165696621, 0.008678939193487167, -0.03595374524593353, 0.07286323606967926, -0.06665416061878204, 0.04857960343360901, 0.005925255827605724, 0.005459153093397617, 0.07911792397499084, -0.06478439271450043, -0.002410741988569498, -0.07114378362894058, -0.024889426305890083, 0.01614576019346714, -0.08114175498485565, 0.14478157460689545, 0.01916288025677204, -0.0077903661876916885, 0.07917752861976624, 0.05696631968021393, 0.013857859186828136, 0.0035288126673549414, 0.012558989226818085, -0.08139347285032272, -0.04520488157868385, -0.05032260715961456, -0.034344617277383804, 0.03822750598192215, 0.0533779114484787, -0.0369904562830925, -0.010868622921407223, 0.11122849583625793, -0.023899784311652184, -0.024521220475435257, -0.05821046233177185, 0.016452006995677948, -0.07794994115829468, -0.05700105056166649, -0.018347717821598053, 0.04002439230680466, 0.0302182137966156, 0.049445461481809616, -0.018804045394062996, -0.01760050281882286, 0.019524121657013893, -0.03930140286684036, -0.004575049504637718, -0.008431303314864635, 0.017650527879595757, 0.02899867482483387, -0.02573019452393055, 0.07831759750843048, -0.03107261098921299, 0.03601272776722908, 0.05879196524620056, -0.008633632212877274, 0.06602983176708221, 0.008848884142935276, 0.11619788408279419, -0.00035263795871287584, -0.01625858061015606, -0.05630084127187729, 0.050265464931726456, -0.034868936985731125, -0.015455411747097969, 0.022751402109861374, -0.04749966412782669, -0.11026676744222641, 0.012771498411893845, -0.07187224924564362, -0.031612519174814224, 0.018041588366031647, -0.12082993239164352, -0.043910957872867584, -0.005461068358272314, -0.0032381543423980474, -0.025804584845900536, 0.01900145597755909, 0.01892332173883915, -0.003441771026700735, 0.022407520562410355, 0.12963902950286865, -0.050634026527404785, 0.0656004473567009, -0.0021706740371882915, 0.012442872859537601, -0.05750665068626404, 0.030200300738215446, -0.07202251255512238, 0.010031338781118393, -0.01700487732887268, 0.03447848930954933, -0.004023311659693718, -0.031722817569971085, 0.061178918927907944, -0.02865518257021904, -0.11216878890991211, 0.023105958476662636, -0.03315853700041771, -0.03507416695356369, 0.040059443563222885, 1.2823743379608808e-33, -0.03793232887983322, -0.03739350661635399, 0.013967457227408886, -0.00608070008456707, -0.008769038133323193, -0.07553590089082718, 0.11589041352272034, 0.10306522250175476, 0.00045265164226293564, 0.08791667222976685, 0.032809242606163025, 0.051097821444272995, -0.07159920781850815, 0.001666126772761345, -0.040435027331113815, -0.07740407437086105, -0.037770383059978485, 0.020499635487794876, 0.0018885793397203088, -0.020541995763778687, -0.005423822905868292, 0.07758235931396484, 0.011810225434601307, 0.0913786068558693, 0.06638694554567337, -0.035450056195259094, 0.055337365716695786, 0.017853034660220146, -0.07731044292449951, -0.009780208580195904, -0.048497624695301056, 0.017509382218122482, -0.03489016368985176, 0.03372206538915634, -0.009175959043204784, 0.02846550941467285, -0.04160023108124733, -0.09007877856492996, 0.024828366935253143, -0.029868219047784805, 0.10565231740474701, 0.07379459589719772, 0.05352169647812843, -0.06939446926116943, 0.009397036395967007, 0.05892345309257507, -0.03345722705125809, 0.0063269902020692825, -0.0340803824365139, 0.07118600606918335, 0.005629959050565958, -0.11875028908252716, 0.04961249977350235, 0.026683304458856583, 0.04698706790804863, -0.017311854287981987, 0.04521428421139717, -0.04041385278105736, 0.0661848783493042, 0.015760816633701324, -0.0854138657450676, -0.06266812980175018, -0.10277247428894043, 0.007791515905410051, -0.04493233934044838, 0.019279152154922485, -0.07217127084732056, -0.03850691020488739, 0.035109248012304306, -0.017437584698200226, -0.022729545831680298, 0.07378502190113068, 0.045791398733854294, -0.08562853187322617, -0.06978623569011688, -0.030118398368358612, -0.028385663405060768, -0.01258061733096838, 0.0068123661912977695, 0.0011060358956456184, -0.012761997990310192, 0.0036501444410532713, -0.02913004532456398, 0.0767960473895073, -0.005438777152448893, -0.05894596874713898, -0.024823496118187904, 0.1124713122844696, 0.036604128777980804, 0.018909567967057228, -0.020351139828562737, 0.03948588669300079, -0.06832866370677948, -0.03848912566900253, 0.03650413081049919, 7.024024846269305e-32, -0.08868613094091415, 0.0056124115362763405, -0.010936332866549492, 0.014432917349040508, 0.007701108232140541, 0.0014569652266800404, 0.016021857038140297, -0.08511989563703537, -0.004514867905527353, -0.0288360808044672, 0.09483408182859421, 0.037090301513671875, -0.04474392160773277, -0.01611245796084404, 0.0001788898225640878, 0.02324247732758522, 0.027501583099365234, -0.016911307349801064, -0.0012181430356577039, -0.05854423716664314, -0.031157054007053375, 0.11273098737001419, -0.040288250893354416, -0.0053521739318966866, -0.014885061420500278, -0.05471121147274971, 0.026753386482596397, -0.01579761505126953, 0.0006968469824641943, -0.02933042123913765, -0.06626012176275253, 0.041197191923856735, 0.07709553092718124, -0.025151226669549942, 0.06018643453717232, 0.03112257644534111, -0.039991047233343124, -0.02227812074124813, -0.09428376704454422, 0.025219567120075226, 0.024676484987139702, -0.037703465670347214, -0.008869325742125511, -0.03594665229320526, -0.08323882520198822, 0.011857318691909313, -0.012741200625896454, 0.015270003117620945, 0.022603362798690796, 0.03688405454158783, 0.0000876501653692685, 0.04180939495563507, 0.049955062568187714, -0.021614842116832733, -0.04849465563893318, 0.09926602989435196, 0.06952907145023346, -0.016914190724492073, -0.09050322324037552, -0.03335222229361534, 0.04141940176486969, 0.11846693605184555, -0.020874813199043274, -0.04941946268081665 ]
278 Chapter 12 The diagram shows the curve with equation y = f(x). The curve has an asymptote at y = −2 and a turning point at (−3, −8). It cuts the x-axis at (−10, 0). a Sketch the gra ph of y = f 9( x). b State the equation of the asymptote of y = f 9( x).Example 20 y = f(x)xy O (–3, –8)–2–10 1 For each graph given, sketch the graph of the corresponding gradient function on a separate set of ax es. Show the coordinates of any points where the curve cuts or meets the x-axis, and give the equations of any asymptotes.a xy –11 O 8(–9, 12)(6, 15) b y = 10 xy O c x = –7(4, 3) xy O d y = 3 –2 xy 6 O e x = 6xy O f y = 4 y = –4xy O 2 f(x) = (x + 1)(x − 4)2 a Sketch the graph of y = f(x). b On a separate set of axes, sketch the graph of y = f 9(x ). c Show that f 9(x ) = (x − 4)(3x − 2). d Use the deriva tive to determine the exact coordinates of the points where the gradient function cuts the coordinate axes.PExercise 12Ja Oy x–3y = f/caron.alt(x) b y =  0Draw your sketch on a separate set of axes. The graph of y = f9(x) will have the same horizontal scale but will have a different vertical scale. You don’t have enough information to work out the coordinates of the y-intercept, or the local maximum, of the graph of the gradient function. The graph of y = f(x) is a smooth curve so the graph of y = f9(x) will also be a smooth curve. If y = f(x) has any horizontal asymptotes then the graph of y = f9(x) will have an asymptote at the x-axis. This is an x3 graph with a positive coefficient of x 3. ← Section 4.1Hint
[ 0.014954634010791779, 0.1344785839319229, -0.03078564442694187, -0.014110967516899109, -0.028600450605154037, 0.008411802351474762, 0.016842108219861984, 0.05713711306452751, -0.06247341260313988, 0.04259997606277466, 0.09287931770086288, -0.0483633428812027, -0.013691396452486515, 0.03636634722352028, -0.11238349974155426, -0.03376021981239319, -0.06793375313282013, 0.019059723243117332, -0.06378132104873657, -0.03537066653370857, 0.032393522560596466, 0.0011192344827577472, -0.028105376288294792, -0.07033363729715347, 0.03653525561094284, -0.10055574029684067, -0.02117045968770981, -0.03892337158322334, -0.013783681206405163, -0.015107173472642899, 0.024765193462371826, -0.0005248707020655274, 0.053429000079631805, 0.0037733044009655714, 0.05433010309934616, -0.007060607895255089, 0.023547451943159103, -0.03383410722017288, 0.038146913051605225, 0.019308533519506454, -0.02951880544424057, 0.05988559499382973, -0.04397867992520332, -0.004948839079588652, 0.08787775784730911, -0.002131982706487179, -0.05825630575418472, -0.0005619082367047668, 0.04097136855125427, -0.022803643718361855, -0.01412795390933752, 0.025842800736427307, -0.09529804438352585, 0.04509803280234337, 0.03288646787405014, 0.019499095156788826, 0.07794841378927231, 0.0493595227599144, 0.04144756495952606, 0.08216948807239532, 0.01979958638548851, 0.036864835768938065, -0.03032807819545269, 0.06195680797100067, 0.0053655002266168594, 0.007561839651316404, 0.013960625045001507, -0.05867069587111473, 0.016973331570625305, 0.07777438312768936, -0.11476254463195801, -0.04471494257450104, 0.013781469315290451, -0.07530821859836578, 0.02961883321404457, 0.00200744834728539, 0.06077819690108299, 0.04230666905641556, -0.058722954243421555, -0.08630672842264175, 0.023342445492744446, 0.050473231822252274, 0.038016147911548615, 0.09569461643695831, 0.022624673321843147, 0.03314995393157005, -0.0012749329907819629, -0.06849293410778046, -0.012379271909594536, -0.022635217756032944, -0.005036475602537394, 0.07137643545866013, -0.0929700955748558, -0.0018963196780532598, 0.027545452117919922, -0.03180389478802681, -0.028649652376770973, -0.08427503705024719, 0.041095394641160965, 0.11760466545820236, -0.042215555906295776, 0.041931863874197006, -0.026293277740478516, 0.011728420853614807, 0.0026651921216398478, -0.06853660196065903, 0.05334793031215668, -0.03495858237147331, 0.02281838282942772, -0.06330585479736328, 0.002262561582028866, -0.05652902275323868, 0.04968084394931793, 0.04069286212325096, 0.11711464822292328, -0.034720007330179214, 0.015209508128464222, 0.008601684123277664, -0.031078068539500237, -0.011823846027255058, 0.049339693039655685, -0.06822780519723892, 0.008927855640649796, -0.005946421530097723, -0.06487759202718735, -0.006989794317632914, -0.10213465988636017, 0.044662460684776306, 0.02699357643723488, 0.011028804816305637, 0.07383642345666885, -0.11907273530960083, -0.018342502415180206, -0.0935642421245575, -0.05904633179306984, -0.061140935868024826, -0.10256971418857574, 0.06484129279851913, 0.01420834194868803, -0.01150926761329174, 0.02361304685473442, 0.09905286133289337, -0.08132003992795944, 0.06070079654455185, 0.040593452751636505, -0.0166386216878891, 0.004205047618597746, 0.007384563330560923, 0.005657366011291742, 0.006388642359524965, 0.010492224246263504, -0.03776958957314491, -0.0092061348259449, 0.05534914508461952, 0.05798765644431114, 0.04064548388123512, -0.05891990289092064, -0.0034793622326105833, -0.07508019357919693, -0.037796977907419205, -0.04477080702781677, 0.03336256369948387, 0.036630865186452866, 0.023233095183968544, 0.03809737041592598, -0.014360988512635231, 0.061452627182006836, 0.029866307973861694, -0.017897004261612892, 0.09286797046661377, 0.03842100128531456, 0.0049144248478114605, 0.006031455006450415, 0.11708509922027588, 0.007280303630977869, 0.007574273739010096, 0.1270640641450882, 0.06377451866865158, 0.04128267243504524, -0.0026742133777588606, 0.07676460593938828, -0.024505069479346275, 0.013743228279054165, -0.036458056420087814, -0.050819940865039825, -0.034771114587783813, -0.014645921066403389, 0.08806873112916946, 0.00664839381352067, 0.046088412404060364, -0.014033535495400429, -0.010993446223437786, -0.05133604630827904, 0.07708121091127396, -0.10127082467079163, -0.05601616948843002, 0.016666071489453316, -0.019115261733531952, -0.03395090997219086, 0.010494177229702473, 0.0006393828662112355, 0.009681767784059048, 0.010835346765816212, 0.06657500565052032, -0.09717188030481339, 0.08192487806081772, -0.05031659081578255, -0.0030109561048448086, -0.12472932785749435, -0.04465479031205177, -0.013285836204886436, 0.009615633636713028, -0.058211129158735275, 0.024237537756562233, 0.020439747720956802, -0.05328788235783577, 0.03940964490175247, -0.04179902374744415, -0.15107205510139465, 0.009127164259552956, 0.006963379215449095, 0.016444765031337738, 0.03578348830342293, 6.0812043942341255e-33, 0.007989545352756977, 0.010387406684458256, -0.032240547239780426, -0.0036722992081195116, 0.06415904313325882, -0.08605541288852692, 0.09193019568920135, 0.07684926688671112, 0.041804444044828415, 0.09520570933818817, 0.06147671863436699, 0.012042353861033916, 0.009990379214286804, 0.01474747434258461, 0.021273622289299965, -0.03203719109296799, 0.034411802887916565, 0.03864851966500282, -0.022115295752882957, -0.016798388212919235, -0.06073102355003357, 0.020649312064051628, 0.05195213481783867, 0.041261911392211914, 0.04664956033229828, -0.002474157838150859, 0.022088179364800453, -0.0824996829032898, -0.08262902498245239, -0.03524315357208252, -0.0391087681055069, -0.006917061284184456, -0.08308642357587814, -0.029997656121850014, -0.015573745593428612, 0.009197433479130268, -0.06153402104973793, -0.07776715606451035, -0.01244207751005888, -0.020797638222575188, 0.05898138880729675, 0.061417609453201294, 0.1133614033460617, -0.0833517536520958, -0.050429921597242355, 0.04290559142827988, 0.06712212413549423, 0.03549180552363396, -0.01063717994838953, 0.04766090586781502, -0.008415601216256618, -0.10143117606639862, 0.055982884019613266, 0.03143003582954407, 0.051866646856069565, 0.05191018804907799, -0.0026684545446187258, -0.04892925173044205, 0.01855768822133541, -0.05631271004676819, -0.03754765912890434, -0.045210905373096466, -0.09412074089050293, -0.038619447499513626, -0.05244569107890129, -0.03412851318717003, -0.09406374394893646, -0.0419435128569603, 0.06269945949316025, 0.01983257196843624, 0.017472226172685623, 0.05327039211988449, 0.03940994292497635, -0.070014089345932, -0.0240456722676754, -0.0734412670135498, -0.07075343281030655, -0.05012042447924614, 0.08167549967765808, -0.05688592419028282, -0.057417936623096466, -0.021252723410725594, -0.03842373937368393, 0.04874303564429283, -0.0015225282404571772, -0.09958770871162415, -0.07463619112968445, 0.08723482489585876, 0.1026376336812973, -0.005897357128560543, -0.027279404923319817, -0.0064100660383701324, -0.06466049700975418, -0.01339738443493843, 0.041516803205013275, 8.219941648195603e-32, -0.07109233736991882, 0.013184988871216774, 0.045760296285152435, 0.04842722415924072, 0.07627997547388077, 0.025716319680213928, 0.046614617109298706, -0.07159848511219025, -0.03095252998173237, -0.0517575703561306, 0.05313659459352493, 0.011464010924100876, -0.07194124162197113, 0.04269232228398323, -0.024526603519916534, 0.016445936635136604, -0.009344949387013912, 0.03432134911417961, 0.027089569717645645, -0.03746923804283142, -0.07028035819530487, 0.01737266592681408, -0.09839167445898056, 0.004159634001553059, -0.008709135465323925, -0.02294020541012287, 0.04064986854791641, -0.053344957530498505, -0.011104736477136612, -0.05626702681183815, -0.017698336392641068, -0.009384353645145893, 0.06348276138305664, -0.06295908987522125, 0.018878571689128876, -0.01441479753702879, -0.020947953686118126, 0.01547324750572443, -0.054405637085437775, 0.04802894964814186, 0.0065901437774300575, 0.0047202142886817455, 0.016931023448705673, -0.04013211652636528, -0.06395597755908966, 0.03487959876656532, -0.036315012723207474, -0.0228983536362648, -0.0009308547014370561, 0.0640418604016304, 0.00024268926063086838, 0.03735121712088585, 0.041198235005140305, -0.08116131275892258, -0.03579685837030411, 0.021272020414471626, 0.023865697905421257, -0.016693906858563423, -0.05650230869650841, 0.007850026711821556, 0.0034948368556797504, 0.12188398838043213, -0.05173715576529503, 0.019020335748791695 ]
279Differentiation 12.11 Modelling with differentiation You can think of dy ___ dx as small change in y _______________ small change in x . It represents the rate of change of y with respect to x. If you replace y and x with variables that represent real-life quantities, you can use the derivative to model lots of real-life situations involving rates of change. VThe volume of water in this water butt is constantly changing over time. If V represents the volume of water in the water butt in litres, and t represents the time in seconds, then you could model V as a function of t. If V = f(t) then dV ___ dt  = f9(t) would represent the rate of change of volume with respect to time. The units of dV ___ dt  would be litres per second. V =  4 __ 3 π r3 dV ___ dr  = 4π r2 When r = 5, dV ___ dr  = 4π × 52 = 314 (3 s.f.) So the rate of change is 314 cm3 per cm.Given that the volume, V cm3, of an expanding sphere is related to its radius, r cm, by the for mula V =  4 _ 3 p r3, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm. Substitute r = 5. Interpret the answer with units.Example 21 Differentiate V with respect to r. Remember that π is a constant. A large tank in the shape of a cuboid is to be made from 54 m2 of sheet metal. The tank has a horizontal base and no top. The height of the tank is x metres. Two opposite vertical faces are squares. a Show that the v olume, V m3, of the tank is given by V = 18x −  2 _ 3 x3 b Given that x can vary, use differentiation to find the maximum or minimum value of V. c Justify that the v alue of V you have found is a maximum.Example 22
[ -0.02408967912197113, 0.03779415041208267, 0.08786099404096603, 0.015574335120618343, 0.022342968732118607, -0.07558796554803848, 0.017391717061400414, 0.021221699193120003, 0.04492919519543648, 0.03772313520312309, 0.03336535766720772, 0.015153896063566208, 0.03667379543185234, 0.00681007606908679, -0.07676127552986145, -0.023276017978787422, -0.03319315239787102, 0.0014491956681013107, -0.10039809346199036, 0.023654751479625702, 0.10370465368032455, 0.006555021740496159, -0.1128711923956871, -0.0031023279298096895, 0.06815937161445618, 0.0065988111309707165, 0.03213382139801979, 0.11544529348611832, -0.04791373386979103, -0.0737232118844986, -0.029261860996484756, 0.09539221227169037, -0.008145851083099842, -0.002422291086986661, -0.0035288974177092314, 0.05803301930427551, 0.05838988348841667, 0.028039800003170967, -0.033630259335041046, 0.02626650221645832, -0.05600694194436073, -0.023692946881055832, -0.03476834297180176, 0.051702260971069336, -0.0021783942356705666, -0.049499526619911194, -0.05727805569767952, 0.002562120324000716, -0.028159821406006813, 0.05226799100637436, 0.06803525239229202, -0.01282001193612814, -0.09942073374986649, 0.0662035271525383, -0.019433049485087395, -0.049702584743499756, 0.12195994704961777, 0.05270691215991974, 0.050692103803157806, -0.05365275591611862, -0.003467000788077712, 0.04513048380613327, 0.009031383320689201, 0.03512366861104965, -0.030826643109321594, -0.03440343961119652, -0.012572777457535267, 0.026534903794527054, -0.02248637191951275, 0.023851782083511353, -0.1063866913318634, -0.028601178899407387, 0.01591765508055687, -0.09258479624986649, 0.062129367142915726, -0.1128140464425087, 0.046888094395399094, 0.10742175579071045, 0.12097243964672089, -0.03235580772161484, 0.029432766139507294, 0.06573642045259476, 0.016114577651023865, 0.011230159550905228, -0.02829134277999401, -0.10611054301261902, -0.07140856981277466, -0.049635086208581924, -0.013662189245223999, 0.06369102001190186, 0.0224897563457489, -0.014345483854413033, 0.0041399565525352955, -0.08864030241966248, -0.016235314309597015, -0.030049044638872147, 0.039739806205034256, -0.08991852402687073, 0.10528586804866791, 0.0338875986635685, 0.03372570499777794, 0.06747720390558243, -0.05487131327390671, 0.13266336917877197, 0.057045064866542816, -0.04475608468055725, -0.018041295930743217, 0.011040092445909977, 0.08499322086572647, -0.02358519844710827, -0.01095756608992815, 0.01779034547507763, -0.009137516841292381, -0.05128858983516693, 0.06050458550453186, -0.03960663080215454, -0.020026840269565582, -0.10448237508535385, 0.025645971298217773, -0.04659516364336014, -0.011826710775494576, -0.06692656129598618, -0.04044168069958687, 0.021936656907200813, -0.026232926174998283, 0.026077985763549805, 0.020130371674895287, 0.06899313628673553, -0.056912995874881744, -0.058093611150979996, 0.0005706630181521177, -0.048279277980327606, -0.023287003859877586, -0.03957202285528183, -0.022601034492254257, 0.04469733312726021, 0.02941308729350567, -0.009119052439928055, 0.01412124652415514, 0.03666539490222931, -0.06935464590787888, 0.06287802010774612, 0.05300550162792206, -0.029230669140815735, -0.04005022346973419, 0.06802869588136673, 0.0592157319188118, -0.014422819949686527, -0.06032755225896835, 0.01081449817866087, 0.0178420078009367, 0.061444032937288284, 0.00807382632046938, -0.07990559935569763, 0.03009231761097908, 0.01776738278567791, 0.056426722556352615, 0.003025455167517066, -0.03565208986401558, -0.007781289517879486, -0.03146396949887276, -0.0330883264541626, 0.05471404641866684, -0.0035431247670203447, -0.028144750744104385, 0.029810786247253418, 0.05323982238769531, 0.05833690986037254, 0.025982234627008438, -0.06968389451503754, -0.0006404619198292494, 0.01325870119035244, -0.0483599416911602, 0.04794556647539139, -0.029962489381432533, 0.015402100048959255, -0.024854091927409172, -0.07660075277090073, 0.0693400427699089, -0.05209231749176979, 0.005508908070623875, -0.03760802745819092, -0.022875454276800156, -0.022625785320997238, -0.043993670493364334, -0.017007235437631607, -0.08476261049509048, 0.04286835715174675, -0.024574169889092445, 0.0481073334813118, 0.07507963478565216, -0.041056592017412186, 0.009338012896478176, -0.017802570015192032, -0.0183436069637537, -0.023525118827819824, -0.0005803342792205513, -0.0638417974114418, -0.1079004555940628, 0.05001254379749298, 0.002562499139457941, -0.01415020227432251, 0.014208239503204823, 0.01267857663333416, 0.023535210639238358, 0.01605324074625969, 0.04552815482020378, -0.10397449135780334, -0.09393789619207382, 0.04092799127101898, -0.024494048207998276, -0.0025375334080308676, -0.043089911341667175, -0.015329385176301003, 0.038340359926223755, 0.055369358509778976, -0.08344943076372147, -0.03844619169831276, -0.07335314154624939, -0.018753448501229286, -0.011053997091948986, -0.00113155716098845, 0.06646139919757843, 1.2145710156530851e-32, -0.029307221993803978, 0.015690023079514503, -0.008292530663311481, -0.03183311969041824, 0.04484930261969566, -0.0566563755273819, 0.03531331568956375, 0.040125757455825806, 0.09033963829278946, -0.016941238194704056, -0.12003262341022491, 0.02933940477669239, -0.06734292954206467, -0.04138541594147682, -0.045503538101911545, 0.03616853803396225, 0.005623943638056517, 0.006907680071890354, -0.14391657710075378, 0.007885342463850975, -0.061569396406412125, -0.03292175754904747, -0.07783032208681107, 0.01502291951328516, -0.0471326969563961, -0.032594721764326096, -0.06570624560117722, 0.07614907622337341, -0.036926060914993286, -0.00042946290341205895, -0.05987299606204033, -0.019398583099246025, -0.019479762762784958, 0.03788859397172928, -0.025049740448594093, 0.009019316174089909, 0.03902900591492653, -0.05941963568329811, -0.11050081998109818, 0.032309405505657196, 0.09492537379264832, 0.020638659596443176, 0.07589032500982285, -0.08923222124576569, 0.017969388514757156, -0.0043921563774347305, -0.003698755521327257, -0.021219845861196518, -0.018732476979494095, -0.024868248030543327, 0.04282915219664574, -0.07890166342258453, 0.015096848830580711, 0.03753926232457161, 0.0070162746123969555, 0.03031856380403042, 0.015403717756271362, -0.09220292419195175, -0.07124115526676178, -0.03808112442493439, 0.07385601848363876, -0.028448576107621193, -0.04887978732585907, 0.029848737642169, -0.12881942093372345, 0.06313198804855347, -0.08914664387702942, -0.07198943942785263, 0.010336672887206078, -0.05878939479589462, -0.010503662750124931, 0.03868372365832329, 0.0001826875377446413, 0.00030064713791944087, -0.015812862664461136, -0.1559985727071762, -0.022461676970124245, -0.025961900129914284, 0.035482801496982574, 0.10703033208847046, -0.00009791515913093463, 0.025482214987277985, 0.08304478973150253, 0.03899030387401581, -0.05398039519786835, -0.06369934231042862, 0.0715978741645813, 0.02840237505733967, 0.03573552146553993, 0.08513521403074265, 0.021083494648337364, 0.044620826840400696, -0.07045809924602509, -0.021007606759667397, -0.020051462575793266, 4.957002078194396e-32, -0.022453967481851578, 0.04317932203412056, 0.03995346277952194, -0.01247979886829853, 0.022626973688602448, 0.0008479589014314115, 0.026920057833194733, 0.03153187036514282, 0.036528367549180984, 0.016243424266576767, 0.05421129986643791, 0.033213380724191666, 0.08072400093078613, 0.06165404990315437, -0.011674363166093826, -0.017377935349941254, 0.011597195640206337, 0.04027125984430313, 0.0383540540933609, -0.0033083991147577763, 0.058468837291002274, 0.04046089947223663, -0.006045687478035688, 0.01752854324877262, -0.008013789542019367, -0.0482904389500618, 0.04184839501976967, 0.023750433698296547, -0.09388281404972076, -0.1144421175122261, 0.08878162503242493, 0.077376589179039, 0.0200092364102602, -0.04022851213812828, 0.026199355721473694, 0.019325900822877884, -0.015341565012931824, 0.028914857655763626, 0.05001866817474365, 0.06281177699565887, -0.027505408972501755, -0.0267637912184, 0.02579672634601593, -0.027499724179506302, 0.035914551466703415, 0.10134829580783844, 0.025953717529773712, -0.013079425320029259, 0.019298110157251358, -0.031147990375757217, 0.07640276849269867, 0.06053433567285538, 0.08637204021215439, 0.05698235705494881, 0.04212995618581772, -0.009470351040363312, 0.032824382185935974, 0.05549193546175957, -0.045215997844934464, 0.024255957454442978, -0.0015696380287408829, 0.07157374918460846, 0.0055926041677594185, -0.006553499028086662 ]
280 Chapter 12 Rearrange to find x. x is a length so use the positive solution. Find the second derivative of V.Rearrange to find y in terms of x.a Let the length of the tank be y metres. yx x Total area, A = 2x2 + 3xy So 54 = 2x2 + 3xy y =  54 − 2x2 ________ 3x But V = x2y So V = x2 ( 54 − 2x2 ________ 3x ) = x __ 3 (54 − 2x2) So V = 18x  −  2 __ 3 x3 b dV ___ dx = 18 −  2x2 Put dV ___ dx = 0 0 = 18 −  2x2 So x2 = 9 x = − 3 or 3 But x is a length so x = 3 When x = 3, V = 18 ×  3 −  2 _ 3  × 33 = 54 −  18 = 36 V  = 36 is a maximum or minimum value of V. c d2V ____ dx2 = −4x When x = 3, d2V ____ dx2 = −4 × 3 = −12 This is negative, so V = 36 is the maximum value of V.You don’t know the length of the tank. Write it as y metres to simplify your working. You could also draw a sketch to help you find the correct expressions for the surface area and volume of the tank.Problem-solving Draw a sketch. d2V ____ dx2 < 0 so V = 36 is a maximum.Substitute the expression for y into the equation. Simplify. Differentiate V with respect to x and put dV ___ dx  = 0. Substitute the value of x into the expression for V .
[ 0.06508141756057739, 0.07368186116218567, -0.02543535642325878, -0.06432030349969864, 0.00707190902903676, -0.04174409806728363, 0.04941564053297043, 0.04178319871425629, -0.09458102285861969, 0.04696584865450859, 0.04823565483093262, -0.012079882435500622, -0.014132533222436905, -0.00006116542499512434, -0.012921196408569813, 0.02269783616065979, -0.026324821636080742, 0.010889406315982342, -0.1469811648130417, 0.042837951332330704, 0.056435201317071915, -0.03602318838238716, -0.034685567021369934, -0.07768668234348297, 0.03836989402770996, -0.02300163544714451, -0.09337304532527924, 0.04655204713344574, -0.05038483813405037, -0.06650368869304657, -0.04185331240296364, 0.015500621870160103, -0.016054799780249596, -0.02480166032910347, 0.014525813981890678, 0.03512448072433472, 0.08815577626228333, 0.06356209516525269, 0.04034952074289322, -0.012852692045271397, -0.08347473293542862, 0.05938950181007385, -0.048040129244327545, 0.03393579646945, 0.03493132069706917, -0.043355729430913925, -0.039316482841968536, 0.003093087114393711, 0.11453866958618164, -0.0438045971095562, -0.0268215574324131, -0.03339412808418274, -0.07637584209442139, 0.030113710090517998, -0.0762794017791748, -0.07587550580501556, 0.05974038317799568, 0.04190903156995773, 0.025130920112133026, -0.041996560990810394, 0.05949121713638306, 0.07267443090677261, 0.012571534141898155, 0.04002146050333977, -0.004082992672920227, -0.0210432019084692, -0.051594723016023636, 0.019286690279841423, -0.024727648124098778, 0.06679219007492065, -0.09734538197517395, -0.05442770570516586, 0.00009602512000128627, -0.06934594362974167, 0.04641581326723099, -0.05915726348757744, 0.0747588500380516, 0.05901151895523071, 0.10473549365997314, 0.01839238591492176, 0.028265833854675293, 0.05143989622592926, 0.02548862248659134, 0.08053978532552719, 0.04317402467131615, -0.04865367338061333, -0.06306742131710052, -0.0034370662178844213, -0.08257809281349182, 0.052022404968738556, 0.005011677276343107, 0.024719644337892532, -0.037919968366622925, -0.07905703037977219, 0.02899705059826374, -0.04837554320693016, -0.005332957021892071, -0.054593998938798904, -0.031315840780735016, 0.102298304438591, 0.08919572830200195, 0.000056599154049763456, -0.027109060436487198, 0.036534082144498825, -0.053751248866319656, -0.030282028019428253, 0.011870753020048141, -0.032972551882267, 0.004856642335653305, -0.008183000609278679, -0.021170953288674355, 0.0034674759954214096, 0.0064130062237381935, -0.016299691051244736, 0.07528956234455109, 0.05771757289767265, 0.00519972899928689, -0.06495780497789383, -0.04898703098297119, -0.0665409117937088, 0.006890997756272554, -0.04856637120246887, -0.0032982351258397102, 0.011001195758581161, -0.02639232762157917, -0.00557656679302454, 0.08607029914855957, 0.006746937520802021, -0.09853412955999374, -0.06575623154640198, -0.026603106409311295, -0.07861220836639404, -0.03996913135051727, -0.06875446438789368, -0.03285113349556923, 0.06546914577484131, -0.02023966796696186, 0.0415019616484642, 0.03558294475078583, 0.011642815545201302, -0.013054178096354008, 0.01367876585572958, 0.014217942021787167, -0.08290933817625046, 0.001227405620738864, 0.07471580803394318, 0.006807266268879175, -0.015615466050803661, -0.036095552146434784, 0.005976472981274128, 0.08045944571495056, -0.004852599930018187, 0.01631907932460308, 0.01599804125726223, 0.007329216692596674, -0.09959196299314499, -0.033415455371141434, 0.009295539930462837, -0.02806013636291027, -0.03668750077486038, -0.08053172379732132, 0.0019674256909638643, 0.06596753746271133, 0.027311114594340324, -0.035684917122125626, 0.005982189904898405, 0.02855095826089382, 0.060384467244148254, 0.018072040751576424, -0.01229699794203043, 0.03691447898745537, -0.00003299577292636968, -0.05665583536028862, 0.10203743726015091, -0.04027700424194336, -0.009058143012225628, 0.04545150324702263, -0.03553274646401405, 0.03128950670361519, -0.017474377527832985, 0.05195561423897743, -0.07169865071773529, -0.009355459362268448, 0.01965298131108284, -0.016438815742731094, -0.033333223313093185, -0.06653773784637451, 0.018436525017023087, -0.023186158388853073, 0.05403868108987808, 0.073268823325634, -0.013168002478778362, 0.028292154893279076, 0.02720460668206215, -0.06565715372562408, -0.02246248535811901, 0.05813410133123398, -0.014112752862274647, -0.087687648832798, -0.05022251978516579, 0.05312841013073921, 0.023668387904763222, 0.04723849892616272, -0.005816691089421511, 0.003266663523390889, 0.02878539264202118, -0.00506391329690814, -0.10255209356546402, -0.05978577211499214, -0.0059517002664506435, -0.014617149718105793, 0.016674600541591644, -0.06733623892068863, 0.008608035743236542, 0.042189352214336395, -0.011266481131315231, -0.02968747913837433, -0.030534910038113594, -0.062041234225034714, -0.043570633977651596, 0.013329640962183475, 0.03558304160833359, 0.021881630644202232, -1.9943484910508932e-33, -0.03643007576465607, 0.07234065979719162, -0.056287094950675964, -0.13637754321098328, 0.023206723853945732, 0.052740927785634995, 0.1339019536972046, -0.03289312124252319, 0.027723131701350212, 0.06345199793577194, -0.055614955723285675, 0.044698335230350494, 0.033205725252628326, -0.011031121015548706, 0.02857780084013939, -0.04725901037454605, 0.07402393966913223, -0.04922070726752281, -0.08816176652908325, 0.037874024361371994, -0.08581780642271042, -0.06486260145902634, 0.025517456233501434, 0.09071816504001617, -0.007709889207035303, 0.020991288125514984, -0.00044823120697401464, -0.023699074983596802, 0.002142875222489238, -0.04205814376473427, -0.04820523038506508, -0.0677136778831482, 0.00935057271271944, 0.05903641879558563, 0.0024505697656422853, -0.09107699990272522, 0.029472578316926956, 0.03839283809065819, -0.01261308416724205, 0.022317884489893913, 0.06994350254535675, -0.019857803359627724, 0.035658303648233414, -0.06305652856826782, -0.13271315395832062, 0.00791921466588974, 0.053552307188510895, -0.017895439639687538, 0.03817301243543625, -0.06880896538496017, 0.03061084821820259, -0.09088868647813797, 0.001062113675288856, 0.04759799316525459, 0.05502333119511604, 0.01959158666431904, 0.005561145022511482, 0.004122723825275898, -0.0585634671151638, -0.02722719870507717, 0.07482287287712097, 0.01016421988606453, 0.004278931301087141, 0.03289657086133957, -0.030523011460900307, 0.006082864943891764, -0.024111907929182053, -0.03804974630475044, 0.01845492236316204, -0.04579708352684975, -0.04793374240398407, 0.06323496997356415, 0.00252096401527524, -0.04671188443899155, -0.05278344452381134, -0.05997750535607338, -0.09597659111022949, 0.0750364139676094, 0.06431117653846741, 0.007144133560359478, 0.02925064228475094, 0.030860774219036102, 0.08406458795070648, -0.021248191595077515, -0.03849538788199425, -0.02101440727710724, 0.07794331759214401, 0.0577414333820343, 0.056617360562086105, 0.022059304639697075, 0.01774459145963192, -0.03324824199080467, -0.058491554111242294, -0.064402736723423, 0.00729976873844862, 7.236989157807779e-32, -0.08923272788524628, 0.025586223229765892, -0.014012369327247143, 0.03995291516184807, 0.013559786602854729, -0.004963759332895279, 0.05080969259142876, 0.07410775870084763, 0.012745942920446396, -0.03494890034198761, -0.042842719703912735, 0.013070611283183098, 0.018797365948557854, 0.11018355935811996, -0.10362637042999268, -0.09560941904783249, -0.10369393974542618, -0.031609900295734406, -0.04596348851919174, -0.07812309265136719, -0.0431181937456131, 0.058922674506902695, -0.03651855140924454, 0.020877640694379807, -0.04120025783777237, 0.01057464350014925, -0.06492111086845398, -0.06714913994073868, 0.010810271836817265, -0.10306793451309204, 0.11200270801782608, 0.0031051053665578365, -0.004324189852923155, -0.025459282100200653, 0.06523127853870392, 0.02453899197280407, -0.05592178553342819, 0.0874563530087471, 0.02367948181927204, 0.022891389206051826, 0.006715054623782635, 0.0415881983935833, -0.007618611678481102, 0.00847947783768177, 0.04012252762913704, 0.10375560820102692, 0.028962429612874985, -0.019670695066452026, 0.03214907646179199, -0.08019466698169708, 0.06874821335077286, 0.03839067742228508, 0.068413645029068, 0.12698037922382355, 0.0371289886534214, -0.042993828654289246, -0.010180204175412655, 0.06257429718971252, -0.04098222032189369, 0.020650479942560196, -0.07261716574430466, 0.09936579316854477, -0.0647239163517952, 0.02799263782799244 ]
281Differentiation 1 Find dθ ___ dt where θ = t2 − 3t. 2 Find dA ___ dr where A = 2pr. 3 Given tha t r =  12 ___ t , find the value of dr __ dt when t = 3. 4 The surface area, A cm2, of an expanding sphere of radius r cm is given by A = 4pr2. Find the rate of change of the area with respect to the radius at the instant when the radius is 6 cm. 5 The displacement, s metres , of a car from a fixed point at time t seconds is given by s = t2 + 8t. Find the rate of change of the displacement with respect to time at the instant when t = 5. 6 A rectangular garden is fenced on thr ee sides, and the house forms the fourth side of the rectangle. a Given tha t the total length of the fence is 80 m, show that the ar ea, A , of the garden is given by the formula A  = y(80 −  2y), where y is the distance from the house to the end of the garden. b Given tha t the area is a maximum for this length of fence, find the dimensions of the enclosed garden, and the area which is enclosed. 7 A closed cylinder has total surface area equa l to 600p. a Show that the v olume, V cm3, of this cylinder is given by the formula V = 300pr − pr3, where r cm is the radius of the cylinder . b Find the maximum volume of such a cylinder. 8 A sector of a circle has ar ea 100 cm2. a Show that the perimeter of this sector is given by the formula P = 2r +  200 ____ r , r . √ ____ 100 ____ p b Find the minimum va lue for the perimeter. 9 A shape consists of a r ectangular base with a semicircular top, as shown. a Given tha t the perimeter of the shape is 40 cm, show that its ar ea, A cm2, is given by the formula A = 40r − 2r2 −  pr2 ___ 2 where r cm is the radius of the semicir cle. (2 marks) b Hence find the maximum va lue for the area of the shape. (4 marks) 10 The shape shown is a wir e frame in the form of a large rectangle split by parallel lengths of wire into 12 smaller equal-sized rectangles. a Given tha t the total length of wire used to complete the whole frame is 1512 mm, show that the ar ea of the whole shape, A mm2, is given by the formula A = 1296x −  108x2 _____ 7 where x mm is the width of one of the sma ller rectangles. (4 marks) b Hence find the maximum area w hich can be enclosed in this way. (4 marks)P P P N r cmM O E/P r cm E/P y mm x mmExercise 12K
[ 0.050645094364881516, 0.03229406848549843, 0.04470488056540489, 0.028329741209745407, 0.005772694479674101, 0.0005871674511581659, -0.011861509643495083, 0.06354962289333344, -0.03883187100291252, -0.0003472976968623698, 0.1045459508895874, -0.059703174978494644, -0.06329809874296188, -0.030385471880435944, -0.006628294009715319, 0.0019641343969851732, -0.016748566180467606, 0.00257344963029027, -0.10560330003499985, -0.002028994495049119, 0.03898795694112778, -0.0332968607544899, -0.011682259850203991, 0.023604299873113632, 0.034100573509931564, -0.004355165176093578, -0.007348379585891962, 0.05918743461370468, 0.027409357950091362, 0.03055553138256073, -0.13663487136363983, 0.0031085351947695017, -0.004247186705470085, -0.030338607728481293, 0.03915178403258324, -0.020287834107875824, -0.00350237381644547, 0.08490940183401108, 0.009191210381686687, -0.022871049121022224, -0.09401069581508636, -0.018193894997239113, -0.055118389427661896, -0.015113950707018375, 0.05509190261363983, 0.0006340253166854382, -0.04595785588026047, 0.039341989904642105, 0.005421773996204138, -0.05063623562455177, 0.018667487427592278, -0.046098094433546066, -0.0830119177699089, -0.02870377153158188, -0.05307072028517723, 0.05633453652262688, 0.028806479647755623, 0.038845594972372055, 0.02880067564547062, -0.06005408987402916, -0.03729638084769249, 0.10964474081993103, -0.01339769084006548, 0.0025204140692949295, -0.04146303981542587, -0.006952350959181786, -0.06538175791501999, -0.05010228976607323, 0.01172776147723198, 0.05947995185852051, -0.04222388193011284, 0.020261269062757492, -0.0600188747048378, -0.09777390956878662, 0.03135371953248978, -0.09271446615457535, -0.03265179321169853, 0.03838343545794487, 0.013050083070993423, -0.04855607822537422, 0.029578039422631264, 0.07437964528799057, -0.0745156779885292, -0.0032842301297932863, 0.031636711210012436, 0.010755947791039944, 0.025120841339230537, 0.03039802610874176, -0.06625822186470032, -0.04933574050664902, 0.009012604132294655, 0.008407242596149445, -0.007749795448035002, -0.019207242876291275, -0.08478080481290817, 0.04074251279234886, 0.011181630194187164, -0.037634942680597305, 0.08865302056074142, 0.08247033506631851, 0.003278194461017847, 0.06895279884338379, -0.11396096646785736, 0.03733531013131142, -0.006109164096415043, -0.04539352282881737, -0.019922364503145218, 0.016191905364394188, 0.0510665588080883, 0.055331334471702576, -0.02151401899755001, 0.08366293460130692, -0.02919749915599823, -0.012985486537218094, 0.026668012142181396, 0.0022745507303625345, 0.005446095019578934, -0.01877424493432045, -0.04991592466831207, 0.04377729073166847, -0.00833395216614008, -0.005826944950968027, 0.014216969721019268, -0.03751474991440773, -0.03851575031876564, -0.010562548413872719, 0.049999866634607315, 0.026391342282295227, -0.07060007005929947, -0.021654654294252396, -0.02651677466928959, 0.0033895946107804775, -0.022216560319066048, -0.013721329160034657, -0.03660140559077263, 0.06241106614470482, 0.011277131736278534, 0.04391837120056152, 0.021271033212542534, -0.017914660274982452, -0.024643123149871826, -0.0040046744979918, 0.02834136411547661, -0.013473152182996273, 0.05779470130801201, 0.03797464817762375, -0.06853603571653366, -0.013676436617970467, -0.03854290395975113, 0.07332322001457214, 0.06362520158290863, 0.04720621556043625, -0.013089604675769806, 0.026878876611590385, -0.019491523504257202, 0.04371080920100212, 0.04195399209856987, -0.07259305566549301, -0.06419094651937485, -0.0026008065324276686, -0.14230230450630188, 0.04452855512499809, 0.06496479362249374, 0.035941168665885925, 0.031158512458205223, 0.01078751590102911, 0.06335454434156418, -0.01712125726044178, 0.05644073709845543, -0.03012683242559433, -0.0427856519818306, -0.011284684762358665, -0.0677608773112297, -0.00522266561165452, 0.020725924521684647, -0.02947608008980751, 0.03664398938417435, 0.022809309884905815, 0.010911635123193264, 0.003024291479960084, 0.0348089337348938, -0.0646849125623703, 0.025349892675876617, -0.005073888227343559, -0.030726497992873192, 0.004138879477977753, -0.08983835577964783, 0.0834987461566925, -0.04987066611647606, 0.08613812923431396, 0.0877656489610672, -0.04836529120802879, 0.011345617473125458, -0.0356859527528286, -0.08269724249839783, 0.02733692340552807, -0.04595858231186867, 0.0296460073441267, -0.08985371887683868, -0.00584903871640563, 0.10175897181034088, -0.02000272087752819, 0.005396363791078329, -0.01946195960044861, 0.04387243837118149, 0.006204427219927311, -0.002238496206700802, -0.07029809802770615, -0.08461835235357285, 0.044142767786979675, 0.009159639477729797, -0.12204990535974503, 0.035041484981775284, -0.07222003489732742, 0.0550728403031826, -0.036883626133203506, -0.045500654727220535, -0.056135766208171844, -0.05194362625479698, 0.008184247650206089, -0.0880018100142479, 0.009373030625283718, 0.05193027853965759, 7.917013227505647e-33, -0.030452899634838104, 0.06167392432689667, -0.052210547029972076, -0.040065985172986984, 0.07172492891550064, -0.058862216770648956, -0.009128635749220848, -0.018342606723308563, 0.06669364869594574, 0.012473884038627148, -0.06096809357404709, 0.04547055810689926, -0.06577837467193604, 0.005513791926205158, -0.07374914735555649, -0.10354313999414444, 0.05193253979086876, -0.04877840355038643, -0.014610419981181622, 0.03278679400682449, 0.014679301530122757, -0.04709938168525696, 0.031136849895119667, 0.016454029828310013, -0.005579065531492233, 0.055834852159023285, -0.028696008026599884, -0.012295345775783062, -0.07379325479269028, 0.02843688428401947, 0.016982341185212135, -0.06271931529045105, 0.11247950047254562, 0.03933528810739517, -0.06284653395414352, -0.1000630110502243, 0.06773611158132553, -0.0089962687343359, 0.007693842984735966, 0.001955334097146988, 0.11431775242090225, 0.013495752587914467, 0.04941687360405922, -0.015850303694605827, -0.017182039096951485, -0.09644386917352676, -0.048949435353279114, 0.05196639895439148, -0.016721704974770546, -0.002905733184888959, 0.05463805049657822, -0.11496300250291824, 0.09048587083816528, 0.003796797711402178, 0.10516677051782608, 0.08088862895965576, 0.01401375513523817, -0.023647459223866463, 0.03875238075852394, -0.03314307704567909, 0.02225087396800518, 0.00022256070224102587, -0.0005772201111540198, 0.049908094108104706, -0.026046236976981163, -0.008141330443322659, -0.028322959318757057, -0.11794708669185638, -0.02429937943816185, 0.010708538815379143, -0.06673404574394226, 0.09295802563428879, -0.006783099379390478, -0.036493219435214996, -0.012586272321641445, -0.024833016097545624, 0.0944102481007576, -0.04063499718904495, 0.058384526520967484, -0.047732528299093246, -0.07719886302947998, 0.011006481945514679, 0.10768619924783707, 0.034790050238370895, -0.12162113189697266, -0.06112763285636902, 0.058169953525066376, -0.025897933170199394, 0.048769231885671616, 0.07766396552324295, -0.020573759451508522, 0.07352109253406525, -0.0201756302267313, 0.05346996337175369, 0.018904799595475197, 5.71452884143068e-32, 0.1035040095448494, 0.061260201036930084, 0.015227844007313251, 0.00095499207964167, 0.0272039994597435, 0.03559716045856476, 0.0683196485042572, 0.05752626061439514, -0.007846537046134472, -0.04170859232544899, -0.025637544691562653, -0.01801352947950363, -0.03494647145271301, 0.012264059856534004, -0.06772831082344055, -0.06800047308206558, -0.010289127938449383, 0.007882023230195045, -0.05132359638810158, -0.01975168287754059, -0.014094253070652485, 0.0942363440990448, 0.007904760539531708, 0.02396424673497677, 0.12324561923742294, -0.03322204574942589, -0.026834378018975258, -0.05226320028305054, -0.06248675286769867, -0.11368656158447266, 0.08283105492591858, -0.01274783443659544, 0.0041960799135267735, 0.018216494470834732, 0.05572783946990967, -0.12161235511302948, 0.05686792731285095, 0.04091319441795349, -0.01150723360478878, 0.08774004131555557, 0.010267405770719051, -0.00010183963604504243, -0.014633594080805779, 0.01500257384032011, 0.031872883439064026, 0.03185255825519562, -0.03275206312537193, -0.06078150123357773, 0.05313582718372345, -0.018332453444600105, -0.013549380004405975, 0.06789097189903259, 0.09165654331445694, 0.04908161982893944, 0.011204348877072334, -0.0041050841100513935, -0.049587659537792206, 0.08048047870397568, -0.023710256442427635, 0.06359054893255234, -0.05608512833714485, 0.11704570800065994, -0.10554172843694687, 0.04064938798546791 ]
282 Chapter 12 1 Prov e, from first principles, that the derivative of 10x2 is 20x. (4 marks) 2 The point A with coor dinates (1, 4) lies on the curve with equation y = x3 + 3x. The point B also lies on the curve and has x-coordinate (1 +  δ x ). a Show that the gr adient of the line segment AB is given by ( δx )2 +  3δx  + 6. b Deduce the gradient of the curv e at point A. 3 A curve is giv en by the equation y = 3x2 + 3 +  1 __ x2 , where x . 0. At the points A , B and C on the curve, x = 1, 2 and 3 respectively. Find the gradient of the curve at A, B and C. 4 Calculate the x-coordinates of the points on the curve with equation y = 7x2 − x3 at which the gradient is equal to 16. (4 marks) 5 Find the x-coor dinates of the two points on the curve with equation y = x3 − 11x + 1 where the gradient is 1. Find the corresponding y-coordinates. 6 The function f is defined by f( x) = x +  9 __ x , x [ R, x Þ 0. a Find f9( x). (2 marks) b Solve f9 (x) = 0. (2 marks) 7 Given tha t y = 3 √ __ x  −  4 ___ √ __ x , x . 0, find dy ___ dx (3 marks) 8 A curve has equation y = 12 x 1 _ 2  −  x 3 _ 2 . a Show that dy ___ dx  =  3 __ 2 x − 1 _ 2 (4 − x). (2 marks) b Find the coordinates of the point on the curve where the gradient is zero. (2 marks) 9 a Expand ( x 3 _ 2  − 1)( x − 1 _ 2  + 1). (2 marks) b A curve has equation y = ( x 3 _ 2  − 1)( x − 1 _ 2 + 1), x . 0. Find dy ___ dx (2 marks) c Use your answ er to part b to calculate the gradient of the curve at the point where x = 4. (1 mark) 10 Differentiate with r espect to x: 2x3 + √ __ x  +  x2 + 2x _______ x2 (3 marks) 11 The curve with equation y = ax2 + bx + c passes through the point (1, 2). The gradient of the curve is zero at the point (2, 1). Find the values of a, b and c. (5 marks)E/P P E E E E/P E E E/PMixed exercise 12
[ -0.040123093873262405, 0.09335164725780487, -0.020845510065555573, -0.02968275174498558, 0.017393875867128372, 0.05064249783754349, 0.0007762798923067749, 0.04899068549275398, -0.0417327806353569, -0.016094882041215897, 0.08153828978538513, -0.07153479754924774, -0.05388902500271797, -0.027413437142968178, -0.07033661752939224, -0.01577727310359478, -0.03654082491993904, 0.05651669576764107, -0.0536380410194397, -0.030565788969397545, 0.054364245384931564, -0.007374314125627279, -0.024085791781544685, -0.021151181310415268, -0.0016806568019092083, -0.07442580163478851, 0.08562178164720535, -0.014508216641843319, 0.027714576572179794, -0.09429161250591278, 0.044034190475940704, 0.012843756005167961, 0.052470944821834564, -0.00700292456895113, 0.04618096351623535, 0.025374742224812508, 0.05646044388413429, 0.014837603084743023, 0.010995620861649513, 0.027808135375380516, -0.06793569028377533, 0.03232373297214508, -0.07998789101839066, 0.016654249280691147, 0.07846509665250778, 0.003642028197646141, 0.010158919729292393, -0.013007590547204018, -0.06773947924375534, -0.04927386716008186, 0.01619027554988861, -0.03176397085189819, -0.09039979428052902, 0.023391809314489365, 0.01811010017991066, 0.0022748522460460663, 0.056685399264097214, 0.04833604767918587, 0.0011067314771935344, 0.01409605611115694, 0.031767264008522034, 0.018161695450544357, -0.017862048000097275, 0.027011219412088394, -0.037137676030397415, -0.005843277554959059, 0.05020355433225632, -0.04207954183220863, -0.058509524911642075, 0.08241687715053558, -0.08354375511407852, -0.059632308781147, 0.04860004037618637, -0.11244769394397736, 0.040032707154750824, -0.005302782636135817, 0.029622822999954224, 0.04003683850169182, 0.008549189195036888, -0.09197179973125458, -0.0313606895506382, 0.01833701692521572, 0.05904552713036537, 0.09381875395774841, -0.0027290659490972757, 0.013248106464743614, -0.004149732645601034, -0.0718623548746109, -0.011653809808194637, -0.04160062223672867, 0.06891683489084244, -0.037977926433086395, -0.07715853303670883, -0.02114144340157509, 0.031218327581882477, -0.03275882452726364, -0.0040670535527169704, -0.08203662931919098, 0.04272136464715004, 0.16262507438659668, -0.04797070473432541, 0.028919655829668045, -0.1080557331442833, 0.09707018733024597, 0.019934020936489105, -0.03002275712788105, 0.0934770330786705, 0.00524712773039937, 0.04926878586411476, -0.018713124096393585, -0.04798800125718117, -0.041099123656749725, 0.019943328574299812, 0.036996811628341675, 0.08906452357769012, -0.07313474267721176, 0.02506493590772152, 0.02303474210202694, 0.02953454665839672, -0.07299648225307465, 0.02120290882885456, -0.10392937809228897, 0.03690485283732414, 0.013521702028810978, -0.06140712648630142, -0.046152226626873016, 0.0392175056040287, 0.024990133941173553, -0.02064371295273304, -0.015354886651039124, -0.012263696640729904, -0.0866372212767601, -0.05414354056119919, -0.028802715241909027, -0.029766695573925972, 0.023969022557139397, -0.10078873485326767, -0.016619889065623283, -0.10059627145528793, -0.08964964002370834, 0.015862109139561653, 0.07913688570261002, 0.008475967682898045, -0.07563767582178116, 0.008073441684246063, -0.014923617243766785, -0.030693277716636658, -0.0015731046441942453, -0.012376248836517334, 0.036707740277051926, -0.008030066266655922, -0.06991826742887497, 0.027411894872784615, 0.02845792844891548, -0.043680138885974884, 0.04808337986469269, -0.03331543132662773, -0.06203649565577507, 0.03720203414559364, -0.04307045415043831, -0.0912708044052124, 0.07430113852024078, -0.019534017890691757, 0.11794207990169525, 0.08205018192529678, -0.014539278112351894, 0.08237732946872711, 0.06905607134103775, 0.00717025063931942, -0.003675972344353795, 0.09469343721866608, -0.010062816552817822, 0.003038205439224839, 0.1494685560464859, 0.031473733484745026, 0.01637233793735504, 0.047210171818733215, 0.09249247610569, 0.016905631870031357, 0.035614266991615295, 0.07116519659757614, -0.05548650771379471, 0.01705104671418667, -0.06879791617393494, -0.1018497571349144, 0.020295418798923492, -0.04889548197388649, 0.15281271934509277, -0.008525051176548004, 0.08358331024646759, 0.031505830585956573, -0.02095256745815277, -0.035502173006534576, 0.08300623297691345, -0.14733286201953888, 0.007082613185048103, -0.011190644465386868, -0.019232073798775673, -0.09065911173820496, -0.00018817900854628533, 0.03489066660404205, -0.027958493679761887, -0.00936686247587204, -0.036761343479156494, -0.053999654948711395, 0.030381139367818832, 0.03685244545340538, -0.02326093055307865, -0.15648630261421204, 0.023612378165125847, 0.08217237144708633, 0.011418770998716354, -0.020509988069534302, -0.0466662161052227, 0.04516424611210823, -0.029221555218100548, 0.06559900939464569, -0.028353746980428696, -0.13824203610420227, 0.030695199966430664, 0.030751699581742287, 0.02851743809878826, 0.03833033889532089, 3.039687515575329e-33, 0.007012061309069395, 0.020079106092453003, -0.07287050783634186, -0.04701392352581024, 0.01937485858798027, -0.025155650451779366, 0.011732925660908222, 0.02242746576666832, 0.005858931224793196, 0.05852976813912392, -0.045728493481874466, 0.02212543413043022, -0.02737852744758129, -0.0006319801905192435, 0.005543410312384367, -0.027793800458312035, -0.04834809526801109, 0.062018025666475296, -0.07287930697202682, 0.0010898980544880033, -0.05466253682971001, -0.021053604781627655, -0.005814321339130402, 0.029413418844342232, 0.02581091783940792, 0.01787862554192543, 0.05230625718832016, -0.060407303273677826, -0.09309551864862442, -0.04718327522277832, 0.021917307749390602, 0.03513285145163536, -0.03137221932411194, 0.03489438816905022, -0.059429772198200226, -0.0566084049642086, 0.03789244964718819, 0.021990783512592316, -0.003671243553981185, -0.01980350725352764, 0.06917352974414825, 0.10456420481204987, 0.08725243806838989, -0.04958163946866989, -0.02327725850045681, -0.0090766791254282, 0.0781935527920723, -0.0050139762461185455, 0.005329281557351351, 0.027032576501369476, 0.012835444882512093, -0.10511140525341034, 0.06870821118354797, 0.031605999916791916, -0.021808303892612457, 0.011995667591691017, 0.04357702657580376, -0.042544104158878326, 0.054570019245147705, -0.03196748346090317, -0.007015250623226166, 0.02671525999903679, -0.04950513318181038, 0.08793996274471283, 0.00886473897844553, 0.007694884203374386, -0.054334528744220734, -0.014662264846265316, -0.0003164101217407733, -0.00876928586512804, 0.009300192818045616, 0.09560739248991013, -0.0025850883685052395, -0.04854543134570122, -0.01953132450580597, -0.059985581785440445, 0.016584647819399834, -0.014807098545134068, 0.06346716731786728, -0.038968708366155624, -0.01605551317334175, -0.005232733208686113, 0.08300149440765381, 0.02741212211549282, -0.0024055903777480125, 0.01797368936240673, -0.010723194107413292, 0.035872817039489746, 0.07820483297109604, -0.025365019217133522, -0.05032835900783539, 0.0368061326444149, -0.07951178401708603, -0.023868128657341003, 0.04381633922457695, 8.145384743500349e-32, -0.11012010276317596, -0.03566182404756546, -0.030855495482683182, -0.022987717762589455, 0.019983243197202682, 0.05108010768890381, 0.04005946218967438, -0.073959119617939, -0.06763296574354172, -0.009634973481297493, -0.006918465252965689, -0.023130863904953003, -0.04913117736577988, 0.0675901472568512, 0.00411821948364377, -0.06232641264796257, -0.03970060124993324, 0.020546788349747658, -0.029133567586541176, -0.04887981340289116, 0.007869716733694077, -0.01751037873327732, -0.023571429774165154, -0.008451958186924458, 0.006255054380744696, 0.0062311370857059956, 0.02407267317175865, -0.0027843015268445015, 0.020948773249983788, -0.08209007233381271, 0.009354034438729286, -0.02074400521814823, 0.006086073350161314, 0.059020139276981354, -0.014718716964125633, 0.010847805999219418, -0.022679617628455162, 0.05272553861141205, 0.015474501065909863, 0.040870752185583115, 0.002579970983788371, -0.04040488973259926, 0.053422920405864716, -0.07853952050209045, 0.018114622682332993, 0.022503893822431564, -0.046033743768930435, -0.03528125584125519, -0.04459887370467186, 0.04425618052482605, -0.055264413356781006, 0.09149715304374695, 0.049566857516765594, 0.04854375496506691, 0.009519950486719608, -0.08663518726825714, 0.036587707698345184, 0.03047809563577175, -0.030127597972750664, -0.04619675502181053, -0.005023347679525614, 0.10112563520669937, -0.09227786958217621, -0.03431466966867447 ]
283Differentiation 12 A curve C has equation y = x3 − 5x2 + 5x + 2. a Find dy ___ dx in terms of x. (2 marks) b The points P and Q lie on C. The gradient of C at both P and Q is 2. The x-coordinate of P is 3. i Find the x-coor dinate of Q. (3 marks) ii Find an equation for the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants. (3 marks) iii If this tangent intersects the coordina te axes at the points R and S, find the length of RS, giving your answer as a surd. (3 marks) 13 A curve has equation y = 8 __ x − x + 3x 2, x > 0. Find the equations of the tangent and the normal to the curve at the point where x = 2. 14 The normals to the curv e 2y = 3x3 − 7x2 + 4x, at the points O (0, 0) and A(1, 0), meet at the point N . a Find the coordinates of N. (7 marks) b Calculate the ar ea of triangle OAN . (3 marks) 15 A curve C has equation y = x3 − 2x2 − 4x − 1 and cuts the y-axis at a point P. The line L is a tangent to the curve at P, and cuts the curve at the point Q. Show that the distance PQ is 2 √ ___ 17 . (7 marks) 16 Given tha t y =  x 3 _ 2  +  48 ___ x , x . 0 a find the value of x and the value of y when dy ___ dx  = 0. (5 marks) b show that the v alue of y which you found in part a is a minimum. (2 marks) 17 A curve has equation y = x3 − 5x2 + 7x − 14. Determine, by calculation, the coordinates of the stationary points of the curve. 18 The function f, defined for x [ R, x . 0, is such that: f 9(x) = x2 − 2 +  1 __ x2 a Find the value of f 0 (x) a t x = 4. (4 marks) b Prov e that f is an increasing function. (3 marks) 19 A curve has equation y = x3 − 6x2 + 9x. Find the coordinates of its local maximum. (4 marks) 20 f(x ) = 3x4 − 8x3 − 6x2 + 24x + 20 a Find the coordinates of the stationary points of f(x), and determine the nature of each of them. b Sketch the gra ph of y = f(x).E/P E/P E/P E E/P E
[ -0.01246769167482853, 0.07484755665063858, 0.09605453163385391, -0.06295762956142426, -0.00037655848427675664, 0.07412883639335632, 0.05846231430768967, 0.002388579538092017, -0.07022880017757416, 0.05344906821846962, 0.06591147184371948, -0.09511943906545639, -0.0041664233431220055, -0.03673918917775154, -0.07179960608482361, -0.02484152838587761, -0.001181188621558249, 0.008650394156575203, -0.050721630454063416, 0.00015472076484002173, 0.016685836017131805, -0.021456781774759293, -0.03712543845176697, -0.0036942712031304836, -0.028305619955062866, -0.028123922646045685, 0.01727570965886116, -0.017993729561567307, -0.055621396750211716, -0.04322969540953636, -0.01427699439227581, -0.031914837658405304, 0.031563397496938705, -0.006479709874838591, 0.08135319501161575, 0.024491699412465096, 0.021951938048005104, 0.037406668066978455, 0.06807572394609451, 0.06740745157003403, -0.05697309225797653, -0.013581881299614906, -0.055342357605695724, -0.0207245834171772, 0.05613153800368309, -0.011147405952215195, -0.03825163468718529, -0.01347228605300188, -0.02939201146364212, 0.05806385725736618, 0.03450879827141762, -0.05037843808531761, -0.08626234531402588, -0.002147335559129715, 0.019300369545817375, 0.02132406085729599, 0.02400101348757744, 0.03257470205426216, 0.05135176330804825, 0.02909936010837555, 0.0031703507993370295, 0.07902266085147858, -0.0149385379627347, 0.06389697641134262, -0.03087375871837139, 0.0030898628756403923, 0.052017152309417725, -0.03818029537796974, -0.007428126409649849, 0.02953292801976204, -0.06678234785795212, -0.0918223112821579, 0.06327487528324127, -0.13682791590690613, 0.05495242401957512, -0.06991161406040192, -0.005370966624468565, -0.05032683536410332, -0.005730194505304098, -0.05872596800327301, -0.021105825901031494, 0.06213340908288956, 0.054200563579797745, 0.07570949196815491, -0.017265837639570236, -0.017165450379252434, 0.011315932497382164, 0.021271634846925735, -0.011592092923820019, 0.06010007485747337, 0.08094913512468338, -0.048595260828733444, -0.10202153027057648, -0.03185693919658661, -0.03266992047429085, -0.027774076908826828, 0.042369481176137924, -0.06342723965644836, -0.0037157752085477114, 0.08954238891601562, 0.0586371086537838, -0.0002962145663332194, -0.0839981958270073, 0.09598016738891602, -0.006040351465344429, -0.019297296181321144, 0.05548666790127754, -0.017104003578424454, 0.05273815989494324, -0.044683631509542465, -0.07490549981594086, -0.019893012940883636, -0.0075661917217075825, -0.05282105132937431, 0.049661748111248016, -0.023199282586574554, 0.00034975685412064195, 0.028867974877357483, -0.008921248838305473, 0.01313076913356781, -0.01661272719502449, -0.11291325092315674, 0.06703124940395355, 0.06251933425664902, -0.08518481254577637, -0.03878127783536911, -0.01160026527941227, 0.04286549612879753, -0.0011325577506795526, -0.019600626081228256, -0.032654836773872375, -0.10426905006170273, -0.07474984973669052, -0.07852467894554138, -0.00224653840996325, 0.05402601510286331, -0.12075002491474152, -0.026822183281183243, 0.0181654654443264, -0.11938709765672684, 0.03000684455037117, 0.04850594699382782, 0.03344279155135155, -0.021147899329662323, -0.03815096989274025, 0.03212135657668114, -0.07940579950809479, 0.05370330810546875, -0.024543995037674904, 0.04892555996775627, 0.03417192026972771, -0.00908427219837904, 0.02134675532579422, 0.065889872610569, -0.041120678186416626, -0.06301780045032501, -0.0030903108417987823, -0.05203898623585701, -0.00872800126671791, -0.01929905079305172, -0.057522159069776535, 0.060698624700307846, 0.04742779955267906, 0.11723586171865463, -0.00018525621271692216, 0.007211728952825069, 0.09863420575857162, 0.05430390685796738, -0.0005171156954020262, 0.03724758327007294, 0.04561334103345871, 0.09106096625328064, -0.11993963271379471, 0.07659633457660675, -0.04616675525903702, -0.0728365108370781, 0.06326514482498169, 0.0898590236902237, 0.07460635155439377, -0.03427211567759514, 0.06280601024627686, 0.02154836244881153, -0.017393071204423904, -0.06385485827922821, -0.05479888617992401, -0.02004343643784523, 0.028181949630379677, 0.022103765979409218, 0.02096368558704853, 0.007879775017499924, 0.060813095420598984, -0.052921175956726074, 0.033546410501003265, 0.07640288025140762, -0.12289898097515106, 0.0333639420568943, -0.007907095365226269, 0.028515981510281563, -0.07055862247943878, -0.0315316766500473, 0.040895622223615646, 0.019142504781484604, 0.03534630313515663, 0.05101143941283226, -0.07266903668642044, 0.018416302278637886, -0.01787756383419037, -0.07261431962251663, -0.10254926979541779, -0.01282278448343277, 0.02882010117173195, 0.08637794107198715, 0.006684387102723122, -0.020334279164671898, -0.013294623233377934, -0.08130141347646713, -0.020222611725330353, -0.006834091618657112, -0.04967989772558212, 0.06178436428308487, -0.07161771506071091, 0.040220752358436584, 0.07396318763494492, 6.3805594590343755e-34, -0.030143028125166893, 0.07760507613420486, -0.05248129367828369, -0.06326015293598175, 0.01675165258347988, -0.026778357103466988, 0.05790787935256958, -0.0668029636144638, 0.0049186768010258675, 0.07514868676662445, -0.038449063897132874, 0.013068809174001217, 0.009227398782968521, 0.041850198060274124, 0.00003314731293357909, 0.011110803112387657, -0.0061439150013029575, 0.034334197640419006, -0.04294148087501526, -0.008471054956316948, -0.06653855741024017, -0.05915253236889839, -0.054849930107593536, -0.021215541288256645, 0.06776279211044312, 0.09948837012052536, 0.020453043282032013, -0.09727076441049576, -0.06393680721521378, 0.06580637395381927, -0.032885488122701645, 0.011233668774366379, -0.03955552354454994, 0.017010986804962158, -0.03368295729160309, -0.01830027811229229, -0.06092218682169914, -0.02532549574971199, 0.02602940797805786, -0.027753425762057304, 0.020275235176086426, 0.12144462019205093, 0.08678218722343445, -0.060335423797369, -0.0012413300573825836, 0.027050698176026344, 0.024167565628886223, 0.005730118602514267, 0.013375417329370975, 0.03937797248363495, 0.0002898882084991783, -0.14253908395767212, 0.022762272506952286, 0.023055480793118477, 0.003962756600230932, 0.011947164312005043, 0.02012488804757595, -0.026222439482808113, 0.0478280633687973, -0.086459219455719, -0.03900047391653061, -0.07697278261184692, -0.04918821156024933, 0.046578310430049896, -0.007739748805761337, -0.02085062675178051, -0.011872999370098114, -0.013141995295882225, -0.01405063085258007, -0.05170796439051628, -0.041778113692998886, 0.08028880506753922, -0.022983171045780182, -0.03692689910531044, -0.05291474238038063, -0.03402487561106682, -0.04070506989955902, 0.07434810698032379, 0.07830971479415894, -0.008204404264688492, 0.01379447989165783, 0.03598394617438316, 0.12101162225008011, 0.01657155714929104, -0.022473560646176338, 0.007575324736535549, 0.08694199472665787, 0.022344112396240234, 0.07962071150541306, 0.034738678485155106, -0.06520813703536987, 0.052681513130664825, -0.05516407638788223, -0.03238925337791443, 0.004687568172812462, 5.587202819832662e-32, -0.1020909771323204, -0.03187098726630211, -0.019963491708040237, 0.02205749601125717, 0.03665538132190704, 0.026619454845786095, 0.010137245059013367, -0.04564671963453293, 0.03167642652988434, -0.046956852078437805, 0.017754128202795982, -0.03938126564025879, -0.067953921854496, 0.07088575512170792, 0.0011273026466369629, 0.003496599616482854, -0.025136463344097137, 0.024638185277581215, -0.034179817885160446, -0.08076418191194534, 0.0050337654538452625, 0.021417759358882904, -0.06062173470854759, 0.026515858247876167, -0.03242785111069679, 0.041958242654800415, -0.01032239105552435, 0.04388199374079704, -0.08072171360254288, -0.06847769767045975, 0.05914115533232689, 0.02521921508014202, -0.0025492117274552584, 0.04980458691716194, 0.04236557334661484, 0.05451230704784393, -0.011476663872599602, 0.10321503132581711, 0.04366539046168327, 0.08815999329090118, 0.011479143984615803, -0.06977099180221558, -0.0062771025113761425, -0.013506549410521984, 0.03350382670760155, -0.03179733827710152, -0.07916734367609024, -0.06888964027166367, -0.009401687420904636, -0.062031716108322144, 0.00263409037142992, 0.08544914424419403, 0.075531505048275, 0.07290980964899063, 0.018630439415574074, -0.07075513899326324, 0.06546131521463394, 0.05313228815793991, -0.005944156553596258, -0.01692885532975197, -0.03914074972271919, 0.01940547674894333, -0.015779171139001846, 0.002153863664716482 ]
284 Chapter 12 21 The diagram sho ws part of the curve with equation y = f(x), where: f(x) = 200 −  250 ____ x  − x2, x . 0 The curve cuts the x -axis at the points A and C. The point B is the maximum point of the curve. a Find f9( x). (3 marks) b Use your answ er to part a to calculate the coordinates of B. (4 marks) 22 The diagram sho ws the part of the curve with equation y = 5 −  1 _ 2  x2 for which y > 0. The point P(x, y) lies on the curve and O is the origin. a Show that OP 2 =  1 _ 4 x4 − 4x2 + 25. (3 marks) Taking f( x) =  1 _ 4 x4 − 4x2 + 25: b Find the values of x for which f9(x) = 0. (4 marks) c Hence, or otherwise, find the minim um distance from O to the curve, showing that your answer is a minimum. (4 marks) 23 The diagram sho ws part of the curve with equation y = 3 + 5x + x2 − x3. The curve touches the x-axis at A and crosses the x-axis at C. The points A and B are stationary points on the curve. a Show that C has coordinates (3, 0). (1 mark) b Using calculus and showing a ll your working, find the coordinates of A and B. (5 marks) 24 The motion of a damped spring is modelled using this gr aph. On a separate graph, sketch the gradient function for this model. Choose suitable labels and units for each axis, and indicate the coordinates of any points where the gradient function crosses the horizontal axis. 25 The volume, V cm3, of a tin of radius r cm is given b y the formula V = p(40r − r2 − r3). Find the positive value of r for which dV ___ dr  = 0, and find the value of V which corresponds to this value of r. 26 The total surface area, A cm2, of a cylinder with a fixed volume of 1000 cm3 is given by the formula A = 2px2 +  2000 _____ x , where x cm is the radius. Show that when the rate of change of the area with respect to the radius is zero, x3 =  500 ____ p E ACOB xy E/P O xy P(x, y) E B C AO xy P 0.50 2.1 1.2 Time (seconds)Displacement (cm) P
[ 0.050706151872873306, 0.05772428959608078, 0.04644424840807915, -0.08210951834917068, -0.04953503981232643, 0.03515613079071045, 0.040536846965551376, 0.03375213220715523, -0.07476657629013062, 0.055369164794683456, 0.049393005669116974, -0.08906559646129608, -0.0038944557309150696, 0.04248404875397682, -0.08993671089410782, 0.009949013590812683, -0.05726407468318939, 0.033829621970653534, -0.04137163236737251, -0.07494912296533585, 0.009440808556973934, -0.04447278752923012, 0.06771839410066605, -0.09164787828922272, 0.05095048248767853, -0.07758702337741852, 0.02856747806072235, -0.018107187002897263, -0.05573422834277153, -0.002146058948710561, -0.045797914266586304, -0.08212984353303909, -0.0122333113104105, -0.023688800632953644, -0.00329831475391984, 0.009182559326291084, 0.037568021565675735, -0.024604355916380882, 0.06139634549617767, -0.008424275554716587, -0.033864159137010574, 0.06074981391429901, -0.031049074605107307, -0.03509225696325302, 0.03149489685893059, -0.08167784661054611, -0.019060123711824417, -0.03347160667181015, -0.007598879747092724, 0.0615006685256958, -0.040304336696863174, 0.03529822453856468, -0.0853058248758316, 0.07743850350379944, 0.017152920365333557, 0.010973253287374973, -0.026429692283272743, -0.020458178594708443, -0.09692180156707764, 0.11798358708620071, 0.0410182848572731, 0.08135183155536652, 0.04490215331315994, 0.057058218866586685, 0.0047672586515545845, -0.028427159413695335, 0.01897508092224598, -0.0056652892380952835, 0.007692988496273756, 0.08955847471952438, -0.08168032765388489, -0.0877828449010849, 0.04097502678632736, -0.00599624402821064, 0.03573502600193024, 0.01441152673214674, -0.012389753013849258, -0.012443316169083118, -0.038556378334760666, -0.1062336191534996, -0.020023737102746964, 0.030727509409189224, 0.07315808534622192, 0.006039305590093136, 0.017302729189395905, -0.025119537487626076, 0.05765816196799278, -0.034188590943813324, 0.027440683916211128, -0.005425057373940945, 0.059052031487226486, 0.003186996327713132, -0.0643056333065033, -0.02893158607184887, -0.05367527902126312, -0.06715364754199982, -0.019069768488407135, -0.062101151794195175, -0.0026226527988910675, 0.09911008924245834, -0.05275449901819229, 0.07869719713926315, 0.06417257338762283, 0.005615700501948595, -0.030793195590376854, -0.03835766017436981, -0.009932546876370907, 0.0029286581557244062, 0.0229323860257864, -0.06334280967712402, -0.04871729388833046, -0.031173044815659523, 0.059462208300828934, 0.10781688243150711, 0.1522625982761383, -0.02528662048280239, 0.04043090343475342, -0.010467622429132462, -0.054266296327114105, -0.008427645079791546, 0.017440713942050934, 0.012795543298125267, 0.013871791772544384, 0.029050275683403015, -0.04874426871538162, -0.007214557845145464, 0.03550922870635986, -0.001967568416148424, -0.02083221636712551, -0.05229456350207329, 0.017984140664339066, -0.07411005347967148, -0.05200812220573425, -0.041197147220373154, -0.007291074842214584, 0.007026403211057186, -0.0396772176027298, 0.060660749673843384, -0.03757758438587189, -0.07655569911003113, 0.006391675211489201, 0.0725090429186821, 0.052165351808071136, -0.07463441044092178, 0.03888927772641182, 0.009766999632120132, -0.13986237347126007, -0.005250666290521622, 0.042065221816301346, 0.0008358832565136254, 0.03505051136016846, -0.015026076696813107, 0.07051228731870651, 0.11326269060373306, 0.0014351720456033945, -0.014626267366111279, -0.0019772371742874384, 0.019436094909906387, 0.02738839201629162, -0.009806261397898197, -0.04140247032046318, 0.05690540000796318, -0.04190997779369354, 0.015740541741251945, 0.05466650426387787, -0.028223970904946327, 0.06737899035215378, 0.10495160520076752, 0.0602843314409256, -0.02668928913772106, 0.06160891056060791, -0.003218461526557803, -0.04760502278804779, 0.04083304852247238, 0.020432710647583008, 0.07041837275028229, 0.04412086308002472, 0.0786331444978714, -0.05345749109983444, -0.03856132552027702, 0.03742469847202301, -0.08400506526231766, 0.06584949791431427, -0.003404909046366811, 0.008012311533093452, -0.08459307253360748, 0.05173977091908455, 0.009070532396435738, 0.006814347114413977, 0.04446588084101677, -0.0044532762840390205, -0.01787816919386387, 0.004495546687394381, 0.05947383865714073, -0.11450383812189102, -0.03238329663872719, 0.04373554140329361, 0.048873450607061386, -0.07527817040681839, 0.029030265286564827, 0.043243806809186935, 0.052282076328992844, 0.059101659804582596, 0.018829861655831337, -0.008923614397644997, 0.044746361672878265, -0.05611582472920418, -0.026834337040781975, -0.09797804057598114, -0.013860400766134262, -0.027949227020144463, -0.01741555891931057, -0.013240101747214794, 0.0012324238196015358, 0.01712769642472267, -0.04536888375878334, 0.028309663757681847, -0.03453847020864487, -0.12260051816701889, 0.052984584122896194, -0.032588742673397064, 0.048586130142211914, 0.03182492032647133, 4.02441107187366e-33, 0.009500397369265556, 0.049448512494564056, -0.012628250755369663, 0.0028456924483180046, 0.03163750097155571, -0.07204741984605789, 0.03911718726158142, -0.011559398844838142, 0.02444710209965706, 0.11370527744293213, 0.02002815715968609, -0.023480074480175972, -0.03966456279158592, 0.03464945778250694, -0.059849414974451065, -0.06070590764284134, -0.033165376633405685, 0.0027303623501211405, -0.03992421552538872, -0.019912373274564743, -0.031151052564382553, -0.050857946276664734, 0.04249131679534912, -0.005278341006487608, 0.07793138921260834, 0.04096280783414841, 0.10819049179553986, -0.010072868317365646, -0.053361304104328156, 0.04031236097216606, -0.07125725597143173, -0.034727733582258224, 0.022783352062106133, 0.06958234310150146, -0.08186230808496475, -0.0897759273648262, -0.01260831207036972, -0.011177349835634232, 0.04950170964002609, -0.05492826923727989, 0.05432348698377609, 0.03839673101902008, 0.08978834003210068, -0.004115810617804527, 0.0023833289742469788, 0.033097319304943085, 0.0609654039144516, 0.022287383675575256, 0.028657104820013046, 0.01615958660840988, -0.039834026247262955, -0.05852833762764931, 0.06452078372240067, -0.0039569903165102005, 0.0652448907494545, 0.011641952209174633, -0.04539427161216736, 0.008474433794617653, 0.09045793116092682, -0.09033147990703583, 0.005020854528993368, 0.005937154870480299, -0.00607652310281992, 0.08356620371341705, 0.01579035073518753, -0.03740089014172554, 0.008552532643079758, -0.014920083805918694, -0.0341324657201767, 0.02999998815357685, -0.09440386295318604, 0.03771219030022621, 0.015104484744369984, -0.03639053925871849, -0.03319315239787102, 0.004198115784674883, -0.043921276926994324, 0.07637670636177063, 0.034371268004179, -0.04755691811442375, -0.05744677782058716, 0.05780889466404915, -0.049165625125169754, -0.01663658581674099, -0.043651033192873, 0.01483325194567442, -0.02718011476099491, -0.010891416110098362, 0.09459968656301498, 0.05169396474957466, -0.06002376973628998, -0.021679317578673363, -0.047291528433561325, -0.009913988411426544, -0.05864902213215828, 8.112362168449874e-32, -0.14971275627613068, -0.03274694085121155, 0.0017060814425349236, 0.06659582257270813, 0.03342881798744202, 0.0674491599202156, 0.024774370715022087, 0.0191350057721138, -0.034756138920784, -0.04278591647744179, 0.03005334362387657, 0.05374566465616226, -0.04298459738492966, 0.042975082993507385, -0.12255782634019852, -0.011707031168043613, -0.04671978950500488, -0.05462116748094559, 0.01680256798863411, -0.0009419617708772421, 0.05899857357144356, -0.014363671652972698, -0.04113416746258736, -0.011066007427871227, -0.05248446390032768, -0.04862465336918831, -0.04688579961657524, 0.04571942239999771, 0.006551139522343874, -0.06833703815937042, -0.043777331709861755, -0.10030639171600342, -0.07181739062070847, 0.050990257412195206, 0.06369832903146744, 0.03286949172616005, -0.09377540647983551, 0.09556657075881958, -0.04414156451821327, 0.048680249601602554, -0.006135862320661545, -0.04901361092925072, -0.035078030079603195, 0.014217673800885677, 0.012411769479513168, -0.04987082630395889, -0.028975941240787506, -0.07267024368047714, 0.03126528859138489, -0.018729180097579956, -0.03913649544119835, 0.07152601331472397, 0.07757565379142761, 0.013633430004119873, -0.055775269865989685, -0.026950601488351822, 0.018235009163618088, 0.0037612440064549446, 0.04368145391345024, -0.013502863235771656, -0.12327052652835846, 0.1274866759777069, -0.043646130710840225, -0.02638990618288517 ]
285Differentiation 27 A wire is bent into the plane shape ABCDE as shown. Shape ABDE is a rectangle and BCD is a semicircle with diameter BD. The area of the region enclosed by the wire is R m2, AE = x metres, and AB = ED = y metres. The total length of the wire is 2 m. a Find an expression f or y in terms of x. (3 marks) b Prov e that R =  x __ 8 (8 − 4x − px). (4 marks) Given tha t x can vary, using calculus and showing your working: c find the maximum va lue of R. (Y ou do not have to prove that the value you obtain is a maximum.) (5 marks) 28 A cylindrical biscuit tin has a close-fitting lid which o verlaps the tin by 1 cm, as shown. The radii of the tin and the lid are both x cm. The tin and the lid ar e made from a thin sheet of metal of area 80p cm2 and there is no wastage. The volume of the tin is V cm3. a Show that V = p(40x − x2 − x3). (5 marks) Given tha t x can vary: b use differentiation to find the positi ve value of x for which V is stationary. (3 marks) c Prov e that this value of x gives a maximum value of V . (2 marks) d Find this maximum va lue of V. (1 mark) e Determine the percenta ge of the sheet metal used in the lid when V is a maximum. (2 marks) 29 The diagram sho ws an open tank for storing water, ABCDEF. The sides ABFE and CDEF are rectangles. The triangular ends ADE and BCF are isosceles, and /AED = /BFC = 90°. The ends ADE and BCF are vertical and EF is horizontal. Given that AD = x metres:a show that the ar ea of triangle ADE is 1 _ 4  x2 m2 (3 marks) Given a lso that the capacity of the container is 4000 m3 and that the total area of the two triangular and two rectangular sides of the container is S m2: b show that S =  x2 __ 2  +  16 000 √ __ 2 ________ x (4 marks) Given tha t x can vary: c use calculus to find the minimum v alue of S. (6 marks) d justify that the va lue of S you have found is a minimum. (2 marks)E/P B DA EC E/P 1 cmx cm x cmLid Tin E EFC B A D a Find the first four terms in the binomial expansion of ( x  + h)7, in ascending powers of h . b Hen ce prove, from first principles, that the derivative of x7 is 7x6.Challenge
[ 0.03797698765993118, 0.0666431412100792, 0.0018668669508770108, 0.049065206199884415, 0.009178305976092815, 0.05368335545063019, 0.08316769450902939, 0.12136946618556976, -0.11155333369970322, -0.012612785212695599, 0.10970685631036758, -0.03624430298805237, -0.03361240029335022, -0.05339929834008217, -0.010657626204192638, -0.0259855929762125, -0.055581994354724884, 0.006980631034821272, -0.0995626375079155, -0.024851618334650993, 0.11771554499864578, -0.08852579444646835, 0.01698913797736168, -0.05157909542322159, 0.04817746579647064, -0.04842260107398033, -0.004057407379150391, 0.0726674273610115, 0.00015162491763476282, -0.0035511634778231382, -0.015178014524281025, 0.030148157849907875, 0.031014809384942055, -0.0466521754860878, 0.10884933918714523, -0.03492766618728638, -0.017938531935214996, -0.013089198619127274, 0.07275338470935822, -0.026795875281095505, -0.031304385513067245, 0.04407684877514839, 0.061350855976343155, 0.0299577284604311, 0.05001117289066315, -0.09023177623748779, -0.008399270474910736, -0.07184065133333206, 0.029595335945487022, 0.019170451909303665, 0.09676717966794968, 0.03403502330183983, -0.0799751728773117, 0.035101838409900665, 0.08594528585672379, 0.04740297794342041, -0.038455307483673096, 0.10798846930265427, -0.07743054628372192, -0.01852000318467617, -0.02583014778792858, -0.003368239849805832, 0.033528491854667664, 0.01590891368687153, -0.0005099554546177387, -0.005521138198673725, -0.07001873850822449, -0.056052349507808685, 0.01971244625747204, 0.030564500018954277, -0.1206766813993454, 0.007327324245125055, -0.054237350821495056, -0.048971932381391525, 0.03761276602745056, -0.015467158518731594, -0.01221089344471693, 0.07746858894824982, 0.0513957217335701, -0.03801723197102547, 0.007369674742221832, 0.08354516327381134, -0.02109537646174431, -0.030359765514731407, 0.01366260927170515, 0.10479159653186798, 0.018493304029107094, -0.018975459039211273, -0.0134422667324543, -0.007404668256640434, 0.012906614691019058, 0.011883505620062351, -0.08475379645824432, -0.049557849764823914, -0.02940785139799118, -0.10286422073841095, -0.0074231550097465515, -0.1438586562871933, 0.004959905054420233, 0.1293335258960724, -0.07433430850505829, 0.02980799786746502, -0.016178781166672707, -0.008300064131617546, -0.00485854921862483, 0.02359693869948387, -0.039115555584430695, 0.008112930692732334, 0.0717029720544815, -0.06057465448975563, -0.03922879323363304, -0.0051904236897826195, -0.00010643788846209645, 0.0035881781950592995, 0.039394062012434006, -0.029147109016776085, 0.025887172669172287, -0.03134743869304657, -0.01696586422622204, 0.061077017337083817, 0.01980624720454216, 0.04524685814976692, 0.08797090500593185, 0.014465637505054474, -0.05607893690466881, 0.02436636947095394, 0.024217287078499794, 0.02841426618397236, -0.056264180690050125, 0.05703430995345116, 0.07326473295688629, -0.012383995577692986, -0.0579589381814003, -0.02211284637451172, -0.011117493733763695, 0.010996529832482338, -0.09028501808643341, 0.029390178620815277, -0.015624545514583588, -0.0671333447098732, 0.002005544025450945, 0.01908050663769245, 0.12709300220012665, -0.04123092442750931, 0.02436761185526848, 0.022723788395524025, -0.08152829855680466, -0.04978090897202492, -0.007902675308287144, 0.01629377342760563, 0.041308969259262085, 0.029066601768136024, -0.01632745750248432, 0.0013664071448147297, -0.0076707713305950165, 0.039403561502695084, -0.07060493528842926, -0.01053767278790474, -0.025822600349783897, -0.07905340194702148, -0.07549890875816345, 0.042949993163347244, 0.01264257077127695, -0.006467828527092934, 0.08156077563762665, -0.0341898538172245, 0.016791312023997307, 0.04493928328156471, 0.04629429802298546, -0.06473197042942047, -0.006635858211666346, 0.02754923515021801, 0.0019708615727722645, 0.048701923340559006, 0.03948751091957092, -0.01579826883971691, 0.06278396397829056, 0.018024036660790443, -0.03848901391029358, 0.024657849222421646, 0.05149226635694504, -0.13580571115016937, 0.03260684758424759, 0.019153662025928497, -0.058420177549123764, -0.010842821560800076, 0.0412871390581131, 0.0945557951927185, -0.06048887223005295, 0.09925917536020279, 0.024204865097999573, -0.039236415177583694, -0.014638517051935196, 0.030858321115374565, -0.04490784555673599, -0.022025644779205322, -0.009622810408473015, -0.06228264048695564, -0.17120809853076935, 0.015321725979447365, 0.03888736665248871, -0.06266871839761734, -0.026145558804273605, -0.034119024872779846, -0.021739032119512558, 0.02968337945640087, 0.02054993063211441, -0.008551898412406445, -0.08740436285734177, 0.018996331840753555, 0.02323000319302082, -0.03916574642062187, -0.003881607437506318, -0.08703549951314926, 0.007805623579770327, -0.09657039493322372, -0.00947512499988079, -0.020267797634005547, -0.033001821488142014, 0.020758774131536484, 0.01641707867383957, 0.009573878720402718, 0.07892777025699615, 2.956489698843974e-33, -0.031057067215442657, -0.00650150328874588, -0.051447220146656036, -0.07541229575872421, -0.012506713159382343, -0.07056999206542969, 0.04019884392619133, 0.02017819881439209, 0.045388419181108475, 0.08913355320692062, 0.06540248543024063, 0.030299926176667213, -0.005696433130651712, -0.03932219743728638, 0.005600529257208109, -0.06041913479566574, -0.06341686844825745, 0.03495937958359718, -0.014134860597550869, -0.039486873894929886, -0.051344577223062515, -0.009145963005721569, 0.05142361670732498, -0.015485421754419804, 0.017589252442121506, -0.001014193519949913, 0.048077844083309174, -0.07723238319158554, 0.0024505886249244213, 0.03270791843533516, -0.025661423802375793, -0.06009586900472641, 0.006361091509461403, 0.06503843516111374, -0.012088242918252945, -0.09645310044288635, 0.0692494586110115, 0.03622366860508919, 0.10687591135501862, -0.002573346719145775, 0.022573530673980713, 0.012987799942493439, 0.06141338124871254, -0.019354909658432007, -0.07476668059825897, -0.07063785940408707, -0.031095100566744804, 0.029898878186941147, 0.04589385166764259, 0.02289457619190216, 0.039522379636764526, -0.03883412107825279, 0.05130378529429436, -0.04977951943874359, -0.005618999246507883, 0.003654676489531994, -0.0435061976313591, -0.04328187555074692, 0.03652235120534897, -0.021584512665867805, 0.0046861437149345875, -0.04452156648039818, -0.06183069944381714, 0.05743955448269844, -0.0016296489629894495, 0.06663218140602112, 0.004860528279095888, -0.08892286568880081, 0.034043122082948685, 0.030872778967022896, 0.018703555688261986, 0.08012189716100693, -0.04342041537165642, -0.028466450050473213, -0.0623277872800827, 0.011561481282114983, -0.049035195261240005, 0.03548886626958847, 0.07332267612218857, 0.08476995676755905, -0.05200766399502754, 0.016187408939003944, 0.07902845740318298, -0.030821841210126877, -0.029440386220812798, 0.008584982715547085, 0.08243154734373093, 0.06844893097877502, 0.00479921093210578, 0.0819956362247467, -0.0073593598790466785, 0.04805104061961174, 0.04671970382332802, -0.019386107102036476, 0.026249775663018227, 7.287613585267467e-32, -0.06506375223398209, -0.02654441073536873, -0.0540771521627903, -0.05372411012649536, 0.03566829115152359, 0.0015677133342251182, -0.028767019510269165, -0.06561902165412903, -0.052747905254364014, -0.06343341618776321, 0.007208933588117361, 0.04462745413184166, -0.04661146178841591, 0.08474550396203995, -0.11094924062490463, -0.046586260199546814, -0.054398614913225174, -0.004208576865494251, -0.019158100709319115, -0.054669179022312164, -0.016830867156386375, 0.015086203813552856, -0.023353494703769684, 0.026531735435128212, 0.05154614523053169, 0.018743356689810753, -0.05861935019493103, 0.027346482500433922, -0.039980676025152206, -0.08551494777202606, 0.026172272861003876, 0.018230468034744263, -0.028005506843328476, 0.051674146205186844, 0.0013541996013373137, -0.030301569029688835, -0.00483117438852787, 0.05279449746012688, -0.0018542609177529812, 0.1275317519903183, -0.0073340763337910175, -0.08047066628932953, 0.04586736112833023, -0.02347434125840664, 0.07003716379404068, -0.01730768010020256, 0.021624349057674408, 0.006943879183381796, -0.011461314745247364, -0.06870188564062119, -0.016930006444454193, 0.03472019359469414, -0.02300124615430832, 0.025929860770702362, 0.0655236542224884, -0.0655800849199295, 0.06540112942457199, 0.02168145962059498, -0.05862412229180336, -0.02921454794704914, -0.11924124509096146, 0.08980859071016312, -0.05812259763479233, -0.028465067967772484 ]
286 Chapter 12 1 The gradient of a curve at a given point is defined as the gradient of the tangent to the cur ve at that point. 2 The gradient function , or derivative, of the curve y = f(x) is written as f9(x) or dy ___ dx f 9 (x) = lim h → 0 f (x + h) − f(x) ____________ h The gradient function can be used to find the gr adient of the curve for any value of x. 3 For all real v alues of n, and for a constant a: ● If f(x ) = x n then f 9 (x) = n x n − 1 ● If f(x)  = ax n then f 9 (x)  =  anx n − 1 ● If y =  x n then dy ___ dx  = nx n − 1 ● If y =  ax n then dy ___ dx  = anx n − 1 4 For the quadratic curve with equation y = ax2 + bx + c, the derivative is given by dy ___ dx  = 2ax + b 5 If y  = f(x) ± g(x), then dy ___ dx  = f9(x) ± g9(x). 6 The tangent to the cur ve y = f(x) at the point with coordinates (a, f(a)) has equation y − f(a) = f9(a)(x − a) 7 The normal to the curv e y = f(x) at the point with coordinates (a, f(a)) has equation y − f(a ) = − 1 ____ f 9 (a ) (x − a ) 8 ● The function f(x) is increasing on the interval [a, b] if f9( x) > 0 for all values of x such that a , x , b. ● The function f(x) is decreasing on the interval [a, b] if f9(x) < 0 for all values of x such that a , x , b. 9 Differentiating a function y = f(x) twice gives you the second order derivative, f 0(x ) or d 2 y ____ d x 2 10 Any point on the curv e y = f(x) where f9(x) = 0 is called a stationary point. For a small positive value h: 11 If a function f(x) ha s a stationary point when x = a, then: ● if f 0( a) . 0, the point is a local minimum ● if f 0( a) , 0, the point is a local maximum. If f 0( a) = 0, the point could be a local minimum, a local maximum or a point of inflection. You will need to look at points on either side to determine its nature.Type of stationary point f9(x − h) f9(x) f9(x + h) Local maximum Positive 0 Negative Local minimum Negative 0 Positive Point of inflectionNegative 0 Negative Positive 0 PositiveSummary of key points
[ 0.029395515099167824, 0.10340970754623413, -0.00029126094887033105, -0.03447156772017479, -0.023289673030376434, 0.03772219270467758, -0.006097830832004547, -0.016995709389448166, -0.0024088697973638773, 0.04763897508382797, 0.08149439841508865, -0.015973541885614395, -0.003570951521396637, 0.04663211852312088, -0.09224002063274384, -0.011342120356857777, -0.029631607234477997, 0.04531729593873024, -0.08564725518226624, -0.07605703175067902, 0.060076698660850525, 0.025008514523506165, -0.10103289037942886, -0.0025532192084938288, -0.025690868496894836, -0.033198174089193344, 0.014420554973185062, 0.012721160426735878, -0.019975828006863594, -0.019021356478333473, -0.02520456723868847, 0.010039241053164005, 0.06419964134693146, 0.004838291089981794, 0.04136648401618004, 0.005244733765721321, 0.02897617779672146, 0.0005165650509297848, 0.0014768223045393825, 0.05687294527888298, -0.09611628204584122, 0.03051338903605938, -0.08815237879753113, 0.023785628378391266, 0.04994211718440056, 0.04688027501106262, -0.007412956096231937, -0.03653307631611824, -0.03616642579436302, -0.00748190563172102, 0.024750087410211563, 0.014119417406618595, -0.10702556371688843, 0.04798411577939987, 0.055901821702718735, -0.03089781105518341, 0.1489536613225937, 0.00001772374707798008, 0.054212477058172226, 0.04605962336063385, 0.015841377899050713, 0.00025443072081543505, -0.012289557605981827, 0.07204709947109222, -0.0663975328207016, -0.001632633269764483, -0.043793078511953354, -0.058593299239873886, 0.0019256557570770383, 0.07864442467689514, -0.0857686921954155, -0.0619695745408535, 0.08506107330322266, -0.039840217679739, -0.04995770752429962, 0.037847477942705154, 0.05356992036104202, 0.035957593470811844, -0.04409511014819145, -0.07645981758832932, -0.008872880600392818, 0.07905265688896179, 0.037939880043268204, 0.07941973209381104, 0.027660241350531578, -0.030153566971421242, -0.040523797273635864, -0.0015002471627667546, 0.005845243111252785, 0.010009011253714561, -0.008383275009691715, 0.010026169940829277, -0.10573988407850266, 0.01839563064277172, 0.015391974709928036, 0.02195912040770054, -0.03665407747030258, -0.09428779035806656, 0.06076434999704361, -0.005175427068024874, -0.01720415987074375, 0.006345090921968222, -0.14051692187786102, 0.07552529871463776, 0.02839512936770916, 0.0245030727237463, 0.04536926746368408, -0.020611803978681564, -0.007328633684664965, -0.05639610439538956, -0.0000465800185338594, 0.008503464050590992, 0.0430370569229126, -0.04790851101279259, 0.11005997657775879, -0.062060482800006866, -0.017168985679745674, -0.028238212689757347, -0.004500413779169321, -0.012745906598865986, -0.007112458348274231, -0.09014386683702469, 0.06333886831998825, 0.049872592091560364, -0.07377603650093079, 0.039768192917108536, -0.03491058573126793, 0.030545329675078392, 0.00037250190507620573, -0.020212052389979362, 0.032019179314374924, -0.049579549580812454, -0.04159712418913841, -0.05016927793622017, -0.0003802486462518573, 0.009879435412585735, -0.0886746272444725, 0.04018227383494377, 0.01678207330405712, -0.02351602166891098, 0.03297754377126694, 0.043370991945266724, 0.010092352516949177, 0.014127641916275024, -0.01310262642800808, -0.0494733490049839, 0.006866247858852148, 0.017800142988562584, -0.01638398878276348, -0.012037542648613453, 0.014909962192177773, -0.025387655943632126, -0.0009495400008745492, -0.003031478961929679, -0.06849071383476257, 0.014652970246970654, -0.03145260736346245, 0.021272366866469383, -0.029435552656650543, -0.08217178285121918, -0.03701866418123245, 0.04696781560778618, 0.04215510934591293, 0.07644624263048172, 0.00474175438284874, 0.017700381577014923, 0.0720767006278038, 0.00330433901399374, -0.032538753002882004, 0.015329474583268166, 0.06217825785279274, 0.005099842790514231, -0.022240711376070976, 0.14456768333911896, -0.07072815299034119, 0.0225345641374588, 0.03174729272723198, 0.044999055564403534, 0.061314161866903305, -0.0103116724640131, 0.051551703363657, -0.010218276642262936, -0.004069715738296509, -0.0670352354645729, -0.04682471975684166, 0.02994048036634922, -0.008371423929929733, 0.08532495051622391, -0.0452079251408577, -0.05932486057281494, 0.004689888097345829, -0.020382123067975044, -0.03427756205201149, 0.008971691131591797, -0.08702893555164337, 0.02176082506775856, -0.031236207112669945, 0.01281941868364811, 0.02683773823082447, -0.0013220012187957764, -0.005132463760674, -0.046928420662879944, 0.011113177984952927, 0.05691555142402649, -0.08070769160985947, 0.032726727426052094, 0.038506537675857544, -0.07355296611785889, -0.11965049803256989, 0.01581043377518654, -0.006282764952629805, 0.033846329897642136, 0.025944730266928673, 0.04046656936407089, -0.026774723082780838, -0.03382052481174469, -0.0005852400208823383, -0.002380113350227475, -0.12826812267303467, 0.0017174574313685298, -0.026017097756266594, 0.01976272091269493, -0.010871115140616894, 5.1043667519908814e-33, -0.03993804007768631, 0.03604014962911606, -0.020072465762495995, 0.02624373324215412, 0.03944331780076027, -0.005698665045201778, 0.03139973059296608, 0.013181920163333416, 0.0017733483109623194, 0.06312389671802521, -0.061569467186927795, 0.05028604716062546, -0.01967478357255459, 0.021889686584472656, -0.04807828739285469, -0.05010649189352989, -0.05788782984018326, -0.011354919523000717, -0.03631719574332237, -0.014140868559479713, -0.0672750473022461, -0.030093204230070114, -0.01914925128221512, 0.08527060598134995, 0.09195652604103088, -0.04638098552823067, 0.03246137872338295, 0.03794177249073982, -0.025180676952004433, -0.018870405852794647, 0.026058120653033257, -0.006045063957571983, -0.03230222314596176, -0.023052409291267395, 0.007439780980348587, 0.033614084124565125, -0.014263966120779514, -0.009983992204070091, -0.05077050253748894, 0.00519978441298008, 0.09685596078634262, 0.11006603389978409, 0.11339094489812851, -0.10186316072940826, -0.014786113984882832, 0.008994687348604202, -0.019005026668310165, -0.031842414289712906, -0.01983260177075863, 0.08917368203401566, -0.006262545473873615, -0.15313997864723206, 0.05853859335184097, 0.07991722971200943, -0.006007789168506861, 0.007551096845418215, -0.057280149310827255, -0.08553816378116608, 0.04026169702410698, 0.010633007623255253, -0.032901544123888016, -0.04549555853009224, -0.08006805181503296, 0.08349456638097763, -0.07617241144180298, 0.018996460363268852, -0.08237111568450928, -0.03000323474407196, -0.01595720462501049, -0.018000831827521324, -0.003801537211984396, 0.14491088688373566, 0.07022872567176819, -0.014158143661916256, -0.05034447833895683, -0.0802728608250618, 0.025678042322397232, -0.01405660342425108, 0.06494702398777008, 0.013312462717294693, 0.09257777035236359, 0.017344262450933456, 0.10657940804958344, 0.044266682118177414, -0.0063399081118404865, -0.0348159521818161, -0.060173142701387405, 0.041489891707897186, 0.062323201447725296, 0.014269220642745495, -0.06366430222988129, 0.031176365911960602, -0.11423706263303757, -0.04595665633678436, -0.0017692040419206023, 5.553094675749203e-32, -0.10225065052509308, 0.0013573066098615527, 0.01645912043750286, -0.04167711362242699, 0.0153367780148983, 0.056801751255989075, 0.0708322823047638, -0.07056046277284622, -0.007818039506673813, 0.01873084530234337, 0.026546262204647064, -0.05896871164441109, -0.022351020947098732, 0.017768554389476776, 0.055172670632600784, 0.006188598461449146, 0.059477075934410095, 0.038987576961517334, -0.033212002366781235, -0.04049855098128319, -0.00048070625052787364, 0.038109004497528076, -0.09245812147855759, 0.02217118814587593, 0.04072657600045204, -0.037913013249635696, 0.0802314355969429, 0.02110316976904869, 0.0031704099383205175, -0.10767243057489395, -0.048466846346855164, 0.043643876910209656, 0.10788385570049286, -0.0014121778076514602, 0.05669581517577171, 0.03037068620324135, -0.006214205175638199, -0.015476034954190254, -0.032228633761405945, 0.10104277729988098, 0.02045849896967411, -0.053307242691516876, 0.08507447689771652, -0.07497608661651611, -0.06881659477949142, 0.022768652066588402, -0.07274318486452103, 0.03276734799146652, -0.07811504602432251, 0.04374125972390175, 0.08296886086463928, 0.025444088503718376, 0.09221380949020386, 0.04143308848142624, -0.02947971783578396, -0.03802809119224548, 0.1374540776014328, -0.037899285554885864, -0.05758209899067879, -0.032760996371507645, -0.007868994027376175, 0.0503680557012558, 0.02474558725953102, -0.07362563908100128 ]
287 Integration After completing this unit you should be able to: ● Find y giv en dy ___ dx for xn → pages 288–290 ● Integrate polynomials → pages 290–293 ● Find f(x) , given f ′(x ) and a point on the curve → pages 293–295 ● Evaluate a definite integral → pages 295–297 ● Find the area bounded by a cur ve and the x-axis → pages 297–302 ● Find areas bounded by curves and straight lines → pages 302–306Objectives 1 Simplify these expressions a x 3 ___ √ __ x b √ __ x × 2 x 3 ________ x 2 c x 3 − x ______ √ __ x d √ __ x + 4 x 3 ________ x 2 ← Sections 1.1, 1.4 2 Find dy ___ dx when y equals a 2 x 3 + 3x − 5 b 1 _ 2 x 2 − x c x 2 (x + 1) d x − x 5 ______ x 2 ← Section 12.5 3 Sketch the curves with the following equations: a y = (x + 1)(x − 3) b y = (x + 1) 2 (x + 5) ← Chapter 4Prior knowledge check Integration is the opposite of differentiation. It is used to calculate areas of surfaces, volumes of irregular shapes and areas under curves. In mechanics, integration can be used to calculate the area under a velocity-time graph to find distance travelled. →  Exercise 13D Q813
[ -0.04636438935995102, -0.00045694579603150487, -0.030932234600186348, 0.02383129671216011, -0.02062799781560898, 0.05328574404120445, -0.08649519085884094, 0.024361221119761467, -0.08895821124315262, -0.03254534304141998, 0.034827686846256256, -0.09021524339914322, -0.04713195934891701, -0.08907753974199295, -0.004954836796969175, -0.011938237585127354, -0.09252091497182846, 0.031024541705846786, -0.07003402709960938, -0.03544583544135094, 0.050379678606987, -0.03414945676922798, 0.027457352727651596, -0.07416524738073349, 0.012217056937515736, -0.0023998923134058714, -0.038280051201581955, 0.053395070135593414, -0.028406666591763496, 0.0314062274992466, 0.05499155819416046, 0.05920169875025749, 0.08279778063297272, -0.05231151729822159, 0.025123193860054016, -0.02511621080338955, 0.12183934450149536, 0.037938155233860016, 0.0739697590470314, -0.036367014050483704, -0.008753020316362381, 0.0841105654835701, 0.034709472209215164, 0.11319701373577118, 0.12506957352161407, -0.07054642587900162, -0.05182717368006706, -0.12816022336483002, 0.053298112004995346, -0.049225516617298126, 0.06464101374149323, 0.02943548560142517, -0.056163594126701355, -0.014257894828915596, 0.03156925365328789, -0.04335049167275429, 0.020895997062325478, -0.0017777467146515846, -0.040879689157009125, 0.017644522711634636, 0.029479797929525375, 0.14803124964237213, 0.05725611373782158, 0.00396800646558404, 0.015904322266578674, -0.04223751649260521, -0.03247714415192604, 0.020645711570978165, 0.04551566764712334, 0.10623223334550858, -0.10456389933824539, -0.06577472388744354, -0.040829773992300034, -0.079592265188694, 0.05073236674070358, -0.0608617402613163, -0.004531198646873236, 0.030553901568055153, -0.04315304383635521, -0.04239076003432274, -0.01626397855579853, 0.12015211582183838, 0.06699346750974655, 0.017075005918741226, 0.002036303747445345, 0.029512152075767517, 0.01991339772939682, 0.07096986472606659, -0.04627561941742897, -0.06625097990036011, -0.026217319071292877, -0.044487301260232925, -0.07743673026561737, -0.04336262121796608, -0.04835588485002518, -0.06148592010140419, -0.018898149952292442, -0.12087751924991608, -0.030449924990534782, 0.048717763274908066, -0.036171939224004745, 0.00816667266190052, 0.03271562606096268, 0.007752691861242056, -0.007549054455012083, 0.020453331992030144, 0.032592449337244034, -0.023485971614718437, 0.060575321316719055, -0.017966406419873238, -0.05551467090845108, -0.01748848147690296, -0.04403684660792351, 0.01751759462058544, 0.13825340569019318, -0.00113503891043365, 0.007110184989869595, -0.02316190116107464, -0.031724777072668076, 0.02821563370525837, 0.019030392169952393, 0.013275481760501862, 0.011649730615317822, -0.011073936708271503, -0.054092179983854294, 0.024767562747001648, -0.02727300487458706, 0.007185514084994793, -0.0035009952262043953, -0.007010902278125286, -0.03895815834403038, -0.005222446285188198, -0.0929790735244751, -0.017011312767863274, -0.026263603940606117, 0.015808550640940666, -0.07692335546016693, 0.05624007806181908, 0.002170412102714181, 0.03001278266310692, 0.03582688793540001, 0.11008575558662415, 0.03233136609196663, -0.07135175168514252, 0.0523795410990715, 0.003846223931759596, -0.018974998965859413, -0.024361059069633484, -0.0014829846331849694, 0.020141668617725372, 0.0697232112288475, 0.0442592017352581, 0.05171996355056763, 0.07049954682588577, -0.0020519986283034086, -0.00014508498134091496, -0.022920602932572365, -0.0208109263330698, -0.01117825135588646, -0.06636679917573929, -0.05102803558111191, 0.057949911803007126, -0.0062870183028280735, 0.09040211886167526, 0.023891502991318703, -0.03276962414383888, 0.05684245750308037, 0.025810854509472847, -0.019139595329761505, 0.004129198379814625, -0.012351109646260738, -0.03698109835386276, -0.03904227167367935, 0.09034561365842819, 0.025977449491620064, 0.07514811307191849, 0.16091422736644745, 0.018540015444159508, -0.014835350215435028, -0.12208228558301926, 0.05011739954352379, -0.10986003279685974, -0.00844247080385685, 0.027960803359746933, -0.060107115656137466, -0.010876758024096489, -0.03745032101869583, 0.010282976552844048, 0.018597107380628586, -0.057636409997940063, 0.0028768391348421574, -0.04317400977015495, -0.010267853736877441, -0.02631806582212448, -0.045059870928525925, -0.0031734209042042494, -0.0007689697667956352, -0.06813062727451324, -0.1657869666814804, 0.05929594859480858, 0.044685326516628265, -0.09615679085254669, 0.009420879185199738, -0.03412171080708504, 0.019479762762784958, 0.002053516451269388, -0.07502809911966324, 0.01926155760884285, -0.04388260468840599, -0.020899200811982155, -0.04105944186449051, -0.07529667764902115, 0.04237253591418266, -0.0510103665292263, -0.019952690228819847, 0.0067726667039096355, -0.009954985231161118, -0.04770689830183983, -0.10538524389266968, 0.025603126734495163, -0.009458386339247227, 0.03269127383828163, -0.01332840509712696, 4.0844253045858557e-35, 0.014150225557386875, 0.0588904470205307, -0.037965282797813416, 0.017148202285170555, 0.024020349606871605, 0.03393004462122917, 0.044526975601911545, -0.031216822564601898, 0.031500253826379776, 0.024434901773929596, 0.052780356258153915, 0.04582647979259491, -0.006238304078578949, -0.05755075812339783, -0.036488112062215805, -0.00837077759206295, -0.09784112125635147, -0.062299661338329315, -0.04954896494746208, -0.009029804728925228, -0.038543082773685455, -0.03219611942768097, 0.04384294152259827, 0.0069876848720014095, -0.07192607969045639, 0.05183109641075134, 0.04629934951663017, -0.040154024958610535, -0.07043054699897766, 0.04713134095072746, -0.02939845249056816, -0.061177030205726624, -0.00741612771525979, -0.04662751406431198, -0.04256546497344971, -0.07779615372419357, 0.08330341428518295, 0.01636424846947193, -0.025044824928045273, 0.05239298567175865, 0.10339685529470444, 0.05384858325123787, 0.05812125653028488, -0.04080693796277046, -0.06805607676506042, -0.04974498227238655, -0.04127389192581177, 0.0524291954934597, -0.026760036125779152, 0.051569655537605286, 0.03984314575791359, -0.04111436754465103, 0.010288339108228683, 0.055299751460552216, 0.05218210443854332, 0.04486793652176857, 0.03879309445619583, -0.05265091732144356, 0.005037729162722826, -0.0054565295577049255, 0.010713975876569748, 0.0481807142496109, -0.01763288676738739, -0.010757538489997387, -0.04139430820941925, -0.0015095596900209785, -0.018312811851501465, -0.06887362897396088, 0.0356750525534153, 0.02577466145157814, 0.050987616181373596, 0.037106987088918686, 0.06135214865207672, 0.02214154787361622, 0.038258932530879974, 0.005505201872438192, 0.03691011667251587, -0.026535525918006897, 0.0999491959810257, 0.025686608627438545, -0.015483786351978779, 0.04249604046344757, -0.054193124175071716, -0.0040043010376393795, -0.03470730036497116, 0.06038239970803261, 0.06479499489068985, 0.00955977849662304, 0.05234140530228615, -0.04207471385598183, -0.018568765372037888, 0.08967781811952591, -0.03247930109500885, 0.019704870879650116, -0.014633899554610252, 7.516653957547786e-32, -0.1098906546831131, 0.0286327563226223, -0.04095170646905899, 0.06433489173650742, -0.030510013923048973, -0.057436469942331314, -0.08073099702596664, 0.08843386173248291, -0.04115666076540947, -0.03803005814552307, 0.01380369532853365, 0.010044355876743793, -0.10235846787691116, 0.02649260312318802, -0.1219368651509285, -0.09027176350355148, 0.047790829092264175, -0.009008143097162247, -0.014230846427381039, -0.06500592827796936, 0.032919008284807205, 0.05159144848585129, 0.06893672049045563, -0.008527670055627823, 0.05141239985823631, 0.0714455172419548, -0.05496067553758621, -0.027787208557128906, -0.04725073650479317, -0.04353029653429985, 0.047858141362667084, 0.012383004650473595, -0.0027005590964108706, -0.03196500241756439, 0.040603794157505035, 0.03348171338438988, -0.01947161741554737, 0.049594081938266754, 0.05417453497648239, 0.03975847363471985, 0.010689323768019676, -0.003161884378641844, 0.01818402297794819, -0.050046999007463455, 0.00757604418322444, -0.057170312851667404, -0.040650639683008194, -0.0018217782489955425, 0.0279347263276577, -0.011108458042144775, -0.017619924619793892, -0.01424966100603342, 0.03927648067474365, -0.03619004040956497, 0.0318356454372406, -0.021236050873994827, 0.02931584231555462, -0.004686229396611452, -0.028267420828342438, 0.07985486835241318, -0.055981945246458054, 0.11387830972671509, -0.017206018790602684, 0.0765574723482132 ]
288 Chapter 13 13.1 Integrating xn Integration is the reverse process of differentiation: xn xnFunction Gradient Function xn + 1 n + 1multiply by the powe r subtract one fr om the powe r divide by the new powe r add one to the powe rnxn – 1 Constant terms disappear when you differentiate. This means that when you differentiate functions that only differ in the constant term, they will all differentiate to give the same function. To allow for this, you need to add a constant of integration at the end of a function when you integrate. Differentiate Integratey = x2 + 5 y = x2y = x2 + c y = x2 – 19= 2xdy dx ■ If dy ___ dx = xn, then y = 1 __ n + 1 x n + 1 + c, n ≠ −1. ■ If f ′(x) = xn, then f( x) = 1 __ n + 1 x n + 1 + c, n ≠ −1.Differentiating xn Integrating xn You cannot use this rule if n = − 1 be cause 1 _____ n + 1 = 1 __ 0 and so is not defined. You will learn how to integrate the function x−1 in Year 2. → Year 2, Section 11.2Links Example 1 Example 2Find y for the following: a dy ___ dx = x4 b dy ___ dx = x−5 Find f(x) for the following: a f ′( x) = 3 x 1 _ 2 b f ′( x) = 3a y = x5 ___ 5 + c b y = x−4 ___ −4 + c = − 1 __ 4 x−4 + cThis is the constant of integration. Use y = 1 _____ n + 1 xn + 1 + c with n = 4. Don’t forget to add c . Remember, adding 1 to the power gives − 5 + 1 = −4. Divide by the new power (−4) and add c.
[ -0.03290439024567604, 0.03981836140155792, 0.055290307849645615, 0.016547245904803276, 0.005876890383660793, 0.06557264924049377, 0.002742363838478923, 0.024559400975704193, 0.10044407844543457, -0.027774862945079803, 0.002301124157384038, 0.042778462171554565, -0.03802714869379997, -0.02725752256810665, -0.03394155576825142, -0.03454730659723282, -0.10200703889131546, 0.014824897982180119, -0.08527541905641556, -0.08938118070363998, -0.010263531468808651, 0.007782881613820791, -0.1564527004957199, -0.028030168265104294, 0.011190352030098438, -0.022830864414572716, -0.0193678829818964, 0.0574791356921196, 0.03696310147643089, -0.07874923199415207, 0.10330267995595932, 0.07898160070180893, -0.022210225462913513, 0.03710324689745903, -0.04256242513656616, 0.00698047736659646, 0.022339781746268272, -0.039860717952251434, -0.06195925548672676, -0.01973722316324711, -0.02339077740907669, 0.1425544023513794, -0.017290286719799042, 0.030386226251721382, -0.006263532675802708, 0.012889235280454159, -0.022833561524748802, -0.12030889838933945, -0.020974205806851387, 0.03290877491235733, 0.10579188168048859, -0.024813057854771614, -0.13233081996440887, -0.033515725284814835, -0.016387635841965675, -0.059466056525707245, 0.021546965464949608, 0.05567581579089165, 0.047274984419345856, -0.0022739525884389877, 0.008746453560888767, -0.026699695736169815, -0.011965086683630943, 0.02141173742711544, -0.042659465223550797, -0.02259538695216179, -0.07796747237443924, -0.02652423456311226, -0.013466620817780495, 0.12529000639915466, -0.09458328038454056, -0.11316651105880737, 0.04254317656159401, -0.07653601467609406, 0.08981150388717651, -0.012320034205913544, 0.08264005184173584, 0.036214351654052734, -0.07716414332389832, -0.010282723233103752, -0.0012029219651594758, 0.13938768208026886, -0.02554689720273018, 0.06664450466632843, 0.009409070014953613, 0.0007091217557899654, 0.03679651767015457, 0.015561681240797043, -0.014147232286632061, 0.0007692922372370958, 0.02436303347349167, -0.10421480238437653, -0.04902855306863785, 0.016338130459189415, 0.035926464945077896, -0.03674326464533806, -0.009538441896438599, 0.007753001060336828, -0.042798444628715515, 0.006929478608071804, -0.0535583458840847, 0.04160827025771141, -0.021485144272446632, 0.0964818224310875, -0.025246508419513702, -0.02906622737646103, -0.007802988868206739, 0.0072158332914114, 0.07809668034315109, 0.001184337423183024, -0.017374733462929726, 0.026555147022008896, 0.03246404230594635, -0.01005642581731081, 0.04406013712286949, -0.02345447987318039, 0.04637180268764496, -0.08485644310712814, 0.017123447731137276, 0.03083847463130951, -0.04900189861655235, -0.08641621470451355, -0.060997288674116135, 0.09285655617713928, -0.052911076694726944, 0.0332769937813282, 0.03232039138674736, 0.02832675166428089, -0.04031229391694069, -0.05520101636648178, 0.0006867899792268872, 0.02411114051938057, -0.030114280059933662, -0.010652649216353893, 0.029486868530511856, -0.013446822762489319, -0.0518062449991703, -0.029257947579026222, 0.01161210611462593, 0.04565683752298355, -0.041490670293569565, 0.06580746918916702, 0.022010022774338722, -0.014540543779730797, -0.02402498573064804, 0.017683835700154305, 0.10545535385608673, 0.02578761801123619, -0.010955816134810448, 0.042866483330726624, 0.016774991527199745, 0.03161237761378288, -0.04142295941710472, -0.023136770352721214, 0.008216619491577148, 0.02319701947271824, 0.023426253348588943, -0.05479961633682251, 0.009781005792319775, -0.06321882456541061, -0.03618025407195091, 0.025376033037900925, 0.047751735895872116, 0.051360923796892166, 0.05993290990591049, -0.027155039831995964, 0.059669677168130875, 0.009712552651762962, -0.06307574361562729, 0.046477895230054855, -0.062108978629112244, -0.005476724822074175, -0.04399683326482773, 0.034047044813632965, -0.006169534754008055, 0.0171671099960804, 0.02086613141000271, -0.005452999845147133, 0.09252569824457169, -0.06882327049970627, -0.06044568121433258, -0.06525348871946335, 0.052025206387043, 0.07903667539358139, -0.04672566056251526, 0.07675069570541382, -0.11091103404760361, 0.11703131347894669, 0.01346499565988779, -0.027513418346643448, 0.048525869846343994, -0.0029568083118647337, 0.01008843444287777, 0.04407377913594246, 0.039241861552000046, 0.06885044276714325, 0.01727740280330181, -0.08422553539276123, -0.03443707153201103, -0.020938415080308914, 0.01205417700111866, -0.04320286959409714, -0.006358418148010969, -0.020605625584721565, -0.06529431790113449, -0.027791086584329605, 0.005925288889557123, -0.09698119014501572, -0.06362637877464294, 0.052957769483327866, -0.04780374467372894, 0.022123556584119797, 0.024331064894795418, 0.0220725629478693, -0.07902618497610092, 0.03751200810074806, -0.053746335208415985, 0.010635028593242168, 0.010183773934841156, -0.06783540546894073, -0.059181056916713715, 0.025025175884366035, 0.009629989042878151, 2.212469778958371e-34, -0.03127848356962204, 0.007474398706108332, 0.03773004934191704, 0.006709033157676458, 0.005288207903504372, 0.03420374169945717, 0.02670365385711193, -0.0373147577047348, 0.005990777630358934, 0.0704992264509201, 0.07909291237592697, 0.08581612259149551, -0.03491219878196716, -0.021753376349806786, -0.10384716838598251, -0.017187582328915596, -0.025845609605312347, 0.0659460499882698, -0.02758028917014599, -0.03419401869177818, -0.027466263622045517, -0.012313788756728172, -0.016530191525816917, 0.07270754128694534, 0.030355142429471016, 0.010165062732994556, -0.034691840410232544, 0.03341755270957947, 0.07583750784397125, -0.10946685820817947, -0.08257032930850983, 0.017839506268501282, 0.042779091745615005, -0.007076249457895756, -0.00854906253516674, -0.05598759278655052, 0.11105341464281082, 0.036211080849170685, -0.06345423310995102, 0.030146844685077667, 0.026026545092463493, -0.03848760947585106, 0.05953934043645859, -0.020598581060767174, -0.05447258800268173, -0.051693394780159, -0.15967205166816711, -0.013872787356376648, 0.0033552406821399927, 0.05684574320912361, 0.02432066947221756, -0.0609099380671978, -0.018147090449929237, 0.04244275391101837, -0.03592708706855774, 0.06192758306860924, -0.051186639815568924, -0.02111051231622696, -0.035683128982782364, -0.015596275217831135, -0.008309426717460155, 0.006301264278590679, -0.040807969868183136, 0.04696621745824814, 0.022530917078256607, 0.005330294370651245, -0.08805463463068008, 0.050211407244205475, 0.04824705794453621, -0.027641011402010918, 0.011155126616358757, 0.1148332953453064, 0.08133307099342346, -0.03555135801434517, 0.03751516342163086, 0.023064427077770233, -0.04257301613688469, -0.03489965945482254, 0.08074524998664856, 0.009903986938297749, 0.03529743105173111, 0.05159534141421318, -0.016030998900532722, 0.01470969058573246, 0.009959187358617783, -0.0027997312135994434, 0.03749770671129227, 0.013458114117383957, 0.10173194110393524, -0.03781701996922493, -0.046773094683885574, -0.014697367325425148, -0.03496083244681358, -0.0846041664481163, -0.029989199712872505, 5.194715835542258e-32, -0.0035879246424883604, -0.14199243485927582, -0.03275132179260254, -0.03943527117371559, 0.053079865872859955, -0.02946779876947403, 0.0034603544045239687, 0.023062221705913544, -0.018064236268401146, 0.04408551752567291, 0.04026588797569275, -0.011210634373128414, 0.0463993139564991, 0.009643632918596268, -0.06150135397911072, 0.001201139879412949, 0.007122074253857136, -0.008843270130455494, -0.08445803821086884, -0.004116592928767204, -0.021127114072442055, 0.029731784015893936, -0.011336064897477627, 0.03405961021780968, 0.05436359718441963, 0.01707879826426506, 0.004302578512579203, 0.07786731421947479, -0.047443561255931854, 0.003930311184376478, -0.0022613927721977234, 0.04546529799699783, 0.05826656147837639, 0.045195966958999634, 0.047162726521492004, 0.05213846638798714, 0.11915410310029984, -0.00607633450999856, -0.011449042707681656, -0.01601419411599636, -0.09884784370660782, 0.03357900306582451, 0.029989168047904968, -0.06838249415159225, -0.05853983759880066, 0.03422664850950241, -0.0004755142726935446, -0.030186858028173447, -0.08270667493343353, -0.04123106226325035, 0.033218737691640854, -0.013875758275389671, 0.029792381450533867, -0.02387746423482895, 0.03570372238755226, -0.1146717444062233, 0.06393714994192123, -0.04711561277508736, 0.03941308334469795, 0.07685337215662003, -0.05175939202308655, 0.026163222268223763, 0.1271616518497467, -0.02757282555103302 ]
289 Integration a f(x) = 3 × x 3 __ 2 ___ 3 __ 2 + c = 2 x 3 __ 2 + c b f ′(x) = 3 = 3 x0 So f( x) = 3 × x 1 ___ 1 + c = 3 x + c You can integrate a function in the form kxn by integrating xn and multiplying the integral by k. ■ If dy ___ dx = kxn, then y = k _____ n + 1 x n + 1 + c, n ≠ −1. ■ Using function notation, if f ′(x) = kxn, then f( x) = k _____ n + 1 x n + 1 + c, n ≠ −1. ■ When integrating polynomials , apply the rule of integration separately to each term. You d on’t need to multiply the constant term ( c) by k . Watch out Example 3 Given dy ___ dx = 6x + 2x−3 − 3 x 1 _ 2 , find y. y = 6x2 ___ 2 + 2 ___ −2 x−2 − 3 __ 3 __ 2 x 3 __ 2 + c = 3x2 − x−2 − 2 x 3 __ 2 + cApply the rule of integration to each term of the expression and add c. Now simplify each term and remember to add c.x0 = 1, so 3 can be written as 3 x0.Remember 3 ÷ 3 _ 2 = 3 × 2 _ 3 = 2 Simplif y your answer. Exercise 13A 1 Find an expression f or y when dy ___ dx is the following: a x5 b 10x4 c −x−2 d −4x−3 e x 2 _ 3 f 4 x 1 _ 2 g −2x6 h x − 1 _ 2 i 5 x − 3 _ 2 j 6 x 1 _ 3 k 36x11 l −14x−8 m −3 x − 2 _ 3 n −5 o 6x p 2x−0.4 2 Find y when dy ___ dx is given by the following expressions. In each case simplify your answer. a x3 − 3 _ 2 x − 1 _ 2 − 6x−2 b 4x3 + x − 2 _ 3 − x−2 c 4 − 12 x −4 + 2 x − 1 _ 2 d 5 x 2 _ 3 − 10x4 + x −3 e − 4 _ 3 x − 4 _ 3 − 3 + 8x f 5x4 − x − 3 _ 2 − 12 x −5 3 Find f(x) w hen f ′(x ) is given by the following expressions. In each case simplify your answer. a 12x + 3 _ 2 x − 3 _ 2 + 5 b 6x5 + 6 x −7 − 1 _ 6 x − 7 _ 6 c 1 _ 2 x − 1 _ 2 − 1 _ 2 x − 3 _ 2 d 10x4 + 8x −3 e 2 x − 1 _ 3 + 4 x − 5 _ 3 f 9x2 + 4 x −3 + 1 _ 4 x − 1 _ 2 4 Find y gi ven that dy ___ dx = (2x + 3)2. (4 marks) E/P Start by expanding the brackets.Problem-solving
[ -0.06205613538622856, -0.005403011571615934, 0.07324870675802231, -0.01982802152633667, -0.054619695991277695, 0.05514797568321228, 0.011388523504137993, 0.019227400422096252, 0.006840534042567015, -0.009105226024985313, -0.010903405025601387, -0.08774581551551819, 0.010454344563186169, -0.047814056277275085, 0.016518360003829002, -0.01770089752972126, -0.10192171484231949, 0.013604708947241306, -0.046521205455064774, -0.032937172800302505, -0.02080950327217579, -0.034382641315460205, -0.081207774579525, -0.06344345211982727, 0.020645450800657272, -0.0131416916847229, -0.055910270661115646, 0.07073340564966202, -0.042394060641527176, -0.05440312251448631, -0.020075723528862, 0.09986444562673569, -0.00015973291010595858, -0.00685902452096343, 0.027746496722102165, 0.03159697353839874, 0.05773349106311798, 0.07790409028530121, -0.026725949719548225, -0.012078184634447098, -0.06928648054599762, 0.06091079115867615, -0.012082058005034924, 0.09898053109645844, 0.06873733550310135, -0.0040963985957205296, -0.0024373969063162804, -0.06738067418336868, 0.02940751239657402, 0.010615596547722816, 0.06038862094283104, 0.0789453312754631, -0.07229511439800262, -0.06199577823281288, 0.042421817779541016, -0.025034619495272636, 0.007632149849087, 0.06154698133468628, 0.04531243443489075, 0.03690505400300026, -0.01176453847438097, 0.07109928131103516, 0.07901819050312042, 0.02716776169836521, -0.025348719209432602, 0.08875319361686707, -0.015652209520339966, -0.0047821360640227795, 0.00037486403016373515, 0.09701547771692276, -0.14106830954551697, -0.03152022510766983, -0.0011918802047148347, -0.15751822292804718, 0.06877627968788147, -0.05711029842495918, 0.05820080265402794, 0.011297370307147503, -0.045306410640478134, -0.0009744528797455132, -0.06555333733558655, 0.1013820618391037, 0.028111163526773453, 0.07679876685142517, -0.057082466781139374, 0.027391036972403526, -0.05471417307853699, 0.02811652608215809, -0.06062169745564461, 0.0028144840616732836, -0.021067295223474503, -0.0008482761913910508, -0.016543641686439514, -0.0026358335744589567, -0.008836210705339909, -0.07808312773704529, 0.0007944591343402863, -0.1201685443520546, -0.04178887978196144, 0.06462259590625763, 0.022878630086779594, -0.00437399884685874, -0.04961451143026352, 0.05661347508430481, 0.014004402793943882, 0.02834269218146801, 0.07060480862855911, -0.014430894516408443, 0.05470091477036476, 0.05706745386123657, -0.08713703602552414, -0.044180456548929214, -0.05993964523077011, -0.013321866281330585, 0.08672496676445007, 0.05687849223613739, -0.01660802960395813, -0.08149348199367523, 0.008288421668112278, -0.024199530482292175, 0.024252641946077347, -0.056489743292331696, 0.0443694069981575, -0.0539378859102726, -0.051438599824905396, 0.05033687502145767, 0.0003485589986667037, -0.0012895900290459394, -0.0032606341410428286, -0.039323579519987106, -0.009268541820347309, -0.018249575048685074, -0.05049951374530792, -0.049281783401966095, -0.06036129221320152, 0.025236381217837334, -0.11156535148620605, -0.028943359851837158, 0.02660856768488884, -0.005735819693654776, 0.017522327601909637, 0.07213880121707916, 0.019155211746692657, -0.05108846351504326, 0.03399708494544029, 0.015383283607661724, -0.022756796330213547, -0.027039499953389168, -0.0888340026140213, 0.010567829944193363, 0.04266511648893356, 0.01904468983411789, 0.06001332029700279, 0.05433691293001175, -0.04954655468463898, -0.060789115726947784, 0.005547233857214451, -0.05810180678963661, 0.056577228009700775, -0.04469338804483414, -0.051113393157720566, 0.029529020190238953, 0.011482941918075085, 0.07466020435094833, 0.008850925602018833, 0.014034057967364788, 0.117580845952034, 0.0035831579007208347, -0.059439241886138916, 0.04117473587393761, -0.0328836627304554, -0.00752460490912199, -0.08968374133110046, 0.037588126957416534, 0.046576693654060364, 0.025147728621959686, 0.053667232394218445, 0.10332737118005753, 0.05962236970663071, -0.04846939072012901, 0.04738529399037361, -0.04688512906432152, -0.003364290576428175, 0.06154481694102287, -0.032480280846357346, -0.03665773570537567, -0.06587701290845871, 0.04165751114487648, -0.023241393268108368, 0.021783465519547462, 0.08025141805410385, -0.0320417694747448, -0.008579565212130547, 0.03272422030568123, -0.03217697516083717, 0.03342065587639809, -0.0008326382958330214, -0.054878782480955124, -0.08628508448600769, 0.07502138614654541, 0.07926525175571442, -0.027790701016783714, 0.03375519439578056, 0.026322972029447556, -0.08904073387384415, 0.002124335151165724, -0.058176439255476, 0.018771061673760414, 0.02458007261157036, -0.040091026574373245, -0.04765574261546135, 0.01120054442435503, 0.0004736242408398539, -0.010591365396976471, -0.0717335194349289, 0.008071938529610634, 0.013108519837260246, -0.007399289403110743, -0.04857536405324936, 0.04903027415275574, -0.007884618826210499, -0.019482700154185295, 0.031142953783273697, -8.282392136571739e-33, 0.006381970830261707, 0.07032104581594467, 0.04712561145424843, -0.07070307433605194, -0.025658804923295975, 0.02607426606118679, 0.004582621622830629, -0.11103249341249466, 0.07118497788906097, 0.0460384376347065, 0.04233977943658829, 0.016806883737444878, -0.04979940131306648, -0.020551208406686783, -0.10362157970666885, 0.0005452372715808451, -0.019715316593647003, -0.04599899426102638, -0.018255509436130524, -0.025431333109736443, 0.02561287209391594, -0.07447658479213715, -0.013199587352573872, -0.004973515402525663, -0.02489592880010605, 0.009545430541038513, -0.03436335548758507, 0.028359532356262207, -0.022339042276144028, -0.02070518024265766, -0.037274304777383804, 0.04144905135035515, 0.08215859532356262, 0.08500444889068604, -0.0815214142203331, -0.0752248615026474, 0.07070383429527283, 0.01767411082983017, -0.028474463149905205, 0.040877025574445724, 0.027696777135133743, -0.0001398206950398162, 0.03806189447641373, 0.06740328669548035, -0.040753625333309174, -0.0217429231852293, -0.12013950943946838, 0.03340931609272957, 0.05054290220141411, 0.10194995254278183, 0.05825180932879448, -0.06541595607995987, -0.10544360429048538, 0.1065213680267334, 0.03321161866188049, 0.0326584056019783, -0.07923427224159241, -0.04749908670783043, 0.07530859857797623, -0.039779625833034515, 0.03062921017408371, 0.008186118677258492, -0.02293948270380497, 0.016649065539240837, -0.006452313158661127, 0.01954883523285389, -0.034428082406520844, -0.08919171243906021, 0.010074621066451073, -0.0009320451063103974, 0.03863733634352684, 0.06616627424955368, -0.03550209477543831, -0.033997152000665665, 0.030114147812128067, 0.03405412659049034, -0.03959299996495247, 0.06229715049266815, 0.0604533888399601, 0.00408907001838088, -0.045868802815675735, 0.07500553876161575, -0.04504518583416939, 0.03336341679096222, -0.07892613857984543, -0.005119509529322386, 0.09246178716421127, 0.013274045661091805, 0.04211897403001785, 0.01690572500228882, -0.042507465928792953, 0.06872078776359558, -0.023284349590539932, -0.04143515229225159, 0.05046737566590309, 7.625643442767327e-32, -0.009283036924898624, -0.017662284895777702, -0.037847816944122314, 0.05722814425826073, -0.012791920453310013, -0.04264876991510391, -0.07827538251876831, -0.0014006735291332006, -0.04923072084784508, -0.07465603947639465, 0.036871228367090225, -0.02759847417473793, -0.0790930911898613, 0.0926821306347847, -0.12498091906309128, -0.039683543145656586, 0.03739403933286667, -0.03233431279659271, -0.024991631507873535, -0.029500802978873253, -0.014642001129686832, 0.08205542713403702, -0.0029257466085255146, 0.04665253311395645, 0.0330362543463707, 0.04536495357751846, -0.009822201915085316, 0.020638683810830116, -0.09760777652263641, 0.023431966081261635, 0.03194451704621315, 0.0439210906624794, 0.02062792330980301, -0.022484157234430313, 0.0625094622373581, 0.06431478261947632, -0.051148075610399246, -0.0382545031607151, -0.05651608854532242, -0.01753164455294609, 0.01827612891793251, -0.013696831651031971, -0.03950377181172371, -0.08300605416297913, -0.048032842576503754, -0.01789366826415062, -0.1396232396364212, -0.057218484580516815, 0.00396516639739275, -0.03957301750779152, -0.025632917881011963, 0.033226530998945236, 0.0591595396399498, -0.07286687195301056, 0.02452404797077179, -0.04267390817403793, 0.08242115378379822, -0.03894219174981117, -0.007460394874215126, 0.09436045587062836, -0.05085044354200363, 0.030482448637485504, 0.020192548632621765, 0.04502813145518303 ]
290 Chapter 13 Find y when dy ___ dx = (2 √ __ x − x2) ( 3 + x _____ x5 ) Challenge 13.2 Indefinite integr als You can use the symbol ∫ to represent the process of integration. ■ ∫f ′(x)dx = f(x) + c You can write the process of integrating xn as follows: ∫xn dx = xn + 1 _____ n + 1 + c, n ≠ −1 The elongated S means integrate.The expression to be integrated.The d x tells you to integrate with respect to x. When you are integrating a polynomial function, you can integrate the terms one at a time. ■ ∫(f(x) + g( x))dx = ∫f(x)dx + ∫g(x)dx This p rocess is called indefinite integration . You will learn about definite integration later in this chapter.Notation The d x tells you to integrate with respect to the variable x , so any other letters must be treated as constants.5 Find f(x) gi ven that f ′(x ) = 3 x −2 + 6 x 1 _ 2 + x − 4 . (4 marks) E Example 4 Find: a ∫( x 1 _ 2 + 2x3) dx b ∫( x − 3 _ 2 + 2) dx c ∫( p2 x −2 + q) dx d ∫(4t2 + 6) dt a ∫( x 1 __ 2 + 2x3)dx = x 3 __ 2 ___ 3 __ 2 + 2x4 ____ 4 + c = 2 __ 3 x 3 __ 2 + 1 __ 2 x4 + c b ∫( x − 3 __ 2 + 2)d x = x − 1 __ 2 ____ − 1 __ 2 + 2 x + c = −2 x − 1 __ 2 + 2x + c c ∫( p2 x −2 + q)dx = p2 ___ −1 x −1 + qx + c = − p2 x −1 + qx + c d ∫(4t2 + 6)d t = 4t3 ____ 3 + 6 t + cFirst apply the rule term by term. Simplify each term. Remember − 3 __ 2 + 1 = − 1 __ 2 and the integral of the constant 2 is 2 x. The d t tells you that this time you must integrate with respect to t. Use the rule for integrating x n but replace x with t : If dy ___ dt = kt n, then y = k _____ n + 1 tn + 1 + c, n ≠ −1.
[ -0.023413505405187607, 0.03669223561882973, 0.05473974719643593, -0.04938507080078125, 0.0017573012737557292, 0.05240318179130554, 0.04980437457561493, -0.06957007199525833, -0.05314742028713226, -0.03083023801445961, 0.008726219646632671, -0.021164093166589737, 0.06726480275392532, -0.011136888526380062, -0.04432849958539009, -0.049738865345716476, -0.045138001441955566, 0.016044244170188904, -0.0843326598405838, -0.04537128284573555, 0.035922013223171234, -0.001794237527064979, -0.038706861436367035, 0.004052463453263044, 0.05219118297100067, 0.012500443495810032, -0.013837557286024094, 0.002462296048179269, -0.03413376212120056, -0.06706404685974121, 0.09452236443758011, 0.0335380956530571, 0.0019720757845789194, -0.04174744337797165, -0.00020030006999149919, 0.014464454725384712, 0.06518266350030899, 0.02066740207374096, -0.03543482720851898, 0.012084503658115864, -0.030989985913038254, -0.014849684201180935, -0.025510331615805626, 0.04022666811943054, 0.08859480172395706, -0.041224315762519836, -0.05561799556016922, -0.08418633788824081, -0.01120489090681076, 0.022064736112952232, 0.062467653304338455, 0.005602278746664524, -0.09592071920633316, -0.06832568347454071, -0.06715358793735504, -0.10125959664583206, -0.012231065891683102, 0.016096938401460648, 0.033660899847745895, 0.0668279156088829, 0.02100294828414917, 0.09079959243535995, 0.018692558631300926, 0.05604983866214752, -0.06693926453590393, 0.01552621554583311, -0.03499395772814751, -0.041636355221271515, 0.030023397877812386, 0.1395203322172165, -0.12180878221988678, -0.06227555125951767, -0.0779263973236084, -0.061346232891082764, 0.0693550631403923, -0.09558606892824173, -0.03607983887195587, -0.09936552494764328, -0.02028420940041542, -0.07006756216287613, 0.01040218397974968, 0.09591853618621826, 0.04907865822315216, 0.05496078357100487, 0.008870590478181839, -0.07308794558048248, -0.001694974023848772, 0.04772724583745003, -0.05351207032799721, 0.022296512499451637, 0.04845483601093292, -0.12253298610448837, -0.041325684636831284, 0.0010646504815667868, -0.019342871382832527, -0.04650721698999405, 0.007060232572257519, -0.059642136096954346, -0.07637961208820343, 0.09357218444347382, -0.008688858710229397, 0.0327637679874897, -0.044743768870830536, 0.02410336211323738, 0.0021309410221874714, -0.034690797328948975, 0.005924181547015905, 0.011318039149045944, 0.11903978139162064, 0.009609350003302097, -0.08044206351041794, -0.045608650892972946, 0.021320248022675514, 0.014935747720301151, 0.06335049867630005, 0.024704907089471817, 0.035807687789201736, -0.050515640527009964, -0.02593051828444004, 0.0423930324614048, 0.0067184665240347385, -0.08650510758161545, -0.0018646101234480739, -0.009346111677587032, -0.06321583688259125, -0.024344392120838165, 0.0022989234421402216, 0.0005442161927931011, -0.039792731404304504, -0.06736095994710922, -0.04521453380584717, -0.07408712059259415, -0.05532998964190483, -0.050059180706739426, -0.06017277389764786, -0.00800990592688322, -0.08527431637048721, 0.05044909194111824, 0.038182780146598816, -0.021785583347082138, -0.04373963177204132, 0.06415242701768875, 0.048929885029792786, -0.04968249425292015, -0.029651733115315437, 0.014270050451159477, 0.010197481140494347, 0.02470593899488449, -0.006172791589051485, 0.043774981051683426, -0.0029710670933127403, 0.021122979000210762, 0.045838743448257446, 0.003296111710369587, -0.03371066227555275, -0.04439690336585045, 0.024875394999980927, -0.00436586095020175, -0.02145359106361866, -0.05826713144779205, -0.09955799579620361, 0.08850741386413574, 0.005209560971707106, 0.024123845621943474, 0.027472738176584244, 0.014354499988257885, 0.026466235518455505, -0.00594337610527873, -0.013146745972335339, 0.023100702092051506, 0.007687552832067013, 0.044923290610313416, -0.012184565886855125, 0.06658238172531128, 0.0372769758105278, -0.053745463490486145, 0.12128090858459473, 0.0466570109128952, 0.09760710597038269, -0.012918669730424881, 0.0643896758556366, -0.042681802064180374, 0.015121512115001678, 0.07385233044624329, -0.005013513378798962, -0.07241032272577286, -0.0461394339799881, 0.018234267830848694, 0.02156941220164299, -0.021211624145507812, 0.03349043428897858, -0.029701828956604004, 0.024444332346320152, 0.04840543121099472, -0.01548861339688301, -0.004207136109471321, 0.010320732370018959, -0.06769406795501709, -0.18009285628795624, 0.08597242087125778, 0.017540739849209785, -0.005888580344617367, 0.06549769639968872, -0.09610605984926224, 0.016816765069961548, 0.032163217663764954, -0.00389525992795825, -0.05505591630935669, 0.014357652515172958, 0.0020806698594242334, -0.04124463349580765, 0.055558353662490845, -0.031116127967834473, 0.005541677586734295, -0.04333646968007088, -0.09473755210638046, -0.022252563387155533, 0.0170772522687912, -0.06368682533502579, 0.020120760425925255, -0.06158586964011192, 0.02043747715651989, 0.0035704930778592825, -3.898370159474679e-33, -0.006883821450173855, 0.03582438826560974, 0.021470453590154648, -0.03787174075841904, 0.04490898177027702, -0.037926558405160904, 0.06263717263936996, -0.0745520070195198, -0.015195589512586594, 0.07010313123464584, -0.002899291692301631, 0.08095752447843552, 0.021807869896292686, -0.006580394692718983, -0.12021641433238983, 0.018757913261651993, -0.10851912945508957, -0.04320120811462402, -0.049292441457509995, 0.017354855313897133, 0.020029399544000626, -0.08858492225408554, -0.06388860940933228, -0.05715367943048477, 0.020639333873987198, 0.09941773861646652, 0.04800525680184364, -0.001104532042518258, -0.01573924347758293, 0.02527681738138199, -0.1166403591632843, 0.01846984215080738, -0.01279015839099884, 0.08543379604816437, 0.0003344762371852994, -0.07066737860441208, 0.06336063146591187, -0.06645659357309341, 0.051601067185401917, 0.03169810399413109, 0.048086460679769516, 0.019304819405078888, 0.037976380437612534, 0.04837099090218544, -0.05926414951682091, -0.03543846309185028, -0.03256606683135033, 0.035935427993535995, -0.043221794068813324, 0.11413302272558212, -0.008493105880916119, -0.04317127913236618, 0.01147307176142931, 0.07211700081825256, 0.02014957368373871, 0.03505711257457733, 0.020316878333687782, -0.04137175530195236, 0.041487228125333786, -0.02262858673930168, -0.06414451450109482, -0.021090108901262283, 0.06740327179431915, 0.0487423837184906, 0.012939211912453175, -0.019926486536860466, -0.08271479606628418, 0.004217559937387705, 0.019474655389785767, -0.009818200021982193, 0.04749612882733345, 0.07035209238529205, -0.010398096404969692, -0.03956921026110649, 0.018108518794178963, -0.018856007605791092, -0.05932354927062988, 0.04122249037027359, 0.08187391608953476, -0.0037250446621328592, -0.04232734069228172, 0.11094069480895996, 0.027822425588965416, 0.004120483063161373, -0.015184881165623665, 0.04080737382173538, 0.08386469632387161, 0.034869808703660965, 0.01529842708259821, -0.01424932200461626, 0.004915046971291304, 0.07035433501005173, -0.025049125775694847, -0.05964111536741257, 0.024785595014691353, 7.985025567402699e-32, -0.05323294922709465, -0.08345482498407364, -0.0701475664973259, 0.050539009273052216, 0.06450331211090088, 0.01039871945977211, -0.03417450934648514, 0.022128235548734665, 0.025844065472483635, -0.0691407173871994, 0.041448209434747696, 0.05229271948337555, -0.045365411788225174, 0.013361873105168343, -0.12705640494823456, -0.09974237531423569, 0.05831395462155342, 0.03851272538304329, -0.05695134028792381, -0.006693072151392698, 0.037836864590644836, -0.00032182977884076536, -0.06527688354253769, 0.012403343804180622, -0.003353917272761464, 0.031125949695706367, -0.08584357053041458, 0.06207529082894325, -0.09831508249044418, -0.012070346623659134, -0.004953626077622175, 0.045115821063518524, -0.0005508725298568606, -0.006805037148296833, 0.054458994418382645, 0.0852881371974945, 0.054966554045677185, 0.047139447182416916, 0.024594981223344803, -0.018501657992601395, -0.06736912578344345, 0.055005110800266266, -0.03648221120238304, -0.033169716596603394, 0.029552560299634933, -0.0707392692565918, 0.0011253856355324388, -0.05285676568746567, 0.037212543189525604, -0.0029734645504504442, 0.027376526966691017, -0.022912679240107536, 0.026524802669882774, 0.0609571635723114, 0.007408737670630217, -0.019772833213210106, 0.015243472531437874, 0.041785914450883865, 0.053394660353660583, 0.02640354633331299, -0.06636922061443329, 0.08776026964187622, 0.02419734187424183, 0.1068979948759079 ]
291 Integration Example 5 Find: a ∫ ( 2 __ x3 − 3 √ __ x ) dx b ∫x (x2 + 2 __ x ) dx c ∫ ((2x)2 + √ __ x + 5 ______ x2 ) dx a ∫ ( 2 ___ x3 − 3 √ __ x ) dx = ∫(2x −3 − 3 x 1 __ 2 )dx = 2 ___ −2 x −2 − 3 __ 3 __ 2 x 3 __ 2 + c = −x −2 − 2 x 3 __ 2 + c = − 1 ___ x2 − 2 √ ___ x3 + c b ∫x (x2 + 2 __ x ) dx = ∫(x3 + 2)d x = x4 ___ 4 + 2x + c c ∫ ((2x)2 + √ __ x + 5 _______ x2 ) dx = ∫ (4x2 + x 1 __ 2 ___ x2 + 5 ___ x2 ) dx = ∫(4x2 + x − 3 __ 2 + 5 x−2)dx = 4 __ 3 x3 + x − 1 __ 2 ____ − 1 __ 2 + 5x−1 _____ −1 + c = 4 __ 3 x3 − 2 x − 1 __ 2 − 5 x−1 + c = 4 __ 3 x3 − 2 ___ √ __ x − 5 __ x + cFirst write each term in the form xn. Apply the rule term by term. Simplify each term. Sometimes it is helpful to write the answer in the same form as the question.Before you integrate, you need to ensure that each term of the expression is in the form kx n, where k and n are real numbers. First multiply out the bracket. Then apply the rule to each term. Simplify (2 x)2 and write √ __ x as x 1 _ 2 . Write each term in the form xn. Apply the rule term by term. Finally simplify the answer. Exercise 13B 1 Find the following integr als: a ∫x3 dx b ∫x7 dx c ∫3x−4 dx d ∫5x2 dx 2 Find the following integr als: a ∫(x4 + 2x3)dx b ∫(2x3 − x2 + 5x)dx c ∫(5 x 3 _ 2 − 3x2)dx 3 Find the following integr als: a ∫(4x−2 + 3 x − 1 _ 2 )dx b ∫(6x−2 − x 1 _ 2 )dx c ∫(2 x − 3 _ 2 + x2 − x − 1 _ 2 )dx
[ -0.054267436265945435, 0.0539020337164402, 0.09592440724372864, -0.04780878871679306, -0.024122437462210655, 0.10988973081111908, -0.007939374074339867, 0.011648737825453281, -0.08575966209173203, 0.037758488208055496, -0.0006808872567489743, -0.06220179423689842, 0.009136314503848553, -0.06147407740354538, 0.060300346463918686, -0.0199147779494524, -0.03796180337667465, -0.02849068120121956, -0.10535627603530884, -0.012316406704485416, 0.0015828604809939861, -0.031804781407117844, -0.029428526759147644, -0.025790773332118988, 0.013501063920557499, -0.023643819615244865, -0.04542512446641922, 0.08116938918828964, -0.03127032890915871, -0.056112583726644516, 0.02351217158138752, 0.06206420063972473, 0.027450894936919212, -0.076576828956604, -0.02036755345761776, 0.049628760665655136, 0.017547395080327988, 0.04066457599401474, -0.002587598981335759, -0.03999560698866844, -0.02206885814666748, 0.015974851325154305, 0.06503434479236603, 0.026622215285897255, 0.06503468751907349, -0.06974238902330399, -0.014892632141709328, -0.10403428226709366, 0.020681535825133324, 0.018472330644726753, 0.011121232993900776, -0.008500052616000175, -0.09394337981939316, -0.05023430660367012, -0.09981713443994522, -0.10989673435688019, 0.01761518232524395, 0.026261329650878906, -0.027041243389248848, 0.027223195880651474, 0.0571754164993763, 0.06452620774507523, 0.07152894139289856, 0.04506221413612366, 0.013967735692858696, 0.005047714803367853, -0.011773932725191116, -0.029783297330141068, 0.006832899525761604, 0.10651224851608276, -0.1272250860929489, -0.045356590300798416, -0.07064209133386612, -0.07245199382305145, 0.044947486370801926, -0.07691577821969986, -0.04322969168424606, -0.04150671139359474, 0.011132116429507732, -0.07612581551074982, -0.02002016268670559, 0.06101085990667343, 0.026069819927215576, 0.0014099042164161801, -0.03585926443338394, -0.016939617693424225, -0.02367332950234413, 0.07407036423683167, 0.011498509906232357, -0.059359110891819, 0.05433711037039757, -0.07621884346008301, -0.07811282575130463, -0.029368102550506592, -0.006672761403024197, -0.1001361608505249, -0.02681620605289936, -0.06864010542631149, -0.07597126811742783, 0.0549369715154171, -0.017459558323025703, 0.009108870290219784, -0.07708416879177094, 0.06152453273534775, 0.0007599129457958043, -0.01387200877070427, 0.03549385443329811, 0.052317358553409576, 0.16148094832897186, 0.001446820911951363, -0.08975369483232498, -0.052433885633945465, -0.040841203182935715, 0.05855749174952507, 0.03544735163450241, 0.005392210558056831, 0.015186638571321964, -0.007981959730386734, 0.026815365999937057, -0.00126181379891932, 0.023954901844263077, -0.0644381195306778, -0.006606697104871273, -0.05603596568107605, -0.05290865898132324, -0.026006607338786125, -0.027841215953230858, 0.0415545254945755, -0.0163863655179739, -0.09475726634263992, -0.09476015716791153, -0.017352871596813202, -0.09183820337057114, -0.05429000034928322, -0.018937787041068077, -0.0960211306810379, -0.0919138640165329, 0.0631895437836647, 0.011095525696873665, 0.01940132863819599, 0.049781814217567444, 0.07825865596532822, 0.0629955306649208, -0.016343390569090843, 0.012468813918530941, -0.007661791518330574, -0.04054781422019005, -0.07292202860116959, -0.01931384764611721, 0.06573787331581116, 0.041917167603969574, 0.018909603357315063, 0.04730163887143135, 0.08095026016235352, 0.020661408081650734, -0.021087227389216423, 0.018533337861299515, -0.002697327407076955, -0.05588623136281967, 0.01817299611866474, -0.06648705154657364, 0.059572167694568634, 0.008054661564528942, 0.058701153844594955, -0.015706993639469147, 0.005098504945635796, 0.04908141866326332, 0.00994645431637764, -0.021189797669649124, 0.01418604888021946, -0.05179459974169731, -0.0002574785612523556, -0.03583775833249092, -0.01875506527721882, -0.04657384008169174, 0.04622408375144005, 0.10334547609090805, 0.054468944668769836, 0.041395630687475204, -0.020966123789548874, 0.07700346410274506, 0.004556895699352026, 0.02169509045779705, 0.08268674463033676, -0.047327134758234024, 0.011976633220911026, -0.047328777611255646, -0.0047791991382837296, 0.07663397490978241, 0.034878455102443695, 0.02815939113497734, -0.037233732640743256, 0.03162885457277298, 0.019818615168333054, -0.02212885394692421, 0.04264839366078377, -0.04659304395318031, -0.1165986955165863, -0.09460744261741638, 0.08181669563055038, 0.1038421168923378, -0.031779222190380096, 0.0872611477971077, -0.08136825263500214, -0.04485024884343147, 0.007666294928640127, -0.02351001277565956, -0.024256324395537376, 0.041497670114040375, 0.002935821423307061, -0.03931507095694542, -0.0021646141540259123, -0.045358773320913315, -0.03076784871518612, -0.04320511966943741, -0.03238930553197861, 0.02056344412267208, -0.018063129857182503, -0.04622518643736839, 0.03501054644584656, -0.019099071621894836, -0.014818458817899227, 0.04676854982972145, -4.229845240069163e-33, 0.02814551629126072, 0.05574015900492668, 0.008427811786532402, -0.04953340068459511, -0.01889972761273384, -0.005361868999898434, 0.02350594475865364, -0.1609511822462082, 0.05265062674880028, 0.021951181814074516, 0.011898860335350037, 0.050672754645347595, -0.06570087373256683, -0.041975993663072586, -0.0876644030213356, 0.07499371469020844, -0.03150273114442825, -0.003931489773094654, 0.02622811309993267, -0.02564752660691738, 0.05886214226484299, -0.062056876718997955, -0.0415889173746109, 0.008238271810114384, -0.019430017098784447, 0.10625813901424408, -0.0011662169126793742, -0.022253552451729774, 0.027763836085796356, 0.05576108768582344, -0.10018662363290787, 0.03343816474080086, 0.024928167462348938, 0.04855305701494217, -0.011501100845634937, -0.09353850036859512, 0.0500403456389904, 0.0338580347597599, 0.0214716587215662, 0.01848643645644188, 0.012411961331963539, 0.003130473894998431, 0.02012455277144909, 0.06146010383963585, -0.05392841622233391, -0.047045424580574036, -0.04846581816673279, 0.08127424865961075, -0.015460447408258915, 0.036779701709747314, 0.03264966979622841, -0.03882983326911926, -0.013255800120532513, 0.010966968722641468, 0.022243814542889595, 0.08898739516735077, 0.023667654022574425, -0.027219215407967567, 0.026533093303442, -0.004196695052087307, -0.04106024652719498, 0.035164184868335724, 0.10828780382871628, 0.020822860300540924, 0.006143628619611263, 0.009077229537069798, -0.013290139846503735, -0.06843037903308868, -0.04042370989918709, -0.025667916983366013, 0.06239178404211998, 0.06200714781880379, -0.04705413803458214, -0.058617811650037766, 0.05428985506296158, 0.03509224206209183, -0.037353649735450745, 0.06426415592432022, 0.04636762663722038, 0.028161080554127693, -0.06547357887029648, 0.09530395269393921, -0.015115143731236458, -0.013956286013126373, -0.025728629902005196, 0.01757301576435566, 0.0867634117603302, 0.030069947242736816, -0.001304876059293747, -0.06749710440635681, -0.005965326447039843, 0.12701748311519623, 0.06494645029306412, 0.04389122501015663, 0.06246362626552582, 7.632396070065626e-32, -0.02983015403151512, -0.08511082828044891, -0.04417692869901657, 0.005614469759166241, 0.017611980438232422, -0.03271907567977905, -0.1156006008386612, 0.01770266890525818, -0.002131311921402812, -0.07115474343299866, 0.008335236459970474, 0.0783308669924736, -0.07611364126205444, 0.0139249162748456, -0.0841352641582489, -0.039532121270895004, 0.026705171912908554, -0.04057498648762703, -0.03431105986237526, -0.0205345768481493, 0.01005075965076685, 0.019482022151350975, -0.02681867592036724, -0.01130683533847332, 0.010089368559420109, 0.028009040281176567, -0.06705862283706665, 0.008808148093521595, -0.024732742458581924, 0.0523822084069252, 0.014087101444602013, 0.047299161553382874, -0.017857978120446205, 0.0037036684807389975, 0.0829256996512413, 0.08470021188259125, 0.06878697872161865, 0.026417341083288193, 0.04864612594246864, -0.00029022234957665205, 0.03180215507745743, 0.0332353413105011, -0.05180632323026657, -0.020358815789222717, 0.012707732617855072, -0.09655716270208359, -0.020433545112609863, -0.05997374281287193, 0.08286649733781815, -0.04696612060070038, -0.014212244190275669, 0.011336433701217175, 0.00582073675468564, 0.0029426116961985826, -0.004137395415455103, -0.07386405020952225, 0.05500860512256622, -0.0029286628123372793, 0.04948395863175392, -0.01598522625863552, -0.06516992300748825, 0.05062313750386238, -0.052481986582279205, 0.10094140470027924 ]