document
stringlengths
121
3.99k
embedding
listlengths
384
384
Edexcel AS and A level Mathematics Pure Mathematics Year 1 /AS Series Editor: Harry Smith Authors: Greg Attwood, Jack Barraclough, Ian Bettison, Alistair Macpherson, Bronwen/uni00A0Moran, Su Nicholson, Diane Oliver, Joe Petran, Keith Pledger, Harry Smith, Geoff /uni00A0Staley, Robert Ward-Penny, Dave Wilkins11 – 19 PROGRESSION
[ -0.03336913883686066, 0.06650399416685104, 0.0637286826968193, 0.013044171966612339, -0.09497709572315216, -0.015243283472955227, -0.11491992324590683, -0.02863561548292637, -0.0633266493678093, -0.012000124901533127, -0.08581973612308502, -0.03380098193883896, -0.03981565311551094, 0.058994095772504807, 0.004651431925594807, -0.012597125954926014, -0.08284824341535568, 0.020735591650009155, -0.006416339427232742, -0.024981413036584854, -0.027936117723584175, 0.009922544471919537, -0.06473630666732788, 0.015752099454402924, 0.06347917020320892, -0.022016188129782677, -0.009959216229617596, 0.015405949205160141, 0.0211016945540905, -0.0795382633805275, 0.07162736356258392, 0.01790454424917698, 0.11147799342870712, 0.0001651947241043672, -0.09481304883956909, 0.015774929895997047, 0.002477299654856324, 0.03612574189901352, -0.028836268931627274, -0.057243578135967255, -0.04881604015827179, 0.013050573877990246, -0.07012365758419037, 0.07166216522455215, 0.0773015022277832, -0.06928139179944992, -0.051337193697690964, -0.04591934755444527, -0.05236239358782768, -0.060986388474702835, 0.0037255657371133566, 0.02911756932735443, -0.09514743834733963, 0.06478049606084824, -0.08300560712814331, -0.05968974158167839, 0.05058346316218376, 0.02357746660709381, -0.05920541286468506, -0.06029365211725235, -0.07886535674333572, -0.005866901017725468, -0.0323670320212841, 0.028328606858849525, -0.009394900873303413, 0.023204566910862923, 0.03573627769947052, 0.08195532113313675, 0.032446105033159256, 0.05070635303854942, -0.04393612965941429, -0.005485734902322292, -0.04093966633081436, 0.04306679591536522, 0.04962820187211037, 0.08311944454908371, -0.03407031297683716, -0.040351539850234985, 0.10759658366441727, 0.0007161606336012483, 0.0480898842215538, 0.013893643394112587, -0.03824744001030922, 0.012447808869183064, 0.022123202681541443, -0.02548924647271633, 0.04815473034977913, -0.035663776099681854, -0.04838430508971214, 0.013010960072278976, 0.12656493484973907, -0.038143228739500046, -0.016703980043530464, 0.03601992130279541, 0.04732649773359299, 0.015033532865345478, -0.08883730322122574, -0.10316774249076843, 0.08577988296747208, 0.0764169692993164, -0.0040900008752942085, 0.06559660285711288, -0.024193506687879562, 0.05512598156929016, -0.09582493454217911, -0.03492892161011696, 0.07089037448167801, -0.08767352253198624, 0.009715401567518711, -0.08596781641244888, 0.028402477502822876, -0.07842099666595459, 0.02738358825445175, -0.012850023806095123, 0.06579937040805817, -0.04424833133816719, 0.05305372551083565, -0.014096376486122608, 0.05621839314699173, -0.002776580862700939, -0.017707645893096924, 0.005692173261195421, 0.018446218222379684, 0.09253835678100586, 0.005531358532607555, 0.011495662853121758, -0.007608858868479729, 0.07724502682685852, -0.04045984521508217, -0.016140103340148926, 0.054105229675769806, 0.03115791454911232, 0.042396701872348785, 0.016307570040225983, -0.05268661305308342, -0.03897087648510933, 0.05631459876894951, 0.033776018768548965, -0.019315635785460472, 0.09391386061906815, 0.06577903777360916, 0.04821992293000221, -0.025968989357352257, -0.041904617100954056, -0.07086727023124695, -0.020724808797240257, 0.02417961321771145, 0.02586485631763935, -0.001228907029144466, 0.038699302822351456, 0.01962890662252903, -0.07445389032363892, -0.012460963800549507, 0.047594182193279266, -0.00394991971552372, 0.029909642413258553, 0.07180360704660416, -0.004741004668176174, 0.009283088147640228, -0.0022170059382915497, -0.1225944459438324, -0.04187113419175148, -0.04533099755644798, 0.08706812560558319, 0.05563156306743622, -0.12001992017030716, 0.014721821993589401, 0.003754799487069249, -0.11474263668060303, 0.00027262355433776975, 0.009269568137824535, -0.0334496796131134, -0.06735676527023315, 0.022616812959313393, -0.01609640009701252, -0.01849399320781231, 0.09989286214113235, 0.056767553091049194, 0.006745698396116495, -0.042928338050842285, -0.024936528876423836, -0.08883431553840637, 0.015168909914791584, -0.051316019147634506, 0.014170289970934391, 0.0363365113735199, -0.02239842526614666, 0.06280101090669632, -0.0065349978394806385, -0.0018926695920526981, -0.03278503194451332, 0.009898318909108639, -0.08881789445877075, -0.02264726720750332, -0.05511254817247391, 0.0264622513204813, 0.04229371249675751, -0.004673129878938198, -0.04245034605264664, 0.05768512189388275, -0.029551250860095024, 0.048099543899297714, 0.056169543415308, -0.018705978989601135, 0.05040409415960312, -0.15582074224948883, 0.0911090224981308, -0.09640508890151978, -0.01805403269827366, 0.021169880405068398, -0.05102244392037392, -0.08560652285814285, -0.007924223318696022, -0.07149598747491837, -0.02433682791888714, -0.012348931282758713, 0.022485313937067986, -0.014772942289710045, -0.04600349813699722, -0.03183776140213013, 0.04853089898824692, 0.05318666622042656, 0.06850938498973846, -2.7863769318387727e-33, -0.05947592854499817, 0.0025620257947593927, -0.08635429292917252, -0.001822443911805749, 0.01782630942761898, 0.005243205931037664, -0.0378694087266922, -0.008002913556993008, 0.09634296596050262, 0.029561810195446014, 0.01674458011984825, 0.054908350110054016, 0.03465265780687332, 0.0412580668926239, -0.07801186293363571, -0.08578294515609741, -0.1501738727092743, 0.0422632098197937, -0.01593286357820034, -0.08267267048358917, -0.0690629854798317, 0.023932093754410744, -0.030415935441851616, -0.02723657712340355, -0.0016115965554490685, 0.02030026540160179, 0.016589578241109848, 0.07667302340269089, -0.06325361132621765, 0.07069548219442368, -0.001289432868361473, -0.06715758889913559, 0.000836844788864255, 0.04479791969060898, -0.08537901937961578, 0.03230264037847519, 0.0791788324713707, -0.07539331167936325, -0.062108974903821945, -0.011865988373756409, 0.04193475469946861, -0.042574960738420486, 0.024772154167294502, -0.05757302790880203, 0.05301082134246826, 0.06803672760725021, -0.017581569030880928, 0.08955132216215134, -0.027654634788632393, 0.007700539659708738, -0.10239279270172119, 0.09694798290729523, -0.003147023729979992, -0.010930005460977554, 0.02420753985643387, 0.02955188974738121, -0.039429277181625366, -0.011724425479769707, 0.009134535677731037, -0.009330174885690212, -0.05215127021074295, -0.028863538056612015, 0.0467342808842659, 0.04070490226149559, 0.08582364022731781, 0.03476772457361221, -0.047006528824567795, -0.0429961197078228, -0.002980724908411503, -0.01573079079389572, 0.013077553361654282, -0.003517911769449711, -0.11049264669418335, -0.1319512575864792, -0.021319178864359856, -0.03293623775243759, 0.024244725704193115, 0.005064776167273521, -0.044493723660707474, 0.010805854573845863, -0.03786711022257805, -0.029493654146790504, 0.04007545858621597, 0.0810803696513176, 0.04084475338459015, 0.006699732970446348, 0.09047569334506989, 0.007945993915200233, -0.06090029329061508, 0.06816446781158447, 0.03028530813753605, -0.06428275257349014, -0.014916921965777874, -0.004809353966265917, 0.020346783101558685, 9.811003227139516e-32, -0.04323093965649605, 0.031207680702209473, -0.08056933432817459, -0.00008944700675783679, 0.06656002253293991, 0.07017149031162262, 0.036527104675769806, -0.0334068164229393, 0.03151514753699303, 0.007334255613386631, 0.04442734271287918, -0.035288430750370026, -0.0318467952311039, 0.007563494145870209, 0.01900760643184185, 0.04923078790307045, -0.04111557826399803, 0.01100613921880722, -0.00662855664268136, 0.027157891541719437, 0.011209872551262379, 0.05485932156443596, -0.029557034373283386, -0.0044672125950455666, -0.023313313722610474, 0.027583857998251915, -0.020261133089661598, -0.025812407955527306, -0.011933678761124611, 0.03216150775551796, -0.0024420435074716806, -0.006210526451468468, 0.023102538660168648, -0.02152712643146515, -0.01680789142847061, 0.07351034879684448, 0.03799882158637047, 0.028039593249559402, -0.03587900102138519, -0.026390204206109047, -0.019808193668723106, -0.1087745800614357, 0.06377632915973663, -0.015307330526411533, 0.07312050461769104, 0.02818765863776207, -0.003689306555315852, 0.04361303150653839, 0.02603779546916485, -0.024831781163811684, -0.02062988467514515, -0.025229601189494133, -0.013872956857085228, 0.004171317908912897, 0.07868484407663345, -0.006786867044866085, -0.04533401131629944, 0.011305999010801315, -0.1127791628241539, 0.05228410288691521, 0.09482375532388687, 0.03608499467372894, -0.047397494316101074, 0.013440298847854137 ]
Edexcel AS and A level Mathematics Pure Mathematics Year 1 /AS Series Editor: Harry Smith Authors: Greg Attwood, Jack Barraclough, Ian Bettison, Alistair Macpherson, Bronwen/uni00A0Moran, Su Nicholson, Diane Oliver, Joe Petran, Keith Pledger, Harry Smith, Geoff /uni00A0Staley, Robert Ward-Penny, Dave Wilkins11 – 19 PROGRESSION
[ -0.03336913883686066, 0.06650399416685104, 0.0637286826968193, 0.013044171966612339, -0.09497709572315216, -0.015243283472955227, -0.11491992324590683, -0.02863561548292637, -0.0633266493678093, -0.012000124901533127, -0.08581973612308502, -0.03380098193883896, -0.03981565311551094, 0.058994095772504807, 0.004651431925594807, -0.012597125954926014, -0.08284824341535568, 0.020735591650009155, -0.006416339427232742, -0.024981413036584854, -0.027936117723584175, 0.009922544471919537, -0.06473630666732788, 0.015752099454402924, 0.06347917020320892, -0.022016188129782677, -0.009959216229617596, 0.015405949205160141, 0.0211016945540905, -0.0795382633805275, 0.07162736356258392, 0.01790454424917698, 0.11147799342870712, 0.0001651947241043672, -0.09481304883956909, 0.015774929895997047, 0.002477299654856324, 0.03612574189901352, -0.028836268931627274, -0.057243578135967255, -0.04881604015827179, 0.013050573877990246, -0.07012365758419037, 0.07166216522455215, 0.0773015022277832, -0.06928139179944992, -0.051337193697690964, -0.04591934755444527, -0.05236239358782768, -0.060986388474702835, 0.0037255657371133566, 0.02911756932735443, -0.09514743834733963, 0.06478049606084824, -0.08300560712814331, -0.05968974158167839, 0.05058346316218376, 0.02357746660709381, -0.05920541286468506, -0.06029365211725235, -0.07886535674333572, -0.005866901017725468, -0.0323670320212841, 0.028328606858849525, -0.009394900873303413, 0.023204566910862923, 0.03573627769947052, 0.08195532113313675, 0.032446105033159256, 0.05070635303854942, -0.04393612965941429, -0.005485734902322292, -0.04093966633081436, 0.04306679591536522, 0.04962820187211037, 0.08311944454908371, -0.03407031297683716, -0.040351539850234985, 0.10759658366441727, 0.0007161606336012483, 0.0480898842215538, 0.013893643394112587, -0.03824744001030922, 0.012447808869183064, 0.022123202681541443, -0.02548924647271633, 0.04815473034977913, -0.035663776099681854, -0.04838430508971214, 0.013010960072278976, 0.12656493484973907, -0.038143228739500046, -0.016703980043530464, 0.03601992130279541, 0.04732649773359299, 0.015033532865345478, -0.08883730322122574, -0.10316774249076843, 0.08577988296747208, 0.0764169692993164, -0.0040900008752942085, 0.06559660285711288, -0.024193506687879562, 0.05512598156929016, -0.09582493454217911, -0.03492892161011696, 0.07089037448167801, -0.08767352253198624, 0.009715401567518711, -0.08596781641244888, 0.028402477502822876, -0.07842099666595459, 0.02738358825445175, -0.012850023806095123, 0.06579937040805817, -0.04424833133816719, 0.05305372551083565, -0.014096376486122608, 0.05621839314699173, -0.002776580862700939, -0.017707645893096924, 0.005692173261195421, 0.018446218222379684, 0.09253835678100586, 0.005531358532607555, 0.011495662853121758, -0.007608858868479729, 0.07724502682685852, -0.04045984521508217, -0.016140103340148926, 0.054105229675769806, 0.03115791454911232, 0.042396701872348785, 0.016307570040225983, -0.05268661305308342, -0.03897087648510933, 0.05631459876894951, 0.033776018768548965, -0.019315635785460472, 0.09391386061906815, 0.06577903777360916, 0.04821992293000221, -0.025968989357352257, -0.041904617100954056, -0.07086727023124695, -0.020724808797240257, 0.02417961321771145, 0.02586485631763935, -0.001228907029144466, 0.038699302822351456, 0.01962890662252903, -0.07445389032363892, -0.012460963800549507, 0.047594182193279266, -0.00394991971552372, 0.029909642413258553, 0.07180360704660416, -0.004741004668176174, 0.009283088147640228, -0.0022170059382915497, -0.1225944459438324, -0.04187113419175148, -0.04533099755644798, 0.08706812560558319, 0.05563156306743622, -0.12001992017030716, 0.014721821993589401, 0.003754799487069249, -0.11474263668060303, 0.00027262355433776975, 0.009269568137824535, -0.0334496796131134, -0.06735676527023315, 0.022616812959313393, -0.01609640009701252, -0.01849399320781231, 0.09989286214113235, 0.056767553091049194, 0.006745698396116495, -0.042928338050842285, -0.024936528876423836, -0.08883431553840637, 0.015168909914791584, -0.051316019147634506, 0.014170289970934391, 0.0363365113735199, -0.02239842526614666, 0.06280101090669632, -0.0065349978394806385, -0.0018926695920526981, -0.03278503194451332, 0.009898318909108639, -0.08881789445877075, -0.02264726720750332, -0.05511254817247391, 0.0264622513204813, 0.04229371249675751, -0.004673129878938198, -0.04245034605264664, 0.05768512189388275, -0.029551250860095024, 0.048099543899297714, 0.056169543415308, -0.018705978989601135, 0.05040409415960312, -0.15582074224948883, 0.0911090224981308, -0.09640508890151978, -0.01805403269827366, 0.021169880405068398, -0.05102244392037392, -0.08560652285814285, -0.007924223318696022, -0.07149598747491837, -0.02433682791888714, -0.012348931282758713, 0.022485313937067986, -0.014772942289710045, -0.04600349813699722, -0.03183776140213013, 0.04853089898824692, 0.05318666622042656, 0.06850938498973846, -2.7863769318387727e-33, -0.05947592854499817, 0.0025620257947593927, -0.08635429292917252, -0.001822443911805749, 0.01782630942761898, 0.005243205931037664, -0.0378694087266922, -0.008002913556993008, 0.09634296596050262, 0.029561810195446014, 0.01674458011984825, 0.054908350110054016, 0.03465265780687332, 0.0412580668926239, -0.07801186293363571, -0.08578294515609741, -0.1501738727092743, 0.0422632098197937, -0.01593286357820034, -0.08267267048358917, -0.0690629854798317, 0.023932093754410744, -0.030415935441851616, -0.02723657712340355, -0.0016115965554490685, 0.02030026540160179, 0.016589578241109848, 0.07667302340269089, -0.06325361132621765, 0.07069548219442368, -0.001289432868361473, -0.06715758889913559, 0.000836844788864255, 0.04479791969060898, -0.08537901937961578, 0.03230264037847519, 0.0791788324713707, -0.07539331167936325, -0.062108974903821945, -0.011865988373756409, 0.04193475469946861, -0.042574960738420486, 0.024772154167294502, -0.05757302790880203, 0.05301082134246826, 0.06803672760725021, -0.017581569030880928, 0.08955132216215134, -0.027654634788632393, 0.007700539659708738, -0.10239279270172119, 0.09694798290729523, -0.003147023729979992, -0.010930005460977554, 0.02420753985643387, 0.02955188974738121, -0.039429277181625366, -0.011724425479769707, 0.009134535677731037, -0.009330174885690212, -0.05215127021074295, -0.028863538056612015, 0.0467342808842659, 0.04070490226149559, 0.08582364022731781, 0.03476772457361221, -0.047006528824567795, -0.0429961197078228, -0.002980724908411503, -0.01573079079389572, 0.013077553361654282, -0.003517911769449711, -0.11049264669418335, -0.1319512575864792, -0.021319178864359856, -0.03293623775243759, 0.024244725704193115, 0.005064776167273521, -0.044493723660707474, 0.010805854573845863, -0.03786711022257805, -0.029493654146790504, 0.04007545858621597, 0.0810803696513176, 0.04084475338459015, 0.006699732970446348, 0.09047569334506989, 0.007945993915200233, -0.06090029329061508, 0.06816446781158447, 0.03028530813753605, -0.06428275257349014, -0.014916921965777874, -0.004809353966265917, 0.020346783101558685, 9.811003227139516e-32, -0.04323093965649605, 0.031207680702209473, -0.08056933432817459, -0.00008944700675783679, 0.06656002253293991, 0.07017149031162262, 0.036527104675769806, -0.0334068164229393, 0.03151514753699303, 0.007334255613386631, 0.04442734271287918, -0.035288430750370026, -0.0318467952311039, 0.007563494145870209, 0.01900760643184185, 0.04923078790307045, -0.04111557826399803, 0.01100613921880722, -0.00662855664268136, 0.027157891541719437, 0.011209872551262379, 0.05485932156443596, -0.029557034373283386, -0.0044672125950455666, -0.023313313722610474, 0.027583857998251915, -0.020261133089661598, -0.025812407955527306, -0.011933678761124611, 0.03216150775551796, -0.0024420435074716806, -0.006210526451468468, 0.023102538660168648, -0.02152712643146515, -0.01680789142847061, 0.07351034879684448, 0.03799882158637047, 0.028039593249559402, -0.03587900102138519, -0.026390204206109047, -0.019808193668723106, -0.1087745800614357, 0.06377632915973663, -0.015307330526411533, 0.07312050461769104, 0.02818765863776207, -0.003689306555315852, 0.04361303150653839, 0.02603779546916485, -0.024831781163811684, -0.02062988467514515, -0.025229601189494133, -0.013872956857085228, 0.004171317908912897, 0.07868484407663345, -0.006786867044866085, -0.04533401131629944, 0.011305999010801315, -0.1127791628241539, 0.05228410288691521, 0.09482375532388687, 0.03608499467372894, -0.047397494316101074, 0.013440298847854137 ]
iiContents Overarching themes iv Extra online c ontent vi 1 Algebraic e xpressions 1 1.1 Index law s 2 1.2 Expanding brack ets 4 1.3 Factorising 6 1.4 Negative and fractional indic es 9 1.5 Surds 12 1.6 Rationalising denominators 13 Mixed ex ercise 1 15 2 Quadratics 18 2.1 Solving quadratic equations 19 2.2 Completing the squar e 22 2.3 Functions 25 2.4 Quadratic graphs 27 2.5 The discriminant 30 2.6 Modelling with quadratics 32 Mixed ex ercise 2 35 3 Equations and inequalities 38 3.1 Linear simultaneous equations 39 3.2 Quadratic simultaneous equations 41 3.3 Simultaneous equations on graphs 42 3.4 Linear inequalities 46 3.5 Quadratic inequalities 48 3.6 Inequalities on graphs 51 3.7 Regions 53 Mixed ex ercise 3 56 4 Graphs and trans formations 59 4.1 Cubic graphs 60 4.2 Quartic graphs 64 4.3 Reciprocal gr aphs 66 4.4 Points of int ersection 68 4.5 Translating gr aphs 71 Contents 4.6 Stretching graphs 75 4.7 Trans forming functions 79 Mixed ex ercise 4 82 Review ex ercise 1 85 5 Straight line gr aphs 89 5.1 y = mx + c 90 5.2 Equations of st raight lines 93 5.3 Parall el and perpendicular lines 97 5.4 Length and area 100 5.5 Modelling with straight lines 103 Mixed ex ercise 5 108 6 Circles 113 6.1 Midpoints and perpendicular bisectors 114 6.2 Equation of a cir cle 117 6.3 Intersections of st raight lines and circles 121 6.4 Use tangent and chord pr operties 123 6.5 Circles and t riangles 128 Mixed ex ercise 6 132 7 Algebraic methods 137 7.1 Algebraic fr actions 138 7.2 Dividing polynomials 139 7.3 The factor theorem 143 7.4 Mathematical proof 146 7.5 Methods of proo f 150 Mixed ex ercise 7 154 8 The binomial expansion 158 8.1 Pascal ’s triangle 159 8.2 Factorial notation 161 8.3 The binomial expansion 163 8.4 Solving binomial problems 165
[ -0.04587770253419876, 0.05886335298418999, 0.004491395317018032, -0.0328848622739315, 0.05864277854561806, -0.07106245309114456, -0.051982954144477844, 0.06517630815505981, -0.13637033104896545, 0.021316474303603172, 0.03795776143670082, -0.04442531242966652, 0.030444122850894928, 0.01262225303798914, -0.04015053063631058, 0.021946460008621216, -0.01325657032430172, 0.08812645077705383, -0.030483566224575043, -0.06723654270172119, 0.007445794530212879, -0.011411849409341812, -0.07661040872335434, -0.01756015047430992, 0.05649947002530098, -0.04842269420623779, 0.034893304109573364, 0.0609990730881691, 0.01524603646248579, -0.07718601077795029, 0.024323198944330215, 0.0777951031923294, 0.15447360277175903, 0.03681764379143715, -0.04492190480232239, -0.05514458939433098, 0.0992051437497139, 0.04703432694077492, -0.03154910355806351, 0.02373882383108139, -0.03896920382976532, 0.01328359730541706, -0.027178671211004257, 0.05244726315140724, 0.07780677825212479, -0.07876717299222946, -0.021858487278223038, -0.03963248431682587, -0.09094985574483871, -0.015994055196642876, -0.0046511017717421055, -0.03183234855532646, -0.11674840748310089, 0.047885797917842865, -0.030176814645528793, -0.03135516494512558, -0.03832686319947243, -0.0189603753387928, -0.0662032961845398, 0.020540839061141014, 0.026918988674879074, -0.02038589119911194, 0.02901977300643921, 0.07430344820022583, 0.009440682828426361, 0.029622400179505348, 0.08452539891004562, 0.022804751992225647, -0.016427429392933846, 0.10833840072154999, -0.050889551639556885, 0.010864319279789925, -0.07875269651412964, 0.072982057929039, 0.03928345441818237, -0.030413605272769928, -0.050683289766311646, -0.014454636722803116, -0.050190944224596024, -0.060023996978998184, -0.016449088230729103, -0.037618156522512436, 0.059137992560863495, 0.017451681196689606, -0.012264491058886051, -0.055149007588624954, 0.08387143164873123, 0.021706221625208855, 0.035885248333215714, 0.01684240810573101, 0.012448583729565144, -0.008506480604410172, 0.023457488045096397, -0.09311680495738983, -0.03130929544568062, -0.004092910327017307, -0.01789214089512825, -0.11796947568655014, 0.04524734988808632, 0.11740800738334656, 0.008967871777713299, -0.023265782743692398, 0.050371814519166946, 0.013689511455595493, -0.03896902874112129, -0.07775389403104782, -0.0058567277155816555, -0.04160628467798233, 0.05004856735467911, -0.0680709257721901, -0.09325707703828812, -0.0005547126056626439, -0.023552455008029938, -0.028807472437620163, 0.03855929896235466, -0.11231481283903122, 0.12572991847991943, -0.018831094726920128, 0.08288327604532242, -0.014220157638192177, 0.043577637523412704, 0.024865565821528435, 0.03739510476589203, -0.012909431010484695, 0.04437506943941116, -0.04540128633379936, -0.07363544404506683, 0.02759787067770958, -0.02665005251765251, -0.02346339076757431, 0.049966663122177124, 0.05197341740131378, 0.03148600831627846, -0.030340218916535378, -0.05616261437535286, -0.08669774979352951, -0.008926409296691418, 0.13895180821418762, 0.03455169126391411, 0.06186820939183235, 0.013875891454517841, 0.12260972708463669, 0.09350989758968353, -0.026297632604837418, -0.11900275200605392, -0.025693640112876892, -0.02081782929599285, -0.026180991902947426, 0.05069952830672264, -0.0024244196247309446, -0.006102369166910648, -0.0635986477136612, 0.04623527079820633, 0.056289128959178925, 0.03634559363126755, 0.010417974554002285, 0.07773242145776749, -0.04517738148570061, -0.0002246892254333943, 0.04896790161728859, -0.038842152804136276, 0.003629087470471859, -0.012868908233940601, 0.10930848121643066, -0.015662075951695442, -0.11160644888877869, 0.019765306264162064, 0.05277584493160248, -0.03308830037713051, 0.003441514912992716, 0.060153499245643616, -0.007457762025296688, 0.01295776292681694, 0.07185829430818558, 0.009448571130633354, -0.01940307579934597, 0.06432772427797318, 0.012641966342926025, -0.02101978100836277, 0.01371054444462061, 0.0763704851269722, -0.02430162951350212, -0.03044079802930355, 0.058981090784072876, -0.005359061062335968, -0.018593156710267067, 0.009558470919728279, 0.04228128120303154, 0.01842414028942585, -0.08866041898727417, -0.017139866948127747, -0.05591066926717758, -0.04490770399570465, 0.07045283913612366, -0.07752528786659241, -0.11588422954082489, 0.03315313532948494, 0.015297284349799156, -0.09677330404520035, 0.1032436266541481, -0.030106665566563606, 0.003120665205642581, 0.04696133732795715, 0.018057404085993767, -0.014956718310713768, -0.019840002059936523, -0.06132609769701958, -0.022755200043320656, -0.04644618183374405, 0.05882929265499115, -0.008376491256058216, -0.04797128215432167, -0.017019221559166908, -0.0906599685549736, 0.03790006414055824, -0.00620553782209754, 0.02114819549024105, -0.028709448873996735, -0.08228772133588791, -0.03760671988129616, 0.0416107103228569, -0.03373990207910538, 0.06056085601449013, 2.6918479740468645e-32, -0.05241548269987106, -0.0886208638548851, -0.1177949607372284, 0.07375747710466385, -0.007697864901274443, -0.039868924766778946, 0.02881450392305851, -0.004682576283812523, 0.04997146502137184, 0.0007359904702752829, 0.036829810589551926, 0.02715986594557762, 0.01779339462518692, 0.022677315399050713, -0.05188966542482376, -0.0005349344573915005, -0.006524225231260061, 0.03727421537041664, 0.015898065641522408, 0.0728144645690918, 0.007793158758431673, 0.0817110538482666, 0.015677694231271744, -0.015599258244037628, -0.035638414323329926, 0.08891259133815765, -0.040773674845695496, -0.10394738614559174, -0.07934942096471786, 0.0649714544415474, -0.019749116152524948, -0.021956585347652435, -0.020536448806524277, 0.03251578286290169, -0.04854551702737808, -0.02307622693479061, 0.010874629952013493, -0.043210215866565704, -0.013128921389579773, 0.05914819985628128, 0.04948816075921059, 0.027550475671887398, 0.07367950677871704, 0.0005530361668206751, 0.07820110768079758, -0.04679021239280701, 0.05194203928112984, 0.02290436625480652, -0.012530382722616196, 0.013470933772623539, -0.06579434871673584, 0.018798183649778366, 0.019559072330594063, 0.0371769480407238, 0.02559063397347927, -0.02393052726984024, 0.04107338935136795, -0.02699189819395542, -0.0032611265778541565, 0.03284269943833351, -0.05111970379948616, -0.03262863680720329, -0.04772798344492912, 0.08769656717777252, -0.012116145342588425, -0.067836232483387, -0.03737970069050789, 0.006317612715065479, 0.004008420743048191, 0.03709280863404274, 0.026202980428934097, 0.053672563284635544, -0.05520159751176834, -0.06117885932326317, -0.07944245636463165, -0.029750382527709007, 0.062164388597011566, 0.05473023280501366, 0.004281812347471714, -0.021050503477454185, -0.09914233535528183, 0.02442150004208088, 0.02090461738407612, -0.052362021058797836, 0.0009358221432194114, -0.0040595512837171555, 0.04046294093132019, 0.07271140813827515, -0.00988854467868805, -0.01859181374311447, -0.019837044179439545, -0.01557493768632412, -0.020160431042313576, 0.007296545431017876, 0.00579999340698123, 7.164122613989007e-32, -0.011047374457120895, 0.021943341940641403, -0.05114409700036049, 0.07265076041221619, -0.000044346092181513086, -0.0008732072310522199, 0.04799771308898926, -0.013833470642566681, 0.009202607907354832, -0.02177286334335804, 0.10692160576581955, 0.04912129417061806, 0.038110096007585526, 0.056879155337810516, -0.03284703567624092, 0.01888175494968891, 0.014863033778965473, 0.10711297392845154, -0.06260593980550766, 0.01953052543103695, -0.021296370774507523, 0.06788598001003265, -0.0410517081618309, -0.030784009024500847, 0.03163784369826317, 0.04760054871439934, -0.015593339689075947, -0.015329576097428799, 0.02588268555700779, -0.03054201602935791, 0.04254258796572685, 0.05768487602472305, -0.041294779628515244, -0.06933314353227615, -0.02101362869143486, 0.0863417237997055, -0.020082611590623856, 0.08621503412723541, -0.05466308817267418, 0.025188008323311806, -0.027070241048932076, -0.07519817352294922, 0.021219713613390923, 0.044465936720371246, 0.04311688616871834, -0.043654296547174454, 0.03376909717917442, -0.03319994732737541, 0.06653057038784027, 0.022079454734921455, -0.05758308246731758, -0.05058729648590088, -0.072236567735672, 0.0013795208651572466, 0.08442208170890808, -0.05746118351817131, -0.05684658885002136, 0.048944223672151566, 0.025690382346510887, -0.026998501271009445, 0.043778836727142334, 0.07759258896112442, -0.06801765412092209, -0.01995903067290783 ]
iiiContents 8.5 Binomial estimation 167 Mixed ex ercise 8 169 9 Trigonometric r atios 173 9.1 The cosine rul e 174 9.2 The sine rule 179 9.3 Areas o f triangles 185 9.4 Solving triangle pr oblems 187 9.5 Graphs of sine, c osine and tangent 192 9.6 Trans forming trigonometric graphs 194 Mixed ex ercise 9 198 10 Trigonometric identities and equations 202 10.1 Angles in all four quadr ants 203 10.2 Exact values o f trigonometrical ratios 208 10.3 Trigonomet ric identities 209 10.4 Simple trig onometric equations 213 10.5 Harder trig onometric equations 217 10.6 Equations and identities 219 Mixed ex ercise 10 222 Review ex ercise 2 226 11 Vectors 230 11.1 Vectors 231 11.2 Representing v ectors 235 11.3 Magnitude and direction 239 11.4 Position v ectors 242 11.5 Solving geometric pr oblems 244 11.6 Modelling with vectors 248 Mixed ex ercise 11 251 12 Differentiation 255 12.1 Gradients of cur ves 256 12.2 Finding the derivative 259 12.3 Differentiating xn 262 12.4 Differentiating quadr atics 26412.5 Differentiating functions with t wo or more terms 266 12.6 Gradients, tang ents and normal 268 12.7 Increasing and decr easing functions 270 12.8 Second order deriv atives 271 12.9 Stationary points 273 12.10 Sketching gr adient functions 277 12.11 Modelling with differentiation 279 Mixed ex ercise 12 282 13 Integration 287 13.1 Integr ating xn 288 13.2 Indefinite integr als 290 13.3 Finding functions 293 13.4 Definite integr als 295 13.5 Areas under cur ves 297 13.6 Areas under the x-axis 300 13.7 Areas bet ween curves and lines 302 Mixed ex ercise 13 306 14 Exponentials and logarithms 311 14.1 Exponential functions 312 14.2 y = ex 314 14.3 Exponential modelling 317 14.4 Logarithms 319 14.5 Law s of logarithms 321 14.6 Solving equations using logarithms 324 14.7 Working with natur al logarithms 326 14.8 Logarithms and non-linear data 328 Mixed ex ercise 14 334 Review ex ercise 3 338 Practic e exam paper 342 Answ ers 345 Index 399
[ -0.008981455117464066, 0.044350121170282364, -0.0005638255388475955, 0.006036241538822651, -0.04708579555153847, -0.04335619509220123, -0.023125313222408295, 0.0037964177317917347, -0.0755218043923378, -0.02962755225598812, 0.04980447143316269, -0.05688834190368652, -0.04616783186793327, 0.059873055666685104, 0.04461919888854027, 0.03873879462480545, -0.016911735758185387, 0.03095100075006485, 0.004605743568390608, -0.0907306969165802, -0.018681248649954796, -0.033709701150655746, 0.03735131397843361, -0.08571986854076385, 0.015195919200778008, 0.05045587942004204, 0.011527260765433311, 0.034753598272800446, -0.0013671745546162128, 0.018671289086341858, 0.015959693118929863, 0.06733540445566177, 0.06274273246526718, -0.07206027954816818, -0.02000609040260315, -0.09163984656333923, -0.026250528171658516, 0.013739614747464657, 0.04097476974129677, 0.07923601567745209, -0.02144515886902809, 0.06431929022073746, 0.007131035439670086, 0.056296925991773605, 0.005879227537661791, -0.007880364544689655, -0.04260189086198807, -0.013974917121231556, 0.0041568707674741745, 0.06024773791432381, 0.03679313138127327, 0.049578309059143066, -0.17063315212726593, -0.02479337900876999, 0.027898892760276794, -0.012131843715906143, -0.0465543270111084, -0.05627572163939476, -0.09891510754823685, -0.05114027485251427, 0.022198200225830078, 0.01583203300833702, -0.000030200490073184483, 0.026346351951360703, 0.002391509246081114, 0.04678938165307045, 0.03300276771187782, -0.06258876621723175, 0.010984901338815689, 0.03022921085357666, -0.08735182136297226, 0.05333821475505829, -0.037486396729946136, 0.020341716706752777, -0.02687332034111023, 0.0014027805300429463, -0.04860685393214226, 0.036256615072488785, -0.05245377868413925, -0.09031933546066284, -0.12091473489999771, 0.03678543493151665, 0.023899156600236893, -0.02562960796058178, 0.04966242238879204, 0.08379779756069183, 0.07199225574731827, 0.17676153779029846, 0.04368804767727852, -0.014867797493934631, 0.03769073262810707, -0.06662698090076447, -0.04276487976312637, -0.016017049551010132, -0.002096223644912243, 0.09903940558433533, -0.006674441043287516, -0.0926181897521019, -0.0019107984844595194, 0.11494167894124985, -0.02601550705730915, -0.030301792547106743, 0.029622208327054977, 0.030997274443507195, -0.07819755375385284, 0.01989930123090744, 0.08006196469068527, -0.03367527946829796, 0.030994590371847153, -0.039485521614551544, -0.09987173974514008, 0.036876413971185684, 0.05349583923816681, 0.03246116265654564, -0.03426169604063034, -0.07439500838518143, 0.09857427328824997, 0.02705060876905918, 0.09755557775497437, 0.06048297509551048, 0.007533743511885405, -0.04268748313188553, 0.010382222943007946, 0.048348166048526764, 0.01190288458019495, -0.051227957010269165, -0.05843409523367882, -0.032567817717790604, -0.06378181278705597, 0.054090406745672226, 0.08441084623336792, 0.015322351828217506, 0.0179911982268095, -0.059803180396556854, -0.059874214231967926, -0.047950949519872665, 0.07749722898006439, 0.11264655739068985, -0.013847914524376392, 0.03878270834684372, -0.00020463604596443474, 0.04831729829311371, 0.060104724019765854, 0.019569573923945427, -0.03158031776547432, -0.03263121470808983, -0.08875005692243576, 0.032659661024808884, -0.04263477399945259, 0.038515836000442505, 0.040568143129348755, 0.05920872464776039, 0.005286280997097492, 0.11335717141628265, -0.02263355627655983, 0.07702198624610901, 0.008570096455514431, -0.02224496752023697, 0.05501497536897659, -0.005590035114437342, -0.005793755874037743, 0.033288732171058655, 0.04391296207904816, 0.060676004737615585, 0.01128992810845375, -0.03313298523426056, 0.039029184728860855, 0.012984024360775948, 0.0008200151496566832, -0.02144072949886322, 0.04562520235776901, 0.02444368042051792, -0.0024520456790924072, 0.01397097297012806, -0.004146779887378216, 0.001262432779185474, 0.1306314766407013, 0.04450279101729393, 0.009163297712802887, 0.01543730590492487, -0.004273469094187021, -0.031110314652323723, -0.007516044192016125, 0.040987465530633926, -0.016445200890302658, -0.04013670235872269, -0.06844396144151688, 0.05225982144474983, -0.010169723071157932, -0.01320390123873949, 0.042253490537405014, -0.03912078216671944, -0.02322397194802761, 0.014752950519323349, -0.09438613802194595, -0.07442621886730194, 0.026991019025444984, -0.01782792992889881, -0.05069855600595474, 0.047796186059713364, 0.043119680136442184, -0.05021870881319046, 0.009241556748747826, -0.0007403453928418458, 0.033376678824424744, 0.020678305998444557, 0.031430285423994064, -0.07802574336528778, -0.05331725254654884, 0.00376264750957489, -0.02354312688112259, -0.14156083762645721, 0.0005965960444882512, -0.03159293532371521, -0.010823395103216171, -0.042197488248348236, 0.013301251456141472, -0.06163651496171951, -0.04460570588707924, 0.02200264111161232, -0.02163686975836754, -0.08430630713701248, -0.00840936228632927, 1.310664887033724e-32, -0.11692920327186584, -0.030584905296564102, -0.09121321886777878, -0.0204591266810894, 0.004125443287193775, -0.022564545273780823, 0.11625669151544571, 0.0009431121870875359, 0.08987400680780411, -0.004569002892822027, 0.06712193042039871, 0.03477011248469353, -0.006768278311938047, -0.09341101348400116, 0.018054110929369926, -0.007524969056248665, 0.003951126243919134, 0.0012845287565141916, -0.01162766944617033, -0.03876559063792229, -0.0028441143222153187, 0.08471200615167618, 0.06878334283828735, 0.014121274463832378, -0.0465356707572937, 0.042327359318733215, 0.05020098388195038, -0.11798606812953949, -0.1501525640487671, -0.03199579194188118, -0.007299718447029591, -0.007269751280546188, 0.05657526105642319, 0.05427397042512894, -0.04557511955499649, -0.09654051810503006, 0.04103083536028862, 0.025986984372138977, -0.03970777615904808, -0.06744148582220078, 0.033260367810726166, 0.002082968130707741, 0.042895544320344925, 0.011189596727490425, 0.024091502651572227, -0.005623709876090288, 0.0035137978848069906, -0.040970996022224426, -0.03340372070670128, 0.004018967505544424, -0.013160218484699726, -0.03128720074892044, -0.011295359581708908, -0.018929999321699142, 0.09278006106615067, 0.040600813925266266, -0.04181462526321411, -0.04091596603393555, 0.03203515708446503, 0.013993220403790474, -0.03194953128695488, 0.00893188826739788, -0.11371342092752457, -0.04278141260147095, 0.036711499094963074, -0.06360315531492233, -0.04970938712358475, 0.011640127748250961, 0.02684236876666546, 0.06074581667780876, 0.015293112024664879, 0.033892322331666946, -0.021522466093301773, -0.037874963134527206, -0.10117213428020477, 0.0018107584910467267, -0.008475768379867077, 0.045736633241176605, -0.013208366930484772, 0.008372091688215733, -0.11794497072696686, 0.003096070373430848, 0.07737884670495987, -0.027159152552485466, -0.017151879146695137, -0.012553652748465538, -0.013864374719560146, 0.017355963587760925, 0.05750548839569092, 0.04931959882378578, -0.043897274881601334, 0.0018399808323010802, 0.011013716459274292, -0.06033381447196007, 0.03566892817616463, 9.986684972100134e-32, -0.007382337469607592, 0.008784390985965729, -0.0634760707616806, 0.0605434887111187, -0.0038882605731487274, 0.01935770735144615, 0.03874001279473305, -0.030033981427550316, 0.037265416234731674, -0.11107098311185837, 0.07609868794679642, 0.01465494092553854, 0.005105059593915939, -0.03736408054828644, -0.023319462314248085, 0.003732173703610897, -0.030241699889302254, 0.10039252042770386, -0.06575173139572144, -0.05841381102800369, -0.03386755287647247, 0.0479595847427845, 0.06203830987215042, -0.055346887558698654, 0.03254833072423935, 0.07297758758068085, -0.08128976076841354, -0.04403289034962654, -0.034587837755680084, -0.04393503814935684, 0.04110103100538254, -0.022215966135263443, 0.04262477532029152, -0.0024895628448575735, -0.000860617496073246, 0.014640338718891144, -0.013433022424578667, 0.09899817407131195, -0.014234717935323715, 0.059817519038915634, 0.024693189188838005, -0.07304873317480087, 0.005466153845191002, 0.044818758964538574, 0.08443140238523483, -0.05157899856567383, -0.028106842190027237, -0.1189684122800827, 0.08103648573160172, -0.026621270924806595, -0.043647658079862595, -0.005651562009006739, -0.037699997425079346, -0.02865104004740715, 0.06548725813627243, -0.01668138988316059, -0.042412806302309036, -0.05478433519601822, -0.025604907423257828, 0.0031054941937327385, 0.019857775419950485, 0.10185400396585464, -0.08275505155324936, -0.0030981304589658976 ]
ivOverarching themes The following three overarching themes have been fully integrated throughout the Pearson Edexcel AS and A level Mathematics series, so they can be applied alongside your learning and practice. 1. Mathematical argument, language and proof β€’ Rigorous and consistent approach throughoutβ€’ Notation boxes explain key mathematical language and symbolsβ€’ Dedicated sections on mathematical proof explain key principles and strategiesβ€’ Opportunities to critique arguments and justify methods 2. Mathematical problem solving β€’ Hundreds of problem-solving questions, fully integrated into the main exercises β€’ Problem-solving boxes provide tips and strategiesβ€’ Structured and unstructured questions to build confi denceβ€’ Challenge boxes provide extra stretch 3. Mathematical modelling β€’ Dedicated modelling sections in relevant topics provide plenty of practice where you need it β€’ Examples and exercises include qualitative questions that allow you to interpret answers in the context of the model β€’ Dedicated chapter in Statistics & Mechanics Year 1/AS explains the principles of modelling in mechanics Overarching themes Each chapter starts with a list of objectives The Prior knowledge check helps make sure you are ready to start the chapterThe real world applications of the maths you are about to learn are highlighted at the start of the chapter with links to relevant questions in the chapterFinding your way around the book Access an online digital edition using the code at the front of the book.The Mathematical Problem-solving cycle specify the problem interpret resultscollect information process and represent information
[ 0.004205680452287197, 0.09034808725118637, -0.01995246298611164, 0.03149944543838501, -0.011298829689621925, 0.036032337695360184, -0.06862876564264297, 0.04851171001791954, -0.07545731961727142, -0.008538068272173405, -0.08262369781732559, -0.0017099875258281827, -0.060057103633880615, 0.010552935302257538, 0.0661223977804184, 0.03239678964018822, -0.043971020728349686, 0.08691967278718948, 0.00927695818245411, -0.12467831373214722, 0.05512385442852974, -0.01236195582896471, -0.038049519062042236, -0.036675211042165756, 0.020724685862660408, -0.03124970756471157, 0.033257607370615005, 0.03574256971478462, 0.07050754129886627, -0.1137307807803154, -0.009154281578958035, -0.013772038742899895, 0.1028856560587883, -0.030254583805799484, -0.13546395301818848, 0.0726291611790657, 0.0432521253824234, 0.1061754897236824, -0.06740693002939224, 0.009223372675478458, -0.048842333257198334, -0.010716143064200878, 0.0023495671339333057, 0.01267785020172596, 0.09779836237430573, -0.04271834343671799, -0.01558254100382328, -0.037113554775714874, -0.04797140136361122, -0.05041399970650673, -0.02883884124457836, -0.04325797036290169, -0.09733156114816666, -0.021828515455126762, -0.029967211186885834, -0.04290192574262619, 0.06693883240222931, 0.04229786992073059, 0.013037021271884441, -0.020201096311211586, 0.027952490374445915, 0.013371137902140617, -0.007645678240805864, 0.02326080948114395, 0.011155674234032631, -0.005570245906710625, 0.034493304789066315, 0.13300184905529022, 0.0069957394152879715, 0.06931468099355698, -0.07832212746143341, -0.04143498092889786, -0.012271000072360039, 0.07692287117242813, 0.09674421697854996, 0.09580215811729431, -0.10073103755712509, -0.09945917129516602, 0.0458049550652504, -0.06298000365495682, 0.01991112157702446, -0.011113250628113747, 0.0017065537394955754, -0.00012735197378788143, -0.030216163024306297, -0.025370951741933823, 0.02197185531258583, -0.027888165786862373, -0.018579702824354172, -0.03971412405371666, 0.12662842869758606, -0.012934545986354351, -0.004065573215484619, -0.007412111386656761, 0.04188482090830803, 0.013343602418899536, -0.11384037882089615, -0.09984087944030762, 0.05923193693161011, 0.046835143119096756, -0.030263489112257957, -0.008752181194722652, 0.016442764550447464, 0.031019827350974083, -0.07595302164554596, 0.00985515397042036, 0.055378545075654984, -0.04807272553443909, -0.013160181231796741, -0.03684955835342407, -0.03539315238595009, -0.014263042248785496, -0.06378880888223648, -0.03319988399744034, -0.02442319504916668, -0.05146605521440506, 0.0261827502399683, 0.0074658640660345554, 0.0369887575507164, 0.03526598587632179, -0.056971509009599686, 0.008779453113675117, 0.06284476816654205, 0.004467473365366459, -0.017688555642962456, 0.036221880465745926, -0.03099590726196766, -0.03849097341299057, -0.0031782416626811028, -0.002075847703963518, 0.01002055499702692, 0.05036306008696556, 0.009886820800602436, -0.08850298076868057, 0.005534152965992689, -0.03676990047097206, 0.06393693387508392, 0.07536070793867111, 0.041233472526073456, 0.06466030329465866, 0.07137502729892731, 0.05820256099104881, 0.011619020253419876, 0.010770720429718494, -0.07856222242116928, -0.031219279393553734, -0.05238998308777809, -0.010161596350371838, 0.0330580472946167, -0.06383726000785828, 0.0736410990357399, -0.035674937069416046, -0.020974377170205116, 0.06720335781574249, 0.04172559082508087, 0.04038095101714134, 0.10803592950105667, -0.0678209736943245, 0.035947009921073914, 0.04200148209929466, -0.04631924629211426, 0.0024348939768970013, -0.04123691841959953, 0.05293143913149834, -0.01571226306259632, -0.10991688072681427, 0.054368965327739716, -0.01747175306081772, -0.10903792083263397, -0.03035115636885166, -0.03379083797335625, 0.018830692395567894, 0.005454156547784805, 0.0724504217505455, -0.017093343660235405, -0.05308018624782562, 0.051086701452732086, -0.012547815218567848, -0.05439496785402298, -0.0014979029074311256, 0.06638053804636002, -0.08778053522109985, -0.019572434946894646, -0.0190647654235363, -0.02798384241759777, 0.01639588363468647, 0.00845523364841938, 0.015515236184000969, -0.004947333596646786, -0.03233102709054947, -0.00927972886711359, -0.020990949124097824, -0.040788814425468445, 0.04247012734413147, -0.07983387261629105, -0.017578596249222755, 0.039544522762298584, -0.03310128301382065, -0.0430244542658329, 0.054392922669649124, -0.05000061169266701, -0.017364399507641792, -0.03176254779100418, -0.07385582476854324, 0.006486489903181791, -0.09468801319599152, 0.03646831586956978, -0.046439435333013535, 0.02536391094326973, -0.005818023346364498, 0.006889604963362217, -0.019332943484187126, -0.002043496584519744, -0.05739033594727516, 0.008537979796528816, 0.026193326339125633, 0.01630675606429577, -0.043927717953920364, -0.03368257358670235, -0.013326828368008137, 0.03643069416284561, -0.005779037717729807, 0.08071865886449814, -1.568583518828099e-33, -0.06674911081790924, -0.016132067888975143, -0.08257429301738739, -0.03647841885685921, 0.027989741414785385, 0.05594708397984505, -0.006287448573857546, -0.08476027101278305, 0.09855050593614578, 0.00858531054109335, -0.015267574228346348, 0.046055614948272705, 0.004658947233110666, 0.0018387497402727604, -0.10844029486179352, -0.14055414497852325, -0.11917988955974579, -0.0067297848872840405, -0.011521607637405396, -0.05568331480026245, -0.03702899068593979, 0.03859243169426918, -0.018340468406677246, -0.09035701304674149, -0.004407593514770269, -0.03860316053032875, 0.016651205718517303, -0.08358783274888992, -0.008202447555959225, 0.02534756064414978, 0.002089044312015176, -0.002718693343922496, 0.0002546393370721489, 0.029169779270887375, -0.039278723299503326, 0.04230041801929474, 0.05513715371489525, -0.051730502396821976, 0.02048301137983799, 0.011766422539949417, -0.02781687304377556, -0.03391742706298828, 0.0423041470348835, -0.03292020410299301, 0.04634561017155647, 0.01933296211063862, -0.008874843828380108, 0.016481326892971992, -0.01572725921869278, 0.0032448931597173214, -0.053452134132385254, 0.07652189582586288, -0.04260024055838585, -0.13359825313091278, 0.0767454281449318, 0.03427199646830559, 0.06391403079032898, 0.031951192766427994, 0.016552839428186417, 0.004626896232366562, -0.02436547912657261, 0.03197232261300087, 0.07643222063779831, 0.04467960074543953, 0.09171193093061447, -0.0053920745849609375, -0.002898105885833502, 0.02995944768190384, -0.03227366879582405, 0.07258488982915878, -0.0632353350520134, 0.024919845163822174, -0.08081845194101334, -0.06690137833356857, -0.017889218404889107, 0.10363306850194931, 0.03919388726353645, 0.050939805805683136, -0.010049824602901936, 0.003686055541038513, -0.027041342109441757, 0.027920294553041458, -0.0072427913546562195, 0.06104814261198044, 0.019185055047273636, 0.06482487916946411, 0.06257501989603043, -0.009101606905460358, -0.040626153349876404, 0.017745373770594597, 0.014698974788188934, -0.08679749071598053, -0.03555453196167946, -0.07509904354810715, 0.13558581471443176, 8.952494446201492e-32, -0.02094069868326187, -0.007979236543178558, -0.020556844770908356, -0.08168523013591766, -0.03718704730272293, 0.008011783473193645, 0.05224942788481712, -0.009004190564155579, 0.04975791648030281, 0.023891568183898926, 0.011563949286937714, 0.028597909957170486, 0.0006103620980866253, 0.048050299286842346, -0.040449097752571106, 0.028707757592201233, 0.02137504518032074, 0.08957034349441528, 0.005097029265016317, -0.040286678820848465, 0.06412611156702042, 0.11073444038629532, -0.08909159898757935, -0.057497426867485046, -0.005008352920413017, 0.1413343995809555, 0.056168850511312485, 0.038858287036418915, 0.01758299581706524, -0.029516704380512238, 0.04322383180260658, -0.045123856514692307, 0.05019566789269447, 0.030274026095867157, -0.014876899309456348, -0.0036657939199358225, 0.05308534950017929, 0.03485879302024841, -0.08351870626211166, -0.044727664440870285, -0.0704909935593605, 0.015176927670836449, 0.017752956598997116, -0.02681518718600273, -0.0050848969258368015, -0.023963529616594315, 0.009794392623007298, 0.025210155174136162, -0.04899483174085617, -0.032264675945043564, 0.023998646065592766, -0.0595390610396862, -0.008930962532758713, -0.05390743911266327, 0.07041024416685104, 0.029770389199256897, -0.02462192252278328, -0.003567113308236003, -0.04831891506910324, 0.07202532142400742, -0.004529622383415699, 0.11927475780248642, -0.07301925122737885, 0.029828455299139023 ]
vOverarching themes Every few chapters a Review exercise helps you consolidate your learning with lots of exam-style questionsEach section begins with explanation and key learning points Step-by-step worked examples focus on the key types of questions you’ll need to tackleExercise questions are carefully graded so they increase in diffi culty and gradually bring you up to exam standard Problem-solving boxes provide hints, tips and strategies, and Watch out boxes highlight areas where students oft en lose marks in their examsExercises are packed with exam-style questions to ensure you are ready for the exams A full AS level practice paper at the back of the book helps you prepare for the real thing Exam-style questions are fl agged with Problem-solving questions are fl agged withE PEach chapter ends with a Mixed exercise and a Summary of key pointsChallenge boxes give you a chance to tackle some more diffi cult questions
[ 0.07345957309007645, 0.10683491826057434, 0.0449303463101387, 0.013803660869598389, -0.0014906395226716995, 0.09178029745817184, -0.0634760782122612, 0.05974092334508896, -0.13185937702655792, -0.02424071915447712, -0.03748875856399536, 0.010927136056125164, -0.07794016599655151, -0.014300585724413395, 0.005704731680452824, -0.022015748545527458, -0.004608573392033577, 0.05603962391614914, 0.046779241412878036, -0.06768231838941574, 0.10333804786205292, -0.01950814761221409, 0.04500219225883484, -0.00740129966288805, -0.01031317375600338, -0.018347639590501785, 0.027659529820084572, 0.0011288601672276855, 0.005596541333943605, -0.1448521614074707, 0.006126226857304573, 0.048208821564912796, 0.07834813743829727, 0.0011417500209063292, -0.064947709441185, 0.029906289651989937, 0.020975427702069283, 0.04823874309659004, -0.002457048511132598, -0.026217453181743622, -0.09893864393234253, 0.02247474156320095, -0.010351743549108505, -0.01315756794065237, 0.10866262018680573, -0.04612410068511963, -0.04837513715028763, -0.06137589365243912, -0.018176592886447906, -0.11090794950723648, -0.045867715030908585, -0.08369169384241104, -0.02666744962334633, -0.07293705642223358, 0.00030439032707363367, 0.018522758036851883, 0.04172201827168465, 0.01669463887810707, -0.04818066954612732, -0.015456948429346085, -0.00453203497454524, 0.013025263324379921, 0.023359376937150955, -0.012155946344137192, -0.008566437289118767, 0.018281791359186172, 0.01806623488664627, 0.09669797867536545, 0.0635048896074295, 0.02343139611184597, -0.09630360454320908, -0.003275133902207017, 0.0346008762717247, 0.0158319640904665, 0.03551828861236572, 0.06837304681539536, -0.14826233685016632, -0.06963317096233368, 0.045235760509967804, -0.022523563355207443, -0.007164116948843002, -0.026529327034950256, 0.0690266415476799, -0.025396576151251793, 0.02277633175253868, -0.03424220532178879, -0.029217461124062538, -0.03270140662789345, -0.08657462149858475, -0.028014231473207474, 0.10620976239442825, -0.05975164845585823, -0.03059113398194313, -0.035717107355594635, 0.02720903605222702, 0.0675329938530922, -0.0371236726641655, -0.05009755492210388, 0.06991884857416153, 0.007639887742698193, 0.05404314771294594, 0.04226486012339592, -0.0010661996202543378, 0.08298447728157043, -0.1012808233499527, 0.03541138023138046, 0.04164540022611618, -0.04925728961825371, 0.03856687247753143, -0.07080566883087158, -0.014969853684306145, -0.04691245034337044, -0.05914326757192612, -0.08441078662872314, 0.0198648851364851, 0.020661409944295883, 0.019327668473124504, 0.08753186464309692, -0.06270932406187057, 0.0694349855184555, 0.03392346575856209, -0.048709042370319366, 0.015361594967544079, -0.08017772436141968, 0.07931876182556152, 0.03238210082054138, 0.021443655714392662, -0.01095323171466589, 0.05780298262834549, -0.014908545650541782, -0.016036489978432655, 0.13203100860118866, -0.010657105594873428, -0.02373884990811348, 0.021572206169366837, -0.011130645871162415, 0.0033561247400939465, 0.035951342433691025, 0.03551172837615013, 0.042734336107969284, -0.010694335214793682, 0.06678382307291031, 0.02973228693008423, 0.01551899965852499, -0.0904705822467804, 0.03077664226293564, -0.033293262124061584, 0.002943295519798994, 0.0014332961291074753, -0.08308884501457214, -0.0027909819036722183, -0.06593607366085052, 0.064442478120327, 0.03438100218772888, 0.03442968800663948, 0.016380811110138893, -0.016094258055090904, -0.03416424244642258, 0.07359981536865234, -0.01118288654834032, -0.06716029345989227, 0.05878995731472969, 0.026873502880334854, 0.04284873232245445, 0.044698573648929596, 0.01562640070915222, 0.03503933921456337, -0.060080479830503464, -0.053849026560783386, -0.05521615967154503, 0.049572236835956573, -0.029950421303510666, 0.015742305666208267, 0.05161529406905174, 0.039879150688648224, -0.01100962795317173, 0.07243221998214722, 0.007248356938362122, -0.04699157550930977, -0.04764896631240845, 0.08693491667509079, -0.08108691871166229, -0.03893159702420235, -0.01514100469648838, 0.08217646181583405, -0.020523052662611008, -0.028264131397008896, -0.06506462395191193, 0.0595732145011425, 0.028071753680706024, -0.033926937729120255, -0.043821025639772415, -0.05397013574838638, -0.010487827472388744, -0.10171832144260406, -0.03217942640185356, 0.02285328507423401, -0.0637742131948471, -0.10984089970588684, -0.0038465766701847315, -0.02705945447087288, -0.05298362672328949, -0.0015895836986601353, 0.01957550086081028, 0.012309153564274311, -0.06230495497584343, 0.05823073908686638, -0.03441495820879936, 0.14851199090480804, 0.007305174134671688, -0.026979468762874603, -0.027445826679468155, 0.018697552382946014, -0.019406691193580627, 0.04261111468076706, -0.00673397071659565, 0.02873600274324417, -0.10354912281036377, -0.04003334045410156, -0.014041490852832794, 0.08203592896461487, -0.007466943934559822, 0.07063984125852585, 3.538219628875854e-33, -0.04353351891040802, 0.012885535135865211, -0.10873112082481384, 0.03902491182088852, 0.03656422346830368, 0.02133173868060112, 0.0070616998709738255, -0.01300059910863638, 0.0201751459389925, 0.027432026341557503, -0.028215890750288963, -0.05162721872329712, 0.015615631826221943, 0.02013835869729519, -0.05264570936560631, -0.10381168127059937, -0.04673938825726509, 0.03763960301876068, -0.0007880758494138718, -0.09444309771060944, 0.005030914209783077, 0.11268558353185654, 0.048550721257925034, -0.05791434273123741, -0.015035503543913364, -0.020430931821465492, 0.011814991012215614, -0.014744697138667107, 0.041198838502168655, 0.03462965786457062, 0.03240610286593437, -0.028389131650328636, 0.0103730708360672, 0.008520352654159069, -0.07693043351173401, 0.03180608153343201, 0.04797503352165222, -0.039796844124794006, 0.04345841333270073, 0.02392546646296978, -0.0019024143693968654, -0.004001993220299482, 0.006004284135997295, -0.053681064397096634, -0.014164737425744534, -0.00655654352158308, 0.012019569054245949, 0.018755005672574043, -0.07504617422819138, 0.019621271640062332, 0.03025730885565281, 0.06084571033716202, -0.07741548120975494, -0.04207657277584076, 0.06054973974823952, 0.027493800967931747, 0.03443504497408867, -0.0478455051779747, -0.04781010001897812, -0.03082510642707348, -0.022764870896935463, 0.00906927790492773, 0.016886206343770027, 0.033602554351091385, 0.07043961435556412, -0.04866436868906021, 0.025425542145967484, -0.0019932982977479696, -0.053472742438316345, -0.01208541076630354, -0.13747745752334595, -0.007178331725299358, -0.006086068227887154, -0.044545553624629974, 0.018498504534363747, 0.02990017458796501, 0.08047246932983398, -0.014912786893546581, -0.05928363651037216, -0.023759989067912102, 0.006950851995497942, -0.031997308135032654, -0.0007817773730494082, 0.018548183143138885, 0.019435996189713478, 0.08867044001817703, 0.004657408222556114, 0.0620332695543766, 0.0274299755692482, -0.01748836599290371, -0.010800371877849102, -0.11794769018888474, 0.059874460101127625, -0.0765281617641449, 0.03236459195613861, 6.466459663809874e-32, -0.050117526203393936, -0.04070434719324112, -0.007876468822360039, 0.03912921994924545, -0.06747936457395554, -0.021372614428400993, 0.020798727869987488, 0.00805687066167593, 0.044561464339494705, 0.08369776606559753, 0.03212849423289299, 0.010034442879259586, -0.008985173888504505, 0.07614462822675705, 0.04711545631289482, 0.09863874316215515, -0.0214335098862648, 0.1339646577835083, -0.02767804078757763, -0.09121192246675491, 0.06535284966230392, -0.0031923737842589617, -0.03258218616247177, -0.06203782930970192, -0.010367105714976788, 0.02507566101849079, 0.03961644694209099, -0.026129089295864105, -0.04683934152126312, 0.012047759257256985, 0.028516575694084167, 0.0015647923573851585, 0.01877458021044731, 0.007090471219271421, -0.02744627557694912, 0.012650813907384872, 0.05014423280954361, -0.013853971846401691, 0.02303921990096569, 0.06705562770366669, -0.08741258084774017, -0.010118725709617138, 0.10745295882225037, -0.024527007713913918, -0.024526074528694153, -0.06704588979482651, -0.08068666607141495, 0.02040702849626541, -0.07594212144613266, -0.00019572391465771943, 0.052417781203985214, -0.03321891278028488, 0.031050706282258034, -0.08594167977571487, 0.040801625698804855, 0.11267147213220596, -0.0036316330078989267, 0.017956605181097984, -0.016755152493715286, 0.06973759829998016, 0.03683329001069069, 0.09217298030853271, -0.06547998636960983, 0.01849856786429882 ]
viExtra online content Whenever you see an Online box, it means that there is extra online content available to support you. SolutionBank SolutionBank provides a full worked solution for every question in the book. Download all the solutions as a PDF or quickly fi nd the solution you need online Extra online content Full worked solutions are available in SolutionBank.Online
[ -0.01650870405137539, -0.04769827798008919, 0.02113061212003231, -0.02006075717508793, 0.10368504375219345, 0.0038298163563013077, -0.10987254232168198, 0.09201961755752563, -0.056575797498226166, 0.012711485847830772, 0.009425300173461437, 0.011357325129210949, 0.0173902940005064, 0.03134553134441376, 0.033186428248882294, -0.08311718702316284, 0.05425608158111572, 0.03138047829270363, -0.007123925723135471, -0.021298957988619804, 0.06733209639787674, -0.038808610290288925, -0.01929529197514057, -0.009148312732577324, 0.035045355558395386, -0.03724953532218933, -0.03468109294772148, 0.05179695412516594, 0.06391959637403488, -0.012526463717222214, 0.03272711858153343, 0.023989630863070488, 0.01988021843135357, -0.03516944497823715, -0.117819644510746, -0.02271880954504013, 0.004448718391358852, 0.045669157058000565, -0.005148476455360651, -0.04815362021327019, 0.09128625690937042, 0.022058673202991486, -0.04830991476774216, 0.015627959743142128, 0.03091958537697792, -0.0978168249130249, -0.053723279386758804, 0.05708494782447815, 0.03297778218984604, -0.06665016710758209, 0.030693866312503815, -0.006061200052499771, -0.004976476542651653, 0.0016370355151593685, -0.06443817913532257, -0.01785651221871376, 0.06409384310245514, 0.07637351751327515, -0.046568937599658966, -0.003586933948099613, 0.08608509600162506, -0.012917887419462204, -0.018571438267827034, 0.07864149659872055, -0.005852816626429558, 0.02558993361890316, -0.0879756286740303, 0.12825658917427063, 0.010885071009397507, -0.0568491593003273, -0.07915959507226944, -0.03532302379608154, 0.028953539207577705, 0.07312764972448349, 0.07867135107517242, 0.007602772209793329, -0.008458878844976425, -0.0612504705786705, -0.043773047626018524, 0.04684856906533241, 0.03479385003447533, 0.011174836196005344, 0.06396590918302536, -0.08367925137281418, -0.07476244121789932, 0.07353627681732178, 0.034591469913721085, 0.026397785171866417, 0.0758247897028923, 0.0633251741528511, -0.002578833606094122, -0.014231426641345024, 0.02563493698835373, -0.032483961433172226, 0.06449262797832489, -0.003155349986627698, -0.05557809770107269, -0.022136671468615532, 0.08089771866798401, 0.03128020837903023, -0.01824653334915638, 0.08028831332921982, 0.10035734623670578, -0.030851582065224648, -0.039245206862688065, 0.021276643499732018, 0.08166073262691498, 0.11357284337282181, 0.05481657758355141, -0.04456763714551926, -0.09746234118938446, -0.0431034117937088, -0.05465728044509888, -0.11577657610177994, 0.04000382125377655, 0.02119048871099949, -0.023478053510189056, -0.03735100477933884, 0.01654203049838543, 0.04527153819799423, -0.08319460600614548, 0.06611757725477219, 0.06578958034515381, -0.05241885408759117, 0.1388952136039734, -0.06583380699157715, 0.05931256711483002, -0.003835319308564067, -0.023022696375846863, 0.008293681778013706, 0.053580187261104584, -0.019664781168103218, -0.07884451001882553, -0.015922565013170242, -0.007893512025475502, -0.0012691023293882608, 0.029085304588079453, 0.04425881803035736, 0.03169885650277138, 0.05374220758676529, -0.021201925352215767, 0.018296275287866592, -0.032366905361413956, -0.0326242633163929, -0.047484274953603745, 0.014322073198854923, 0.0792648047208786, 0.08823756873607635, -0.0015204233350232244, -0.07604116946458817, 0.01842111349105835, -0.06743334978818893, -0.006401250138878822, 0.06030246615409851, 0.012771339155733585, 0.0015694507164880633, 0.12026689946651459, -0.06265134364366531, -0.07851453870534897, 0.01912512443959713, -0.02875729836523533, 0.03416864946484566, -0.0265438724309206, 0.015115916728973389, -0.09549462050199509, -0.013890470378100872, 0.04630003869533539, 0.00486145680770278, -0.06950481235980988, -0.026850830763578415, -0.018664898350834846, 0.01711737923324108, -0.01763637736439705, 0.029451239854097366, 0.07144615799188614, -0.06066169962286949, -0.01634836383163929, 0.022186895832419395, -0.02068273350596428, -0.013544308952987194, -0.07124149799346924, 0.009518053382635117, -0.09256525337696075, 0.07769414782524109, -0.08942107856273651, -0.0024202691856771708, 0.053287360817193985, -0.04101823270320892, 0.032118599861860275, -0.051968544721603394, -0.03929651528596878, -0.06458652019500732, 0.0588553287088871, 0.04557519778609276, 0.021036827936768532, -0.08097352087497711, -0.09335821121931076, -0.040575459599494934, -0.07394513487815857, 0.013713848777115345, -0.0038668951019644737, 0.09740012884140015, -0.011685090139508247, -0.0290738083422184, -0.006891907658427954, 0.033916521817445755, -0.02582930028438568, -0.055059533566236496, -0.04144500195980072, 0.008381437510251999, -0.03126097097992897, 0.042621370404958725, 0.03797873854637146, 0.12135713547468185, 0.050738878548145294, 0.0003628442354965955, 0.008344327099621296, -0.059962958097457886, -0.0781608372926712, 0.026648763567209244, -0.07109104841947556, -0.1218716949224472, 0.05548635870218277, 2.485369057696419e-34, -0.07670453190803528, -0.09266465157270432, -0.07048942893743515, 0.021498210728168488, 0.047969378530979156, -0.010420108214020729, 0.0162999015301466, -0.031116340309381485, 0.11040546000003815, 0.0512443445622921, -0.0032605333253741264, -0.01395601686090231, 0.03938740864396095, 0.019856275990605354, -0.08265905827283859, 0.05026208981871605, -0.014854956418275833, -0.03361948952078819, 0.08442211896181107, -0.022997956722974777, 0.022432364523410797, 0.024958379566669464, -0.06729419529438019, -0.0742432028055191, 0.10437721014022827, -0.0006000449066050351, 0.036276962608098984, -0.06772804260253906, -0.010296915657818317, 0.09276256710290909, -0.00031642502290196717, -0.07949621230363846, 0.00038431212306022644, -0.003442224347963929, -0.0163030494004488, -0.02770889922976494, -0.044483255594968796, -0.03757674992084503, 0.04892997071146965, -0.0393318273127079, 0.0315844863653183, -0.00739767262712121, -0.09545860439538956, -0.048705846071243286, -0.06498565524816513, -0.028172146528959274, -0.06445267796516418, -0.036132052540779114, -0.02049919217824936, -0.013107885606586933, 0.0504070445895195, 0.008749577216804028, 0.02196313627064228, -0.04605095088481903, 0.028157483786344528, 0.09148164093494415, 0.025716980919241905, 0.0020320387557148933, -0.00029660656582564116, 0.0013118492206558585, -0.05357646569609642, -0.011511305347084999, 0.010599246248602867, 0.030281195417046547, 0.07014858722686768, -0.00982610508799553, 0.002462402218952775, 0.06319937855005264, -0.04121449962258339, -0.006591752637177706, -0.0660015419125557, -0.0701516792178154, 0.041419826447963715, 0.008822294883430004, -0.03552888333797455, 0.041371919214725494, -0.050030067563056946, 0.009124945849180222, -0.021286282688379288, -0.020526405423879623, -0.02059238962829113, -0.007496607955545187, 0.027545761317014694, -0.008558295667171478, 0.08187826722860336, -0.0024929943028837442, -0.04934430494904518, 0.04846890643239021, 0.0059689623303711414, 0.04320041835308075, -0.00827585905790329, -0.045207053422927856, 0.005355048459023237, 0.07355380803346634, 0.0074870530515909195, 8.227700498658206e-32, 0.028752410784363747, -0.06832125037908554, -0.07488065958023071, 0.00707820663228631, 0.03578634187579155, -0.004477847367525101, 0.02902098372578621, 0.010714403353631496, 0.05964895710349083, -0.057682331651449203, -0.08374326676130295, -0.051067691296339035, -0.022045230492949486, 0.01223402377218008, 0.01247680839151144, 0.03431471437215805, -0.09787071496248245, 0.07141008973121643, 0.013153689913451672, -0.0814870223402977, -0.03282984346151352, 0.04590342193841934, -0.00719818938523531, -0.022578371688723564, -0.014595930464565754, 0.011447137221693993, 0.007134781684726477, 0.02658940851688385, -0.008601784706115723, -0.031903453171253204, 0.09371238946914673, -0.013326052576303482, 0.053442392498254776, -0.0699465274810791, 0.04962189868092537, -0.03708070516586304, -0.005254870280623436, -0.012721441686153412, -0.10151007771492004, 0.051346659660339355, -0.048131611198186874, -0.039991073310375214, 0.0068114567548036575, -0.08052364736795425, 0.042655546218156815, 0.01968349702656269, 0.028165588155388832, -0.10170597583055496, 0.07449804991483688, -0.0877876952290535, -0.03505197539925575, -0.015849009156227112, 0.06977474689483643, -0.054568592458963394, 0.054878801107406616, -0.0034486178774386644, -0.03884264826774597, -0.039182692766189575, 0.086812324821949, -0.013466497883200645, -0.005849751643836498, 0.05060799419879913, 0.03256648778915405, -0.017550591379404068 ]
viiExtra online content Access all the extra online content for FREE at: www.pearsonschools.co.uk/p1maths You can also access the extra online content by scanning this QR Code: GeoGebra interactives Explore topics in more detail, visualise problems and consolidate your understanding with GeoGebra-powered interactives. Interact with the maths you are learning using GeoGebra's easy-to-use tools Explore the gradient of the chord AP using GeoGebra.Online Casio calculator support Our helpful tutorials will guide you through how to use your calculator in the exams. They cover both Casio's scientific and colour graphic calculators. See exactly which buttons to press and what should appear on your calculator's screen Work out each coefficient qui ckly using the nCr and power functions on your calculator.Online
[ -0.028821848332881927, -0.02600421942770481, 0.0006132807466201484, -0.08141008764505386, -0.06986618041992188, 0.040282171219587326, -0.09036553651094437, 0.09533381462097168, -0.05214819312095642, 0.01122585404664278, -0.04918069392442703, -0.007434755563735962, 0.0008915112121030688, 0.03233213722705841, 0.023627404123544693, -0.04824095964431763, 0.04203210771083832, 0.05769152194261551, -0.01642664149403572, -0.015479980036616325, 0.10359548777341843, -0.05319267883896828, -0.0680060088634491, -0.03219493851065636, 0.033392734825611115, 0.005186708178371191, -0.008816555142402649, 0.031565796583890915, 0.021589338779449463, -0.02188488468527794, 0.02500866912305355, 0.042295150458812714, 0.132557213306427, -0.07321349531412125, -0.13027328252792358, -0.056416891515254974, 0.042642753571271896, 0.006875287741422653, -0.03908069431781769, -0.010790175758302212, -0.028876623138785362, 0.07986066490411758, -0.06135118380188942, 0.04946639761328697, 0.055756717920303345, -0.049824535846710205, -0.02470063976943493, -0.07926887273788452, 0.045616600662469864, -0.043424468487501144, 0.003499126061797142, -0.014451316557824612, -0.07475682348012924, 0.003004473401233554, -0.00103392219170928, 0.003624304663389921, -0.00813035387545824, 0.09069819003343582, 0.06178390979766846, -0.01921236142516136, 0.059167370200157166, -0.030025992542505264, 0.01997288502752781, 0.050124429166316986, -0.04816626012325287, -0.01775304600596428, 0.06179923936724663, 0.05167698860168457, 0.017973406240344048, -0.054740022867918015, -0.08415746688842773, -0.05408059433102608, 0.019876452162861824, 0.04662435129284859, 0.056588128209114075, 0.013292611576616764, -0.07376807183027267, -0.04483971744775772, -0.02424795553088188, -0.038601890206336975, 0.020408157259225845, -0.026168813928961754, -0.015806013718247414, -0.05466945096850395, 0.04571528360247612, 0.011408240534365177, 0.08157280087471008, 0.02486688643693924, 0.07519073039293289, 0.03773340955376625, 0.12424955517053604, -0.06417692452669144, -0.10862545669078827, -0.029782487079501152, -0.08356769382953644, -0.03175077587366104, -0.025937138125300407, -0.03488621860742569, 0.025989200919866562, 0.07066728174686432, 0.056402646005153656, 0.007275090552866459, 0.06086680665612221, 0.026459908112883568, -0.03921648859977722, -0.007074641063809395, 0.11158481240272522, 0.007003785111010075, 0.06817235052585602, -0.055094946175813675, -0.058102525770664215, -0.08974775671958923, -0.020685546100139618, -0.0961548238992691, 0.0028418987058103085, -0.0182709489017725, 0.05101203918457031, 0.008967875503003597, 0.14021874964237213, 0.020096248015761375, -0.06260963529348373, 0.017688505351543427, 0.07225706428289413, 0.07285360246896744, 0.07082581520080566, -0.06466224789619446, -0.05600301921367645, 0.03714701160788536, -0.017558790743350983, 0.004358618054538965, 0.08905605971813202, 0.057388730347156525, -0.02485845983028412, -0.015004185028374195, -0.03874282166361809, -0.034566935151815414, 0.02986702136695385, 0.004983861930668354, -0.03228560835123062, 0.06408514827489853, 0.05920633301138878, 0.03482968732714653, -0.05742350593209267, -0.06965462863445282, -0.07990176230669022, -0.03149566426873207, 0.04241693392395973, 0.02459118887782097, -0.023728201165795326, -0.09481634199619293, -0.048922132700681686, 0.016070622950792313, -0.042615026235580444, 0.12722517549991608, 0.07703414559364319, 0.03510172292590141, 0.09955863654613495, -0.020150868222117424, -0.01971987821161747, -0.07556405663490295, -0.09806299954652786, 0.03520992398262024, 0.012642290443181992, 0.09208648651838303, 0.019869573414325714, 0.004572033882141113, 0.08716993033885956, -0.026407720521092415, -0.017126770690083504, 0.02565520443022251, -0.0364900603890419, 0.043533436954021454, 0.006526276934891939, -0.07469148188829422, 0.06474651396274567, -0.011794030666351318, 0.05911318212747574, 0.02688642218708992, -0.08176594972610474, -0.012163600884377956, -0.03401491791009903, -0.0006408898043446243, -0.044176921248435974, 0.000872712058480829, -0.0029591417405754328, 0.048968251794576645, 0.005550116766244173, 0.00485187117010355, 0.03228134289383888, 0.033957600593566895, 0.03633375093340874, -0.04918947443366051, -0.039124902337789536, 0.011701417155563831, -0.08410526812076569, -0.03505909442901611, -0.0872221291065216, -0.0004850230470765382, -0.07511613517999649, 0.04883447289466858, 0.06269152462482452, -0.008856910280883312, 0.0008157877600751817, -0.01336607988923788, -0.06204045191407204, -0.0646301880478859, 0.06562594324350357, -0.10657144337892532, -0.027487900108098984, 0.012151820585131645, 0.029744431376457214, -0.013794280588626862, 0.07719121873378754, -0.04638216644525528, 0.03976520523428917, -0.03702961653470993, -0.023731540888547897, -0.03362749144434929, -0.11494142562150955, -0.006885703653097153, -0.0788949728012085, -0.02240046113729477, 0.1009572297334671, 4.9980113292063425e-33, -0.07907414436340332, 0.01152954064309597, -0.0784764364361763, 0.022421913221478462, 0.009053629823029041, -0.006928909104317427, 0.030916329473257065, 0.008884808048605919, 0.05774061754345894, 0.01243265625089407, 0.040119051933288574, 0.012150612659752369, 0.06204313412308693, -0.017916109412908554, 0.0013356618583202362, -0.005973604507744312, -0.0746987909078598, 0.013659022748470306, -0.025323593989014626, -0.000264364032773301, -0.05790644511580467, 0.050608500838279724, -0.04173988476395607, 0.005342308897525072, 0.03695197030901909, -0.011955761350691319, 0.036957625299692154, -0.03545771911740303, 0.004172400571405888, 0.04538604989647865, -0.033813100308179855, -0.07988574355840683, -0.0007319838041439652, 0.02037610299885273, -0.122403584420681, -0.00649374770000577, 0.021217070519924164, -0.029163306578993797, 0.020806824788451195, -0.11259002238512039, 0.01378518808633089, 0.0005718189058825374, 0.004398645833134651, -0.01235212292522192, -0.021413221955299377, 0.06855525821447372, 0.018098656088113785, 0.11424343287944794, 0.02396306023001671, 0.04130103066563606, -0.003187558613717556, 0.006717142648994923, 0.03584401682019234, -0.04864591732621193, 0.07443159818649292, 0.027782384306192398, -0.049090951681137085, -0.0695369765162468, 0.047189049422740936, 0.02582111768424511, -0.039360810071229935, -0.12432277947664261, -0.0545303151011467, 0.029073502868413925, 0.06009601056575775, 0.045918792486190796, 0.03984038159251213, 0.08508019894361496, -0.048215072602033615, 0.011639928445219994, -0.00008565667667426169, 0.030019870027899742, 0.03688337653875351, -0.10337082296609879, -0.044884972274303436, -0.003677964676171541, 0.04174404218792915, 0.05695426091551781, -0.05563544109463692, -0.08982869982719421, 0.0532928965985775, -0.009394777938723564, 0.011129011400043964, -0.10027473419904709, 0.019691865891218185, 0.05676552280783653, -0.03029617667198181, 0.06284009665250778, -0.058238811790943146, -0.05810239166021347, -0.013274149969220161, 0.03711669147014618, 0.012164812535047531, -0.0708584114909172, -0.012372276745736599, 8.32888176265241e-32, -0.020728416740894318, 0.013740254566073418, -0.07753296196460724, -0.06848971545696259, -0.03940850868821144, -0.013157269917428493, 0.004874527920037508, -0.0003736456565093249, 0.0003017241251654923, -0.03651397302746773, -0.01868748664855957, -0.01769113354384899, -0.04772913083434105, 0.05811547115445137, -0.026013869792222977, 0.04705241695046425, 0.0017992962384596467, 0.07127221673727036, -0.010815391317009926, 0.009961152449250221, -0.016023686155676842, 0.06062974035739899, 0.07252911478281021, -0.00935455784201622, 0.03060649149119854, 0.04457879066467285, -0.00866137258708477, 0.06264564394950867, -0.020283395424485207, -0.06640413403511047, 0.056133367121219635, 0.012172695249319077, 0.045922670513391495, -0.06376034766435623, 0.000899390026461333, 0.002080742735415697, 0.013941848650574684, 0.017582371830940247, -0.03617453575134277, 0.11089231073856354, 0.05974670127034187, -0.11868275701999664, 0.027003400027751923, 0.02290157601237297, 0.052243251353502274, 0.013370807282626629, -0.005080170929431915, -0.03762052208185196, 0.029308829456567764, -0.04623040929436684, 0.020684774965047836, -0.02826690301299095, -0.05261069908738136, -0.056033432483673096, 0.07982425391674042, -0.01801919937133789, -0.021864963695406914, -0.030717195942997932, 0.03841732069849968, 0.07009690999984741, -0.041870519518852234, 0.07093711942434311, 0.005083572119474411, -0.04079055413603783 ]
viiiPublished by Pearson Education Limited, 80 Strand, London WC2R 0RL. www.pearsonschoolsandfecolleges.co.uk Copies of official specifications for all Pearson qualifications may be found on the website: qualifications.pearson.com Text Β© Pearson Education Limited 2017 Edited by Tech-Set Ltd, GatesheadTypeset by Tech-Set Ltd, GatesheadOriginal illustrations Β© Pearson Education Limited 2017 Cover illustration Marcus@kja-artists The rights of Greg Attwood, Jack Barraclough, Ian Bettison, Alistair Macpherson, Bronwen Moran, Su Nicholson, Diane Oliver, Joe Petran, Keith Pledger, Harry Smith, Geoff Staley, RobertΒ Ward -Penny, Dave Wilkins to be identified as authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. First published 201720 19 18 17 10 9 8 7 6 5 4 3 2 1 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 978 1 292 20826 8 (Print) Copyright notice All rights reserved. No part of this publication may be reproduced in any form or by any means (including photocopying or storing it in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright owner, except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, Barnards Inn 86 Fetter Lane, London EC4A 1EN (www.cla.co.uk). Applications for the copyright owner’s written permission should be addressed to the publisher. Printed in Slovakia by NeografiaPicture Credits The publisher would like to thank the following for their kind permission to reproduce their photographs: (Key: b-bottom; c-centre; l-left; r-right; t-top)123RF.com: David Acosta Allely 287, 338cr; Alamy Images: Utah Images 113, 226l, Xinhua 38, 85cr, ZUMA Press, Inc. 311, 338r; Fotolia.com: Kajano 137, 226cl, sborisov 173, 226r, Thaut Images 202, 226tr; Getty Images: Graiki 255, 338cl, Henglein and Steets 18, 85c, Jeff Schultz 230, 338l, mviamonte 1, 85l, Steve Dunwell 158, 226cr; Science Photo Library Ltd: CMS EXPERIMENT, CERN 59, 85; Shutterstock.com: vladimir salman 89, 226tl All other images Β© Pearson EducationISBN 978 1 292 20759 9 (PDF)
[ 0.06531123071908951, 0.019349830225110054, 0.07931661605834961, 0.022905973717570305, 0.04012357443571091, -0.06148500367999077, -0.12610028684139252, -0.015299461781978607, -0.12173676490783691, 0.028318144381046295, 0.00506283063441515, 0.004291235934942961, -0.003583521582186222, 0.05338042601943016, -0.028471529483795166, -0.007668706588447094, -0.0538175106048584, -0.003444342641159892, 0.03692474961280823, -0.04752156510949135, -0.04993271455168724, -0.02568584494292736, 0.029086031019687653, -0.02806318737566471, 0.044606879353523254, 0.02923513948917389, -0.06991222500801086, -0.026970872655510902, 0.0023427470587193966, -0.025148063898086548, 0.010699578560888767, -0.06184433400630951, 0.029278622940182686, 0.0025670966133475304, -0.07997646182775497, 0.04231259599328041, 0.056718550622463226, -0.0033325108233839273, -0.016992514953017235, -0.09925305843353271, -0.04811101406812668, -0.07129158079624176, -0.0058168875984847546, 0.040216878056526184, 0.06767310202121735, 0.04880598932504654, -0.06587357074022293, -0.053882621228694916, -0.09871882200241089, -0.07102333009243011, -0.03953763097524643, -0.03796876594424248, -0.02321815676987171, -0.05254480987787247, -0.060810428112745285, -0.06598088145256042, 0.013747244141995907, 0.1026768684387207, -0.01744362898170948, -0.02537314034998417, -0.045113734900951385, 0.04675610363483429, -0.024246005341410637, 0.0631859079003334, 0.05901581794023514, 0.0236112792044878, -0.006658619269728661, 0.11169886589050293, 0.026720119640231133, -0.04092616215348244, -0.08775873482227325, -0.03203370049595833, 0.004636034835129976, 0.09586183726787567, 0.05476591736078262, 0.039210569113492966, -0.024594999849796295, -0.020457051694393158, 0.09160242974758148, -0.05756096914410591, 0.023355912417173386, 0.06929326802492142, -0.02339620515704155, 0.025517743080854416, -0.008744527585804462, -0.03919539600610733, -0.004941191058605909, 0.046650230884552, -0.04608626291155815, 0.040956541895866394, 0.08055386692285538, -0.05536365509033203, -0.07804839313030243, 0.05749700963497162, 0.0265941359102726, -0.028957145288586617, -0.04839901626110077, -0.05440577119588852, 0.0010199954267591238, -0.0021666809916496277, -0.0906745195388794, -0.04750203341245651, 0.03803800791501999, 0.00988782662898302, -0.0640556663274765, 0.05000497028231621, -0.021054502576589584, 0.007008351851254702, 0.042194873094558716, -0.05161922797560692, 0.011643058620393276, -0.06080888584256172, -0.02205014042556286, -0.06943369656801224, -0.007216159719973803, -0.006489839870482683, -0.04694153741002083, 0.03429342433810234, 0.05254048481583595, 0.06411368399858475, -0.01151201967149973, 0.04641377180814743, 0.00997940544039011, -0.12404774874448776, -0.02835187502205372, 0.004008775111287832, -0.0028754507657140493, 0.0351019948720932, -0.02774314396083355, 0.07891446352005005, -0.0365561917424202, 0.056628622114658356, 0.02760973758995533, 0.02576359547674656, 0.0008918257663026452, 0.02380509115755558, -0.00034377307747490704, 0.07490499317646027, 0.025133302435278893, 0.08492300659418106, 0.045220762491226196, 0.04430960491299629, -0.028302039951086044, -0.04894261434674263, -0.04614365100860596, 0.010477445088326931, -0.06665270030498505, 0.09539845585823059, -0.03613210842013359, -0.005121320486068726, 0.02865970879793167, 0.04320955276489258, -0.01055740937590599, 0.06540665775537491, 0.0316014401614666, -0.020223001018166542, 0.11375213414430618, 0.04437669739127159, 0.1205056682229042, -0.07529877871274948, -0.06933615356683731, -0.05066553130745888, 0.05462607368826866, -0.0705394372344017, 0.015146797522902489, -0.0888267308473587, 0.10437914729118347, -0.006526549346745014, -0.06821359694004059, 0.03867234289646149, -0.0522967204451561, -0.022843772545456886, 0.03143123909831047, 0.040730610489845276, 0.0359983891248703, -0.04934217035770416, -0.015710312873125076, 0.07671912759542465, -0.02873171865940094, -0.02411252073943615, -0.013396011665463448, -0.047546546906232834, 0.011051958426833153, -0.0557546466588974, 0.12826921045780182, 0.030021095648407936, 0.0022432238329201937, -0.11504445970058441, 0.07949157059192657, -0.005024388898164034, -0.03445998579263687, -0.0798191949725151, -0.015895839780569077, -0.04027966782450676, 0.03572118654847145, -0.02019215188920498, 0.010173197835683823, -0.05552047863602638, -0.054829586297273636, 0.015635589137673378, -0.036117225885391235, -0.01933903805911541, 0.007066778372973204, 0.07814882695674896, -0.025599341839551926, -0.04482417553663254, 0.07434192299842834, -0.009042767807841301, 0.03943753242492676, 0.05639356002211571, -0.00874099601060152, -0.12178272008895874, 0.011615010909736156, -0.0753156915307045, 0.013686643913388252, -0.039825309067964554, 0.02979482151567936, -0.018950317054986954, 0.06901492178440094, -0.027557166293263435, -0.10297849029302597, 0.03100535087287426, 0.06865135580301285, -2.826706673647547e-33, -0.014809138141572475, 0.011289895512163639, -0.03116208128631115, -0.010062528774142265, 0.05461161211133003, -0.03367475047707558, 0.016853852197527885, -0.0646466389298439, 0.09525983780622482, -0.03596242144703865, 0.025495164096355438, 0.003350568236783147, -0.001066309050656855, 0.03575003519654274, -0.009762363508343697, -0.035155076533555984, -0.14491058886051178, -0.03057880513370037, -0.10952383279800415, -0.07262203097343445, 0.014934196136891842, -0.06517311185598373, -0.03868348151445389, -0.050619110465049744, 0.01069382019340992, -0.046776607632637024, 0.0011639404110610485, -0.03778480365872383, -0.06745705753564835, 0.022033782675862312, 0.01565011404454708, 0.009190469048917294, -0.009626258164644241, -0.039738576859235764, -0.09045856446027756, -0.07627270370721817, -0.008473255671560764, -0.06698321551084518, -0.011170495301485062, 0.03853815793991089, 0.039039246737957, 0.0028277398087084293, -0.08094381541013718, -0.030059058219194412, -0.045606579631567, 0.004742391873151064, 0.0168928150087595, -0.00706096226349473, -0.015981514006853104, -0.023343540728092194, 0.006789051461964846, 0.040795981884002686, -0.03394485265016556, -0.09224284440279007, 0.13235652446746826, -0.019666263833642006, 0.04582798480987549, -0.005440386012196541, -0.05327755585312843, -0.02288217470049858, 0.050602927803993225, -0.001449938747100532, -0.03511456400156021, 0.058663029223680496, -0.035776231437921524, -0.0012136290315538645, -0.02368510141968727, -0.021082885563373566, -0.037486303597688675, 0.04487248882651329, -0.01693914830684662, 0.024413680657744408, -0.0040850224904716015, -0.07593850791454315, -0.105194091796875, 0.015171810984611511, 0.0047545041888952255, 0.09224969148635864, -0.057417284697294235, 0.12594474852085114, -0.03683807700872421, -0.01664559170603752, 0.04238508641719818, 0.10188371688127518, 0.01873464696109295, 0.06933875381946564, 0.011076846159994602, -0.01991232857108116, -0.018443845212459564, -0.05205276608467102, 0.048478107899427414, 0.008505796082317829, 0.009984740987420082, 0.020602302625775337, -0.04838073253631592, 1.190894149664105e-31, -0.052863650023937225, -0.05952977016568184, -0.05339684337377548, 0.055379122495651245, 0.0028937351889908314, 0.07006464898586273, 0.03316992148756981, -0.033729903399944305, 0.005097357556223869, 0.016296641901135445, 0.003207416506484151, 0.021592313423752785, -0.024926157668232918, 0.04623030871152878, 0.0626756101846695, 0.051180414855480194, -0.025574391707777977, -0.0039002024568617344, -0.008390864357352257, 0.05272310599684715, 0.13916251063346863, 0.0183595959097147, -0.014156167395412922, 0.027263429015874863, -0.052319955080747604, -0.0635838434100151, -0.015033078379929066, 0.008359757252037525, -0.08376339823007584, -0.002965368330478668, -0.01725870743393898, 0.01437150128185749, 0.02377946302294731, -0.03852981701493263, 0.006717040669173002, -0.06811609864234924, 0.09456215053796768, 0.03610585629940033, -0.0001950231526279822, 0.06000695005059242, -0.005336463451385498, -0.10075848549604416, 0.0004325399058870971, 0.02728228084743023, 0.0917106494307518, 0.010467111133038998, 0.004023470915853977, 0.040424082428216934, -0.048037514090538025, 0.022463539615273476, 0.07384366542100906, -0.04513036832213402, -0.014431679621338844, -0.048047617077827454, 0.05496544390916824, -0.00865122675895691, 0.07701002061367035, 0.030767066404223442, -0.08740606158971786, 0.02144656702876091, -0.008400587365031242, 0.10233189910650253, 0.025802040472626686, 0.0636770948767662 ]
1 Algebraic expressions After completing this chapter you should be able to: ● Multiply and divide integer po wers β†’ pages 2–3 ● Expand a single term over brackets and collect like terms β†’ pages 3–4 ● Expand the product of two or three expressions β†’ pages 4–6 ● Factorise linear, quadratic and simple cubic expressions β†’ pages 6–9 ● Know and use the laws of indices β†’ pages 9–11 ● Simplify and use the rules of surds β†’ pages 12–13 ● Rationalise denominators β†’ pages 13–16Objectives 1 Simplify: a 4m2n + 5mn2 – 2m2n + mn2 – 3mn2 b 3x2 – 5x + 2 + 3x2 – 7x – 12 ← GCSE Mathematics 2 Write as a single power of 2:a 25 Γ— 23 b 26 Γ· 22 c (23)2 ← GCSE Mathematics 3 Expand:a 3(x + 4) b 5(2 – 3 x) c 6(2x – 5y) ← GCSE Mathematics 4 Write down the highest common factor of:a 24 and 16 b 6x and 8x2 c 4xy2 and 3xy ← GCSE Mathematics 5 Simplify: a 10x ____ 5 b 20x ____ 2 c 40x ____ 24 ← GCSE MathematicsPrior knowledge check Computer scientists use indices to describe very large numbers. A quantum computer with 1000 qubits (quantum bits) can consider 2 1000 values simultaneously. This is greater than the number of particles in the observable universe.1
[ -0.08032307773828506, 0.06961223483085632, -0.1076408326625824, -0.015797344967722893, 0.006878102198243141, 0.0002554396050982177, -0.05140487104654312, 0.07313896715641022, -0.09630545228719711, 0.006601764354854822, 0.043856337666511536, -0.08848366141319275, -0.06750431656837463, 0.019747084006667137, 0.03018764778971672, 0.005788514856249094, -0.06452768296003342, 0.136128768324852, -0.03661727160215378, -0.020722396671772003, 0.058406051248311996, -0.019171619787812233, -0.0569949708878994, 0.016241533681750298, 0.04578536003828049, 0.002280529821291566, -0.007794762961566448, 0.002338041551411152, 0.057296205312013626, -0.024352476000785828, 0.0497407503426075, 0.01957688108086586, 0.16482071578502655, 0.015752557665109634, -0.03679561987519264, -0.011297348886728287, 0.11618082225322723, -0.023589355871081352, -0.04679902642965317, -0.015282935462892056, -0.04405942186713219, 0.05097582936286926, -0.012190804816782475, 0.015353099443018436, 0.0505477711558342, -0.10876069962978363, -0.03532164543867111, -0.05329752340912819, 0.021127302199602127, -0.06662769615650177, -0.00815956387668848, 0.030114667490124702, -0.019659075886011124, -0.008133168332278728, -0.03605879098176956, -0.06578486412763596, -0.024547886103391647, 0.03377404063940048, -0.021862076595425606, 0.0034936415031552315, -0.030726127326488495, -0.009553461335599422, 0.021824102848768234, 0.004886041861027479, 0.016400957480072975, 0.05959289148449898, -0.02409299835562706, 0.04318975657224655, 0.10211462527513504, 0.039984624832868576, -0.07695768773555756, -0.03585931658744812, -0.06785189360380173, -0.01731123961508274, -0.0037342687137424946, 0.014159818179905415, -0.060697041451931, -0.05286484584212303, -0.04599100723862648, 0.01752203330397606, -0.027894984930753708, 0.1054912731051445, 0.09051688760519028, -0.03333335742354393, 0.05526043847203255, 0.02516081929206848, 0.0744502916932106, 0.031163783743977547, 0.03749418631196022, -0.06277690827846527, 0.08417759090662003, -0.11109331250190735, 0.002563969697803259, -0.06449735164642334, -0.019047893583774567, 0.003677890170365572, -0.004542990121990442, -0.07659941166639328, 0.08767460286617279, 0.06912896782159805, 0.08231953531503677, -0.045188747346401215, 0.025551091879606247, -0.12346037477254868, -0.0801108181476593, -0.032263755798339844, 0.08946770429611206, -0.04747356101870537, 0.034499023109674454, -0.0984102413058281, -0.09551644325256348, 0.04047062620520592, -0.02472478337585926, -0.007319318596273661, 0.05932087078690529, -0.04369203373789787, 0.0686553418636322, -0.03785654157400131, 0.04708113893866539, 0.002423602622002363, 0.06153596192598343, -0.053143225610256195, 0.03225872293114662, 0.03863230347633362, 0.05413886532187462, 0.02769932523369789, 0.01967575028538704, -0.0012061792658641934, -0.011164950206875801, 0.01255554798990488, 0.04562809690833092, 0.1273660957813263, -0.04785860329866409, 0.025827961042523384, 0.003028036328032613, -0.06410640478134155, -0.05221375823020935, 0.05925051122903824, -0.041677746921777725, 0.008489580824971199, -0.03862820938229561, 0.04677605628967285, -0.011221133172512054, -0.05522490665316582, -0.01772642694413662, -0.014810082502663136, 0.04987895488739014, 0.010693230666220188, 0.03433956205844879, -0.03939329460263252, -0.03387568145990372, 0.012060699984431267, -0.017506256699562073, 0.046140171587467194, 0.04081380367279053, 0.0021655817981809378, 0.04947882518172264, -0.06263557821512222, 0.0731547474861145, -0.011616489849984646, -0.030384229496121407, -0.050322454422712326, -0.042412471026182175, 0.044922877103090286, -0.005648311693221331, 0.012453239411115646, 0.01949930563569069, 0.014309690333902836, -0.08039113134145737, 0.04398651793599129, 0.013139096088707447, -0.02753477729856968, 0.028544675558805466, 0.11865152418613434, 0.03379325196146965, -0.032221872359514236, 0.07732171565294266, -0.033725786954164505, -0.035958439111709595, -0.014703852124512196, 0.00579559151083231, -0.039442017674446106, -0.008187486790120602, -0.004453151952475309, 0.034021034836769104, -0.008257918059825897, -0.04737914353609085, 0.05906597524881363, 0.0056229280307888985, 0.01713251695036888, 0.04135168716311455, -0.03448183089494705, -0.05333661660552025, -0.032895904034376144, -0.07447075843811035, -0.005271414294838905, 0.06327188014984131, -0.037583526223897934, -0.09340319037437439, 0.007916387170553207, -0.020627275109291077, -0.048265863209962845, -0.029557203873991966, -0.05239401385188103, 0.05925383418798447, -0.03787819296121597, -0.07190479338169098, -0.07056626677513123, -0.0009868219494819641, 0.09991246461868286, 0.013306164182722569, -0.01481883879750967, 0.04403619095683098, -0.02945571392774582, 0.05798836797475815, -0.01881047524511814, 0.05815602093935013, 0.018232228234410286, -0.09673189371824265, -0.023886071518063545, -0.03590824082493782, -0.057882972061634064, 0.006278167013078928, -6.571407946388082e-33, -0.06669445335865021, -0.05881759896874428, -0.09581144899129868, -0.06676139682531357, -0.04140564054250717, -0.0077249426394701, -0.008677075617015362, -0.08284932374954224, 0.12371271848678589, -0.002587558003142476, -0.006817429792135954, 0.03454585373401642, 0.0343523733317852, 0.041253168135881424, -0.046656787395477295, -0.046103157103061676, 0.024066932499408722, 0.007944624871015549, -0.003388836281374097, -0.021050790324807167, 0.005544749554246664, 0.04707490652799606, 0.014038782566785812, -0.023460185155272484, -0.02893182635307312, 0.024006905034184456, 0.03407100960612297, -0.04169299080967903, 0.0056815845891833305, 0.06662425398826599, 0.014873689040541649, 0.002268408425152302, 0.021725818514823914, -0.034517012536525726, 0.026994038373231888, -0.08545070141553879, 0.07845207303762436, -0.015844685956835747, -0.03320727497339249, -0.015994098037481308, 0.10633629560470581, -0.015725675970315933, 0.09519720077514648, -0.07376612722873688, 0.012161562219262123, 0.01196275930851698, 0.0350465290248394, -0.006787003017961979, -0.020180614665150642, -0.09955482184886932, -0.02579047530889511, -0.01729939877986908, -0.0314486026763916, 0.030174752697348595, 0.04482046142220497, -0.023791003972291946, 0.06383867561817169, -0.06066443771123886, 0.06938644498586655, 0.026488937437534332, -0.12063895165920258, 0.0003664848627522588, 0.019942045211791992, -0.01898491196334362, -0.025102972984313965, -0.03145090118050575, -0.017234262079000473, -0.027514271438121796, -0.043524887412786484, 0.0373549684882164, -0.03605654835700989, 0.1077202782034874, -0.00020353059517219663, 0.008311109617352486, -0.009997735731303692, -0.08986572176218033, -0.012040800414979458, -0.0164472758769989, -0.015183234587311745, -0.04987666383385658, -0.02239920198917389, -0.027397310361266136, -0.03107280470430851, -0.11525214463472366, -0.13476289808750153, 0.036854662001132965, 0.06303198635578156, 0.0649033933877945, -0.02143744006752968, -0.05812320113182068, -0.017744340002536774, -0.027831312268972397, 0.06569142639636993, -0.07001755386590958, 0.012766385450959206, 8.483151290265625e-32, 0.009790048003196716, 0.027932778000831604, -0.04612995311617851, -0.0165970791131258, 0.030833004042506218, 0.028729556128382683, 0.0280450489372015, 0.07328752428293228, 0.09445234388113022, -0.01764804497361183, 0.06072142347693443, 0.05058182775974274, -0.002746664686128497, 0.027960646897554398, -0.07725425064563751, -0.038846246898174286, 0.03276636451482773, 0.04960816726088524, -0.04107784107327461, 0.004990806803107262, -0.0008829428697936237, 0.030890407040715218, 0.006578345783054829, 0.0073388065211474895, 0.06667588651180267, 0.0986643061041832, -0.07574061304330826, 0.02513548918068409, -0.04980526119470596, 0.003930689767003059, 0.09934882074594498, -0.0037609159480780363, 0.020206118002533913, -0.009284631349146366, 0.02259337343275547, 0.0028158705681562424, 0.07383301109075546, 0.058942876756191254, 0.011773628182709217, 0.06736640632152557, -0.09755080938339233, -0.031024552881717682, -0.05525270476937294, 0.00839043129235506, 0.0371619388461113, -0.06424860656261444, -0.08454108238220215, -0.02135450392961502, 0.025599325075745583, -0.003339921124279499, -0.062303926795721054, -0.07003919035196304, 0.008732268586754799, -0.08134530484676361, 0.08742844313383102, -0.04233838990330696, -0.0009397914982400835, -0.005168698262423277, 0.016924235969781876, 0.01848509907722473, -0.015516799874603748, 0.09339199960231781, -0.11654115468263626, 0.02781183458864689 ]
2 Chapter 1 1.1 Index laws β–  You can use the laws of indices to simplify powers of the same base. β€’ am Γ— an = am + n β€’ am Γ· an = am βˆ’ n β€’ (am)n = amn β€’ (ab)n = anbn Example 1 Example 2 Expand these expressions and simplify if possible: a –3x (7x – 4) b y2(3 – 2y3) c 4x (3x – 2x2 + 5x3) d 2x (5x + 3) – 5(2x + 3)Simplify these expressions:a x2 Γ— x5 b 2r2 Γ— 3r3 c b7 __ b4 d 6x5 Γ· 3x3 e (a3)2 Γ— 2a2 f (3x2)3 Γ· x4 x5Notation This is the base . This is the index, power or exponent. a x2Β Γ—Β x5 =Β x2 + 5 =Β x7 b 2r2Β Γ—Β 3 r3 =Β 2Β Γ— Β 3Β Γ—Β r2Β Γ—Β r3 =Β 6Β Γ—Β r2 + 3 =Β 6 r5 c b7 __ b4 = b7 βˆ’ 4 =Β b3 d 6x5Β Γ·Β 3 x3 =Β  6 __ 3 Β Γ—Β  x5 ____ x3 =Β 2Β Γ— Β x2 = 2x2 e (a3)2Β Γ—Β 2 a2 =Β a6Β Γ—Β 2 a2 =Β 2Β Γ—Β a6Β Γ—Β a2 =Β 2 a8 f (3x2)3 _____ x4 =Β 33 Γ— (x2)3 ____ x4 = 27 Γ— x6 __ x4 =Β  27 x2Use the rule amΒ Γ—Β anΒ =Β am + n to simplify the index. x5Β Γ·Β x3Β =Β x5 βˆ’ 3Β =Β x2Rewrite the expression with the numbers together and the r terms together. 2Β Γ—Β 3Β =Β 6 r2Β Γ—Β r3Β =Β r2 + 3 A min us sign outside brackets changes the sign of every term inside the brackets.Watch outUse the rule am Γ· an = am βˆ’ n to simplify the index. Use the rule (am)nΒ =Β amn to simplify the index. a6Β Γ— a2 = a6 + 2 = a8 Use the rule (ab)nΒ =Β anbn to simplify the numerator. (x2)3Β =Β x2 Γ— 3Β =Β x6 x6 __ x4 Β =Β x6 βˆ’ 4Β =Β x2
[ -0.024355515837669373, 0.08441449701786041, 0.021609827876091003, -0.03640357032418251, -0.03166563808917999, 0.014180147089064121, -0.04340866208076477, 0.0018016294343397021, 0.022351857274770737, 0.017754772678017616, -0.022316208109259605, -0.03964490815997124, 0.06053663045167923, -0.030213607475161552, 0.0217477735131979, 0.024524377658963203, -0.022755393758416176, 0.16182611882686615, -0.07453668117523193, -0.013809720985591412, 0.09938043355941772, -0.029093163087964058, -0.10365865379571915, 0.0614762045443058, 0.008742669597268105, 0.003086949000135064, -0.025924306362867355, 0.08538170903921127, 0.03455553576350212, -0.13855108618736267, 0.057275231927633286, 0.0259725209325552, 0.08800867199897766, -0.00322341057471931, -0.013400506228208542, -0.02553357556462288, 0.04368174448609352, 0.0665382519364357, 0.015682578086853027, 0.046493642032146454, 0.0458793044090271, 0.10816726833581924, 0.09638366848230362, 0.03858908638358116, -0.03636092692613602, -0.017326395958662033, -0.05702987313270569, -0.005662358831614256, -0.04518857225775719, -0.02457207441329956, 0.047993700951337814, -0.03383606672286987, -0.03358493372797966, -0.013079800643026829, 0.0003265385748818517, -0.021469030529260635, 0.008556247688829899, 0.02929525077342987, -0.037230655550956726, 0.026135563850402832, 0.058589618653059006, 0.014820827171206474, -0.0044006844982504845, -0.006986403837800026, -0.00030480168061330914, 0.01166801992803812, 0.047704484313726425, -0.040509823709726334, 0.0064056022092700005, 0.026498647406697273, -0.050007373094558716, 0.00127247697673738, -0.014186845161020756, -0.05312879756093025, 0.05211827903985977, -0.003634708933532238, -0.07154824584722519, -0.03691895306110382, 0.01800381951034069, 0.11041805148124695, -0.08963476121425629, -0.02914491854608059, 0.07090426236391068, 0.010529916733503342, 0.055573493242263794, -0.06423267722129822, 0.10628523677587509, 0.0070669339038431644, 0.10572673380374908, -0.0010340657318010926, -0.001496962970122695, 0.02478223294019699, 0.005931538995355368, -0.04602242633700371, 0.009865058586001396, 0.013764344155788422, 0.0005611517699435353, -0.04562614858150482, 0.039441727101802826, 0.0033858625683933496, 0.05241747573018074, -0.12369094789028168, -0.08287207037210464, 0.023957204073667526, -0.06892411410808563, -0.07052521407604218, -0.008610108867287636, -0.0753348097205162, 0.0897742286324501, -0.030862348154187202, -0.01849118061363697, 0.08788152039051056, -0.02628154121339321, -0.0015459131682291627, 0.01508621871471405, -0.03942671790719032, 0.04242614284157753, -0.020402543246746063, 0.07644930481910706, -0.019139790907502174, -0.011502914130687714, -0.07231626659631729, 0.027624905109405518, 0.00479544373229146, 0.01721891388297081, 0.02744266949594021, -0.0019268254982307553, 0.005371978040784597, -0.07591008394956589, -0.03947948291897774, 0.00647639250382781, 0.03142695501446724, -0.004448168445378542, 0.005880054086446762, -0.0357387512922287, -0.025595612823963165, -0.07774636894464493, 0.04172389209270477, 0.03526906296610832, 0.09928083419799805, -0.006379208993166685, -0.04011095315217972, 0.03329876437783241, 0.04182395711541176, 0.03171916306018829, 0.019208820536732674, -0.021925063803792, -0.019678646698594093, 0.025688719004392624, -0.014937077648937702, -0.019070738926529884, -0.03705355152487755, -0.03341471776366234, 0.02276117354631424, -0.029208103194832802, -0.06326613575220108, 0.03922374173998833, -0.05215096473693848, -0.01615525409579277, 0.006049078889191151, -0.04581070691347122, -0.01807793602347374, -0.004264526069164276, 0.08104754239320755, 0.04614272341132164, -0.019111089408397675, 0.02397904545068741, 0.05884716659784317, -0.04318007081747055, 0.025710992515087128, 0.021368185058236122, -0.007460764609277248, -0.020308375358581543, 0.09690706431865692, -0.0568581148982048, -0.055373869836330414, 0.04405040293931961, 0.02001390978693962, -0.034429267048835754, -0.00653846375644207, 0.014427593909204006, -0.13284654915332794, -0.0034502968192100525, 0.039082836359739304, -0.0351865217089653, -0.007149970158934593, -0.058075446635484695, 0.03066488541662693, -0.042030978947877884, -0.033770184963941574, 0.02066347934305668, -0.01569848507642746, -0.09881965816020966, 0.01942365989089012, -0.005259593948721886, 0.025086818262934685, 0.007805072236806154, -0.01933366246521473, -0.04727660492062569, 0.03993985801935196, 0.03430236130952835, 0.019839240238070488, 0.01299882959574461, -0.06337404996156693, 0.00007348118379013613, -0.07489994168281555, -0.04587334394454956, -0.029898449778556824, -0.006214877124875784, 0.13114231824874878, -0.037449080497026443, 0.04550790414214134, 0.05605714023113251, -0.035444386303424835, 0.03892943263053894, 0.0012588158715516329, 0.016770794987678528, -0.019904272630810738, -0.019161531701683998, -0.05235384777188301, -0.06253160536289215, -0.07006558775901794, 0.024581963196396828, -1.5625479063496036e-32, -0.01155250333249569, -0.06545447558164597, -0.07928211241960526, -0.06260491907596588, -0.06541432440280914, -0.01898123510181904, 0.08641105145215988, -0.14129948616027832, 0.020574312657117844, -0.002083870116621256, -0.016856390982866287, -0.01449218112975359, 0.0623055063188076, -0.03754214569926262, -0.10813198238611221, -0.0686870589852333, -0.004729611799120903, 0.04958377406001091, 0.036139730364084244, -0.06718985736370087, -0.07075563073158264, 0.05088181793689728, -0.024846602231264114, 0.015986820682883263, -0.04031645134091377, -0.037166494876146317, -0.02545079030096531, -0.046644426882267, 0.11275940388441086, 0.04844260215759277, 0.0374700203537941, -0.030697830021381378, 0.08247396349906921, 0.09611658751964569, 0.005261505022644997, -0.06622837483882904, 0.03321440517902374, 0.018086321651935577, -0.006951555144041777, -0.027217615395784378, -0.0031773033551871777, -0.02183602750301361, 0.12592725455760956, -0.04962291941046715, -0.04982391372323036, -0.021496592089533806, -0.01589699275791645, 0.08519020676612854, -0.04337099567055702, -0.02095026522874832, -0.03402495011687279, -0.12502992153167725, -0.05064934119582176, -0.0022931008134037256, -0.03663802146911621, -0.044011812657117844, 0.09880255162715912, 0.002484607743099332, 0.02668796107172966, -0.019534405320882797, -0.06082763522863388, 0.022168995812535286, 0.01244127657264471, 0.022092487663030624, -0.04805018752813339, -0.013867348432540894, -0.0004436652234289795, -0.05816563591361046, 0.020538445562124252, -0.027546154335141182, -0.0068971519358456135, 0.0421731099486351, -0.12791553139686584, 0.00195774482563138, 0.0064600994810462, -0.1004607230424881, -0.031226014718413353, 0.10155001282691956, -0.10400716960430145, -0.06162528693675995, 0.04416166618466377, 0.028511540964245796, -0.05106577277183533, -0.05403602495789528, -0.0794311910867691, 0.006894579157233238, 0.09339134395122528, 0.052192918956279755, 0.01556074433028698, -0.0531056709587574, -0.06178890913724899, -0.04360540211200714, 0.10780047625303268, -0.09671835601329803, 0.08342104405164719, 9.621778024015898e-32, 0.08470131456851959, -0.019938556477427483, 0.02774871699512005, -0.036607787013053894, 0.01291392371058464, -0.04752720147371292, 0.03465936332941055, 0.020613474771380424, 0.04776629060506821, -0.03383554145693779, 0.03946888819336891, 0.076411172747612, 0.01942090131342411, 0.019503526389598846, -0.000920638965908438, -0.01644899509847164, -0.03675147518515587, 0.001511569949798286, 0.006559845991432667, 0.07650836557149887, -0.07399321347475052, 0.014913832768797874, 0.03270040825009346, 0.040218811482191086, 0.07308389991521835, 0.005087778903543949, 0.0099794277921319, 0.010389686562120914, -0.002455169567838311, 0.0027426443994045258, 0.10062035918235779, 0.02173234522342682, -0.053191184997558594, 0.020291388034820557, -0.029142554849386215, 0.07736214250326157, 0.04305558651685715, 0.046551674604415894, -0.044649187475442886, 0.01096393819898367, -0.018651513382792473, -0.11907246708869934, -0.07330188155174255, -0.02854675054550171, 0.020127402618527412, -0.10566927492618561, -0.14421527087688446, -0.1049065962433815, 0.0141221908852458, -0.07730724662542343, 0.0035290797241032124, -0.00729282246902585, 0.01324366219341755, 0.049149591475725174, 0.04038209468126297, -0.03604762256145477, -0.029443759471178055, 0.05044720694422722, 0.001376743079163134, 0.021852267906069756, 0.015613152645528316, -0.01093594916164875, -0.054792292416095734, -0.014175927266478539 ]
3Algebraic expressions a βˆ’3x(7xΒ βˆ’ 4 ) =Β βˆ’21x2Β +Β 12 x b y2(3Β βˆ’Β 2y3) =Β 3 y2Β βˆ’Β 2y5 c 4x(3xΒ βˆ’Β 2 x2Β +Β 5 x3) =Β 12 x2Β βˆ’Β 8 x3Β +Β 20 x4 d 2x(5xΒ +Β 3 )Β βˆ’Β 5(2 xΒ +Β 3) =Β 10 x2Β +Β 6 xΒ βˆ’Β 10 xΒ βˆ’Β 15 =Β 10 x2Β βˆ’Β 4 xΒ βˆ’Β 15 a x7 + x4 _______ x3 = x7 ___ x3 + x4 ___ x3 = x7 – 3Β + x4 βˆ’ 3 = x4Β + x b 3x2 βˆ’ 6x5 __________ 2x = 3 x 2 ____ 2x βˆ’ 6 x 5 ____ 2x = 3 __ 2 x 2 – 1 – 3x5 – 1 = 3x ___ 2 βˆ’ 3 x 4 c 20x7 + 15x3 ____________ 5x2 = 20 x 7 _____ 5 x 2 + 15 x 3 _____ 5 x 2 = 4x7 – 2 + 3 x3 – 2 = 4 x 5 + 3 xExample 3βˆ’3xΒ Γ—Β 7xΒ ξ€΅Β βˆ’21x1 +Β 1Β ξ€΅Β βˆ’21x2 βˆ’3xΒ Γ—Β (βˆ’4)  12x Remember a minus sign outside the brackets changes the signs within the brackets. Simplify 6xΒ βˆ’Β 10x to give βˆ’4x. Simplify these expressions: a x 7 + x 4 ______ x 3 b 3 x 2 βˆ’ 6 x 5 ________ 2x c 20 x 7 + 15 x 3 __________ 5 x 2 y2Β Γ—Β (βˆ’2y3)Β ξ€΅Β βˆ’2y2 +Β 3Β ξ€΅Β βˆ’2y5 Divide each term of the numerator by x 3 . x1 is the same as x. Divide each term of the numerator by 2x. Simplify each fraction: 3 x 2 ____ 2x = 3 __ 2 Γ— x 2 ___ x = 3 __ 2 Γ— x2 βˆ’ 1 βˆ’ 6 x 5 ____ 2x = βˆ’ 6 __ 2 Γ— x 5 ___ x = βˆ’3 Γ— x5 βˆ’ 1 Divide each term of the numerator by 5x2. 1 Simplify these expressions: a x3 Γ— x4 b 2x3 Γ— 3x2 c k3 __ k2 d 4p3 ___ 2p e 3x3 ___ 3x2 f (y2)5 g 10x5 Γ· 2x3 h ( p3)2 Γ· p4 i (2a3)2 Γ· 2a3 j 8p4 Γ· 4p3 k 2a4 Γ— 3a5 l 21a3b7 ______ 7ab4 m 9x2 Γ— 3(x2)3 n 3x3 Γ— 2x2 Γ— 4x6 o 7a 4 Γ— (3a 4)2 p (4y 3)3 Γ· 2y3 q 2a3 Γ· 3a2 Γ— 6a5 r 3a4 Γ— 2a5 Γ— a3Exercise 1A
[ -0.03926916420459747, 0.02947307750582695, 0.05890563875436783, -0.07547527551651001, 0.002689734101295471, 0.06421772390604019, -0.0007130759768188, -0.06890697777271271, -0.04190916568040848, 0.03731192648410797, -0.008234048262238503, -0.10437041521072388, -0.0252936240285635, -0.03860585764050484, 0.047998782247304916, -0.008133879862725735, -0.016392139717936516, 0.08111535757780075, -0.05695648491382599, 0.0017761023482307792, 0.05415651202201843, -0.07298538833856583, -0.03944544121623039, 0.05706111714243889, 0.04586000367999077, 0.008612851612269878, -0.0050317770801484585, 0.02068895846605301, -0.04951230064034462, -0.011864462867379189, -0.01430758647620678, 0.021910374984145164, 0.1148357093334198, -0.0885014533996582, 0.10667344182729721, 0.0371878407895565, 0.024868804961442947, 0.04646513611078262, -0.0497279055416584, 0.014095131307840347, -0.0016315000830218196, -0.009168475866317749, 0.04978315904736519, 0.035908907651901245, 0.007408083416521549, -0.05766137316823006, -0.0019330872455611825, -0.01768970675766468, 0.006199554540216923, -0.0649619922041893, -0.008640325628221035, 0.006201400421559811, -0.019580405205488205, 0.022717852145433426, 0.027370348572731018, -0.060806214809417725, 0.05293215066194534, 0.05658760294318199, -0.06322827190160751, -0.04395850747823715, -0.05324511229991913, -0.01007002592086792, -0.0006160563207231462, 0.01810557395219803, -0.025173500180244446, 0.05624743178486824, -0.010318615473806858, -0.00647413544356823, -0.02190018631517887, 0.028400110080838203, -0.07217776030302048, 0.019253414124250412, -0.024603964760899544, -0.07948844134807587, 0.07946086674928665, 0.007362943142652512, 0.0038180318661034107, -0.05909670144319534, -0.0017285908106714487, -0.029707521200180054, -0.01903635822236538, 0.09207691997289658, 0.12410019338130951, 0.00044037430780008435, 0.02979365549981594, -0.020509403198957443, 0.03754142299294472, 0.017004743218421936, 0.0005685579963028431, 0.03157329186797142, -0.0021893512457609177, -0.023510217666625977, -0.03212155029177666, -0.06377960741519928, -0.03515039011836052, -0.0819561704993248, 0.045109398663043976, -0.10623406618833542, 0.053761184215545654, 0.06202974542975426, 0.07288580387830734, -0.02325741946697235, -0.029674429446458817, -0.011689879931509495, -0.04522189125418663, -0.07054691016674042, 0.026614397764205933, -0.06294118613004684, 0.03815996274352074, -0.09488707035779953, -0.04702235013246536, -0.047541577368974686, 0.005338048096746206, 0.005565590225160122, -0.05337439849972725, 0.023258360102772713, 0.03855916112661362, -0.016560543328523636, 0.04209131374955177, -0.09216869622468948, -0.026303470134735107, -0.048836443573236465, 0.09995506703853607, 0.05096302181482315, 0.054094232618808746, -0.011689707636833191, -0.0067113847471773624, 0.04066905751824379, -0.10353794693946838, -0.03131028264760971, -0.013066191226243973, -0.010769957676529884, -0.06238853931427002, -0.03416014090180397, 0.004344690125435591, -0.07252667844295502, -0.08048141002655029, 0.058205436915159225, -0.032285500317811966, -0.006094229873269796, 0.003868674859404564, 0.06669987738132477, 0.05453622341156006, 0.0677558183670044, -0.007522066589444876, 0.009831094183027744, -0.09029019623994827, 0.011569865047931671, -0.0169008057564497, 0.014376362785696983, -0.006630741525441408, -0.015108590945601463, -0.0606151707470417, 0.06350162625312805, -0.034674957394599915, -0.1197565495967865, 0.009172395803034306, -0.1080130934715271, 0.055002808570861816, 0.03736726939678192, 0.029467720538377762, -0.028534075245261192, -0.026595348492264748, 0.10839836299419403, 0.04736800864338875, 0.03125996142625809, 0.05075946822762489, 0.09011796861886978, -0.023530984297394753, 0.004440715536475182, -0.0725269615650177, -0.01684095337986946, -0.03320862725377083, 0.04187528416514397, 0.021627508103847504, 0.005845544394105673, 0.07842423766851425, -0.03944692760705948, -0.07255671173334122, 0.07253623753786087, 0.07743547856807709, -0.03973439708352089, -0.06073034182190895, 0.01673988625407219, -0.021834708750247955, -0.00978162046521902, -0.018744200468063354, 0.02692602574825287, -0.031401459127664566, -0.042050424963235855, 0.015228676609694958, -0.09039377421140671, -0.003063625656068325, 0.014600640162825584, -0.06862474232912064, 0.05101650208234787, -0.09623981267213821, -0.01910003088414669, -0.038924094289541245, 0.09797507524490356, 0.05736871063709259, 0.008336639031767845, 0.05044303461909294, -0.04838033765554428, -0.036483168601989746, -0.021173961460590363, -0.013519948348402977, -0.058754391968250275, 0.019487712532281876, 0.08029904961585999, -0.09098228812217712, 0.1123901978135109, 0.014886517077684402, 0.004350603558123112, 0.010626625269651413, -0.05749358609318733, 0.08325611054897308, -0.011842736043035984, -0.0570465624332428, -0.004886663053184748, -0.07726465165615082, -0.07385988533496857, 0.059760041534900665, -1.0814819125949703e-32, 0.030756400898098946, -0.01871706172823906, -0.07573132961988449, -0.12261343002319336, -0.013575258664786816, -0.008078537881374359, 0.024234237149357796, -0.1210106909275055, 0.05504497140645981, 0.022128116339445114, 0.00905165821313858, 0.008494444191455841, -0.014392007142305374, -0.005852754693478346, -0.007678750902414322, -0.07879544049501419, -0.050223641097545624, -0.031806182116270065, 0.02074596658349037, -0.05702899396419525, 0.0034869913943111897, -0.0019958396442234516, -0.07508883625268936, 0.02235822193324566, -0.06353292614221573, 0.051951587200164795, 0.037902794778347015, -0.05763886496424675, 0.05146323889493942, 0.033617909997701645, -0.009399457834661007, -0.03891465440392494, 0.06523887068033218, 0.0781259536743164, 0.053579140454530716, -0.039584722369909286, -0.032230667769908905, 0.031097091734409332, 0.013682892546057701, -0.00702752685174346, 0.024361317977309227, 0.04812979698181152, 0.07875904440879822, -0.002002139575779438, -0.02869495563209057, -0.009723777882754803, -0.031216241419315338, 0.09603120386600494, 0.018491806462407112, 0.0676441490650177, -0.054149407893419266, -0.09838682413101196, -0.09356031566858292, 0.01719534397125244, 0.0413464717566967, 0.002670339308679104, 0.0537969134747982, -0.03818883001804352, 0.05962697044014931, -0.05057164281606674, -0.027652688324451447, -0.08043299615383148, 0.07895106822252274, -0.05768541246652603, -0.011717233806848526, 0.07175514847040176, -0.012015782296657562, -0.06707628071308136, -0.05542639642953873, -0.01403890736401081, 0.020881133154034615, 0.0847875326871872, -0.12508921325206757, -0.0642799660563469, -0.04308606684207916, -0.026917755603790283, -0.04334693029522896, 0.10272259265184402, -0.028654219582676888, -0.073989637196064, -0.004901780281215906, -0.0564933605492115, 0.0016956162871792912, 0.02060382440686226, -0.08170667290687561, -0.017481014132499695, 0.14449161291122437, 0.07864173501729965, 0.014526709914207458, -0.006302475929260254, 0.026025066152215004, -0.008953629992902279, 0.06695526838302612, -0.0012645444367080927, 0.09352409094572067, 1.0308489481075595e-31, -0.03190818428993225, 0.050291769206523895, -0.059133823961019516, -0.029132897034287453, -0.004026516806334257, -0.05189286917448044, 0.004285180475562811, -0.018762126564979553, 0.045001935213804245, -0.0996800884604454, 0.071991465985775, 0.07869203388690948, -0.05972638726234436, 0.004122667480260134, -0.03490656986832619, 0.022342968732118607, -0.029932793229818344, 0.0196696650236845, 0.024560866877436638, 0.029504287987947464, -0.07021203637123108, 0.06326185911893845, -0.051865264773368835, 0.031106872484087944, 0.027050962671637535, 0.01854555308818817, -0.02664869837462902, -0.006720139179378748, -0.04694482311606407, -0.00033458363031968474, 0.09807971119880676, 0.030918288975954056, -0.020969977602362633, -0.050154950469732285, 0.046573247760534286, 0.08480854332447052, 0.04449838027358055, 0.029098395258188248, 0.04509710520505905, 0.01936452090740204, 0.10030177980661392, -0.024707883596420288, -0.00581473670899868, -0.03659914433956146, 0.007517873775213957, -0.10449506342411041, -0.0674952045083046, -0.06476856023073196, 0.024292171001434326, -0.08491665124893188, -0.04520656540989876, 0.0372033454477787, 0.02762112021446228, -0.002174247521907091, 0.03208601474761963, -0.0756097212433815, 0.012878095731139183, 0.02366742677986622, -0.025805002078413963, -0.02012203447520733, 0.0036456212401390076, 0.01720110885798931, -0.04272063076496124, 0.037791457027196884 ]
4 Chapter 1 1.2 Expanding brackets To find the product of two expressions you multiply each term in one expression by each term in the other expression. (x + 5)(4x – 2y + 3)x Γ— 5 Γ—= x(4x – 2y + 3) + 5(4x – 2y + 3)= 4x 2 – 2xy + 3x + 20x – 10y + 15 = 4x2 – 2xy + 23x – 10y + 15Multiplying each of the 2 terms in the first expression by each of the 3 terms in the second expression gives 2 Γ— 3 = 6 terms. Simplify your answer by collecting like terms.2 Expand and simplify if possible: a 9(x βˆ’ 2) b x(x + 9) c βˆ’3y (4 βˆ’ 3y) d x(y + 5) e βˆ’x(3 x + 5) f βˆ’5x (4x + 1) g (4x + 5)x h βˆ’3y (5 βˆ’ 2y2) i βˆ’2x (5x βˆ’ 4) j (3x βˆ’ 5)x2 k 3(x + 2) + (x βˆ’ 7) l 5x βˆ’ 6 βˆ’ (3x βˆ’ 2) m 4(c + 3d 2) βˆ’ 3(2c + d 2) n (r2 + 3t2 + 9) βˆ’ (2r2 + 3t2 βˆ’ 4) o x(3x2 βˆ’ 2x + 5) p 7y2(2 βˆ’ 5y + 3y2) q βˆ’2y2(5 βˆ’ 7y + 3y2) r 7(x βˆ’ 2) + 3(x + 4) βˆ’ 6(x βˆ’ 2) s 5x βˆ’ 3(4 βˆ’ 2x) + 6 t 3x2 βˆ’ x(3 βˆ’ 4x) + 7 u 4x( x + 3) βˆ’ 2x(3x βˆ’ 7) v 3x2(2x + 1) βˆ’ 5x2(3x βˆ’ 4) 3 Simplify these fractions: a 6 x 4 + 10 x 6 _________ 2x b 3 x 5 βˆ’ x 7 _______ x c 2 x 4 βˆ’ 4 x 2 ________ 4x d 8 x 3 + 5x ________ 2x e 7 x 7 + 5 x 2 ________ 5x f 9 x 5 βˆ’ 5 x 3 ________ 3x a (x + 5)(x + 2) = x2 + 2x + 5 x + 10 = x2 + 7x + 10 b (x βˆ’ 2y)(x2 + 1) = x3 + x βˆ’ 2x2y βˆ’ 2 yExample 4 Expand these expressions and simplify if possible: a (x + 5)(x + 2) b (x βˆ’ 2y)(x2 + 1) c (x βˆ’ y)2 d (x + y)(3x βˆ’ 2y βˆ’ 4) Multiply x by (x + 2) and then multiply 5 by (x + 2). Simplify your answer by collecting like terms. βˆ’2y Γ— x2 = βˆ’2x2y There are no like terms to collect.
[ -0.06958398222923279, 0.04130092263221741, 0.014117943122982979, -0.027454771101474762, -0.016314055770635605, 0.07407425343990326, 0.05066818743944168, -0.041329819709062576, -0.00023953552590683103, 0.06338217109441757, -0.0230973232537508, -0.06870998442173004, 0.01709219068288803, 0.00438944436609745, -0.003692110301926732, -0.006350250449031591, -0.03896801918745041, 0.068571075797081, -0.07532839477062225, -0.013104451820254326, 0.10006146878004074, -0.022417915984988213, -0.03980335220694542, -0.006348673719912767, 0.03206590190529823, -0.007295501418411732, -0.03607826679944992, -0.05170546844601631, 0.026057235896587372, -0.06013723090291023, 0.07185913622379303, -0.015059316530823708, 0.05855674296617508, -0.05135418102145195, 0.01672988571226597, 0.0009945349302142859, 0.04079873859882355, 0.019799239933490753, 0.01876603253185749, -0.006505136843770742, 0.04064192622900009, -0.003441069507971406, -0.005232266150414944, -0.03824319317936897, -0.04793413355946541, -0.07509376108646393, -0.053225077688694, -0.05117899179458618, 0.01778595522046089, -0.05118979141116142, -0.016079887747764587, -0.01790374517440796, -0.013481505215168, 0.007763228379189968, -0.05111878737807274, -0.010412356816232204, -0.026172734797000885, 0.05785008892416954, 0.027269551530480385, 0.02922366000711918, -0.04010055959224701, -0.00205258559435606, -0.026565374806523323, 0.05781776085495949, -0.04769998416304588, -0.008473457768559456, -0.04938158020377159, -0.049060169607400894, 0.012595811858773232, 0.009920299053192139, -0.13374710083007812, -0.08709700405597687, -0.032208751887083054, -0.007906638085842133, 0.09070754051208496, 0.07166711241006851, -0.02434460259974003, 0.016920462250709534, 0.012944107875227928, -0.07374803721904755, 0.02216983400285244, 0.06233806535601616, 0.08071628957986832, -0.0019190860912203789, 0.058315347880125046, -0.0816112831234932, 0.02568906545639038, -0.04841873049736023, 0.05109409987926483, -0.017790069803595543, 0.07093711942434311, -0.0881885513663292, -0.030876539647579193, -0.03374221548438072, 0.07552552968263626, -0.007974887266755104, 0.05480361357331276, -0.08594575524330139, 0.08402556926012039, 0.0968719944357872, 0.021537503227591515, -0.024284575134515762, -0.05486061051487923, -0.10151565819978714, -0.09616018086671829, -0.05147485435009003, 0.056132879108190536, 0.006534014828503132, 0.0703815445303917, -0.0603364035487175, -0.06006868556141853, -0.017997102811932564, 0.02702438086271286, 0.006732474081218243, -0.0109058553352952, -0.08595137298107147, 0.12010149657726288, -0.0033192012924700975, -0.00339457206428051, 0.002314301673322916, -0.011971628293395042, -0.005015525035560131, 0.06400775164365768, 0.03384598344564438, -0.0018804935971274972, -0.0014876407803967595, 0.07297451049089432, 0.009348621591925621, -0.00045153364771977067, -0.0508357509970665, -0.051978833973407745, 0.014362774789333344, 0.002189838094636798, 0.033368028700351715, 0.035686101764440536, -0.08887235820293427, -0.09075077623128891, 0.011688992381095886, -0.06785649061203003, -0.012521473690867424, 0.011263249441981316, 0.05421536788344383, 0.012040273286402225, 0.005893371067941189, 0.015420579351484776, 0.025675637647509575, 0.025522930547595024, -0.030788391828536987, 0.061974138021469116, 0.07380389422178268, 0.0015126258367672563, -0.05504845082759857, -0.025892194360494614, -0.026414142921566963, 0.05427895113825798, -0.0651007741689682, -0.04768983647227287, -0.0409369133412838, 0.0269409641623497, -0.0540178157389164, -0.04309401661157608, -0.04754478111863136, -0.06828110665082932, 0.076850026845932, 0.002149539301171899, -0.012964632362127304, -0.01597175933420658, 0.07467393577098846, -0.04679547995328903, -0.007135595194995403, 0.028373096138238907, 0.030340438708662987, -0.027532389387488365, 0.10002629458904266, -0.014636478386819363, 0.030064357444643974, 0.025980880483984947, -0.04232793301343918, -0.08845329284667969, 0.07493141293525696, 0.038698721677064896, -0.013993607833981514, 0.006697332486510277, 0.06544122099876404, -0.013452878221869469, -0.05715228244662285, -0.1018906831741333, -0.017400814220309258, -0.1203632652759552, 0.07005090266466141, 0.07507193833589554, -0.04436975717544556, -0.028323018923401833, 0.0024666409008204937, -0.03359497711062431, 0.02529691345989704, 0.01199344452470541, -0.01571970246732235, -0.04269074276089668, 0.009662216529250145, 0.023388836532831192, -0.009524492546916008, 0.07749643921852112, -0.02750215493142605, -0.00036041572457179427, -0.007307806517928839, -0.03978179767727852, -0.0524560920894146, 0.022533606737852097, 0.0745013952255249, 0.06291096657514572, 0.0541372112929821, 0.02701539173722267, 0.010266799479722977, 0.03526604548096657, -0.019679682329297066, 0.07711769640445709, -0.021977709606289864, -0.06791150569915771, 0.02115461230278015, -0.07677312940359116, -0.060022126883268356, 0.044948142021894455, -1.6722739857167285e-32, -0.01432250626385212, 0.01955193653702736, -0.01140526682138443, -0.15932977199554443, 0.019752318039536476, -0.11138874292373657, -0.015686117112636566, -0.1378507763147354, 0.09080956876277924, 0.1186431348323822, -0.025571297854185104, -0.039712466299533844, -0.045786429196596146, 0.01619788259267807, -0.08112427592277527, -0.037120163440704346, 0.06796326488256454, 0.09300655871629715, 0.0031987738329917192, -0.053731586784124374, 0.03383886069059372, -0.05542315915226936, 0.0011317844036966562, 0.04642806202173233, -0.033962029963731766, 0.01037588994950056, 0.09767194092273712, -0.07161685824394226, 0.08430100977420807, 0.08290651440620422, -0.0193472933024168, -0.051025617867708206, 0.020982498303055763, 0.10370980203151703, 0.022343024611473083, -0.06257496029138565, -0.002380479359999299, 0.013789947144687176, 0.027274494990706444, -0.06030121445655823, 0.04523639380931854, -0.0013401005417108536, 0.0034736436791718006, -0.0774519219994545, 0.0056642573326826096, 0.0035244568716734648, 0.035627298057079315, 0.05422637239098549, -0.03870310261845589, -0.06409526616334915, -0.03000968135893345, -0.07013234496116638, -0.071229949593544, -0.004499767441302538, -0.04270923137664795, 0.021842459216713905, 0.11423417925834656, -0.00037429199437610805, 0.04872043430805206, 0.018486175686120987, -0.05014253035187721, 0.000902585918083787, 0.04307412728667259, 0.01904408633708954, -0.009448811411857605, 0.03303030505776405, 0.007112292572855949, -0.02914440631866455, -0.0009759292006492615, -0.028203949332237244, -0.08602467179298401, 0.07642307132482529, -0.057291530072689056, -0.03347867354750633, 0.00801158882677555, 0.010230086743831635, -0.07187991589307785, 0.04110999032855034, -0.028851695358753204, -0.062065575271844864, 0.005347185302525759, -0.05182905122637749, 0.011402096599340439, -0.02490290440618992, -0.1680552214384079, 0.025846702978014946, 0.07429201900959015, 0.11834350228309631, -0.045652493834495544, -0.06576449424028397, -0.06648830324411392, -0.04773164168000221, 0.036324601620435715, -0.08671139925718307, 0.03541140258312225, 9.839652963204932e-32, 0.01096189022064209, -0.014009286649525166, -0.01913098618388176, -0.03858070820569992, 0.06269218027591705, 0.05753939598798752, 0.09563268721103668, -0.01718391664326191, 0.09613063931465149, -0.07973091304302216, 0.02387816272675991, 0.009176123887300491, -0.028687719255685806, 0.06383965909481049, -0.06822578608989716, -0.05418634042143822, -0.07761108130216599, -0.08585168421268463, -0.03407103195786476, 0.009015815332531929, 0.008586202748119831, 0.024891123175621033, -0.02387867495417595, -0.0003653154126368463, -0.014328300952911377, 0.057204388082027435, -0.039622653275728226, -0.014582611620426178, -0.02695184201002121, 0.0056365360505878925, 0.056652963161468506, -0.050813186913728714, -0.02944987453520298, 0.002458760514855385, -0.01649562455713749, 0.030132096260786057, 0.09523285925388336, 0.09640568494796753, 0.010961569845676422, 0.06644529104232788, -0.010039689019322395, -0.06897818297147751, 0.037440571933984756, 0.01551778707653284, -0.010157597251236439, -0.018984677270054817, -0.031586598604917526, -0.0731772631406784, 0.017765240743756294, -0.05436425283551216, -0.046535830944776535, 0.10326892882585526, 0.04437749460339546, 0.013589146547019482, -0.03320726379752159, -0.030816340819001198, 0.02556172013282776, -0.026703212410211563, 0.046203602105379105, 0.01477200910449028, -0.05307415872812271, -0.02172992192208767, -0.025636976584792137, -0.001793578965589404 ]
5Algebraic expressions c (x βˆ’ y)2 = (x βˆ’ y)(x βˆ’ y) = x2 βˆ’ xy βˆ’ xy + y2 = x2 βˆ’ 2xy + y2 d (x + y)(3x βˆ’ 2 y βˆ’ 4) = x(3x – 2y – 4) + y (3x – 2 y – 4) = 3x2 βˆ’ 2xy βˆ’ 4 x + 3 xy βˆ’ 2 y2 βˆ’ 4y = 3x2 + xy βˆ’ 4 x βˆ’ 2 y2 βˆ’ 4y a x(2x + 3)(x βˆ’ 7) = (2x2 + 3 x)(x βˆ’ 7) = 2 x3 βˆ’ 14 x2 + 3 x2 βˆ’ 21x = 2 x3 βˆ’ 11 x2 βˆ’ 21x b x(5x βˆ’ 3y)(2x βˆ’ y + 4) = (5x2 βˆ’ 3 xy)(2x βˆ’ y + 4) = 5x2(2x – y + 4) – 3 xy(2x – y + 4) = 10x3 βˆ’ 5 x2y + 20 x2 βˆ’ 6 x2y + 3 xy2 βˆ’ 12 xy = 10 x3 βˆ’ 11 x2y + 20 x2 + 3 xy2 βˆ’ 12 xy c (x βˆ’ 4)( x + 3)( x + 1) = (x2 βˆ’ x βˆ’ 12)( x + 1) = x2(x + 1) – x (x + 1) – 12( x + 1) = x3 + x2 βˆ’ x2 βˆ’ x βˆ’ 12 x βˆ’ 12 = x3 βˆ’ 13 x βˆ’ 12Example 5 Expand these expressions and simplify if possible: a x(2x + 3)(x βˆ’ 7) b x(5x βˆ’ 3y)(2x βˆ’ y + 4) c (x βˆ’ 4)(x + 3)(x + 1) Be careful with minus signs. You need to change every sign in the second pair of brackets when you multiply it out. Choose one pair of brackets to expand first, for example: (x – 4)(x + 3) = x 2 + 3x – 4x – 12 = x2 – x – 12 You multiplied together three linear terms, so the final answer contains an x 3 term.–xy – xy = –2xy Multiply x by (3x βˆ’ 2y βˆ’ 4) and then multiply y by (3x βˆ’ 2y βˆ’ 4). Start by expanding one pair of brackets:x(2x + 3) = 2x 2 + 3x You could also have expanded the second pair of brackets first: (2x + 3)(x – 7) = 2x 2 – 11x – 21 Then multiply by x.(x βˆ’ y)2 means (x βˆ’ y) multiplied by itself. 1 Expand and simplify if possible: a (x + 4)(x + 7) b (x βˆ’ 3)(x + 2) c (x βˆ’ 2)2 d (x βˆ’ y)(2x + 3) e (x + 3y)(4x βˆ’ y) f (2x βˆ’ 4y)(3x + y) g (2x βˆ’ 3)(x βˆ’ 4) h (3x + 2y)2 i (2x + 8y)(2x + 3) j (x + 5)(2x + 3y βˆ’ 5) k (x βˆ’ 1)(3x βˆ’ 4y βˆ’ 5) l (x βˆ’ 4y)(2x + y + 5) m (x + 2y βˆ’ 1)(x + 3) n (2x + 2y + 3)(x + 6) o (4 βˆ’ y)(4y βˆ’ x + 3) p (4y + 5)(3x βˆ’ y + 2) q (5y βˆ’ 2x + 3)(x βˆ’ 4) r (4y βˆ’ x βˆ’ 2)(5 βˆ’ y)Exercise 1B
[ -0.02795177325606346, 0.04221849888563156, 0.028725972399115562, -0.033842090517282486, -0.08281520009040833, 0.0052421982400119305, 0.04036655277013779, -0.0967983603477478, -0.09548991173505783, 0.03975280374288559, -0.03204657882452011, -0.06335991621017456, 0.019244195893406868, 0.020372554659843445, 0.061943646520376205, -0.01208943035453558, -0.021637465804815292, -0.015516878105700016, -0.06827711313962936, -0.008443827740848064, 0.0453142374753952, -0.07202405482530594, -0.010773126035928726, 0.05465054512023926, 0.041612084954977036, -0.044888678938150406, -0.011754974722862244, -0.030329622328281403, -0.0718381255865097, -0.057028334587812424, 0.012927090749144554, -0.024992067366838455, 0.04817445948719978, -0.10216384381055832, 0.07379946112632751, 0.014701672829687595, 0.03079264424741268, 0.03635171800851822, 0.0018665054813027382, -0.017139684408903122, -0.03234277293086052, -0.037733521312475204, 0.01173228770494461, -0.003705365350469947, -0.07422297447919846, -0.024199802428483963, 0.02685028687119484, -0.0041193547658622265, 0.04079621657729149, -0.059011392295360565, 0.02478138729929924, -0.000405531725846231, -0.04743478447198868, 0.09430354088544846, 0.0678391084074974, -0.045341573655605316, 0.03874150663614273, 0.023453431203961372, 0.03089885599911213, 0.00599948363378644, -0.014637036249041557, 0.006468527484685183, -0.02448759227991104, 0.05278586968779564, -0.05054091289639473, 0.057738304138183594, 0.013435403816401958, -0.04075797647237778, 0.04215686768293381, -0.012899556197226048, -0.03268548101186752, -0.020026464015245438, -0.04617491364479065, -0.08511742204427719, 0.06549518555402756, -0.03953282907605171, -0.05052599310874939, -0.044692181050777435, 0.10292606800794601, -0.02261320687830448, 0.01129978895187378, -0.006525157485157251, 0.06991047412157059, 0.004989824257791042, 0.01426219753921032, -0.06025463715195656, 0.0019041268387809396, 0.04448391869664192, 0.0028472822159528732, 0.03490807116031647, 0.021904639899730682, -0.02501937933266163, -0.04694611579179764, -0.07287009805440903, -0.03941645100712776, -0.14243395626544952, 0.12874868512153625, -0.09498432278633118, -0.013094204477965832, 0.09671687334775925, 0.057391077280044556, 0.022885762155056, 0.017715824767947197, -0.08824925124645233, -0.006047928240150213, -0.061691779643297195, 0.08680743724107742, -0.017889225855469704, 0.027110600844025612, -0.05089804530143738, -0.023682832717895508, 0.016360372304916382, -0.00800289586186409, 0.029777875170111656, -0.043872419744729996, 0.048587407916784286, 0.0864420086145401, -0.030428068712353706, 0.08666356652975082, -0.061948262155056, -0.02290378324687481, -0.08231171220541, 0.02715909667313099, 0.018385201692581177, 0.005686392076313496, -0.05469715595245361, -0.05595213919878006, 0.03841915726661682, -0.0019275281811133027, -0.07977570593357086, 0.0008825113764032722, -0.007344833109527826, -0.04867333173751831, -0.040184833109378815, -0.020846623927354813, -0.04312996193766594, -0.05905092507600784, 0.07072336971759796, 0.008044295944273472, -0.03171893581748009, 0.014077316038310528, 0.053245242685079575, 0.07628399133682251, 0.03944301977753639, -0.06644417345523834, -0.009029197506606579, -0.01678701676428318, 0.016657525673508644, 0.0033851605840027332, 0.07749993354082108, 0.02693023346364498, -0.010613234713673592, -0.057467274367809296, 0.02827487513422966, 0.0721714049577713, -0.07321327924728394, -0.014832546003162861, -0.05838143453001976, 0.056339286267757416, -0.041652072221040726, 0.028614269569516182, -0.018309393897652626, 0.03267282247543335, 0.04488168656826019, 0.018524648621678352, 0.013177831657230854, 0.10851156711578369, 0.02675214782357216, 0.012170558795332909, -0.012386251240968704, -0.03948010876774788, 0.043625131249427795, -0.01361656840890646, 0.024375544860959053, 0.011371382512152195, -0.057689301669597626, 0.13436651229858398, -0.00539119029417634, -0.01912996731698513, 0.06845645606517792, 0.06003163382411003, -0.07634956389665604, -0.048562221229076385, 0.04184683784842491, 0.0007952689193189144, -0.05564041808247566, -0.0773732140660286, 0.012291363440454006, -0.10861270874738693, 0.042148854583501816, 0.01308266818523407, -0.11261915415525436, -0.06822726875543594, 0.020241357386112213, -0.09434419125318527, 0.05852096900343895, -0.03190354257822037, -0.021901054307818413, -0.0649571344256401, 0.02163613773882389, 0.04867452010512352, 0.08337697386741638, 0.07970458269119263, -0.04007384553551674, 0.02357851341366768, -0.06716089695692062, 0.01209344994276762, -0.13288365304470062, 0.006594034377485514, 0.07696495205163956, 0.05654319003224373, 0.0916474387049675, 0.04256635531783104, 0.05769828334450722, 0.03267783299088478, -0.08287246525287628, 0.10625803470611572, 0.04321327060461044, -0.05020298436284065, -0.013081583194434643, -0.06949418783187866, -0.06858813017606735, 0.04163774475455284, -1.5754446956828565e-32, -0.007306346669793129, -0.015030549839138985, -0.06231042370200157, -0.09640008956193924, -0.009928535670042038, -0.05232590436935425, 0.008366208523511887, -0.07004418224096298, 0.05919786915183067, 0.06558361649513245, 0.022234246134757996, 0.04574992135167122, -0.010015293024480343, 0.05745454505085945, -0.0022167053539305925, -0.06443024426698685, -0.05265556275844574, -0.014102610759437084, -0.008849823847413063, -0.022511526942253113, 0.04320906847715378, 0.0006780880503356457, -0.02923939749598503, 0.03804364427924156, -0.06122921407222748, -0.022473812103271484, 0.040059588849544525, -0.04542486369609833, 0.07983408868312836, 0.027471350505948067, -0.04162677004933357, -0.09746681153774261, 0.039512597024440765, 0.09595204144716263, 0.04162115231156349, -0.061113085597753525, -0.0003598307375796139, -0.026680640876293182, 0.04746302217245102, -0.016412148252129555, -0.02677828073501587, 0.02143256366252899, 0.0561569407582283, 0.014922857284545898, 0.03274683654308319, 0.026937836781144142, -0.004728065803647041, 0.11991199851036072, -0.02363388054072857, -0.04862084984779358, -0.07322011888027191, -0.10603346675634384, -0.07435139268636703, 0.013855685479938984, 0.04566946253180504, -0.035980939865112305, 0.07217536866664886, -0.02861565537750721, 0.05010795220732689, 0.03344119340181351, -0.03586893901228905, -0.1033734530210495, 0.031033573672175407, 0.003755932906642556, -0.006010482087731361, -0.024072518572211266, 0.016215577721595764, -0.051677923649549484, -0.040402770042419434, -0.025777852162718773, 0.04710889607667923, 0.06242213770747185, -0.13070900738239288, -0.04716194421052933, -0.06103331968188286, -0.048226334154605865, -0.06386777758598328, 0.041658174246549606, -0.01854102313518524, 0.018868831917643547, -0.034461744129657745, -0.0015652779256924987, 0.07476342469453812, -0.010471808724105358, -0.11153817921876907, -0.02992875687777996, 0.07475250214338303, 0.06519213318824768, -0.009786947630345821, 0.007582302670925856, 0.004014992155134678, 0.007057603448629379, 0.0565013661980629, -0.08225833624601364, 0.07430907338857651, 1.148418013945447e-31, -0.02170920930802822, -0.012290936894714832, -0.07279406487941742, -0.04041281342506409, -0.02489219419658184, -0.013906137086451054, 0.03202669695019722, -0.042350299656391144, 0.021692832931876183, -0.124973826110363, 0.0007790258387103677, 0.08167421072721481, -0.09530327469110489, 0.00756649998947978, -0.03443027660250664, 0.029500750824809074, -0.03374732658267021, 0.02296564355492592, -0.05755101144313812, 0.02345914952456951, -0.06504911184310913, -0.03566645830869675, -0.04864896833896637, -0.06028961390256882, -0.022620422765612602, 0.05309251695871353, -0.03146276995539665, -0.0067274076864123344, -0.056177057325839996, 0.005668402183800936, 0.06718689948320389, -0.020028257742524147, -0.06376538425683975, -0.03822990879416466, 0.06864244490861893, 0.04345531761646271, -0.0161899346858263, 0.07747329026460648, 0.030381130054593086, 0.08149397373199463, 0.05301579833030701, -0.047026582062244415, 0.0011118138208985329, 0.004140776116400957, 0.015438826754689217, -0.03625757247209549, -0.024299966171383858, -0.03989434242248535, 0.01947697252035141, -0.08291004598140717, -0.049408432096242905, 0.03755206987261772, 0.02416917122900486, 0.052762314677238464, -0.006454591639339924, -0.03929707407951355, 0.051903460174798965, 0.06844200193881989, -0.004716364201158285, 0.015151284635066986, -0.0125300707295537, 0.05193937197327614, -0.03175956383347511, 0.004924289416521788 ]
6 Chapter 1 1.3 Factorising You can write expressions as a product of their factors. β–  Factorising is the opposite of expanding brack ets.4x(2x + y) (x + 5)3 (x + 2y)(x – 5y)= 8x2 + 4xy = x3 + 15x2 + 75x + 125 = x2 – 3xy – 10y2Expanding brackets FactorisingExpand and simplify ( x + y )4. You can use the binomial expansion to expand ex pressions like ( x + y )4 quickly. β†’ Section 8.3LinksChallenge2 Expand and simplify if possible: a 5(x + 1)(x βˆ’ 4) b 7(x βˆ’ 2)(2x + 5) c 3(x βˆ’ 3)(x βˆ’ 3) d x(x βˆ’ y)(x + y) e x(2x + y)(3x + 4) f y(x βˆ’ 5)(x + 1) g y(3x βˆ’ 2y)(4x + 2) h y(7 βˆ’ x)(2x βˆ’ 5) i x(2x + y)(5x βˆ’ 2) j x(x + 2)(x + 3y βˆ’ 4) k y(2x + y βˆ’ 1)(x + 5) l y(3x + 2y βˆ’ 3)(2x + 1) m x(2x + 3)(x + y βˆ’ 5) n 2x (3x βˆ’ 1)(4x βˆ’ y βˆ’ 3) o 3x (x βˆ’ 2y)(2x + 3y + 5) p (x + 3)(x + 2)(x + 1) q (x + 2)(x βˆ’ 4)(x + 3) r (x + 3)(x βˆ’ 1)(x βˆ’ 5) s (x βˆ’ 5)(x βˆ’ 4)(x βˆ’ 3) t (2x + 1)(x βˆ’ 2)(x + 1) u (2x + 3)(3x βˆ’ 1)(x + 2) v (3x βˆ’ 2)(2x + 1)(3x βˆ’ 2) w (x + y)(x βˆ’ y)(x βˆ’ 1) x (2x βˆ’ 3y)3 3 The diagram shows a rectangle with a square cut out. The rectangle has length 3 x βˆ’ y + 4 and width x + 7. The square has length x βˆ’ 2.Find an expanded and simplified expression for the shaded area. x – 2x + 7 3x – y + 4 4 A cuboid has dimensions x + 2 cm, 2x βˆ’ 1 cm and 2x + 3 cm. Show tha t the volume of the cuboid is 4x3 + 12x2 + 5x – 6 cm3. 5 Given tha t (2x + 5y)(3x βˆ’ y)(2x + y) = ax3 + bx2y + cxy2 + dy3, where a, b, c and d are constants, find the values of a, b, c and d. (2 marks)P Use the same strategy as you would use if the lengths were given as numbers: 3cm6cm 10cmProblem-solving P E/P
[ -0.040166813880205154, 0.04968535900115967, 0.07222872227430344, 0.014693714678287506, -0.020470233634114265, 0.06292809545993805, 0.010992651805281639, -0.07985684275627136, 0.007047095336019993, 0.024562876671552658, -0.060797128826379776, -0.06879173219203949, 0.0034833953250199556, 0.033548641949892044, 0.03190777078270912, -0.006980429869145155, 0.0030779216904193163, 0.057862065732479095, -0.10496816039085388, -0.043935567140579224, 0.0451287180185318, -0.04732797294855118, -0.03507717698812485, -0.02653377316892147, 0.006250332575291395, 0.04004655033349991, -0.04174831137061119, -0.06288108974695206, 0.007466841023415327, -0.031855810433626175, 0.06690683960914612, 0.006474129855632782, 0.07236874848604202, -0.08537624031305313, 0.008053957484662533, 0.035815946757793427, 0.04567306116223335, 0.03363676369190216, -0.0037488562520593405, 0.050706516951322556, 0.022534718737006187, -0.009726221673190594, 0.009753071703016758, 0.021959224715828896, -0.012980268336832523, -0.07431571930646896, 0.028155270963907242, -0.020682698115706444, -0.016936104744672775, -0.07384051382541656, 0.01471144799143076, -0.02802916429936886, -0.05025629326701164, -0.011898821219801903, -0.00935348216444254, 0.013925875537097454, 0.012173885479569435, 0.07165475934743881, -0.08045665919780731, 0.0046667675487697124, 0.008540595881640911, 0.01911991834640503, -0.023096000775694847, 0.04740453511476517, -0.000659387034829706, -0.045561593025922775, -0.024516895413398743, -0.037633366882801056, -0.005881198216229677, 0.04873903468251228, -0.029459893703460693, -0.07243023812770844, 0.006320424377918243, 0.015498962253332138, 0.057779278606176376, 0.08488274365663528, -0.08911262452602386, -0.007630533538758755, 0.03461841866374016, -0.04162587225437164, 0.01430433988571167, 0.039009664207696915, 0.03996279835700989, -0.02343408204615116, 0.05386936664581299, -0.031158016994595528, 0.011596053838729858, 0.022755879908800125, 0.04626019299030304, 0.005137817468494177, -0.0026198942214250565, -0.06824428588151932, -0.013355692848563194, -0.06101140379905701, 0.043165385723114014, -0.06610732525587082, 0.06935128569602966, -0.04496253281831741, 0.01835605315864086, 0.023731840774416924, 0.050881560891866684, 0.010793004184961319, -0.05438865348696709, -0.13350893557071686, -0.08861245214939117, -0.006784654688090086, 0.015962472185492516, 0.016305014491081238, 0.04432915896177292, -0.0630878210067749, -0.128694549202919, 0.017476173117756844, 0.028118476271629333, -0.047792334109544754, -0.0697401762008667, -0.06460031867027283, 0.07753245532512665, -0.021574825048446655, 0.05764426290988922, -0.03432021290063858, -0.00964296143501997, -0.015420697629451752, 0.009423627518117428, 0.010472340509295464, 0.02475997433066368, -0.04386390000581741, 0.012373660691082478, -0.009435216896235943, 0.01876298524439335, -0.074711374938488, 0.03312939405441284, 0.039284005761146545, -0.0013670994667336345, 0.0679013580083847, -0.015259569510817528, -0.1100514605641365, -0.05558431148529053, 0.06769486516714096, -0.012305326759815216, 0.024357782676815987, 0.04387972503900528, 0.07042856514453888, 0.08985856920480728, 0.013801660388708115, -0.055333685129880905, -0.011130396276712418, 0.028665857389569283, 0.011068310588598251, 0.045353177934885025, 0.010576104745268822, -0.06915343552827835, -0.05479927733540535, -0.05581997334957123, -0.003527239663526416, 0.05158982798457146, -0.06392140686511993, 0.004378157667815685, -0.04356536641716957, -0.007812362629920244, 0.00652197515591979, -0.024693094193935394, 0.0033053874503821135, -0.09335940331220627, 0.037243474274873734, -0.039211150258779526, -0.0417010597884655, 0.025326116010546684, 0.10344574600458145, -0.025966480374336243, 0.013984648510813713, -0.005483701825141907, 0.026459241285920143, -0.05567843094468117, 0.07774175703525543, -0.023401722311973572, 0.001369214616715908, 0.03593522310256958, -0.0668778046965599, 0.032762330025434494, 0.05160917714238167, 0.08237839490175247, -0.03396371379494667, 0.016328884288668633, 0.07165925204753876, -0.024950111284852028, -0.07487384974956512, -0.028288215398788452, -0.05780533701181412, -0.04890579357743263, -0.035803209990262985, 0.04980381950736046, -0.07270120084285736, -0.07470648735761642, 0.026555662974715233, 0.04439333826303482, 0.06020817160606384, -0.039222970604896545, 0.013387830927968025, -0.026757484301924706, 0.022806428372859955, 0.041535552591085434, 0.08101878315210342, 0.08411423116922379, -0.07397850602865219, -0.0037898484151810408, 0.059466682374477386, -0.020125100389122963, -0.054755799472332, 0.05268879979848862, 0.1398221105337143, 0.05719715729355812, 0.04490234702825546, 0.03344176337122917, 0.06470049917697906, -0.013924896717071533, -0.0029827768448740244, 0.02975328266620636, 0.02895999327301979, -0.0635979101061821, -0.03641296178102493, 0.011761317029595375, -0.08413949608802795, 0.0331183560192585, -1.4055594603029363e-32, -0.06442949920892715, -0.03132282570004463, -0.037943460047245026, -0.0582101047039032, -0.029650578275322914, -0.1427004039287567, 0.035544708371162415, -0.14040353894233704, 0.14444555342197418, 0.07316440343856812, -0.03288983181118965, -0.04911187291145325, 0.017369896173477173, -0.008246351033449173, -0.0668352022767067, -0.04942779988050461, -0.04476665332913399, 0.07092612236738205, 0.008201123215258121, -0.0859956219792366, 0.015249721705913544, -0.09402149170637131, 0.011439526453614235, 0.04819200932979584, -0.07658680528402328, -0.011073455214500427, 0.03865232318639755, -0.02736470103263855, 0.08431888371706009, 0.07903195172548294, -0.0021056535188108683, -0.025688765570521355, -0.0008070892654359341, 0.08292993903160095, 0.020876269787549973, -0.08517814427614212, 0.018396727740764618, 0.0013423999771475792, 0.0730268657207489, -0.022675171494483948, 0.03720178082585335, -0.039471421390771866, 0.0003449228242971003, -0.032826587557792664, 0.023899463936686516, -0.011240716092288494, 0.016801554709672928, 0.02779792807996273, -0.07314583659172058, -0.041274845600128174, -0.050561390817165375, -0.08546458184719086, -0.10024506598711014, 0.055701710283756256, -0.08728070557117462, -0.003772762604057789, 0.1400538831949234, -0.021726349368691444, 0.014414461329579353, -0.059354014694690704, -0.05049677565693855, -0.044779110699892044, 0.04894821718335152, -0.0430847704410553, -0.01727772317826748, 0.032774168998003006, -0.027569536119699478, 0.009955385699868202, -0.0014604692114517093, -0.01427866518497467, 0.01792820729315281, 0.06411471217870712, -0.06446229666471481, 0.057404834777116776, 0.0016056395834311843, -0.050709981471300125, -0.031729117035865784, 0.019027600064873695, -0.04450010880827904, -0.01717054471373558, 0.08231619745492935, -0.06047862395644188, 0.010977517813444138, -0.019501712173223495, -0.13007138669490814, 0.010064061731100082, 0.08197642117738724, 0.08565234392881393, -0.067923903465271, -0.04167310148477554, -0.07846126705408096, -0.06440721452236176, 0.09223313629627228, -0.0908660888671875, 0.016050847247242928, 1.0750904412422825e-31, 0.031080570071935654, -0.013714928179979324, -0.0331295020878315, 0.013776182197034359, 0.06501425057649612, 0.012355290353298187, 0.06800244003534317, 0.007064954377710819, 0.0554809533059597, -0.12536165118217468, 0.020819855853915215, 0.024406222626566887, 0.033491529524326324, 0.013386795297265053, -0.03834608942270279, -0.0412154346704483, -0.0007738726562820375, -0.009286368265748024, -0.08705170452594757, 0.021020054817199707, -0.03685817867517471, 0.03193719685077667, -0.008097844198346138, 0.05551948770880699, -0.04423735290765762, 0.017509566619992256, -0.0014474053168669343, -0.03275328502058983, -0.009692317806184292, -0.027083223685622215, 0.042256128042936325, -0.004751900676637888, -0.04964777082204819, -0.0053024934604763985, -0.049722302705049515, 0.1194283589720726, 0.05860229581594467, 0.15286533534526825, -0.06160963326692581, 0.06627313047647476, -0.030363667756319046, -0.13275974988937378, 0.03782713785767555, 0.021286245435476303, -0.002532518468797207, -0.06261369585990906, -0.009886913932859898, -0.03904180973768234, 0.011538498103618622, -0.00964819174259901, 0.006331210024654865, 0.023386960849165916, 0.07202037423849106, 0.027451371774077415, -0.05796551704406738, -0.014576931484043598, -0.012332885526120663, 0.00578264007344842, 0.006929451134055853, 0.006953265983611345, -0.06608600169420242, 0.003819134784862399, 0.03833566978573799, -0.041686251759529114 ]
7Algebraic expressions An ex pression in the form x2 – y2 is called the difference of two squares.Notation= (x + 3)(2x – 1)β–  A quadratic expression has the form ax2 + bx + c where a, b and c are real numbers and a β‰  0. To factorise a quadratic expression: β€’Find two fact ors of ac that add up to b β€’Rewrite the b term as a sum of these two factors β€’Factorise each p air of terms β€’Take out the c ommon factor β–  x2 βˆ’ y2 = (x + y)(x βˆ’ y)a 3x + 9 = 3( x + 3) b x2 βˆ’ 5 x = x(x βˆ’ 5) c 8x2 + 20 x = 4 x(2x + 5) d 9x2y + 15 xy2 = 3 xy(3x + 5 y) e 3x2 βˆ’ 9 xy = 3 x(x βˆ’ 3 y)Example 6 Factorise these expressions completely: a 3x + 9 b x2 βˆ’ 5 x c 8x2 + 20x d 9x2y + 15xy2 e 3x2 – 9xy 3 is a common factor of 3x and 9. For the expression 2x2 + 5x – 3, ac = –6 = –1 Γ— 6 and –1 + 6 = 5 = b. 2x2 – x + 6x – 3 = x(2x – 1) + 3(2x – 1)x is a common factor of x2 and –5x. 4 and x are common factors of 8x2 and 20x. So take 4x outside the brackets. 3, x and y are common factors of 9x2y and 15xy2. So take 3xy outside the brackets. x and –3y have no common factors so this expression is completely factorised. Real n umbers are all the positive and negative numbers, or zero, including fractions and surds.Notation Example 7 Factorise: a x2Β βˆ’Β 5xΒ βˆ’Β 6 b x2Β +Β 6xΒ +Β 8 c 6x2Β βˆ’Β 11xΒ βˆ’Β 10 d x2Β βˆ’Β 25 e 4x2Β βˆ’Β 9y2 a x2 βˆ’ 5 x βˆ’ 6 ac = βˆ’6 and b = βˆ’ 5 So x2 βˆ’ 5 x βˆ’ 6  x2 + x βˆ’ 6 x βˆ’ 6 = x(x + 1) βˆ’ 6( x + 1) = (x + 1)( x βˆ’ 6)Here aΒ =Β 1, bΒ =Β βˆ’ 5 and cΒ =Β βˆ’ 6. 1 Work out the two factors of ac =Β βˆ’ 6 which add t o give you bΒ =Β βˆ’5. βˆ’6 + 1Β =Β βˆ’5 2 Rewrite the b term using these two factors. 3 Factorise first two terms and last two terms. 4 xΒ + 1 is a factor of both terms, so take that outside the brackets. This is now completely factorised.
[ -0.009509725496172905, 0.10108181089162827, 0.004270889796316624, 0.007214569952338934, -0.037485163658857346, 0.0566447414457798, -0.03139231353998184, -0.07215012609958649, -0.026578273624181747, -0.004736719653010368, -0.023380352184176445, -0.04062366858124733, 0.0017067048465833068, 0.010336294770240784, 0.11363238096237183, -0.0002849849406629801, -0.031959861516952515, -0.00044707191409543157, -0.04606156796216965, -0.043825335800647736, 0.11850715428590775, -0.08920035511255264, -0.0809294804930687, 0.025427190586924553, 0.05870790034532547, 0.016033882275223732, 0.005917149130254984, -0.02841479331254959, 0.014430812560021877, 0.02315579541027546, -0.0140268849208951, 0.0531696192920208, 0.06861697882413864, -0.05558406561613083, 0.09885318577289581, -0.03624904155731201, 0.08030768483877182, -0.0033585582859814167, -0.05154961720108986, -0.03479614108800888, -0.045447275042533875, -0.015507116913795471, -0.017666181549429893, 0.023817267268896103, -0.0211408119648695, -0.03208471089601517, 0.03249955549836159, -0.04419422149658203, 0.05279798433184624, -0.041875917464494705, 0.004677856806665659, 0.026060182601213455, -0.10082466155290604, 0.020690742880105972, -0.01140337623655796, -0.04365915805101395, -0.025180969387292862, 0.04547307267785072, -0.02631218731403351, -0.02050597406923771, -0.021682899445295334, -0.022591935470700264, 0.013390612788498402, 0.04673148691654205, -0.0031828810460865498, -0.009743637405335903, -0.022717781364917755, -0.014253851026296616, 0.05869331210851669, 0.04339078813791275, -0.006380861159414053, 0.018755776807665825, 0.01635431870818138, 0.006988896988332272, 0.019097181037068367, 0.018385685980319977, -0.07119040191173553, -0.011886200867593288, 0.12755316495895386, 0.021480519324541092, 0.007834125310182571, -0.017712794244289398, 0.051569242030382156, 0.02531815506517887, -0.03603431582450867, -0.061105500906705856, 0.06547100096940994, 0.002240738132968545, 0.015113556757569313, -0.00936915259808302, 0.03809015452861786, -0.01924845762550831, -0.02262387052178383, -0.07340183109045029, -0.00306135811842978, -0.09968080371618271, 0.04177785664796829, -0.031460512429475784, 0.05757613852620125, 0.05675439536571503, 0.06925371289253235, -0.03551715612411499, -0.022591738030314445, -0.03645734861493111, -0.028222184628248215, -0.04788314551115036, 0.021612565964460373, -0.052785418927669525, 0.06815400719642639, -0.03918317332863808, -0.12226857244968414, -0.032349593937397, -0.016883619129657745, 0.026561034843325615, -0.023644307628273964, -0.020650187507271767, 0.1313454955816269, -0.05031526833772659, 0.13879504799842834, -0.104586161673069, 0.054973453283309937, -0.05631311610341072, 0.1226511001586914, -0.03744887188076973, 0.017107373103499413, -0.013001766987144947, -0.024190323427319527, 0.000571615993976593, -0.020362095907330513, -0.055281542241573334, 0.04778918996453285, 0.04842761158943176, -0.032543715089559555, -0.02939811535179615, 0.020801423117518425, -0.0857437252998352, -0.060687240213155746, 0.11233670264482498, -0.023294884711503983, 0.007046244107186794, 0.10430409014225006, 0.007713305298238993, 0.029607439413666725, 0.05298876762390137, -0.0559147484600544, -0.04042039066553116, 0.03444257751107216, -0.0033453735522925854, -0.028786875307559967, 0.0311171505600214, -0.02801928110420704, 0.01275731436908245, -0.03948219493031502, 0.029671592637896538, 0.09292995184659958, -0.06210993602871895, 0.031469061970710754, -0.07946550846099854, -0.00794075895100832, -0.014504742808640003, -0.05028948932886124, -0.030534842982888222, -0.050809867680072784, 0.029181692749261856, 0.027981873601675034, -0.005666723940521479, 0.024893203750252724, 0.0556238554418087, 0.058704402297735214, 0.0307004451751709, -0.043855369091033936, 0.05037405714392662, -0.0022130999714136124, -0.01262078620493412, 0.06525905430316925, -0.04383933171629906, 0.047707922756671906, -0.05300454795360565, 0.03549975901842117, 0.09914340823888779, 0.10499263554811478, -0.020729906857013702, -0.025978058576583862, 0.014261743985116482, 0.03147060051560402, -0.08073557168245316, -0.021723512560129166, 0.002085196552798152, -0.01126227155327797, 0.0007842471241019666, 0.0542139895260334, -0.07939383387565613, -0.0782330334186554, 0.05624621734023094, -0.05014219507575035, 0.008834263309836388, -0.06104765087366104, 0.009803357534110546, -0.13537625968456268, 0.013924832455813885, 0.05136383697390556, 0.07733302563428879, 0.031823836266994476, -0.06146402657032013, -0.020137516781687737, -0.00963932741433382, -0.0251846294850111, -0.09005704522132874, -0.04535236582159996, 0.033673614263534546, -0.033153630793094635, 0.0466904416680336, -0.007396115455776453, -0.005507204681634903, -0.0727696418762207, -0.100423164665699, 0.004284638445824385, 0.009512349031865597, -0.0656629279255867, 0.008398895151913166, -0.03185921162366867, -0.05192417651414871, 0.005984618328511715, -5.718874423640479e-33, -0.021353228017687798, -0.016870994120836258, -0.10223376005887985, 0.00260270107537508, -0.034709032624959946, -0.038751401007175446, 0.04175952821969986, -0.1104755848646164, 0.12629029154777527, 0.06392449885606766, -0.020167814567685127, 0.012149208225309849, 0.03433005511760712, -0.061121322214603424, -0.04261230304837227, -0.06253713369369507, -0.04602045565843582, -0.014643178321421146, -0.046151965856552124, -0.02462916634976864, 0.08082988113164902, 0.009626257233321667, 0.026069480925798416, 0.010368594899773598, -0.06535317748785019, -0.02928934432566166, 0.04206319525837898, -0.045739591121673584, 0.1274554580450058, 0.02498514950275421, -0.03461974859237671, -0.049519024789333344, 0.03899183124303818, 0.06016109883785248, -0.029946794733405113, -0.026279479265213013, -0.003394985804334283, -0.029628565534949303, -0.020893877372145653, -0.05300517752766609, 0.03476966917514801, -0.0022761726286262274, 0.1549016386270523, 0.061952948570251465, 0.009542109444737434, 0.024199552834033966, -0.019403671845793724, 0.13486309349536896, -0.035762086510658264, 0.006286219693720341, -0.09331050515174866, -0.08897274732589722, -0.0753454864025116, 0.018997250124812126, -0.0022288882173597813, -0.0012506209313869476, 0.01443841215223074, -0.05887199938297272, -0.0023220337461680174, -0.07296162098646164, 0.004180856514722109, -0.03844606876373291, 0.0188441164791584, 0.07064119726419449, 0.03773785009980202, 0.06837617605924606, -0.002086901105940342, 0.014347019605338573, 0.008755111135542393, -0.006523404270410538, 0.060731250792741776, 0.04649055004119873, -0.12542621791362762, 0.010400120168924332, -0.07604780048131943, -0.02420569211244583, -0.04984256997704506, 0.04970616474747658, -0.03156118094921112, -0.01852516084909439, 0.04290217533707619, 0.04508763179183006, 0.025309011340141296, -0.10232442617416382, -0.08852594345808029, 0.008978494442999363, 0.08042874187231064, 0.07379166036844254, -0.06318424642086029, -0.07242636382579803, 0.011239180341362953, 0.0007071108557283878, 0.01722494699060917, -0.10115691274404526, 0.068915955722332, 8.054969244518151e-32, 0.02949598617851734, 0.02950911968946457, -0.02542518451809883, -0.012200340628623962, -0.05404828488826752, 0.009925905615091324, 0.02104354090988636, -0.007382448762655258, 0.01980804093182087, -0.11905606091022491, -0.012302636168897152, 0.05866092070937157, 0.02372293919324875, 0.040925268083810806, -0.092166468501091, 0.030598407611250877, -0.011196515522897243, 0.05128234624862671, -0.016152886673808098, 0.02656552381813526, -0.054746363312006, -0.009270324371755123, -0.07134142518043518, 0.06562343239784241, 0.01789608970284462, 0.018860766664147377, -0.046008311212062836, 0.050513312220573425, -0.05466790497303009, -0.026198599487543106, 0.0749790295958519, 0.05571383982896805, -0.017284702509641647, -0.027031907811760902, 0.04292077198624611, 0.0661478042602539, 0.04016312211751938, -0.009623995050787926, 0.044787656515836716, 0.018306920304894447, 0.03075409308075905, -0.0738309919834137, 0.0011666244827210903, 0.04060535132884979, 0.030407683923840523, 0.027164800092577934, -0.0311365257948637, -0.05029960721731186, 0.04827522486448288, -0.0697794184088707, -0.021082812920212746, 0.012328486889600754, 0.07846565544605255, 0.06130621209740639, -0.015741880983114243, -0.12175798416137695, -0.0453181192278862, -0.014929677359759808, 0.03182036057114601, -0.028309429064393044, -0.04845263063907623, 0.04890340194106102, -0.008642401546239853, -0.01327578630298376 ]
8 Chapter 1 Example 8 Factorise completely: a x3 – 2x2 b x3 βˆ’ 25x c x3 + 3x2 βˆ’ 10xb x2 + 6 x + 8 = x2 + 2 x + 4 x + 8 = x(x + 2) + 4( x + 2) = (x + 2)( x + 4) c 6x2 βˆ’ 11 x βˆ’ 10 = 6x2 βˆ’ 15 x + 4 x βˆ’ 10 = 3x(2x βˆ’ 5) + 2(2 x βˆ’ 5) = (2 x βˆ’ 5)(3 x + 2) d x2 βˆ’ 25 = x2 βˆ’ 52 = (x + 5)( x βˆ’ 5) e 4x2 βˆ’ 9 y2 = 22x2 βˆ’ 32y2 = (2 x + 3y)(2x βˆ’ 3 y) a x3 – 2x2 = x2(x – 2) b x3 βˆ’ 25 x = x(x2 βˆ’ 25) = x(x2 βˆ’ 52) = x(x + 5)( x βˆ’ 5) c x3 + 3 x2 βˆ’ 10x = x (x2 + 3 x βˆ’ 10) = x(x + 5)( x βˆ’ 2) 1 Factorise these expressions completely:a 4x + 8 b 6x βˆ’ 24 c 20x + 15 d 2x2 + 4 e 4x2 + 20 f 6x2 βˆ’ 18x g x2 βˆ’ 7x h 2x2 + 4x i 3x2 βˆ’ x j 6x2 βˆ’ 2x k 10y2 βˆ’ 5y l 35x2 βˆ’ 28x m x2 + 2x n 3y2 + 2y o 4x2 + 12x p 5y2 βˆ’ 20y q 9xy2 + 12x2y r 6abΒ βˆ’ 2ab2 s 5x2 βˆ’ 25xy t 12x2y ξ€± 8xy2 u 15y βˆ’ 20yz2 v 12x2 βˆ’ 30 w xy2 βˆ’ x2y x 12y2 βˆ’ 4yxExercise 1Cx2 βˆ’ 25 is the difference of two squares.This is the difference of two squares as the two terms are x2 and 52. The two x terms, 5x and βˆ’ 5x, cancel each other out.acΒ =Β βˆ’60 and 4Β βˆ’Β 15Β =Β βˆ’11Β =Β b. Factorise. This is the same as (2x)2Β βˆ’Β (3y)2. You can’t factorise this any further. x is a common factor of x3 and βˆ’25x. So take x outside the brackets. Write the expression as a product of x and a quadratic factor. Factorise the quadratic to get three linear factors.acΒ =Β 8 and 2Β +Β 4Β =Β 6Β =Β b. Factorise.
[ -0.03140981122851372, 0.08939728885889053, 0.0034476378932595253, -0.05997445434331894, 0.03819393739104271, 0.07588260620832443, -0.060193318873643875, -0.009052691049873829, -0.09045165777206421, 0.08356274664402008, 0.030681505799293518, -0.07013620436191559, 0.07631919533014297, -0.069104865193367, -0.0038022769149392843, -0.03740033134818077, -0.019205572083592415, 0.04644966125488281, -0.06252580881118774, -0.03285639360547066, 0.03255636617541313, -0.04009329900145531, -0.00847314391285181, -0.058702919632196426, 0.08788570016622543, -0.05383944883942604, 0.015072684735059738, -0.11629768460988998, -0.025101246312260628, -0.07638572156429291, -0.009642326273024082, 0.07307953387498856, 0.08514254540205002, 0.002229229314252734, 0.041194502264261246, 0.040019724518060684, 0.004476419184356928, 0.0369059219956398, -0.027432149276137352, -0.030478231608867645, -0.04760732129216194, 0.030093101784586906, -0.016848638653755188, 0.03477846458554268, 0.03564753383398056, -0.027928348630666733, 0.02789790742099285, -0.008361178450286388, 0.04136122390627861, -0.09493135660886765, 0.0008285745861940086, -0.026022223755717278, -0.003907144069671631, 0.03582170605659485, -0.02677193470299244, -0.006809568498283625, -0.08429338037967682, 0.07712412625551224, -0.017365816980600357, -0.02311016619205475, -0.043344397097826004, -0.07243560254573822, 0.010396359488368034, 0.058049652725458145, 0.04343488812446594, 0.05800681933760643, -0.04227032884955406, -0.09410601109266281, 0.018014486879110336, 0.009447951801121235, -0.04686904698610306, 0.02093929797410965, -0.013807987794280052, 0.011880266480147839, 0.07569881528615952, 0.03692717105150223, -0.02485332265496254, -0.05980823189020157, 0.02590883895754814, -0.0011445513227954507, 0.013132954016327858, -0.01854502409696579, 0.08697525411844254, 0.006723157130181789, 0.061752889305353165, -0.05503406003117561, 0.1217450350522995, 0.0009798690443858504, 0.04738498851656914, -0.08096619695425034, 0.031084135174751282, -0.012685705907642841, 0.016336921602487564, -0.03998984768986702, 0.0026430857833474874, -0.05594389885663986, -0.013987281359732151, -0.034680288285017014, 0.03134613484144211, 0.016742419451475143, 0.012469611130654812, 0.008516045287251472, -0.01288633607327938, -0.02027585171163082, -0.04110689461231232, -0.04884621873497963, -0.03536393120884895, -0.01506622601300478, 0.08044254779815674, -0.09397616982460022, -0.08670724183320999, -0.04949043691158295, -0.0017851664451882243, -0.026631511747837067, -0.013428916223347187, -0.10267777740955353, 0.0909188836812973, -0.009184692986309528, 0.04256594553589821, 0.019576840102672577, 0.015860499814152718, -0.07720372080802917, 0.052707597613334656, -0.03738059848546982, 0.002517768181860447, -0.008544241078197956, -0.007691010367125273, -0.014929158613085747, 0.002992484252899885, -0.12172231823205948, 0.03783677890896797, 0.004610596224665642, -0.061155907809734344, 0.011228812858462334, -0.04499822482466698, -0.10807189345359802, -0.06442823261022568, 0.07146201282739639, -0.009741167537868023, -0.010751740075647831, 0.01985897496342659, 0.09928740561008453, 0.039419203996658325, 0.05039764568209648, -0.01671786606311798, -0.04434295743703842, -0.05461820960044861, -0.044346705079078674, -0.002105065854266286, 0.07676348090171814, -0.0074170539155602455, -0.025192243978381157, -0.0392443910241127, 0.03292243927717209, 0.030582383275032043, -0.06360423564910889, 0.019366765394806862, -0.08538550138473511, -0.020444409921765327, -0.06848529726266861, -0.12309188395738602, 0.01002291589975357, -0.05600371211767197, 0.06739066541194916, -0.009755231440067291, -0.007226853631436825, 0.010517215356230736, 0.10705874860286713, -0.008271642960608006, -0.014034761115908623, 0.011256475932896137, -0.03882560133934021, 0.031115349382162094, 0.09084294736385345, 0.008354807272553444, -0.0210577342659235, 0.02213175594806671, 0.018085340037941933, 0.042841579765081406, 0.1177792102098465, 0.12140937149524689, 0.02956526353955269, -0.03648926317691803, 0.05710005387663841, -0.021635182201862335, 0.015151259489357471, 0.008787521161139011, 0.051429204642772675, 0.04155180603265762, -0.05001227557659149, 0.010622248984873295, -0.08103777468204498, -0.05986136198043823, 0.03192644938826561, -0.048543043434619904, -0.024671342223882675, 0.0013545857509598136, -0.09038769453763962, -0.11907228827476501, 0.00023313265410251915, 0.028529731556773186, 0.026168253272771835, 0.08818238973617554, -0.06304098665714264, -0.04952669516205788, 0.0034888756927102804, -0.05968021973967552, -0.02750737965106964, 0.024672172963619232, 0.07650890201330185, 0.004434574861079454, 0.02276284247636795, -0.014531434513628483, -0.019606826826930046, 0.05254131928086281, 0.024127807468175888, 0.052688732743263245, -0.1256566047668457, -0.009265189059078693, -0.04168526083230972, 0.042684156447649, -0.09312335401773453, 0.004933900199830532, -8.002431993876088e-33, -0.09015711396932602, -0.06308286637067795, -0.051979854702949524, -0.035096731036901474, 0.016051150858402252, -0.08210530132055283, 0.003921248484402895, -0.08938326686620712, 0.0943526104092598, 0.05609879642724991, 0.02310158871114254, -0.032394856214523315, -0.008312753401696682, 0.03652435541152954, -0.04687011241912842, -0.07076296955347061, -0.05792385712265968, 0.04149257764220238, 0.05804196372628212, -0.06616030633449554, -0.01945253647863865, 0.009135209023952484, 0.011293778195977211, 0.00404586223885417, 0.026395371183753014, -0.024690086022019386, 0.0300179123878479, -0.11941302567720413, 0.09146042168140411, 0.04631577432155609, -0.013343587517738342, -0.0681021586060524, 0.03454911708831787, 0.0630001500248909, -0.0227587278932333, -0.06280140578746796, -0.008339472115039825, 0.011209418997168541, -0.046045251190662384, -0.02425849810242653, 0.07616846263408661, -0.00907166302204132, 0.01693623699247837, 0.02857886627316475, -0.022025473415851593, 0.048634130507707596, 0.0011568287154659629, 0.03546834737062454, -0.003764770459383726, -0.007781469263136387, -0.0037752867210656404, -0.030476458370685577, -0.026550838723778725, 0.011447289027273655, -0.025905728340148926, 0.006620433181524277, 0.10595538467168808, 0.005232372786849737, 0.03839969262480736, 0.008303920738399029, -0.07893417030572891, 0.002163176191970706, 0.014880509115755558, 0.03620227053761482, -0.02216699719429016, 0.022960588335990906, -0.027483204379677773, 0.02157135121524334, -0.05356823280453682, 0.060728102922439575, -0.03957553952932358, 0.11152105033397675, -0.0673268586397171, 0.03983065485954285, 0.035611510276794434, 0.07573652267456055, -0.006112849805504084, 0.04419563338160515, -0.0639900341629982, -0.04113086313009262, -0.024792559444904327, -0.04504403844475746, -0.010662607848644257, -0.09388028085231781, -0.04675474017858505, -0.009167949669063091, 0.15074144303798676, 0.10151725262403488, 0.017770199105143547, -0.040947116911411285, 0.04126962646842003, -0.06740907579660416, 0.10464519262313843, -0.04629385471343994, 0.10666067153215408, 1.1033564959515903e-31, 0.006986203137785196, -0.03692349046468735, -0.10107725113630295, 0.03781908005475998, 0.009046792984008789, -0.024989129975438118, 0.01900164969265461, 0.007357021793723106, 0.00456070713698864, -0.07423152774572372, 0.06666120141744614, 0.060581307858228683, -0.01064228918403387, 0.04340353235602379, -0.04733264818787575, -0.019660254940390587, -0.06827406585216522, -0.04382485896348953, -0.0034320077393203974, 0.07599040865898132, 0.00665877852588892, 0.019419638440012932, -0.0434289388358593, -0.026063542813062668, 0.023077059537172318, 0.033163607120513916, -0.023444348946213722, 0.034821927547454834, 0.07631365954875946, 0.04497547447681427, 0.04999912157654762, -0.02778252214193344, -0.07265716791152954, -0.04191354289650917, -0.012474055401980877, 0.022260405123233795, 0.11659444868564606, 0.10026192665100098, -0.010205433703958988, -0.012860450893640518, -0.006502450909465551, -0.05092482268810272, -0.013455345295369625, -0.03953107073903084, -0.012430437840521336, -0.04515639692544937, -0.04040181264281273, 0.04607977345585823, 0.003962191753089428, -0.043883711099624634, -0.061917755752801895, 0.009356948547065258, 0.022802356630563736, -0.015635550022125244, 0.012219159863889217, -0.10035762935876846, -0.028050635010004044, -0.04596077278256416, 0.012968613766133785, -0.09131879359483719, 0.005697743501514196, 0.07343334704637527, -0.010082480497658253, 0.06186525523662567 ]
9Algebraic expressions Write 4x4 βˆ’ 13x2 + 9 as the product of four linear factors.Challenge2 Factorise: a x2 + 4x b 2x2 + 6x c x2 + 11x + 24 d x2 + 8x + 12 e x2 + 3xΒ βˆ’ 40 f x2 βˆ’ 8x + 12 g x2 + 5x + 6 h x2 βˆ’ 2xΒ βˆ’ 24 i x2 βˆ’ 3xΒ βˆ’ 10 j x2 +Β xΒ βˆ’ 20 k 2x2 + 5xΒ + 2 l 3x2 + 10x βˆ’ 8 m 5x2 βˆ’ 16xΒ + 3 n 6x2 βˆ’ 8x βˆ’ 8 o 2x2 + 7xΒ βˆ’ 15 p 2x4 + 14x2 + 24 q x2 βˆ’ 4 r x2 βˆ’ 49 s 4x2 βˆ’ 25 t 9x2 βˆ’ 25y2 u 36x2 βˆ’ 4 v 2x2 βˆ’ 50 w 6x2 βˆ’ 10xΒ + 4 x 15x2 + 42xΒ βˆ’ 9 3 Factorise completely:a x3 + 2x b x3 βˆ’ x2 + x c x3 βˆ’ 5x d x3 βˆ’ 9x e x3 βˆ’ x2 βˆ’ 12x f x3 + 11x2 + 30x g x3 βˆ’ 7x2 + 6x h x3 βˆ’ 64x i 2x3 βˆ’ 5x2 βˆ’ 3x j 2x3 + 13x2 + 15x k x3 βˆ’ 4x l 3x3 + 27x2 + 60x 4 Factorise completel y x4 βˆ’ y4. (2 marks) 5 Factorise completel y 6x3 + 7x2 βˆ’ 5x. (2 marks) For part n , ta ke 2 out as a common factor first. For part p , let yΒ =Β x2.Hint Watch out for terms that can be written as a function of a function: x4 = (x2)2Problem-solving P E 1.4 Negative and fractional indic es Indices can be negative numbers or fractions. x 1 _ 2 Γ— x 1 _ 2 = x 1 _ 2 + 1 _ 2 = x 1 = x, similarly x 1 __ n Γ— x 1 __ n Γ— . . . Γ— x 1 __ n = x 1 __ n + 1 __ n +...+ 1 __ n = x 1 = x n terms β–  You can use the laws of indices with any rational power. β€’ a 1 __ m = m βˆšβ€―__ a β€’ a n __ m = m βˆšβ€―___ a n β€’ a βˆ’m = 1 ___ a m β€’ a 0 = 1 ⎫ βŽͺβŽͺ⎬βŽͺβŽͺ⎭ Ratio nal numbers are those that can be written as a __ b where a and b are integers.Notation a 1 _ 2 = βˆšβ€―__ a is the positive square root of a . For example 9 1 _ 2 = βˆšβ€―__ 9 = 3 but 9 1 _ 2 β‰  βˆ’3 .Notation
[ -0.006527918856590986, 0.12704862654209137, -0.013633491471409798, -0.02474166266620159, -0.008003801107406616, -0.05678652226924896, -0.045383717864751816, -0.0665820762515068, -0.05042552575469017, 0.031354621052742004, -0.07400527596473694, -0.11872166395187378, -0.039546217769384384, 0.020131956785917282, -0.007070524618029594, -0.04442013055086136, -0.03932756558060646, 0.07595225423574448, -0.09360068291425705, 0.003914757631719112, 0.08475098758935928, -0.11320021748542786, 0.010731063783168793, -0.012338262051343918, 0.058468956500291824, -0.029294686391949654, -0.011946451850235462, -0.0697731301188469, 0.01851293072104454, -0.01146312989294529, 0.030559899285435677, 0.046905964612960815, 0.1329599916934967, 0.0002114483795594424, 0.03643547743558884, 0.043884288519620895, 0.016552206128835678, 0.05232476815581322, -0.020131541416049004, -0.02079305425286293, -0.034229155629873276, -0.01594497635960579, -0.032140087336301804, -0.018797757104039192, 0.03156489133834839, -0.12531419098377228, 0.06693769991397858, 0.06158200278878212, 0.06746575236320496, -0.07204876095056534, 0.07097727060317993, -0.0413391999900341, -0.04256747290492058, 0.07506176084280014, 0.0374910943210125, -0.04873093217611313, -0.008783487603068352, 0.09831272065639496, 0.05967756360769272, -0.04462035745382309, -0.028934575617313385, -0.07753307372331619, -0.01091474387794733, 0.054715596139431, -0.038486432284116745, 0.01422900427132845, -0.09720258414745331, -0.019235437735915184, 0.007749724201858044, -0.01824495568871498, -0.003005172125995159, 0.006200671661645174, -0.00006972491246415302, -0.04596159979701042, 0.035276930779218674, 0.038946669548749924, -0.010454528033733368, -0.04776397719979286, 0.04281863570213318, -0.044652059674263, 0.021934743970632553, 0.0020136279053986073, 0.06080535426735878, -0.01547784823924303, 0.0287020206451416, 0.01808498054742813, 0.09551675617694855, 0.05435661971569061, 0.05748091638088226, 0.002915628720074892, -0.023437565192580223, -0.02031528949737549, 0.011927508749067783, -0.03534378483891487, -0.04893272742629051, -0.07354176789522171, -0.036219775676727295, -0.03621796891093254, -0.06271526962518692, 0.08279544860124588, 0.0385882742702961, -0.01858672685921192, -0.06366139650344849, -0.04481960088014603, -0.03163529187440872, -0.011501770466566086, 0.021985309198498726, -0.013548403978347778, 0.0370500348508358, -0.05158839002251625, -0.057525377720594406, 0.027686424553394318, 0.004830023739486933, -0.03283967450261116, 0.00872599333524704, -0.03897137567400932, 0.07216007262468338, -0.0192671287804842, 0.011454911902546883, -0.048104628920555115, -0.015571480616927147, -0.025438375771045685, 0.07964705675840378, -0.029482131823897362, 0.06685914099216461, 0.015163969248533249, -0.07024502754211426, -0.015059402212500572, -0.0026080862153321505, -0.06892266124486923, 0.03214818611741066, 0.011348441243171692, 0.02137463353574276, 0.005531011614948511, -0.03589605167508125, -0.06125475838780403, -0.038968734443187714, 0.10749971121549606, -0.04371437430381775, -0.034977346658706665, 0.04711395874619484, 0.03737382963299751, 0.0287599116563797, 0.04711134359240532, -0.019540442153811455, -0.04588296264410019, 0.01913699507713318, -0.10246351361274719, -0.017883995547890663, 0.08420722931623459, 0.06388580799102783, -0.024444200098514557, -0.10810832679271698, 0.024459583684802055, 0.06322776526212692, -0.07609810680150986, -0.03425828367471695, -0.10703015327453613, -0.04419281706213951, -0.07323624938726425, -0.010696524754166603, -0.016210371628403664, 0.06234917417168617, 0.07381066679954529, 0.02639317698776722, 0.04798446595668793, -0.012913601472973824, 0.03899557515978813, -0.006331511773169041, 0.01133958250284195, 0.030374079942703247, 0.010874217376112938, 0.013667099177837372, 0.0021586776711046696, 0.06324626505374908, -0.04162083938717842, 0.01169859804213047, -0.04547417163848877, -0.037359848618507385, 0.13456162810325623, 0.07883787155151367, -0.00819212943315506, -0.04827379807829857, -0.034908752888441086, 0.02631464973092079, 0.020354527980089188, 0.07269477099180222, 0.04226084053516388, -0.10076580941677094, -0.12057989835739136, 0.06583882868289948, -0.023012589663267136, -0.0788324624300003, -0.03730708733201027, -0.09190905839204788, 0.03410732001066208, -0.08200787007808685, -0.019714314490556717, -0.06643948704004288, -0.01233238261193037, 0.06032600998878479, 0.0008653350523672998, 0.05901511013507843, -0.07395944744348526, 0.009893648326396942, 0.013408444821834564, 0.007537728175520897, -0.021794212982058525, 0.05424579605460167, 0.08021927624940872, -0.040929924696683884, 0.02691720612347126, 0.01689060591161251, 0.04604863375425339, 0.008575948886573315, -0.044245921075344086, 0.10278625786304474, -0.021810341626405716, 0.011131657287478447, -0.0832650363445282, -0.02088761515915394, -0.08856870979070663, 0.02686965838074684, -1.354548882949003e-32, -0.054098960012197495, -0.0528164766728878, -0.02397812157869339, -0.030213113874197006, 0.019351376220583916, -0.017960546538233757, 0.0318109355866909, -0.0637444332242012, 0.0982903316617012, 0.036426249891519547, 0.06485763937234879, -0.035804931074380875, 0.02411007694900036, -0.002027041045948863, -0.04781891033053398, -0.07688254117965698, -0.0607263445854187, 0.03958626091480255, 0.07106518745422363, -0.07787766307592392, 0.013670592568814754, 0.06311895698308945, 0.0007806305657140911, 0.044760752469301224, -0.027267983183264732, -0.008151072077453136, 0.023512747138738632, -0.06094813346862793, -0.009926620870828629, 0.018583722412586212, 0.040183451026678085, -0.04312673583626747, 0.0586247593164444, 0.05745500698685646, 0.05744878947734833, -0.028464170172810555, -0.01885894313454628, 0.016929278150200844, 0.018489575013518333, -0.02633710391819477, 0.056984491646289825, 0.05392391234636307, 0.02507646009325981, 0.026361072435975075, -0.03630346432328224, -0.0035707885399460793, 0.006023033522069454, 0.05839734151959419, 0.016293048858642578, -0.002191005740314722, -0.059942182153463364, -0.07874374836683273, -0.08215410262346268, -0.046935781836509705, -0.020311415195465088, 0.006619047839194536, 0.14418178796768188, -0.07059299945831299, 0.0381837822496891, 0.04100234434008598, -0.10932512581348419, -0.05600934103131294, 0.03354484215378761, 0.0038417258765548468, -0.007833532057702541, 0.026410991325974464, 0.010230590589344501, 0.021647891029715538, 0.015232747420668602, -0.01345091499388218, -0.043377529829740524, 0.12292373180389404, -0.14828917384147644, 0.057873956859111786, 0.018038427457213402, -0.07599892467260361, -0.009360010735690594, 0.0837668925523758, -0.07045667618513107, -0.0645173117518425, -0.028892992064356804, -0.030961448326706886, 0.03412814438343048, 0.003754280973225832, -0.03516082093119621, 0.015966925770044327, 0.07795488834381104, 0.08016270399093628, -0.030233239755034447, -0.038474977016448975, 0.07825227081775665, 0.05602341145277023, 0.009398295544087887, -0.044367626309394836, 0.06269887834787369, 1.0500130325090152e-31, 0.02191140688955784, 0.05802540481090546, -0.115666963160038, -0.05589957907795906, -0.00614233547821641, -0.01808236353099346, 0.055843424052000046, -0.05006200075149536, 0.02268298715353012, -0.10082840174436569, 0.058237407356500626, 0.029444413259625435, -0.048828110098838806, 0.014952464960515499, -0.0669650062918663, -0.02145576849579811, -0.04545110836625099, 0.016885900869965553, -0.014742407947778702, 0.01711258850991726, -0.0223811287432909, 0.012986182235181332, -0.034922633320093155, -0.010314174927771091, 0.03180934488773346, 0.06069374829530716, -0.012387275695800781, 0.01904057152569294, -0.05165398120880127, -0.04529190808534622, 0.07469383627176285, -0.045095644891262054, -0.026447653770446777, -0.03646247833967209, -0.011560363695025444, 0.05835140123963356, 0.06765963137149811, 0.0701414942741394, 0.013281297869980335, 0.044313304126262665, 0.06826300173997879, -0.06199970841407776, 0.014118473045527935, -0.024861667305231094, 0.02412319742143154, -0.039682503789663315, -0.018751224502921104, -0.03637474775314331, 0.04459432139992714, -0.023606665432453156, -0.06886538863182068, -0.06923600286245346, -0.008430616930127144, -0.020960571244359016, -0.038612402975559235, -0.022523317486047745, 0.041290998458862305, 0.027782388031482697, -0.08138466626405716, -0.09013080596923828, -0.01335575059056282, 0.031469348818063736, -0.04981575906276703, -0.04303491860628128 ]
10 Chapter 1 Example 9 Simplify: a x 3 ___ x βˆ’3 b x1 2 Γ— x32 c (x3)23 d 2x1.5Β Γ·Β 4xβˆ’0.25 e 3 βˆšβ€―______ 125 x 6 f 2 x 2 βˆ’ x _______ x 5 a x 3 ____ x βˆ’3 = x3 βˆ’ (βˆ’3) = x6 b x1 2 Γ— x3 2 = x1 2 ξ€±Β 32 = x2 c (x3)23 =Β x3 ξ€³Β 23 =Β x2 d 2x1.5  4 x–0.25 = 1 __ 2 x1.5 – (–0 .25) = 1 __ 2 x1.75 e 3 √ _____ 125 x 6 = ( 125 x6 ) 1 __ 3 = (12 5 ) 1 __ 3 (x6 ) 1 __ 3 = 3 βˆšβ€―_____ 125 ( x 6 Γ— 1 __ 3 ) = 5 x2 f 2 x 2 βˆ’ x ______ x 5 = 2 x 2 ____ x 5 βˆ’ x ___ x 5 = 2 Γ— x2 βˆ’ 5 – x1 – 5 = 2x–3 – x–4 = 2 ___ x 3 βˆ’ 1 ___ x 4 Use the rule amΒ Γ·Β anΒ =Β am βˆ’ n. Evaluate: a 9 1 _ 2 b 6 4 1 _ 3 c 4 9 3 _ 2 d 2 5 βˆ’ 3 _ 2 Example 10 a 9 1 __ 2 = βˆšβ€―__ 9 = 3 b 6 4 1 __ 3 = 3 βˆšβ€―___ 64 = 4 c 4 9 3 __ 2 = ( βˆšβ€―___ 49 ) 3 73 = 343 d 2 5 – 3 __ 2 = 1 ____ 2 5 3 __ 2 = 1 ______ ( βˆšβ€―___ 25 ) 3 = 1 ___ 53 = 1 _____ 125 Using a 1 __ m = m βˆšβ€―__ a . 9 1 _ 2 = βˆšβ€―__ 9 Using a n __ m = m βˆšβ€―__ an . This means the square root o f 49, cubed. Using aβˆ’m = 1 ___ am This could also be written as βˆšβ€―__ x . Use the rule amΒ Γ—Β anΒ =Β am + n. Use the rule (am)nΒ =Β amn. Use the rule amΒ Γ·Β anΒ =Β am βˆ’ n. 1.5Β βˆ’Β (βˆ’0.25)Β =Β 1.75 Using a 1 __ m = m βˆšβ€―__ a . Divide each term of the numerator by x5. Using a βˆ’m = 1 ___ a m This means the cube root of 64. Use your calculator to enter ne gative and fractional powers.Online
[ 0.0012006928445771337, 0.07275675982236862, 0.02219429239630699, -0.07081831991672516, -0.007893268950283527, 0.04595699906349182, 0.01653374917805195, -0.025362949818372726, -0.07866908609867096, 0.0866442546248436, -0.04205698147416115, -0.029072867706418037, 0.05228177085518837, -0.07409974187612534, -0.03485164791345596, -0.026161598041653633, -0.08974213153123856, 0.12637841701507568, -0.13320548832416534, -0.007612238638103008, 0.024505827575922012, -0.07527699321508408, -0.016726849600672722, -0.016942955553531647, 0.11248107999563217, 0.0029743395280092955, 0.02169600874185562, -0.054376520216464996, -0.07032939046621323, -0.139139786362648, 0.011713131330907345, 0.06067109853029251, 0.11652515828609467, -0.058248121291399, 0.005861049052327871, 0.005758277140557766, -0.005431385710835457, 0.03790279105305672, -0.031582433730363846, 0.019555646926164627, -0.04120176285505295, 0.08312835544347763, 0.0506097786128521, 0.03436220437288284, 0.03511589765548706, -0.026522260159254074, -0.03324465453624725, -0.020593443885445595, -0.01154673844575882, -0.06628967076539993, 0.03702152147889137, -0.031487852334976196, -0.07717609405517578, -0.02972009778022766, -0.04103393480181694, -0.12193376570940018, -0.0869356170296669, 0.04176078736782074, -0.04554339870810509, -0.04310076683759689, -0.019668247550725937, -0.0401654914021492, 0.0522836297750473, 0.04730615392327309, -0.03575724735856056, 0.04369312897324562, 0.0005765332607552409, -0.06217721849679947, -0.0217667818069458, 0.09900877624750137, -0.102043017745018, 0.03148364648222923, -0.06402590870857239, 0.00008762506331549957, 0.08803551644086838, -0.004214219283312559, -0.05244268476963043, -0.01946542225778103, -0.036425720900297165, -0.0026760140899568796, -0.04728659614920616, 0.036610059440135956, 0.10661182552576065, -0.011433962732553482, 0.06256472319364548, -0.04860007390379906, 0.09562370181083679, -0.029147831723093987, 0.041524115949869156, -0.033245500177145004, 0.016196317970752716, -0.03993632644414902, -0.04610380157828331, -0.024172907695174217, -0.0819520503282547, 0.004987175110727549, -0.0016868450911715627, -0.06904897838830948, 0.04274281859397888, 0.044342681765556335, 0.0527496263384819, 0.03863057494163513, 0.013474658131599426, 0.028802871704101562, -0.048686519265174866, -0.08578450232744217, 0.030763857066631317, -0.009473907761275768, 0.11821705847978592, -0.10729129612445831, -0.029078561812639236, -0.01399755384773016, -0.032343946397304535, -0.05189889296889305, -0.001075825421139598, -0.08329596370458603, 0.011361450888216496, 0.018126746639609337, 0.040323566645383835, -0.006720100529491901, 0.023733103647828102, -0.03253784403204918, 0.041541893035173416, 0.02231699973344803, 0.01061415858566761, 0.002589087700471282, -0.018626809120178223, 0.04209041967988014, -0.06887537986040115, -0.06185976043343544, -0.050295643508434296, -0.02900722809135914, -0.03874651715159416, 0.03622502088546753, -0.049846239387989044, -0.02043762244284153, -0.053620751947164536, 0.09577804803848267, -0.033222686499357224, 0.019055107608437538, 0.043722644448280334, 0.07139352709054947, 0.03952978923916817, 0.028005916625261307, 0.0096384696662426, -0.008611614815890789, -0.03674504905939102, -0.03751296550035477, 0.016640130430459976, 0.07505758851766586, 0.026270873844623566, 0.0030888060573488474, 0.04381079226732254, 0.06323804706335068, -0.0513828881084919, -0.04156581684947014, 0.015391809865832329, -0.054155655205249786, -0.005696367938071489, -0.04478565603494644, -0.0841493308544159, 0.04616471752524376, -0.04625852406024933, 0.057123564183712006, 0.03119475580751896, 0.02171468734741211, 0.031128615140914917, 0.030364129692316055, -0.05789773538708687, 0.009207898750901222, 0.04127943515777588, -0.0602261908352375, 0.07029636949300766, 0.08754205703735352, -0.012626410461962223, 0.017545461654663086, 0.07167884707450867, 0.017297321930527687, 0.010942679829895496, 0.0696374848484993, 0.11687424778938293, -0.019336670637130737, 0.015268571674823761, 0.034707989543676376, -0.036268118768930435, -0.03565150126814842, -0.04797732084989548, 0.02694918029010296, 0.013088972307741642, -0.03184123709797859, -0.004096062853932381, -0.04191393032670021, -0.021379897370934486, 0.025208113715052605, -0.07691662758588791, -0.04404136538505554, -0.0006956458673812449, -0.08404494822025299, -0.11376355588436127, 0.06951115280389786, 0.019827518612146378, -0.04392700269818306, 0.10930338501930237, -0.02978786639869213, -0.06938944011926651, 0.013761842623353004, -0.03460680693387985, -0.06945377588272095, 0.011968886479735374, 0.05575226619839668, -0.0856102779507637, -0.035165347158908844, -0.07562961429357529, -0.02995847351849079, 0.012146375142037868, -0.0022369767539203167, 0.04623992368578911, -0.04457050561904907, -0.0532396137714386, -0.013870329596102238, -0.028497379273176193, -0.03405286371707916, 0.025995615869760513, -1.2087844243059716e-32, -0.03469226136803627, 0.04684053733944893, -0.10916589945554733, -0.02096669375896454, 0.003878586459904909, -0.039613693952560425, 0.07762094587087631, -0.09491312503814697, 0.02204868011176586, 0.036019373685121536, -0.02409622259438038, 0.0011037682415917516, -0.03791190683841705, 0.0066130454652011395, -0.07451088726520538, -0.02911374904215336, -0.041521359235048294, -0.015249514020979404, 0.007496409118175507, -0.051807183772325516, -0.008123323321342468, 0.03446206450462341, -0.021661721169948578, 0.026553519070148468, -0.026606224477291107, 0.05604252219200134, -0.030630553141236305, -0.051655497401952744, 0.08429162949323654, 0.05226491764187813, -0.006822188384830952, -0.01242610439658165, 0.05695018544793129, 0.06518331170082092, 0.00026512020849622786, -0.10070089250802994, 0.015781046822667122, 0.03830671310424805, -0.013724486343562603, 0.0005272459238767624, 0.08860629796981812, 0.019636215642094612, 0.019219020381569862, 0.0019183047115802765, 0.023013006895780563, 0.06927046179771423, 0.04958009719848633, 0.06322037428617477, 0.027143018320202827, 0.006154679227620363, -0.032819539308547974, -0.044383712112903595, -0.01477737445384264, 0.007272864691913128, 0.0027120693121105433, 0.03337367996573448, 0.054290395230054855, -0.0687355026602745, 0.04576524719595909, 0.012323564849793911, -0.08541836589574814, 0.014942005276679993, 0.07278572022914886, 0.08018837869167328, -0.015371754765510559, 0.06647342443466187, -0.06602901965379715, -0.008808870799839497, -0.04491812735795975, -0.0033945359755307436, -0.04591847583651543, 0.1272500604391098, -0.04956073313951492, -0.08909180760383606, 0.0105745829641819, 0.014484732411801815, 0.001077020075172186, -0.002829080680385232, -0.028892887756228447, -0.03094671666622162, -0.0810788944363594, -0.04272180050611496, -0.010091383941471577, -0.04381713643670082, -0.04890889301896095, -0.016828490421175957, 0.09264376759529114, 0.11749549955129623, 0.049340661615133286, 0.03139989450573921, 0.011209576390683651, 0.011049891822040081, 0.09052015095949173, -0.02344883792102337, 0.046201881021261215, 1.1190422925689629e-31, 0.016723934561014175, -0.033822689205408096, -0.06955695152282715, -0.011104810051620007, -0.014616720378398895, 0.01694607548415661, 0.017829688265919685, -0.0036835831124335527, 0.044142767786979675, -0.04038256034255028, 0.029307633638381958, 0.04593834653496742, -0.03567313402891159, 0.05520166456699371, -0.09898854047060013, -0.044973328709602356, -0.07007598876953125, -0.022464832291007042, 0.018839584663510323, 0.06834810227155685, -0.012360535562038422, 0.023303020745515823, -0.09093405306339264, 0.01882041059434414, 0.05717790499329567, 0.05996774882078171, -0.09988594055175781, 0.03146275877952576, 0.03018992394208908, -0.013394241221249104, 0.04104786366224289, -0.012037476524710655, 0.03513951227068901, -0.005798024591058493, 0.019716016948223114, 0.05648484081029892, 0.1364002823829651, 0.04474317282438278, -0.021216031163930893, 0.0009137506713159382, 0.015223152004182339, -0.06431837379932404, -0.05582674965262413, -0.02200646698474884, 0.03510845825076103, -0.10525346547365189, -0.08362342417240143, -0.0274447463452816, 0.03381701931357384, -0.05532168969511986, -0.031162409111857414, -0.004987399093806744, -0.026234440505504608, -0.01284478884190321, -0.011242455802857876, -0.046373747289180756, -0.024614382535219193, -0.00010007434320868924, -0.00717816362157464, -0.027167506515979767, -0.04191429167985916, 0.10603191703557968, -0.07451647520065308, 0.07569515705108643 ]
11Algebraic expressions 1 Simplify: a x3 Γ· xβˆ’2 b x5 Γ· x7 c x 3 _ 2 Γ— x 5 _ 2 d (x2 ) 3 _ 2 e (x3 ) 5 _ 3 f 3x0.5 Γ— 4xβˆ’0.5 g 9 x 2 _ 3 Γ· 3 x 1 _ 6 h 5 x 7 _ 5 Γ· x 2 _ 5 i 3x4 Γ— 2xβˆ’5 j βˆšβ€―__ x Γ— 3 βˆšβ€―__ x k ( βˆšβ€―__ x )3 Γ— ( 3 βˆšβ€―__ x )4 l ( 3 βˆšβ€―__ x )2 _____ βˆšβ€―__ x 2 Eva luate: a 2 5 1 _ 2 b 8 1 3 _ 2 c 2 7 1 _ 3 d 4βˆ’2 e 9 βˆ’ 1 _ 2 f (βˆ’ 5)βˆ’3 g ( 3 _ 4 ) 0 h 129 6 3 _ 4 i ( 25 __ 16 ) 3 2 j ( 27 __ 8 ) 2 3 k ( 6 _ 5 ) βˆ’1 l ( 343 ___ 512 ) βˆ’2 3 3 Simplify: a (64x10)1 2 b 5 x 3 βˆ’ 2 x 2 ________ x 5 c (125x12)1 3 d x + 4 x 3 _______ x 3 e 2x + x 2 _______ x 4 f ( 4 __ 9 x4) 3 2 g 9 x 2 βˆ’ 15 x 5 _________ 3 x 3 h 5x + 3 x 2 ________ 15 x 3 4 a Find the value of 8 1 1 _ 4 . (1 mark) b Simplify x(2 x βˆ’ 1 _ 3 )4. (2 marks) 5 Given tha t y = 1 __ 8 x 3 express each of the following in the form k x n , where k and n are constants. a y 1 3 (2 marks) b 1 __ 2 y βˆ’2 (2 marks)E EExercise 1Da y 1 _ 2 = ( 1 __ 16 x 2 ) 1 _ 2 = 1 ___ βˆšβ€―___ 16 x 2 Γ— 1 _ 2 = x __ 4 b 4y–1 = 4 ( 1 __ 16 x 2 ) βˆ’1 = 4 ( 1 __ 16 ) βˆ’1 x 2 Γ— (βˆ’1) = 4 Γ— 16 xβˆ’2 = 64 xβˆ’2Substitute y = 1 ___ 16 x 2 into y 1 _ 2 . ( 1 ___ 16 ) 1 _ 2 = 1 ____ √ ___ 16 and ( x 2 ) 1 _ 2 = x 2 Γ— 1 _ 2 Given that y = 1 __ 16 x2 express each of the following in the form k x n , where k and n are constants. a y 1 __ 2 b 4 y βˆ’1 Example 11 Check that your answers are in the correct form. If k and n are constants they could be positive or negative, and they could be integers, fractions or surds.Problem-solving ( 1 ___ 16 ) βˆ’1 = 16 and x2 Γ— βˆ’1 = xβˆ’2
[ -0.03872751444578171, 0.08569058030843735, 0.06746622174978256, -0.05809372290968895, -0.056650757789611816, -0.04730015620589256, 0.06453460454940796, -0.0783417597413063, -0.09844944626092911, 0.040205925703048706, -0.02584327943623066, -0.07831025868654251, -0.017865903675556183, -0.00847869087010622, 0.03832695260643959, 0.011568891815841198, -0.02539723925292492, 0.06765130907297134, -0.16374531388282776, -0.021909521892666817, 0.09167353808879852, -0.09490151703357697, 0.007592870853841305, -0.02278941124677658, -0.007156990002840757, -0.025895707309246063, 0.01796688698232174, 0.004686517640948296, -0.04485367611050606, -0.028797943145036697, -0.004735749680548906, 0.0075421761721372604, 0.14838483929634094, -0.10246611386537552, 0.023404739797115326, -0.005796391982585192, -0.01191709190607071, 0.04470417648553848, -0.005733496509492397, -0.013832001946866512, 0.024900875985622406, 0.04799412935972214, 0.05617911368608475, -0.003330420469865203, 0.007711965590715408, -0.050305042415857315, 0.008687124587595463, -0.05109139904379845, -0.05105152353644371, -0.0314004048705101, 0.04454849660396576, -0.02099466696381569, -0.11814701557159424, 0.016981685534119606, 0.023271877318620682, -0.1447940170764923, 0.008095710538327694, 0.017277449369430542, -0.005868660286068916, -0.009811618365347385, -0.03674229234457016, -0.042505111545324326, 0.01662781462073326, 0.05221094936132431, -0.07764716446399689, 0.09846825897693634, 0.057207390666007996, 0.04518701136112213, 0.008600864559412003, 0.030102983117103577, 0.03273436054587364, -0.001793519128113985, -0.018373344093561172, -0.05548254773020744, 0.09115418791770935, 0.023192163556814194, -0.07421958446502686, -0.11587177962064743, -0.011361122131347656, -0.04713805392384529, -0.04086698591709137, -0.014084727503359318, 0.06108077988028526, -0.047283876687288284, 0.005835606716573238, 0.035714324563741684, 0.05674551799893379, 0.06614769250154495, 0.017701007425785065, -0.038945235311985016, 0.0795418992638588, -0.04658303037285805, -0.016350867226719856, -0.07323656231164932, -0.07683669030666351, -0.058355193585157394, 0.012247346341609955, -0.08964106440544128, -0.03500017151236534, 0.08438917994499207, 0.012082023546099663, -0.0061949179507792, 0.012165805324912071, 0.008578039705753326, -0.01799747720360756, -0.08614316582679749, -0.028821110725402832, 0.007259284611791372, 0.09611381590366364, -0.02820182405412197, 0.008065207861363888, -0.05450306460261345, 0.012506314553320408, -0.009961780160665512, 0.003801670391112566, 0.033582042902708054, 0.06715232133865356, -0.02846069447696209, 0.06911218166351318, -0.038972511887550354, -0.01673870161175728, -0.04774308577179909, 0.05027972161769867, 0.0053743827156722546, 0.043326642364263535, -0.04433736205101013, -0.0426371693611145, 0.03684676066040993, -0.049384381622076035, 0.010993153788149357, -0.031890977174043655, 0.032243482768535614, -0.059572603553533554, 0.006430283188819885, -0.05425889790058136, -0.10261014848947525, -0.022213581949472427, 0.049395717680454254, -0.0462360680103302, 0.059725381433963776, 0.013440800830721855, 0.044097986072301865, 0.02177506685256958, 0.06435202062129974, -0.017243381589651108, 0.005749899428337812, -0.013154065236449242, -0.024983065202832222, -0.004827468656003475, 0.05764976143836975, 0.03108925372362137, 0.007758956402540207, -0.06340325623750687, 0.026555392891168594, -0.008058606646955013, -0.044695526361465454, -0.010745050385594368, -0.0807575136423111, -0.0704505518078804, -0.007028772961348295, 0.04423359036445618, -0.02772647701203823, 0.005392289720475674, 0.07595977187156677, 0.04515622928738594, 0.02818029560148716, 0.052087631076574326, 0.002327041933313012, -0.03948267921805382, 0.038767702877521515, 0.013689090497791767, 0.03718894347548485, 0.02603868767619133, -0.008361898362636566, -0.00018274938338436186, -0.038838569074869156, 0.13815709948539734, -0.05089591071009636, 0.0076580531895160675, 0.014522726647555828, 0.15008240938186646, -0.07627961784601212, 0.014889507554471493, 0.03492657467722893, -0.09003560990095139, -0.0022886500228196383, -0.030214082449674606, 0.014265049248933792, -0.018635127693414688, -0.07494256645441055, 0.05093107372522354, -0.06262947618961334, -0.09830738604068756, -0.024182766675949097, -0.04416946694254875, -0.03502744063735008, -0.13226498663425446, -0.07545042037963867, -0.09928502887487411, 0.06755902618169785, 0.0753215104341507, -0.004094465170055628, 0.0831776037812233, -0.018736643716692924, 0.012023323215544224, -0.01056150533258915, -0.009877554140985012, -0.05354329198598862, 0.030715543776750565, 0.0667136088013649, -0.07260686904191971, 0.015122114680707455, 0.0012901200680062175, 0.03194446489214897, 0.03853162005543709, -0.03261873126029968, -0.015348454937338829, 0.03898055478930473, -0.043333277106285095, -0.026667162775993347, -0.005682564340531826, -0.04236431419849396, 0.08029494434595108, -1.9183387488064194e-32, 0.0005528049077838659, 0.03237137943506241, -0.08763888478279114, -0.029294807463884354, -0.00433829240500927, -0.01967194676399231, 0.04659745842218399, -0.08303290605545044, 0.01690683327615261, 0.007210809271782637, 0.01294528879225254, 0.02191229909658432, 0.025425394997000694, -0.0030407619196921587, -0.06211903318762779, -0.04263416305184364, 0.015922926366329193, -0.020412519574165344, -0.02965387888252735, -0.05408795177936554, -0.00876035075634718, 0.04983134940266609, -0.034535836428403854, 0.053717050701379776, -0.08316440135240555, 0.047615259885787964, 0.015529310330748558, -0.03993261232972145, 0.040815845131874084, 0.0367092601954937, 0.04533207044005394, -0.03563600778579712, 0.0634225606918335, 0.04547790437936783, 0.02276543155312538, -0.07144745439291, 0.040437713265419006, 0.008381253108382225, 0.017322426661849022, -0.023375723510980606, 0.022634057328104973, -0.01818886585533619, 0.08949851244688034, -0.03882579877972603, 0.036049939692020416, -0.013100815936923027, -0.020955484360456467, 0.10563284158706665, 0.005244196858257055, -0.046394284814596176, -0.037504374980926514, -0.09688424319028854, -0.1363639086484909, -0.040406838059425354, -0.031776949763298035, 0.030331246554851532, 0.04030793905258179, -0.1138482540845871, 0.0841364860534668, 0.021453334018588066, -0.0515882708132267, -0.05103525519371033, 0.04315751791000366, 0.02647005394101143, -0.03903915360569954, 0.058945927768945694, -0.027926085516810417, -0.0009218469494953752, -0.0435967855155468, -0.0015471752267330885, 0.031000513583421707, 0.08278009295463562, -0.14311903715133667, -0.05374949052929878, -0.0102357417345047, 0.009690138511359692, -0.011425658129155636, 0.05387221276760101, -0.013878661207854748, -0.067752905189991, -0.03145090118050575, -0.0035617200192064047, 0.025586498901247978, -0.019920097663998604, -0.08870088309049606, -0.027426298707723618, 0.04525216668844223, 0.03549191728234291, -0.02662612684071064, -0.029086248949170113, 0.08850478380918503, 0.07935048639774323, 0.07662107050418854, -0.0415080264210701, 0.05817725881934166, 1.2806883998818934e-31, -0.013051903806626797, 0.017433881759643555, -0.026390502229332924, -0.04063039273023605, 0.040501661598682404, -0.032850269228219986, -0.0017490130849182606, -0.061512451618909836, 0.04940035566687584, -0.058998752385377884, 0.06744866073131561, 0.02992449700832367, -0.04893967881798744, 0.010348238982260227, -0.05320294573903084, -0.07605081796646118, -0.06598514318466187, 0.05033653974533081, 0.015591786243021488, 0.07323162257671356, -0.0361393578350544, -0.03076586127281189, -0.03499525412917137, -0.007379529066383839, -0.003685629926621914, 0.038469355553388596, -0.050647322088479996, 0.004724058788269758, -0.04411463439464569, -0.04004717618227005, 0.05395963042974472, -0.0064552356489002705, 0.004339681938290596, -0.032004907727241516, 0.00027017996762879193, 0.08394449204206467, 0.004071416333317757, 0.06523500382900238, -0.023818617686629295, 0.04291066527366638, 0.06672996282577515, -0.06820964813232422, 0.020534152165055275, -0.026766203343868256, 0.06589462608098984, -0.062671959400177, -0.08462675660848618, -0.02623344026505947, 0.07740890234708786, -0.10994517058134079, -0.072372667491436, 0.02333628199994564, -0.026760639622807503, 0.013966573402285576, -0.0623926967382431, 0.034648630768060684, 0.0026888621505349874, 0.03713204711675644, 0.037270739674568176, -0.013372892513871193, -0.025150151923298836, 0.048390526324510574, -0.05779869481921196, 0.04069982096552849 ]
12 Chapter 1 1.5 Surds If n is an integer that is not a square number, then any multiple of βˆšβ€―__ n is called a surd. Examples of surds are βˆšβ€―__ 2 , βˆšβ€―___ 19 and 5 βˆšβ€―__ 2 . Surds are examples of irrational numbers. The decimal expansion of a surd is never-ending and never repeats, for example βˆšβ€―__ 2 = 1.414213562... You can use surds to write exact answers to calculations. β–  You can manipulate surds using these rules: β€’ βˆšβ€―___ ab = βˆšβ€―__ a Γ— βˆšβ€―__ b β€’ βˆšβ€―__ a __ b = βˆšβ€―__ a ___ βˆšβ€―__ b Irr ational numbers cannot be written in the form a __ b where a and b are integers. Surds are examples of irrational numbers .Notation Simplify: a βˆšβ€―___ 12 b βˆšβ€―___ 20 ____ 2 c 5 βˆšβ€―__ 6 βˆ’ 2 βˆšβ€―___ 24 + βˆšβ€―____ 294 Example 12 a βˆšβ€―___ 12 = βˆšβ€―_______ (4 Γ— 3) = βˆšβ€―__ 4 Γ— βˆšβ€―__ 3 = 2 βˆšβ€―__ 3 b βˆšβ€―___ 20 ____ 2 = βˆšβ€―__ 4 Γ— βˆšβ€―__ 5 ________ 2 = 2 Γ— βˆšβ€―__ 5 _______ 2 = βˆšβ€―__ 5 c 5 βˆšβ€―__ 6 βˆ’ 2 βˆšβ€―___ 24 + βˆšβ€―_____ 294 = 5 βˆšβ€―__ 6 βˆ’ 2 βˆšβ€―__ 6 βˆšβ€―__ 4 + βˆšβ€―__ 6 Γ— βˆšβ€―___ 49 = βˆšβ€―__ 6 (5 βˆ’ 2 βˆšβ€―__ 4 + βˆšβ€―___ 49 ) = βˆšβ€―__ 6 (5 βˆ’ 2 Γ— 2 + 7) = βˆšβ€―__ 6 (8) = 8 βˆšβ€―__ 6 βˆšβ€―__ 6 is a common factor. βˆšβ€―__ 4 = 2Look for a factor of 12 that is a square number. Use the rule βˆšβ€―___ ab = βˆšβ€―__ a Γ— βˆšβ€―__ b . βˆšβ€―__ 4 = 2 βˆšβ€―___ 20 = βˆšβ€―__ 4 Γ— βˆšβ€―__ 5 Cancel by 2. Work out the square roots βˆšβ€―__ 4 and βˆšβ€―___ 49 . 5 βˆ’ 4 + 7 = 8
[ -0.01012262050062418, 0.0574290007352829, 0.003593538887798786, 0.008551051840186119, -0.011814025230705738, -0.016166184097528458, 0.0020741401240229607, 0.0040824878960847855, 0.0719275176525116, -0.01108666229993105, 0.014886484481394291, -0.009672768414020538, 0.09430824220180511, -0.02795572578907013, -0.003991324454545975, -0.02511875331401825, -0.010585276409983635, 0.1058078408241272, 0.0034842821769416332, 0.02685193158686161, 0.11780902743339539, 0.03525006026029587, 0.05099304020404816, 0.0014041984686627984, -0.002995789051055908, 0.02848147414624691, 0.03236325457692146, -0.03939184546470642, -0.033571742475032806, -0.058084819465875626, 0.00774878915399313, 0.08618885278701782, 0.0953216403722763, -0.010456262156367302, 0.018808638677001, -0.074954554438591, 0.05281819775700569, -0.002009266521781683, -0.10857367515563965, -0.05289478227496147, 0.02357230894267559, 0.008350743912160397, 0.0016889921389520168, -0.011521751992404461, 0.025115033611655235, -0.027049679309129715, -0.09489360451698303, 0.030654331669211388, 0.025273796170949936, 0.007758366409689188, 0.009907600469887257, 0.009230358526110649, -0.07354176789522171, -0.0271490179002285, -0.0013959119096398354, -0.01810169778764248, -0.07996727526187897, -0.03170562908053398, -0.025869322940707207, 0.009884786792099476, 0.010463859885931015, -0.009203672409057617, -0.0008325095404870808, -0.0058309403248131275, -0.04449044167995453, -0.0073823826387524605, 0.001776455552317202, 0.0034385130275040865, 0.03569094091653824, 0.032639000564813614, 0.02090226113796234, 0.014550378546118736, -0.04726273939013481, -0.026637405157089233, 0.039910733699798584, -0.06152768433094025, -0.08884258568286896, 0.003981919027864933, 0.007242782507091761, -0.02871062234044075, -0.07449856400489807, -0.0024793390184640884, 0.04985494539141655, -0.039184655994176865, 0.018382418900728226, -0.06318958103656769, 0.13430353999137878, 0.007860803045332432, 0.02391677349805832, -0.07127348333597183, 0.06243652105331421, -0.030383024364709854, 0.023299405351281166, -0.03855620324611664, -0.018560189753770828, 0.025762736797332764, -0.010711350478231907, -0.06793218851089478, 0.010704767890274525, -0.011191846802830696, 0.07550104707479477, -0.07977548241615295, -0.04506346210837364, 0.012606063857674599, -0.09091472625732422, -0.07903695106506348, -0.0377228744328022, -0.05027605965733528, 0.08825384080410004, -0.0998382642865181, -0.03064517304301262, 0.028085680678486824, -0.0033078743144869804, -0.017092853784561157, -0.008943438529968262, -0.12940071523189545, 0.05369609594345093, -0.04078807681798935, -0.031305331736803055, -0.04006338492035866, 0.06561360508203506, 0.019195236265659332, 0.05808926746249199, 0.027802040800452232, -0.028518233448266983, 0.02835209295153618, 0.027302537113428116, -0.006139271892607212, -0.07067814469337463, -0.005421312525868416, 0.005946509074419737, -0.039787061512470245, -0.09393522143363953, 0.050750091671943665, -0.06258851289749146, -0.07368889451026917, 0.011459100060164928, 0.057039421051740646, -0.07529715448617935, 0.039233170449733734, 0.018539924174547195, 0.018128057941794395, 0.04744064807891846, -0.04238572716712952, 0.04996059462428093, 0.04677168279886246, 0.014867119491100311, 0.04473065584897995, -0.030590418726205826, 0.052547529339790344, -0.016822846606373787, 0.03395823389291763, -0.015467185527086258, 0.039589401334524155, -0.010906976647675037, 0.03726436570286751, 0.06463388353586197, 0.012212986126542091, -0.011040819808840752, -0.002010005060583353, -0.002608079230412841, 0.018368566408753395, -0.01435556448996067, 0.05117195099592209, 0.065340057015419, 0.05116220936179161, 0.01404450461268425, -0.0006030331715010107, 0.03795899823307991, -0.05056114122271538, 0.04958212375640869, 0.038132444024086, 0.12951645255088806, 0.01830855943262577, -0.03357524797320366, -0.04266287386417389, 0.047483962029218674, -0.023438598960638046, 0.013657416217029095, -0.0668581873178482, -0.003753358731046319, -0.010776967741549015, 0.028355523943901062, -0.036540862172842026, 0.0072320448234677315, -0.08041837811470032, -0.12199362367391586, 0.060966573655605316, 0.0284140445291996, 0.0006422103033401072, -0.07399974763393402, -0.06835002452135086, -0.11762066930532455, -0.07224225997924805, 0.024482902139425278, -0.0482458621263504, 0.027325088158249855, 0.016476698219776154, -0.10758204013109207, 0.05843473970890045, -0.0014086022274568677, -0.0032209870405495167, 0.023618683218955994, -0.08272331207990646, 0.06833665817975998, 0.06262286007404327, 0.03663535788655281, 0.04083551466464996, 0.07959359139204025, 0.06469396501779556, -0.08136119693517685, -0.053341660648584366, -0.03990296646952629, -0.04076598584651947, -0.056061409413814545, -0.02424723468720913, -0.03886226937174797, -0.06253819167613983, -0.05051666498184204, -0.08546329289674759, -0.00897926464676857, -0.026965992525219917, 0.0051768459379673, 5.544095311404498e-33, -0.03695519268512726, 0.04330996051430702, -0.11433914303779602, 0.032759878784418106, -0.05108512192964554, -0.01364745944738388, 0.0033641967456787825, -0.008814315311610699, -0.004399167839437723, -0.04533236101269722, -0.0884595662355423, 0.039959896355867386, 0.05098296329379082, 0.04161868989467621, -0.12325140088796616, -0.020292360335588455, -0.08475302904844284, -0.09306374192237854, 0.011505370028316975, -0.006994657218456268, -0.03116121143102646, 0.03977713733911514, 0.021246355026960373, -0.00838736817240715, 0.030136944726109505, 0.09969528019428253, -0.03775184974074364, 0.00884962547570467, 0.041173581033945084, 0.04134141653776169, -0.03709098696708679, 0.006718655116856098, 0.06202638894319534, -0.01718221604824066, -0.07212968915700912, -0.040959786623716354, 0.037499360740184784, -0.030329493805766106, -0.06142957881093025, 0.012567401863634586, 0.1104980930685997, 0.002687958301976323, 0.07325731962919235, 0.004695117007941008, -0.023964159190654755, 0.0006913017714396119, 0.027579624205827713, 0.09677460044622421, -0.03640212491154671, -0.07592184096574783, -0.038571033626794815, -0.025013821199536324, 0.04051967337727547, 0.09260444343090057, -0.008185319602489471, 0.005073161330074072, 0.03491530194878578, 0.0038100716192275286, -0.009131224825978279, 0.0026395197492092848, -0.05882072448730469, -0.007065603509545326, 0.06473934650421143, 0.08179427683353424, -0.0099473986774683, -0.03888629376888275, -0.005160361994057894, 0.08241866528987885, -0.004737021867185831, 0.104163259267807, 0.02148360013961792, 0.1300165057182312, -0.09670685231685638, -0.08702610433101654, -0.033926405012607574, -0.005052290856838226, -0.054025616496801376, 0.08127003908157349, 0.023867156356573105, -0.061949457973241806, -0.06581404060125351, -0.027217021211981773, -0.04003831371665001, -0.016216836869716644, -0.11503132432699203, -0.04589541628956795, 0.06956420093774796, 0.035462867468595505, -0.0287800170481205, -0.02457522600889206, 0.007589911576360464, 0.041780758649110794, -0.03545909374952316, 0.02807842381298542, -0.01669510267674923, 7.402593389698798e-32, 0.016304101794958115, 0.009502258151769638, 0.016064278781414032, -0.034392572939395905, 0.06310343742370605, 0.05730034038424492, 0.023833725601434708, 0.040731459856033325, 0.012269902974367142, -0.04474994167685509, 0.05113264545798302, 0.07121609896421432, -0.020008955150842667, 0.013270560652017593, -0.01600515842437744, -0.06648308038711548, 0.08772013336420059, 0.008380988612771034, -0.011297615244984627, 0.1091303750872612, 0.0975792407989502, -0.010134144686162472, -0.08626686036586761, 0.0437481626868248, -0.01069820486009121, 0.03576980158686638, -0.051817040890455246, -0.021362408995628357, -0.00330104841850698, -0.04911130294203758, -0.003673231927677989, 0.007473895791918039, 0.045465581119060516, -0.01287915837019682, 0.0795760452747345, 0.07293187826871872, 0.07755403965711594, 0.07315489649772644, -0.06460554897785187, 0.06032610684633255, -0.03836539760231972, -0.07946562767028809, -0.044775474816560745, 0.11827120184898376, 0.05315684899687767, -0.12234478443861008, -0.06546833366155624, -0.03089357726275921, -0.006811572704464197, 0.012933056801557541, -0.043725594878196716, -0.015640640631318092, -0.05475793406367302, 0.013725705444812775, -0.008206884376704693, 0.008915058337152004, 0.03657235950231552, 0.020794522017240524, 0.010069028474390507, -0.019487792626023293, -0.04506360739469528, 0.10224620997905731, -0.0069566406309604645, 0.1539362519979477 ]
13Algebraic expressions Expand and simplify if possible: a βˆšβ€―__ 2 (5 βˆ’ βˆšβ€―__ 3 ) b (2 βˆ’ βˆšβ€―__ 3 )(5 + βˆšβ€―__ 3 ) Example 13 a βˆšβ€―__ 2 (5 βˆ’ βˆšβ€―__ 3 ) = 5 βˆšβ€―__ 2 βˆ’ βˆšβ€―__ 2 βˆšβ€―__ 3 = 5 βˆšβ€―__ 2 βˆ’ βˆšβ€―__ 6 b (2 βˆ’ βˆšβ€―__ 3 )(5 + βˆšβ€―__ 3 ) = 2(5 + βˆšβ€―__ 3 ) βˆ’ βˆšβ€―__ 3 (5 + βˆšβ€―__ 3 ) = 10 + 2 βˆšβ€―__ 3 βˆ’ 5 βˆšβ€―__ 3 βˆ’ βˆšβ€―__ 9 = 7 βˆ’ 3 βˆšβ€―__ 3 √ __ 2 Γ— 5 βˆ’ √ __ 2 Γ— √ __ 3 Using βˆšβ€―__ a Γ— √ __ b = √ ____ ab Collect like terms: 2 √ __ 3 βˆ’ 5 √ __ 3 = βˆ’3 √ __ 3 Simplify any roots if possible: √ __ 9 = 3 1 Do not use your calcula tor for this exercise. Simplify: a βˆšβ€―___ 28 b βˆšβ€―___ 72 c βˆšβ€―___ 50 d βˆšβ€―__ 32 e βˆšβ€―__ 90 f βˆšβ€―__ 12 ____ 2 g βˆšβ€―___ 27 ____ 3 h βˆšβ€―__ 20 + βˆšβ€―__ 80 i βˆšβ€―___ 200 + βˆšβ€―__ 18 βˆ’ βˆšβ€―__ 72 j βˆšβ€―___ 175 + βˆšβ€―__ 63 + 2 βˆšβ€―__ 28 k βˆšβ€―__ 28 βˆ’ 2 βˆšβ€―__ 63 + βˆšβ€―__ 7 l βˆšβ€―__ 80 βˆ’ 2 βˆšβ€―__ 20 + 3 βˆšβ€―__ 45 m 3 βˆšβ€―___ 80 βˆ’ 2 βˆšβ€―___ 20 + 5 βˆšβ€―___ 45 n βˆšβ€―___ 44 ____ βˆšβ€―___ 11 o βˆšβ€―___ 12 + 3 βˆšβ€―___ 48 + βˆšβ€―___ 75 2 Expand and simplify if possible: a √ __ 3 (2 + √ __ 3 ) b √ __ 5 (3 βˆ’ √ __ 3 ) c √ __ 2 (4 βˆ’ √ __ 5 ) d (2 βˆ’ √ __ 2 )(3 + √ __ 5 ) e (2 βˆ’ √ __ 3 )(3 βˆ’ √ __ 7 ) f (4 + √ __ 5 )(2 + √ __ 5 ) g (5 βˆ’ √ __ 3 )(1 βˆ’ √ __ 3 ) h (4 + √ __ 3 )(2 βˆ’ √ __ 3 ) i (7 βˆ’ √ ___ 11 )(2 + √ ___ 11 ) 3 Simplify √ ___ 75 βˆ’ √ ___ 12 giving your answer in the form a √ __ 3 , where a is an integer. (2 marks) EExercise 1E 1.6 Rationalising denominators If a fraction has a surd in the denominator, it is sometimes useful to rearrange it so that the denominator is a rational number. This is called rationalising the denominator. β–  The rules to rationalise denominators are: β€’For fractions in the f orm 1 ___ βˆšβ€―__ a , multiply the numerator and denominat or by βˆšβ€―__ a . β€’For fractions in the f orm 1 ______ a + βˆšβ€―__ b , multiply the numerator and denominat or by a βˆ’ βˆšβ€―__ b . β€’For fractions in the f orm 1 ______ a βˆ’ βˆšβ€―__ b , multiply the numerator and denominat or by a + βˆšβ€―__ b .Expand the brackets completely before you simplify.
[ -0.04168540984392166, 0.13059596717357635, 0.04445458948612213, -0.08914688229560852, -0.027635483071208, 0.0023401714861392975, 0.019677739590406418, -0.11952056735754013, -0.013674577698111534, -0.045642755925655365, -0.07663243263959885, -0.014435633085668087, 0.005501685198396444, -0.006693956442177296, 0.07538321614265442, 0.025151744484901428, -0.003913607448339462, 0.08426861464977264, -0.1222277358174324, -0.05891985446214676, 0.018249636515975, -0.06277886033058167, 0.06511729210615158, 0.07082895934581757, 0.0004270474018994719, 0.02124612219631672, -0.037578679621219635, 0.012849707156419754, 0.021405324339866638, -0.04180707782506943, 0.013346430845558643, -0.025358298793435097, 0.1096821129322052, -0.12727026641368866, 0.032965805381536484, -0.03825753182172775, 0.015418943017721176, 0.04261057823896408, -0.017110414803028107, -0.009704836644232273, 0.01600579358637333, 0.014391746371984482, 0.04748217761516571, 0.017073744907975197, -0.07582147419452667, -0.024616267532110214, 0.04502519965171814, 0.01931924559175968, -0.04241291806101799, -0.014722613617777824, 0.0003243915271013975, -0.010698795318603516, -0.09318622201681137, 0.04326246678829193, 0.016291052103042603, -0.08382253348827362, -0.01784556731581688, 0.06064469367265701, -0.01871490851044655, -0.012838585302233696, 0.0010059475898742676, 0.037433333694934845, 0.008870193734765053, 0.01274879276752472, -0.05189552158117294, 0.011661406606435776, -0.016874704509973526, -0.009036746807396412, -0.03925356641411781, 0.07847806811332703, 0.036204371601343155, 0.03633498027920723, -0.05394699424505234, -0.006039887201040983, 0.05372710898518562, 0.0026548246387392282, -0.09753010421991348, -0.08273929357528687, -0.007000611163675785, -0.025778956711292267, -0.06144740805029869, -0.032331544905900955, 0.04356240853667259, 0.03542261943221092, 0.0284136775881052, 0.005839932709932327, 0.04606116563081741, 0.06247807294130325, 0.04385706037282944, -0.0366390235722065, 0.027524782344698906, -0.027993351221084595, -0.055425599217414856, -0.09060420095920563, -0.05222640186548233, -0.039509713649749756, -0.02250603958964348, -0.06405983120203018, 0.007669622544199228, 0.07394593209028244, 0.09009826183319092, -0.014316115528345108, -0.009732670150697231, -0.02311686798930168, -0.08541939407587051, -0.056850865483284, -0.00930753629654646, -0.014532318338751793, 0.103592649102211, -0.034281305968761444, -0.10240677744150162, 0.03412109240889549, 0.038124583661556244, -0.02533365599811077, -0.013364775106310844, 0.010967682115733624, 0.042155370116233826, 0.017030948773026466, 0.06529267132282257, -0.005313871894031763, 0.0037061944603919983, -0.033865757286548615, 0.051895465701818466, 0.03285475820302963, 0.021626580506563187, -0.02620462328195572, -0.05007392168045044, 0.0583798922598362, -0.014039847999811172, 0.01775074191391468, -0.017833184450864792, 0.0038540710229426622, -0.031585995107889175, 0.009697865694761276, -0.06267081201076508, -0.13091672956943512, -0.027798358350992203, 0.07915196567773819, -0.015323193743824959, 0.03120276890695095, 0.07251043617725372, 0.03394397720694542, 0.05798036605119705, 0.05962201580405235, -0.018384339287877083, -0.016657257452607155, -0.028195954859256744, 0.007704081013798714, -0.019430741667747498, 0.058045800775289536, -0.04332411661744118, 0.004074849188327789, -0.02214827947318554, 0.019684728235006332, 0.04090256243944168, -0.08590661734342575, 0.0016866441583260894, -0.027515992522239685, -0.07433628290891647, 0.07740490138530731, -0.012326394207775593, 0.026303645223379135, -0.038351211696863174, 0.07873459905385971, 0.0594724677503109, 0.0629466101527214, 0.04095233604311943, -0.00612508924677968, -0.00819474644958973, 0.016532614827156067, 0.012927774339914322, 0.08733048290014267, 0.009690649807453156, 0.00009638669871492311, -0.02079317905008793, 0.023574860766530037, 0.08706207573413849, -0.06743917614221573, -0.04643300175666809, -0.019813980907201767, 0.07728289067745209, -0.06113254278898239, 0.0203506201505661, 0.09256813675165176, -0.07808306068181992, -0.029548518359661102, -0.011241401545703411, 0.039808157831430435, 0.0055525717325508595, -0.07723169028759003, 0.014236819930374622, -0.11865131556987762, -0.13125059008598328, -0.018695443868637085, -0.009658177383244038, 0.011557025834918022, -0.05912524461746216, -0.08306311070919037, -0.04573296755552292, 0.0766533762216568, 0.005383568815886974, 0.02938651107251644, 0.03775664418935776, -0.12341482192277908, 0.006269414909183979, 0.03170226141810417, -0.030451301485300064, -0.018952084705233574, 0.07240083068609238, 0.0536101795732975, -0.037379663437604904, 0.014758273959159851, -0.023075362667441368, 0.0358598530292511, 0.0041407374665141106, -0.05028914287686348, 0.06542763859033585, 0.006999449338763952, -0.06451371312141418, -0.0038497638888657093, -0.09232185035943985, -0.020216980949044228, 0.07068636268377304, -1.9428456754375532e-33, 0.017847763374447823, 0.06421766430139542, -0.07643791288137436, -0.021973149850964546, -0.006487988401204348, -0.0883718729019165, 0.012623002752661705, -0.10887201875448227, -0.013875475153326988, -0.01999673619866371, -0.044335246086120605, 0.0017606342444196343, 0.04962063208222389, -0.036239564418792725, -0.015010938979685307, -0.007054303772747517, -0.007952910847961903, -0.019633444026112556, -0.012179802171885967, -0.03762080892920494, 0.033925607800483704, 0.0209785308688879, -0.06776051223278046, -0.006127786822617054, -0.037955667823553085, 0.10052057355642319, 0.0014189572539180517, -0.03144204616546631, 0.07184822857379913, 0.06901508569717407, 0.01552114449441433, -0.04479854181408882, 0.07022999227046967, 0.09359589964151382, 0.013243800029158592, -0.05971241742372513, 0.05509354546666145, -0.000464575452497229, 0.06801392883062363, -0.03906983882188797, 0.04037408158183098, 0.01564757339656353, 0.07044266909360886, -0.051185477524995804, 0.008087665773928165, -0.010289791971445084, 0.05558527261018753, 0.11410167813301086, -0.07169943302869797, -0.008215761743485928, -0.06685356050729752, -0.09204594790935516, -0.08585833758115768, 0.02029193751513958, -0.014315714128315449, 0.02570158615708351, 0.09909773617982864, 0.008917993865907192, 0.05126216262578964, -0.0022561249788850546, -0.06467190384864807, -0.05335348844528198, 0.05937807634472847, -0.024943316355347633, 0.0159470085054636, 0.028377430513501167, -0.006559303961694241, 0.015409426763653755, -0.003197422716766596, 0.019910449162125587, 0.031249316409230232, 0.0769612118601799, -0.14795970916748047, -0.06986300647258759, 0.011227787472307682, 0.03804076462984085, 0.004679659381508827, 0.07728546112775803, -0.06463824957609177, -0.11735385656356812, -0.03008453920483589, 0.003655735170468688, -0.0006424466264434159, -0.056980930268764496, -0.14248938858509064, -0.05377107113599777, 0.07746503502130508, 0.022500282153487206, 0.019071387127041817, -0.005799758248031139, -0.0007232080097310245, 0.053637079894542694, 0.06292685866355896, -0.0692695677280426, 0.0169590525329113, 8.113285519262445e-32, 0.03324580937623978, 0.07550198584794998, -0.04408586770296097, -0.019670967012643814, 0.06862913817167282, -0.0176516305655241, -0.004373163916170597, -0.014474654570221901, 0.10818309336900711, -0.09022097289562225, -0.006445339880883694, 0.03305015340447426, -0.001164677320048213, -0.0008136873948387802, -0.03745144605636597, 0.004357048310339451, 0.01734052039682865, -0.0030096727423369884, 0.01967591978609562, 0.05620322749018669, -0.03887731954455376, 0.008841289207339287, -0.04452257230877876, 0.007603051606565714, -0.007705165073275566, 0.016968324780464172, -0.09747055172920227, 0.038462404161691666, -0.016737408936023712, -0.0742771327495575, 0.03204852342605591, 0.04149119555950165, 0.018354417756199837, -0.010313543491065502, -0.04583403095602989, 0.037482086569070816, 0.06361500173807144, 0.06103121489286423, -0.013645295053720474, 0.0830138623714447, 0.014632661826908588, -0.0243076104670763, -0.0335199199616909, 0.02623569406569004, 0.08552168309688568, -0.07831187546253204, -0.08841637521982193, -0.04122216999530792, 0.04495146498084068, -0.019265221431851387, -0.00295329000800848, 0.03431374579668045, -0.0256604366004467, 0.02539665810763836, -0.12363195419311523, -0.006728194188326597, -0.01762893795967102, 0.05621612071990967, 0.03232491388916969, -0.010075145401060581, -0.02286280319094658, 0.059940535575151443, -0.01399141550064087, 0.08001331984996796 ]
14 Chapter 1 Rationalise the denominator of: a 1 ___ βˆšβ€―__ 3 b 1 ______ 3 + βˆšβ€―__ 2 c βˆšβ€―__ 5 + βˆšβ€―__ 2 _______ βˆšβ€―__ 5 βˆ’ βˆšβ€―__ 2 d 1 ________ (1 βˆ’ βˆšβ€―__ 3 )2 Example 14 a 1 ___ βˆšβ€―__ 3 = 1 Γ— βˆšβ€―__ 3 ________ βˆšβ€―__ 3 Γ— βˆšβ€―__ 3 = βˆšβ€―__ 3 ___ 3 b 1 _______ 3 + βˆšβ€―__ 2 = 1 Γ— (3 βˆ’ βˆšβ€―__ 2 ) ________________ (3 + βˆšβ€―__ 2 )(3 βˆ’ βˆšβ€―__ 2 ) = 3 βˆ’ βˆšβ€―__ 2 ___________________ 9 βˆ’ 3 βˆšβ€―__ 2 + 3 βˆšβ€―__ 2 βˆ’ 2 = 3 βˆ’ βˆšβ€―__ 2 _______ 7 c βˆšβ€―__ 5 + βˆšβ€―__ 2 ________ βˆšβ€―__ 5 βˆ’ βˆšβ€―__ 2 = ( βˆšβ€―__ 5 + βˆšβ€―__ 2 )( βˆšβ€―__ 5 + βˆšβ€―__ 2 ) __________________ ( βˆšβ€―__ 5 βˆ’ βˆšβ€―__ 2 )( βˆšβ€―__ 5 + βˆšβ€―__ 2 ) = 5 + βˆšβ€―__ 5 βˆšβ€―__ 2 + βˆšβ€―__ 2 βˆšβ€―__ 5 + 2 _____________________ 5 βˆ’ 2 = 7 + 2 βˆšβ€―___ 10 __________ 3 d 1 _________ (1 βˆ’ βˆšβ€―__ 3 ) 2 = 1 ________________ (1 βˆ’ βˆšβ€―__ 3 )(1 βˆ’ βˆšβ€―__ 3 ) = 1 __________________ 1 βˆ’ βˆšβ€―__ 3 βˆ’ βˆšβ€―__ 3 + βˆšβ€―__ 9 = 1 ________ 4 βˆ’ 2 βˆšβ€―__ 3 = 1 Γ— (4 + 2 βˆšβ€―__ 3 ) __________________ (4 βˆ’ 2 βˆšβ€―__ 3 )(4 + 2 βˆšβ€―__ 3 ) = 4 + 2 βˆšβ€―__ 3 ______________________ 16 + 8 βˆšβ€―__ 3 βˆ’ 8 βˆšβ€―__ 3 βˆ’ 12 = 4 + 2 βˆšβ€―__ 3 ________ 4 = 2 + βˆšβ€―__ 3 _______ 2 Expand the brackets. √ __ 3 Γ— √ __ 3 = 3 βˆšβ€―__ 3 Γ— βˆšβ€―__ 3 = ( βˆšβ€―__ 3 )2 = 3Multiply the numerator and denominator by βˆšβ€―__ 3 . Multiply numerator and denominator by (3 – βˆšβ€―__ 2 ) . βˆšβ€―__ 2 Γ— βˆšβ€―__ 2 = 2 9 βˆ’ 2 = 7, βˆ’3 βˆšβ€―__ 2 + 3 βˆšβ€―__ 2 = 0 βˆšβ€―__ 5 βˆšβ€―__ 2 = βˆšβ€―___ 10 Multiply numerator and denominator by βˆšβ€―__ 5 + βˆšβ€―__ 2 . βˆ’ βˆšβ€―__ 2 βˆšβ€―__ 5 and βˆšβ€―__ 5 βˆšβ€―__ 2 cancel each other out. Simplify and collect like terms. √ __ 9 = 3 Multiply the numerator and denominator by 4 + 2 √ __ 3 . 16 βˆ’ 12 = 4, 8 √ __ 3 βˆ’ 8 √ __ 3 = 0
[ -0.014686287380754948, 0.10219313204288483, 0.02072177082300186, -0.03921493515372276, 0.04777711257338524, 0.019795779138803482, 0.0226100105792284, 0.019607234746217728, -0.04033176228404045, 0.0047375792637467384, -0.02863422967493534, -0.06672503054141998, 0.012484178878366947, -0.03344329074025154, -0.002536995569244027, 0.002237375359982252, -0.03598521277308464, 0.07347287982702255, -0.0749993845820427, 0.05480792745947838, 0.04840908572077751, -0.052118465304374695, -0.01812463253736496, 0.043677423149347305, 0.03763272613286972, 0.007640998810529709, 0.004387952387332916, -0.023421911522746086, -0.02583298832178116, -0.10489501804113388, 0.04917376488447189, 0.07610511034727097, 0.1242225393652916, -0.06472369283437729, 0.048453234136104584, -0.07566385716199875, 0.07434823364019394, 0.06085273250937462, -0.00429823761805892, 0.023646164685487747, 0.010483630932867527, 0.033178407698869705, -0.006879973225295544, 0.03975771367549896, -0.010990064591169357, -0.00563534302636981, 0.01623491570353508, 0.015489486046135426, 0.019696546718478203, -0.010262195020914078, -0.024260733276605606, 0.012877938337624073, -0.12789687514305115, -0.04316046088933945, -0.013173717074096203, -0.040524374693632126, -0.0235226359218359, 0.043002352118492126, -0.05070868879556656, 0.023900369182229042, -0.003405718132853508, 0.028790321201086044, 0.002200267743319273, 0.033087436109781265, 0.018660597503185272, 0.02817455492913723, 0.008074134588241577, -0.03292001783847809, -0.024900754913687706, 0.10584213584661484, -0.05584465712308884, 0.04327539727091789, -0.03353423625230789, -0.01214350014925003, 0.13255932927131653, -0.04801217466592789, -0.07307859510183334, -0.08358682692050934, 0.008894051425158978, -0.03916110098361969, -0.06633860617876053, 0.03193516284227371, 0.1041748896241188, -0.03355387970805168, -0.007048874162137508, -0.04697389528155327, 0.11726737022399902, 0.017796073108911514, 0.05358271673321724, -0.04485158622264862, 0.05603746697306633, -0.08667810261249542, -0.01981797255575657, -0.08835501968860626, -0.055855363607406616, 0.0005134299281053245, -0.05023084208369255, -0.032712262123823166, 0.09191528707742691, 0.04031957685947418, 0.06621939688920975, -0.02495502308011055, -0.004801414906978607, 0.00974663719534874, -0.08267573267221451, -0.06877751648426056, 0.011721819639205933, -0.07652706652879715, 0.18138514459133148, -0.027731366455554962, -0.036184731870889664, -0.023561527952551842, 0.01363924890756607, -0.006091584917157888, 0.011366354301571846, -0.0709303542971611, 0.07230084389448166, -0.024258341640233994, 0.03996140509843826, -0.011775673367083073, 0.06472288817167282, 0.015622314997017384, 0.05905983969569206, -0.00047814808203838766, 0.01606251671910286, 0.035617291927337646, -0.019550351426005363, 0.022506659850478172, -0.05814434215426445, -0.048306576907634735, -0.01961250603199005, 0.02891545370221138, -0.080354705452919, -0.01456828135997057, -0.04255502298474312, -0.10008269548416138, -0.006874865386635065, 0.08189195394515991, -0.01593758538365364, -0.030000055208802223, 0.039657093584537506, 0.055382851511240005, 0.039213698357343674, -0.0007616596412844956, -0.05589707940816879, -0.06736090779304504, -0.05011419951915741, 0.004653130657970905, 0.0014762867940589786, 0.04253976047039032, -0.006111635360866785, 0.1019899845123291, -0.0233793742954731, 0.03990505635738373, -0.024581536650657654, 0.06525292247533798, 0.0889320969581604, -0.04441007971763611, -0.006947228219360113, 0.07472460716962814, -0.051405396312475204, 0.029574256390333176, -0.05622795969247818, 0.05367520824074745, 0.04780849441885948, 0.04009389504790306, 0.018490951508283615, 0.0974326804280281, -0.015485582873225212, -0.023313645273447037, 0.03252117335796356, -0.0382254533469677, 0.07709922641515732, 0.009793723933398724, -0.030680978670716286, 0.0026222090236842632, 0.05549238994717598, 0.04564133659005165, -0.019720297306776047, 0.017002897337079048, 0.044275540858507156, 0.009073436260223389, 0.02441120333969593, 0.03561680018901825, -0.014614559710025787, -0.028700806200504303, -0.06723971664905548, 0.08448269963264465, 0.007855094969272614, 0.005846438929438591, 0.024873916059732437, -0.03964567184448242, -0.05255362018942833, 0.01874624192714691, -0.08358249813318253, -0.025405967608094215, -0.02113858237862587, -0.03871317207813263, -0.11032794415950775, 0.0770454853773117, -0.05857248231768608, 0.06384016573429108, -0.026593349874019623, -0.11192279309034348, -0.006166854873299599, 0.03271036967635155, -0.006677908357232809, -0.021056894212961197, -0.00164507154840976, 0.037360552698373795, -0.003944821655750275, -0.010380197316408157, -0.08620161563158035, -0.10391461849212646, -0.0007504242821596563, -0.0197439044713974, 0.035510942339897156, 0.028763987123966217, -0.05880921334028244, 0.024249088019132614, 0.009829584509134293, -0.04227997735142708, 0.06732840090990067, 1.1698219293639976e-32, -0.02104184962809086, 0.014774131588637829, -0.12717701494693756, -0.0542556494474411, -0.02319074608385563, -0.017074327915906906, 0.026398373767733574, -0.0753815695643425, 0.012486131861805916, -0.04339860752224922, -0.07121050357818604, 0.05368232727050781, 0.022458191961050034, -0.011320791207253933, -0.04200424253940582, -0.02990727312862873, -0.041250161826610565, 0.006182999350130558, -0.026568179950118065, 0.005060507915914059, -0.011279948987066746, 0.012182792648673058, 0.025298066437244415, -0.0242669265717268, -0.0495537705719471, 0.08411374688148499, 0.012842081487178802, -0.04809651896357536, 0.11604128777980804, 0.14862371981143951, 0.009622485376894474, -0.020756909623742104, 0.03691013902425766, 0.06304118037223816, -0.0063239699229598045, -0.12963585555553436, 0.011471247300505638, -0.02011406235396862, -0.012869482859969139, 0.0010215335059911013, 0.1006791964173317, -0.02988305129110813, 0.08020345121622086, -0.009056485258042812, 0.06801682710647583, -0.06538796424865723, 0.04731282964348793, 0.06042148172855377, 0.0056096771731972694, -0.07682844996452332, -0.07936152070760727, -0.03972742334008217, 0.0045767901465296745, 0.03534174710512161, -0.07454769313335419, -0.006231605540961027, 0.0341293141245842, -0.046169206500053406, 0.10648014396429062, -0.02377178706228733, -0.013691103085875511, 0.010504278354346752, 0.02554321475327015, 0.08545096218585968, -0.004470094572752714, -0.014472924172878265, -0.017952386289834976, 0.00777823943644762, -0.000877240439876914, 0.010166549123823643, 0.03217875957489014, 0.10385213047266006, -0.04316442087292671, -0.03357850760221481, -0.013732753694057465, 0.05251976102590561, -0.021014397963881493, 0.05078348517417908, -0.043503060936927795, -0.042189959436655045, -0.07869654148817062, -0.014225981198251247, -0.02639334462583065, -0.04896341264247894, -0.06908290833234787, -0.07862991094589233, 0.09553007036447525, 0.08246729522943497, -0.01617085002362728, -0.050127383321523666, -0.031089985743165016, 0.03001832589507103, 0.0016846229555085301, 0.02406192012131214, -0.029056508094072342, 5.424936404150803e-32, 0.009198829531669617, -0.06846233457326889, -0.04877648502588272, 0.014438841491937637, 0.06319109350442886, 0.0208149254322052, 0.01743680238723755, -0.021110329777002335, 0.07884153723716736, -0.022955119609832764, -0.020029617473483086, 0.05177794769406319, -0.036833446472883224, 0.07880335301160812, -0.04701840132474899, -0.02158551663160324, 0.017252178862690926, -0.009774819016456604, -0.03351191431283951, 0.04414526745676994, 0.04981416091322899, 0.018645785748958588, -0.04263383895158768, 0.005554448813199997, 0.09991755336523056, 0.07856358587741852, -0.11061453074216843, 0.033071063458919525, 0.035111621022224426, -0.0657026469707489, 0.0737525224685669, 0.013610092923045158, 0.013545731082558632, -0.03496305271983147, 0.022321874275803566, 0.010343210771679878, 0.050996776670217514, 0.051180947571992874, 0.010261124931275845, 0.04239816218614578, 0.00030695495661348104, -0.023647159337997437, -0.08150579035282135, 0.004867056850343943, 0.035543523728847504, -0.11234150826931, -0.06192798912525177, -0.03875177353620529, 0.002015798119828105, 0.0022989283315837383, -0.04954617843031883, 0.046135563403367996, -0.04230223223567009, -0.048444103449583054, -0.0263956431299448, -0.08822241425514221, 0.006030152086168528, 0.011361186392605305, 0.05104469880461693, 0.025282924994826317, -0.017635272815823555, 0.13046647608280182, 0.007386226672679186, 0.09198972582817078 ]
15Algebraic expressions 1 Simplify: a 1 ___ βˆšβ€―__ 5 b 1 ____ βˆšβ€―___ 11 c 1 ___ βˆšβ€―__ 2 d βˆšβ€―__ 3 ____ βˆšβ€―___ 15 e βˆšβ€―__ 12 ____ βˆšβ€―__ 48 f βˆšβ€―__ 5 ____ βˆšβ€―___ 80 g βˆšβ€―___ 12 _____ βˆšβ€―____ 156 h βˆšβ€―__ 7 ____ βˆšβ€―___ 63 2 Rationa lise the denominators and simplify: a 1 ______ 1 + βˆšβ€―__ 3 b 1 ______ 2 + βˆšβ€―__ 5 c 1 ______ 3 βˆ’ βˆšβ€―__ 7 d 4 ______ 3 βˆ’ βˆšβ€―__ 5 e 1 _______ βˆšβ€―__ 5 βˆ’ βˆšβ€―__ 3 f 3 βˆ’ βˆšβ€―__ 2 ______ 4 βˆ’ βˆšβ€―__ 5 g 5 ______ 2 + βˆšβ€―__ 5 h 5 βˆšβ€―__ 2 _______ βˆšβ€―__ 8 βˆ’ βˆšβ€―__ 7 i 11 _______ 3 + βˆšβ€―___ 11 j βˆšβ€―__ 3 βˆ’ βˆšβ€―__ 7 _______ βˆšβ€―__ 3 + βˆšβ€―__ 7 k βˆšβ€―___ 17 βˆ’ βˆšβ€―___ 11 _________ βˆšβ€―___ 17 + βˆšβ€―___ 11 l βˆšβ€―___ 41 + βˆšβ€―___ 29 _________ βˆšβ€―___ 41 βˆ’ βˆšβ€―___ 29 m βˆšβ€―__ 2 βˆ’ βˆšβ€―__ 3 _______ βˆšβ€―__ 3 βˆ’ βˆšβ€―__ 2 3 Rationa lise the denominators and simplify: a 1 ________ (3 βˆ’ βˆšβ€―__ 2 ) 2 b 1 ________ (2 + βˆšβ€―__ 5 ) 2 c 4 ________ (3 βˆ’ βˆšβ€―__ 2 ) 2 d 3 ________ (5 + βˆšβ€―__ 2 ) 2 e 1 ______________ (5 + √ __ 2 )(3 βˆ’ √ __ 2 ) f 2 ______________ (5 βˆ’ √ __ 3 )(2 + √ __ 3 ) 4 Simplify 3 βˆ’ 2 βˆšβ€―__ 5 _______ βˆšβ€―__ 5 βˆ’ 1 giving your answer in the form p + q βˆšβ€―__ 5 , where p and q are rational numbers. (4 marks)E/P You can check that your answer is in the correct form by writing down the values of p and q and checking that they are rational numbers.Problem-solving 1 Simplify: a y3 Γ— y5 b 3x2 Γ— 2x5 c (4x2)3 Γ· 2x5 d 4b2 Γ— 3b3 Γ— b4 2 Expand and simplify if possible:a (x + 3)(x βˆ’ 5) b (2x βˆ’ 7)(3x + 1) c (2x + 5)(3x βˆ’ y + 2) 3 Expand and simplify if possible:a x(x + 4)(x βˆ’ 1) b (x + 2)(x βˆ’ 3)(x + 7) c (2x + 3)(x βˆ’ 2)(3x βˆ’ 1) 4 Expand the brackets:a 3(5y + 4) b 5x2(3 βˆ’ 5x + 2x2) c 5x(2 x + 3) βˆ’ 2x(1 βˆ’ 3x) d 3x2(1 + 3x) βˆ’ 2x(3x βˆ’2)Exercise 1F Mixed exercise 1
[ -0.025421569123864174, 0.11251389235258102, 0.026645056903362274, -0.07874953001737595, -0.002589508192613721, 0.006759926211088896, 0.04971057549118996, -0.01578047312796116, -0.04731705039739609, -0.03618544712662697, -0.06822872906923294, -0.07045580446720123, 0.01935826614499092, -0.0059540411457419395, 0.012330446392297745, 0.04577261582016945, -0.03355155140161514, 0.03778901323676109, -0.09715127944946289, 0.019087763503193855, 0.11900590360164642, -0.044978924095630646, 0.04477053880691528, 0.019634557887911797, -0.06642407178878784, -0.006035072263330221, -0.05777251720428467, -0.0584847517311573, -0.07346741110086441, -0.09288189560174942, -0.0010865735821425915, 0.0069969124160707, 0.1358916163444519, -0.09002793580293655, 0.009724576026201248, -0.0217976663261652, -0.0023166921455413103, 0.03528445214033127, 0.02549973875284195, -0.026981130242347717, -0.013872973620891571, 0.042530931532382965, 0.014388063922524452, 0.06319105625152588, -0.04203234240412712, -0.029761873185634613, 0.06714345514774323, 0.01981290988624096, -0.010396669618785381, 0.004347401671111584, 0.039334315806627274, -0.021012647077441216, -0.09710357338190079, 0.017400652170181274, 0.044449977576732635, -0.07547822594642639, -0.014397677034139633, 0.01655760407447815, 0.0071222810074687, 0.02016446925699711, -0.015022077597677708, 0.01805400289595127, 0.04486391693353653, 0.02259884960949421, -0.059637926518917084, 0.03307119384407997, 0.023876966908574104, 0.02366209588944912, 0.03593022748827934, 0.05363839492201805, -0.015381928533315659, 0.028567131608724594, -0.03802823647856712, -0.03228418156504631, 0.08237183839082718, -0.030465885996818542, -0.011583494953811169, -0.09872829169034958, -0.01179778017103672, -0.06861934065818787, -0.06327468901872635, -0.06400841474533081, 0.05740133300423622, -0.05209602415561676, 0.01194223016500473, -0.005080592818558216, 0.05870415270328522, 0.14466629922389984, 0.014919220469892025, -0.07147539407014847, 0.03839836269617081, -0.06281955540180206, -0.002020477084442973, -0.04708876833319664, -0.07031848281621933, -0.025650927796959877, -0.0056953104212880135, -0.06396573036909103, -0.008002620190382004, 0.022210203111171722, 0.06496912986040115, -0.04453209415078163, 0.04071643203496933, -0.0002589086361695081, -0.09412267804145813, -0.039453160017728806, -0.040337368845939636, 0.005540810991078615, 0.11920811235904694, -0.03918420523405075, -0.07644660770893097, 0.016974223777651787, 0.00411123177036643, -0.0768696591258049, 0.036257971078157425, -0.0007531343144364655, 0.028149602934718132, -0.06085562705993652, 0.057318296283483505, 0.05902169272303581, -0.03839828073978424, 0.0278497114777565, 0.044078197330236435, 0.020814383402466774, 0.08702471852302551, 0.010433483868837357, -0.042977746576070786, 0.08147036284208298, -0.023036547005176544, 0.00737480353564024, -0.010162955150008202, 0.025945382192730904, 0.0036404700949788094, 0.021377859637141228, -0.1038237139582634, -0.14789290726184845, 0.032662879675626755, 0.07929648458957672, -0.0014356760075315833, -0.007712685503065586, 0.029640307649970055, 0.04991726204752922, 0.029464449733495712, 0.036440834403038025, -0.029241707175970078, -0.037467729300260544, -0.06426788121461868, 0.05439293757081032, 0.01052619144320488, 0.012625223957002163, 0.03869776427745819, 0.033422306180000305, -0.05490675941109657, 0.003313754452392459, 0.0017293869750574231, 0.03895885869860649, 0.06818517297506332, -0.027602020651102066, -0.06921329349279404, 0.05199617147445679, -0.003166703972965479, -0.030241629108786583, -0.01191472914069891, 0.042073532938957214, 0.08833902329206467, 0.049472857266664505, 0.060055240988731384, -0.003057564375922084, -0.01583966054022312, 0.04310337454080582, 0.0024661365896463394, 0.006031549535691738, 0.07138463109731674, -0.010921661742031574, -0.022467654198408127, -0.008611605502665043, 0.11014222353696823, 0.025981055572628975, -0.04231581091880798, -0.00665709562599659, 0.04901716858148575, -0.08187487721443176, 0.012384290806949139, 0.06502469629049301, -0.022532379254698753, 0.01996137760579586, -0.05507775768637657, 0.043864745646715164, -0.02878592722117901, -0.07549633830785751, 0.03007175587117672, -0.04569606855511665, -0.10998430848121643, -0.02267056331038475, -0.006139417644590139, -0.03342556208372116, -0.09778892993927002, -0.03559710085391998, -0.07404609024524689, 0.053934551775455475, 0.02263391949236393, -0.0018458312842994928, -0.017117898911237717, -0.04780762642621994, 0.09711965918540955, 0.007989607751369476, -0.059175387024879456, 0.023454705253243446, -0.019281338900327682, 0.04420679807662964, 0.007752811070531607, -0.017553720623254776, -0.012735511176288128, -0.04242364317178726, 0.0463525615632534, -0.009454343467950821, 0.05394243448972702, -0.03885049372911453, -0.1000935435295105, -0.02487924136221409, 0.01428897026926279, -0.03780725598335266, 0.0865057185292244, 5.767592419668324e-33, 0.02730369381606579, 0.07233095169067383, -0.0980117917060852, -0.06087452545762062, -0.006458894349634647, -0.030670536682009697, 0.025697888806462288, -0.05228821933269501, -0.0008896942599676549, 0.006181353237479925, -0.010493874549865723, -0.009732210077345371, 0.03680998831987381, -0.03154975175857544, -0.07475246489048004, 0.008374580182135105, -0.047017697244882584, 0.04605115205049515, -0.05214757099747658, -0.04907721281051636, -0.04666416347026825, 0.01891423761844635, 0.05342989042401314, 0.03076469711959362, -0.0868239775300026, 0.09424585849046707, 0.02183074690401554, -0.0260887760668993, 0.023136522620916367, 0.08295940607786179, 0.09389867633581161, -0.07956796139478683, 0.0764392614364624, 0.07297704368829727, -0.04787871241569519, -0.09454192221164703, 0.04175553098320961, -0.0247028861194849, 0.04238615557551384, -0.014701702632009983, 0.07532437145709991, -0.01205939520150423, 0.12015732377767563, -0.026953203603625298, 0.03949056565761566, -0.0016646800795570016, 0.010534358210861683, 0.05770596116781235, -0.042916905134916306, -0.035880014300346375, -0.08223341405391693, -0.09445217251777649, -0.07773617655038834, -0.062123145908117294, -0.057391416281461716, -0.008811489678919315, 0.01883857697248459, -0.028609463945031166, 0.11464673280715942, 0.02857181616127491, -0.004063002299517393, -0.002961210673674941, 0.02373683825135231, 0.07205276191234589, -0.07460787892341614, -0.007680769544094801, 0.010635508224368095, 0.052972160279750824, -0.023066988214850426, 0.028229162096977234, 0.041083164513111115, 0.06997384130954742, -0.0981665775179863, -0.009380602277815342, -0.05107356607913971, 0.02990683540701866, 0.033699776977300644, 0.010638592764735222, 0.03290759027004242, -0.07052543014287949, -0.027234015986323357, 0.03675568103790283, 0.021877538412809372, -0.058618128299713135, -0.11526127904653549, -0.08617392927408218, 0.06992420554161072, -0.0015367764281108975, 0.04786660894751549, -0.024214133620262146, 0.019987402483820915, 0.06636544317007065, 0.061254531145095825, -0.008830905891954899, -0.04471088945865631, 6.175480143196027e-32, -0.0006476342678070068, 0.013155574910342693, -0.02116147056221962, 0.014075545594096184, 0.037116337567567825, -0.005045636091381311, -0.03867574781179428, -0.033208634704351425, 0.07691926509141922, -0.06937842071056366, 0.04803846776485443, 0.05692102387547493, -0.059996914118528366, 0.055680301040410995, -0.018547166138887405, -0.03716300427913666, -0.0034954180009663105, 0.014454834163188934, -0.007836811244487762, 0.055268771946430206, -0.015972331166267395, 0.038782618939876556, -0.024883126839995384, 0.02166605554521084, 0.032457660883665085, 0.07257044315338135, -0.11014735698699951, -0.011506428010761738, 0.009176395833492279, -0.06411605328321457, 0.05925430729985237, 0.0016310391947627068, -0.0036741753574460745, -0.00012153127318015322, -0.030488066375255585, 0.04416615888476372, 0.029511000961065292, 0.0797293484210968, -0.032704584300518036, 0.14756083488464355, -0.01422412134706974, -0.014420104213058949, -0.002898449543863535, -0.01282726600766182, 0.014769800938665867, -0.10268372297286987, -0.07109994441270828, -0.019611962139606476, 0.03459806740283966, -0.012723162770271301, -0.06428107619285583, 0.0565866082906723, -0.033015526831150055, -0.003043131669983268, -0.10093723237514496, 0.001064957003109157, 0.03741573914885521, 0.07994980365037918, 0.017760692164301872, 0.03407808765769005, 0.031409140676259995, 0.11524799466133118, -0.025455452501773834, 0.03615158796310425 ]
16 Chapter 1 5 Factorise these expr essions completely: a 3x2 + 4x b 4y2 + 10y c x2 + xy + xy2 d 8xy2 + 10x2y 6 Factorise: a x2 + 3x + 2 b 3x2 + 6x c x2 βˆ’ 2x βˆ’ 35 d 2x2 βˆ’ x βˆ’ 3 e 5x2 βˆ’ 13x βˆ’ 6 f 6 βˆ’ 5 x βˆ’ x2 7 Factorise: a 2x3 + 6x b x3 βˆ’ 36x c 2x3 + 7x2 βˆ’ 15x 8 Simplify: a 9x3 Γ· 3xβˆ’3 b ( 4 3 _ 2 ) 1 _ 3 c 3xβˆ’2 Γ— 2x4 d 3 x 1 _ 3 Γ· 6 x 2 _ 3 9 Eva luate: a ( 8 ___ 27 ) 2 _ 3 b ( 225 ____ 289 ) 3 _ 2 10 Simplify: a 3 ____ βˆšβ€―___ 63 b βˆšβ€―__ 20 + 2 βˆšβ€―__ 45 βˆ’ βˆšβ€―__ 80 11 a Find the value of 35x2 + 2x βˆ’ 48 when x = 25. b By factorising the expression, sho w that your answer to part a can be written as the product of two prime factors. 12 Expand and simplify if possible: a βˆšβ€―__ 2 (3 + βˆšβ€―__ 5 ) b (2 βˆ’ βˆšβ€―__ 5 )(5 + βˆšβ€―__ 3 ) c (6 βˆ’ βˆšβ€―__ 2 )(4 βˆ’ βˆšβ€―__ 7 ) 13 Rationa lise the denominator and simplify: a 1 ____ βˆšβ€―___ 3 b 1 ______ βˆšβ€―__ 2 βˆ’ 1 c 3 ______ βˆšβ€―__ 3 βˆ’ 2 d βˆšβ€―___ 23 βˆ’ βˆšβ€―___ 37 _________ βˆšβ€―___ 23 + βˆšβ€―___ 37 e 1 ________ (2 + βˆšβ€―__ 3 )2 f 1 ________ (4 βˆ’ βˆšβ€―__ 7 )2 14 a Given tha t x3 βˆ’ x2 βˆ’ 17x βˆ’ 15 = (x + 3)(x2 + bx + c), where b and c are constants, work out the values of b and c. b Hence, fully factorise x3 βˆ’ x2 βˆ’ 17x βˆ’ 15. 15 Given tha t y = 1 __ 64 x 3 express each of the following in the form k x n , where k and n are constants. a y 1 _ 3 (1 mark) b 4 y βˆ’1 (1 mark) 16 Show that 5 _________ βˆšβ€―___ 75 βˆ’ βˆšβ€―___ 50 can be written in the form βˆšβ€―__ a + βˆšβ€―__ b , where a and b are integers. (5 marks) 17 Expand and simplify ( βˆšβ€―___ 11 βˆ’ 5)(5 βˆ’ βˆšβ€―___ 11 ) . (2 marks) 18 Factorise completel y x βˆ’ 64 x 3 . (3 marks) 19 Express 27 2x + 1 in the form 3 y , stating y in terms of x. (2 marks)E E/P E E E/P
[ -0.01494672428816557, 0.0855688825249672, 0.011874442920088768, -0.06033628061413765, 0.04024406522512436, 0.08138574659824371, -0.03547201678156853, -0.01816456764936447, -0.07763617485761642, 0.028328219428658485, -0.000017930229660123587, -0.06935379654169083, 0.05119537562131882, -0.04857812449336052, -0.017426861450076103, -0.04517945274710655, 0.005384984891861677, 0.05242493748664856, -0.08275346457958221, -0.005995896179229021, 0.051813121885061264, -0.08918413519859314, -0.003932260442525148, -0.07323569059371948, 0.0695558413863182, -0.04406611993908882, -0.011512761935591698, -0.11232160776853561, -0.026089385151863098, -0.08059857785701752, 0.05324268713593483, 0.07352038472890854, 0.1040053740143776, -0.03150314465165138, 0.04474649950861931, 0.018591290339827538, 0.0590326264500618, -0.015124971978366375, -0.0005820530350320041, -0.02269195206463337, -0.09520217031240463, 0.03163778409361839, -0.033917635679244995, 0.013815930113196373, 0.018544238060712814, -0.06107819080352783, -0.01811785064637661, 0.011955155059695244, 0.04517216235399246, -0.0869387835264206, 0.04186905920505524, -0.05420756712555885, -0.023531269282102585, 0.0714993104338646, -0.01971179060637951, -0.030998840928077698, -0.04821979999542236, 0.04670115187764168, -0.022346820682287216, -0.023212719708681107, -0.0799284279346466, -0.061781879514455795, 0.010402726009488106, 0.021359557285904884, -0.004804582800716162, 0.031803615391254425, -0.005994285922497511, -0.0930907279253006, 0.04774020239710808, 0.017846470698714256, -0.08988290280103683, -0.014913620427250862, -0.028880232945084572, -0.042615752667188644, 0.12323713302612305, 0.06356895714998245, -0.037082232534885406, -0.031063461676239967, 0.016848232597112656, -0.0743337869644165, -0.01959032379090786, -0.04098577797412872, 0.1170208603143692, 0.0009969357633963227, 0.056623127311468124, -0.04335125535726547, 0.09934655576944351, 0.011971483007073402, 0.04061726853251457, -0.066889189183712, 0.02832578495144844, -0.0984208807349205, 0.020533619448542595, -0.05211552977561951, -0.08398827165365219, -0.06998500227928162, 0.010986790992319584, -0.09709800779819489, 0.04934539273381233, 0.059045225381851196, 0.027238326147198677, -0.005090374033898115, -0.011728083714842796, -0.04922271519899368, -0.06755881756544113, -0.033071376383304596, 0.02125711180269718, -0.023755641654133797, 0.06649063527584076, -0.13185396790504456, -0.10108337551355362, -0.007154025137424469, 0.00592109514400363, -0.024580007418990135, -0.02388552948832512, -0.06006612256169319, 0.11823724955320358, -0.05950991064310074, -0.020600978285074234, -0.02553486078977585, 0.07010933011770248, -0.022983305156230927, 0.023057466372847557, -0.006580126006156206, 0.004712819587439299, -0.01766338385641575, 0.013011252507567406, -0.0005716268206015229, -0.023045387119054794, -0.04174163192510605, 0.02183305285871029, 0.04686560854315758, -0.022682474926114082, 0.027033278718590736, -0.0167431328445673, -0.09573144465684891, -0.062346503138542175, 0.08394681662321091, -0.05346957594156265, -0.018422655761241913, -0.005312599241733551, 0.08588407933712006, 0.021086854860186577, -0.011663512326776981, -0.0008622509776614606, -0.0710708424448967, -0.028336727991700172, -0.02503061667084694, 0.04828853905200958, 0.08936794102191925, 0.003400583751499653, -0.030297089368104935, -0.029410341754555702, 0.029118675738573074, -0.019236918538808823, -0.03542928770184517, -0.00888226367533207, -0.06411764770746231, -0.0017138406401500106, -0.082717664539814, -0.10866779834032059, 0.012284263968467712, -0.052778229117393494, 0.07979045808315277, -0.008449946530163288, 0.022148646414279938, 0.05886426568031311, 0.04993055760860443, -0.08890928328037262, 0.011048616841435432, 0.016026919707655907, -0.02131924219429493, -0.016181515529751778, 0.09964003413915634, 0.016965465620160103, -0.003674280596897006, 0.061270568519830704, -0.01755020022392273, 0.0029660742729902267, 0.11433151364326477, 0.04695481061935425, -0.03081865981221199, -0.05540953949093819, 0.0531889833509922, -0.027653655037283897, 0.002702338621020317, -0.05660523474216461, 0.026997048407793045, -0.021563611924648285, -0.041902538388967514, 0.03630455583333969, -0.06243589147925377, -0.054468508809804916, 0.051058828830718994, -0.06530928611755371, 0.0035940995439887047, 0.025174591690301895, -0.05226787179708481, -0.12817244231700897, 0.02348150499165058, 0.03884973004460335, 0.000060934089560760185, 0.02020924724638462, -0.06337396055459976, 0.0013898300239816308, -0.032154377549886703, -0.06237783655524254, -0.033776864409446716, -0.0029429993592202663, 0.0828598141670227, 0.016806919127702713, 0.059110477566719055, 0.011770525015890598, -0.030785460025072098, 0.02586827427148819, 0.012020385824143887, 0.10786355286836624, -0.06253211200237274, -0.002078306395560503, -0.09771464765071869, 0.013748090714216232, -0.11296659708023071, 0.007464576046913862, -2.3342170421206303e-32, -0.046714648604393005, 0.012035032734274864, -0.10369694232940674, -0.06394470483064651, 0.06068853288888931, -0.050337765365839005, 0.01881324127316475, -0.06848954409360886, 0.1391458809375763, 0.0338141992688179, 0.02760881930589676, -0.014764675870537758, -0.008905836381018162, 0.01967856101691723, -0.0796906128525734, -0.056749552488327026, -0.04535675421357155, 0.09662356972694397, 0.009996851906180382, -0.034270599484443665, -0.02765706181526184, 0.004914224147796631, -0.007872811518609524, -0.011461923830211163, -0.03382093831896782, -0.023159531876444817, 0.0806742012500763, -0.08105473965406418, 0.012050710618495941, 0.0418693944811821, 0.019291304051876068, -0.06442886590957642, -0.00335947354324162, 0.03477639704942703, -0.027089213952422142, -0.10514886677265167, -0.014416765421628952, 0.022926799952983856, -0.04604417458176613, 0.022242572158575058, 0.0832420289516449, -0.024884089827537537, -0.005962797440588474, -0.007614393252879381, 0.024786274880170822, 0.050693538039922714, 0.04503354802727699, 0.017311880365014076, 0.03787316009402275, -0.044047750532627106, -0.021196747198700905, -0.008138538338243961, 0.005341831594705582, 0.022566039115190506, 0.02346815913915634, 0.02090374380350113, 0.09842181205749512, -0.030181793496012688, 0.09066285192966461, 0.021296504884958267, -0.06897617876529694, 0.02119147777557373, -0.006489242427051067, 0.026081781834363937, -0.04704011231660843, 0.01257358305156231, 0.008743691258132458, 0.045943211764097214, -0.0522259958088398, 0.04565338045358658, -0.03448688983917236, 0.07637710869312286, -0.07620376348495483, 0.03596547245979309, -0.008591965772211552, 0.030980579555034637, -0.022818874567747116, 0.05756804347038269, -0.03767832741141319, -0.009367991238832474, -0.04218784347176552, -0.03625807911157608, 0.0004412100533954799, -0.10248877853155136, -0.058313433080911636, -0.023596959188580513, 0.13380080461502075, 0.05943151190876961, 0.05923651158809662, -0.04402555152773857, -0.02925930730998516, -0.0071878209710121155, 0.1399645060300827, -0.016845740377902985, 0.056901123374700546, 1.4039234660401794e-31, 0.017285563051700592, -0.008541337214410305, -0.07981029152870178, 0.006706387270241976, 0.030200757086277008, 0.019822007045149803, 0.016573965549468994, -0.021094271913170815, 0.0036182289477437735, -0.057572685182094574, 0.07776185125112534, 0.012235203757882118, -0.014250651001930237, 0.027887586504220963, -0.0631854236125946, -0.018936172127723694, -0.08907561749219894, -0.003340210299938917, -0.027135662734508514, 0.04886828735470772, -0.019988015294075012, 0.008225684985518456, 0.007088445592671633, -0.03260600566864014, 0.01870596967637539, 0.07948894798755646, -0.011004015803337097, -0.00468668807297945, 0.030346650630235672, 0.020508402958512306, 0.09270656108856201, -0.09442310780286789, -0.04202356934547424, -0.05778668820858002, -0.034841399639844894, 0.01515924371778965, 0.09998008608818054, 0.015338084660470486, -0.006899401545524597, 0.03961046412587166, -0.0011812072480097413, -0.08855774998664856, -0.01267204713076353, -0.018364192917943, -0.03345491364598274, -0.08615868538618088, -0.03451073169708252, -0.005418781656771898, 0.016235006973147392, -0.006224939599633217, -0.06494923681020737, 0.0017967328894883394, -0.017695631831884384, -0.010423580184578896, 0.044226761907339096, -0.06296563148498535, -0.0367245078086853, 0.03913399204611778, -0.0016397885046899319, -0.05129208788275719, -0.016555149108171463, 0.08437388390302658, -0.04877398908138275, 0.0283260066062212 ]
17Algebraic expressions 20 Solve the equation 8 + x βˆšβ€―___ 12 = 8x ___ βˆšβ€―__ 3 Give y our answer in the form a βˆšβ€―__ b where a and b are integers. (4 marks) 21 A rectangle has a length of (1 + βˆšβ€―__ 3 ) cm and area of βˆšβ€―___ 12 cm2. Calculate the width of the rectangle in cm. Express your answer in the form a + b βˆšβ€―__ 3 , where a and b are integers to be found. 22 Show that (2 βˆ’ βˆšβ€―__ x ) 2 ________ βˆšβ€―__ x can be written as 4 x βˆ’ 1 _ 2 βˆ’ 4 + x 1 _ 2 . (2 marks) 23 Given tha t 243 βˆšβ€―__ 3 = 3 a , find the value of a. (3 marks) 24 Given tha t 4 x 3 + x 5 _ 2 ________ βˆšβ€―__ x can be written in the form 4 x a + x b , write down the value of a and the value of b. (2 marks)E/P P E E/P E/P 1 You can use the laws of indices to simplify powers of the same base. ● am Γ— an = am + n ● am Γ· an = am βˆ’ n ● (am)n = amn ● (ab )n = anbn 2 Factorising is the opposite of expanding brackets. 3 A quadratic expr ession has the form ax2 + bx + c where a, b and c are real numbers and a β‰  0. 4 x2 βˆ’ y2 = (x + y)(x βˆ’ y) 5 You can use the law s of indices with any rational power. ● a 1 __ m = m βˆšβ€―__ a ● a n __ m = m βˆšβ€―__ a n ● a βˆ’m = 1 ___ a m ● a 0 = 1 6 You can manipulate sur ds using these rules: ● βˆšβ€―____ ab = βˆšβ€―__ a Γ— βˆšβ€―__ b ● βˆšβ€―__ a __ b = βˆšβ€―__ a ___ βˆšβ€―__ b 7 The rules to r ationalise denominators are: ● Fractions in the f orm 1 ___ βˆšβ€―__ a , multiply the numerator and denominat or by βˆšβ€―__ a . ● Fractions in the f orm 1 ______ a + βˆšβ€―__ b , multiply the numerator and denominat or by a βˆ’ βˆšβ€―__ b . ● Fractions in the f orm 1 ______ a βˆ’ βˆšβ€―__ b , multiply the numerator and denominat or by a + βˆšβ€―__ b .Summary of key pointsa Simplify ( βˆšβ€―__ a + βˆšβ€―__ b ) ( βˆšβ€―__ a βˆ’ βˆšβ€―__ b ) . b Hence show that 1 _______ βˆšβ€―__ 1 + βˆšβ€―__ 2 + 1 _______ βˆšβ€―__ 2 + βˆšβ€―__ 3 + 1 _______ βˆšβ€―__ 3 + βˆšβ€―__ 4 + ... + 1 _________ βˆšβ€―___ 24 + βˆšβ€―___ 25 = 4Challenge
[ 0.0794546827673912, 0.1015685424208641, -0.026054993271827698, -0.03144179284572601, -0.0501992367208004, 0.028811698779463768, 0.02456670068204403, 0.0014317742316052318, -0.08592641353607178, -0.038421571254730225, -0.026034310460090637, -0.07003024220466614, 0.0016906982054933906, -0.03628546744585037, 0.028632545843720436, -0.009973912499845028, -0.049276601523160934, 0.03988689184188843, -0.0874297022819519, 0.03455411270260811, 0.09614512324333191, -0.06418702751398087, -0.009941089898347855, 0.04497629776597023, 0.029392071068286896, -0.00826894212514162, -0.09375516325235367, 0.019597768783569336, 0.004989894572645426, -0.019453203305602074, -0.0019989211577922106, 0.032102007418870926, 0.1746433824300766, -0.08258923888206482, 0.04748069867491722, -0.009468890726566315, 0.06370139122009277, 0.046447038650512695, -0.020059799775481224, -0.04851274937391281, -0.06211413815617561, 0.05319362133741379, 0.08008408546447754, 0.03103066235780716, 0.026823444291949272, -0.1022924929857254, 0.0714820995926857, 0.02256849594414234, 0.022774891927838326, -0.036679498851299286, 0.06634176522493362, 0.033001858741045, -0.08854527026414871, 0.04294167086482048, 0.008650161325931549, -0.051620740443468094, 0.0008335934835486114, 0.056376438587903976, 0.08284572511911392, 0.000453609274700284, 0.00357151054777205, 0.00438486784696579, 0.02220390923321247, 0.0508514866232872, -0.021972352638840675, 0.044033199548721313, -0.08234420418739319, -0.027373678982257843, 0.03660496696829796, 0.03440137580037117, -0.00826748926192522, 0.041182175278663635, -0.0666261836886406, -0.027900196611881256, 0.03526251018047333, -0.08807436376810074, -0.09837368130683899, -0.06689680367708206, 0.04060552269220352, -0.042698025703430176, -0.04666877165436745, 0.016829509288072586, 0.09048683941364288, -0.04474795609712601, 0.025632718577980995, -0.014841403812170029, 0.037617459893226624, 0.07762773334980011, -0.015190773643553257, -0.07197244465351105, 0.04547915607690811, -0.04227203130722046, -0.04371783882379532, -0.01586993783712387, 0.028244102373719215, -0.07600496709346771, -0.01737970858812332, -0.08837734162807465, -0.008055297657847404, 0.08204839378595352, 0.010962320491671562, -0.0365837924182415, 0.033402834087610245, 0.0002748290717136115, -0.019529234617948532, -0.004829907324165106, -0.039771873503923416, -0.04389140009880066, 0.1182483434677124, -0.04080181196331978, -0.09941114485263824, 0.02780001610517502, 0.0328252911567688, 0.04502134397625923, 0.03960370272397995, 0.016323598101735115, 0.06717050820589066, -0.02927410416305065, 0.005019041243940592, 0.019636880606412888, 0.010363508015871048, -0.0028704481665045023, 0.1232907772064209, -0.07066072523593903, 0.007141043897718191, -0.011039728298783302, -0.01114907767623663, 0.05788355693221092, -0.004326025024056435, -0.0704294741153717, 0.0067545161582529545, -0.02088390477001667, -0.028484847396612167, -0.01790832355618477, -0.011835435405373573, -0.07800435274839401, -0.036076389253139496, 0.0840403139591217, -0.012948313727974892, -0.041884031146764755, 0.11130031198263168, 0.09308275580406189, 0.11335115879774094, 0.028685977682471275, -0.011948096565902233, 0.026175493374466896, 0.006265405099838972, 0.006524316500872374, -0.03279772773385048, 0.05191710218787193, 0.0021581228356808424, 0.013851291500031948, -0.05454948544502258, 0.013259327970445156, -0.013278667815029621, -0.04721932113170624, -0.0431058406829834, -0.014102684333920479, -0.0801975280046463, 0.025253556668758392, -0.053074490278959274, 0.07014886289834976, 0.02152363583445549, 0.02543352171778679, 0.08458089828491211, 0.027454650029540062, 0.008427736349403858, -0.01065277773886919, 0.004757861606776714, 0.03099936619400978, -0.0074784099124372005, 0.06628984957933426, 0.05446223169565201, 0.05958108231425285, -0.0026213997043669224, -0.0776466503739357, 0.09456190466880798, -0.06447666883468628, 0.012138276360929012, 0.04194820672273636, 0.10250332951545715, -0.07829754054546356, -0.040542036294937134, 0.015134471468627453, -0.010112832300364971, -0.019033070653676987, -0.01992330327630043, 0.07890736311674118, -0.08627793937921524, -0.019869301468133926, 0.026181744411587715, -0.08663368970155716, -0.08547224849462509, 0.030887387692928314, -0.00950618740171194, -0.02825331874191761, 0.01884051226079464, -0.07497862726449966, -0.11840266734361649, 0.04104985296726227, -0.006140063516795635, 0.006897883955389261, -0.016947917640209198, -0.1296284794807434, 0.07054198533296585, 0.07487908005714417, -0.016238760203123093, 0.01023958157747984, 0.02919781394302845, 0.027890779078006744, -0.002277705119922757, 0.005881260149180889, -0.049884721636772156, -0.04685933515429497, 0.017291339114308357, -0.07725325226783752, -0.004005295690149069, -0.07872898876667023, -0.07629788666963577, -0.035515304654836655, -0.07369444519281387, -0.046943649649620056, -0.008588531985878944, 3.117224775994498e-33, -0.06376376748085022, 0.07068392634391785, -0.09900470077991486, -0.04142474755644798, -0.05417294800281525, -0.021611616015434265, 0.047426484525203705, 0.006639709230512381, 0.06628664582967758, 0.02731831930577755, 0.005111610051244497, 0.03495554253458977, 0.01336253248155117, -0.015671228989958763, -0.0629960149526596, -0.03361336141824722, -0.057769495993852615, -0.04075955972075462, 0.0057192896492779255, -0.03095506876707077, -0.03151414915919304, 0.028117071837186813, 0.010128800757229328, 0.004339145962148905, 0.018112925812602043, 0.05575426295399666, 0.06719312071800232, -0.03705766797065735, 0.019272135570645332, 0.09479346871376038, -0.0038623809814453125, -0.06944166868925095, 0.04814118891954422, 0.028226075693964958, 0.009504192508757114, -0.0846368819475174, 0.026623813435435295, 0.011749381199479103, 0.06415579468011856, -0.018739013001322746, 0.08205463737249374, 0.03573252260684967, 0.055349692702293396, -0.030733028426766396, 0.0030227811075747013, -0.021069727838039398, 0.018833911046385765, 0.0839274674654007, -0.04346991702914238, -0.04993315041065216, -0.04088948667049408, -0.06612271070480347, -0.05405239015817642, -0.013708867132663727, 0.04450991377234459, 0.02571759931743145, 0.03404468670487404, -0.03589456155896187, 0.0720132440328598, -0.015372741967439651, -0.013447820208966732, -0.10117825865745544, 0.08097701519727707, 0.009273574687540531, -0.029240958392620087, 0.004674158990383148, 0.01426104735583067, -0.023023024201393127, -0.013649014756083488, 0.04421999678015709, 0.03787430748343468, 0.03689057007431984, -0.11434118449687958, -0.048899758607149124, -0.06006154045462608, 0.047949329018592834, -0.011136223562061787, 0.06939148157835007, -0.011418947018682957, -0.0837293267250061, -0.03982200846076012, 0.012051790952682495, 0.04016907140612602, -0.03214588761329651, -0.09053593873977661, 0.004030831623822451, 0.13588710129261017, 0.06065797805786133, 0.008787855505943298, -0.017792444676160812, 0.0015248669078573585, 0.04013393819332123, -0.010127768851816654, 0.006726089399307966, 0.08717994391918182, 7.580109493593875e-32, 0.014222467318177223, 0.06863290071487427, -0.05034295469522476, -0.10769671201705933, 0.025501547381281853, -0.007771725300699472, -0.046187546104192734, 0.04391134902834892, 0.059887826442718506, -0.0745292529463768, -0.009308154694736004, 0.04790113866329193, -0.06216663494706154, 0.058498185127973557, -0.09123285114765167, -0.033652305603027344, -0.02854161337018013, 0.020794128999114037, -0.0020471513271331787, -0.033469706773757935, -0.02436743676662445, 0.03199979290366173, -0.044979725033044815, 0.07841044664382935, 0.03985735401511192, 0.06756926327943802, -0.14928215742111206, 0.045914266258478165, -0.023570355027914047, -0.028824735432863235, 0.060037292540073395, 0.004622276872396469, 0.013469932600855827, -0.017681287601590157, 0.039303410798311234, -0.06394781917333603, 0.03786314278841019, 0.012257690541446209, 0.019663555547595024, 0.0305195190012455, -0.04360850527882576, -0.06903760135173798, -0.020996930077672005, -0.0013747893972322345, 0.027974797412753105, -0.026206519454717636, -0.0220070481300354, -0.0010386627400293946, -0.01138413418084383, -0.0172492153942585, -0.04726354777812958, -0.028642671182751656, -0.0068350983783602715, 0.012442619539797306, -0.029059985652565956, -0.01669253036379814, -0.026816142722964287, 0.026210615411400795, 0.011342817917466164, -0.012693420983850956, -0.09320325404405594, 0.07189703732728958, -0.08098262548446655, 0.06493941694498062 ]
18 Quadratics After completing this chapter you should be able to: ● Solve quadratic equations using fact orisation, the quadratic formula and completing the square β†’ pages 19 βˆ’ 24 ● Read and use f(x) notation when working with functions β†’ pages 25 βˆ’ 27 ● Sketch the graph and find the turning point of a quadratic function β†’ pages 27 βˆ’ 30 ● Find and interpret the discriminant o f a quadratic expression β†’ pages 30 βˆ’ 32 ● Use and apply models that involv e quadratic functions β†’ pages 32 βˆ’ 35Objectives 1 Solve the following equations: a 3x + 6 = x βˆ’ 4 b 5(x + 3) = 6(2x βˆ’ 1) c 4x2 = 100 d (x βˆ’ 8)2 = 64 ← GCSE Mathematics 2 Factorise the following expressions: a x2 + 8x + 15 b x2 + 3x βˆ’ 10 c 3x2 βˆ’ 14x βˆ’ 5 d x2 βˆ’ 400 ← Section 1.3 3 Sketch the graphs of the following equations, labelling the points wher e each graph crosses the axes: a y = 3x βˆ’ 6 b y = 10 βˆ’ 2x c x + 2y = 18 d y = x2 ← GCSE Mathematics 4 Solve the following inequalities: a x + 8 , 11 b 2x βˆ’ 5 > 13 c 4x βˆ’ 7 < 2 (x βˆ’ 1) d 4 βˆ’ x , 11 ← GCSE MathematicsPrior knowledge check Quadratic functions are used to model projectile motion. Whenever an object is thrown or launched, its path will approximately follow the shape of a parabola. β†’ Mixed exercise Q112
[ 0.016577165573835373, 0.06907497346401215, 0.011500346474349499, -0.04895270988345146, 0.05113945156335831, 0.09139422327280045, -0.08206266164779663, 0.0018851568456739187, -0.13797101378440857, 0.05486544221639633, 0.01460819598287344, -0.08882471174001694, 0.008212676271796227, 0.025523604825139046, 0.010412650182843208, 0.04081058129668236, -0.09664537757635117, 0.05729135125875473, -0.034762002527713776, -0.06588911265134811, 0.0689634457230568, -0.024425150826573372, -0.02895229682326317, -0.030876316130161285, 0.059912458062171936, -0.042389076203107834, -0.0021412603091448545, -0.029158594086766243, -0.04256780445575714, -0.04208696261048317, -0.032875701785087585, 0.05173429474234581, 0.06928732991218567, -0.031085936352610588, -0.06044590100646019, -0.007891282439231873, 0.10392449051141739, -0.016333557665348053, -0.021523116156458855, -0.03814634308218956, -0.0147068677470088, 0.06101235747337341, -0.06314923614263535, 0.03631763905286789, 0.09608788043260574, -0.07815946638584137, -0.013389116153120995, 0.008867597207427025, 0.04580206051468849, -0.11338987946510315, -0.01493642758578062, -0.019024919718503952, -0.01821925677359104, 0.0717673972249031, 0.014965449459850788, -0.06468527019023895, -0.05500775948166847, 0.09092532098293304, -0.007365584373474121, -0.0011761285131797194, -0.01862078346312046, -0.008862639777362347, 0.023217296227812767, 0.0453956164419651, 0.03925560414791107, 0.06692765653133392, 0.06259245425462723, -0.04530148208141327, 0.013677510432898998, 0.1239493116736412, -0.06345512717962265, 0.01498682051897049, -0.08969703316688538, 0.04422716796398163, 0.051572639495134354, -0.016381995752453804, -0.021072393283247948, -0.024330835789442062, 0.0007526194676756859, -0.03773054853081703, -0.03227577358484268, 0.0033061911817640066, 0.044978801161050797, 0.07159869372844696, 0.016967615112662315, -0.043562114238739014, 0.04121297225356102, 0.01871822215616703, -0.017087753862142563, -0.02387206070125103, 0.03218819573521614, -0.057992637157440186, 0.002821422414854169, -0.08036324381828308, -0.03354182466864586, -0.036791104823350906, -0.043752942234277725, -0.06389250606298447, 0.08888348191976547, 0.031506940722465515, 0.021223563700914383, -0.05175379663705826, 0.04664360731840134, 0.00757836876437068, -0.11675623059272766, -0.014580434188246727, 0.011492479592561722, -0.02467123232781887, 0.04941737651824951, -0.041830290108919144, -0.127852663397789, 0.005665639415383339, -0.0024002392310649157, 0.0040155746974051, 0.08351918309926987, -0.043348122388124466, 0.07088892161846161, -0.0783257931470871, -0.024364646524190903, -0.00833186786621809, -0.03862449526786804, -0.02070154808461666, 0.09967893362045288, -0.032135553658008575, 0.02425062656402588, 0.039985544979572296, -0.020542427897453308, 0.03804335370659828, -0.03135877475142479, -0.006406824104487896, 0.04192252457141876, 0.02159852907061577, -0.056274790316820145, -0.05285187065601349, 0.017143120989203453, -0.0256411861628294, -0.07731872797012329, 0.059236813336610794, -0.04201348498463631, -0.02330208756029606, -0.00019692396745085716, 0.12084263563156128, 0.06033164635300636, 0.01766824536025524, -0.00012886314652860165, -0.04289311543107033, -0.03465648368000984, 0.03754948079586029, -0.03285559266805649, -0.01828651875257492, 0.0006079273298382759, -0.03122406080365181, 0.009816550649702549, 0.07664533704519272, -0.007253935094922781, -0.08875739574432373, 0.030189912766218185, -0.009045900776982307, 0.009877867996692657, 0.05191183090209961, -0.033432066440582275, -0.0018145196372643113, -0.03739858791232109, 0.06766393035650253, 0.035771556198596954, -0.0061318050138652325, 0.02558049187064171, -0.0213867649435997, -0.07443926483392715, 0.06391657888889313, 0.008202288299798965, -0.00852323416620493, 0.004257692024111748, 0.0881420448422432, 0.022344740107655525, -0.03587162122130394, 0.1508079469203949, 0.005463337991386652, 0.0015741089591756463, 0.07845447957515717, 0.035404272377491, -0.010748712345957756, -0.034322284162044525, 0.000657429511193186, 0.02643614634871483, 0.03589192032814026, 0.023458553478121758, 0.030113358050584793, 0.0087353540584445, -0.05284465104341507, 0.0039923046715557575, -0.07006946206092834, -0.015578089281916618, 0.015657050535082817, -0.08880414068698883, -0.047637809067964554, -0.018887920305132866, 0.010381564497947693, -0.10654223710298538, 0.011427091434597969, 0.03323178365826607, -0.07968504726886749, 0.043204665184020996, 0.023083128035068512, 0.0029589631594717503, -0.052633874118328094, -0.11730269342660904, -0.01111135445535183, 0.06408273428678513, 0.10300160944461823, -0.0835014060139656, 0.007377327419817448, 0.03184296563267708, -0.062296994030475616, -0.004273534752428532, -0.025519300252199173, 0.017854955047369003, -0.08427717536687851, -0.13643397390842438, 0.033742718398571014, -0.07192615419626236, -0.002086078515276313, 0.05487693101167679, -4.772615430223954e-33, -0.018641823902726173, 0.006549261510372162, -0.11972284317016602, -0.030316505581140518, 0.013073991984128952, -0.03304409235715866, 0.01885080151259899, -0.1203572154045105, 0.09859704226255417, -0.017922595143318176, 0.021396860480308533, 0.00433385232463479, -0.021086333319544792, 0.044313665479421616, -0.06682579964399338, -0.0325738787651062, 0.013466431759297848, -0.02442634105682373, 0.02071721851825714, -0.11859089881181717, 0.007731970865279436, 0.07277733087539673, -0.013692736625671387, -0.028057843446731567, -0.03184698894619942, 0.08482132107019424, 0.04945332556962967, -0.04501248896121979, 0.01708081364631653, 0.06555123627185822, -0.024801988154649734, 0.03994501382112503, 0.05735388770699501, -0.00017031552852131426, -0.03618590533733368, -0.04454252868890762, 0.021717306226491928, -0.03123575635254383, 0.031094679608941078, 0.03548593446612358, 0.1447768360376358, -0.019261183217167854, 0.07776182889938354, -0.0329756923019886, 0.006405004300177097, 0.04033440724015236, 0.06966715306043625, -0.0042367959395051, -0.03230142220854759, 0.01592506468296051, -0.0027116185519844294, -0.0022170234005898237, -0.0257083959877491, 0.03329683467745781, -0.002537292428314686, 0.010375600308179855, 0.02512778341770172, -0.04274903982877731, 0.09676504880189896, 0.02197747677564621, -0.022004419937729836, 0.0021936811972409487, -0.010529511608183384, 0.06123514100909233, -0.07037538290023804, -0.06179945543408394, -0.0067336903885006905, 0.000629144546110183, -0.028160033747553825, 0.0289912186563015, -0.021858736872673035, 0.0046109361574053764, -0.031602729111909866, -0.07364573329687119, -0.04180672764778137, -0.045122213661670685, -0.021957658231258392, 0.03389928489923477, 0.027909740805625916, -0.03670518472790718, -0.09993938356637955, 0.01389659009873867, -0.011655379086732864, -0.04017215222120285, -0.09774550795555115, -0.006688275840133429, 0.09258157014846802, 0.028701862320303917, 0.044949863106012344, -0.03266990929841995, 0.020144738256931305, -0.007481846492737532, 0.03733920678496361, -0.03227267786860466, 0.0773683711886406, 6.944208779848472e-32, -0.04112771898508072, 0.06699132919311523, -0.01755291409790516, 0.04161573946475983, -0.016496814787387848, -0.03356313332915306, -0.0654950737953186, 0.04850080981850624, 0.03091723471879959, -0.02696964144706726, 0.11684663593769073, -0.02566308155655861, -0.035428136587142944, -0.0003983824863098562, -0.09065693616867065, -0.05251336470246315, -0.003479256061837077, 0.11731131374835968, 0.0014196464326232672, -0.029329808428883553, -0.01061042957007885, 0.06056113913655281, 0.015578712336719036, 0.03177063167095184, 0.005399289540946484, 0.07776402682065964, -0.08065547049045563, -0.05248725786805153, 0.009106521494686604, 0.034738823771476746, 0.08929671347141266, 0.07997741550207138, -0.01932976022362709, -0.04166131466627121, 0.0395156666636467, -0.044151704758405685, 0.05953797325491905, -0.05640142410993576, 0.025350326672196388, -0.0160212479531765, -0.01008518785238266, -0.08130701631307602, -0.08638910949230194, 0.021931461989879608, 0.0029692708048969507, -0.03351012244820595, -0.049286138266325, -0.07973048090934753, 0.04043367877602577, 0.04970601573586464, -0.01256448682397604, 0.03643083572387695, 0.051201507449150085, -0.025610141456127167, 0.02698969654738903, -0.011154730804264545, -0.05949590355157852, 0.02180970273911953, -0.03439737856388092, -0.026921140030026436, 0.031789932399988174, 0.11825385689735413, -0.10217120498418808, 0.05034361034631729 ]
19Quadratics 2.1 Solving quadratic equations A quadratic equation can be written in the form ax2 + bx + c = 0, where a, b and c are real constants, and a β‰  0. Quadratic equations can have one, two, or no real solutions. β–  To solve a quadratic equation by factorising: β€’ Writ e the equation in the form ax2 + bx + c = 0 β€’ Factorise the left-hand side β€’ Set each factor equal to zero and solve to find the value(s) of x Example 1 The s olutions to an equation are sometimes called the roots of the equation.Notation The symbol β‡’ means β€˜implies that’ . This statement says β€˜If x + 3 = 0, then x = βˆ’3’.Notation a x2 βˆ’ 2x βˆ’ 15 = 0 (x + 3)( x βˆ’ 5) = 0 The n either x + 3 = 0 β‡’ x = βˆ’ 3 or x βˆ’ 5 = 0 β‡’ x = 5 So x = βˆ’ 3 and x = 5 are the two solutions of the equation. b x2 = 9x x2 βˆ’ 9 x = 0 x(x βˆ’ 9) = 0 Th en either x = 0 or x βˆ’ 9 = 0 β‡’ x = 9 The solutions are x = 0 and x = 9. c 6x2 + 13 x βˆ’ 5 = 0 (3x βˆ’ 1)(2x + 5) = 0 The n either 3 x βˆ’ 1 = 0 β‡’ x = 1 __ 3 or 2x + 5 = 0 β‡’ x = βˆ’ 5 __ 2 The s olutions are x = 1 __ 3 and x = βˆ’ 5 __ 2 d x2 βˆ’ 5 x + 18 = 2 + 3 x x2 βˆ’ 8 x + 16 = 0 (x βˆ’ 4)(x βˆ’ 4) = 0 Th en either x βˆ’ 4 = 0 β‡’ x = 4 or x βˆ’ 4 = 0 β‡’ x = 4 β‡’ x = 4Factorise. The s igns of the solutions are opposite to the signs of the constant terms in each factor.Watch outSolve the following equations: a x2 βˆ’ 2x βˆ’ 15 = 0 b x2 = 9x c 6x2 + 13x βˆ’ 5 = 0 d x2 βˆ’ 5x + 18 = 2 + 3xIf the product of the factors is zero, one of the factors must be zero.Factorise the quadratic. ← Section 1.3 A quadratic equation with two distinct factors has two distinct solutions. Be careful not to divide both sides by x, since x may have the value 0. Instead, rearrange into the form ax 2 + bx + c = 0. Factorise. Solutions to quadratic equations do not have to be integers. The quadratic equation (px + q)(rx + s) = 0 will have solutions x = βˆ’ q __ p and x = βˆ’ s __ r . When a quadratic equation has e xactly one root it is called a repeated root. You can also say that the equation has two equal roots.NotationRearrange into the form ax2 + bx + c = 0. Factorise.
[ -0.00751400925219059, 0.10765448957681656, 0.03081025928258896, 0.036916669458150864, -0.007839293219149113, 0.0071492320857942104, -0.03982795774936676, -0.012176801450550556, -0.051707908511161804, 0.07581004500389099, -0.01880301721394062, -0.07049570232629776, 0.03265965357422829, -0.0009297432843595743, 0.08823050558567047, 0.03179856017231941, -0.1035531610250473, 0.014980899170041084, -0.023358307778835297, -0.017254386097192764, 0.02749559096992016, -0.1297367364168167, -0.026151422411203384, 0.010936061851680279, 0.00592498853802681, -0.05435078218579292, -0.013968011364340782, -0.032621175050735474, 0.01145000196993351, 0.027066804468631744, -0.05326886102557182, 0.08236739039421082, 0.03746619448065758, 0.020899055525660515, 0.0278758704662323, 0.038681164383888245, 0.06740404665470123, 0.03404756262898445, -0.052305612713098526, -0.03711554780602455, -0.037898022681474686, 0.08274078369140625, -0.0366695411503315, 0.0039008809253573418, 0.037605948746204376, -0.028059421107172966, -0.025118254125118256, -0.08613356202840805, 0.09466569125652313, -0.04659311845898628, 0.004201111849397421, 0.00643874891102314, -0.0814579650759697, 0.026909463107585907, -0.07004179060459137, -0.011368864215910435, -0.0574786514043808, 0.022091353312134743, -0.035670265555381775, 0.030907152220606804, 0.004568654112517834, -0.03860609978437424, 0.14683426916599274, 0.051210250705480576, 0.07248745858669281, 0.02923751063644886, -0.03303900733590126, 0.003598600160330534, 0.015041396021842957, 0.032590366899967194, 0.005665637087076902, -0.0008731876732781529, 0.010334379971027374, 0.0480530746281147, 0.055230725556612015, -0.03498569875955582, -0.049506835639476776, 0.03326765075325966, 0.0983881950378418, 0.05529170483350754, 0.010296930558979511, -0.05058981850743294, 0.039533112198114395, 0.014343537390232086, -0.003188494825735688, -0.04877880960702896, 0.14663352072238922, 0.04988260567188263, 0.040943045169115067, 0.019226009026169777, 0.010070701129734516, -0.04721628502011299, 0.023580675944685936, -0.06784715503454208, -0.022110862657427788, -0.1038365364074707, 0.03712780401110649, 0.07655417174100876, -0.009917703457176685, -0.06420113891363144, 0.041700851172208786, -0.06376568228006363, -0.0048853433690965176, 0.0308840349316597, -0.05760226398706436, -0.02825140580534935, -0.06800279766321182, 0.004119290504604578, 0.0885901004076004, -0.034275591373443604, -0.11157949268817902, -0.022951947525143623, 0.008698083460330963, 0.04858803376555443, 0.02613893710076809, -0.08281673491001129, 0.10445677489042282, -0.014619638212025166, 0.032542333006858826, -0.0847921371459961, -0.04086761176586151, -0.06514554470777512, 0.04226793348789215, -0.07644153386354446, 0.05286315456032753, 0.055046722292900085, 0.04293229058384895, 0.022072644904255867, -0.07480937987565994, -0.05795453488826752, 0.011312159709632397, -0.03297377750277519, -0.1083880364894867, -0.06166738644242287, 0.06495234370231628, -0.0437227301299572, -0.044029075652360916, 0.12200256437063217, -0.010063501074910164, -0.07847265899181366, 0.043744493275880814, 0.06890374422073364, -0.003423871472477913, 0.050131622701883316, 0.044341035187244415, -0.06044134125113487, -0.007640977390110493, -0.0438544861972332, -0.03574703261256218, -0.02081884630024433, -0.060568053275346756, 0.006590624339878559, 0.005219275131821632, 0.04599453881382942, 0.03186998516321182, -0.1215514987707138, -0.03845177963376045, -0.08412358909845352, -0.054663922637701035, 0.07707827538251877, -0.052260302007198334, -0.03940870612859726, -0.07237163186073303, 0.02697722800076008, -0.08390364050865173, 0.004630410578101873, -0.0045156278647482395, 0.035665690898895264, 0.002229722449555993, 0.05047757551074028, -0.026346804574131966, 0.0020944077987223864, 0.03020331636071205, 0.05812545493245125, -0.01589847542345524, 0.009877204895019531, 0.004379570484161377, 0.026887275278568268, 0.06655113399028778, 0.06547427922487259, 0.041750941425561905, 0.05332905799150467, -0.06848355382680893, 0.046974536031484604, 0.03728358447551727, 0.006447015795856714, -0.011646603234112263, -0.10912510007619858, -0.024645881727337837, -0.079787977039814, 0.020590730011463165, -0.038919925689697266, -0.021302398294210434, 0.07263916730880737, -0.0663783848285675, -0.020117882639169693, -0.006117168348282576, -0.033977266401052475, -0.03843195363879204, 0.03694802522659302, 0.033415548503398895, -0.07359930127859116, 0.04180171340703964, 0.018864251673221588, -0.016961367800831795, 0.055857885628938675, -0.1019602045416832, -0.011456972919404507, -0.02066916413605213, 0.09206251800060272, -0.04086678475141525, -0.017022117972373962, 0.05015689134597778, -0.0488763265311718, -0.032260145992040634, -0.0619981624186039, -0.05417337641119957, -0.007473889738321304, -0.030904067680239677, 0.059966664761304855, -0.07987014204263687, 0.013134080916643143, -0.003212233539670706, -9.703582439131147e-33, 0.005064823664724827, -0.029364561662077904, -0.12917321920394897, 0.014336295425891876, -0.062351055443286896, 0.06251317262649536, 0.054853253066539764, -0.12983626127243042, 0.14401333034038544, -0.04044564440846443, 0.055309150367975235, 0.01079499814659357, -0.06859949976205826, -0.00025091524003073573, -0.07036614418029785, 0.02701478637754917, -0.052884310483932495, 0.038716379553079605, 0.02670012228190899, -0.04871653392910957, 0.07475263625383377, 0.01816791296005249, 0.0035817231982946396, -0.03027452901005745, 0.027578961104154587, 0.002421530894935131, 0.035594116896390915, 0.006154782138764858, 0.05746837705373764, 0.012722858227789402, -0.053195755928754807, 0.005902804434299469, 0.05997374653816223, 0.01531416829675436, -0.012010552920401096, -0.02741738222539425, 0.004080865532159805, 0.01086745597422123, -0.006866420153528452, -0.04107644781470299, -0.018711240962147713, -0.004443932790309191, 0.09846142679452896, 0.04155489057302475, 0.02672324888408184, 0.041384369134902954, 0.0144991185516119, 0.03648391366004944, 0.01158865261822939, 0.021453112363815308, -0.040408335626125336, -0.06445655226707458, -0.016294820234179497, 0.008282283321022987, 0.031355731189250946, 0.08803774416446686, 0.013470477424561977, -0.061823613941669464, -0.0406680628657341, -0.036103811115026474, 0.005713994614779949, -0.042711518704891205, 0.03493592515587807, 0.046779949218034744, 0.016971437260508537, 0.06008675694465637, -0.014772157184779644, 0.0055925725027918816, -0.027057604864239693, 0.0031520389020442963, -0.0050312490202486515, 0.030894942581653595, -0.059730857610702515, 0.006917144171893597, -0.04444582015275955, 0.057040441781282425, -0.12168103456497192, 0.045493483543395996, 0.029779288917779922, -0.05073846876621246, 0.03517552837729454, 0.06275302916765213, -0.006156265735626221, -0.05800704285502434, -0.05484117567539215, -0.03151674568653107, 0.06340665370225906, 0.06596314907073975, 0.008694457821547985, -0.03322742506861687, 0.054087888449430466, -0.061824824661016464, -0.021486327052116394, -0.008050513453781605, 0.10175352543592453, 6.410831156898736e-32, -0.029499437659978867, -0.008376380428671837, -0.019764786586165428, 0.025372281670570374, 0.03439958393573761, 0.025220073759555817, -0.03556625545024872, -0.002459562150761485, 0.019843004643917084, -0.06267610192298889, 0.0036865021102130413, -0.005805158521980047, -0.010229661129415035, 0.015263169072568417, -0.05766092613339424, 0.023096822202205658, -0.004369029775261879, 0.07136505842208862, -0.02270175702869892, 0.025149859488010406, -0.04284650832414627, 0.031229956075549126, -0.05597769841551781, 0.03821130469441414, 0.023836452513933182, 0.05056116357445717, -0.015135814435780048, -0.013443835079669952, 0.012302654795348644, -0.03197113052010536, 0.08682586252689362, 0.06766275316476822, -0.015372182242572308, 0.024071644991636276, 0.05288318172097206, 0.021040501073002815, 0.11513518542051315, 0.012754182331264019, -0.015927629545331, 0.00424569146707654, 0.023296086117625237, -0.05025860294699669, -0.09131138771772385, -0.018823478370904922, -0.0963391438126564, -0.07849148660898209, -0.032948024570941925, -0.13437220454216003, 0.06980817019939423, 0.01129255909472704, 0.03205018863081932, -0.01944964937865734, 0.054774727672338486, 0.0582142174243927, 0.014207867905497551, -0.11218681931495667, -0.07188789546489716, -0.02638905867934227, 0.030360111966729164, -0.06189969927072525, -0.07914307713508606, 0.06625057011842728, -0.038328301161527634, -0.0606926828622818 ]
20 Chapter 2 In some cases it may be more straightforward to solve a quadratic equation without factorising. Example 2 Solve the following equations a (2x βˆ’ 3)2 = 25 b (x βˆ’ 3)2 = 7 a (2x βˆ’ 3)2 = 25 2x βˆ’ 3 = Β±5 2x = 3 Β± 5 The n either 2x = 3 + 5 β‡’ x = 4 or 2x = 3 βˆ’ 5 β‡’ x = βˆ’ 1 The solutions are x = 4 and x = βˆ’ 1 b (x βˆ’ 3)2 = 7 x βˆ’ 3 = Β± βˆšβ€―__ 7 x = 3 Β± βˆšβ€―__ 7 The s olutions are x = 3 + βˆšβ€―__ 7 and x = 3 βˆ’ βˆšβ€―__ 7 The symbol Β± lets you write two statements in one line of working. You say β€˜plus or minus’.Notation Add 3 to both sides. 1 Solve the following equations using factorisation: a x2 + 3x + 2 = 0 b x2 + 5x + 4 = 0 c x2 + 7x + 10 = 0 d x2 βˆ’ x βˆ’ 6 = 0 e x2 βˆ’ 8x + 15 = 0 f x2 βˆ’ 9x + 20 = 0 g x2 βˆ’ 5x βˆ’ 6 = 0 h x2 βˆ’ 4x βˆ’ 12 = 0 2 Solve the follo wing equations using factorisation: a x2 = 4x b x2 = 25x c 3x2 = 6x d 5x2 = 30x e 2x2 + 7x + 3 = 0 f 6x2 βˆ’ 7x βˆ’ 3 = 0 g 6x2 βˆ’ 5x βˆ’ 6 = 0 h 4x2 βˆ’ 16x + 15 = 0 3 Solve the follo wing equations: a 3x2 + 5x = 2 b (2x βˆ’ 3)2 = 9 c (x βˆ’ 7)2 = 36 d 2x2 = 8 e 3x2 = 5 f (x βˆ’ 3)2 = 13 g (3x βˆ’ 1)2 = 11 h 5x2 βˆ’ 10x2 = βˆ’7 + x + x2 i 6x2 βˆ’ 7 = 11x j 4x2 + 17x = 6x βˆ’ 2x2 4 This shape has an area of 44 m2. Find the value of x. 5 Solve the equation 5 x + 3 = βˆšβ€―______ 3x + 7 .2x mx m x m(x + 3) mP PExercise 2A Divide the shape into two sections:Problem-solvingTake the square root of both sides. Remember 52 = (βˆ’5)2 = 25. Take square roots of both sides. You can leave your answer in surd form.
[ -0.04855820909142494, 0.10772905498743057, 0.05654939264059067, -0.012505405582487583, 0.01890873908996582, 0.038533926010131836, -0.024093758314847946, 0.012748409993946552, -0.08445215225219727, 0.0044477516785264015, 0.0473746582865715, -0.0657033696770668, 0.033453140407800674, 0.022697998210787773, 0.023176079615950584, 0.011865661479532719, -0.060559507459402084, 0.010782988741993904, -0.052084896713495255, -0.04896289110183716, -0.002340950071811676, -0.03228718042373657, -0.007124040741473436, 0.0050192526541650295, 0.0693139135837555, -0.08424457162618637, -0.025490840896964073, -0.06834905594587326, -0.0047498587518930435, -0.0035245923791080713, -0.03313668444752693, 0.07765275985002518, 0.014431264251470566, -0.007191590964794159, 0.025193581357598305, 0.04959184303879738, 0.07321643829345703, 0.05381646752357483, -0.08040113002061844, -0.10076938569545746, 0.021315088495612144, 0.03428443521261215, -0.07374720275402069, 0.027266530320048332, 0.05755392462015152, -0.07655074447393417, -0.025598803535103798, -0.056153807789087296, 0.02400553598999977, -0.08148375898599625, -0.030868908390402794, 0.05605563148856163, -0.02918919362127781, 0.010453391820192337, -0.06378445029258728, 0.02912275865674019, -0.025728125125169754, 0.061294641345739365, -0.010807536542415619, 0.028563521802425385, 0.016638072207570076, 0.015715032815933228, 0.050162144005298615, 0.0809832215309143, 0.05512065812945366, 0.000684386002831161, -0.02256869152188301, -0.033973850309848785, 0.03450585901737213, 0.05363902077078819, 0.0052081141620874405, 0.03346347063779831, -0.033610280603170395, 0.059812553226947784, 0.02216421067714691, -0.0271740909665823, -0.08210203051567078, -0.0019273916259407997, 0.01375430915504694, -0.017515206709504128, 0.012970499694347382, -0.011969402432441711, 0.03730666637420654, -0.0077958363108336926, -0.011414755135774612, -0.10154574364423752, 0.07619060575962067, 0.036317311227321625, 0.04346688464283943, 0.0007324177422560751, -0.010051272809505463, -0.06154351681470871, 0.02142319083213806, -0.08750027418136597, 0.013186234049499035, -0.1001356989145279, 0.02792772464454174, 0.0390310175716877, -0.008040975779294968, -0.06585650891065598, 0.031223343685269356, -0.02554808184504509, 0.005863157566636801, 0.006928710732609034, -0.07524339109659195, -0.013274861499667168, -0.08144145458936691, -0.021452082321047783, 0.10803617537021637, -0.059525955468416214, -0.1416628658771515, -0.04023396968841553, 0.048562537878751755, 0.0046360082924366, 0.0369284451007843, -0.11239595711231232, 0.11265601962804794, -0.07155516743659973, 0.04757319763302803, -0.03506670892238617, 0.014403794892132282, -0.07440735399723053, 0.07789807766675949, -0.06746572256088257, 0.08997055888175964, 0.07048210501670837, 0.011830316856503487, -0.01816430129110813, -0.05231406167149544, -0.0816965103149414, 0.027242936193943024, -0.028612572699785233, -0.09111034870147705, -0.061208516359329224, 0.014949564822018147, -0.014574218541383743, 0.009912330657243729, 0.0937265083193779, 0.018241532146930695, 0.012802032753825188, 0.018510261550545692, 0.07405240088701248, 0.08258848637342453, 0.09939545392990112, -0.029215367510914803, -0.07810188829898834, -0.015941260382533073, 0.023511717095971107, 0.0028234696947038174, -0.02544727362692356, -0.056485120207071304, -0.03524326905608177, -0.06964551657438278, 0.01752415858209133, 0.07507702708244324, -0.10385279357433319, 0.04164037108421326, -0.02379631996154785, -0.02959306910634041, 0.024237753823399544, -0.09780838340520859, -0.03838464617729187, -0.0754619836807251, 0.018556764349341393, -0.028829528018832207, 0.022676458582282066, -0.09408726543188095, 0.0075296140275895596, 0.0168503038585186, 0.02505960687994957, -0.028677107766270638, 0.04760781675577164, 0.02755192667245865, 0.06978612393140793, -0.0016893213614821434, 0.0411435104906559, -0.005341361742466688, 0.004313056357204914, 0.05015898868441582, 0.11620038747787476, 0.11317399144172668, -0.018610844388604164, 0.033961378037929535, 0.036838747560977936, 0.02022458240389824, -0.010168921202421188, 0.0307169146835804, -0.007143862545490265, -0.00943872332572937, -0.11706089228391647, -0.033021677285432816, -0.041230615228414536, 0.007197091821581125, 0.01843566633760929, -0.05293304845690727, -0.018163586035370827, -0.029277663677930832, -0.06508345156908035, -0.1092490628361702, 0.057562436908483505, 0.06529191136360168, -0.05656878277659416, 0.11682137846946716, -0.0744287371635437, 0.035288359969854355, 0.03781229257583618, -0.06998217850923538, -0.028727686032652855, 0.05670102685689926, 0.0976172387599945, -0.040613818913698196, 0.0732090100646019, 0.002971792593598366, -0.02849041484296322, -0.005974673666059971, -0.04826780781149864, -0.002776363166049123, -0.01888197474181652, -0.012496892362833023, 0.01931493729352951, -0.06552965939044952, 0.03641202673316002, 0.050774939358234406, -1.3434954156946334e-32, -0.05047426372766495, -0.10342749208211899, -0.12123540788888931, 0.01965213753283024, -0.03175562247633934, -0.003256395924836397, 0.026731284335255623, -0.1802964061498642, 0.08509166538715363, -0.018780266866087914, -0.0309661366045475, 0.011345181614160538, -0.0047514052130281925, 0.03616366535425186, -0.02057848498225212, 0.011216298677027225, -0.07523319870233536, 0.02758215367794037, -0.007743239402770996, -0.06446170061826706, 0.030766911804676056, -0.003200035309419036, -0.0036927922628819942, -0.08655202388763428, 0.0008429296431131661, 0.051259905099868774, 0.042819395661354065, -0.012131071649491787, 0.034868862479925156, 0.07947061210870743, -0.003918347880244255, -0.0049877772107720375, 0.06322227418422699, -0.017816023901104927, -0.02514888346195221, -0.033479493111371994, -0.028842205181717873, 0.025449851527810097, -0.031084975227713585, -0.06070834398269653, 0.062411874532699585, -0.0015317662619054317, 0.09136325120925903, -0.04457199573516846, -0.013664989732205868, 0.022220782935619354, 0.016786696389317513, 0.024547763168811798, -0.058562882244586945, 0.03892785683274269, -0.02578500285744667, 0.03561955690383911, -0.014889317564666271, 0.07553398609161377, -0.04599480330944061, 0.006933803670108318, 0.052008502185344696, 0.0072862738743424416, -0.05869603529572487, -0.04004606977105141, -0.015016899444162846, -0.04273609071969986, 0.02785346284508705, 0.03170868754386902, -0.0422038771212101, 0.06170734763145447, 0.0710361897945404, 0.06758227199316025, -0.002479103859513998, 0.06564222276210785, -0.06424818933010101, 0.03868584334850311, -0.027030376717448235, 0.048529673367738724, 0.010500547476112843, 0.08142843097448349, -0.0924566388130188, 0.046284373849630356, -0.03725215420126915, -0.04210492968559265, 0.009728892706334591, 0.023869972676038742, -0.024720801040530205, -0.07709576934576035, -0.05680396035313606, -0.027846839278936386, 0.05367071181535721, -0.02621125988662243, 0.003729806514456868, -0.09526016563177109, 0.021000631153583527, -0.08561644703149796, 0.049209803342819214, -0.0014668453950434923, 0.09804555773735046, 1.0039665677986046e-31, -0.00864747166633606, 0.0171111561357975, -0.025419628247618675, -0.012936661951243877, -0.0018315943889319897, -0.0194639191031456, 0.0021507784258574247, 0.05202353373169899, 0.02894602157175541, -0.022780412808060646, -0.01990489289164543, 0.052641406655311584, -0.043760571628808975, -0.005308210384100676, -0.06664277613162994, -0.008984253741800785, -0.002706094877794385, 0.0479099415242672, -0.03756454959511757, 0.03919188305735588, -0.017851106822490692, 0.027151798829436302, -0.08847146481275558, -0.023371299728751183, -0.00322935963049531, 0.058927983045578, 0.0016674797516316175, -0.0048590232618153095, 0.02895057387650013, -0.012942169792950153, 0.014851781539618969, 0.054599739611148834, -0.0008902594563551247, -0.03930245712399483, 0.04840632528066635, 0.059369612485170364, 0.11878068000078201, 0.05912748724222183, -0.04285300895571709, -0.047135524451732635, -0.007036859635263681, -0.04944644868373871, -0.052304599434137344, -0.010914224199950695, -0.03628907352685928, -0.06477116793394089, -0.06411180645227432, -0.09629389643669128, 0.029533807188272476, 0.05517147108912468, 0.03868720307946205, -0.00878501683473587, 0.01667439378798008, 0.043370939791202545, -0.006380193866789341, -0.06136675551533699, -0.06002453342080116, -0.020229505375027657, 0.05535770580172539, -0.11373624950647354, -0.04130934178829193, 0.08239977806806564, -0.026880070567131042, 0.0007375543937087059 ]
21Quadratics x = βˆ’ (βˆ’7) Β± √ ______________ (βˆ’7) 2 βˆ’ 4 (3) (βˆ’1) _______________________ 2 Γ— 3 x = 7 Β± √ _______ 49 + 12 _______________ 6 x = Β 7 Β± √ ___ 61 ________ 6 Β  The n x = 7 + √ ___ 61 ________ 6 or x = 7 βˆ’ √ ___ 61 _______ 6 Or x = 2.47 (3 s.f.) or x = βˆ’ 0.135 (3 s.f.)Example 3 Solve 3x2 βˆ’ 7x βˆ’1 = 0 by using the formula. βˆ’4 Γ— 3 Γ— (βˆ’1) = +12a = 3, b = βˆ’7 and c = βˆ’1. Put brackets around any negative values.Some equations cannot be easily factorised. You can also solve quadratic equations using the quadratic formula. β–  The solutions of the equation ax2 + bx + c = 0 are given by the formula: x = βˆ’b Β± βˆšβ€―________ b2 βˆ’ 4ac _____________ 2a You n eed to rearrange the equation into the form ax2 + bx + c = 0 before reading off the coefficients.Watch out 1 Solve the follo wing equations using the quadratic formula. Give your answers exactly, leaving them in surd form where necessary. a x2 + 3x + 1 = 0 b x2 βˆ’ 3x βˆ’ 2 = 0 c x2 + 6x + 6 = 0 d x2 βˆ’ 5x βˆ’ 2 = 0 e 3x2 + 10x βˆ’ 2 = 0 f 4x2 βˆ’ 4x βˆ’ 1 = 0 g 4x2 βˆ’ 7x = 2 h 11x2 + 2x βˆ’ 7 = 0 2 Solve the follo wing equations using the quadratic formula. Give your answers to three significant figures.a x2 + 4x + 2 = 0 b x2 βˆ’ 8x + 1 = 0 c x2 + 11x βˆ’ 9 = 0 d x2 βˆ’ 7x βˆ’ 17 = 0 e 5x2 + 9x βˆ’ 1 = 0 f 2x2 βˆ’ 3x βˆ’ 18 = 0 g 3x2 + 8 = 16x h 2x2 + 11x = 5x2 βˆ’ 18 3 For each of the equa tions below, choose a suitable method and find all of the solutions. Where necessary, give your answers to three significant figures.a x2 + 8x + 12 = 0 b x2 + 9x βˆ’ 11 = 0 c x2 βˆ’ 9x βˆ’ 1 = 0 d 2x2 + 5x + 2 = 0 e (2x + 8)2 = 100 f 6x2 + 6 = 12x g 2x2 βˆ’ 11 = 7x h x = Β  βˆšβ€―_______ 8x βˆ’ 15 You can use any method yo u are confident with to solve these equations.HintExercise 2B
[ -0.02378137782216072, 0.04281434044241905, 0.04006641358137131, -0.024879485368728638, -0.017066707834601402, 0.06194112449884415, 0.0167627464979887, 0.002885577268898487, -0.02382928505539894, -0.04628666862845421, 0.004448902327567339, -0.08723258227109909, 0.012003909796476364, 0.017926689237356186, 0.012088070623576641, -0.048758577555418015, -0.08637327700853348, 0.0774417594075203, -0.04057249426841736, -0.0024364928249269724, 0.04858381301164627, -0.062327250838279724, -0.03382384777069092, 0.0016163899563252926, 0.09519797563552856, 0.022404838353395462, 0.0032595519442111254, 0.0050154984928667545, 0.022589879110455513, -0.006715960334986448, -0.006672565825283527, 0.07574234902858734, 0.08675551414489746, -0.09933582693338394, 0.0751926451921463, -0.0043785106390714645, -0.0063286735676229, 0.058578986674547195, -0.04482989385724068, -0.06679610908031464, 0.0035828494001179934, 0.023105256259441376, 0.05964094400405884, -0.005467541050165892, 0.02351943403482437, -0.02463480643928051, -0.07618551701307297, -0.04000844061374664, 0.08888646960258484, 0.03987713158130646, 0.08052776753902435, 0.10875080525875092, -0.10194680839776993, 0.039114050567150116, -0.05320131406188011, -0.039946798235177994, -0.020576078444719315, -0.011604713276028633, -0.036038510501384735, -0.03264153003692627, 0.00845347810536623, 0.038817524909973145, -0.017840657383203506, 0.04824144393205643, 0.009601771831512451, 0.04033716768026352, 0.0004099296929780394, -0.08537033200263977, 0.08658573031425476, 0.035953011363744736, 0.0475713275372982, 0.05128553509712219, 0.004418233875185251, -0.002007023897022009, 0.030841002240777016, 0.009054858237504959, -0.009891833178699017, -0.010549450293183327, -0.014757748693227768, -0.07564570009708405, -0.022245202213525772, 0.045917171984910965, 0.14646261930465698, 0.04320681095123291, -0.008869432844221592, 0.08412876725196838, 0.11804603040218353, 0.07401951402425766, 0.014953953213989735, 0.03360626846551895, 0.025235023349523544, -0.025633152574300766, -0.023783894255757332, -0.03322761133313179, -0.006804187316447496, -0.011582471430301666, 0.06984768807888031, -0.030858783051371574, -0.0008345126989297569, 0.0853412076830864, 0.03560236096382141, -0.026169471442699432, 0.05283595994114876, 0.04518568515777588, -0.041122809052467346, -0.025937747210264206, -0.12355169653892517, -0.12034445255994797, 0.0687970221042633, -0.026683976873755455, -0.053633809089660645, -0.05182097479701042, 0.03267500177025795, 0.037296947091817856, -0.03859022259712219, -0.057313427329063416, 0.03945354372262955, -0.017781661823391914, 0.04197290912270546, -0.016863197088241577, 0.058360740542411804, 0.013763505965471268, 0.09540854394435883, -0.030423862859606743, 0.045981019735336304, 0.03804238885641098, -0.021229537203907967, 0.04681850224733353, -0.1574447751045227, 0.008404870517551899, 0.06083034351468086, -0.0003741250839084387, 0.009037308394908905, -0.041500404477119446, 0.0029826636891812086, -0.041599079966545105, -0.019203711301088333, 0.05537011846899986, 0.01686912216246128, -0.023050053045153618, -0.03275939077138901, 0.10310006141662598, 0.04732499644160271, 0.02087126299738884, 0.0013788498472422361, -0.0060113221406936646, -0.01225474663078785, 0.04843130335211754, -0.012852195650339127, 0.004146608989685774, -0.011297640390694141, -0.025155214592814445, -0.08298369497060776, 0.04499031975865364, -0.0541030690073967, -0.07963334023952484, -0.0006061536842025816, -0.01764320768415928, 0.017143970355391502, 0.0010550572769716382, 0.011105782352387905, -0.017355358228087425, -0.03479301556944847, 0.039102718234062195, 0.07302885502576828, 0.034811295568943024, -0.0778115764260292, -0.003658436704427004, -0.011225509457290173, 0.03832656890153885, -0.022974055260419846, 0.06527375429868698, 0.006573478225618601, 0.04839805141091347, 0.053434696048498154, -0.03878895565867424, 0.04995961859822273, 0.003383394330739975, -0.032846663147211075, 0.04573822394013405, 0.06426403671503067, -0.0198220182210207, 0.03672570362687111, -0.022957291454076767, -0.007064586505293846, -0.037690166383981705, -0.025595147162675858, -0.03134126588702202, 0.01079430989921093, -0.002383597195148468, -0.013388554565608501, -0.022975638508796692, 0.04377564415335655, 0.013037888333201408, -0.004816052969545126, -0.038388315588235855, -0.08059968054294586, -0.04859082028269768, -0.12606483697891235, 0.13383664190769196, 0.07885372638702393, -0.024188607931137085, 0.04023253917694092, -0.08474893867969513, 0.028973083943128586, 0.01617639698088169, -0.03721962496638298, 0.014966343529522419, -0.0237729512155056, 0.0742005705833435, -0.05837293341755867, -0.011697105132043362, 0.001567910541780293, -0.07542946189641953, -0.0052209035493433475, -0.09099934250116348, -0.055199865251779556, -0.03565171733498573, -0.08248348534107208, -0.05906306952238083, -0.04962277412414551, -0.013170473277568817, 0.024202369153499603, 1.994437608216365e-32, -0.03161998093128204, -0.1117999330163002, -0.09556195884943008, 0.04681782424449921, -0.00356482551433146, -0.024862293154001236, 0.08524486422538757, -0.07869205623865128, 0.03274986147880554, 0.032211367040872574, 0.09805294126272202, 0.07850185036659241, -0.05549949035048485, -0.022933680564165115, -0.007064766716212034, 0.009002802893519402, -0.0021394684445112944, -0.012419428676366806, -0.036492686718702316, -0.0434696190059185, -0.00042818006477318704, 0.07234618812799454, -0.031173238530755043, -0.005071907304227352, -0.011115876026451588, 0.05042020604014397, 0.059356022626161575, -0.0730491504073143, 0.01779860444366932, 0.03746051713824272, -0.042636699974536896, -0.025418708100914955, 0.08886086940765381, 0.08310515433549881, -0.03230662643909454, -0.07954392582178116, 0.04169686883687973, 0.013999090529978275, -0.06478481739759445, 0.011275453492999077, 0.016808880493044853, 0.054091427475214005, 0.11271157115697861, 0.006594929378479719, -0.0010913144797086716, -0.055959612131118774, -0.0036707851104438305, 0.041650645434856415, -0.03315547853708267, 0.05758580565452576, -0.04242683947086334, 0.02098425105214119, -0.04248259961605072, 0.06784208118915558, 0.015729015693068504, 0.036682575941085815, -0.032395459711551666, -0.02038387581706047, 0.004642636049538851, -0.08900447189807892, -0.02747783623635769, -0.07286644726991653, 0.005113641731441021, 0.017833126708865166, 0.009582005441188812, 0.11404654383659363, 0.023593001067638397, -0.0011845758417621255, 0.04138907790184021, 0.03996347635984421, 0.02956729754805565, 0.055535510182380676, -0.03617364540696144, -0.03780718147754669, -0.09515050798654556, 0.00862161722034216, -0.04346199706196785, 0.12874172627925873, 0.007455749437212944, -0.06950784474611282, -0.05914447084069252, -0.0224916972219944, -0.04150528460741043, 0.01006027776747942, -0.08740073442459106, -0.0785834863781929, 0.11852600425481796, 0.04719700291752815, 0.03845856338739395, -0.05433810129761696, -0.017587339505553246, 0.01162196509540081, 0.008873004466295242, 0.015928329899907112, 0.17322444915771484, 4.645266266080904e-32, 0.01983383297920227, -0.012996881268918514, -0.0483105406165123, -0.043523386120796204, 0.026836909353733063, 0.06005389615893364, -0.06993666291236877, -0.018724564462900162, 0.013157808221876621, -0.06816194951534271, 0.08834220468997955, 0.03828843683004379, -0.05522517114877701, 0.027691442519426346, -0.10970625281333923, -0.045576442033052444, -0.05169369652867317, 0.04539991915225983, -0.020500723272562027, 0.037395477294921875, 0.021453892812132835, 0.029383085668087006, -0.06595349311828613, 0.04546399414539337, 0.009393448010087013, 0.04723694175481796, -0.05046442523598671, 0.0006521821487694979, -0.019469475373625755, -0.07371997088193893, 0.0813797265291214, 0.0690188854932785, -0.005751298740506172, -0.049032095819711685, 0.002109845168888569, -0.011352775618433952, 0.031397394835948944, -0.05226915329694748, -0.0022763547021895647, -0.028270088136196136, -0.007233243435621262, -0.001882502343505621, -0.07274672389030457, -0.019678883254528046, 0.026779387146234512, -0.05888863652944565, -0.06420613825321198, -0.026037275791168213, -0.016807258129119873, -0.0008509500185027719, -0.052144378423690796, 0.030387138947844505, 0.0428396537899971, 0.046057529747486115, 0.024910252541303635, -0.04615998640656471, -0.08172410726547241, -0.020776385441422462, 0.06200661137700081, -0.005448815878480673, -0.054397858679294586, 0.0968962013721466, -0.010859795846045017, 0.07662829011678696 ]
22 Chapter 2 Given that x is positive, solve the equation 1 __ x + 1 _____ x + 2 = 28 ____ 195 Challenge Write the equation in the form ax2 + bx + c = 0 before using the quadratic formula or factorising.Hint 2.2 Completing the square It is frequently useful to rewrite quadratic expressions by completing the square: β–  x2 + bx = (x + b __ 2 ) 2 βˆ’ ( b __ 2 ) 2 You can draw a diagram of this process when x and b are positive: The original rectangle has been rearranged into the shape of a square with a smaller square missing. The two areas shaded blue are the same.b 2 x xx x = b 2b x2 + bx = (x + b __ 2 ) 2 βˆ’ ( b __ 2 ) 2 a x2 + 8 x = ( x + 4)2 βˆ’ 42 = (x + 4)2 βˆ’ 16 b x2 βˆ’ 3 x = (x βˆ’ 3 _ 2 ) 2 βˆ’ ( 3 _ 2 ) 2 = (x βˆ’ 3 _ 2 ) 2 βˆ’ 9 _ 4 c 2x2 βˆ’ 12 x = 2( x2 βˆ’ 6 x) = 2(( x βˆ’ 3)2 βˆ’ 32) = 2(( x βˆ’ 3)2 βˆ’ 9) = 2(x βˆ’ 3)2 βˆ’ 18Example 4 Complete the square for the expressions: a x2 + 8x b x2 βˆ’ 3x c 2x2 + 12x A quadratic expression in the form p(x + q)2 + r where p, q and r are real constants is in completed square form.Notation Begin by halving the coefficient of x. Using the rule given above, b = 8 so b __ 2 = 4. Expand the outer bracket by multiplying 2 by 9 to get your answer in this form.4 This trapezium has an area of 50 m2. Show that the height of the trapezium is equal to 5( βˆšβ€―__ 5 βˆ’ 1) m. (x + 10) mx m 2x m Height must be positive. You will have to discard the negative solution of your quadratic equation.Problem-solvingP Be careful if b __ 2 is a fraction. Here ( 3 __ 2 ) 2 = 3 2 __ 2 2 = 9 __ 4 . Here the coefficient of x2 is 2, so take out a factor of 2. The other factor is in the form (x2 + bx) so you can use the rule to complete the square.
[ 0.04041701555252075, 0.09488505125045776, -0.007878588512539864, -0.02522948756814003, -0.05168547108769417, 0.01802956871688366, 0.03804917633533478, 0.046122994273900986, -0.10012928396463394, 0.05132853984832764, 0.020967621356248856, -0.11701325327157974, 0.02437373623251915, -0.05348747596144676, -0.0030166299548000097, -0.009426314383745193, -0.024020882323384285, 0.03548023849725723, -0.026710493490099907, -0.015566729940474033, 0.035227734595537186, -0.15680594742298126, -0.020303940400481224, 0.003854655660688877, 0.040022846311330795, -0.0730527937412262, -0.016939330846071243, -0.053324222564697266, -0.025856416672468185, -0.0029875212348997593, -0.12705472111701965, 0.009888572618365288, 0.04882029816508293, -0.05417141690850258, 0.025721535086631775, 0.024250173941254616, 0.06812923401594162, 0.020456252619624138, -0.02027886174619198, -0.05306776985526085, -0.02188381366431713, 0.048935744911432266, -0.09824034571647644, 0.07124526053667068, 0.00494718411937356, -0.12233368307352066, -0.009717614389955997, -0.08824783563613892, 0.04750446230173111, -0.012372883036732674, 0.031055407598614693, 0.07973375916481018, -0.01683802157640457, 0.029898690059781075, -0.07777070254087448, 0.0237126424908638, -0.07846129685640335, 0.037098273634910583, -0.004496303852647543, 0.030771195888519287, 0.035261768847703934, 0.005336424335837364, 0.08506419509649277, 0.06159878522157669, 0.028141777962446213, -0.002763352356851101, -0.0628737211227417, 0.0401533804833889, 0.047698765993118286, 0.047439850866794586, 0.014728737063705921, 0.0017360615311190486, -0.012189993634819984, 0.0029328768141567707, 0.05129053816199303, 0.005579161457717419, -0.06797507405281067, -0.014853608794510365, 0.04124833643436432, -0.014269479550421238, 0.03719499334692955, -0.012218431569635868, 0.11390717327594757, -0.004797853529453278, -0.037814002484083176, -0.035642433911561966, 0.08838441967964172, 0.035896167159080505, 0.0009498331928625703, 0.007226874586194754, 0.03347005322575569, -0.04296225309371948, 0.021903790533542633, -0.05036807805299759, -0.05192509666085243, -0.09822501242160797, 0.04423815757036209, -0.010730721056461334, -0.018243495374917984, 0.021828416734933853, -0.024348223581910133, -0.01876095123589039, 0.01917875185608864, -0.02791971154510975, -0.04673592001199722, -0.07463642209768295, -0.0500870905816555, -0.061633650213479996, 0.10353351384401321, -0.06942539662122726, -0.13149277865886688, -0.0424405112862587, -0.006051153410226107, 0.028301013633608818, 0.017547907307744026, -0.048155199736356735, 0.07814686745405197, -0.0659765973687172, 0.005291610956192017, 0.00714823929592967, 0.08514541387557983, -0.014118303544819355, 0.07307501137256622, -0.13341669738292694, 0.013178033754229546, 0.0399659126996994, 0.011742711998522282, 0.010187995620071888, -0.011070076376199722, -0.04899515584111214, 0.04955697059631348, -0.013467463664710522, -0.017812708392739296, -0.05918343365192413, 0.05663765221834183, -0.057043228298425674, 0.03638230636715889, 0.08016572147607803, 0.018163925036787987, -0.06964118778705597, 0.01098490972071886, 0.07718319445848465, 0.0023923902772367, -0.025017084553837776, 0.034462589770555496, -0.03450284153223038, -0.039786141365766525, -0.0173469390720129, -0.03977614641189575, 0.019240079447627068, -0.03534680977463722, -0.03170449286699295, -0.01566382497549057, 0.03927943855524063, 0.011557570658624172, -0.06299274414777756, -0.03598550707101822, -0.02507913112640381, -0.024127300828695297, 0.004772826097905636, -0.09217135608196259, 0.02132396772503853, -0.04967101663351059, -0.00918617658317089, 0.01737871579825878, 0.018725918605923653, -0.1340605765581131, 0.02500668168067932, -0.002746121259406209, 0.020033929497003555, 0.006017855368554592, -0.042428746819496155, 0.01484130322933197, 0.09318374842405319, 0.02292237989604473, -0.03366878256201744, 0.033731456845998764, 0.06293684989213943, 0.02765055000782013, 0.1050168052315712, 0.0158061683177948, -0.010423810221254826, -0.006111843511462212, 0.01394157949835062, 0.013063750229775906, -0.016905445605516434, 0.05551331862807274, -0.05184338986873627, 0.04035867005586624, -0.010218620300292969, -0.026009000837802887, -0.020006339997053146, -0.02961425483226776, 0.07452389597892761, -0.05599922686815262, 0.02140609547495842, -0.08838274329900742, -0.029022080823779106, -0.08309383690357208, 0.03537260740995407, -0.008696584030985832, -0.10466136038303375, 0.05687374994158745, -0.05974643677473068, 0.03289319574832916, -0.008052782155573368, -0.0636848658323288, 0.002646306063979864, -0.01751278154551983, 0.011049129068851471, -0.0535065121948719, 0.011743416078388691, 0.005323473829776049, -0.049574051052331924, -0.04071572422981262, -0.0842876136302948, -0.008173459209501743, 0.0007610396714881063, -0.040531910955905914, 0.049289871007204056, -0.009467341005802155, 0.07305853813886642, 0.05064156651496887, -4.09039120244333e-33, -0.027145441621541977, -0.002155940281227231, -0.10066932439804077, -0.017079202458262444, -0.04237894341349602, -0.008187452331185341, 0.0902600958943367, -0.07725036144256592, 0.056482430547475815, 0.03598668798804283, 0.05064762011170387, -0.006562793627381325, -0.04375583305954933, 0.013101930730044842, -0.03758443146944046, -0.061659835278987885, -0.04584049433469772, 0.02075432613492012, -0.029594523832201958, -0.035195428878068924, 0.0175902359187603, 0.01818682812154293, 0.07602555304765701, -0.01808582805097103, 0.007365596480667591, 0.06801542639732361, 0.10618073493242264, -0.0349203422665596, 0.03892679139971733, 0.09584011882543564, -0.02226773090660572, -0.011975282803177834, 0.09671430289745331, 0.025801226496696472, -0.03716716170310974, -0.08078709244728088, 0.03485585376620293, -0.10140198469161987, 0.031821638345718384, 0.0022198616061359644, 0.050735875964164734, 0.005646937992423773, 0.12447238713502884, 0.06581788510084152, -0.026926331222057343, -0.019277891144156456, 0.032317984849214554, 0.019232500344514847, 0.02887766622006893, 0.05171365290880203, -0.07491696625947952, 0.02679126150906086, 0.034266360104084015, -0.005928629077970982, 0.021062785759568214, 0.03551117330789566, -0.055909886956214905, -0.042041465640068054, 0.03903613239526749, -0.06335591524839401, 0.024335244670510292, -0.01844603940844536, 0.05099202319979668, 0.06850302964448929, 0.005790320690721273, 0.04220245033502579, 0.018361693248152733, -0.029003845527768135, 0.008230788633227348, 0.07195726037025452, -0.0357656367123127, 0.0477009117603302, -0.11138997972011566, -0.023017607629299164, -0.02210834063589573, 0.05309789255261421, -0.06852050125598907, 0.07736135274171829, 0.016173910349607468, -0.002166004152968526, -0.08383328467607498, 0.12445586174726486, -0.03468233346939087, -0.04242297634482384, -0.030276501551270485, -0.013889291323721409, 0.10259737819433212, 0.02671636827290058, 0.07934418320655823, -0.03370344638824463, -0.030739150941371918, 0.02113105170428753, -0.023214690387248993, -0.04277990758419037, 0.08665594458580017, 8.080872438032871e-32, -0.02242773026227951, -0.039581749588251114, -0.008581498637795448, -0.015504593029618263, -0.0010125659173354506, 0.06695046275854111, -0.026350127533078194, -0.010321107693016529, -0.01430612150579691, -0.077647864818573, -0.01640029065310955, 0.06200674921274185, -0.03223317861557007, 0.08171428740024567, -0.10687325894832611, -0.02679675817489624, -0.04595496878027916, 0.06951982527971268, -0.009111979976296425, -0.03046300821006298, 0.025861958041787148, 0.027748405933380127, -0.04285769164562225, 0.09058581292629242, -0.02084188163280487, 0.05212625488638878, -0.024651331827044487, 0.01567714475095272, 0.011494284495711327, -0.07050123810768127, 0.1176571324467659, 0.05675498768687248, -0.020929815247654915, 0.05086204782128334, 0.03146100416779518, -0.049740638583898544, 0.018766148015856743, -0.02134949341416359, 0.010243088938295841, -0.02291036956012249, -0.030863115563988686, -0.0063031320460140705, -0.07460449635982513, 0.0022118939086794853, -0.023431744426488876, -0.0016832291148602962, -0.03509008139371872, -0.049563899636268616, 0.006531321443617344, 0.016520865261554718, -0.022937241941690445, 0.018040252849459648, 0.1325162947177887, 0.03406514227390289, 0.024403085932135582, -0.054889120161533356, -0.140156090259552, -0.013686250895261765, 0.0377788245677948, -0.01308264397084713, -0.1072104275226593, 0.10502892732620239, -0.056975264102220535, -0.031087983399629593 ]
23Quadratics 3x2 + 6 x + 1 = 3(x2 + 2x) + 1 = 3(( x + 1)2 βˆ’ 12) + 1 = 3(x + 1)2 βˆ’ 3 + 1 = 3(x + 1)2 βˆ’ 2 So p = 3, q = 1 and r = βˆ’ 2.Example 5 Write 3x2 + 6x + 1 in the form p(x + q)2 + r, where p, q and r are integers to be found. 1 Complete the square for the e xpressions: a x2 + 4x b x2 βˆ’ 6x c x2 βˆ’ 16x d x2 + x e x2 βˆ’ 14 2 Complete the square for the e xpressions: a 2x2 + 16x b 3x2 βˆ’ 24x c 5x2 + 20x d 2x2 βˆ’ 5x e 8x βˆ’ 2x2 3 Write each of these expressions in the form p(x + q)2 + r, where p, q and r are constants to be found: a 2x2 + 8x + 1 b 5x2 βˆ’ 15x + 3 c 3x2 + 2x βˆ’ 1 d 10 βˆ’ 16 x βˆ’ 4x2 e 2x βˆ’ 8x2 + 10 4 Given tha t x2 + 3x + 6 = (x + a)2 + b, find the values of the constants a and b. (2 marks) 5 Write 2 + 0.8x βˆ’ 0.04x2 in the form A βˆ’ B(x + C)2, where A, B and C are constants to beΒ determined. (3 marks)E EExercise 2C Solve the equation x2 + 8x + 10 = 0 by completing the square. Give your answers in surd form.Example 6 x2 + 8 x + 10 = 0 x2 + 8 x = βˆ’10 (x + 4)2 βˆ’ 42 = βˆ’10 (x + 4)2 = βˆ’10 + 16 (x + 4)2 = 6 (x + 4) = Β± βˆšβ€―__ 6 x = βˆ’4 Β± βˆšβ€―__ 6 So th e solutions are x = βˆ’4 + βˆšβ€―__ 6 and x = βˆ’ 4 βˆ’ βˆšβ€―__ 6 .Check coefficient of x2 = 1. Subtract 10 to get the LHS in the form x2 + bx. Complete the square for x2 + 8x. Add 42 to both sides. Take square roots of both sides. Subtract 4 from both sides. Leave your answer in surd form.β–  a x 2 + bx + c = a (x + b ___ 2a ) 2 + (c βˆ’ b 2 ____ 4 a 2 ) You could also use the rule given above to complete the square for this expression, but it is safer to learn the method shown here. This is an expression , so you can’t divide every term by 3 without changing its value. Instead, you need to take a factor of 3 out of 3x 2 + 6x .Watch out In question 3d , wr ite the expression as βˆ’4x2 βˆ’ 16 x + 10 then take a factor of βˆ’ 4 out of the first two terms to get βˆ’ 4(x 2 + 4x) + 10.Hint
[ -0.01306331530213356, 0.07446865737438202, -0.008622128516435623, -0.047031763941049576, 0.03577741980552673, 0.07726112008094788, 0.008979957550764084, -0.036023955792188644, -0.05742703005671501, 0.10164717584848404, -0.05958917737007141, 0.0121842036023736, 0.0020413044840097427, -0.0058693778701126575, 0.08339106291532516, -0.026423990726470947, -0.07100033760070801, 0.02865041233599186, -0.06570331007242203, -0.06150703504681587, 0.07634977996349335, -0.08819306641817093, -0.05711128190159798, -0.021331701427698135, 0.09596212208271027, -0.025834089145064354, 0.027980608865618706, -0.05427539721131325, -0.01899252086877823, -0.02088155411183834, 0.005948690231889486, 0.03970034793019295, 0.1097770482301712, -0.06828714907169342, 0.0631813257932663, 0.02928190305829048, 0.022966409102082253, 0.06427936255931854, -0.03426570072770119, -0.017794454470276833, -0.03263962268829346, 0.02323986403644085, -0.08876325935125351, -0.03432333841919899, 0.09225886315107346, -0.07526372373104095, 0.010032230988144875, -0.011844542808830738, 0.04910803586244583, -0.020861295983195305, 0.07413864135742188, 0.028803449124097824, -0.03333813324570656, 0.07195397466421127, -0.009564109146595001, -0.0052544423379004, -0.05993634834885597, 0.07168242335319519, -0.06991151720285416, 0.01863875985145569, -0.02819293923676014, 0.03369217738509178, -0.011847774498164654, 0.0774465873837471, -0.028912454843521118, 0.03384624794125557, -0.05798428878188133, -0.02296566218137741, 0.04426538199186325, 0.0351078137755394, 0.04068060964345932, 0.07417068630456924, -0.050102975219488144, -0.016135113313794136, 0.0442952960729599, 0.05549563840031624, -0.029797274619340897, -0.07088145613670349, -0.05481354519724846, 0.012028345838189125, -0.08098729699850082, 0.03188946470618248, 0.005004630424082279, 0.06989585608243942, -0.021423624828457832, 0.12959912419319153, 0.06871002167463303, 0.03415672853589058, 0.021885208785533905, 0.011615391820669174, -0.0022806604392826557, -0.0005227802321314812, -0.022705361247062683, -0.09526390582323074, -0.0015980523312464356, -0.03874476999044418, 0.055190738290548325, -0.09905924648046494, -0.0501173660159111, 0.05991910398006439, 0.08722212165594101, 0.03009197674691677, -0.047869086265563965, 0.025483854115009308, -0.06740536540746689, -0.014560543932020664, 0.01758350059390068, -0.03893982991576195, 0.06578635424375534, -0.07811400294303894, -0.1042637825012207, -0.07345771789550781, 0.03900991380214691, 0.04161612316966057, 0.018865881487727165, -0.04853856563568115, 0.002354560187086463, -0.01997203752398491, 0.018943198025226593, -0.06702244281768799, 0.06495581567287445, -0.039237845689058304, 0.03336594998836517, -0.006459445226937532, 0.01577191986143589, -0.005448475480079651, -0.013944143429398537, -0.005587069317698479, -0.047305379062891006, -0.0025142929516732693, 0.0004466598038561642, -0.0007264427840709686, -0.0017058160156011581, -0.037212058901786804, 0.04164395481348038, 0.0243754293769598, 0.015975093469023705, 0.017917361110448837, -0.07513222843408585, -0.04058380052447319, 0.06347247958183289, 0.10238227248191833, -0.015793602913618088, -0.028043998405337334, 0.03882380947470665, -0.020289309322834015, 0.012157632037997246, 0.017168322578072548, -0.0855100005865097, 0.06964728981256485, 0.03552419692277908, -0.04915099963545799, -0.01860574446618557, 0.08254632353782654, 0.03258559852838516, -0.03846624493598938, -0.02252092957496643, -0.04329252243041992, -0.00942728016525507, -0.018367990851402283, -0.13035078346729279, -0.027700120583176613, -0.08071114122867584, 0.08294083178043365, 0.0425872802734375, 0.037221282720565796, -0.03986799344420433, 0.031183885410428047, 0.021950600668787956, -0.002188708633184433, -0.035546351224184036, 0.052243005484342575, -0.0063347965478897095, 0.010471079498529434, -0.005786361638456583, -0.0596720390021801, 0.09611000865697861, -0.018906816840171814, 0.009054108522832394, 0.13768580555915833, 0.06838382035493851, 0.022195765748620033, -0.005149372853338718, -0.028657516464591026, 0.01283933874219656, 0.07036841660737991, 0.01765136420726776, -0.007352069020271301, -0.015151066705584526, 0.006643138360232115, 0.046536222100257874, -0.10215692967176437, 0.032457660883665085, 0.02978210151195526, -0.05231979116797447, -0.014164036139845848, -0.019782627001404762, 0.025463048368692398, -0.0786454901099205, -0.020982148125767708, 0.04996363818645477, 0.008014521561563015, 0.08325330913066864, -0.07927465438842773, -0.01689421385526657, -0.003823251463472843, -0.062080882489681244, 0.012011546641588211, 0.021015634760260582, 0.06137191876769066, -0.036454781889915466, 0.030463766306638718, 0.056925948709249496, -0.10334885120391846, -0.06746993213891983, -0.04054517298936844, 0.04065193235874176, -0.07646400481462479, -0.05776436999440193, 0.030676426365971565, -0.006534946616739035, -0.021049782633781433, 0.024285167455673218, -1.0797121323814105e-32, -0.053499508649110794, -0.028041522949934006, -0.08376973867416382, -0.07937971502542496, -0.023712845519185066, -0.025061296299099922, -0.02109374850988388, -0.11313527077436447, 0.10869971662759781, 0.018136009573936462, 0.04307224974036217, -0.021633004769682884, 0.016455966979265213, 0.023688873276114464, -0.04969646409153938, -0.0069916886277496815, 0.008258311077952385, 0.04616459831595421, -0.01869288645684719, -0.0862007588148117, 0.045924972742795944, 0.024555524811148643, -0.03236589580774307, -0.012139721773564816, 0.033840399235486984, 0.1062992513179779, -0.01707318425178528, -0.11590728163719177, 0.03173452615737915, 0.02118624933063984, -0.03896276652812958, -0.030048465356230736, 0.026364197954535484, 0.02604546770453453, -0.030245942994952202, -0.08196042478084564, 0.08082358539104462, 0.003454421181231737, 0.013181690126657486, 0.008829881437122822, 0.06160704046487808, -0.08466995507478714, 0.00496568763628602, 0.08596986532211304, 0.012687554582953453, -0.02956209145486355, 0.020818037912249565, 0.03605632483959198, -0.01175547856837511, -0.008724065497517586, -0.08789769560098648, 0.0013664447469636798, -0.0771118775010109, -0.010675091296434402, 0.01816759631037712, 0.006408455315977335, -0.001488559995777905, -0.010462544858455658, 0.03894289955496788, 0.02127055637538433, -0.055239856243133545, 0.025471044704318047, -0.007308585569262505, 0.0200158953666687, -0.0021421259734779596, 0.02463151142001152, -0.0009927648352459073, -0.007253666874021292, -0.011119821108877659, 0.07124841213226318, -0.01672211103141308, 0.004641491919755936, -0.04544344171881676, -0.11203368008136749, -0.02688831090927124, 0.048858851194381714, -0.07394713163375854, 0.14667755365371704, -0.0296147633343935, -0.021371861919760704, -0.07524668425321579, -0.00015761354006826878, 0.02612259052693844, -0.011444106698036194, -0.09659101814031601, 0.015112055465579033, 0.1005038246512413, 0.08732079714536667, -0.00496472604572773, 0.006034768186509609, -0.09123006463050842, -0.0036753362510353327, 0.016985982656478882, 0.05865481123328209, 0.09573464840650558, 8.915166035343955e-32, 0.010435404255986214, -0.04008499160408974, -0.09216891974210739, -0.057214315980672836, -0.019288314506411552, -0.008920987136662006, 0.003557814285159111, 0.035217516124248505, -0.03843192383646965, -0.09618530422449112, 0.0015115565620362759, -0.04434444010257721, -0.021375106647610664, -0.0055406722240149975, -0.1187179759144783, -0.04668695107102394, -0.01162967924028635, 0.031193243339657784, -0.037657905369997025, -0.004443871323019266, 0.0072599793784320354, -0.03623674064874649, -0.04644004628062248, 0.029543347656726837, 0.017195967957377434, 0.07695747911930084, 0.0034644347615540028, -0.07326814532279968, 0.02189468778669834, 0.005187151487916708, 0.057620350271463394, 0.0632769837975502, -0.03708403930068016, -0.01786363683640957, 0.04325209558010101, -0.041024766862392426, 0.111813023686409, -0.07668143510818481, -0.06389899551868439, -0.04208047315478325, 0.028731778264045715, -0.0984559953212738, -0.08541138470172882, 0.044769056141376495, 0.017212143167853355, 0.026696069166064262, 0.01994369737803936, -0.07507597655057907, 0.02878292091190815, -0.04356461018323898, -0.07344082742929459, 0.04334196075797081, 0.06649413704872131, -0.035794928669929504, -0.038787588477134705, -0.05311178043484688, -0.07900669425725937, 0.035844676196575165, 0.024630846455693245, -0.045692767947912216, -0.04764474928379059, 0.09080272167921066, -0.03625921905040741, -0.01324811577796936 ]
24 Chapter 2 Solve the equation 2x2 βˆ’ 8x + 7 = 0. Give your answers in surd form.Example 7 2x2 βˆ’ 8 x + 7 = 0 x2 βˆ’ 4 x + 7 __ 2 = 0 x2 βˆ’ 4 x = βˆ’ 7 __ 2 (x βˆ’ 2)2 βˆ’ 22 = βˆ’ 7 __ 2 (x βˆ’ 2)2 = βˆ’ 7 __ 2 + 4 (x βˆ’ 2)2 = 1 __ 2 x βˆ’ 2 = Β± βˆšβ€―__ 1 __ 2 x = 2 Β± 1 ___ βˆšβ€―__ 2 So th e roots are x = 2 + 1 ___ βˆšβ€―__ 2 and x = 2 βˆ’ 1 ___ βˆšβ€―__ 2 Complete the square for x2 βˆ’ 4x. Add 22 to both sides. Take square roots of both sides. Add 2 to both sides. 1 Solve these quadratic equations by completing the square. Leave your answers in surd form. a x2 + 6x + 1 = 0 b x2 + 12x + 3 = 0 c x2 + 4x βˆ’ 2 = 0 d x2 βˆ’ 10x = 5 2 Solve these quadra tic equations by completing the square. Leave your answers in surd form. a 2x2 + 6x βˆ’ 3 = 0 b 5x2 + 8x βˆ’ 2 = 0 c 4x2 βˆ’ x βˆ’ 8 = 0 d 15 βˆ’ 6 x βˆ’ 2x2 = 0 3 x2 βˆ’ 14x + 1 = (x + p)2 + q, where p and q are constants. a Find the values of p and q. (2 marks) b Using your answ er to part a, or otherwise, show that the solutions to the equation x2 βˆ’ 14x + 1 = 0 can be written in the form r Β± s βˆšβ€―__ 3 , where r and s are constants to be found. (2 marks) 4 By completing the square, sho w that the solutions to the equation x2 + 2bx + c = 0 are given by the formula x = βˆ’ b Β± βˆšβ€―______ b 2 βˆ’ c . (4 marks)E E/P Follow the same steps as you would if the coefficients were numbers.Problem-solvingExercise 2D Start by dividing the whole equation by a .Hint You can use this methodΒ to prove the quadratic formula. β†’ Section 7.4Linksa Show that the solutions to the equation ax2 + 2bx + c = 0 are given by x = βˆ’ b __ a Β± βˆšβ€―______ b 2 βˆ’ ac ______ a 2 . b Hence, or otherwise, sho w that the solutions to the equation ax2 + bx + c = 0 can be written as x = βˆ’b Β± βˆšβ€―_______ b 2 βˆ’ 4ac ____________ 2a .Challenge Use your calculator to check so lutions to quadratic equations quickly.OnlineThis is an equation so you can divide every term by the same constant. Divide by 2 to get x2 on its own. The right-hand side is 0 so it is unchanged.Problem-solving
[ 0.013856290839612484, 0.0842919647693634, 0.0033482795115560293, 0.03280477598309517, 0.013162902556359768, 0.05939527601003647, -0.0175707396119833, 0.11280366778373718, -0.04327024146914482, 0.02562318556010723, 0.060167163610458374, -0.07456247508525848, -0.017832111567258835, -0.07127248495817184, -0.0026145954616367817, -0.08568552881479263, -0.04192982614040375, 0.026245519518852234, -0.019915705546736717, -0.013538878411054611, 0.07562603056430817, -0.0443815179169178, -0.01412374246865511, -0.004404843784868717, 0.07991339266300201, -0.05551699921488762, -0.026060475036501884, -0.059739310294389725, 0.024286258965730667, -0.03461470082402229, 0.023910244926810265, 0.03370067477226257, 0.0606442354619503, -0.0009170433040708303, 0.08060666173696518, 0.03856939077377319, 0.05868428573012352, -0.012628581374883652, -0.06163390353322029, -0.10228496044874191, -0.058986272662878036, -0.015031016431748867, -0.0022662717383354902, -0.04971710219979286, 0.07441779226064682, -0.0662311241030693, -0.09185580909252167, 0.00035436401958577335, 0.06672146916389465, -0.04927738383412361, 0.035204119980335236, 0.042216844856739044, 0.0076749976724386215, 0.02499682828783989, 0.01644725725054741, -0.009115130640566349, -0.064357228577137, 0.0026633592788130045, -0.021860791370272636, 0.009156832471489906, -0.012312768027186394, -0.07208480685949326, -0.004992786329239607, 0.047547854483127594, -0.018348336219787598, 0.0518127977848053, -0.02478197030723095, -0.05473433434963226, 0.03876815736293793, 0.0077250306494534016, -0.020133113488554955, 0.04804108664393425, -0.050348080694675446, -0.03507103770971298, 0.05509715899825096, -0.048006195574998856, -0.04768171161413193, -0.04855343699455261, 0.055718377232551575, -0.011693672277033329, 0.03498039022088051, -0.04702194035053253, 0.0871993899345398, -0.030497567728161812, 0.019984859973192215, -0.07949892431497574, 0.03627161681652069, -0.034223880618810654, 0.052087631076574326, 0.017224131152033806, 0.10746700316667557, -0.004580747336149216, 0.0013586576096713543, -0.04112763702869415, 0.014267859049141407, -0.07723904401063919, 0.0417327955365181, -0.03719297796487808, 0.03419267013669014, 0.09393253177404404, 0.057810038328170776, -0.08989057689905167, -0.03088526427745819, 0.04446650668978691, -0.03478265553712845, -0.09357313066720963, -0.042948197573423386, -0.04906278848648071, 0.09753719717264175, -0.11823976039886475, -0.09541834890842438, -0.057047951966524124, -0.027110183611512184, -0.03633323684334755, 0.025452714413404465, -0.041114650666713715, 0.11075125634670258, -0.02974766492843628, -0.07025765627622604, -0.06954250484704971, 0.02205638214945793, -0.005614385474473238, 0.1076149120926857, -0.05126793310046196, -0.0019355334807187319, -0.015597830526530743, 0.05538295581936836, -0.008635505102574825, -0.07313027232885361, -0.09371698647737503, -0.008611028082668781, -0.05005380138754845, -0.08259439468383789, 0.0006331573240458965, 0.003663737792521715, -0.0012875794200226665, -0.033511314541101456, 0.1003296971321106, 0.0023040277883410454, -0.063785120844841, 0.010816617868840694, 0.04572944715619087, 0.028402220457792282, 0.027244767174124718, 0.03746296465396881, 0.006191635970026255, -0.043872661888599396, 0.03588500991463661, 0.03788438066840172, 0.04856051877140999, -0.061570774763822556, -0.037816718220710754, -0.04307584837079048, 0.01976826973259449, -0.01760963164269924, -0.05710715427994728, -0.04065122455358505, -0.09205695241689682, -0.0015137698501348495, -0.052526041865348816, -0.08528895676136017, 0.04219955578446388, -0.025699060410261154, 0.07889733463525772, 0.07277151197195053, 0.04144468531012535, -0.0871797576546669, 0.04249408468604088, -0.01959129609167576, -0.05450783669948578, 0.033690523356199265, 0.04691562056541443, 0.04562748968601227, 0.05436078831553459, 0.06131155043840408, -0.06899310648441315, 0.11461915820837021, -0.01944645307958126, 0.009938712231814861, 0.07970456033945084, 0.005708109587430954, 0.03625224530696869, 0.011043674312531948, -0.026771221309900284, 0.04062642902135849, -0.061838310211896896, -0.00575590506196022, 0.04970255494117737, 0.020446283742785454, 0.014156853780150414, -0.047625668346881866, -0.01670818030834198, -0.01559675857424736, 0.05560470372438431, -0.09243116527795792, -0.03853324428200722, 0.05225929617881775, -0.043513402342796326, -0.1449379026889801, 0.09706253558397293, 0.04667843133211136, -0.01721479371190071, 0.04861126095056534, -0.06244334951043129, 0.04208045452833176, 0.05278753489255905, -0.04779873415827751, 0.01838296838104725, 0.010512755252420902, 0.07263839989900589, -0.024861332029104233, 0.020554296672344208, -0.03367958217859268, -0.052438609302043915, -0.03143769130110741, -0.0914146825671196, 0.013937108218669891, -0.0786006897687912, -0.033623579889535904, -0.031579114496707916, -0.08400172740221024, -0.09520289301872253, 0.08071447163820267, -2.9025152226870378e-33, -0.030630027875304222, 0.000723019358702004, -0.13082700967788696, -0.0222557932138443, -0.07064206898212433, -0.003852914785966277, 0.07162008434534073, -0.02850349247455597, 0.06118253991007805, 0.033624086529016495, 0.030085185542702675, 0.05358497053384781, -0.015535727143287659, 0.0342051237821579, -0.049156371504068375, -0.011623857542872429, -0.04763619229197502, -0.029999492689967155, 0.04321658983826637, 0.03564636781811714, -0.01168028637766838, 0.06932375580072403, 0.03923272341489792, -0.037968773394823074, 0.035295091569423676, 0.04498608782887459, 0.07554447650909424, -0.03995182365179062, 0.026151517406105995, 0.07222757488489151, -0.022064007818698883, -0.07509538531303406, 0.0657639354467392, 0.012735869735479355, -0.058937206864356995, 0.004727000370621681, -0.021522993221879005, 0.000836359104141593, 0.001769278896972537, 0.006531986407935619, 0.06412534415721893, 0.011980363167822361, -0.006130211520940065, -0.013916737399995327, 0.0175770353525877, 0.10004150867462158, 0.049749650061130524, 0.09515973180532455, -0.01664825715124607, -0.02298170141875744, -0.018174275755882263, -0.020139846950769424, 0.04000147059559822, 0.006928328890353441, 0.06574150174856186, 0.008514303714036942, 0.018739912658929825, -0.07956217974424362, 0.05273677036166191, 0.004681436810642481, -0.02285297028720379, -0.0052055600099265575, 0.04431821405887604, 0.043736349791288376, -0.010998111218214035, -0.003987899515777826, -0.05144169181585312, 0.01290341280400753, 0.00007037919567665085, 0.016425106674432755, -0.042121268808841705, 0.019166233018040657, -0.07010328769683838, -0.057352546602487564, -0.021360624581575394, 0.03645457327365875, -0.04301493987441063, 0.06326465308666229, -0.02072448842227459, -0.13151687383651733, -0.12605583667755127, -0.07041509449481964, -0.02722637914121151, -0.05482713505625725, -0.0808548703789711, -0.029226554557681084, 0.10919325798749924, 0.02556312270462513, 0.038477350026369095, -0.038776934146881104, 0.026563480496406555, 0.031170666217803955, 0.016131317242980003, -0.0032290148083120584, 0.09234629571437836, 9.094410115934741e-32, -0.015117178671061993, 0.011422949843108654, 0.034076888114213943, -0.021036265417933464, 0.056989189237356186, 0.07185154408216476, 0.0004755224799737334, 0.0029015971813350916, 0.009531001560389996, -0.044730283319950104, 0.008366508409380913, 0.015945369377732277, -0.05620722100138664, 0.0644788146018982, 0.0001901404611999169, -0.0012804720317944884, -0.09175882488489151, 0.03629952669143677, 0.001254928414709866, -0.0047879875637590885, -0.007271636743098497, -0.00941763911396265, -0.08714170753955841, 0.05191091075539589, 0.0076904878951609135, 0.08347585797309875, -0.07597760856151581, -0.041225139051675797, -0.023290690034627914, 0.010585757903754711, 0.07407207787036896, -0.02242426574230194, -0.05224563553929329, -0.04014478623867035, 0.02833976410329342, -0.01695319265127182, 0.06502744555473328, 0.011213625781238079, -0.011792244389653206, 0.057186782360076904, -0.01202533021569252, 0.015157723799347878, -0.03131554275751114, 0.0730736181139946, -0.03778310865163803, -0.053030405193567276, -0.008550223894417286, -0.008784736506640911, 0.037109456956386566, -0.015219314023852348, -0.06008302420377731, 0.019612034782767296, 0.05267752334475517, 0.05318663641810417, 0.032592158764600754, -0.11173870414495468, -0.08933089673519135, 0.053916141390800476, 0.04421485215425491, -0.07695169746875763, -0.0703887790441513, 0.03970501571893692, -0.04392121732234955, 0.06746881455183029 ]
25Quadratics 2.3 Functions A function is a mathematical relationship that maps each value of a set of inputs to a single output. The notation f(x) is used to represent a function of x. β–  The set of possible inputs for a function is called the domain. 3DomainR ange 7 –7 2f(–7) = 49f(7) = 49f(3) = 9 f( 2) = 29 49 49 21 41 16 f( ) = 14 1 16β–  The set of possible outputs of a function is called the range. This diagram sho ws how the function f(x) = x2 maps five values in its domain to values in its range. β–  The roots of a function are the values of x for which f( x) = 0. The functions f and g are given by f(x) = 2x βˆ’ 10 If the i nput of a function, x, can be any real number the domain can be written as x ∈ ℝ . The s ymbol ∈ mean s β€˜is a member of’ and the symbol ℝ rep resents the real numbers.Notation and g(x) = x2 βˆ’ 9, x ∈ ℝ . a Find the values of f(5) and g(10). b Find the value of x for which f(x) = g(x).Example 8 a f(5) = 2(5) βˆ’ 10 = 10 βˆ’ 10 = 0 g (10) = (10)2 βˆ’ 9 = 100 βˆ’ 9 = 91 b f(x) = g(x) 2x βˆ’ 10 = x2 βˆ’ 9 x2 βˆ’ 2 x + 1 = 0 (x βˆ’ 1)2 = 0 x = 1To find f(5), substitute x = 5 into the function f(x). Set f(x) equal to g(x) and solve for x. The function f is defined as f(x) = x2 + 6x βˆ’ 5, Β x ∈ ℝ . a Write f(x ) in the form (x + p)2 + q. b Hence, or otherwise, find the r oots of f(x), leaving your answers in surd form. c Write down the minim um value of f(x), and state the value of x for which it occurs.Example 9 a f(x) = x2 + 6 x βˆ’ 5 = (x + 3)2 βˆ’ 9 βˆ’ 5 = (x + 3)2 βˆ’ 14 b f(x) = 0 (x + 3)2 βˆ’ 14 = 0 (x + 3)2 = 14 x + 3 = Β± βˆšβ€―____ 14 x = βˆ’3 Β± βˆšβ€―____ 14 f(x) has two roots: βˆ’3 + βˆšβ€―____ 14 and βˆ’ 3 βˆ’ βˆšβ€―____ 14 .Complete the square for x2 + 6x and then simplify the expression. You can solve this equation directly. Remember to write Β± when you take square roots of both sides.To find the root(s) of a function, set it equal to zero.
[ 0.047365691512823105, 0.0573720708489418, 0.005755032878369093, -0.06053665652871132, -0.10266956686973572, 0.06456391513347626, -0.010251613333821297, 0.01822834275662899, 0.07105199247598648, -0.04918083921074867, 0.01122002862393856, -0.006405067630112171, 0.014039368368685246, 0.10179648548364639, 0.013017594814300537, -0.013301519677042961, 0.02622189372777939, 0.047937966883182526, -0.039125096052885056, -0.095669686794281, 0.07618044316768646, 0.054133396595716476, -0.13757820427417755, -0.04437040537595749, -0.01150733046233654, -0.03032810054719448, -0.03700344264507294, -0.003193049458786845, -0.04857226088643074, -0.046104684472084045, -0.07071144133806229, 0.06855112314224243, 0.009701743721961975, -0.03686673939228058, -0.020847104489803314, 0.012644021771848202, -0.01902620680630207, 8.607512995695288e-7, 0.013444267213344574, -0.021859275177121162, 0.02563447318971157, 0.024840759113430977, 0.007585132494568825, -0.017414597794413567, -0.017464986070990562, 0.01485507097095251, 0.05141512304544449, -0.02983294613659382, 0.03852158039808273, 0.016105040907859802, -0.02026280015707016, 0.12681759893894196, -0.16436630487442017, 0.08102858811616898, 0.05139411613345146, 0.004181805066764355, 0.038486141711473465, -0.11066220700740814, -0.06276047229766846, 0.033241186290979385, -0.05346842110157013, 0.04524088650941849, 0.01562909595668316, 0.01857614517211914, 0.05287153273820877, 0.06446517258882523, -0.004196339286863804, -0.059773270040750504, -0.01211139839142561, 0.053073108196258545, -0.10148820281028748, -0.017448317259550095, -0.008673873730003834, 0.01886359415948391, 0.07333435863256454, 0.038382191210985184, -0.03300065919756889, -0.015844611451029778, 0.008209056220948696, -0.03726814687252045, 0.007934979163110256, 0.009686875157058239, 0.012043701484799385, 0.08179301023483276, 0.02860109880566597, 0.04779980704188347, 0.010313940234482288, 0.02818593755364418, -0.006014091894030571, 0.03930428996682167, -0.014907141216099262, 0.044264428317546844, -0.034317661076784134, -0.022903472185134888, 0.0023655968252569437, -0.0427866205573082, 0.083876833319664, -0.11145688593387604, 0.02133963443338871, 0.04343399778008461, -0.050012923777103424, 0.03881412744522095, 0.04110635817050934, -0.05305726081132889, -0.06539316475391388, -0.027036089450120926, -0.024370769038796425, -0.08405718207359314, -0.03869396448135376, -0.08421167731285095, 0.021999554708600044, -0.10614190250635147, -0.03907616063952446, 0.0048134117387235165, 0.02354089543223381, -0.0846618041396141, -0.029515134170651436, -0.033210389316082, 0.0645669549703598, -0.02702638879418373, 0.03399581089615822, -0.03779807314276695, -0.045480046421289444, 0.03098602592945099, -0.04047093167901039, 0.00123339903075248, 0.03297240659594536, 0.02021694742143154, -0.0311830285936594, -0.01654639281332493, 0.05123239383101463, -0.010141807608306408, -0.03132276609539986, -0.008819390088319778, 0.008005628362298012, -0.013875487260520458, -0.07132314145565033, 0.13618861138820648, 0.018930992111563683, 0.07764116674661636, 0.09149857610464096, 0.03148889169096947, 0.07622496783733368, 0.02847382053732872, 0.0988936498761177, 0.00666803726926446, 0.03976350650191307, -0.044285647571086884, 0.04218960925936699, 0.005865375977009535, 0.017495106905698776, 0.030699020251631737, 0.027519017457962036, 0.10130581259727478, -0.026434728875756264, 0.06018060818314552, -0.03221019357442856, -0.041304949671030045, -0.012089155614376068, -0.008918347768485546, 0.06217435002326965, -0.04136253148317337, 0.02369164302945137, -0.005797009915113449, 0.032585788518190384, 0.05069849640130997, 0.01865246146917343, -0.007182655390352011, -0.11293087154626846, -0.04485929384827614, -0.03065667301416397, -0.0183780025690794, 0.022124525159597397, 0.016862571239471436, -0.06572272628545761, 0.06842152774333954, 0.026338528841733932, -0.010448187589645386, -0.03328879177570343, -0.012391227297484875, 0.059842549264431, -0.06764142215251923, 0.070070281624794, -0.019572827965021133, -0.02624662034213543, -0.04322746768593788, -0.04303206875920296, -0.019591595977544785, -0.02047964185476303, -0.0357670858502388, -0.06459228694438934, -0.032688431441783905, -0.02429637871682644, -0.004903712309896946, 0.00492318207398057, -0.026281658560037613, 0.013459809124469757, 0.1030661091208458, 0.09639713168144226, 0.10669773817062378, 0.0031336965039372444, -0.013106027618050575, 0.03332802653312683, 0.017633993178606033, -0.06685832142829895, 0.01567990519106388, -0.07658547908067703, -0.044414978474378586, -0.0007842897903174162, 0.07889304310083389, -0.09204216301441193, 0.007281436584889889, -0.03787679597735405, -0.05557142570614815, -0.04588155820965767, -0.08936375379562378, 0.010106880217790604, -0.017630189657211304, -0.12588319182395935, 0.006239703856408596, 0.002452898072078824, -0.0035609037149697542, 0.022165777161717415, 1.2633895899163224e-32, -0.006679626181721687, 0.059772443026304245, -0.08341804146766663, 0.017872460186481476, 0.05629129707813263, -0.05460674688220024, 0.08760877698659897, -0.005449151620268822, 0.1031411662697792, 0.07011615484952927, -0.012144426815211773, 0.07374413311481476, -0.019957760348916054, -0.07898473739624023, -0.084442138671875, -0.02708260715007782, -0.03601613640785217, -0.10953884571790695, -0.016420932486653328, -0.004369511269032955, 0.07109881192445755, 0.0006118757301010191, -0.05908465012907982, 0.019554195925593376, -0.04485699534416199, 0.032036688178777695, 0.038657717406749725, 0.005906912498176098, 0.013369621708989143, 0.07053744792938232, -0.07404059916734695, 0.021128449589014053, 0.11331170797348022, 0.08005213737487793, -0.014506055042147636, -0.026593783870339394, 0.08934549242258072, -0.07344356179237366, -0.052294351160526276, 0.018534265458583832, 0.07924666255712509, -0.022656170651316643, 0.09034551680088043, 0.028965944424271584, 0.03922714293003082, 0.045719560235738754, 0.03774132952094078, 0.016077091917395592, 0.004434530157595873, 0.050955068320035934, -0.14357705414295197, -0.100044384598732, -0.002646882552653551, 0.016888687387108803, 0.06665108352899551, 0.0064374227076768875, -0.021455800160765648, -0.03421841189265251, 0.0027843923307955265, 0.027946926653385162, 0.007137373089790344, -0.0560801662504673, 0.02197265811264515, 0.05364140123128891, -0.049335792660713196, 0.05883794277906418, -0.04508443549275398, 0.036824747920036316, 0.01355230063199997, 0.062121737748384476, 0.05118407681584358, 0.036109987646341324, 0.07252847403287888, -0.026156064122915268, -0.1308245211839676, -0.04783115163445473, -0.056325800716876984, 0.03651336953043938, -0.0032079205848276615, 0.06306126713752747, 0.006993431132286787, -0.041772834956645966, -0.0306546613574028, 0.01147886086255312, -0.09781812876462936, 0.0014455860946327448, 0.017513660714030266, 0.03740357607603073, 0.032175563275814056, 0.029007544741034508, 0.031169990077614784, -0.00591325294226408, -0.09638972580432892, -0.06541739404201508, 0.04041397199034691, 6.798556213573959e-32, -0.039453715085983276, -0.02702164836227894, 0.0008923521381802857, 0.022035473957657814, 0.000701828976161778, 0.009579380974173546, 0.0682465210556984, -0.03845962509512901, 0.00012972287368029356, -0.010259309783577919, 0.06606831401586533, 0.017696157097816467, -0.043852753937244415, -0.022540666162967682, 0.05737088993191719, 0.04299945384263992, 0.02516152523458004, -0.06722787767648697, -0.03930407389998436, 0.03383120521903038, -0.003742788452655077, 0.030713943764567375, -0.11785609275102615, 0.041776884347200394, 0.051059696823358536, -0.04320888966321945, -0.011751537211239338, 0.05608668550848961, -0.0015987748047336936, -0.0855453833937645, -0.024703022092580795, 0.06486683338880539, -0.02423456683754921, -0.03812965378165245, 0.03875737264752388, 0.06930766254663467, -0.027261054143309593, -0.022288255393505096, -0.05945197492837906, 0.0036702859215438366, -0.02438408136367798, -0.06186412274837494, -0.04717127978801727, 0.04669870808720589, -0.06258998066186905, 0.013387417420744896, 0.017214195802807808, -0.023473963141441345, 0.013648184016346931, -0.028203940019011497, -0.052984025329351425, 0.07565651088953018, 0.001977774081751704, -0.053817033767700195, 0.019487882032990456, 0.02443244494497776, 0.025735823437571526, -0.05738282576203346, 0.05081719532608986, 0.006638266611844301, -0.08367951214313507, 0.10216883569955826, 0.0862242802977562, -0.04985545948147774 ]
26 Chapter 2 c (x + 3)2 > 0 So the minimum value of f( x) is βˆ’14. This occurs when ( x + 3)2 = 0, so when x = βˆ’ 3A squared value must be greater than or equal to 0. Find the roots of the function f(x) = x6 + 7x3 βˆ’ 8, x ∈ ℝ .Example 10 f(x) = 0 x6 + 7x3 βˆ’ 8 = 0 (x3)2 + 7( x3) βˆ’ 8 = 0 (x3 βˆ’ 1)( x3 + 8) = 0 So x3 = 1 or x3 = βˆ’8 x3 = 1 β‡’ x = 1 x3 = βˆ’8 β‡’ x = βˆ’ 2 The roots of f( x) are 1 and βˆ’ 2. Alternatively, let u = x3. f(x) = x6 + 7x3 βˆ’ 8 = (x3)2 + 7( x3) βˆ’ 8 = u2 + 7u βˆ’ 8 = (u βˆ’ 1)( u + 8) So when f( x) = 0, u = 1 or u = βˆ’ 8. If u = 1 β‡’ x3 = 1 β‡’ x = 1 If u = βˆ’ 8 β‡’ x3 = βˆ’8 β‡’ x = βˆ’ 2 The roots of f( x) are 1 and βˆ’ 2.Treat x3 as a single variable and factorise. Solve the quadratic equation to find two values for x3, then find the corresponding values of x. You can simplify this working with a substitution. Replace x3 with u and solve the quadratic equation in u. The s olutions to the quadratic equation will be values of u. Convert back to values of x using your substitution.Watch out 1 Using the functions f(x) = 5x + 3, g(x) = x2 βˆ’ 2 and h(x) = βˆšβ€―_____ x + 1 , find the values of: a f(1) b g(3) c h(8) d f(1.5) e g ( βˆšβ€―__ 2 ) f h (βˆ’1) g f(4) + g(2) h f(0) + g(0) + h(0) i g(4) ____ h(3) 2 The function f(x) is defined b y f(x) = x2 βˆ’ 2x, x ∈ ℝ . Giv en that f(a) = 8, find two possible values for a. 3 Find all of the r oots of the following functions: a f(x) = 10 βˆ’ 15x b g(x) = (x + 9)(x βˆ’ 2) c h(x) = x2 + 6x βˆ’ 40 d j(x) = 144 βˆ’ x2 e k(x) = x(x + 5)(x + 7) f m(x) = x3 + 5x2 βˆ’ 24xSubstitute x = a into the function and set the resulting expression equal to 8.Problem-solving PExercise 2Ef(x) can be written as a function of a function. The only powers of x in f( x) are 6, 3 and 0 so you can write it as a quadratic function of x3.Problem-solving(x + 3)2 > 0 so (x + 3)2 βˆ’ 14 > βˆ’14
[ 0.00841620471328497, 0.1422567218542099, -0.006873862352222204, -0.048969000577926636, 0.04064157232642174, 0.045137301087379456, -0.08182214200496674, 0.02331303432583809, -0.057616159319877625, 0.08946049213409424, 0.03645595163106918, -0.06614738702774048, -0.01590130478143692, -0.0050530279986560345, 0.026708392426371574, 0.016262372955679893, -0.06396257132291794, 0.027727050706744194, -0.08377405256032944, -0.0424375981092453, -0.05823790282011032, -0.06054249405860901, -0.019325915724039078, -0.07147281616926193, 0.08991996198892593, -0.064756378531456, -0.017942527309060097, -0.09858014434576035, 0.01608992926776409, 0.03203396871685982, -0.0669044628739357, -0.017577122896909714, 0.04843069240450859, -0.051607608795166016, 0.10608801990747452, -0.0036558746360242367, 0.014594866894185543, 0.00687397550791502, 0.031667307019233704, 0.00823515560477972, -0.06991780549287796, 0.043670687824487686, 0.005838209763169289, -0.03452247381210327, 0.039128679782152176, -0.006021654233336449, -0.049330875277519226, -0.030539749190211296, -0.00371786137111485, 0.006108790170401335, 0.01834297925233841, 0.1007368266582489, 0.02334795705974102, 0.08387750387191772, -0.030885081738233566, -0.03538333624601364, 0.01978204771876335, -0.007662774529308081, 0.027587946504354477, 0.04081020876765251, 0.003921096213161945, 0.08153475821018219, -0.02116629295051098, 0.0460149347782135, 0.05024438351392746, 0.0842304676771164, -0.018095605075359344, -0.027482692152261734, -0.006166248116642237, 0.06976337730884552, -0.05540524795651436, 0.05562210828065872, -0.013747459277510643, 0.01672343537211418, -0.017469104379415512, 0.004365073051303625, 0.026372410356998444, -0.06441224366426468, 0.03543587028980255, 0.013751867227256298, 0.02509959228336811, 0.007889355532824993, 0.05310710892081261, 0.12348566204309464, 0.007657253183424473, 0.009502683766186237, 0.14751873910427094, 0.0029644332826137543, -0.025886882096529007, 0.016271188855171204, -0.0038610503543168306, 0.043039049953222275, -0.027992144227027893, -0.020831560716032982, -0.029184089973568916, -0.11878158152103424, 0.0016163187101483345, -0.09690084308385849, 0.0259955246001482, 0.053950756788253784, -0.04397932440042496, -0.01885714940726757, 0.00379078253172338, 0.040591850876808167, -0.02470390312373638, -0.05800448730587959, 0.034238167107105255, -0.0452294647693634, 0.04431057721376419, -0.11222074180841446, -0.03817599266767502, -0.12035819888114929, -0.06624210625886917, 0.018337620422244072, 0.057849783450365067, -0.001605688245035708, 0.01281167846173048, 0.0016635616775602102, -0.03905533626675606, -0.029369588941335678, -0.02081226371228695, -0.06846529990434647, 0.061934325844049454, -0.06762968748807907, -0.049271758645772934, -0.040234800428152084, 0.015346333384513855, 0.022038521245121956, 0.03588789701461792, -0.06382337957620621, 0.05494951829314232, -0.09713605046272278, -0.0500735267996788, -0.01602335087954998, -0.011871111579239368, -0.03228253126144409, -0.11108298599720001, 0.0661395788192749, 0.07757332175970078, -0.044189684092998505, 0.019527943804860115, -0.013417329639196396, -0.029013516381382942, -0.0121665233746171, -0.016325008124113083, -0.113665871322155, -0.09201905131340027, -0.037294358015060425, -0.07532108575105667, -0.03582246974110603, -0.052938126027584076, -0.040903136134147644, -0.0012164274230599403, 0.08970827609300613, 0.009410425089299679, -0.11959310621023178, -0.04512694105505943, -0.037481773644685745, 0.041364457458257675, -0.04884025454521179, -0.05866998806595802, 0.05366991460323334, 0.014579174108803272, 0.052923236042261124, 0.06647179275751114, 0.018413754180073738, 0.06260782480239868, -0.02788436971604824, -0.03688674792647362, -0.028617609292268753, 0.023021748289465904, 0.02976696752011776, 0.047301020473241806, 0.057367999106645584, 0.02957506664097309, 0.013501035049557686, 0.059016887098550797, 0.0451258048415184, 0.03141983225941658, 0.1134931743144989, 0.0937691256403923, 0.059790968894958496, 0.0014347879914566875, -0.023371728137135506, -0.012870424427092075, 0.0542636439204216, 0.04297054931521416, -0.00742369145154953, 0.021764323115348816, -0.0507727786898613, 0.001294187968596816, -0.031999845057725906, -0.0029713583644479513, 0.054182566702365875, -0.1371113359928131, -0.03483991697430611, 0.04370933398604393, -0.0022636738140136003, -0.10458202660083771, 0.06435886770486832, 0.048160724341869354, -0.06101255118846893, 0.09149771183729172, 0.033720728009939194, -0.0232999250292778, 0.002509069861844182, -0.11883126199245453, -0.018612327054142952, 0.006254477426409721, -0.014180129393935204, -0.07215059548616409, -0.010414615273475647, 0.006382114719599485, -0.051047731190919876, -0.025636723265051842, -0.024901216849684715, 0.06990501284599304, -0.043469782918691635, -0.13613514602184296, 0.009691147133708, -0.07479244470596313, -0.026110181584954262, 0.0851837769150734, -4.523607155811407e-33, -0.035786569118499756, -0.02265951782464981, -0.03966544568538666, -0.007652148138731718, 0.0091734379529953, -0.02769288420677185, 0.025324521586298943, -0.030366364866495132, 0.031160345301032066, 0.06945084035396576, 0.03836006671190262, 0.01514457631856203, -0.03823128715157509, -0.02174873650074005, -0.035151299089193344, 0.005919911433011293, -0.09006598591804504, -0.02198595553636551, 0.03193320333957672, 0.07556047290563583, 0.03175082430243492, 0.0472605936229229, -0.021479852497577667, 0.00987942237406969, 0.03446469083428383, 0.0039041920099407434, 0.0897672176361084, -0.04504326730966568, 0.005394496023654938, 0.023139864206314087, -0.03844936564564705, 0.02998019941151142, 0.04546871408820152, 0.09193283319473267, -0.0054927091114223, -0.04387067258358002, 0.003271728754043579, -0.055932629853487015, 0.012503924779593945, -0.025980036705732346, 0.1071915477514267, 0.09584686905145645, 0.05830619856715202, -0.0101079773157835, 0.020227646455168724, -0.002646992215886712, 0.040772873908281326, 0.005671541206538677, -0.015480446629226208, 0.0643562600016594, 0.029280126094818115, -0.048953961580991745, 0.03166439011693001, 0.06288348883390427, 0.021648768335580826, -0.0071684508584439754, -0.05527128279209137, -0.010324465110898018, 0.012869169004261494, 0.01579618640244007, -0.031167106702923775, -0.06513962149620056, -0.039238736033439636, 0.034426890313625336, -0.07130897045135498, 0.015768665820360184, -0.04092332348227501, -0.013118892908096313, 0.02803960256278515, -0.03147650882601738, 0.0010003719944506884, -0.01824282854795456, 0.06714963167905807, -0.053413283079862595, -0.12031203508377075, 0.06468000262975693, -0.04884548857808113, 0.019599927589297295, 0.062424272298812866, -0.1516655534505844, -0.04309253767132759, 0.04923709109425545, -0.011817356571555138, -0.05592042952775955, -0.05847428739070892, 0.007615461014211178, -0.0003696007188409567, 0.02215150184929371, 0.11969144642353058, 0.02819780446588993, -0.018449485301971436, 0.041493721306324005, -0.018405558541417122, -0.0503179207444191, 0.0734543725848198, 7.351295991723264e-32, -0.046632956713438034, -0.002689030487090349, -0.03716808557510376, 0.018349913880228996, 0.05746496096253395, 0.012391791678965092, -0.0197033379226923, -0.031026316806674004, -0.023342804983258247, 0.02027427777647972, 0.0407240092754364, 0.05673280730843544, -0.057629380375146866, -0.0006286108400672674, -0.0877232700586319, -0.010912680067121983, -0.0019487484823912382, -0.03624590113759041, -0.02390313521027565, 0.006945126224309206, -0.039525579661130905, 0.029813354834914207, -0.0727672353386879, 0.0590534545481205, 0.11224687844514847, 0.0018270313739776611, -0.0029643666930496693, 0.005262105725705624, 0.045684922486543655, 0.020119942724704742, -0.0015412281500175595, 0.0362384170293808, -0.01596543937921524, 0.017468959093093872, -0.0021079310681670904, -0.0641578957438469, 0.03168873488903046, -0.07480469346046448, -0.05118998885154724, -0.02665114961564541, -0.028486842289566994, -0.0011703985510393977, -0.09357486665248871, -0.04275970906019211, -0.06786178797483444, -0.03856239095330238, -0.0486319400370121, 0.025844043120741844, 0.06880151480436325, 0.050377730280160904, 0.009126956574618816, 0.06891263276338577, 0.11646506935358047, 0.0355948805809021, 0.02625592052936554, -0.04875783994793892, -0.047732073813676834, -0.03626824542880058, -0.0031876382417976856, -0.0044301655143499374, -0.055511780083179474, 0.07636008411645889, -0.02150210738182068, 0.06316734850406647 ]
27Quadratics 4 The functions p and q are giv en by p(x) = x2 βˆ’ 3x and q(x) = 2x βˆ’ 6, x ∈ ℝ . Find the two v alues of x for which p(x) = q(x). 5 The functions f and g are gi ven by f(x) = 2x3 + 30x and g(x) = 17x2, Β x ∈ ℝ . Find the three v alues of x for which f(x) = g(x). 6 The function f is defined as f(x ) = x2 βˆ’ 2x + 2, x ∈ ℝ . a Write f(x ) in the form (x + p)2 + q, where p and q are constants to be found. (2 marks) b Hence, or otherwise, e xplain why f(x) > 0 for all values of x, and find the minimum value of f(x). (1 mark) 7 Find all roots of the following functions: a f(x) = x6 + 9x3 + 8 b g(x) = x4 βˆ’ 12x2 + 32 c h(x) = 27x6 + 26x3 βˆ’ 1 d j(x) = 32x10 βˆ’ 33x5 + 1 e k(x) = x βˆ’ 7 βˆšβ€―__ x + 10 f m(x) = 2 x 2 _ 3 + 2 x 1 _ 3 βˆ’ 12 8 The function f is defined as f(x ) = 32x βˆ’ 28(3x) + 27, x ∈ ℝ . a Write f(x ) in the form (3x βˆ’ a)(3x βˆ’ b), where a and b are real constants. (2 marks) b Hence find the two roots of f(x). (2 marks)E The function in par t b has four roots.Hint E/P Consider f( x) as a function of a function.Problem-solving 2.4 Quadratic graphs When f(x) = ax2 + bx + c, the graph of y = f(x) has a curved shape called a parabola. You can sketch a quadratic graph by identifying key features. The coefficient of x2 determines the overall shape of the graph. When a is positive the parabola will have this shape: When a is negative the parabola will have this shape: y x Oy x O1 The graph crosses the y-axis when x = 0. The y-coordinate is equal to c. 3 Quadratic graphs have one turning point. This can be a minimum or a maximum. Sinc eΒ a parabola is symmetrical, the turning point and line of symmetry are half-way between the two roots. 2 The graph crosses the x-axis when y = 0. The x-c oordinates are roots of the function f(x). 11 2 2 2 2 33 β–  You can find the coordinates of the turning point of a quadr atic graph by completing the square. If f(x) = a(x + p)2 + q, the graph of y = f(x) has a turning point at (βˆ’ p, q). The graph of y = a (x + p )2 + q is a translation of the graph of y = ax2 by ( βˆ’p q ) . β†’ Section 4.5Links
[ 0.010665295645594597, 0.0990675538778305, -0.0009615758899599314, 0.0062354570254683495, -0.055398549884557724, 0.11538945138454437, 0.014974798075854778, -0.0245650764554739, -0.03978198394179344, 0.008517695590853691, 0.00008024739508982748, -0.05250926315784454, -0.02854674495756626, -0.058282751590013504, 0.08243124186992645, -0.04158555716276169, -0.039552073925733566, 0.001369082136079669, -0.09440642595291138, 0.022613124921917915, 0.034985896199941635, -0.04436487704515457, -0.07825424522161484, -0.1135011613368988, 0.10786943882703781, -0.00026015398907475173, 0.016512351110577583, 0.11350030452013016, -0.006351151969283819, -0.024720337241888046, 0.026765184476971626, 0.02079702727496624, 0.03452384099364281, -0.07394883036613464, 0.06069294735789299, 0.046354737132787704, -0.05145507678389549, 0.028139635920524597, 0.08088421821594238, -0.010220503434538841, -0.037023380398750305, 0.00928258802741766, 0.00946350209414959, -0.06923943012952805, 0.07262510806322098, -0.0198034830391407, 0.023585688322782516, 0.013859536498785019, 0.036416541785001755, 0.00378375593572855, 0.00630585104227066, 0.08720226585865021, -0.06618218123912811, 0.09131158143281937, 0.03783633932471275, -0.0797698125243187, 0.04266257956624031, 0.012229422107338905, 0.031230606138706207, 0.030348442494869232, -0.06479942053556442, 0.049441516399383545, 0.03168211132287979, 0.10223155468702316, -0.02067355066537857, 0.010164482519030571, -0.0721009373664856, -0.0481606125831604, -0.0029190450441092253, 0.03251511603593826, -0.05578707531094551, 0.0874028354883194, -0.05615933984518051, -0.04093780741095543, -0.040201544761657715, 0.009801149368286133, -0.019770033657550812, -0.014039627276360989, -0.024672525003552437, 0.017034294083714485, 0.027822785079479218, -0.006571450270712376, 0.05734192952513695, 0.09185615181922913, -0.027426421642303467, 0.04166237264871597, 0.047626521438360214, 0.03779743239283562, 0.044458240270614624, -0.00021126429783180356, -0.012174921110272408, 0.02687344141304493, -0.002431647852063179, -0.08630852401256561, 0.03801177069544792, -0.061773426830768585, 0.03211282566189766, -0.03564971312880516, 0.021365342661738396, 0.0861712396144867, 0.0391542911529541, 0.026254979893565178, 0.04792044311761856, 0.0844026654958725, -0.015322008170187473, 0.02183588035404682, 0.04261334612965584, -0.07838787883520126, 0.015844734385609627, -0.01799003966152668, 0.006666970904916525, -0.02832985110580921, -0.010978873819112778, 0.031408075243234634, 0.10548709332942963, -0.048851363360881805, -0.003601467004045844, 0.01361805573105812, 0.021808451041579247, -0.06972522288560867, 0.0346047580242157, -0.10804061591625214, 0.041238583624362946, -0.033112168312072754, -0.008855171501636505, -0.05333034321665764, 0.025438988581299782, -0.0011065982980653644, -0.06573138386011124, -0.042529571801424026, 0.023887841030955315, -0.038122765719890594, -0.029559781774878502, -0.060789406299591064, 0.0112835131585598, 0.014232492074370384, -0.1357189416885376, 0.02869207039475441, -0.025239596143364906, 0.02761371061205864, 0.03792084753513336, 0.08485084772109985, 0.06189078092575073, 0.005554371979087591, 0.05003936216235161, 0.01442298386245966, -0.05748842656612396, -0.022460568696260452, -0.039967283606529236, -0.022815456613898277, -0.001558785093948245, -0.021809615194797516, 0.021502196788787842, 0.1013227328658104, 0.013867650181055069, -0.060606442391872406, -0.07088947296142578, -0.02363373339176178, -0.009001984260976315, -0.04018598794937134, -0.08624628186225891, 0.01787496916949749, -0.08208061754703522, 0.099190853536129, 0.02415647730231285, 0.08228699117898941, 0.05164829269051552, 0.03582671284675598, -0.013032726012170315, -0.01813516393303871, 0.011238240636885166, 0.00726698525249958, -0.01856897957623005, -0.017259923741221428, 0.005341488867998123, -0.010256893001496792, 0.05711090937256813, 0.01375493686646223, -0.0368703193962574, 0.06489672511816025, 0.07701239734888077, -0.009716549888253212, -0.007824626751244068, -0.0516546294093132, 0.02521614357829094, 0.004296422004699707, -0.0473870225250721, 0.01366458460688591, -0.002243937226012349, -0.014114194549620152, 0.04415527358651161, -0.0810776948928833, 0.03468942642211914, 0.03342472389340401, -0.11606351286172867, 0.007192512974143028, -0.029230447486042976, 0.0836334079504013, -0.0545651912689209, 0.028288746252655983, 0.08236140757799149, -0.016054300591349602, 0.07373987883329391, -0.06071953475475311, -0.086883544921875, -0.04406490549445152, -0.1006409227848053, -0.016857478767633438, -0.039073437452316284, 0.02913513034582138, -0.0706799253821373, 0.036939121782779694, -0.05867701396346092, -0.06247550621628761, 0.055060192942619324, -0.0210503488779068, 0.005458883009850979, -0.06562851369380951, -0.14511217176914215, 0.002519579604268074, -0.04160851240158081, -0.03408817574381828, 0.05816138535737991, -3.0152219883858633e-33, -0.05334964394569397, -0.0038471450097858906, -0.0829220861196518, 0.0022171013988554478, 0.013642101548612118, -0.001529291970655322, 0.015029223635792732, -0.0936756581068039, 0.08071433007717133, 0.09458185732364655, 0.08302043378353119, 0.01576993800699711, -0.0751512199640274, 0.056091345846652985, 0.023596879094839096, 0.013766007497906685, -0.0329173319041729, -0.023398656398057938, -0.07577616721391678, -0.021452771499753, 0.0951775535941124, 0.0492141954600811, -0.05934158340096474, -0.02838255651295185, -0.01568402349948883, 0.052261050790548325, 0.08123499900102615, -0.07363999634981155, 0.039264362305402756, 0.08011974394321442, -0.015063634142279625, 0.03067472018301487, 0.0609915591776371, 0.06638213992118835, -0.02137700282037258, -0.031760405749082565, 0.06457824259996414, 0.03106161206960678, -0.04028357192873955, -0.05402417853474617, 0.09939854592084885, 0.033453866839408875, -0.004531078971922398, -0.002863198285922408, 0.05388690158724785, 0.007935832254588604, 0.04845369607210159, 0.026847263798117638, -0.009306825697422028, 0.05252887308597565, -0.049487922340631485, -0.08679934591054916, -0.018971145153045654, 0.020349806174635887, 0.06719236820936203, -0.004890242591500282, 0.04533848911523819, -0.06037706136703491, 0.061088595539331436, -0.04130854830145836, -0.04351939260959625, -0.03375593572854996, 0.02214409038424492, 0.04965904727578163, -0.09893254935741425, -0.007742017041891813, -0.004820769187062979, -0.0030167843215167522, 0.03754011541604996, 0.0069734794087708, 0.032513003796339035, -0.03261955454945564, 0.016080409288406372, -0.10693500190973282, -0.11783306300640106, 0.07977746427059174, -0.07041045278310776, 0.060587070882320404, 0.012858342379331589, -0.02846365235745907, 0.019291214644908905, 0.0065917205065488815, -0.0006584660732187331, 0.02918967790901661, -0.1486702263355255, 0.045222796499729156, 0.0375649556517601, 0.03082769550383091, 0.0798281654715538, -0.04080758988857269, -0.056905850768089294, 0.08867116272449493, -0.0243659820407629, -0.032838236540555954, 0.01311696507036686, 7.029907607747995e-32, -0.047294240444898605, -0.02767203189432621, -0.06849642097949982, -0.01363386306911707, 0.016279807314276695, -0.03769936040043831, -0.012237467803061008, -0.0397755466401577, 0.016875585541129112, -0.010090958327054977, 0.024795180186629295, 0.03238433972001076, -0.06401239335536957, -0.03146053105592728, 0.023563144728541374, -0.03796663135290146, -0.029944945126771927, 0.019290218129754066, -0.004006647504866123, -0.0477968230843544, -0.06332182884216309, 0.029210438951849937, -0.09998588263988495, 0.06219801679253578, -0.003874291433021426, 0.01766868866980076, -0.03936074301600456, -0.05330738425254822, -0.027803482487797737, -0.047011494636535645, 0.040802787989377975, 0.04655393585562706, -0.06679316610097885, -0.06516572833061218, 0.04235917329788208, 0.037757255136966705, -0.021976446732878685, -0.008957858197391033, 0.014481323771178722, 0.012424103915691376, -0.05149058252573013, -0.07947277277708054, -0.010451067239046097, 0.0057595293037593365, -0.050763797014951706, -0.023254796862602234, 0.04429289326071739, -0.08124254643917084, 0.06408300250768661, -0.07271097600460052, -0.04076169431209564, 0.017413051798939705, -0.029643477872014046, -0.06703359633684158, -0.024423236027359962, 0.0074807885102927685, -0.029767949134111404, 0.07932029664516449, 0.03634646162390709, -0.05209541693329811, -0.09344704449176788, 0.12264671176671982, -0.009097267873585224, -0.048795368522405624 ]
28 Chapter 2 As a = 1 is positive, the graph has a shape and a minimum point. When x = 0, y = 4, so the graph crosses the y-axis at (0, 4). When y = 0, x2 βˆ’ 5 x + 4 = 0 (x βˆ’ 1)( x βˆ’ 4) = 0 x = 1 or x = 4, so the graph crosses the x-axis at (1, 0) and (4, 0). Completing the square: x 2 βˆ’ 5 x + 4 = (x βˆ’ 5 _ 2 ) 2 βˆ’ 25 __ 4 + 4 = (x βˆ’ 5 _ 2 ) 2 βˆ’ 9 _ 4 So th e minimum point has coordinates ( 5 _ 2 , βˆ’ 9 _ 4 ) . Alternatively, the minimum occurs when x is half-way between 1 and 4, so x = 1 + 4 _______ 2 = 5 _ 2 y = ( 5 _ 2 ) 2 βˆ’ 5 Γ— ( 5 _ 2 ) + 4 = βˆ’ 9 _ 4 so th e minimum has coordinates ( 5 _ 2 , βˆ’ 9 _ 4 ) . The sketch of the graph is: O xy /four.ss01 1 /four.ss01 , –5 294()Use the coefficient of x2 to determine the general shape of the graph. This example factorises, but you may need to use the quadratic formula or complete the square. Complete the square to find the coordinates of the turning point. You could use a graphic calculator or substitute some values to check your sketch. When x = 5, y = 5 2 βˆ’ 5 Γ— 5 + 4 = 4.Sketch the graph of y = x2 βˆ’ 5x + 4, and find the coordinates of its turning point.Example 11 If yo u use symmetry to find the x-coordinate of the minimum point, you need to substitute this value into the equation to find the y-coordinate of the minimum point.Watch out Explore how the graph of y = (x + p )2 + q changes as the values of p and q change using GeoGebra.Online
[ 0.03143851459026337, 0.0633617490530014, -0.02836621180176735, -0.09260756522417068, -0.03586795553565025, 0.06915653496980667, -0.0033093818929046392, 0.0765618309378624, -0.07633975893259048, 0.07838607579469681, 0.07753565907478333, -0.06027836352586746, 0.00949497427791357, 0.04015395790338516, -0.02700657770037651, 0.029212797060608864, -0.0514465868473053, 0.007270483765751123, -0.007627070881426334, -0.05983876436948776, 0.018576206639409065, -0.0764966830611229, -0.00725672347471118, -0.06584181636571884, 0.04581683874130249, -0.10818992555141449, 0.0214841291308403, -0.09069361537694931, -0.019599078223109245, -0.03520045056939125, 0.012313131242990494, -0.02898765727877617, 0.01506554801017046, -0.010888345539569855, 0.038438644260168076, 0.01124107837677002, 0.06469232589006424, 0.016773154959082603, 0.078895702958107, 0.00979881826788187, -0.008907235227525234, 0.019512677565217018, -0.08075340837240219, 0.003467704402282834, -0.012740052305161953, -0.032981518656015396, -0.042543523013591766, -0.05597629398107529, 0.07171551138162613, -0.02978605404496193, 0.023510608822107315, 0.010871362872421741, 0.014409665949642658, 0.02634553797543049, -0.058381181210279465, 0.015131481923162937, 0.01483877468854189, -0.01243260595947504, 0.004030903801321983, 0.11799154430627823, 0.06923341751098633, 0.0027673672884702682, -0.07766386866569519, 0.0479850210249424, 0.03539334982633591, 0.03490397706627846, 0.08220785111188889, -0.039491090923547745, -0.00003313180786790326, 0.06830842047929764, -0.09340637922286987, -0.05053718388080597, 0.013797776773571968, -0.07560370117425919, 0.022771663963794708, -0.010586747899651527, 0.021807268261909485, 0.03467787057161331, 0.02463757060468197, -0.04052223265171051, -0.046062298119068146, 0.050043847411870956, 0.06087872385978699, 0.03874947130680084, -0.002074739895761013, -0.0198445376008749, 0.07200776785612106, -0.0382583886384964, -0.02600683830678463, -0.0014629432698711753, 0.03978459909558296, 0.004183493554592133, -0.07109653204679489, -0.018920961767435074, 0.03319101780653, -0.19309896230697632, 0.0719536766409874, -0.05463078245520592, 0.0023750897962599993, 0.10106833279132843, -0.04860461503267288, 0.05319838225841522, 0.046108976006507874, 0.02645621821284294, -0.039282724261283875, 0.02694152109324932, 0.0787321999669075, -0.04325859993696213, -0.02412310615181923, -0.09477660804986954, -0.016111580654978752, -0.08710932731628418, 0.03358937427401543, 0.11020559072494507, 0.08478370308876038, -0.04896582290530205, 0.04066600650548935, -0.04543057456612587, -0.004153755027800798, -0.07764890789985657, 0.06848760694265366, -0.036776233464479446, 0.0029476864729076624, -0.023919282481074333, -0.04509347677230835, -0.008646998554468155, -0.028689032420516014, 0.040052663534879684, 0.013006621971726418, -0.09826532751321793, 0.06887249648571014, -0.09982959181070328, -0.021924346685409546, -0.031920045614242554, -0.047661762684583664, -0.04576684162020683, -0.040025003254413605, 0.10626058280467987, -0.07687077671289444, -0.08550934493541718, -0.09034457802772522, 0.04813944175839424, 0.03605194762349129, -0.028106529265642166, 0.01736041158437729, -0.022523412480950356, -0.028793003410100937, -0.010493047535419464, 0.023391500115394592, 0.044307783246040344, 0.02324763871729374, -0.03435225784778595, 0.006783179473131895, 0.07695650309324265, 0.01489103864878416, -0.040679242461919785, 0.008027277886867523, 0.019756415858864784, 0.031209494918584824, -0.05895690247416496, -0.04361819848418236, 0.01152061764150858, -0.011200439184904099, -0.0006700627272948623, 0.012366979382932186, 0.0217796191573143, -0.007788476534187794, 0.026687223464250565, 0.07922159135341644, -0.02427198551595211, 0.005873309448361397, -0.03640676289796829, -0.015613396652042866, 0.09212274849414825, -0.010931069031357765, 0.04488804191350937, 0.09923700243234634, 0.0905739888548851, -0.003215686185285449, 0.046203404664993286, 0.02399132028222084, -0.05817472189664841, 0.00042684373329393566, -0.0022356745321303606, 0.05783320963382721, -0.03296148031949997, -0.034816496074199677, -0.029791323468089104, 0.019773690029978752, -0.0037613497115671635, 0.010963181033730507, -0.015508209355175495, 0.0030585136264562607, 0.07703584432601929, -0.15763626992702484, -0.029437458142638206, 0.08730559796094894, 0.004400565288960934, -0.0664738118648529, 0.04170835018157959, 0.039568137377500534, -0.034626442939043045, 0.09629058837890625, 0.05296444520354271, -0.004464165307581425, -0.058750078082084656, -0.006669104564934969, -0.07347467541694641, -0.0630556046962738, 0.019284730777144432, -0.009143976494669914, -0.010017892345786095, -0.06644156575202942, -0.05091208964586258, 0.020137624815106392, -0.0252617709338665, 0.049328941851854324, -0.042369645088911057, -0.10796793550252914, -0.05810996890068054, -0.05585765838623047, 0.06425826996564865, 0.0027650166302919388, 4.202822094311697e-33, -0.001965971663594246, -0.002025587484240532, -0.03592800348997116, -0.06964574009180069, -0.00400262838229537, -0.04046538472175598, 0.07765085250139236, -0.023315835744142532, 0.03464611992239952, 0.16941846907138824, -0.02845669724047184, 0.011407570913434029, -0.03717939555644989, 0.0307648703455925, -0.03316311538219452, 0.017676811665296555, 0.011269591748714447, 0.04382818937301636, -0.004498278722167015, -0.07312364131212234, 0.060121309012174606, 0.020248573273420334, 0.024585267528891563, -0.027111362665891647, 0.06278865039348602, 0.05012359470129013, 0.05113450065255165, -0.043432123959064484, -0.004228026606142521, 0.017475804314017296, -0.06580964475870132, 0.023984946310520172, 0.01459216233342886, 0.021526772528886795, 0.03908809274435043, -0.0038481643423438072, 0.00950479507446289, -0.10086261481046677, 0.02188855968415737, -0.016590185463428497, 0.026909682899713516, 0.010569295845925808, 0.0873490646481514, 0.030566586181521416, 0.018871065229177475, 0.07653047889471054, 0.04653814807534218, 0.05023420229554176, 0.0014546883758157492, -0.00687152286991477, -0.028888309374451637, 0.018563803285360336, 0.13123314082622528, -0.01568698324263096, 0.03556673973798752, -0.014252937398850918, -0.010923923924565315, -0.03272515907883644, -0.007407107390463352, 0.021573740988969803, -0.010815909132361412, -0.05905533954501152, -0.034202076494693756, 0.05403531715273857, -0.008430957794189453, -0.04886145517230034, 0.021592820063233376, -0.03673773258924484, 0.06862663477659225, 0.01745530404150486, -0.07390926778316498, 0.04452834650874138, 0.008455662988126278, -0.051744621247053146, -0.05180865526199341, -0.04503229260444641, -0.0639721229672432, 0.015465275384485722, 0.07400064915418625, -0.055713485926389694, -0.12750989198684692, 0.06925739347934723, -0.024903293699026108, -0.046306315809488297, -0.003847050480544567, -0.012735109776258469, 0.036637965589761734, 0.03323494270443916, 0.1381952315568924, 0.03757888451218605, 0.0018427520990371704, -0.04712368920445442, -0.06232481449842453, 0.034332387149333954, -0.013294233940541744, 6.851498128146293e-32, -0.028727786615490913, -0.02633601427078247, -0.012091840617358685, 0.021145209670066833, 0.02710849419236183, 0.030176065862178802, 0.06525111198425293, -0.009460094384849072, -0.02602141909301281, -0.012360048480331898, 0.05044619366526604, 0.07681173086166382, -0.11956287920475006, 0.08424734324216843, -0.09834276884794235, -0.04484114795923233, -0.03718443959951401, -0.06664517521858215, -0.06461472064256668, -0.022033007815480232, 0.01117949839681387, -0.049364157021045685, -0.10203222185373306, -0.04169852286577225, 0.0035909328144043684, 0.02813614532351494, -0.05837531387805939, -0.018702547997236252, 0.05793043226003647, -0.02732187695801258, -0.020431077107787132, -0.013345817103981972, -0.004490492399781942, -0.002283351728692651, -0.013674602843821049, -0.06665073335170746, -0.020200438797473907, 0.05990254878997803, -0.022496772930026054, -0.02013048715889454, -0.0403580479323864, -0.0356031097471714, 0.00007140928209992126, 0.0011749223340302706, -0.034238170832395554, 0.008091957308351994, 0.053771715611219406, -0.02314620278775692, -0.007186868693679571, 0.015071657486259937, 0.028654415160417557, 0.07416696101427078, 0.11965636163949966, 0.0875590592622757, 0.038386519998311996, -0.07821027934551239, -0.009003604762256145, -0.013845750130712986, -0.021714283153414726, 0.003928611520677805, -0.06231561675667763, 0.11279404908418655, -0.06832746416330338, 0.031548164784908295 ]
29Quadratics As a = βˆ’ 2 is negative, the graph has a shape and a maximum point. When x = 0, y = βˆ’ 3, so the graph crosses the y -axis at (0, βˆ’ 3). When y = 0,βˆ’2x 2 + 4x βˆ’ 3 = 0 Using the quadratic formula, x = βˆ’4 Β± √ _____________ 4 2 βˆ’ 4 (βˆ’2) (βˆ’3) ____________________ 2 Γ— (βˆ’2) x = βˆ’4 Β± √ ____ βˆ’8 __________ βˆ’4 The re are no real solutions, so the graph does not cross the x -axis. Completing the square: βˆ’2x2 + 4x βˆ’ 3 = βˆ’2(x2 βˆ’ 2x) βˆ’ 3 = βˆ’2((x βˆ’ 1)2 βˆ’ 1) βˆ’ 3 = βˆ’2(x βˆ’ 1)2 + 2 βˆ’ 3 = βˆ’2(x βˆ’ 1)2 βˆ’ 1 So the maximum point has coordinates (1, βˆ’1). The line of symmetry is vertical and goes through the maximum point. It has the equation x = 1. O xy (1, –1) –3a = βˆ’2, b = 4 and c = βˆ’3Sketch the graph of y = 4x βˆ’ 2x2 βˆ’ 3. Find the coordinates of its turning point and write down the equation of its line of symmetry.Example 12 A ske tch graph does not need to be plotted exactly or drawn to scale. However you should:● dra w a smooth curve by hand ● ide ntify any relevant key points (such as intercepts and turning points) ● lab el your axes.Watch outIt’s easier to see that a , 0 if you write the equation in the form y = βˆ’2x 2 + 4x βˆ’ 3. You would need to square root a negative number to evaluate this expression. Therefore this equation has no real solutions. The coefficient of x2 is βˆ’2 so take out a factor of βˆ’ 2
[ 0.08585786819458008, 0.020747842267155647, -0.005412574391812086, -0.05917303264141083, -0.07698357850313187, 0.029789339751005173, 0.004894026089459658, 0.055436842143535614, -0.1274033486843109, 0.03615638613700867, 0.05059301108121872, -0.07606087625026703, -0.012585122138261795, 0.02288830280303955, 0.011432381346821785, 0.020809881389141083, -0.03129007667303085, 0.07209262996912003, -0.04158734530210495, -0.005355534143745899, 0.030597170814871788, -0.1388261467218399, 0.044918596744537354, -0.09341809153556824, 0.09477990865707397, -0.0574367381632328, -0.0008528124890290201, 0.012558931484818459, -0.0227789506316185, 0.06691592186689377, -0.04265032708644867, -0.030511097982525826, -0.007490914314985275, -0.07505976408720016, 0.07959384471178055, 0.00222486793063581, 0.039788320660591125, 0.01861804910004139, 0.030230358242988586, -0.03680678829550743, -0.010759076103568077, 0.020311323925852776, -0.00937694776803255, -0.03871816396713257, 0.06413687765598297, -0.137508824467659, -0.019662579521536827, -0.03121340274810791, 0.12526708841323853, 0.0038306654896587133, 0.07528427243232727, 0.11016856878995895, -0.009860447607934475, 0.08994139730930328, -0.024011103436350822, -0.010308068245649338, -0.013559387996792793, -0.011642780154943466, -0.021639801561832428, 0.0055405921302735806, 0.06405486166477203, 0.05638720467686653, 0.004903736524283886, 0.06757217645645142, 0.024981413036584854, 0.006634566001594067, -0.029837455600500107, -0.06582508981227875, -0.0010827871738001704, 0.05969277396798134, 0.027644317597150803, -0.018981212750077248, 0.017402097582817078, 0.010248093865811825, -0.032326839864254, -0.0042231460101902485, 0.018573755398392677, 0.06185419112443924, -0.016237959265708923, -0.02672261744737625, -0.02487206645309925, 0.04315272718667984, 0.11516974121332169, 0.035347919911146164, -0.0011713763233274221, 0.002261156914755702, 0.016788577660918236, -0.05445818230509758, 0.007718772627413273, 0.10243338346481323, -0.005787145346403122, 0.02552889660000801, -0.11241376399993896, -0.03014751337468624, -0.005108600482344627, -0.09795165061950684, 0.06382986903190613, -0.04684579372406006, 0.009684276767075062, 0.07628300786018372, -0.07545196264982224, -0.009249802678823471, -0.015700774267315865, 0.04580438882112503, 0.00989600270986557, -0.06159243360161781, -0.013008812442421913, 0.0008435393683612347, -0.009352446533739567, -0.06535901129245758, -0.05215798318386078, -0.04439923167228699, 0.028162628412246704, 0.04777314141392708, 0.08543693274259567, -0.08297612518072128, -0.007970493286848068, -0.03570833429694176, 0.01760711520910263, -0.017713962122797966, 0.09725674986839294, 0.037090450525283813, 0.0388517864048481, -0.0519217923283577, 0.006080738268792629, 0.1191626489162445, -0.03394903242588043, 0.061905793845653534, -0.0319758765399456, -0.08273212611675262, 0.050686389207839966, -0.0968867763876915, -0.04420400410890579, -0.06571809947490692, -0.043919164687395096, -0.024017857387661934, -0.06868261098861694, 0.11548040807247162, 0.037413883954286575, -0.045619748532772064, -0.03283126279711723, 0.054426927119493484, 0.06267908215522766, 0.002990896347910166, 0.023409642279148102, -0.03978544846177101, -0.07695367187261581, -0.0020594217348843813, 0.017903020605444908, -0.027039803564548492, -0.024049807339906693, -0.03899383917450905, 0.028558487072587013, 0.06601744890213013, -0.01654774136841297, -0.030954333022236824, -0.010740919969975948, -0.018513748422265053, 0.03671855106949806, -0.05004394054412842, -0.030804472044110298, 0.04576153680682182, -0.04694011062383652, 0.012744772247970104, 0.01586749218404293, 0.054852426052093506, -0.060067176818847656, 0.01700134016573429, 0.09949322789907455, 0.007655499968677759, 0.005974187981337309, 0.003990555182099342, -0.07557214796543121, 0.06755131483078003, 0.04653492197394371, 0.05726317688822746, 0.010056893341243267, 0.04201271012425423, -0.003681949805468321, 0.010632113553583622, 0.06366012245416641, -0.04748019576072693, 0.0020489960443228483, 0.0050310054793953896, 0.08679870516061783, -0.0041907308623194695, -0.040951117873191833, -0.04408605024218559, -0.017588583752512932, 0.0033443246502429247, -0.010745236650109291, -0.011523181572556496, -0.03046881966292858, 0.04822363704442978, -0.13298580050468445, -0.004578390158712864, 0.011113302782177925, 0.0013167719589546323, -0.04189793020486832, 0.12263999134302139, 0.08505275100469589, -0.051290519535541534, 0.0542588010430336, -0.01849261485040188, -0.014740586280822754, 0.03625579550862312, -0.001725296606309712, 0.03333880379796028, -0.06308111548423767, 0.0602731928229332, -0.026850173249840736, 0.006714197341352701, 0.01218462735414505, -0.045949146151542664, 0.009516671299934387, -0.018292006105184555, -0.02445436455309391, -0.06930416077375412, -0.14894740283489227, 0.004329126328229904, -0.049185048788785934, 0.030404534190893173, 0.036117106676101685, 4.0150151985907435e-33, 0.04478376358747482, -0.06401816755533218, -0.03563285991549492, -0.009473815560340881, -0.03581715747714043, -0.05332759767770767, 0.09055564552545547, -0.021004466339945793, 0.06042443588376045, 0.08217908442020416, 0.051998816430568695, 0.031276922672986984, -0.10535833239555359, 0.0902499109506607, 0.015874715521931648, 0.014519589953124523, -0.015476781874895096, -0.04906008392572403, -0.060886185616254807, -0.07303778827190399, 0.002021660329774022, 0.009733001701533794, -0.018196333199739456, -0.02482287585735321, 0.026440149173140526, 0.016624603420495987, 0.10110694169998169, -0.028948895633220673, -0.018859991803765297, 0.010773643851280212, -0.013699234463274479, 0.005693783983588219, 0.07068021595478058, 0.0964474081993103, -0.054688047617673874, -0.0008208286599256098, -0.03499361500144005, -0.0539737343788147, -0.033342644572257996, -0.00004128229193156585, 0.04387679696083069, 0.049744728952646255, 0.06870972365140915, 0.0018725832924246788, 0.0069092451594769955, 0.04761943966150284, -0.011195573955774307, 0.07106082886457443, -0.014766723848879337, 0.04475519433617592, -0.041905175894498825, -0.04578183591365814, 0.11404100060462952, 0.03251826763153076, 0.10876958072185516, 0.005719325039535761, -0.02013307996094227, -0.026890845969319344, 0.030582726001739502, -0.022397849708795547, -0.006250130478292704, -0.04537055641412735, -0.035053011029958725, 0.036550313234329224, -0.0033962889574468136, 0.10937516391277313, 0.027211138978600502, -0.07307983189821243, 0.0549747534096241, -0.0019711267668753862, -0.025491835549473763, 0.06524965167045593, -0.05845014005899429, -0.03622432053089142, -0.09482953697443008, -0.05360545590519905, -0.07465182989835739, 0.07437312602996826, 0.04448596388101578, -0.08333061635494232, -0.09138940274715424, 0.0158234890550375, -0.06618744879961014, 0.023584449663758278, -0.049135368317365646, -0.058287039399147034, -0.006465033628046513, 0.010112729854881763, 0.1266806423664093, 0.03758028522133827, 0.02957303635776043, 0.011465057730674744, -0.0898774191737175, 0.0426461398601532, 0.028419071808457375, 4.912663019028555e-32, 0.014796658419072628, -0.0034140339121222496, -0.030011052265763283, 0.01616032049059868, -0.08292167633771896, 0.02487213723361492, 0.013692365027964115, -0.043428875505924225, -0.01585960015654564, -0.039769887924194336, 0.08188962936401367, 0.033553943037986755, -0.07498963922262192, 0.045846715569496155, -0.09418832510709763, 0.01433255523443222, -0.011042354628443718, -0.039188504219055176, 0.0017091479385271668, -0.06986252963542938, -0.02224617637693882, 0.0316770076751709, -0.04826248809695244, -0.003353044157847762, -0.02968265861272812, 0.058167148381471634, 0.010465733706951141, 0.011826702393591404, -0.009417061693966389, -0.06759680062532425, 0.017758769914507866, 0.000512800004798919, -0.027312492951750755, -0.06556867808103561, 0.024769147858023643, -0.01741604320704937, -0.03492994233965874, 0.02071661874651909, -0.026170386001467705, -0.01098996214568615, -0.0038887590635567904, -0.02715875580906868, -0.0347561277449131, -0.022608187049627304, -0.09677693247795105, 0.0218987874686718, -0.015555786900222301, -0.06846702098846436, 0.012359973974525928, 0.033118028193712234, -0.05506208911538124, 0.035590726882219315, 0.11213173717260361, 0.06566839665174484, 0.0233719814568758, -0.05748538672924042, -0.023507630452513695, 0.010065601207315922, 0.019093932583928108, 0.007792573422193527, -0.08174635469913483, 0.10867490619421005, -0.05003799498081207, -0.011688514612615108 ]
30 Chapter 2 1 Sketch the gra phs of the following equations. For each graph, show the coordinates of the point(s) where the graph crosses the coordinate axes, and write down the coordinate of the turning point and the equation of the line of symmetry. a y = x2 βˆ’ 6x + 8 b y = x2 + 2x βˆ’ 15 c y = 25 βˆ’ x2 d y = x2 + 3x + 2 e y = βˆ’x2 + 6x + 7 f y = 2x2 + 4x + 10 g y = 2x2 + 7x βˆ’ 15 h y = 6x2 βˆ’ 19x + 10 i y = 4 βˆ’ 7x βˆ’ 2x2 j y = 0.5x2 + 0.2x + 0.02 2 These sketches are gr aphs of quadratic functions of the form ax2 + bx + c. Find the values of a, b and c for each function. a y x15 5 3y = f(x) b y x10 –2 5y = g(x) c y x –183 –3 y = h(x) d y x –14–1 y = j(x) 3 The graph of y = ax2 + bx + c has a minimum at (5, βˆ’3) and passes through (4, 0). Find the values of a, b and c. (3 marks)P E/PExercise 2F 2.5 The discriminant If you square any real number, the result is greater than or equal to 0. This means that if y is negative, βˆšβ€―__ y cannot be a real number. Look at the quadratic formula: x = βˆ’b Β± βˆšβ€―_______ b 2 βˆ’ 4ac ____________ 2a β–  For the quadratic function f( x) = ax2 + bx + c, the expression b2 βˆ’ 4ac is called the discriminant. The value of the discriminant shows how many roots f( x) has: β€’If b2 βˆ’ 4ac . 0 then f( x) has two distinct real roots. β€’If b2 βˆ’ 4ac = 0 then f( x) has one repeated root. β€’If b2 βˆ’ 4ac , 0 then f( x) has no real roots.Check your answers by substituting values into the function. In part c the graph passes through (0, βˆ’ 18), so h(0) should be βˆ’ 18.Problem-solving If the value under the square root sign is negative, x cannot be a real number and there are no real solutions. If the value under the square root is equal to 0, both solutions will be the same.
[ -0.06113474816083908, 0.04950324818491936, -0.027065442875027657, -0.010381592437624931, -0.04677857831120491, -0.02307600900530815, 0.02153606154024601, 0.03756258264183998, -0.08058635145425797, 0.05030027776956558, 0.03649017587304115, -0.04662029817700386, -0.022744959220290184, -0.013766401447355747, -0.056469354778528214, -0.09546568989753723, -0.05246398225426674, -0.008096099831163883, -0.03152958303689957, 0.025079764425754547, 0.007128439843654633, -0.07646285742521286, -0.03986573964357376, -0.012971181422472, 0.03780858591198921, -0.042440783232450485, 0.040294989943504333, -0.023987922817468643, -0.02487611584365368, -0.01470930501818657, -0.005766674876213074, 0.006907723378390074, -0.011600100435316563, -0.04310416057705879, 0.07254455238580704, 0.0314917117357254, -0.009469947777688503, -0.040355514734983444, 0.046693090349435806, -0.010504278354346752, 0.02395244874060154, 0.06167567893862724, -0.01455721165984869, -0.007532677613198757, 0.060386259108781815, 0.012072158046066761, -0.0367683544754982, 0.045865245163440704, 0.01009660679847002, -0.01438592653721571, 0.014971219003200531, -0.00280798994936049, -0.044600486755371094, 0.04441868141293526, 0.0007434819126501679, 0.02319771610200405, 0.05117852985858917, 0.04816196486353874, 0.021510275080800056, 0.06678353995084763, 0.04178331419825554, 0.0023644650354981422, -0.016282128170132637, 0.0677969828248024, -0.010707569308578968, 0.017925303429365158, 0.07751762121915817, -0.08277460187673569, -0.017070891335606575, 0.019915718585252762, -0.12397200614213943, 0.013902834616601467, -0.02254996821284294, -0.06894278526306152, 0.07375293225049973, 0.003940991126000881, 0.0551450252532959, -0.03615957126021385, -0.010391458868980408, -0.05632437393069267, 0.023726867511868477, -0.030983146280050278, 0.10240219533443451, 0.03540245071053505, 0.05447093024849892, 0.008318749256432056, -0.04786783829331398, -0.10012978315353394, 0.044677168130874634, 0.005585954524576664, 0.04582744091749191, 0.02997015044093132, -0.04572677984833717, -0.05537242814898491, 0.023515425622463226, -0.052849337458610535, 0.027484511956572533, -0.04527606442570686, 0.054242685437202454, 0.09576832503080368, -0.04394232854247093, 0.06784170120954514, 0.04902989789843559, -0.028966257348656654, 0.03402150049805641, -0.06604210287332535, 0.05009669065475464, -0.06683007627725601, 0.04051942750811577, -0.025133710354566574, -0.005532579030841589, -0.08940844982862473, 0.06937139481306076, 0.05174674838781357, 0.03255995362997055, -0.06658857315778732, 0.06852617859840393, 0.047163672745227814, -0.025492912158370018, -0.041035521775484085, 0.06949874758720398, -0.10677149891853333, -0.008708261884748936, -0.062273602932691574, -0.04062780365347862, -0.07166092097759247, -0.078255794942379, 0.024540403857827187, -0.005785125307738781, 0.027402374893426895, 0.024577954784035683, -0.06357541680335999, -0.06665036082267761, -0.021809479221701622, -0.06042703241109848, -0.0902717262506485, -0.06718065589666367, 0.03322480991482735, -0.0065680998377501965, -0.033803679049015045, -0.0011251881951466203, 0.10902630537748337, -0.06574273109436035, 0.047662392258644104, -0.010993911884725094, 0.010614914819598198, -0.04783521592617035, -0.01286116149276495, -0.008750648237764835, -0.012819760479032993, 0.01903543993830681, 0.012765499763190746, 0.005866377614438534, 0.051080767065286636, -0.02912568487226963, 0.04109238460659981, -0.06344740092754364, -0.031270261853933334, 0.04048382118344307, 0.017560068517923355, -0.04389570280909538, 0.06790176779031754, -0.0316796638071537, 0.011196678504347801, 0.0658934935927391, 0.014963777735829353, 0.06813713163137436, 0.05146988481283188, -0.012123802676796913, 0.08028668910264969, 0.05747314915060997, -0.03438567370176315, 0.0323016420006752, 0.08129853010177612, 0.058486323803663254, 0.01401938870549202, 0.12358076870441437, 0.037783630192279816, -0.03363092988729477, 0.019961604848504066, 0.032161857932806015, -0.06722718477249146, -0.009730970486998558, 0.02721455506980419, -0.006550850346684456, -0.033127687871456146, -0.07382475584745407, 0.062210939824581146, -0.0320829413831234, 0.09922393411397934, -0.0057047889567911625, -0.018476856872439384, -0.031987257301807404, 0.0889105498790741, -0.10668747872114182, -0.05226413160562515, 0.03410499542951584, 0.03642816096544266, -0.06523200124502182, -0.023026039823889732, 0.032427214086055756, 0.04903772845864296, 0.014170724898576736, 0.034990344196558, 0.05501425266265869, 0.027738073840737343, -0.03851944953203201, 0.036971352994441986, -0.11244615912437439, -0.022121770307421684, 0.039073675870895386, -0.041863854974508286, -0.08609835058450699, -0.018468579277396202, 0.08321616053581238, -0.09529036283493042, 0.01875031180679798, -0.1308644860982895, -0.11285002529621124, -0.03582253307104111, 0.01674714684486389, 0.03616026043891907, 0.04747378081083298, -2.0759241255781136e-33, 0.02920316904783249, 0.029068754985928535, -0.05750975385308266, -0.02543773129582405, 0.055055391043424606, -0.09196483343839645, 0.06658174097537994, -0.0006619657506234944, 0.07922407239675522, 0.06591764092445374, 0.09827226400375366, 0.010240624658763409, -0.04941995441913605, 0.04225579649209976, 0.07167825102806091, -0.05404597148299217, 0.020673274993896484, 0.07693827152252197, 0.013412993401288986, -0.029168400913476944, -0.06116422638297081, 0.019493073225021362, 0.03694065660238266, 0.016260836273431778, 0.010879219509661198, 0.07164163142442703, 0.01186224166303873, -0.14598335325717926, -0.06261654198169708, 0.013121573254466057, -0.010328561067581177, -0.02911532297730446, -0.02966541051864624, 0.026697786524891853, -0.03517633676528931, -0.08118219673633575, -0.06295754760503769, -0.06692762672901154, -0.08367752283811569, -0.03931835666298866, 0.02177433855831623, 0.04734421521425247, 0.08404946327209473, -0.021969199180603027, -0.043908294290304184, 0.05128313973546028, 0.07465564459562302, 0.042230866849422455, -0.05234667658805847, 0.014005823992192745, -0.02591291069984436, 0.0034354364033788443, 0.007212523836642504, -0.0019018988823518157, 0.050473567098379135, 0.07021638751029968, 0.015930185094475746, 0.04213768243789673, 0.014118161052465439, -0.08459513634443283, -0.015135702677071095, 0.0021746873389929533, 0.031023984774947166, -0.013547218404710293, -0.06141548976302147, -0.11867838352918625, -0.020601222291588783, -0.07318514585494995, 0.05164254829287529, 0.037669986486434937, 0.01742524653673172, 0.07752522081136703, -0.007130746729671955, -0.06225955858826637, -0.04099544882774353, -0.06854885071516037, -0.033908430486917496, 0.0019044751534238458, 0.027423812076449394, -0.07783293724060059, -0.09996136277914047, -0.055768996477127075, -0.004090868402272463, -0.01591482199728489, -0.020258760079741478, -0.04882718250155449, 0.02772463485598564, 0.043932463973760605, 0.16602301597595215, -0.0711553618311882, 0.05304085463285446, -0.017956094816327095, -0.0022567021660506725, 0.00529573205858469, 0.05778871476650238, 9.400389532212256e-32, 0.003855160204693675, -0.0017634264659136534, 0.023635463789105415, 0.048461489379405975, 0.05484110116958618, 0.020496416836977005, 0.05578700453042984, -0.06016271561384201, -0.08841343224048615, -0.05458755046129227, 0.060041576623916626, 0.04578695073723793, -0.0300485547631979, 0.04612080380320549, -0.061857424676418304, 0.02102270908653736, -0.05162867531180382, 0.07113496214151382, -0.0025518445763736963, 0.0016233285423368216, -0.118577741086483, -0.031461890786886215, -0.06264068186283112, 0.052813462913036346, -0.030045175924897194, -0.003667656797915697, 0.03236893564462662, -0.11291951686143875, -0.022502215579152107, -0.017421314492821693, 0.05613631382584572, -0.08461081981658936, 0.02627399004995823, -0.030324142426252365, 0.004190067294985056, -0.03638618811964989, -0.07343287020921707, 0.05203777179121971, 0.004953319672495127, -0.009807245805859566, -0.02723652683198452, 0.04815074801445007, -0.021897917613387108, 0.004079813603311777, -0.06095001474022865, 0.07858101278543472, 0.015055370517075062, -0.04103982448577881, 0.027797289192676544, 0.019990265369415283, -0.07817584276199341, 0.026993650943040848, 0.025555472820997238, -0.09174661338329315, -0.03386016935110092, -0.009762756526470184, -0.02085152268409729, 0.012644749134778976, -0.04037855565547943, 0.006583987735211849, 0.01613841950893402, 0.1203281432390213, -0.04071725532412529, 0.031998809427022934 ]
31Quadratics You can use the discriminant to check the shape of sketch graphs. Below are some graphs of y = f(x) where f(x) = ax2 + bx + c. a . 0 y x O y x O y x O b2 βˆ’ 4ac . 0 b2 βˆ’ 4ac = 0 b2 βˆ’ 4ac , 0 Two distinct real roots One repeated r oot No real roots a , 0 y x O y x O y x O Find the range of values of k for which x2 + 4x + k = 0 has two distinct real solutions.Example 14 x2 + 4x + k = 0 Here a = 1, b = 4 and c = k . For two real solutions, b2 βˆ’ 4 ac . 0 42 βˆ’ 4 Γ— 1 Γ— k . 0 16 βˆ’ 4 k . 0 16 . 4 k 4 . k So k , 4This statement involves an inequality, so your answer will also be an inequality.Find the values of k for which f(x) = x2 + kx + 9 has equal roots.Example 13 x2 + kx + 9 = 0 Here a = 1, b = k and c = 9 For equal roots, b2 βˆ’ 4 ac = 0 k2 βˆ’ 4 Γ— 1 Γ— 9 = 0 k2 βˆ’ 36 = 0 k2 = 36 so k = Β± 6Use the condition given in the question to write a statement about the discriminant.Problem-solving Substitute for a, b and c to get an equation with one unknown. Solve to find the values of k. For any value of k less than 4, the equation will have 2 distinct real solutions. Explore how the value of the di scriminant changes with k using GeoGebra.Online
[ 0.0005855903145857155, 0.00960448570549488, 0.002563233021646738, -0.002069014823064208, -0.04189464822411537, 0.019326893612742424, -0.120516836643219, 0.06300268322229385, -0.11026746034622192, 0.007404150906950235, -0.03229108825325966, -0.08342619240283966, -0.05215401574969292, 0.0336676724255085, -0.0168608445674181, 0.009300574660301208, -0.07191432267427444, 0.05392743647098541, 0.0007809425587765872, -0.0038931500166654587, 0.009010101668536663, -0.09058167040348053, -0.06487173587083817, -0.06461580097675323, 0.08138423413038254, -0.05851614847779274, 0.040025390684604645, 0.007916604168713093, -0.0001964126422535628, -0.01476915180683136, -0.0013599260710179806, 0.0698072612285614, 0.01401728205382824, -0.0615486204624176, 0.07213031500577927, -0.05687858536839485, 0.02245721034705639, 0.07298033684492111, 0.0714183896780014, -0.013966686092317104, -0.04182590916752815, 0.05261661484837532, 0.02775638923048973, 0.020718030631542206, 0.023764345794916153, -0.04113299027085304, -0.03501923382282257, 0.004529450088739395, 0.1129024401307106, 0.01084593404084444, 0.05004067346453667, -0.004673573188483715, -0.06298904865980148, 0.06357993930578232, 0.019681880250573158, 0.04749336466193199, -0.0598280243575573, -0.08515022695064545, 0.024773377925157547, 0.03732632100582123, -0.015068665146827698, 0.04785313829779625, 0.04197760671377182, 0.04152445122599602, 0.04947149381041527, 0.022005606442689896, 0.10348788648843765, -0.050680581480264664, 0.023657500743865967, 0.027855822816491127, -0.003990106750279665, 0.02736942656338215, -0.025167204439640045, -0.029774151742458344, 0.0009425317985005677, 0.023085176944732666, -0.04267289862036705, 0.08032723516225815, -0.0058607966639101505, -0.04031897336244583, -0.10124063491821289, -0.009237085469067097, 0.11989782750606537, -0.004639614373445511, -0.029741128906607628, -0.03703559190034866, 0.05931469798088074, 0.07673672586679459, -0.004034033976495266, 0.002719805808737874, 0.003538690973073244, 0.08928175270557404, -0.05408254265785217, -0.08686513453722, 0.015071950852870941, -0.06474889069795609, 0.08068470656871796, -0.05014082416892052, 0.07290159910917282, 0.04693252220749855, -0.01904335245490074, -0.0274764783680439, 0.03796059638261795, 0.025609763339161873, 0.03864095360040665, 0.018525632098317146, 0.02159663662314415, -0.04314981773495674, -0.03145073726773262, -0.06067943572998047, -0.07250630110502243, -0.04715995490550995, 0.013287577778100967, 0.04056752473115921, 0.0905333012342453, -0.03392033278942108, 0.06242351979017258, -0.01765601523220539, 0.0261493269354105, -0.059127502143383026, 0.04520422965288162, 0.0014736310113221407, -0.007487480528652668, -0.07126931101083755, -0.0054252720437943935, -0.03906014561653137, -0.06763455271720886, 0.004161940887570381, -0.009203653782606125, -0.055138103663921356, 0.0549849197268486, 0.0296404417604208, -0.006239984184503555, -0.049149297177791595, -0.04216181859374046, -0.02903696335852146, -0.00039470879710279405, 0.13012702763080597, -0.06452503800392151, -0.019593385979533195, -0.05279230698943138, 0.054587796330451965, 0.0599253810942173, 0.03598229959607124, 0.025871792808175087, -0.08910661935806274, -0.07679827511310577, -0.019667532294988632, -0.009258871898055077, -0.060315877199172974, 0.018116647377610207, 0.04602837190032005, 0.06237559765577316, 0.16872037947177887, -0.00335642765276134, -0.03512179106473923, -0.0035946157295256853, 0.01105172373354435, 0.004292793571949005, 0.042201898992061615, 0.043299395591020584, 0.0030848579481244087, -0.0244684349745512, 0.006105088163167238, -0.0293632410466671, 0.015739139169454575, -0.016803260892629623, -0.011129132471978664, 0.008004799485206604, -0.08262085169553757, 0.035195522010326385, 0.03045077808201313, 0.055273935198783875, 0.09161730110645294, -0.019429393112659454, 0.006905419752001762, -0.016129145398736, 0.07403059303760529, 0.00787313748151064, 0.010434526950120926, 0.000763667980208993, -0.006350378040224314, -0.047326743602752686, -0.028306176885962486, 0.01121952198445797, -0.034969158470630646, -0.013057962991297245, -0.04722726717591286, -0.03989269956946373, -0.026390302926301956, -0.026681499555706978, -0.029936032369732857, -0.14547288417816162, 0.07578270882368088, -0.14401325583457947, -0.020603878423571587, -0.008489946834743023, -0.02615417167544365, -0.053968001157045364, 0.055037692189216614, 0.021689213812351227, 0.0021350004244595766, 0.011135531589388847, -0.004534492269158363, -0.023200644180178642, 0.062136225402355194, -0.05442620441317558, 0.048123035579919815, -0.05755826458334923, 0.002731597749516368, -0.09055714309215546, -0.031052304431796074, -0.016815511509776115, -0.08801497519016266, -0.010638711974024773, -0.09159142524003983, 0.049862124025821686, -0.006492041517049074, -0.11980011314153671, 0.006484700366854668, -0.03808610513806343, -0.07311085611581802, 0.01576807163655758, -9.198319702317203e-33, 0.0022801628801971674, -0.03554874286055565, -0.02252276800572872, 0.035923343151807785, -0.06814191490411758, -0.005313171073794365, 0.057870715856552124, -0.05261184647679329, 0.09897961467504501, -0.022498084232211113, 0.11499369144439697, 0.04895439371466637, -0.054068803787231445, 0.024377595633268356, -0.021246137097477913, 0.008009890094399452, -0.05609281361103058, 0.012310013175010681, 0.033991970121860504, -0.046348899602890015, 0.06690730899572372, 0.05675438418984413, -0.02488791011273861, -0.04221101477742195, 0.019654622301459312, -0.0012012931983917952, 0.05927165597677231, -0.025074873119592667, -0.06462819129228592, 0.040944166481494904, -0.06137947738170624, -0.010456429794430733, -0.006285142153501511, 0.013342366553843021, -0.021925602108240128, -0.085410475730896, 0.02074335142970085, -0.02868846245110035, 0.055178720504045486, -0.004890533164143562, -0.05148383975028992, 0.053318846970796585, 0.042364753782749176, 0.03913536295294762, 0.036132968962192535, 0.08411695063114166, 0.07515296339988708, 0.016280071809887886, -0.03428121656179428, 0.015497074462473392, 0.012696377001702785, -0.029369600117206573, 0.11263972520828247, 0.02392178773880005, 0.10473272949457169, -0.025592230260372162, -0.028102189302444458, 0.0015913813840597868, -0.0003233138704672456, -0.006979334633797407, -0.04950522258877754, -0.10831111669540405, -0.004914844408631325, 0.06954929977655411, -0.10401492565870285, 0.016117384657263756, -0.0330590084195137, -0.073318712413311, 0.015197623521089554, 0.010476348921656609, 0.025818957015872, 0.02230602130293846, -0.0644053965806961, -0.0028494619764387608, -0.1147749200463295, -0.01477226335555315, -0.021042142063379288, 0.05190865322947502, 0.028180673718452454, -0.042655378580093384, -0.07480677217245102, 0.04676565155386925, 0.012940509244799614, 0.03527233749628067, -0.05176810175180435, 0.053793348371982574, -0.012790692038834095, 0.0782654732465744, 0.01978887803852558, 0.024962028488516808, 0.06305286288261414, 0.039969515055418015, -0.12593482434749603, 0.04660570248961449, 0.06898302584886551, 1.034313482607738e-31, -0.034984201192855835, 0.08156536519527435, -0.0008023866103030741, -0.019475972279906273, 0.005541478283703327, 0.011463621631264687, 0.0319642536342144, -0.036463700234889984, -0.026983866468071938, -0.03976600244641304, 0.051832590252161026, 0.007991787977516651, -0.1041397899389267, 0.01484126877039671, -0.01750214397907257, 0.057192858308553696, -0.01263553649187088, 0.0483412928879261, -0.05922191962599754, -0.05346432700753212, -0.0969465896487236, -0.002981304656714201, -0.023979512974619865, 0.07549910247325897, -0.0484754778444767, 0.05308305099606514, -0.07499511539936066, -0.0719175860285759, -0.04364342242479324, 0.011058702133595943, -0.009560290724039078, 0.014538903720676899, 0.033421777188777924, -0.0400598905980587, 0.07668017596006393, -0.017085302621126175, -0.09650050103664398, 0.02379714883863926, -0.05135180801153183, -0.04547431319952011, 0.006486350204795599, -0.06553234159946442, -0.04328538849949837, -0.0463755838572979, -0.0886232927441597, -0.04430333524942398, 0.0568377822637558, -0.06987938284873962, 0.07542571425437927, 0.060336414724588394, -0.06575283408164978, 0.05937676876783371, -0.009802998043596745, 0.056531574577093124, 0.03708377107977867, -0.0277915857732296, 0.004507995676249266, -0.06919471174478531, -0.018717629835009575, -0.02397821471095085, -0.017466848716139793, 0.10498074442148209, -0.05910303443670273, -0.011143899522721767 ]
32 Chapter 2 1 a Calcula te the value of the discriminant for each of these five functions: i f(x) = x2 + 8x + 3 ii g(x) = 2x2 βˆ’ 3x + 4 iii h(x) = βˆ’x2 + 7x βˆ’ 3 iv j(x) = x2 βˆ’ 8x + 16 v k(x ) = 2x βˆ’ 3x2 βˆ’ 4 b Using your answ ers to part a, match the same five functions to these sketch graphs. i x Oy ii x Oy iii Oy iv x Oy v x Oy 2 Find the values of k for which x2 + 6x + k = 0 has two real solutions. (2 marks) 3 Find the value of t for which 2x2 βˆ’ 3x + t = 0 has exactly one solution. (2 marks) 4 Given tha t the function f(x ) = sx2 + 8x + s has equal roots, find the value of the positive constant s. (2 marks) 5 Find the range of v alues of k for which 3x2 βˆ’ 4x + k = 0 has no real solutions. (2 marks) 6 The function g(x) = x2 + 3px + (14p βˆ’ 3), where p is an integer, has two equal roots. a Find the value of p. (2 marks) b For this va lue of p, solve the equation x2 + 3px + (14p βˆ’ 3) = 0. (2 marks) 7 h(x) = 2x2 + (k + 4)x + k, where k is a real constant. a Find the discriminant of h(x ) in ter ms of k . (3 marks) b Hence or otherwise, pro ve that h(x ) has two distinct real roots for all values of k . (3 marks)E/P E/P E/P E/P E/P E/PExercise 2G 2.6 Modelling with quadratics A mathematical model is a mathematical description of a real-life situation. Mathematical models use the language and tools of mathematics to represent and explore real-life patterns and relationships, and to predict what is going to happen next. Models can be simple or complicated, and their results can be approximate or exact. Sometimes a model is only valid under certain circumstances, or for a limited range of inputs. You will learn more about how models involve simplifications and assumptions in Statistics and Mechanics. Quadratic functions can be used to model and explore a range of practical contexts, including projectile motion.a Prove that, if the values of a and c are given and non-zero, it is always possible to choose a value of b so that f(x) = ax2 + bx + c has distinct real roots. b Is it alway s possible to choose a value of b so that f(x) has equal roots? Explain your answer.ChallengeIf a question part says β€˜hence or otherwise’ it is usually easier to use your answer to the previous question part.Problem-solving
[ 0.0022119900677353144, 0.06606264412403107, -0.009269393049180508, -0.10749517381191254, 0.015220246277749538, 0.07941683381795883, -0.006387798581272364, 0.05260474607348442, -0.09636147320270538, 0.025897622108459473, 0.05179930478334427, -0.06933324784040451, -0.059752628207206726, 0.02417854592204094, -0.05248495936393738, -0.016936490312218666, -0.012824212200939655, 0.05259928107261658, -0.09028606116771698, -0.05522711202502251, 0.02347017638385296, 0.027451198548078537, -0.08773759752511978, -0.103598453104496, 0.0819358304142952, -0.06044714152812958, 0.060527503490448, 0.025561412796378136, -0.009214173071086407, -0.09022253751754761, -0.048240866512060165, 0.00230479147285223, 0.022548042237758636, -0.02726725861430168, 0.01845630072057247, -0.0037512045819312334, 0.0025030956603586674, 0.06094622239470482, 0.09332163631916046, -0.04309453070163727, -0.005783773958683014, 0.011404801160097122, -0.0041715470142662525, 0.06023510545492172, 0.02770310826599598, -0.05601557344198227, -0.035270676016807556, 0.026542119681835175, 0.0025520126800984144, -0.010256475768983364, -0.0062482780776917934, 0.007611454464495182, -0.03745526075363159, 0.04909342899918556, 0.04297387972474098, -0.046514105051755905, 0.02013837732374668, 0.013989988714456558, 0.019028866663575172, 0.05165288224816322, -0.026839042082428932, 0.02177196368575096, -0.009915526956319809, 0.06562826782464981, 0.0038685789331793785, 0.05753330513834953, 0.10101503878831863, -0.04710175096988678, -0.025151820853352547, 0.04251718893647194, -0.07637546211481094, -0.006685805972665548, -0.08137752115726471, -0.06847452372312546, 0.006731588393449783, 0.035708237439394, 0.015530215576291084, -0.011463018134236336, -0.029786977916955948, -0.0253459420055151, -0.022088391706347466, 0.0278167724609375, 0.032037507742643356, 0.07586032897233963, 0.0017353853909298778, -0.015816202387213707, -0.023904601112008095, 0.041064802557229996, 0.01869218610227108, -0.017380105331540108, -0.03294192999601364, 0.02803475596010685, -0.014307432807981968, -0.056497666984796524, -0.012370476499199867, -0.05334791913628578, 0.026611408218741417, -0.0714307427406311, 0.09781099110841751, 0.09430573135614395, -0.018298231065273285, -0.0381552055478096, 0.06986097991466522, 0.062366120517253876, -0.03249315172433853, -0.04809537157416344, 0.03219064697623253, -0.05662096291780472, -0.04641924798488617, -0.11952602118253708, -0.04073786735534668, -0.08092872053384781, -0.002370106987655163, 0.04719963297247887, 0.11157792806625366, -0.007994160987436771, 0.12715335190296173, -0.08321625739336014, 0.012196301482617855, -0.06026254966855049, 0.009614101611077785, -0.0072827422991395, 0.028501277789473534, -0.05120796337723732, -0.0010716236429288983, -0.037604279816150665, -0.027557725086808205, -0.027233600616455078, 0.0034649288281798363, -0.029302233830094337, 0.031128911301493645, -0.00019022983906324953, -0.008172105997800827, -0.051581285893917084, -0.10058484226465225, -0.04689178988337517, -0.07972530275583267, 0.11258683353662491, -0.053722795099020004, 0.03522154316306114, -0.07193303853273392, 0.10969352722167969, 0.016771864145994186, 0.08135028183460236, 0.05076643079519272, -0.06961938738822937, -0.10351329296827316, -0.03462393954396248, 0.0758255124092102, 0.028609471395611763, -0.025390496477484703, 0.019056208431720734, 0.05086443945765495, 0.1460876315832138, 0.02406259998679161, -0.08283264189958572, 0.012328407727181911, -0.03923505172133446, 0.0030150667298585176, -0.038351621478796005, 0.01998639665544033, 0.011556779034435749, 0.05060041323304176, 0.09209245443344116, 0.06919174641370773, 0.02321055717766285, 0.05005236715078354, 0.009527680464088917, -0.017396744340658188, -0.06923808157444, 0.007622553035616875, -0.017615608870983124, 0.0071494909934699535, 0.027345305308699608, 0.031572259962558746, -0.018529901280999184, 0.08645743131637573, 0.07215627282857895, 0.009944590739905834, 0.022358667105436325, 0.053443145006895065, -0.05702263116836548, -0.04355233535170555, 0.018514905124902725, -0.019566256552934647, -0.0035429794806987047, -0.02342209778726101, 0.0160236619412899, -0.04567163810133934, -0.027290811762213707, -0.013059833087027073, -0.07280067354440689, -0.05780281871557236, 0.06381251662969589, -0.10789815336465836, -0.05318464711308479, -0.020511655136942863, -0.05361412838101387, -0.11228450387716293, 0.06692589074373245, 0.09392834454774857, -0.03797699511051178, 0.1146421730518341, 0.01592167466878891, -0.04187377914786339, -0.003938011359423399, -0.1451231837272644, -0.009152228944003582, -0.05507998540997505, 0.04329027235507965, -0.09933912754058838, 0.024324946105480194, -0.08834654092788696, -0.04392533749341965, 0.04961002990603447, -0.061145734041929245, 0.06224944442510605, -0.04408813640475273, -0.08936057984828949, -0.0191950760781765, -0.01205072458833456, -0.07777143269777298, 0.07251689583063126, -1.5018815245244284e-32, -0.032374318689107895, 0.001118660788051784, -0.010875978507101536, -0.02812156453728676, -0.026021480560302734, -0.05856514722108841, 0.06768352538347244, -0.09172894060611725, 0.033476658165454865, 0.020236801356077194, 0.03983504697680473, 0.04342782124876976, -0.06966805458068848, -0.01653123088181019, -0.07007744908332825, 0.013438739813864231, -0.05363733693957329, 0.039314672350883484, 0.008858892135322094, -0.015018409118056297, 0.03220430389046669, 0.05676715448498726, 0.05505193769931793, -0.008481121622025967, -0.01180652529001236, -0.01528196781873703, 0.03474430367350578, -0.09316013008356094, -0.010244970209896564, 0.031168073415756226, -0.007006514351814985, -0.01613800786435604, 0.038381919264793396, 0.021760644391179085, 0.007910300977528095, -0.06906354427337646, -0.01890481822192669, -0.04435232654213905, 0.024034690111875534, -0.0066189635545015335, 0.04961482435464859, 0.02993830293416977, 0.02771412767469883, 0.022746579721570015, 0.026627423241734505, 0.06989046931266785, 0.046277500689029694, -0.021589413285255432, 0.015484443865716457, 0.014566418714821339, -0.008212226442992687, -0.06816648691892624, 0.034312497824430466, 0.01612364687025547, 0.058630697429180145, -0.046234969049692154, 0.06091291457414627, -0.05438840761780739, 0.061278022825717926, 0.007873292081058025, -0.05096428468823433, -0.0489676333963871, -0.08337155729532242, 0.06622451543807983, -0.06984342634677887, -0.10148607194423676, -0.06300202012062073, -0.012957784347236156, 0.04544777050614357, -0.019118426367640495, 0.05877690017223358, -0.002008444629609585, 0.018651966005563736, -0.05174433812499046, -0.0676596462726593, -0.07258811593055725, 0.0023342689964920282, 0.009611339308321476, -0.008222324773669243, -0.019298970699310303, -0.050064440816640854, 0.011621115729212761, 0.03171277791261673, -0.0006232271553017199, -0.020726345479488373, 0.04089002311229706, 0.07091684639453888, 0.09242074191570282, 0.0421452596783638, -0.04308216646313667, 0.0414559468626976, 0.05524776503443718, -0.03573588281869888, -0.053952064365148544, 0.05024069547653198, 1.2234681560703064e-31, -0.07011586427688599, 0.03242427855730057, -0.007550401613116264, 0.053552523255348206, -0.03445884585380554, -0.08849432319402695, -0.027466177940368652, -0.062376972287893295, -0.0337924063205719, -0.004969105124473572, 0.1526649296283722, 0.017261913046240807, -0.05020183324813843, -0.0065839956514537334, 0.014110973104834557, 0.06107715889811516, -0.007321506273001432, 0.03918277472257614, -0.0204253401607275, -0.043087251484394073, -0.10820453613996506, 0.007706061005592346, -0.02958489954471588, 0.03005659580230713, -0.03039540722966194, 0.04210669547319412, -0.0590520016849041, -0.09137682616710663, 0.024771446362137794, 0.009185983799397945, 0.01741994544863701, 0.06583265215158463, 0.03705810755491257, -0.060385432094335556, 0.035525355488061905, 0.019801534712314606, -0.06754831969738007, 0.008715893141925335, -0.0060613201931118965, 0.0018612866988405585, -0.05954489856958389, -0.032171133905649185, -0.004332712385803461, 0.00899647455662489, -0.038926005363464355, -0.05882301926612854, 0.0695502758026123, -0.04370330274105072, 0.04459583759307861, 0.0360523946583271, -0.035067878663539886, 0.0032259339932352304, -0.04713228717446327, -0.028988877311348915, 0.05660488083958626, -0.023063281551003456, 0.007704072631895542, -0.07200922816991806, -0.036616794764995575, -0.06647131592035294, -0.0033609485253691673, 0.07852516323328018, -0.07204211503267288, 0.0024518026039004326 ]
33Quadratics A spear is thrown over level ground from the top of a tower. The height, in metres, of the spear above the ground after t seconds is modelled by the function: h(t) = 12.25 + 14.7t βˆ’ 4.9t2, t > 0 a Interpret the meaning of the constant ter m 12.25 in the model. b After how many seconds does the spear hit the gr ound? c Write h(t ) in the form A βˆ’ B(t βˆ’ C)2, where A, B and C are constants to be found. d Using your answ er to part c or otherwise, find the maximum height of the spear above the ground, and the time at which this maximum height is reached.Example 15 a The tower is 12.25 m tal l, since this is the height at time 0. b Whe n the spear hits the ground, the height is equal to 0. 12.25 + 14.7 t βˆ’ 4.9 t2 = 0 Using the formula, where a = βˆ’ 4.9, b = 14.7 and c = 12.25, t = βˆ’14.7 Β± √ ___________________ 14. 7 2 βˆ’ 4 (βˆ’4.9 ) (12.25 ) _______________________________ (2 Γ— βˆ’4.9) t = βˆ’14.7 Β± √ ______ 456.19 _________________ βˆ’9.8 t = Β βˆ’0.679 or t = 3.68 (to 3 s .f.) As t > 0, t = 3.68 seconds (to 3 s.f.). c 12. 25 + 14.7 t βˆ’ 4.9 t2 = βˆ’4.9(t2 βˆ’ 3 t) + 12.25 = βˆ’4.9(( t βˆ’ 1.5)2 βˆ’ 2.25) + 12.25 = βˆ’4.9(( t βˆ’ 1.5)2 + 11.025 + 12.25) = 23.275 βˆ’ 4.9( t βˆ’ 1.5)2 So A = 23.275, B = 4.9 and C = 1.5. d The m aximum height of the spear is 23.275 metres, 1.5 seconds after the spear is thrown.Give any non-exact numerical answers correct to 3 significant figures unless specified otherwise. Always interpret your answers in the context of the model. t is the time after the spear was thrown so it must be positive.Read the question carefully to work out the meaning of the constant term in the context of the model. Here, t = 0 is the time the spear is thrown.Problem-solving To solve a quadratic, factorise, use the quadratic formula, or complete the square. 4.9(t βˆ’ 1.5)2 must be positive or 0, so h(t ) < 23.275 for all possible values of t . The turning point of the graph of this function would be at (1.5, 23.275). You may find it helpful to draw a sketch of the function when working through modelling questions. Explore the trajectory of the sp ear using GeoGebra.Online
[ 0.08113740384578705, 0.13460774719715118, 0.029531868174672127, -0.028292525559663773, -0.056732237339019775, -0.13310174643993378, -0.0005833124159835279, 0.10582779347896576, -0.03586481511592865, 0.010685348883271217, 0.10464925318956375, -0.029199572280049324, -0.04870618134737015, -0.025464966893196106, -0.032269615679979324, 0.012912515550851822, -0.044976867735385895, -0.01434270292520523, -0.07938745617866516, -0.03223753347992897, -0.0670800730586052, -0.017370473593473434, -0.021370967850089073, 0.05786535516381264, 0.05307100713253021, -0.014557857997715473, -0.004830623045563698, 0.00197434495203197, -0.010452468879520893, -0.01338809635490179, -0.05567442625761032, -0.053333982825279236, 0.0064313821494579315, 0.036186836659908295, -0.007682625204324722, 0.09228190779685974, 0.019082695245742798, 0.05116986855864525, -0.013184458017349243, 0.02879471331834793, -0.06979912519454956, 0.0321061946451664, -0.062059544026851654, 0.007364352699369192, 0.05051153153181076, -0.0031765284948050976, -0.07709135115146637, -0.00692789489403367, -0.04378887638449669, 0.0025620991364121437, 0.035736750811338425, 0.019101466983556747, -0.09976893663406372, 0.026759032160043716, -0.02119631879031658, -0.025799138471484184, 0.056744325906038284, 0.06368844211101532, 0.0705719143152237, -0.025937212631106377, -0.04878581315279007, 0.06640515476465225, -0.007818968035280704, 0.06489422917366028, 0.03833118826150894, 0.03152081370353699, -0.03999227657914162, -0.036903951317071915, 0.01722641848027706, 0.08461020886898041, -0.07075238227844238, 0.06818849593400955, -0.042266104370355606, -0.09283801168203354, 0.02767687290906906, -0.1270149201154709, 0.026426034048199654, -0.0032568846363574266, -0.025551632046699524, 0.03499709069728851, 0.0387350432574749, -0.03158845007419586, -0.06062253937125206, 0.03729843720793724, -0.04022080451250076, 0.04291556403040886, 0.005441131070256233, 0.06530524045228958, -0.013647234067320824, 0.04920833930373192, 0.03366531431674957, -0.023432251065969467, -0.012304609641432762, 0.015440477058291435, -0.04400352016091347, 0.0047035482712090015, 0.011775481514632702, -0.0913778766989708, 0.003947894088923931, 0.14976511895656586, -0.02135043777525425, -0.008036335930228233, -0.03373364731669426, 0.06082536280155182, 0.07344989478588104, -0.004817793611437082, -0.05046355724334717, 0.037334755063056946, -0.058498285710811615, -0.026202546432614326, -0.002316221594810486, 0.007766271475702524, 0.013052438385784626, -0.02667098306119442, 0.05995362997055054, -0.05155373737215996, -0.003829633817076683, -0.1156223937869072, -0.06148248538374901, -0.0871933177113533, 0.05779307708144188, -0.009615445509552956, 0.030902395024895668, -0.05266362801194191, -0.006986954715102911, 0.03571831062436104, 0.033119529485702515, 0.06575722247362137, -0.0778191015124321, 0.028423478826880455, -0.02408306859433651, -0.13413645327091217, -0.0277500431984663, -0.0463009774684906, -0.04205205291509628, 0.013016964308917522, -0.00010915124585153535, 0.11097311973571777, -0.00949896965175867, -0.055218033492565155, -0.09014633297920227, 0.03469885140657425, -0.022122424095869064, -0.06418805569410324, 0.09124337136745453, 0.0404181033372879, -0.045284759253263474, -0.0396253727376461, -0.04095236957073212, 0.041463837027549744, -0.011948484927415848, 0.044255275279283524, 0.07880950719118118, 0.0736905112862587, -0.024933570995926857, -0.01899273507297039, -0.030522499233484268, -0.059473615139722824, -0.06356441974639893, -0.05704442784190178, -0.11167225986719131, -0.009213538840413094, 0.050795912742614746, -0.039733726531267166, 0.07265984266996384, 0.007305417209863663, 0.054205521941185, 0.03214537352323532, -0.0038971961475908756, -0.0004715556278824806, 0.006270217709243298, -0.02999299019575119, -0.08046634495258331, 0.05219326540827751, 0.025413669645786285, 0.040811311453580856, 0.02298811823129654, 0.04421406611800194, 0.043991439044475555, -0.004729293752461672, 0.03500973805785179, -0.03577560558915138, 0.061673786491155624, 0.05547633394598961, -0.002404880942776799, 0.0034380373544991016, -0.015176624990999699, 0.0328071229159832, 0.015140925534069538, 0.012397278100252151, 0.054785553365945816, -0.027661887928843498, -0.0545487105846405, 0.0014506169827654958, -0.05999831110239029, -0.01159914955496788, -0.017322883009910583, 0.05044235289096832, -0.028898146003484726, 0.02631971798837185, 0.04149291664361954, 0.007454757113009691, -0.03625841811299324, 0.03222418203949928, 0.03178489953279495, 0.01050015538930893, -0.003929237835109234, -0.0631546750664711, -0.07087630033493042, 0.03991762176156044, -0.035157520323991776, -0.020442906767129898, -0.0509306900203228, -0.032923758029937744, 0.03199172392487526, -0.05782869830727577, -0.05860642343759537, -0.06783246248960495, -0.03621687367558479, 0.09890613704919815, -0.055539775639772415, -0.039394862949848175, 0.053759340196847916, 8.98014501206871e-33, 0.007349853403866291, 0.09722572565078735, -0.07062245905399323, -0.06851982325315475, 0.029513172805309296, -0.07040566205978394, -0.01309115905314684, -0.05141054838895798, 0.036516111344099045, 0.01906745322048664, -0.0010758517310023308, 0.029371783137321472, -0.062033239752054214, -0.03260419890284538, 0.05116359889507294, -0.11641991883516312, 0.033631760627031326, -0.004343732260167599, -0.02330656535923481, 0.02702031284570694, -0.024255402386188507, -0.020141979679465294, 0.00798838958144188, -0.013206243515014648, -0.013312838040292263, 0.019780214875936508, -0.048668768256902695, -0.06707344204187393, -0.024945681914687157, -0.024662697687745094, -0.05507855489850044, -0.028620118275284767, 0.05526592954993248, 0.0533999539911747, -0.038690660148859024, -0.060948483645915985, 0.0559043362736702, -0.03846392408013344, 0.0048220036551356316, 0.0030017406679689884, 0.11168932914733887, 0.03849833831191063, 0.003506766865029931, 0.023294635117053986, -0.0382063128054142, -0.002515921602025628, -0.042644139379262924, 0.01680293120443821, 0.01414474193006754, 0.01440460979938507, 0.01069556549191475, -0.05473487824201584, 0.0047555421479046345, -0.008568990975618362, 0.11853155493736267, 0.04044663906097412, -0.002991017187014222, -0.1049823984503746, -0.004319746978580952, -0.01350640133023262, 0.029611971229314804, -0.09405534714460373, 0.020040113478899002, 0.07817757874727249, -0.05535966902971268, 0.020173119381070137, -0.009292841888964176, -0.023834815248847008, -0.08462037146091461, 0.0890512615442276, -0.06576220691204071, 0.14457620680332184, -0.001913200132548809, -0.07893386483192444, -0.03754028305411339, -0.08794102817773819, -0.021804949268698692, -0.0177988950163126, 0.047209154814481735, 0.007153165061026812, -0.020841648802161217, 0.04417033493518829, 0.03929198905825615, -0.028948429971933365, -0.10429098457098007, -0.02028386853635311, 0.06167086958885193, -0.026937682181596756, 0.06121402978897095, 0.11728078126907349, 0.10580584406852722, 0.04203960672020912, 0.016598770394921303, -0.02563856728374958, -0.023064615204930305, 7.491407865375176e-32, 0.007577018812298775, 0.05025428161025047, -0.04021125286817551, 0.006157684605568647, 0.018195411190390587, 0.12394031137228012, 0.021110406145453453, -0.05498296767473221, -0.03565531596541405, -0.025329895317554474, 0.050627805292606354, 0.04186501353979111, 0.017195014283061028, 0.020444583147764206, -0.07177358865737915, -0.013174724765121937, -0.06391724199056625, -0.004143138881772757, -0.04649269953370094, -0.005451295990496874, -0.07826496660709381, 0.07305601239204407, -0.03555229678750038, 0.12986169755458832, 0.008024993352591991, 0.060195621103048325, -0.05381942540407181, 0.0433298796415329, -0.024726267904043198, -0.051448047161102295, 0.09723508358001709, 0.018067054450511932, 0.02578551322221756, -0.03035554848611355, -0.009694771841168404, 0.03799276053905487, 0.035987019538879395, 0.0297582745552063, -0.026772834360599518, 0.08509038388729095, -0.04178300127387047, -0.038716476410627365, -0.07202445715665817, 0.07284603267908096, -0.045899808406829834, 0.03565150499343872, 0.0019855850841850042, -0.047991793602705, 0.07135571539402008, 0.0768040344119072, -0.05483494699001312, 0.047292403876781464, 0.013025971129536629, -0.03422122821211815, 0.07762914150953293, 0.06861644238233566, 0.018855826929211617, -0.010389905422925949, -0.04702245816588402, -0.0759224146604538, -0.004731484688818455, 0.02530505508184433, -0.04392585903406143, 0.04455697536468506 ]
34 Chapter 2 1 The diagram sho ws a section of a suspension bridge carrying a road over water. The height of the cables above water level in metres can be modelled by the function h(x)Β =Β 0.000 12x2 + 200, where x is the displacement in metres from the centre of the bridge. a Interpret the meaning of the constant ter m 200 in the model. (1 mark) b Use the model to find the two v alues of x at which the height is 346 m. (3 marks) c Given tha t the towers at each end are 346 m tall, use your ans wer to part b to calculate the length of the bridge to the nearest metre. (1 mark) 2 A car manufacturer uses a mode l to predict the fuel consumption, y miles per gallon (mpg), for a specific model of car travelling at a speed of x mph. y = βˆ’0.01x2 + 0.975x + 16, x . 0 a Use the model to find two speeds a t which the car has a fuel consumption of 32.5 mpg. (3 marks) b Rewrite y in the form A βˆ’ B(x βˆ’ C)2, where A, B and C are constants to be found. (3 marks) c Using your answ er to part b, find the speed at which the car has the greatest fuel efficiency. (1 mark) d Use the model to calcula te the fuel consumption of a car travelling at 120 mph. Comment on the va lidity of using this model for very high speeds. (2 marks) 3 A fertiliser company uses a model to deter mine how the amount of fertiliser used, fΒ kilograms per hectare, affects the grain yield g, measured in tonnes per hectare. g = 6 + 0.03f βˆ’ 0.000 06fΒ 2 a According to the model, how much grain would each hectare yield without any fertiliser? (1 mark) b One farmer currentl y uses 20 kilograms of fertiliser per hectare. How much more fertiliser would he need to use to increase his grain yield by 1 tonne per hectare? (4 marks) 4 A football stadium has 25 000 seats. The f ootball club know from past experience that they will sell only 10 000 tickets if each tick et costs Β£30. They also expect to sell 1000 more tickets every time the price goes down by Β£1. a The number of tick ets sold t can be modelled by the linear equation t = M βˆ’ 1000p, where Β£p is the price of each ticket and M is a constant. Find the value of M. (1 mark)E/P E/P E/P E/PExercise 2H For part a , make sure your answer is in the context of the model. Problem-solving
[ 0.04503989219665527, 0.06857209652662277, -0.0014795016031712294, -0.04027184844017029, -0.06593561172485352, -0.05280234292149544, -0.012304728850722313, 0.10046244412660599, -0.023214293643832207, -0.0041611636988818645, 0.0909179151058197, -0.005397175904363394, 0.021432947367429733, -0.03141961991786957, -0.08564773947000504, 0.0221549104899168, -0.04010157659649849, 0.04510694742202759, -0.07586805522441864, 0.03479834645986557, 0.06793733686208725, 0.007757183630019426, -0.034069035202264786, -0.03932981193065643, 0.04728255793452263, -0.019853539764881134, -0.02370559424161911, 0.05443898215889931, 0.0504729263484478, 0.009580648504197598, -0.06064196303486824, 0.027411293238401413, 0.017312197014689445, 0.045180805027484894, 0.0273716039955616, 0.07651840150356293, 0.06846954673528671, -0.006026190239936113, 0.01758068986237049, -0.02968171052634716, -0.04780546575784683, 0.05502974987030029, -0.11064121872186661, 0.008543020114302635, 0.028215551748871803, 0.044561147689819336, -0.12053575366735458, -0.0575273372232914, 0.056087836623191833, -0.03121514990925789, 0.024624928832054138, 0.05688866227865219, -0.05897108465433121, -0.02740204706788063, -0.0344557985663414, 0.033240269869565964, -0.001383646740578115, 0.021336503326892853, 0.02314041368663311, 0.024450179189443588, 0.03997824713587761, 0.09260667860507965, 0.019462408497929573, 0.031019149348139763, 0.028305010870099068, 0.025477474555373192, -0.0877380520105362, -0.0006203870289027691, 0.012179636396467686, 0.055431123822927475, -0.12360899895429611, -0.0026028642896562815, -0.008018179796636105, -0.09220874309539795, 0.06175285205245018, -0.03401106595993042, 0.013509917072951794, 0.04631989449262619, -0.008806237950921059, -0.014830009080469608, 0.008723522536456585, -0.01107490248978138, -0.05159676447510719, 0.03100472129881382, 0.03261149302124977, 0.015624293126165867, -0.02596447989344597, 0.018921123817563057, -0.02134343795478344, -0.02790287882089615, 0.048169273883104324, -0.0041326843202114105, -0.057513389736413956, -0.023944498971104622, -0.009394613094627857, -0.05214230343699455, 0.03129987418651581, -0.15017761290073395, 0.10448996722698212, 0.14072275161743164, -0.014391937293112278, 0.07837517559528351, 0.029137548059225082, 0.11540699005126953, -0.009769409894943237, 0.03680975362658501, -0.024318987503647804, 0.0641118511557579, 0.0021893351804465055, -0.01933201774954796, -0.03333837166428566, -0.06229999661445618, -0.004149626009166241, 0.03130190074443817, 0.09733950346708298, -0.03212584927678108, -0.012679800391197205, -0.07742658257484436, -0.06806638091802597, -0.04032900929450989, 0.026418637484312057, 0.037343353033065796, 0.034576836973428726, 0.0388333685696125, -0.043773919343948364, -0.04231371358036995, 0.07397260516881943, -0.005375723820179701, -0.04864876717329025, -0.019748574122786522, -0.05891707167029381, -0.02204572595655918, 0.020661499351263046, -0.08779854327440262, -0.025739414617419243, 0.02138868160545826, 0.02844100445508957, 0.05943400412797928, -0.06350168585777283, -0.05184066668152809, 0.00810934603214264, 0.009511054493486881, 0.03056473098695278, -0.08766452223062515, 0.034307822585105896, -0.004574257880449295, -0.12131143361330032, -0.024951374158263206, 0.016185447573661804, 0.015826979652047157, 0.0823490247130394, 0.004164750222116709, 0.05144655331969261, -0.008738111704587936, 0.08222328871488571, -0.04093138873577118, -0.02797458879649639, -0.006135032046586275, -0.08004530519247055, -0.021195849403738976, -0.11220560222864151, 0.0012156739830970764, -0.07232402265071869, 0.02021503634750843, 0.11284179240465164, 0.0057528321631252766, 0.007285742554813623, 0.07210511714220047, -0.019657885655760765, -0.06308819353580475, 0.00419017905369401, 0.014494509436190128, -0.011077436618506908, 0.023215657100081444, 0.035147763788700104, -0.010069615207612514, 0.029275523498654366, 0.07241038978099823, -0.005263013299554586, -0.014013133943080902, -0.008011860772967339, -0.07272147387266159, 0.002274187747389078, -0.05437220633029938, -0.025981102138757706, -0.026714567095041275, -0.03152170777320862, 0.017337100580334663, -0.07608737796545029, 0.05262342095375061, 0.010424233041703701, 0.00371486390940845, 0.025524800643324852, 0.01750815100967884, -0.12228530645370483, -0.005800244398415089, 0.0545642152428627, 0.019268419593572617, -0.08609327673912048, -0.010747207328677177, 0.045229289680719376, 0.04187476634979248, -0.022143185138702393, -0.001786759472452104, -0.06251779943704605, 0.018251650035381317, 0.015083389356732368, -0.029622353613376617, -0.0952502191066742, 0.13971702754497528, -0.022588146850466728, 0.01410841103643179, -0.016349269077181816, -0.10750088095664978, 0.049935538321733475, -0.05008526146411896, -0.006331775337457657, -0.052129682153463364, -0.04881049692630768, 0.026535138487815857, -0.03244052454829216, -0.03604764863848686, 0.068553127348423, 8.283334736104305e-33, -0.026714695617556572, 0.10658302903175354, -0.03500398248434067, -0.11749529093503952, 0.043269526213407516, -0.013849013485014439, 0.010569627396762371, -0.0061779688112437725, 0.07985454797744751, 0.03449637442827225, 0.08136659860610962, 0.03540608286857605, -0.08269938826560974, -0.01002670917659998, -0.02537345699965954, -0.0813581719994545, 0.09273187816143036, -0.04670775309205055, -0.06008906662464142, 0.05798628181219101, 0.006376693956553936, -0.012157998979091644, -0.02115587331354618, 0.041401151567697525, -0.020238516852259636, 0.0008731968118809164, 0.06039763242006302, -0.04110602289438248, -0.0030643376521766186, -0.021267380565404892, -0.08235510438680649, -0.05998583137989044, 0.0620480552315712, 0.09828364849090576, -0.005409460514783859, -0.06676137447357178, 0.05640033259987831, 0.016343768686056137, -0.051246535032987595, -0.08575870841741562, 0.06385911256074905, 0.016476888209581375, 0.027969613671302795, -0.04112767055630684, 0.002941193524748087, 0.023632463067770004, 0.04976664483547211, -0.03778611496090889, -0.03726297244429588, -0.00036226693191565573, -0.0016224196879193187, -0.022130049765110016, 0.07344266772270203, -0.033292364329099655, 0.1106208860874176, -0.014579051174223423, -0.0207054540514946, -0.06359806656837463, -0.016000138595700264, 0.01898370124399662, 0.053638800978660583, -0.06567930430173874, 0.009795751422643661, 0.006586379371583462, -0.015692755579948425, 0.012384088709950447, -0.01895092986524105, -0.0746372789144516, -0.05525313690304756, 0.01933320425450802, -0.032679833471775055, 0.05752750486135483, 0.028765356168150902, -0.020870257169008255, 0.009115169756114483, -0.08820420503616333, 0.018925368785858154, 0.09238393604755402, 0.10152535885572433, -0.03521095961332321, -0.03168496862053871, -0.03605867922306061, 0.07110924273729324, -0.011559024453163147, -0.07484903931617737, -0.05905186012387276, 0.023854941129684448, 0.0383220911026001, 0.16586290299892426, 0.07189919054508209, 0.03560935705900192, 0.016100088134407997, -0.059998489916324615, -0.014947589486837387, -0.033855337649583817, 7.703780315508011e-32, -0.06993120163679123, 0.004871110897511244, -0.054343849420547485, -0.011821790598332882, -0.036032527685165405, 0.07327637076377869, 0.001252829795703292, -0.059077925980091095, -0.05424446985125542, -0.0009369880426675081, 0.07008089125156403, 0.03620341047644615, -0.03557143360376358, 0.04588469862937927, -0.10374606400728226, -0.023163599893450737, -0.058007556945085526, 0.017245832830667496, -0.05318298563361168, -0.01975671388208866, 0.007177742663770914, 0.05641219764947891, 0.006670263130217791, 0.055676333606243134, 0.046550873667001724, -0.024182582274079323, -0.0935545563697815, -0.006141066085547209, 0.0024750938173383474, -0.11318372935056686, 0.08339832723140717, 0.02692224085330963, -0.050259366631507874, -0.025977037847042084, 0.031211793422698975, 0.044199854135513306, -0.02599341981112957, 0.04086396470665932, -0.0271163173019886, 0.07805792987346649, -0.052138544619083405, -0.013448333367705345, -0.029057452455163002, -0.0052392794750630856, 0.027330495417118073, 0.055394239723682404, 0.0029585545416921377, -0.037255167961120605, 0.0589807853102684, 0.027485709637403488, -0.05979803204536438, 0.049469444900751114, 0.08165986090898514, -0.0091962656006217, 0.05443422868847847, -0.013173528015613556, -0.029626060277223587, -0.0003433329111430794, 0.009562538005411625, -0.049722444266080856, -0.03753766417503357, 0.05956588685512543, -0.048116471618413925, -0.037112556397914886 ]
35Quadratics The total revenue, Β£r, can be calculated by multiplying the number of tickets sold by the price of each ticket. This can be written as r = p(M βˆ’ 1000p). b Rearrange r into the f orm A βˆ’ B(p βˆ’ C)2, where A, B and C are constants to be found. (3 marks) c Using your answ er to part b or otherwise, work out how much the football club should charge for each ticket if they want to make the maximum amount of money. (2 marks) 1 Solve the follo wing equations without a calculator. Leave your answers in surd form whereΒ necessary. a y2 + 3y + 2 = 0 b 3x2 + 13x βˆ’ 10 = 0 c 5x2 βˆ’ 10x = 4x + 3 d (2x βˆ’ 5)2 = 7 2 Sketch gra phs of the following equations: a y = x2 + 5x + 4 b y = 2x2 + x βˆ’ 3 c y = 6 βˆ’ 10x βˆ’ 4x2 d y = 15x βˆ’ 2x2 3 f(x) = x2 + 3x βˆ’ 5 and g(x) = 4x + k, where k is a constant. a Given tha t f(3) = g(3), find the value of k. (3 marks) b Find the values of x for which f(x) = g(x). (3 marks) 4 Solve the follo wing equations, giving your answers correct to 3 significant figures: a k2 + 11k βˆ’ 1 = 0 b 2t2 βˆ’ 5t + 1 = 0 c 10 βˆ’ x βˆ’ x2 = 7 d (3x βˆ’ 1)2 = 3 βˆ’ x2 5 Write each of these expressions in the form p (x + q)2 + r, where p , q and r are constants to beΒ found: a x2 + 12x βˆ’ 9 b 5x2 βˆ’ 40x + 13 c 8x βˆ’ 2x2 d 3x2 βˆ’ (x + 1)2 6 Find the value k for which the equation 5x2 βˆ’ 2x + k = 0 has exactly one solution. (2 marks)E EMixed exercise 2Accident investigators are studying the stopping distance of a particular car. When the car is travelling at 20 mph, its stopping distance is 6 f eet. When the car is travelling at 30 mph, its stopping distance is 14 f eet. When the car is travelling at 40 mph, its stopping distance is 24 f eet. The investigators suggest that the stopping distance in feet, d, is a quadratic function of the speed in miles per hour, s. a Given that d(s ) = as2 + bs + c, find the values of the constants a, b and c. b At an accident sc ene a car has left behind a skid that is 20 feet long. Use your model to calculate the speed that this car was going at before the accident.Challenge Start by setting up three si multaneous equations. Combine two different pairs of equations to eliminate c . Use the results to find the values of a and b first.Hint
[ 0.09022817015647888, 0.0010313397506251931, -0.054084960371255875, -0.018644966185092926, 0.06131434440612793, -0.015799805521965027, 0.04708779230713844, 0.03451910614967346, -0.022265087813138962, 0.025579236447811127, -0.054870445281267166, -0.07496178895235062, -0.07548219710588455, 0.0725722461938858, 0.029148831963539124, -0.039537057280540466, -0.023244379088282585, 0.005105598829686642, -0.029462382197380066, -0.0523245632648468, -0.01384359784424305, -0.10393975675106049, -0.040841929614543915, -0.013625174760818481, -0.010811247862875462, -0.012008007615804672, -0.01743163727223873, 0.045981645584106445, -0.043239425867795944, -0.030125683173537254, 0.00895842257887125, -0.07822143286466599, 0.07079987227916718, -0.01785873807966709, 0.04517371952533722, 0.025690868496894836, 0.0369829498231411, -0.032817237079143524, 0.012507057748734951, 0.053948890417814255, -0.014298190362751484, -0.016868464648723602, -0.03742512688040733, -0.03621603548526764, 0.029207082465291023, 0.0008486841688863933, 0.004855170845985413, -0.042158808559179306, 0.04276059940457344, 0.053600113838911057, 0.13607759773731232, 0.09130170196294785, -0.05400693044066429, 0.04061164706945419, -0.020288629457354546, -0.02362479642033577, 0.023041462525725365, -0.010552008636295795, -0.05198994651436806, 0.015520990826189518, -0.09465932101011276, 0.03567156195640564, 0.04636437073349953, -0.004166968632489443, -0.046840839087963104, 0.020820867270231247, -0.06852937489748001, 0.0442507304251194, -0.05938608571887016, 0.06223900988698006, -0.07375280559062958, -0.030528321862220764, 0.010794744826853275, -0.07357306033372879, 0.01494661532342434, 0.09840835630893707, -0.04845519736409187, 0.010604474693536758, -0.04719071090221405, -0.03894485905766487, -0.06014122813940048, 0.016681605949997902, -0.0787653774023056, -0.006043320521712303, 0.08701134473085403, -0.016660042107105255, 0.12400704622268677, 0.04728377237915993, 0.030384985730051994, 0.011488670483231544, 0.013083234429359436, -0.04691993072628975, -0.034528929740190506, 0.009119529277086258, -0.042346805334091187, 0.059189796447753906, -0.0006556521402671933, -0.07341137528419495, 0.038295961916446686, 0.11688133329153061, 0.005455945152789354, 0.02694215439260006, -0.0065118130296468735, -0.034757498651742935, -0.02536621317267418, -0.0566442646086216, 0.00011163684393977746, 0.11128979921340942, 0.023439807817339897, -0.08256225287914276, -0.005784697365015745, 0.024121373891830444, 0.04300211742520332, 0.042246732860803604, -0.03747665882110596, 0.08238615840673447, -0.005049436818808317, -0.04578002169728279, 0.0014110172633081675, -0.0250164233148098, 0.041463546454906464, 0.045131050050258636, -0.00014661834575235844, 0.02455281838774681, -0.08622605353593826, 0.05532741919159889, 0.033936403691768646, 0.021158017218112946, -0.11830584704875946, 0.024921145290136337, 0.027555126696825027, -0.05844493955373764, -0.12488210201263428, 0.08880676329135895, -0.006584756076335907, 0.06015560030937195, 0.013715428300201893, 0.024361934512853622, 0.03187042102217674, -0.009261837229132652, 0.020684940740466118, -0.013538628816604614, 0.0625024139881134, -0.07369668036699295, -0.050485145300626755, -0.019263816997408867, -0.043441105633974075, -0.00609582057222724, -0.05648711323738098, 0.024661609902977943, -0.0024599097669124603, 0.01634964719414711, 0.021363435313105583, 0.04371250420808792, -0.09447108954191208, -0.006715252995491028, 0.0763908252120018, -0.04076100513339043, 0.016227198764681816, -0.011304318904876709, -0.07992169260978699, 0.006450898014008999, 0.022140003740787506, -0.014335842803120613, 0.005770035088062286, 0.04970625787973404, 0.037347037345170975, -0.003938125912100077, -0.13197779655456543, 0.015606258995831013, 0.06713370233774185, -0.020661549642682076, -0.13020844757556915, 0.11653278023004532, -0.004706783685833216, -0.016154009848833084, 0.025134067982435226, 0.09060576558113098, 0.012614528648555279, -0.07844164222478867, 0.0361006036400795, -0.04766806587576866, 0.06336396187543869, -0.06195949763059616, -0.035181574523448944, 0.0010836446890607476, -0.008817672729492188, 0.0092930244281888, -0.06261986494064331, -0.0003257417993154377, 0.0751262903213501, -0.014317606575787067, -0.049106329679489136, 0.0005759265623055398, 0.028008360415697098, 0.000017088654203689657, 0.031730592250823975, -0.050263531506061554, -0.0011040755780413747, 0.042346078902482986, 0.04448635131120682, -0.009729424491524696, -0.0035826549865305424, -0.0017966292798519135, 0.015513388440012932, 0.034151867032051086, -0.048651088029146194, -0.018470916897058487, -0.006670660804957151, 0.03841845318675041, -0.030666524544358253, -0.061352964490652084, 0.05206575617194176, 0.021235141903162003, 0.06757082045078278, -0.02186981588602066, -0.029241764917969704, -0.07276702672243118, -0.10101917386054993, 0.04317427799105644, -0.11138472706079483, -0.006619274150580168, 0.021525854244828224, 5.4975887141241374e-33, -0.020522093400359154, 0.10033714771270752, -0.015729853883385658, -0.052209991961717606, -0.00492080207914114, 0.00046717465738765895, 0.04520829766988754, -0.07147989422082901, 0.06809230148792267, 0.06250350177288055, -0.025974128395318985, 0.06564003229141235, 0.0010420052567496896, -0.012404029257595539, -0.03980807214975357, -0.09047123044729233, 0.03993350639939308, 0.021929671987891197, -0.028873763978481293, 0.03301840275526047, -0.04739133641123772, 7.796152772243659e-7, -0.0035662311129271984, 0.012296821922063828, -0.026508711278438568, 0.050762537866830826, 0.04624810442328453, -0.05775056779384613, -0.018593044951558113, 0.043808627873659134, 0.03648802638053894, -0.09931696206331253, 0.040712080895900726, 0.008791157975792885, -0.037289638072252274, -0.06365276873111725, 0.08935786783695221, 0.04953770712018013, -0.06498781591653824, 0.022733980789780617, 0.060016877949237823, 0.007679858710616827, 0.012781633995473385, -0.05619211867451668, 0.10816796123981476, -0.022523557767271996, -0.04757075756788254, -0.024186622351408005, 0.0779482051730156, 0.03127945214509964, 0.035575851798057556, 0.005898242350667715, -0.005402781069278717, 0.05807237699627876, -0.034193601459264755, 0.0058634295128285885, 0.003987216856330633, -0.08596040308475494, 0.02714993990957737, 0.05466888099908829, 0.05228513479232788, -0.012709406204521656, -0.025191910564899445, 0.06965773552656174, -0.08102357387542725, 0.10450229048728943, -0.042565975338220596, 0.0013086412800475955, 0.042358268052339554, 0.02798207476735115, -0.13176444172859192, 0.027952278032898903, -0.020097678527235985, -0.06228446587920189, -0.09859038144350052, 0.023458389565348625, -0.006654373370110989, 0.07339946180582047, 0.052719730883836746, 0.01319680456072092, -0.043864376842975616, -0.08282644301652908, 0.09991498291492462, -0.06650226563215256, -0.024633055552840233, 0.011381682939827442, 0.06708889454603195, 0.02570277266204357, -0.0009503333130851388, 0.04988693818449974, -0.001539830002002418, -0.08288571238517761, 0.09889185428619385, -0.030345363542437553, 0.0006325109279714525, 7.058470944978626e-32, -0.09013915807008743, 0.0029985336586833, -0.01524706557393074, 0.08367682248353958, 0.015072239562869072, -0.016965216025710106, 0.026766575872898102, -0.058824483305215836, -0.001417881459929049, -0.07061657309532166, 0.01782356947660446, -0.024077890440821648, -0.0448048934340477, 0.03464338928461075, -0.11158543825149536, -0.02930157259106636, -0.11246820539236069, 0.038050975650548935, -0.025246847420930862, -0.017870571464300156, 0.03173724561929703, 0.07575476169586182, -0.10185660421848297, 0.0188643466681242, 0.03870898857712746, 0.04540141299366951, -0.017418239265680313, -0.025161784142255783, -0.037692759186029434, -0.06710807979106903, -0.029541965574026108, -0.0722331553697586, 0.020108822733163834, -0.04010801389813423, 0.07999135553836823, -0.01682012714445591, 0.03922600671648979, -0.016495754942297935, -0.016620859503746033, 0.06341850757598877, 0.027591312304139137, -0.07640748471021652, -0.034562285989522934, -0.010829247534275055, 0.09332412481307983, 0.05010829120874405, -0.07101048529148102, -0.023562069982290268, 0.013755091466009617, -0.048954591155052185, 0.08554955571889877, 0.05395912006497383, -0.03009255789220333, 0.04135514050722122, 0.055061038583517075, -0.04368063807487488, -0.08141470700502396, 0.0433269627392292, 0.055885907262563705, 0.011560444720089436, -0.028927644714713097, 0.11418171972036362, -0.036460891366004944, -0.01781601272523403 ]
36 Chapter 2 7 Given tha t for all values of x: 3x2 + 12x + 5 = p(x + q)2 + r a find the values of p, q and r. (3 marks) b Hence solve the equation 3 x2 + 12x + 5 = 0. (2 marks) 8 The function f is defined as f(x ) = 22x βˆ’ 20(2x) + 64, x ∈ ℝ . a Write f(x ) in the form (2x βˆ’ a)(2x βˆ’ b), where a and b are real constants. (2 marks) b Hence find the two roots of f(x). (2 marks) 9 Find, as surds, the r oots of the equation: 2(x + 1)(x βˆ’ 4) βˆ’ (x βˆ’ 2)2 = 0. 10 Use algebr a to solve (x βˆ’ 1)(x + 2) = 18. 11 A diver launches herse lf off a springboard. The height of the diver, in metres, above the pool tΒ seconds after launch can be modelled by the following function: h(t) = 5t βˆ’ 10t2 + 10, t > 0 a How high is the springboard a bove the water? (1 mark) b Use the model to find the time at w hich the diver hits the water. (3 marks) c Rearrange h( t) into the form A βˆ’ B(t βˆ’ C)2 and give the values of the constants A, B and C. (3 marks) d Using your answ er to part c or otherwise, find the maximum height of the diver, and the time at which this maximum height is reached. (2 marks) 12 For this question, f(x ) = 4kx2 + (4k + 2)x + 1, where k is a real constant. a Find the discriminant of f(x ) in terms of k. (3 marks) b By simplifying your answ er to part a or otherwise, prove that f(x) has two distinct real roots for all non-zero values of k. (2 marks) c Explain why f( x) cannot have two distinct real roots when k = 0. (1 mark) 13 Find all of the r oots of the function r(x) = x8 βˆ’ 17x4 + 16. (5 marks) 14 Lynn is selling cushions as part of an enterprise project. On her first attempt, she sold 80 cushions at the cost of Β£15 each. She hopes to sell more cushions next time. Her adviser suggests that she can expect to sell 10 more cushions for every Β£1 that she lowers the price. a The number of cushions sold c can be modelled by the equation c = 230 βˆ’ Hp, where Β£p is the price of each cushion and H is a constant. Determine the value of H. (1 mark) To model her tota l revenue, Β£r, Lynn multiplies the number of cushions sold by the price of each cushion. She writes this as r = p(230 βˆ’ Hp).b Rearrange r into the form A βˆ’ B( p βˆ’ C )2, where A, B and C are constants to be found. (3 marks) c Using your answ er to part b or otherwise, show that Lynn can increase her revenue by Β£122.50 through lowering her prices, and state the optimum selling price of a cushion. (2 marks)E E/P E/P E/P E/P E/P
[ -0.0035991687327623367, 0.11988818645477295, 0.015049285255372524, 0.03419390320777893, 0.004889210686087608, 0.05366562306880951, 0.0025761560536921024, 0.076433464884758, -0.053402941673994064, 0.08001580834388733, 0.0011862489627674222, -0.0637127235531807, -0.07562480121850967, -0.07429938018321991, 0.013717255555093288, -0.047452107071876526, -0.042903877794742584, 0.002447668928653002, -0.07105448096990585, -0.019588623195886612, 0.002384357387199998, -0.015055225230753422, -0.05705072730779648, -0.0021936146076768637, 0.09581272304058075, -0.06516416370868683, 0.018515540286898613, -0.03652295097708702, 0.005391386337578297, -0.037832532078027725, -0.03855659440159798, -0.0295829139649868, 0.0449170358479023, -0.02127617783844471, 0.07296554744243622, 0.041011691093444824, -0.01750657707452774, 0.018062099814414978, 0.08347020298242569, -0.044908661395311356, -0.025425538420677185, 0.038412708789110184, -0.054525233805179596, -0.0945417508482933, 0.06780590116977692, -0.08258352428674698, -0.07143603265285492, -0.034716252237558365, 0.04213656857609749, -0.009074172005057335, 0.01043043565005064, 0.0010106812696903944, -0.08712320029735565, 0.10684077441692352, -0.004392622970044613, -0.016853060573339462, 0.050368163734674454, 0.013543159700930119, -0.03220713138580322, 0.01863979920744896, -0.05815132334828377, 0.07275620847940445, 0.015072517096996307, 0.07039330899715424, 0.038216061890125275, 0.05712644010782242, -0.06437965482473373, -0.05883558467030525, 0.0031625533010810614, 0.020234709605574608, -0.1357659250497818, 0.07604850828647614, -0.0293258186429739, -0.022733716294169426, 0.015644283965229988, -0.07542545348405838, -0.07379663735628128, -0.0808507427573204, 0.007369036320596933, 0.003399485955014825, -0.01117402222007513, -0.03557189926505089, 0.0007553547038696706, 0.028418635949492455, 0.002557590138167143, 0.023288849741220474, 0.07627057284116745, 0.007422648835927248, 0.04080814868211746, 0.04520341008901596, 0.07482928782701492, -0.017569223418831825, 0.018672989681363106, -0.06566944718360901, -0.033601272851228714, -0.015957187861204147, 0.03415503725409508, -0.03721870854496956, 0.01751197688281536, 0.15234559774398804, 0.04609307646751404, -0.02670271135866642, -0.006057312712073326, 0.041305724531412125, -0.03704589605331421, -0.049249663949012756, 0.025034921243786812, -0.042508114129304886, 0.09529902786016464, -0.0767715573310852, -0.06630858778953552, -0.08037140965461731, 0.013416483998298645, 0.01642535626888275, 0.0289935152977705, -0.06076068431138992, 0.07199599593877792, -0.032437872141599655, -0.04564070701599121, -0.043629854917526245, -0.038371749222278595, -0.04073077812790871, 0.036682967096567154, -0.013018508441746235, -0.05716883763670921, -0.045862723141908646, 0.030296694487333298, 0.058534953743219376, -0.007835529744625092, -0.045987170189619064, 0.04624431952834129, -0.03283695504069328, -0.057037461549043655, -0.05347256734967232, 0.04979991540312767, 0.03150323033332825, -0.07897108048200607, 0.03739587590098381, 0.04468972980976105, -0.05822925269603729, -0.022726958617568016, 0.07850724458694458, 0.005576062947511673, 0.04001772403717041, -0.00438532093539834, 0.025700001046061516, -0.007881758734583855, -0.05007738620042801, -0.02962663397192955, 0.04655176401138306, -0.0022354661487042904, -0.008360396139323711, -0.00727419089525938, 0.11261782050132751, -0.003144612303003669, -0.07005719840526581, -0.01218713540583849, -0.06717969477176666, -0.02190341055393219, 0.01968620903789997, -0.0835932269692421, 0.03924863785505295, -0.0005187478382140398, 0.05766637995839119, -0.018185298889875412, 0.001273467089049518, 0.07262197136878967, 0.06697437167167664, -0.04028930887579918, -0.012049628421664238, 0.022453229874372482, 0.05502942204475403, 0.012838282622396946, 0.11453066021203995, -0.0248867180198431, -0.027010276913642883, 0.09389780461788177, -0.002097839256748557, -0.018391434103250504, 0.0586601085960865, -0.000874058052431792, -0.02143121138215065, 0.00808333232998848, 0.026541458442807198, -0.04498261213302612, 0.03573721647262573, -0.022864598780870438, 0.009881851263344288, 0.023778239265084267, -0.009041556157171726, 0.0782380998134613, -0.04192134737968445, 0.027052609249949455, 0.04530870169401169, -0.11754082888364792, -0.08001725375652313, 0.004302320070564747, 0.08057067543268204, -0.047367312014102936, 0.0029534187633544207, 0.05315960943698883, -0.037372931838035583, 0.03632489964365959, 0.028634849935770035, 0.020845524966716766, -0.04728913679718971, -0.0702999085187912, -0.035688504576683044, 0.010061189532279968, -0.010639539919793606, -0.030821092426776886, 0.018596086651086807, -0.01941474713385105, -0.03782527148723602, 0.012384398840367794, -0.04579107463359833, 0.027498751878738403, -0.05174179747700691, -0.062231600284576416, 0.09147056937217712, -0.0675756186246872, -0.04843929782509804, 0.060296639800071716, -5.748793326262799e-33, -0.03842167928814888, 0.07321788370609283, -0.12866033613681793, -0.03292415291070938, -0.05956622213125229, -0.06151115894317627, -0.03375420346856117, -0.07689785957336426, 0.09950681030750275, 0.0459163673222065, 0.02171410247683525, 0.03679956495761871, -0.034222621470689774, 0.057653918862342834, -0.036583393812179565, -0.06141732260584831, 0.021939612925052643, 0.020645393058657646, -0.02021700330078602, -0.04691630229353905, -0.006366803776472807, 0.06062793731689453, -0.03805135563015938, 0.017381785437464714, -0.0051621911115944386, 0.03383190929889679, 0.05969942733645439, -0.08205941319465637, -0.006431394722312689, 0.06320951879024506, -0.08033301681280136, 0.013610733672976494, 0.047735344618558884, 0.043032582849264145, -0.061475399881601334, -0.07357843965291977, 0.0639728456735611, 0.018368810415267944, 0.006135815754532814, -0.014447204768657684, 0.05471653863787651, 0.040464505553245544, -0.008643520064651966, -0.034989021718502045, 0.011543826200067997, 0.020281372591853142, 0.09408607333898544, 0.0009821103885769844, -0.020257441326975822, 0.08382442593574524, -0.012945146299898624, -0.05897888168692589, 0.04443897679448128, 0.027860315516591072, 0.056838855147361755, 0.005253149662166834, 0.0016534053720533848, -0.03313826769590378, 0.04633161798119545, -0.00047785398783162236, -0.0138729028403759, 0.006564244627952576, 0.045603614300489426, 0.03801076114177704, -0.05086241289973259, -0.02291061170399189, -0.006664537824690342, -0.0399244949221611, 0.006347945891320705, 0.06726338714361191, -0.14065149426460266, -0.006213564891368151, -0.039028726518154144, -0.09563346952199936, -0.053479112684726715, 0.09165503829717636, -0.057974155992269516, 0.048398457467556, -0.001874082488939166, -0.06339171528816223, -0.03234288468956947, -0.01320157665759325, 0.08208080381155014, -0.0853763297200203, -0.159587562084198, 0.06409668177366257, 0.09280446171760559, 0.02960379794239998, 0.008609188720583916, -0.0008818116621114314, 0.018122481182217598, 0.02603061869740486, -0.01928824558854103, -0.0737299993634224, 0.08936111629009247, 9.144661323938043e-32, -0.013431712985038757, -0.07722613215446472, -0.07987487316131592, -0.0029570998158305883, 0.09242761135101318, 0.06180492043495178, 0.023053515702486038, -0.043976809829473495, 0.06392408162355423, -0.01066124252974987, 0.01793779619038105, -0.009099294431507587, -0.037617821246385574, 0.02066662162542343, -0.08395793288946152, -0.03704598918557167, -0.04561656713485718, 0.02569586969912052, -0.014745148830115795, -0.07461564242839813, -0.024270664900541306, 0.008731972426176071, -0.06542039662599564, 0.06441837549209595, 0.04507758095860481, 0.06520406901836395, -0.033185139298439026, -0.009632698260247707, -0.038278788328170776, -0.027642959728837013, 0.05265195295214653, 0.019566597416996956, -0.002481437288224697, -0.035738229751586914, -0.024802248924970627, 0.0037243778351694345, 0.1323266476392746, -0.00284598208963871, -0.03518661856651306, 0.018327943980693817, -0.010631588287651539, -0.07637369632720947, -0.052054837346076965, 0.03388485312461853, -0.046450529247522354, -0.05726179480552673, 0.00001196421726490371, -0.05795327201485634, 0.08162092417478561, -0.027331657707691193, 0.00746527872979641, 0.08070086687803268, 0.03684841841459274, -0.0092125553637743, 0.024833373725414276, -0.06602030247449875, -0.08645738661289215, 0.04961720481514931, -0.049543749541044235, -0.10447067767381668, -0.05445891618728638, 0.05403536558151245, -0.011955969035625458, 0.009751548990607262 ]
37Quadratics 1 To solve a quadratic equation by factorising: βˆ™ Write the equation in the f orm ax2 + bx + c = 0 βˆ™ Factorise the l eft-hand side βˆ™ Set each factor equal to z ero and solve to find the value(s) of x 2 The solutions of the equation ax2 + bx + c = 0 where a β‰  0 are given by the formula: x = βˆ’b Β± βˆšβ€―_______ b 2 βˆ’ 4ac _____________ 2a 3 x2 + bx = (x + b __ 2 ) 2 – ( b __ 2 ) 2 4 ax2 + bx + c = a (x + b ___ 2a ) 2 + (c – b2 ___ 4a2 ) 5 The set of possibl e inputs for a function is called the domain. The set of possible outputs of a function is called the range. 6 The roots of a function are the values of x for which f(x) = 0. 7 You can find the coor dinates of a turning point of a quadratic graph by completing the square. If f(x) = a(x + p)2 + q, the graph of y = f(x) has a turning point at (βˆ’p, q). 8 For the quadratic function f( x) = ax2 + bx + c = 0, the expression b2 βˆ’ 4ac is called the discriminant. The value of the discriminant shows how many roots f(x) has: βˆ™ If b2 βˆ’ 4ac . 0 then a quadratic function has two distinct real roots. βˆ™ If b2 βˆ’ 4ac = 0 then a quadratic function has one repeated real root. βˆ™ If b2 βˆ’ 4ac , 0 then a quadratic function has no real roots 9 Quadratics can be used to model r eal-life situations.Summary of key pointsa The ratio of the lengths a : b in this line is the same as the r atio of the lengths b : c. a b c Show that this ratio is 1 + βˆšβ€―__ 5 ______ 2 : 1. b Show also that the infinite squar e root βˆšβ€―_______________________ 1 + βˆšβ€―___________________ 1 + βˆšβ€―______________ 1 + βˆšβ€―__________ 1 + βˆšβ€―______ 1 + … = 1 + βˆšβ€―__ 5 ______ 2 Challenge
[ -0.006938998121768236, 0.08979608118534088, 0.022742995992302895, 0.017774708569049835, -0.014290140941739082, 0.06696460396051407, 0.01830935850739479, 0.025132732465863228, -0.10102827101945877, 0.05561348795890808, 0.002535366453230381, -0.09215235710144043, 0.011073657311499119, 0.014074234291911125, 0.07127033174037933, 0.0392443984746933, -0.12417607009410858, 0.06832187622785568, -0.040773842483758926, -0.025904115289449692, 0.034630414098501205, -0.10098899155855179, -0.04588869959115982, -0.009331054985523224, 0.011882205493748188, -0.050474394112825394, -0.0628901794552803, -0.037845853716135025, 0.03405231609940529, 0.004721957724541426, -0.017398657277226448, 0.10173409432172775, 0.06305167824029922, -0.008137575350701809, 0.007729425095021725, 0.058824196457862854, 0.07091888040304184, 0.02664436213672161, -0.03738073632121086, -0.05579327791929245, -0.014026558957993984, 0.0453752838075161, -0.053625959903001785, 0.01935657672584057, 0.05269157141447067, -0.09856463968753815, -0.02676151879131794, -0.04713461548089981, 0.06388187408447266, -0.043223120272159576, 0.023556670174002647, 0.04979265108704567, -0.09410693496465683, 0.005453691817820072, -0.10803665220737457, -0.030898062512278557, -0.0575605183839798, 0.016727829352021217, -0.04186217859387398, 0.039114490151405334, 0.012370901182293892, 0.015711063519120216, 0.07646841555833817, 0.0943429097533226, 0.02950398623943329, 0.03195743262767792, -0.03241058066487312, -0.013669084757566452, -0.004690877161920071, 0.05502814054489136, 0.004012431483715773, 0.02380218915641308, -0.009609390050172806, 0.017144186422228813, 0.030273618176579475, 0.03310618922114372, -0.08073664456605911, 0.027627896517515182, 0.023219408467411995, -0.01572561450302601, 0.06003633514046669, -0.025507168844342232, 0.1025533378124237, -0.002973612630739808, -0.02915644459426403, -0.013013336807489395, 0.10289936512708664, 0.04967191815376282, -0.0010476680472493172, 0.001927930978126824, 0.026509517803788185, -0.022338809445500374, 0.0195442084223032, -0.029049329459667206, -0.02243899740278721, -0.08780954033136368, 0.06946712732315063, 0.026223331689834595, 0.030217718333005905, 0.003022825578227639, 0.01229229848831892, -0.01683884486556053, 0.006677027326077223, -0.022825511172413826, -0.034550990909338, -0.0398014634847641, -0.054314132779836655, 0.01928088814020157, 0.09354989230632782, -0.03182647004723549, -0.14235681295394897, -0.019782474264502525, 0.011267617344856262, 0.012133006006479263, 0.05237923935055733, -0.09701794385910034, 0.09516332298517227, -0.011669307947158813, 0.047093234956264496, -0.040033984929323196, -0.009174216538667679, 0.002397548407316208, 0.04463127627968788, -0.1067296639084816, 0.06293616443872452, -0.002709448104724288, -0.004395700059831142, 0.027451610192656517, -0.062237367033958435, -0.03876524046063423, 0.03873080015182495, -0.042098186910152435, -0.1113705188035965, -0.08706525713205338, 0.05675558000802994, -0.006100914441049099, -0.009171429090201855, 0.11978546530008316, 0.02145904302597046, -0.05694139748811722, 0.06448837369680405, 0.02660505846142769, 0.013847201131284237, -0.005767060909420252, 0.05776289477944374, -0.10479355603456497, -0.0244605615735054, -0.09587588906288147, -0.005109739489853382, -0.018114613369107246, -0.04095236212015152, -0.02627716027200222, -0.007943146862089634, 0.07891155034303665, 0.03810811787843704, -0.08903549611568451, 0.0029327189549803734, -0.09485211968421936, -0.035868410021066666, 0.07573989778757095, -0.04233148694038391, -0.04278334975242615, -0.05669171363115311, 0.03080475516617298, 0.006932633928954601, 0.03624683991074562, -0.10873496532440186, 0.0048272451385855675, 0.01677604205906391, 0.049586351960897446, 0.002500369679182768, 0.04282066971063614, -0.03080136887729168, 0.027014032006263733, -0.05262598395347595, -0.027406085282564163, 0.07915957272052765, 0.028319532051682472, 0.09949950873851776, 0.02345304563641548, 0.06780735403299332, 0.010045679286122322, 0.01947912387549877, 0.0021946681663393974, -0.00582119170576334, -0.010771660134196281, 0.02780657261610031, -0.11396197974681854, -0.026725929230451584, -0.09016183018684387, -0.028278015553951263, 0.03211300075054169, -0.027569198980927467, 0.06741811335086823, -0.05287974327802658, -0.009917094372212887, 0.0015833412762731314, -0.023896656930446625, -0.08332252502441406, 0.08399797230958939, 0.11795932799577713, -0.007471039891242981, 0.09670429676771164, -0.0213047843426466, 0.0035403461661189795, -0.027438877150416374, -0.04673681780695915, -0.01892133429646492, -0.002911983523517847, 0.06378387659788132, -0.05027450621128082, -0.028225867077708244, 0.08517032116651535, -0.045401863753795624, -0.04073739051818848, -0.0986407995223999, -0.04555531218647957, -0.04754534736275673, -0.027453763410449028, 0.03640926629304886, -0.024449249729514122, 0.019162733107805252, 0.044830240309238434, -7.24877187237004e-33, -0.01699289120733738, -0.05905331298708916, -0.10567774623632431, 0.0086777089163661, -0.026793094351887703, 0.03332289680838585, 0.02204088680446148, -0.11799082905054092, 0.12197649478912354, 0.026749780401587486, 0.06247217208147049, 0.003658342408016324, -0.036149781197309494, -0.016702977940440178, -0.05088157579302788, 0.00007840660691726953, -0.04592614248394966, 0.011263750493526459, -0.00004648641333915293, 0.023781027644872665, 0.07821980118751526, -0.013154697604477406, -0.027774259448051453, -0.08680085837841034, 0.0057838368229568005, 0.04117296263575554, 0.0698971077799797, -0.03366474434733391, 0.019931018352508545, 0.023197732865810394, -0.016938883811235428, -0.011415286920964718, 0.07706550508737564, -0.006407794542610645, -0.013513906858861446, -0.03153513744473457, -0.04954967275261879, 0.017030971124768257, -0.03296658396720886, -0.04220585525035858, 0.02727748081088066, 0.03220124542713165, 0.04093760624527931, 0.004755454137921333, 0.005739424377679825, -0.012110859155654907, 0.011570451781153679, 0.019755523651838303, 0.01975853368639946, 0.05423073098063469, -0.03237694129347801, -0.060537826269865036, -0.021044576540589333, 0.018858157098293304, -0.013687720522284508, 0.08681806176900864, 0.007933004759252071, -0.040640998631715775, -0.02687275968492031, 0.0015892512165009975, 0.023958010599017143, -0.03738779202103615, 0.02408112958073616, 0.06436315178871155, -0.005077493377029896, 0.10928894579410553, 0.04716792702674866, 0.04521888867020607, 0.005699914414435625, 0.046015553176403046, -0.07209129631519318, 0.03843965008854866, -0.08556462079286575, 0.07264987379312515, -0.058067962527275085, 0.033431317657232285, -0.05054726451635361, 0.08313644677400589, -0.01529909297823906, -0.04252786189317703, -0.04388783127069473, 0.05412482097744942, -0.026592670008540154, -0.02240120619535446, -0.08261707425117493, -0.03746785596013069, 0.05556599050760269, -0.0009990056278184056, 0.025921182706952095, -0.08791342377662659, 0.024750597774982452, -0.014466412365436554, -0.004443461541086435, -0.0015446055913344026, 0.07605805993080139, 8.151867594845134e-32, 0.000057209821534343064, -0.04708690196275711, -0.03843427821993828, 0.01570395566523075, 0.032794538885354996, 0.02983097918331623, -0.05002281814813614, -0.005449015647172928, -0.016941383481025696, -0.08432881534099579, 0.008708410896360874, 0.09526871144771576, -0.040396515280008316, 0.027851462364196777, -0.07463227957487106, 0.014557944610714912, 0.008311889134347439, 0.053500622510910034, -0.02839083969593048, 0.006605868693441153, -0.038858797401189804, 0.03708809241652489, -0.05800798535346985, 0.039709240198135376, 0.0178512129932642, 0.04525944963097572, 0.004130448680371046, -0.020850636065006256, 0.050960320979356766, -0.032849449664354324, 0.11831249296665192, 0.04084768518805504, -0.061720822006464005, -0.07859878987073898, 0.05336272343993187, 0.04224739968776703, 0.06796643882989883, -0.011809106916189194, -0.0495881661772728, 0.006737350486218929, -0.012437011115252972, -0.04421449452638626, -0.10650072246789932, -0.02876313403248787, -0.07223159819841385, -0.0675911083817482, -0.03963626176118851, -0.11463416367769241, 0.017834559082984924, 0.0015546850627288222, -0.03450298681855202, -0.02255047671496868, 0.024714602157473564, 0.04681514576077461, 0.05688639357686043, -0.05019037052989006, -0.06857313215732574, -0.012796551920473576, 0.07382268458604813, -0.036606647074222565, -0.10115360468626022, 0.08607721328735352, -0.05825045332312584, -0.0716017633676529 ]
38 Equations and inequalities After completing this chapter you should be able to: ● Solve linear simultaneous equations using elimination or substit ution β†’ pages 39 βˆ’ 40 ● Solve simultaneous equations: one linear and one quadratic β†’ pages 41 βˆ’ 42 ● Interpret algebraic solutions of equations graphically β†’ pages 42 βˆ’ 45 ● Solve linear inequalities β†’ pages 46 βˆ’ 48 ● Solve quadratic inequalities β†’ pages 48 βˆ’ 51 ● Interpret inequalities graphically β†’ pages 51 βˆ’ 53 ● Represent linear and quadratic inequalities graphically β†’ pages 53 βˆ’ 55Objectives 1 A = {factors of 12} B = {factors of 20} Write do wn the numbers in each of these sets: a A ∩ B b (A βˆͺ B)9 ← GCSE Mathematics 2 Simplify these expressions. a βˆšβ€―___ 75 b 2 βˆšβ€―___ 45 + 3 βˆšβ€―___ 32 ___________ 6 ← Section 1.5 3 Match the equations to the correct graph. Label the points of int ersection with the axes and the coordinates of the turning point. a y = 9 – x2 b y = (x – 2)2 + 4 c y = (x – 7)(2x + 5) y xii i y xiii y xO O O ← Section 2.47AB 9 116 1231 25 10 20 j 134Prior knowledge check Food scientists use regions on graphs to optimise athletes’ nutritional intake and ensure they satisfy the minimum dietary requirements for calories and vitamins.3
[ 0.0439019538462162, 0.07101308554410934, -0.0009480773587711155, -0.018568065017461777, -0.04018965736031532, 0.065226711332798, -0.03479668125510216, 0.04303557798266411, -0.13567879796028137, 0.06996122747659683, 0.012954873964190483, -0.04754377529025078, 0.02475557290017605, 0.022769248113036156, 0.037237878888845444, 0.07559607923030853, -0.08398901671171188, -0.02117026224732399, 0.006215506233274937, -0.04556576907634735, 0.017698636278510094, -0.09778348356485367, -0.07326120138168335, 0.012298007495701313, 0.04801858589053154, -0.06596511602401733, -0.08845988661050797, -0.0009358801762573421, 0.02922229655086994, -0.02226717211306095, -0.008794021792709827, -0.002748088911175728, 0.1013459712266922, -0.0028272117488086224, -0.0027361037209630013, 0.020969009026885033, 0.07802645117044449, 0.0020581737626343966, 0.04197167605161667, -0.06128070876002312, -0.04803285375237465, 0.023102132603526115, -0.09971176087856293, 0.06220627948641777, -0.006181558594107628, -0.017104148864746094, 0.003007110906764865, -0.04963938146829605, 0.05535869672894478, -0.08047152310609818, -0.011310611851513386, -0.033997662365436554, 0.04862665385007858, 0.07372739166021347, -0.06415904313325882, -0.11065226048231125, -0.034505922347307205, 0.010431326925754547, -0.0773966908454895, -0.0010668020695447922, 0.006907028146088123, -0.0442044623196125, 0.018966736271977425, 0.051946837455034256, 0.08305001258850098, 0.07561936229467392, 0.06205231323838234, 0.06850501149892807, -0.013721322640776634, 0.07158119231462479, -0.13340750336647034, -0.014979255385696888, -0.03828456252813339, -0.019676076248288155, 0.03164232149720192, 0.05319194868206978, -0.03645973280072212, -0.03812360391020775, -0.004541925620287657, 0.0043778494000434875, 0.03750113397836685, 0.0546254999935627, 0.04847247153520584, -0.010573641397058964, -0.01825074665248394, -0.0922444760799408, 0.06647848337888718, 0.05131160840392113, -0.020966511219739914, -0.0413958877325058, 0.011027084663510323, -0.01962849497795105, 0.054582126438617706, -0.09350953251123428, -0.011921070516109467, -0.11921355128288269, 0.040242090821266174, -0.014341389760375023, 0.0448499396443367, 0.02127411961555481, 0.0011609811335802078, -0.1220351904630661, 0.11372482031583786, -0.020914794877171516, -0.03141343221068382, 0.03684777766466141, 0.045266151428222656, -0.07980582863092422, 0.01802186109125614, -0.04472508653998375, -0.03652992472052574, -0.042361993342638016, 0.007766027934849262, 0.020078103989362717, 0.03235212340950966, -0.05458592250943184, 0.032242681831121445, -0.009141677059233189, 0.056319709867239, -0.07539749145507812, -0.09769041836261749, -0.01968490146100521, 0.09363541007041931, -0.02333819679915905, -0.0001074472238542512, 0.022616034373641014, 0.01613132655620575, 0.012634765356779099, -0.0676485076546669, -0.08768026530742645, 0.03049270063638687, 0.01281412597745657, -0.05277201905846596, -0.027967561036348343, 0.047533340752124786, -0.01858953945338726, -0.043390993028879166, 0.035639792680740356, -0.01069659274071455, -0.05244581401348114, -0.04844992607831955, 0.06961893290281296, 0.07202162593603134, 0.007441242691129446, 0.041582927107810974, -0.008300220593810081, -0.005448037292808294, 0.05179379880428314, -0.043526507914066315, 0.0022341678850352764, -0.057681623846292496, 0.0211909431964159, 0.03535780310630798, 0.1114027202129364, -0.08704648911952972, 0.0019858817104250193, -0.04600276052951813, 0.013377063907682896, -0.0069948770105838776, 0.04365799203515053, -0.06373584270477295, 0.0036639217287302017, 0.023851359263062477, 0.020394014194607735, 0.010115095414221287, 0.010120350867509842, -0.03081716038286686, 0.01611252874135971, -0.04762192443013191, -0.05078009516000748, 0.07478141039609909, -0.004347455687820911, 0.028557188808918, 0.09521669894456863, -0.027102578431367874, 0.013160351663827896, 0.09594568610191345, -0.01744425855576992, -0.08410994708538055, 0.08869680762290955, -0.0007267125183716416, -0.06262871623039246, 0.035914771258831024, -0.046823885291814804, 0.0005354997701942921, -0.009651265107095242, 0.005852640140801668, 0.000019341156075824983, -0.004614145494997501, -0.010600920766592026, -0.004878406412899494, -0.0686187669634819, 0.0157197043299675, 0.07118359953165054, -0.13780651986598969, -0.0826997458934784, 0.002441862365230918, -0.0058210245333611965, -0.08759912848472595, -0.022999398410320282, 0.009512958116829395, -0.0486455112695694, -0.020695896819233894, 0.029880167916417122, 0.014705777168273926, -0.03574775159358978, -0.04318568482995033, -0.04963604733347893, 0.0371062308549881, 0.02686464600265026, 0.00808032788336277, 0.035348664969205856, -0.012632239609956741, -0.014901612885296345, 0.016676612198352814, -0.07890928536653519, 0.07944370806217194, -0.059312909841537476, -0.01519203744828701, 0.03102259710431099, -0.10207077860832214, -0.0014680427266284823, 0.1062433198094368, -3.1198942501968186e-33, -0.00885721854865551, 0.007362757809460163, -0.12963145971298218, -0.07424346357584, -0.022979333996772766, 0.05036032572388649, 0.057933419942855835, -0.10117983818054199, 0.051790833473205566, -0.04510687291622162, 0.07139981538057327, -0.002677799668163061, -0.07469931989908218, 0.030623318627476692, -0.05968025326728821, -0.09867655485868454, 0.047489508986473083, -0.07760906219482422, 0.05529510974884033, 0.017530066892504692, 0.02348063327372074, 0.038916271179914474, 0.020987384021282196, -0.05450280383229256, -0.03799933195114136, 0.03263922408223152, 0.10960830003023148, 0.00905810110270977, 0.006262657232582569, 0.025038806721568108, 0.028834352269768715, 0.008129462599754333, 0.0689375102519989, -0.000727143429685384, -0.0070396061055362225, -0.07695275545120239, -0.006124082952737808, -0.04576053097844124, -0.011152218095958233, -0.019485346972942352, 0.09232164919376373, -0.00945914164185524, 0.06477974355220795, -0.00464084604755044, 0.01707041636109352, 0.07057929784059525, 0.0419575534760952, 0.06855539232492447, 0.025468580424785614, -0.04791630804538727, -0.025878475978970528, 0.028024310246109962, -0.000923727173358202, -0.07437430322170258, 0.07423824071884155, -0.053865522146224976, 0.016568215563893318, -0.02614372782409191, 0.05729737877845764, -0.008956553414463997, 0.021816598251461983, -0.04738137125968933, 0.07746128737926483, 0.04995870962738991, -0.012032214552164078, -0.014036583714187145, 0.007724254857748747, -0.0688769593834877, 0.011562242172658443, 0.012766948901116848, -0.042590752243995667, 0.019753625616431236, 0.010075431317090988, -0.026411330327391624, 0.047374188899993896, 0.049710821360349655, -0.03215907886624336, 0.07086241245269775, 0.01178594958037138, -0.011751418001949787, -0.10300008207559586, 0.07491286098957062, -0.008991723880171776, -0.08048240095376968, -0.0995195284485817, 0.008495613932609558, 0.057764697819948196, -0.03071056492626667, 0.05677402764558792, -0.040577229112386703, 0.07169657200574875, -0.013771271333098412, 0.03392905741930008, -0.04796967655420303, 0.06542499363422394, 6.483928685357444e-32, -0.01995350793004036, 0.03948189318180084, -0.06662756949663162, 0.013018524274230003, 0.010272148065268993, 0.013908185996115208, -0.028529474511742592, 0.09098910540342331, 0.029819002375006676, -0.021224871277809143, 0.0652141124010086, 0.051959868520498276, -0.05690596625208855, 0.000024641232812427916, -0.04390662908554077, -0.026995884254574776, -0.0772026926279068, 0.03808628022670746, -0.009256979450583458, -0.0016164523549377918, 0.013259266503155231, -0.01757672056555748, -0.03566031530499458, 0.03102714940905571, 0.01799234375357628, 0.07733505219221115, -0.08267918974161148, 0.04719981178641319, 0.052395064383745193, 0.05667295679450035, 0.14446577429771423, -0.00044115004129707813, 0.006959172431379557, -0.05465293303132057, 0.11198548972606659, -0.008894185535609722, 0.013252528384327888, -0.03107094205915928, -0.02961980737745762, -0.01264116633683443, -0.023184925317764282, 0.016048138961195946, -0.06516857445240021, -0.000653197115752846, 0.028190869837999344, -0.05213317647576332, 0.011896379292011261, -0.031732138246297836, 0.012339895591139793, -0.05376385152339935, -0.060616713017225266, 0.04419010132551193, -0.008363151922821999, 0.04406420513987541, -0.0007092655287124217, -0.0385279580950737, -0.03702767938375473, -0.031438253819942474, 0.04464888200163841, -0.028090082108974457, 0.04317638650536537, 0.11258652061223984, -0.09515447169542313, -0.047746043652296066 ]
39 Equations and inequalities 3.1 Linear simultaneous equations Linear simultaneous equations in two unknowns have one set of values that will make a pair of equations true at the same time. The solution to this pair of simultaneous equations is x = 5, y = 2 x + 3y = 11 (1) 4x – 5y = 10 (2) β–  Linear simultaneous equations can be solved using elimination or substit ution.5 + 3(2) = 5 + 6 = 11 βœ“ 4(5) – 5(2) = 20 – 10 = 10 βœ“ Example 1 Solve the simultaneous equations: a 2x + 3y = 8 b 4x βˆ’ 5y = 4 3x βˆ’ y = 23 6x + 2y = 25 a 2x + 3 y = 8 (1) 3x βˆ’ y = 23 (2) 9x βˆ’ 3y = 69 (3) 11x = 77 x = 7 14 + 3 y = 8 3y = 8 βˆ’ 14 y = βˆ’2 The solution is x = 7, y = βˆ’ 2. b 4x βˆ’ 5y = 4 (1) 6x + 2y = 25 (2) 12x βˆ’ 15 y = 12 (3) 12x + 4y = 50 (4) βˆ’19y = βˆ’38 y = 2 4x βˆ’ 10 = 4 4x = 14 x = 3 1 __ 2 The s olution is x = 3 1 __ 2 , y = 2.Remember to check your solution by substituting into equation (2). 3(7) – (βˆ’2) = 21 + 2 = 23 βœ“ Note that you could also multiply equation (1) by 3 and equation (2) by 2 to get 6x in both equations. You could then subtract to eliminate x. Multiply equation (1) by 3 and multiply equation (2) by 2 to get 12x in each equation. Subtract, since the 12x terms have the same sign (both positive). Substitute y = 2 into equation (1) to find x.First look for a way to eliminate x or y. Multiply equation (2) by 3 to get 3y in each equation. Number this new equation (3). Then add equations (1) and (3), since the 3y terms have different signs and y will be eliminated. Substitute x = 7 into equation (1) to find y.
[ 0.0145180094987154, 0.06115281581878662, 0.05212811753153801, -0.035404931753873825, -0.03482174128293991, 0.00710943341255188, -0.05383233726024628, -0.08176073431968689, -0.0741613581776619, 0.038494814187288284, -0.02935074456036091, -0.00527762807905674, 0.039088089019060135, 0.05890903249382973, 0.008852377533912659, 0.035387665033340454, -0.013550504110753536, 0.005598270334303379, -0.06250534951686859, 0.0020965677686035633, 0.006531578954309225, -0.12602970004081726, -0.09040212631225586, 0.04423516243696213, 0.01648322306573391, -0.058576587587594986, -0.061368782073259354, -0.008318844251334667, -0.06477482616901398, 0.026526203379034996, 0.06583034992218018, -0.05579995736479759, 0.025548480451107025, -0.044747840613126755, -0.0001286696788156405, -0.04826020449399948, 0.048411305993795395, 0.0484088771045208, 0.02525738626718521, -0.062202878296375275, -0.02390921302139759, -0.05616513267159462, -0.012602303177118301, -0.06421822309494019, -0.018560195341706276, -0.03239641711115837, 0.009570722468197346, -0.006049519404768944, 0.05117388814687729, -0.017539191991090775, 0.02112211287021637, -0.06024935841560364, 0.033676546066999435, 0.08451010286808014, -0.03666997328400612, -0.07119568437337875, -0.005797852762043476, -0.00009777216473594308, -0.10266444832086563, 0.04344530031085014, -0.006349345203489065, -0.044253479689359665, -0.02654375694692135, 0.05007223039865494, 0.04195704683661461, 0.11651242524385452, 0.049644503742456436, 0.026277612894773483, -0.025709567591547966, 0.03190133720636368, -0.07004059106111526, -0.026228616014122963, -0.02066083624958992, -0.03987975791096687, 0.016450483351945877, 0.026380296796560287, -0.025387048721313477, -0.11292482912540436, 0.015546808019280434, -0.02355842851102352, 0.043300800025463104, 0.02172059193253517, 0.00671918410807848, 0.009624531492590904, -0.0005128926131874323, -0.10274965316057205, 0.012678940780460835, 0.08015061169862747, -0.014106852002441883, 0.024514546617865562, 0.06833640486001968, 0.02242244966328144, 0.014940324239432812, -0.022360578179359436, 0.05517754331231117, -0.10188326239585876, 0.06248529255390167, 0.013324756175279617, -0.0510883629322052, 0.02224380150437355, 0.0046271090395748615, -0.09151222556829453, 0.0029073869809508324, -0.019167805090546608, 0.023788385093212128, 0.04745259881019592, 0.007564414292573929, -0.02595919370651245, -0.020083818584680557, 0.0017819722415879369, 0.03664391487836838, -0.07369987666606903, 0.07962384074926376, 0.0354311503469944, 0.013547108508646488, -0.001841653836891055, 0.02604285441339016, 0.0055489675141870975, 0.059115804731845856, -0.11931575834751129, -0.14205144345760345, -0.04656251147389412, 0.06285324692726135, -0.03813495486974716, -0.0312236025929451, -0.00981155689805746, -0.013869576156139374, 0.01209226343780756, -0.027471430599689484, -0.11601727455854416, -0.06526075303554535, 0.008314737118780613, -0.020472383126616478, -0.06399298459291458, -0.0028473332058638334, -0.021923424676060677, -0.030164144933223724, 0.04235353693366051, -0.05330109968781471, -0.06792601197957993, -0.07020654529333115, 0.04024123400449753, 0.11338546127080917, 0.041834376752376556, 0.022173665463924408, 0.05733855068683624, -0.007698678877204657, 0.015756504610180855, -0.011073250323534012, -0.004194370470941067, -0.0003103814087808132, 0.02352549135684967, 0.05272486060857773, 0.057281989604234695, -0.050883736461400986, -0.08282975107431412, -0.06272122263908386, 0.0006602101493626833, -0.02817304991185665, 0.03639892116189003, -0.006922553293406963, 0.03647686913609505, 0.0004862423811573535, 0.05085359513759613, -0.05461488664150238, 0.045184895396232605, 0.005948306992650032, 0.04411815106868744, -0.038743309676647186, -0.028793850913643837, 0.05216187238693237, 0.04721453785896301, -0.028494292870163918, 0.06843367964029312, 0.006613751873373985, -0.015197264961898327, 0.0095157315954566, -0.0367807075381279, -0.07416373491287231, 0.06689654290676117, 0.016750751063227654, -0.0801616981625557, 0.0205684881657362, 0.010773672722280025, -0.03337681666016579, -0.058218177407979965, -0.012843661941587925, -0.04941459372639656, -0.0735451802611351, -0.029010925441980362, 0.015414495021104813, -0.10905445367097855, 0.0500057227909565, 0.0906774029135704, -0.05707360804080963, -0.0635175108909607, 0.026678774505853653, 0.005851713474839926, -0.05958639830350876, -0.03673722967505455, 0.03656427189707756, 0.018088681623339653, 0.08191871643066406, -0.01037000771611929, 0.02861444652080536, 0.05740353465080261, -0.015541153028607368, -0.014908679760992527, 0.05239025130867958, 0.04094972461462021, 0.004864856135100126, 0.0710815042257309, -0.04994133114814758, 0.04281796142458916, 0.043469805270433426, -0.040263812988996506, 0.06047481670975685, -0.02852100320160389, -0.039200492203235626, 0.004565645940601826, -0.03956349939107895, 0.004884502850472927, 0.1386934518814087, -6.669725559206889e-33, -0.007291045505553484, 0.04832275211811066, -0.06959684938192368, -0.07144929468631744, -0.03019236959517002, -0.03229277953505516, 0.06642874330282211, -0.13901567459106445, 0.04589088261127472, -0.008413190953433514, 0.030918333679437637, -0.02790428139269352, -0.045162636786699295, 0.05592907965183258, -0.01921921782195568, -0.0460292249917984, -0.020541615784168243, -0.028370007872581482, 0.0001733655808493495, -0.0116959810256958, 0.0453011691570282, -0.00461222417652607, -0.05932998284697533, -0.0274361539632082, -0.03898179903626442, 0.03796220198273659, 0.07474871724843979, -0.03432045504450798, -0.03194054216146469, 0.028484225273132324, 0.028881845995783806, -0.002862366382032633, 0.05190238729119301, 0.04231400042772293, -0.009014951065182686, -0.09682832658290863, -0.03156809136271477, -0.05596020445227623, 0.06183505058288574, -0.028554333373904228, 0.043654486536979675, 0.06201006472110748, 0.05411700904369354, 0.022759292274713516, 0.02095915749669075, 0.07046520709991455, 0.022481005638837814, 0.05155427008867264, -0.03715915232896805, -0.002000780077651143, 0.020056532695889473, 0.0024345710407942533, -0.0741305872797966, -0.0538349486887455, 0.09317762404680252, -0.08222053200006485, 0.0816975086927414, -0.0210095327347517, 0.03531395271420479, 0.07794269919395447, -0.020007392391562462, -0.07564650475978851, 0.15945588052272797, 0.05075902119278908, -0.043928224593400955, 0.037776537239551544, -0.006968278903514147, -0.007710861507803202, 0.044780928641557693, 0.016513122245669365, 0.0003910076047759503, 0.016916917636990547, -0.025595353916287422, -0.04333795979619026, 0.0036961629521101713, 0.037962134927511215, -0.08946733176708221, 0.12481161206960678, 0.01962524838745594, -0.0024197471793740988, -0.04849373921751976, 0.03860480338335037, -0.031403783708810806, -0.013953096233308315, -0.1436362862586975, 0.008333220146596432, 0.019998736679553986, 0.001390045159496367, -0.03563893586397171, 0.0021251803264021873, 0.05026655271649361, 0.040782708674669266, 0.022513285279273987, -0.008879337459802628, 0.11679603159427643, 6.258527055840095e-32, -0.01864243857562542, 0.04210750386118889, -0.062137894332408905, 0.0386740118265152, 0.02105214074254036, 0.02237248606979847, 0.02880193293094635, 0.063942089676857, 0.01710628531873226, -0.014875806868076324, 0.07177221775054932, 0.0004287700285203755, -0.08254238963127136, -0.013817214407026768, -0.04247350990772247, -0.011671293526887894, -0.052557386457920074, 0.048810042440891266, -0.01764746755361557, 0.04098159074783325, 0.047371260821819305, -0.031171387061476707, -0.08802691847085953, 0.04589461907744408, -0.021406788378953934, 0.06906754523515701, -0.07721710950136185, 0.059806328266859055, -0.005400709807872772, 0.00021267578995320946, 0.08407630026340485, -0.06663475930690765, -0.052631549537181854, -0.07332316040992737, 0.08118724077939987, 0.076569564640522, -0.01146684866398573, 0.03892894461750984, -0.02589593641459942, -0.03288984298706055, 0.006681795231997967, -0.019532985985279083, -0.06447356194257736, 0.005093560088425875, 0.007977507077157497, -0.006019953638315201, 0.06512799113988876, -0.12922513484954834, 0.03822340443730354, -0.0933656319975853, -0.08379283547401428, 0.1743011474609375, 0.007737389765679836, 0.08803670108318329, -0.06181586906313896, -0.015450392849743366, -0.038554299622774124, 0.001915999804623425, 0.03124408982694149, -0.040828242897987366, 0.04950689896941185, 0.0480206198990345, 0.016303574666380882, -0.04410431161522865 ]
40 Chapter 3 Example 2 1 Solve these simultaneous equations by elimination: a 2x βˆ’ y = 6 b 7x + 3y = 16 c 5x + 2y = 6 4x + 3y = 22 2x + 9y = 29 3x βˆ’ 10y = 26 d 2x βˆ’ y = 12 e 3x βˆ’ 2y = βˆ’6 f 3x + 8y = 33 6x + 2y = 21 6x + 3y = 2 6x = 3 + 5y 2 Solve these simultaneous equa tions by substitution: a x + 3y = 11 b 4x βˆ’ 3y = 40 c 3x βˆ’ y = 7 d 2y = 2x βˆ’ 3 4x βˆ’ 7y = 6 2x + y = 5 10x + 3y = βˆ’2 3y = x βˆ’ 1 3 Solve these simultaneous equa tions: a 3x βˆ’ 2y + 5 = 0 b x βˆ’ 2 y ______ 3 = 4 c 3y = 5(x βˆ’ 2) 5(x + y) = 6(x + 1) 2x + 3y + 4 = 0 3(x βˆ’ 1) + y + 4 = 0 4 3x + ky = 8 x βˆ’ 2ky = 5 are simultaneous equa tions where k is a constant. a Show that x = 3. (3 marks) b Given tha t y = 1 _ 2 determine the value of k. (1 mark) 5 2x βˆ’ py = 5 4x + 5y + q = 0 are simultaneous equa tions where p and q are constants. The solution to this pair of simultaneous equa tions is x = q, y = βˆ’1. Find the value of p and the value of q. (5 marks) First rearrange bo th equations into the same form e.g. ax + by = c.Hint E/P k is a constant, so it has the same value in both equations.Problem-solving E/PExercise 3ASolve the simultaneous equations: 2x βˆ’ y = 1 4x + 2y = βˆ’30 2x βˆ’ y = 1 (1) 4x + 2y = βˆ’30 (2) y = 2x βˆ’ 1 4x + 2(2 x βˆ’ 1) = βˆ’ 30 4x + 4 x βˆ’ 2 = βˆ’ 30 8x = βˆ’28 x = βˆ’3 1 __ 2 y = 2(βˆ’3 1 __ 2 ) βˆ’ 1 = βˆ’8 The solution is x = βˆ’ 3 1 __ 2 , y = βˆ’8.Rearrange an equation, in this case equation (1), to get either x = … or y = … (here y = …). Solve for x. Substitute x = βˆ’3 1 _ 2 into equation (1) to find the value o f y.Substitute this into the other equation (here into equation (2) in place of y). Remember to check your solution in equation (2). 4(βˆ’3.5) + 2(βˆ’8) = βˆ’14 βˆ’ 16 = βˆ’30 βœ“
[ -0.03267097845673561, 0.0317545086145401, -0.0309017114341259, -0.0041029485873878, -0.012019617483019829, 0.07181601971387863, -0.04162114858627319, -0.03919157013297081, -0.034522343426942825, 0.05312203988432884, 0.00486091710627079, 0.04899703711271286, 0.04045356065034866, -0.05981069058179855, 0.03181290253996849, -0.021038932725787163, -0.06552693992853165, 0.035113852471113205, -0.04203997924923897, -0.0016769716748967767, 0.05461692437529564, -0.07451138645410538, -0.11154539883136749, 0.013697960413992405, 0.03641920164227486, -0.053269557654857635, -0.04085582122206688, 0.005185470450669527, -0.009410832077264786, -0.054522331804037094, 0.08271495252847672, 0.05380181223154068, -0.014387622475624084, 0.011174525134265423, 0.02294716238975525, -0.011183511465787888, 0.030474364757537842, 0.030982406809926033, -0.04018956422805786, -0.08808118104934692, -0.11434007436037064, -0.03277640417218208, -0.06743186712265015, 0.01629367470741272, 0.030613895505666733, -0.0056611318141222, -0.03846409544348717, 0.038057222962379456, 0.030579645186662674, -0.09029757231473923, 0.021627629175782204, -0.06351597607135773, 0.0033267003018409014, 0.016083305701613426, 0.004619559273123741, -0.051411084830760956, -0.010355538688600063, 0.07260897755622864, -0.04379687458276749, -0.006400050595402718, -0.015631703659892082, 0.012130980379879475, -0.03195924684405327, 0.051331717520952225, 0.037013448774814606, 0.07187165319919586, 0.04789632931351662, -0.04367316886782646, -0.012073642574250698, 0.06186628341674805, -0.08869694173336029, 0.011797877959907055, -0.08448051661252975, -0.013064814731478691, 0.07718362659215927, 0.03441588208079338, 0.036918554455041885, -0.03333795443177223, -0.002413826994597912, -0.016778169199824333, 0.03353571146726608, 0.010362562723457813, 0.052551526576280594, 0.0010861470364034176, 0.05240941420197487, -0.07847531139850616, -0.06201328709721565, -0.000909628055524081, 0.05197282135486603, -0.03858482092618942, 0.04036139324307442, -0.03531752526760101, 0.0038251280784606934, -0.09883099049329758, 0.014428215101361275, -0.05436917394399643, 0.03446550667285919, -0.0034015830606222153, 0.03887690231204033, 0.028276260942220688, 0.03837069123983383, -0.05624859035015106, 0.014053293503820896, 0.007051367778331041, 0.011858866550028324, -0.009588039480149746, 0.015312244184315205, -0.06927390396595001, 0.08825095742940903, -0.06331901997327805, -0.04052736237645149, -0.08965875208377838, 0.01962917111814022, -0.013721632771193981, -0.00564109580591321, -0.012545405887067318, 0.033083561807870865, -0.0004805101780220866, 0.023649081587791443, -0.11628790944814682, -0.008313368074595928, -0.022475866600871086, 0.0655972883105278, -0.011376934126019478, -0.021917633712291718, -0.017748503014445305, -0.08769676834344864, 0.009422305971384048, -0.10712281614542007, -0.09246287494897842, -0.017616888508200645, -0.0779402107000351, -0.024754371494054794, -0.013187393546104431, 0.000034692417102633044, 0.004907628521323204, 0.0009571797563694417, 0.01766766607761383, -0.03221708908677101, -0.07133801281452179, 0.007243169005960226, 0.061815038323402405, 0.04996605962514877, -0.02511056512594223, 0.017556682229042053, 0.038604795932769775, -0.019472168758511543, 0.005835340358316898, 0.03169989958405495, 0.049501772969961166, 0.02908524125814438, 0.02026989683508873, 0.028546607121825218, 0.1148819550871849, -0.03937976807355881, -0.008089466020464897, -0.040386464446783066, -0.055946893990039825, -0.009378327056765556, -0.0100301718339324, -0.06937965750694275, 0.047071658074855804, -0.08195014297962189, 0.05381222441792488, -0.0194754209369421, 0.0005739299231208861, -0.0014196651754900813, 0.0664936751127243, -0.05147873982787132, -0.020496925339102745, 0.06120489910244942, -0.007409418933093548, -0.01455596648156643, 0.06838793307542801, 0.03630988672375679, 0.030253976583480835, 0.05659019947052002, -0.031754519790410995, -0.053725842386484146, 0.07636355608701706, -0.003222605213522911, -0.06068958714604378, -0.004978150594979525, 0.03987127169966698, 0.018459482118487358, -0.05451856181025505, -0.05614251643419266, 0.06037891283631325, -0.056620389223098755, 0.048397380858659744, 0.0265060905367136, -0.011838788166642189, 0.061092980206012726, 0.11681586503982544, -0.08075397461652756, -0.06124573573470116, 0.04196297004818916, -0.011116690933704376, -0.09125827997922897, 0.029229769483208656, 0.09571956843137741, 0.008674654178321362, 0.06536509096622467, -0.06151719391345978, 0.04758361726999283, -0.032190632075071335, -0.04891016334295273, -0.0388261042535305, 0.03890794888138771, 0.050583433359861374, 0.01391049288213253, 0.09151680767536163, -0.0432412326335907, -0.017512483522295952, -0.004594466648995876, -0.06654912233352661, 0.06908407062292099, -0.1029525026679039, -0.027362966910004616, 0.01492498628795147, -0.018099170178174973, -0.0391511470079422, 0.1704609990119934, -1.2645243827752475e-32, 0.030718589201569557, 0.064812071621418, -0.10386038571596146, -0.07194741070270538, -0.04380703717470169, -0.036655597388744354, 0.044065408408641815, -0.11053098738193512, 0.0877067893743515, -0.047765083611011505, -0.019147107377648354, -0.017221039161086082, -0.08039765059947968, 0.024541771039366722, -0.06735701858997345, -0.03213687241077423, -0.005876357201486826, -0.06239563971757889, -0.03752165287733078, -0.0046770088374614716, -0.009878052398562431, 0.017760761082172394, -0.010396338999271393, -0.07046385109424591, -0.037278492003679276, 0.013475928455591202, 0.06845571845769882, -0.0553271509706974, -0.02732148766517639, 0.020480703562498093, -0.0005321331555023789, -0.008142350241541862, 0.09291994571685791, 0.08131841570138931, -0.03842318803071976, -0.04831849783658981, -0.03908119723200798, 0.022072795778512955, -0.07923323661088943, -0.04667432978749275, 0.06084785982966423, 0.01819680444896221, -0.020545002073049545, 0.0143116544932127, 0.024792950600385666, 0.13169513642787933, 0.009881190955638885, 0.04111574590206146, -0.01229240745306015, -0.006517310161143541, -0.022962968796491623, -0.03500960394740105, -0.03699967637658119, -0.041650932282209396, 0.09484764188528061, -0.056551434099674225, 0.119623102247715, -0.06955525279045105, 0.07585378736257553, 0.007625706028193235, -0.023669345304369926, 0.02476838044822216, 0.07550445199012756, 0.056798115372657776, 0.05947320535778999, 0.04274357482790947, -0.02454219199717045, -0.005270673427730799, -0.034606147557497025, -0.006725671701133251, -0.029139358550310135, 0.0922180712223053, -0.029702505096793175, -0.08645343035459518, 0.10862506926059723, 0.04013806954026222, -0.09786036610603333, 0.0645463764667511, -0.03487667441368103, -0.011244588531553745, -0.100956492125988, -0.022869402542710304, 0.02115548402070999, -0.07069917023181915, -0.07128919661045074, -0.018644491210579872, 0.0857723206281662, 0.05516389384865761, 0.012043050490319729, -0.05858984589576721, 0.053859129548072815, -0.030568063259124756, 0.11490702629089355, 0.04931528866291046, 0.1003585159778595, 9.113540111000023e-32, -0.00596983078867197, -0.041173938661813736, -0.0896664708852768, 0.045730218291282654, 0.016795461997389793, -0.013356941752135754, -0.02310298942029476, 0.061707764863967896, -0.0441833920776844, -0.01697079837322235, 0.01832638494670391, 0.05848870798945427, -0.0483689084649086, 0.031630922108888626, -0.038137566298246384, -0.031002400442957878, -0.040210824459791183, 0.034391600638628006, -0.03357194364070892, 0.019411815330386162, -0.0020967121236026287, -0.017218003049492836, -0.07303515076637268, 0.04930021986365318, 0.008687743917107582, 0.10737766325473785, -0.04207773879170418, 0.010640697553753853, 0.011381508782505989, 0.029841147363185883, 0.10252171754837036, -0.08324283361434937, -0.06057284399867058, -0.12027350813150406, 0.04881671816110611, 0.08874811977148056, 0.053319092839956284, -0.009111903607845306, 0.03395700082182884, -0.032496076077222824, -0.004964937921613455, 0.025343583896756172, -0.0616973377764225, 0.06711775809526443, 0.02807638980448246, -0.06276576220989227, -0.013980462215840816, -0.03999779745936394, 0.017475048080086708, -0.05610058456659317, -0.05955260246992111, 0.045356251299381256, -0.03034113347530365, -0.014500215649604797, 0.019357191398739815, -0.09122999012470245, -0.0119178406894207, 0.014888395555317402, 0.03068239800632, -0.014616918750107288, 0.006425768136978149, 0.04084131494164467, -0.03903616592288017, -0.048172954469919205 ]
41 Equations and inequalities 3.2 Quadratic simultaneous equations You need to be able to solve simultaneous equations where one equation is linear and one is quadratic. To solve simultaneous equations involving one linear equation and one quadratic equation, you need to use a substitution method from the linear equation into the quadratic equation. β–  Simultaneous equations with one linear and one quadratic equation can hav e up to two pairs of solutions. You need to make sure the solutions are paired correctly. The solutions to this pair of simultaneous equations are x = 4, y = –3 and x = 5.5, y = –1.5. x – y = 7 (1) y2 + xy + 2x = 5 (2)4 – (–3) = 7 βœ“ and 5.5 – (–1.5) = 7 βœ“ (–3)2 + (4)(–3) + 2(4) = 9 – 12 + 8 = 5 βœ“ and (–1.5)2 + (5.5)(– 1.5) + 2(5.5) = 2.25 – 8.25 + 11 = 5 βœ“ Example 3 Solve the simultaneous equations: x + 2y = 3 x2 + 3xy = 10 x + 2 y = 3 (1) x2 + 3 xy = 10 (2) x = 3 βˆ’ 2 y (3 βˆ’ 2 y)2 + 3y(3 βˆ’ 2 y) = 10 9 βˆ’ 12 y + 4 y2 + 9 y βˆ’ 6 y2 = 10 βˆ’2y2 βˆ’ 3y βˆ’ 1 = 0 2y2 + 3y + 1 = 0 (2y + 1)( y + 1) = 0 y = βˆ’ 1 __ 2 or y = βˆ’ 1 So x = 4 or x = 5 Solutions are x = 4, y = βˆ’ 1 __ 2 and x = 5, y = βˆ’ 1.Rearrange linear equation (1) to get x = … or y = … (here x = …). Substitute this into quadratic equation (2) (here in place of x ). Solve for y using factorisation. Find the corresponding x-values by substituting the y-values into linear equation (1), x = 3 – 2y. There are two solution pairs for x and y.The quadratic equation can contain terms involving y 2 and xy. (3 βˆ’ 2 y)2 means (3 βˆ’ 2 y)(3 βˆ’ 2 y) ← Section 1.2 1 Solve the simultaneous equations: a x + y = 11 b 2x + y = 1 c y = 3x xy = 30 x2 + y2 = 1 2y2 βˆ’ xy = 15 d 3a + b = 8 e 2u + v = 7 f 3x + 2y = 7 3a2 + b2 = 28 uv = 6 x2 + y = 8 2 Solve the simultaneous equa tions: a 2x + 2y = 7 b x + y = 9 c 5y βˆ’ 4x = 1 x2 βˆ’ 4y2 = 8 x2 βˆ’ 3xy + 2y2 = 0 x2 βˆ’ y2 + 5x = 41Exercise 3B
[ 0.07885614037513733, 0.05659138038754463, 0.057167209684848785, -0.004681245423853397, -0.049302250146865845, 0.00618823291733861, -0.05632118508219719, -0.0140976682305336, -0.08857925236225128, 0.028829822316765785, -0.017571184784173965, -0.04615102335810661, 0.04656057059764862, 0.05875536799430847, 0.06456975638866425, 0.006826643366366625, -0.04925213009119034, -0.02271907776594162, -0.05795888602733612, -0.017331605777144432, 0.014566246420145035, -0.11033613979816437, -0.11974731832742691, -0.03580808266997337, 0.034459829330444336, -0.0326421856880188, -0.08563488721847534, -0.058599650859832764, -0.019945302978157997, 0.06690485030412674, 0.05370859429240227, -0.0048831794410943985, 0.019181882962584496, -0.020501969382166862, 0.04490178823471069, -0.05273580551147461, 0.11094965040683746, 0.08098725974559784, -0.012604677118360996, -0.09286810457706451, 0.0007593210902996361, -0.011261940002441406, -0.04785063490271568, -0.013782587833702564, -0.020473549142479897, -0.031794555485248566, -0.0024559814482927322, -0.0521608367562294, 0.08783842623233795, 0.007285137660801411, 0.023527322337031364, -0.006290798541158438, 0.0036668137181550264, 0.06303824484348297, -0.03166242688894272, -0.03946222364902496, -0.019611719995737076, -0.014178008772432804, -0.05513133481144905, 0.04634832218289375, 0.056277744472026825, 0.010442441329360008, -0.009657753631472588, 0.055680640041828156, 0.035744618624448776, 0.054313331842422485, 0.06025032699108124, 0.026752708479762077, -0.03802650794386864, 0.1253097504377365, -0.06923732161521912, -0.004804571159183979, -0.03323907405138016, -0.037200964987277985, 0.017630919814109802, 0.019483597949147224, -0.021991340443491936, -0.0227045938372612, -0.03645046800374985, -0.01977798342704773, 0.051948145031929016, 0.0682549849152565, 0.032887984067201614, -0.02401134744286537, -0.02825133502483368, -0.09612227231264114, 0.03213224187493324, 0.12034284323453903, -0.026298558339476585, 0.06951598823070526, 0.007597736082971096, 0.015756793320178986, 0.019914239645004272, -0.030956171452999115, 0.029780887067317963, -0.11389071494340897, 0.05395098403096199, 0.004143886733800173, -0.009736322797834873, -0.005816692020744085, -0.013807401061058044, -0.14447809755802155, 0.023479187861084938, -0.03266626596450806, 0.023365125060081482, 0.03006548434495926, 0.04373988136649132, -0.035787392407655716, -0.006850617006421089, -0.030702024698257446, -0.023543156683444977, -0.07074416428804398, 0.03173381835222244, 0.025150461122393608, 0.011249377392232418, 0.00026239381986670196, 0.03537415340542793, -0.0007466479437425733, 0.050488632172346115, -0.11691928654909134, -0.04984521120786667, 0.0015176758170127869, 0.1122056245803833, -0.07239988446235657, -0.028988109901547432, 0.009472387842833996, -0.040022023022174835, 0.012385686859488487, -0.05725031718611717, -0.07431506365537643, -0.0029652088414877653, -0.07682125270366669, -0.053951479494571686, -0.08975676447153091, -0.0027330329176038504, 0.008703555911779404, -0.043550215661525726, 0.05602674558758736, 0.004051836673170328, -0.052447739988565445, -0.020657097920775414, -0.005074166692793369, 0.07733680307865143, 0.04039175808429718, 0.025607846677303314, 0.013946348801255226, -0.0021594318095594645, 0.03391926735639572, -0.036022596061229706, -0.018635429441928864, -0.04079873859882355, 0.021594172343611717, 0.0439126081764698, 0.10297287255525589, -0.0005025556311011314, -0.05994708836078644, -0.03827830031514168, 0.024882882833480835, -0.02709893323481083, 0.007929167710244656, -0.06304977834224701, 0.040804423391819, 0.00538818072527647, 0.02238488756120205, -0.025186022743582726, 0.03177279978990555, -0.03396657481789589, 0.033892951905727386, -0.002185855759307742, -0.059635091572999954, 0.028106365352869034, 0.0065126679837703705, 0.006561689544469118, 0.07340524345636368, -0.03202233463525772, -0.02011093683540821, 0.045704517513513565, -0.006319915875792503, -0.07265423238277435, 0.06413765251636505, -0.011753399856388569, -0.08491060137748718, -0.002936922013759613, 0.014867444522678852, 0.08362387120723724, -0.047417860478162766, 0.051266442984342575, -0.02545197866857052, -0.06878484785556793, -0.06411182135343552, -0.006998714525252581, -0.11500181257724762, 0.08032193779945374, 0.11314025521278381, -0.06795123964548111, -0.04690742492675781, 0.04198083654046059, 0.026559697464108467, -0.07052003592252731, -0.03270535171031952, 0.030381012707948685, -0.043880660086870193, 0.07742898911237717, -0.004939236678183079, 0.045173320919275284, -0.0036360621452331543, -0.0502643808722496, 0.017972053959965706, 0.022815318778157234, 0.023722346872091293, -0.017356786876916885, 0.04997055232524872, -0.0332082137465477, -0.027361515909433365, -0.04603493958711624, -0.06651298701763153, 0.029770854860544205, -0.019898822531104088, -0.051643211394548416, 0.04554225131869316, -0.08376877009868622, 0.029696399345993996, 0.0964142307639122, -6.899265075775926e-33, -0.027311069890856743, 0.03809824213385582, -0.09811990708112717, -0.040876805782318115, -0.03532073646783829, 0.04725568741559982, 0.05804508179426193, -0.10789445787668228, 0.04553118720650673, 0.0077656228095293045, 0.09167088568210602, -0.03271155804395676, -0.011215167120099068, 0.04298416152596474, -0.03337428346276283, -0.05310097336769104, -0.044243473559617996, -0.042112819850444794, 0.012218808755278587, -0.07160775363445282, 0.05479820817708969, 0.01361236535012722, 0.011045274324715137, -0.008977225981652737, -0.049078963696956635, 0.04036327451467514, 0.06631842255592346, -0.01778828538954258, -0.033684514462947845, 0.06764334440231323, -0.009519864805042744, -0.042501673102378845, 0.043501075357198715, -0.009710734710097313, 0.0049457126297056675, -0.07256413996219635, -0.08417593687772751, -0.06488185375928879, 0.06309521943330765, -0.06550033390522003, 0.020909970626235008, 0.01474351342767477, 0.0696864053606987, 0.01464514434337616, 0.03144411742687225, 0.057695917785167694, 0.01970682106912136, 0.02858278900384903, 0.010161240585148335, -0.006811731494963169, 0.00600891187787056, -0.003387881675735116, -0.05930638313293457, -0.01143110916018486, 0.07167886942625046, -0.09546222537755966, 0.043695755302906036, 0.008045020513236523, 0.04174099490046501, 0.00295963860116899, 0.05460069701075554, -0.06349247694015503, 0.1524471640586853, 0.04139282554388046, -0.057572633028030396, 0.050233665853738785, 0.04833812266588211, -0.029369577765464783, 0.0855950340628624, 0.041213806718587875, -0.022121040150523186, -0.012526188977062702, -0.014493091031908989, -0.00883173756301403, -0.05846511945128441, 0.02872365340590477, -0.10281446576118469, 0.10064180195331573, 0.07927582412958145, -0.036876484751701355, -0.08935610949993134, 0.08884432911872864, -0.03817280754446983, -0.011873848736286163, -0.13715042173862457, -0.00036865356378257275, 0.03812357410788536, 0.052835963666439056, 0.023884115740656853, 0.00005277455784380436, -0.0013014065334573388, 0.027677439153194427, 0.032477833330631256, -0.03810715302824974, 0.03297796845436096, 6.533586268713581e-32, -0.0515788309276104, 0.049585290253162384, -0.07467896491289139, 0.0280567966401577, -0.04484289884567261, 0.011019525118172169, -0.02269328385591507, 0.05836138129234314, 0.006233301945030689, -0.024239901453256607, 0.04306543245911598, 0.0222253929823637, -0.11846182495355606, -0.004570875782519579, -0.07635747641324997, 0.023709053173661232, -0.02162577211856842, 0.026619771495461464, -0.03643948957324028, 0.002120052929967642, 0.008460703305900097, 0.03875095397233963, -0.0628901794552803, 0.04684092104434967, 0.02397746406495571, 0.07217726856470108, -0.08610492199659348, -0.0018822127021849155, 0.0011856741039082408, -0.004983109887689352, 0.07733814418315887, -0.02209615148603916, -0.030479026958346367, -0.06741651147603989, 0.12698668241500854, 0.017916785553097725, -0.028562217950820923, -0.016093960031867027, -0.005982828326523304, -0.01885395310819149, 0.012535101734101772, -0.013042014092206955, -0.03911222517490387, 0.012301156297326088, -0.008219012059271336, -0.03785262629389763, 0.061406459659338, -0.14133624732494354, 0.0814872458577156, -0.011930490843951702, -0.007877582684159279, 0.1493261456489563, 0.02521989867091179, 0.07671355456113815, 0.0008233148255385458, -0.049381323158741, -0.004764402285218239, -0.020155178382992744, 0.055188506841659546, -0.010926290415227413, -0.006061541847884655, 0.056166402995586395, -0.052570875734090805, -0.07054128497838974 ]
42 Chapter 3 3 Solve the simultaneous equa tions, giving your answers in their simplest surd form: a x βˆ’ y = 6 b 2x + 3y = 13 xy = 4 x2 + y2 = 78 4 Solve the simultaneous equa tions: x + y = 3 x2 βˆ’ 3y = 1 (6 marks) 5 a By eliminating y from the equations y = 2 βˆ’ 4x 3x2 + xy + 11 = 0 show that x2 βˆ’ 2x – 11 = 0. (2 marks) b Hence, or otherwise, solv e the simultaneous equations y = 2 βˆ’ 4x3x 2 + xy + 11 = 0 giving your answers in the form a Β± b βˆšβ€―__ 3 , where a and b are integers. (5 marks) 6 One pair of solutions for the sim ultaneous equations y = kx βˆ’ 5 4x2 βˆ’ xy = 6 is (1, p) where k and p are constants. a Find the values of k and p. b Find the second pair of solutions for the sim ultaneous equations. Use b rackets when you are substituting an expression into an equation.Watch out E/P E/P P If (1, p ) is a solution, then x = 1, y = p satisfies both equations.Problem-solving 3.3 Simultaneous equations on graphs You can represent the solutions of simultaneous equations graphically. As every point on a line or curve satisfies the equation of that line or curve, the points of intersection of two lines or curves satisfy both equations simultaneously. β–  The solutions to a pair o f simultaneous equations represent the points of intersection of their graphs. Example 4 a On the same axes, dr aw the graphs of: 2x + 3y = 8 3x βˆ’ y = 23 b Use your gra ph to write down the solutions to the simultaneous equations.y βˆ’ x = k x2 + y2 = 4 Given that the simultaneous equations have exactly one pair of solutions, show that k = Β± 2 βˆšβ€―__ 2 Challenge
[ -0.030257467180490494, 0.06690631061792374, -0.021385326981544495, -0.003663928946480155, 0.002427809638902545, 0.07640144973993301, -0.05000953748822212, -0.06251165270805359, -0.047105174511671066, 0.01979554072022438, 0.013548335991799831, -0.015795789659023285, 0.014371208846569061, -0.011928093619644642, 0.004659866448491812, -0.019681574776768684, -0.06623052060604095, 0.004867959767580032, -0.0756194144487381, -0.047789718955755234, 0.011118139140307903, -0.07260891795158386, -0.042848192155361176, -0.021981095895171165, 0.03463199734687805, 0.0029026095289736986, 0.01871352642774582, -0.0120852617546916, -0.0025330856442451477, -0.04630361497402191, 0.06246745586395264, 0.025720441713929176, 0.037364620715379715, 0.006338002160191536, 0.04343411698937416, 0.033486414700746536, 0.07602721452713013, 0.0041077109053730965, -0.0373428650200367, -0.13746525347232819, -0.10369569808244705, -0.031014584004878998, -0.07704026252031326, 0.021206336095929146, 0.010678235441446304, -0.029591837897896767, -0.08213696628808975, 0.0638946145772934, 0.037763964384794235, -0.019303489476442337, 0.03175395354628563, -0.08108044415712357, -0.040392812341451645, 0.0076557728461921215, 0.015869762748479843, -0.030569542199373245, -0.012069858610630035, 0.05567822977900505, -0.06706707924604416, 0.019856316968798637, 0.0012759367236867547, 0.006264825817197561, -0.030136171728372574, 0.029682941734790802, 0.022262753918766975, 0.047285325825214386, 0.027909161522984505, -0.04900800809264183, -0.01094694435596466, 0.06344098597764969, -0.012218482792377472, 0.048101261258125305, -0.08482590317726135, -0.025739187374711037, 0.07175230234861374, 0.024492990225553513, -0.042959023267030716, -0.037563174962997437, -0.0024897565599530935, 0.0033739949576556683, -0.05692591518163681, -0.04897579550743103, 0.07703618705272675, 0.06770383566617966, 0.052406419068574905, -0.014704429544508457, -0.02515191026031971, -0.009347097016870975, 0.0324990339577198, -0.0164207573980093, 0.04748851805925369, -0.027833377942442894, -0.0184440016746521, -0.08399638533592224, 0.007449572905898094, -0.08366513252258301, 0.02631857432425022, -0.022977501153945923, 0.049013059586286545, 0.11160010099411011, 0.037632837891578674, -0.028795188292860985, 0.014416595920920372, 0.0011808226117864251, -0.036538321524858475, -0.0007686868775635958, 0.038318194448947906, -0.06813780963420868, 0.08159442991018295, -0.06426740437746048, -0.04447891563177109, -0.11788489669561386, 0.06362730264663696, -0.00012266983685549349, 0.01410478726029396, 0.004598954692482948, 0.03388373553752899, -0.01302777137607336, 0.007793736644089222, -0.1545029729604721, -0.00562002370133996, -0.02646828070282936, 0.10506892204284668, -0.011363314464688301, -0.027467798441648483, -0.052004385739564896, -0.050131626427173615, -0.02065601386129856, -0.0512242391705513, -0.05607250705361366, 0.011026224121451378, -0.06132955849170685, -0.09393038600683212, -0.04148603603243828, -0.015348488464951515, 0.06413030624389648, -0.009658103808760643, 0.06055288389325142, 0.002245992887765169, -0.08540178090333939, -0.00884126964956522, 0.060491666197776794, 0.022535277530550957, -0.04581421613693237, 0.0012185333762317896, 0.01066227350383997, -0.010822591371834278, 0.029503874480724335, -0.00457953754812479, 0.031006567180156708, 0.014416069723665714, -0.025861645117402077, 0.023349594324827194, 0.08497545123100281, -0.03426796570420265, -0.05934185907244682, -0.04736551642417908, -0.06353653967380524, -0.01943952590227127, -0.009836984798312187, -0.02417881414294243, 0.03444117307662964, -0.031289976090192795, 0.10646317154169083, 0.06195548176765442, 0.03841327875852585, -0.0017648482462391257, 0.04062923416495323, -0.04364805296063423, 0.0002890364557970315, 0.03742494434118271, 0.0224235188215971, -0.00878384243696928, 0.11265326291322708, 0.01998770236968994, -0.015670452266931534, 0.11748524755239487, -0.03535139560699463, -0.028691044077277184, 0.05300132930278778, 0.007513800635933876, -0.09750872105360031, 0.008593122474849224, -0.00036358271609060466, 0.018791163340210915, -0.02610965631902218, -0.04375504329800606, 0.04400219768285751, -0.0832885131239891, 0.035130277276039124, 0.01741233468055725, -0.040388450026512146, 0.005811304319649935, 0.09837985783815384, -0.05285875126719475, -0.03918321058154106, 0.018024450168013573, -0.029382238164544106, -0.11536365747451782, 0.03793942183256149, 0.08712729811668396, 0.008024899289011955, 0.07171221822500229, -0.035155899822711945, 0.10464364290237427, -0.04862397909164429, -0.0742819756269455, -0.006007663905620575, 0.027975672855973244, 0.048318784683942795, 0.02122998796403408, 0.04041239246726036, -0.04573523625731468, 0.01813872717320919, 0.0022374752443283796, -0.08640247583389282, 0.0020272270776331425, -0.10041414201259613, -0.01966911181807518, -0.030689634382724762, 0.017220284789800644, -0.046814825385808945, 0.1347687542438507, -1.119318871696032e-32, 0.029829220846295357, 0.03557556867599487, -0.13713502883911133, -0.0503922700881958, -0.03763125464320183, -0.025526411831378937, 0.08243688941001892, -0.07948300987482071, 0.0694209411740303, -0.009690893813967705, 0.005332105793058872, -0.010323400609195232, -0.014294382184743881, 0.006194583605974913, 0.014580841176211834, -0.027489956468343735, 0.0005095392116345465, -0.08460430800914764, 0.039050839841365814, -0.01901286467909813, -0.020923033356666565, -0.008971228264272213, -0.006846135016530752, -0.04931070655584335, -0.017186004668474197, 0.008931072428822517, 0.10562966763973236, -0.08918504416942596, -0.03832247108221054, -0.002590552903711796, -0.022875718772411346, -0.048196855932474136, 0.09361130744218826, 0.040295906364917755, -0.0495256669819355, -0.01884479820728302, -0.02813158743083477, 0.004744020756334066, -0.021554308012127876, -0.04207026585936546, 0.10406932234764099, 0.02636674977838993, 0.0022979688365012407, 0.005699636414647102, 0.01585538685321808, 0.11010192334651947, 0.037569865584373474, 0.03777459263801575, -0.03695311397314072, -0.012144411914050579, -0.04657077416777611, -0.0686921551823616, -0.03500688076019287, 0.008717350661754608, 0.09012103080749512, -0.09589873254299164, 0.07442554086446762, -0.0908048078417778, 0.07811840623617172, 0.027718808501958847, 0.03331940621137619, 0.018024981021881104, 0.0723806843161583, 0.07251822203397751, 0.08987950533628464, 0.02094224840402603, -0.01448532473295927, -0.03172977641224861, 0.04082993045449257, 0.008420011959969997, -0.034509073942899704, 0.06400419026613235, -0.05971486493945122, -0.1081719845533371, 0.05698017030954361, 0.034335359930992126, -0.07564667612314224, 0.08873516321182251, -0.009156512096524239, -0.06697532534599304, -0.11907578259706497, 0.006106184795498848, -0.014945929870009422, -0.03577883541584015, -0.06459931284189224, 0.0415368378162384, 0.10804901272058487, 0.026835493743419647, 0.05163033306598663, -0.04615654796361923, 0.0646052360534668, 0.02270897477865219, 0.01952369697391987, -0.022010790184140205, 0.09581802040338516, 9.53149829463122e-32, -0.02990291640162468, -0.01633342355489731, -0.061360690742731094, -0.004711095243692398, 0.05470295250415802, 0.04060721769928932, -0.015161584131419659, 0.04872851073741913, -0.03202174976468086, 0.00380685948766768, 0.01901770941913128, 0.004239153582602739, -0.09810809791088104, -0.002068605972453952, -0.019759373739361763, -0.04743720591068268, -0.07498975098133087, 0.03333960473537445, -0.007595133502036333, -0.014621390029788017, 0.030270816758275032, 0.009655473753809929, -0.020164847373962402, 0.10876704007387161, 0.0018877635011449456, 0.06570678949356079, -0.0727575495839119, -0.022508760914206505, -0.01927832141518593, -0.04739731177687645, 0.11579548567533493, -0.08144824206829071, -0.055780671536922455, -0.08279140293598175, -0.00814548134803772, 0.04970204457640648, 0.03414192423224449, -0.006417971104383469, 0.004742415156215429, 0.00678605679422617, -0.03406820446252823, 0.0164172425866127, -0.04864680394530296, 0.10828877985477448, 0.05448126420378685, -0.03111041896045208, -0.01119802612811327, -0.04488302394747734, 0.03530513867735863, -0.08133787661790848, -0.06497304141521454, 0.008182680234313011, -0.021630752831697464, 0.01921352930366993, -0.003008358646184206, -0.07106002420186996, -0.06483352184295654, 0.05372321233153343, 0.03617971017956734, -0.001292782137170434, -0.019238868728280067, 0.06274963915348053, -0.05604943633079529, -0.053204379975795746 ]
43 Equations and inequalities a –2 –/four.ss01 /four.ss01 8 2 6y x123/four.ss01 –1 –2 –3 –/four.ss012x + 3 y = 8 3x – y = 23O b The solution is (7, βˆ’2) or x = 7, y = βˆ’2.The point of intersection is the solution to the simultaneous equations 2x + 3y = 8 3x – y = 23 This solution matches the algebraic solution to the simultaneous equations. Example 5 a On the same axes, dr aw the graphs of: 2x + y = 3 y = x2 βˆ’ 3x + 1 b Use your gra ph to write down the solutions to the simultaneous equations. a y x –1–2–11 234 5 –31 O23456 (–1, 5) (2, –1) –2–3y = x2 – 3x + 1 2x + y = 3 b The solutions are ( βˆ’1, 5 ) or x = βˆ’ 1, y = 5 and (2, βˆ’ 1) or x = 2, y = βˆ’ 1.There are two solutions. Each solution will have an x-value and a y-value. Check your solutions by substituting into both equations. 2(βˆ’1) + (5) = βˆ’2 + 5 = 3 βœ“ and 5 = (βˆ’1)2 – 3(βˆ’1) + 1 = 1 + 3 + 1 = 5 βœ“ 2(2) + (βˆ’1) = 4 βˆ’ 1 = 3 βœ“ and βˆ’1 = (2) 2 – 3(2) + 1 = 4 βˆ’ 6 + 1 = βˆ’1 βœ“ The graph of a linear equation and the graph of a quadratic equation can either: β€’ intersect twice β€’ intersect once β€’ not intersect Aft er substituting, you can use the discriminant of the resulting quadratic equation to determine the number of points of intersection. Find the point of intersection gr aphically using GeoGebra.Online Plot the curve and the line using Ge oGebra to find the two points of intersection.Online
[ 0.037115830928087234, 0.06332310289144516, 0.001950031379237771, 0.005138216074556112, -0.017469869926571846, -0.01303760427981615, -0.05614497885107994, -0.0004703994782175869, -0.13892047107219696, 0.0022354547400027514, 0.005433906335383654, -0.06087993085384369, 0.03243115171790123, 0.05226317420601845, -0.029501356184482574, 0.0161418654024601, -0.02660663053393364, -0.021562516689300537, -0.03929611295461655, -0.05111705884337425, -0.0416310653090477, -0.07292763143777847, -0.0718926265835762, -0.06158827245235443, 0.027280785143375397, -0.09951130300760269, -0.027733823284506798, 0.02007308043539524, 0.0024990218225866556, 0.004511643201112747, 0.09124177694320679, -0.02064722776412964, 0.05904413014650345, -0.0052481102757155895, 0.058134693652391434, -0.032850511372089386, 0.10485396534204483, 0.03673214837908745, 0.04575369134545326, -0.06502148509025574, -0.0942709743976593, -0.030053460970520973, 0.0068640438839793205, 0.04031600430607796, -0.0576457642018795, -0.0050440398044884205, -0.025035379454493523, 0.016524193808436394, 0.02503563091158867, -0.06087995320558548, 0.019653547555208206, -0.03609592467546463, 0.003133210586383939, 0.06288043409585953, 0.02107327990233898, -0.011286113411188126, -0.009015283547341824, -0.02661355957388878, -0.07815910875797272, 0.04531065747141838, 0.06110123544931412, -0.006557467393577099, -0.04077572003006935, 0.02453329600393772, -0.0043136952444911, 0.08786312490701675, 0.04901275038719177, 0.027532681822776794, -0.03182489424943924, 0.09210969507694244, -0.09781823307275772, 0.07413063198328018, -0.10573460906744003, -0.08947362005710602, 0.002950540278106928, 0.03977479785680771, -0.03806508705019951, -0.07197370380163193, -0.03437821567058563, -0.04747416079044342, -0.02619783766567707, -0.007355778943747282, 0.007721311878412962, 0.026727648451924324, -0.015136679634451866, -0.002718987874686718, 0.008996771648526192, -0.0030050622299313545, 0.015080326236784458, 0.015297789126634598, 0.004388959612697363, 0.040325965732336044, -0.0466650053858757, -0.07893247902393341, 0.05370026081800461, -0.14279372990131378, 0.0401739627122879, -0.028986159712076187, 0.0016704773297533393, 0.09876807034015656, 0.009908360429108143, -0.021092489361763, 0.026416007429361343, -0.0027740197256207466, 0.049834996461868286, 0.059601299464702606, 0.028067123144865036, -0.040238846093416214, 0.027413461357355118, -0.02508968487381935, -0.0442110076546669, -0.09587180614471436, 0.005925741046667099, 0.044746775180101395, -0.000694597139954567, 0.011486000381410122, 0.08408433198928833, -0.025528065860271454, 0.0173252671957016, -0.06059449538588524, -0.033364150673151016, -0.012846432626247406, 0.08818577229976654, -0.05389238893985748, -0.03474396839737892, 0.024406248703598976, -0.06342349201440811, 0.02791607938706875, 0.029117686673998833, -0.07216296344995499, -0.004217939916998148, -0.05871737748384476, -0.0062919436022639275, -0.03683170676231384, -0.03830704092979431, -0.03337675705552101, -0.056408174335956573, 0.06647118180990219, 0.01913507841527462, -0.05091678723692894, -0.0046080308966338634, 0.05416615307331085, 0.061099547892808914, 0.004667969420552254, 0.026441533118486404, 0.030688337981700897, -0.11710447818040848, 0.05626436695456505, -0.05666052922606468, 0.005601630080491304, 0.009077566675841808, -0.04550018534064293, 0.026950955390930176, 0.1237383559346199, -0.050130825489759445, -0.03184672072529793, 0.006344825029373169, -0.018043965101242065, -0.026482341811060905, 0.029762418940663338, -0.05066356807947159, 0.05203042924404144, -0.0019198567606508732, 0.05471689999103546, 0.06411837041378021, 0.005301678087562323, -0.017158187925815582, 0.040619730949401855, 0.004518560599535704, 0.01995290443301201, 0.015451956540346146, 0.06483259797096252, -0.013433714397251606, 0.07098958641290665, -0.044225793331861496, 0.0005771871074102819, 0.09347432851791382, -0.018390655517578125, -0.07788147032260895, 0.09710042178630829, 0.011304507032036781, -0.09047242999076843, -0.007937529124319553, -0.01025001797825098, -0.03501478582620621, 0.0013259036932140589, 0.0182577483355999, -0.013418447226285934, -0.06978146731853485, 0.041774675250053406, -0.03828975558280945, -0.14474919438362122, 0.015902450308203697, 0.09990396350622177, -0.1118309423327446, -0.009448208846151829, 0.01550876535475254, 0.003070442471653223, -0.0736331194639206, 0.020995480939745903, 0.05351957678794861, 0.013168809935450554, 0.00648913998156786, -0.04311021789908409, 0.024903731420636177, 0.019206702709197998, -0.05274020880460739, 0.05243055149912834, 0.010957368649542332, -0.010075705125927925, -0.009461614303290844, 0.04003866761922836, -0.057225003838539124, -0.04769653454422951, 0.02810038812458515, -0.07247260957956314, 0.04484901577234268, -0.08779288083314896, -0.1177164614200592, 0.0075523206032812595, -0.036604009568691254, 0.005705088376998901, 0.08608844131231308, -8.859346069790426e-33, -0.03365713730454445, -0.011369304731488228, -0.05850227177143097, -0.06810428947210312, -0.027606559917330742, -0.0032158216927200556, 0.07958121597766876, -0.058457084000110626, 0.042836565524339676, 0.0015699242940172553, 0.13579443097114563, -0.016309797763824463, -0.035172369331121445, 0.04426712170243263, -0.027796881273388863, -0.10678227245807648, -0.00014810136053711176, -0.032815489917993546, 0.0025303650181740522, -0.01844802498817444, 0.0505080372095108, -0.010058867745101452, 0.029157595708966255, -0.025229087099432945, -0.019972065463662148, 0.041484370827674866, 0.04018683359026909, -0.09510333091020584, -0.0458657331764698, 0.052067458629608154, 0.016659505665302277, -0.045593198388814926, 0.06343907117843628, 0.03199915215373039, -0.00923380721360445, -0.04333742335438728, -0.07505423575639725, -0.07874405384063721, 0.08774296939373016, -0.07991417497396469, 0.060236506164073944, 0.03874499350786209, 0.11363472789525986, 0.04267598316073418, 0.0167548805475235, 0.06276245415210724, -0.00480589410290122, 0.05700599029660225, 0.010760550387203693, -0.0069623845629394054, 0.01684490405023098, -0.05905939266085625, -0.01401445735245943, -0.011426667682826519, 0.11286281049251556, -0.07180260866880417, 0.02700810320675373, -0.03083532117307186, 0.04523467272520065, 0.01594337448477745, 0.07592202723026276, -0.05604355409741402, 0.0814887061715126, 0.012781203724443913, -0.017615262418985367, 0.014978744089603424, -0.002880845917388797, -0.08880151063203812, 0.054894767701625824, 0.013859109953045845, 0.003652293235063553, -0.03231325000524521, -0.09329777956008911, -0.05555271357297897, -0.036526236683130264, -0.014923526905477047, -0.007006427738815546, 0.11384934186935425, 0.10259050130844116, -0.07071132212877274, -0.1245514526963234, 0.07985278218984604, -0.02507973276078701, -0.026167498901486397, -0.07527387887239456, 0.02354489080607891, 0.057592835277318954, 0.02423713728785515, 0.09225095808506012, -0.006037009414285421, 0.05868026614189148, 0.015595358796417713, -0.008330564014613628, -0.011775591410696507, 0.09190169721841812, 9.352491076152125e-32, 0.00027031972422264516, 0.055163852870464325, -0.04727214574813843, -0.025901658460497856, -0.025317253544926643, 0.022224370390176773, -0.027991870418190956, 0.05950583890080452, 0.05074550583958626, -0.00623953714966774, 0.0692889466881752, 0.034210167825222015, -0.10838127136230469, 0.006791748106479645, -0.02044382505118847, 0.04679187759757042, -0.011816642247140408, 0.012881830334663391, 0.0263209231197834, -0.045201897621154785, -0.07243625074625015, 0.027309896424412727, -0.018300028517842293, 0.05483793839812279, 0.05508362129330635, 0.05647331848740578, -0.06801202893257141, -0.016818203032016754, -0.007864618673920631, -0.008667710237205029, 0.08156053721904755, -0.029012663289904594, -0.03427855670452118, -0.07150956243276596, 0.10291489958763123, 0.00922730378806591, -0.09948013722896576, -0.005945151671767235, 0.003941040486097336, -0.022612079977989197, -0.007578393444418907, -0.024934586137533188, -0.03560159355401993, -0.023594580590724945, -0.003101813141256571, -0.05454380437731743, 0.02051912434399128, -0.07605066150426865, 0.014866775833070278, -0.03251953795552254, -0.06988988816738129, 0.10318145900964737, -0.032399982213974, 0.02086246758699417, -0.006066325586289167, -0.04382047802209854, -0.006725102197378874, -0.007499347906559706, 0.020713232457637787, -0.020231159403920174, -0.03338371589779854, 0.07080426812171936, -0.08221644908189774, -0.026650553569197655 ]
44 Chapter 3 β–  For a pair of simultaneous equations that produce a quadratic equation of the form ax2 + bx + c = 0: β€’ b2 – 4ac > 0 β€’ b2 – 4ac = 0 β€’ b2 – 4ac < 0 two real solutions one real solution no real solutions Example 6 The line with equation y = 2x + 1 meets the curve with equation kx2 + 2y + (k – 2) = 0 at exactly one point. Given that k is a positive constant a find the value of k b for this va lue of k, find the coordinates of the point of intersection. a y = 2x + 1 (1) kx2 + 2 y + ( k – 2) = 0 (2) kx2 + 2(2 x + 1) + ( k – 2) = 0 kx2 + 4 x + 2 + k – 2 = 0 kx2 + 4 x + k = 0 42 – 4 Γ— k Γ— k = 0 16 – 4k2 = 0 k2 – 4 = 0 (k – 2)( k + 2) = 0 k = 2 or k = βˆ’ 2 So k = 2 b 2x2 + 4 x + 2 = 0 x2 + 2x + 1 = 0 (x + 1)(x + 1) = 0 x = βˆ’1 y = 2(–1) + 1 = – 1 Point of intersection is ( –1, –1).Substitute y = 2x + 1 into equation (2) and simplify the quadratic equation. The resulting quadratic equation is in the form ax 2 + bx + c = 0 with a = k, b = 4 and c = k. Factorise the quadratic to find the values of k. The solution is k = +2 as k is a positive constant. Substitute k = +2 into the quadratic equation kx 2 + 4x + k = 0. Simplify and factorise to find the x-coordinate. Check your answer by substituting into equation (2): 2x2 + 2y = 0 2(–1)2 + 2(–1) = 2 – 2 = 0 βœ“You are told that the line meets the curve at exactly one point, so use the discriminant of the resulting quadratic. There will be exactly one solution, so b 2 – 4ac = 0.Problem-solving Substitute x = –1 into linear equation (1) to find the y-coordinate. Explore how the value of k affects the l ine and the curve using GeoGebra.Online
[ -0.04485006257891655, 0.09205262362957001, -0.035769931972026825, 0.06134475767612457, 0.014121819287538528, -0.025500737130641937, -0.05322924256324768, 0.018425868824124336, -0.05087628215551376, 0.05683095380663872, 0.03860218822956085, -0.0549909882247448, 0.031596507877111435, -0.005948805715888739, -0.01224603783339262, 0.007403403054922819, -0.061504825949668884, -0.00891040451824665, -0.07033346593379974, 0.0698840320110321, -0.02591453678905964, -0.07115235179662704, -0.06063378229737282, -0.04674253240227699, -0.01794118620455265, -0.14754129946231842, 0.023592844605445862, -0.05248173326253891, 0.01609893888235092, -0.010949681513011456, -0.01886645331978798, 0.06475845724344254, 0.031807731837034225, 0.08594445884227753, 0.07398304343223572, -0.0021134186536073685, 0.06022511050105095, 0.04790439084172249, 0.06759929656982422, -0.12235043197870255, -0.002258838852867484, 0.00486533110961318, -0.05521582067012787, 0.0005779452039860189, 0.07540455460548401, -0.01946215331554413, -0.029963294044137, -0.05383003130555153, 0.06538918614387512, -0.04451074078679085, -0.0021423192229121923, -0.04930969700217247, -0.1266181766986847, 0.03854083642363548, 0.013192063197493553, 0.050964150577783585, -0.06383631378412247, 0.026685234159231186, -0.008871674537658691, 0.11056248098611832, 0.07257723808288574, -0.0013198017841205, 0.06498946994543076, 0.08063632994890213, 0.02260417863726616, -0.015195133164525032, 0.04135485365986824, 0.021021509543061256, -0.0023457405623048544, 0.04833446443080902, -0.07592055201530457, -0.015671344473958015, -0.012079905718564987, -0.01890672743320465, 0.03997495397925377, -0.011535377241671085, -0.045446526259183884, 0.004799364600330591, 0.03997408226132393, -0.016367968171834946, 0.03621765226125717, -0.03310887888073921, 0.09553315490484238, -0.03372068330645561, -0.014172466471791267, -0.025359561666846275, 0.03156488016247749, -0.01852743700146675, 0.08718830347061157, 0.00025504574296064675, 0.019657090306282043, 0.01299175713211298, -0.021961161866784096, -0.08520989120006561, 0.006914460565894842, -0.09320630133152008, 0.03602549433708191, -0.016253063455224037, 0.03721698746085167, 0.10904137790203094, 0.022995853796601295, -0.03441396728157997, -0.05298488959670067, 0.07566551864147186, 0.047535043209791183, 0.02722618356347084, 0.016947763040661812, -0.007495904807001352, 0.05697058513760567, 0.011408462189137936, -0.035193853080272675, -0.03601106256246567, -0.011067972518503666, 0.02967967838048935, 0.07353797554969788, 0.027100341394543648, 0.11217297613620758, -0.02428516373038292, 0.014423801563680172, -0.11815725266933441, -0.044834017753601074, -0.05701807886362076, 0.05588376894593239, -0.09829495847225189, -0.04862280189990997, -0.03783600404858589, 0.008094132877886295, -0.037514761090278625, -0.03712870925664902, -0.042359013110399246, 0.04237712547183037, -0.032077137380838394, -0.06051404029130936, -0.03495466336607933, 0.020436448976397514, 0.014918370172381401, -0.042738743126392365, 0.08576022833585739, -0.0034564274828881025, -0.10044784843921661, 0.018837343901395798, 0.07514132559299469, 0.012062404304742813, 0.04236486554145813, -0.0037935010623186827, 0.025055957958102226, -0.05018918216228485, -0.06399860233068466, -0.028618039563298225, 0.015237228013575077, 0.002226660493761301, -0.0128296734765172, 0.01767374947667122, 0.07514485716819763, 0.013203647918999195, -0.02753787487745285, -0.046443793922662735, -0.05784681811928749, 0.00932876393198967, 0.0507470928132534, -0.05740824714303017, 0.04830123111605644, -0.06131555140018463, 0.017948653548955917, -0.02107829414308071, 0.02168142981827259, -0.02509891428053379, 0.06470304727554321, 0.016578136011958122, 0.05089733004570007, 0.046475596725940704, 0.06248316168785095, 0.025625940412282944, 0.05162801221013069, -0.01908484473824501, 0.023833859711885452, 0.07129321247339249, 0.051131635904312134, 0.00024519156431779265, 0.02307569980621338, -0.028587326407432556, -0.01919618621468544, 0.00949010904878378, 0.014664262533187866, 0.0231813695281744, -0.021906699985265732, 0.0437747947871685, -0.02482456900179386, -0.032104335725307465, 0.02936258353292942, -0.016581885516643524, -0.06045972928404808, -0.053484782576560974, 0.03988203406333923, -0.12471953779459, -0.022608233615756035, 0.020549112930893898, -0.011876932345330715, -0.03947748243808746, 0.002153558423742652, 0.03333596512675285, -0.032388586550951004, 0.03477440029382706, 0.019501978531479836, -0.02437816932797432, -0.038735244423151016, -0.033350009471178055, 0.020744988694787025, -0.017383668571710587, -0.0076095545664429665, 0.039232440292835236, 0.01093150582164526, -0.056844186037778854, -0.03565564751625061, -0.07968071103096008, -0.09858731925487518, -0.018120622262358665, -0.009673621505498886, -0.09799190610647202, 0.07371113449335098, -0.06773250550031662, -0.005726886913180351, 0.04604485258460045, -2.06500102799409e-33, 0.04939667508006096, 0.048831820487976074, -0.1286212056875229, 0.005595317576080561, -0.05889096111059189, 0.013533354736864567, 0.013305560685694218, -0.10423388332128525, 0.11947309225797653, -0.0009665153920650482, 0.06644462049007416, -0.04377587512135506, -0.04050876572728157, 0.0661737248301506, -0.0005147829069755971, 0.021535979583859444, -0.04014451429247856, 0.0022022868506610394, 0.04444682598114014, -0.03309251740574837, 0.05466499924659729, 0.042213473469018936, 0.02687661722302437, -0.027615327388048172, -0.002752267988398671, 0.012791512534022331, 0.06875929981470108, -0.017703082412481308, -0.07898566126823425, 0.10616827011108398, -0.053184255957603455, -0.04683619737625122, -0.002529461868107319, 0.010354421101510525, -0.03741158917546272, -0.06476999074220657, -0.019256439059972763, -0.02768234722316265, 0.04020392522215843, -0.06265367567539215, 0.006504221353679895, 0.059145014733076096, 0.08536286652088165, -0.009757621213793755, 0.0815700814127922, 0.08765382319688797, 0.07040269672870636, 0.047271426767110825, 0.04327838122844696, 0.020362766459584236, 0.024233780801296234, -0.025598663836717606, -0.061512481421232224, 0.04863746464252472, 0.09302450716495514, -0.038439493626356125, -0.04907214269042015, -0.03574661165475845, -0.00852136593312025, -0.09690079838037491, -0.007317688316106796, -0.02777589112520218, 0.03503620997071266, 0.1084357500076294, 0.016024751588702202, 0.059877123683691025, 0.001860600314103067, 0.03696363419294357, 0.01659015566110611, -0.00937917735427618, -0.06967411935329437, 0.014342748560011387, -0.1461082398891449, -0.051679693162441254, -0.043205250054597855, -0.018350861966609955, -0.0773911401629448, 0.06452342867851257, 0.005876521579921246, -0.02812838740646839, -0.12130579352378845, 0.07906074076890945, -0.017470087856054306, -0.06526394933462143, -0.06167799234390259, 0.05889863893389702, 0.033459004014730453, 0.04827212914824486, 0.04979635030031204, -0.01699073426425457, 0.0593746192753315, 0.013471484184265137, -0.05281144380569458, -0.02584845945239067, 0.06161479651927948, 7.94523567137454e-32, -0.04210657626390457, 0.015999486669898033, -0.04698539152741432, 0.0016442264895886183, 0.057188261300325394, 0.047612011432647705, -0.031192131340503693, -0.0370008684694767, -0.028627954423427582, -0.013569536618888378, 0.04879621043801308, -0.04341275990009308, -0.06802679598331451, 0.03936810791492462, -0.08698535710573196, 0.05007888376712799, -0.060895442962646484, 0.03546317666769028, -0.02662411518394947, -0.03665180131793022, -0.043952926993370056, -0.0047602299600839615, -0.03458770737051964, 0.07848619669675827, 0.025828834623098373, 0.08615189045667648, -0.0507529154419899, 0.03086998127400875, -0.024203922599554062, -0.029039885848760605, 0.10000018775463104, -0.025468742474913597, 0.0294279083609581, -0.03216013312339783, 0.05308090150356293, -0.015488008968532085, -0.012990504503250122, -0.016620812937617302, 0.004066502675414085, -0.0031805492471903563, 0.015334399417042732, -0.04230032116174698, -0.09046461433172226, 0.02851777710020542, -0.032740212976932526, 0.03811015188694, -0.0016774798277765512, -0.13296891748905182, 0.010792667977511883, 0.002069046488031745, -0.07005470246076584, 0.053415264934301376, 0.05639871209859848, 0.06834745407104492, 0.018014416098594666, -0.11433003842830658, -0.08438187837600708, -0.021552661433815956, 0.03606921061873436, -0.003338099457323551, -0.09823143482208252, 0.052249230444431305, -0.1030043363571167, -0.04899047315120697 ]
45 Equations and inequalities 1 In each case: i draw the gr aphs for each pair of equations on the same axes ii find the coordinates of the point of intersection. a y = 3x – 5 b y = 2x – 7 c y = 3x + 2 y = 3 – x y = 8 – 3x 3x + y + 1 = 0 2 a Use graph paper to draw accurately the graphs of 2y = 2x + 11 and y = 2x2 βˆ’ 3x – 5 on the same axes. b Use your graph to find the coordinates of the points of intersection. c Verify your solutions b y substitution. 3 a On the same axes sketch the curv e with equation x2 + y = 9 and the line with equation 2x + y = 6. b Find the coordinates of the points of intersection. c Verify your solutions b y substitution. 4 a On the same axes sketch the curv e with equation y = (x – 2)2 and the line with equation y = 3x – 2. b Find the coordinates of the point of intersection. 5 Find the coordinates of the points at which the line with equation y = x βˆ’ 4 intersects the curve with equation y2 = 2x2 βˆ’ 17. 6 Find the coordinates of the points at which the line with equation y = 3x βˆ’ 1 intersects the curve with equation y2 = xy + 15. 7 Determine the number of points of intersection for these pairs of simultaneous equations. a y = 6x2 + 3x βˆ’ 7 b y = 4x2 – 18x + 40 c y = 3x2 – 2x + 4 y = 2x + 8 y = 10x – 9 7x + y + 3 = 0 8 Given the sim ultaneous equations 2x – y = 1x 2 + 4ky + 5k = 0 where k is a non-zero constant a show that x2 + 8kx + k = 0. (2 marks) Given tha t x2 + 8kx + k = 0 has equal roots, b find the value of k (3 marks) c for this va lue of k, find the solution of the simultaneous equations. (3 marks) 9 A swimmer div es into a pool. Her position, p m, underwater can be mode lled in relation to her horizontal distance, x m, from the point she entered the water as a quadratic equation p = 1 _ 2 x2 – 3x. The position of the bottom of the pool can be modelled by the linear equation p = 0.3x – 6. Determine whether this model predicts that the swimmer will touch the bottom of the pool. (5 marks) You need to use algebra in par t b to find the coordinates.Hint P E/P E/P p xExercise 3C
[ 0.02118661254644394, 0.06572654843330383, 0.06772848963737488, -0.03258894756436348, -0.03530095890164375, 0.030761877074837685, -0.03345591202378273, -0.01703377068042755, -0.13323159515857697, 0.025881079956889153, -0.023392438888549805, -0.0253805760294199, 0.012420202605426311, 0.045523449778556824, -0.06263437122106552, 0.035952165722846985, 0.00364526454359293, -0.041283901780843735, -0.030284706503152847, -0.08385544270277023, -0.05288437753915787, -0.06413678824901581, -0.06234213709831238, -0.04131840541958809, 0.04264635965228081, -0.06724537163972855, -0.0333772711455822, -0.00030797653016634285, -0.03419983759522438, 0.007397535257041454, 0.08238478749990463, -0.06582152843475342, 0.06948203593492508, -0.007510358467698097, 0.06061968579888344, -0.002930539660155773, 0.10633419454097748, 0.018827391788363457, 0.07028864324092865, -0.07197974622249603, -0.016416577622294426, -0.02440045215189457, -0.0031117189209908247, 0.003756236983463168, 0.010989371687173843, 0.02476753294467926, -0.0496642105281353, -0.011881123296916485, 0.05001744627952576, -0.019217321649193764, 0.0070485640317201614, -0.033206451684236526, 0.049309004098176956, 0.017267687246203423, 0.0058754864148795605, -0.047883741557598114, 0.03586960211396217, -0.037213053554296494, -0.04522300511598587, 0.05694800242781639, 0.03615909442305565, 0.014084506779909134, -0.06942394375801086, 0.0427531935274601, -0.003402285510674119, 0.08570902049541473, 0.1297735720872879, 0.07235196232795715, -0.06896843761205673, 0.11870313435792923, -0.07954226434230804, 0.050902221351861954, -0.02754082717001438, -0.09796655178070068, 0.042407430708408356, 0.026470862329006195, -0.020801082253456116, -0.09213422238826752, -0.02918851003050804, -0.03167077898979187, 0.014572575688362122, 0.03515281900763512, 0.024788152426481247, 0.04734841734170914, -0.03426434472203255, -0.06680140644311905, 0.02969759702682495, 0.03291008248925209, 0.009881358593702316, 0.02398339845240116, 0.05007840692996979, 0.06702318787574768, -0.04044783115386963, -0.06825608760118484, 0.06288634240627289, -0.1509983241558075, 0.06559126824140549, -0.034122731536626816, -0.012443151324987411, 0.08036402612924576, -0.0022561270743608475, -0.07410675287246704, -0.021164150908589363, 0.037549328058958054, 0.06453033536672592, 0.02529698796570301, 0.007453197613358498, -0.05919772759079933, -0.023972036316990852, -0.005548113491386175, -0.010900604538619518, -0.07848582416772842, 0.011420348659157753, 0.05800195410847664, 0.007432978600263596, -0.003755116369575262, 0.04472479596734047, -0.028935309499502182, 0.04111438989639282, -0.05525556579232216, -0.0686282217502594, -0.04409243166446686, 0.04409322887659073, -0.028040431439876556, -0.0775168389081955, 0.0027247213292866945, -0.03536369279026985, 0.03805582597851753, 0.015309912152588367, -0.0728476271033287, -0.02177586406469345, -0.03644951432943344, 0.02300897054374218, -0.03797227144241333, -0.02023456245660782, -0.06609705835580826, -0.024370482191443443, 0.0014399162027984858, -0.02739492431282997, -0.02611362934112549, 0.011205053888261318, 0.06052648276090622, 0.052621982991695404, 0.05196444317698479, 0.044119272381067276, 0.008885563351213932, -0.11512335389852524, 0.04512923210859299, -0.03224177658557892, -0.032198384404182434, 0.007666567340493202, -0.01209168415516615, 0.03978521376848221, 0.10670160502195358, -0.043877847492694855, -0.041077058762311935, -0.017553411424160004, 0.0017119671683758497, 0.0034572966396808624, 0.026611613109707832, -0.02910846285521984, 0.09405014663934708, -0.03467567637562752, 0.05362638831138611, 0.03214333578944206, 0.022362450137734413, 0.02868521213531494, 0.03747367486357689, -0.013848853297531605, 0.01262876857072115, 0.01917218789458275, 0.050562068819999695, -0.03873104974627495, 0.06626532971858978, -0.012510129250586033, -0.027139650657773018, 0.04113888368010521, 0.01924900896847248, -0.0724184438586235, 0.055164143443107605, 0.007283222395926714, -0.09123961627483368, 0.0261596217751503, 0.012862174771726131, -0.04175560921430588, -0.10409167408943176, 0.049548275768756866, -0.026391761377453804, -0.009091544896364212, 0.035866208374500275, 0.012729606591165066, -0.12759090960025787, 0.004093904979526997, 0.11889903992414474, -0.07418325543403625, -0.04649359732866287, 0.0024380763061344624, 0.04228862375020981, -0.11901560425758362, -0.0394095703959465, 0.040799468755722046, 0.015984946861863136, 0.04737585410475731, -0.02450716868042946, 0.02766239456832409, 0.06644042581319809, -0.06122887507081032, 0.04245886579155922, 0.023366490378975868, 0.007819345220923424, -0.0166803989559412, 0.013213155791163445, -0.0350181944668293, -0.007435524836182594, 0.05473315715789795, -0.048327941447496414, 0.046282511204481125, -0.07278892397880554, -0.13611997663974762, 0.018312446773052216, -0.012413389049470425, 0.015218883752822876, 0.09745492786169052, -2.6672527016684267e-33, -0.012450712732970715, -0.018089348450303078, -0.020068323239684105, -0.08918936550617218, -0.06028931960463524, -0.02251083217561245, 0.09684811532497406, -0.09030917286872864, 0.056620821356773376, 0.034366220235824585, 0.06017579510807991, -0.010262019000947475, -0.027246659621596336, 0.04778843745589256, -0.01163480430841446, -0.0851074829697609, -0.0237312950193882, -0.0665336549282074, -0.01564725860953331, -0.02052684687077999, 0.013715938664972782, -0.05282193422317505, -0.005012199282646179, -0.030301902443170547, -0.006512703839689493, 0.02600797824561596, 0.06518235802650452, -0.0815039798617363, -0.018345028162002563, 0.02713601663708687, 0.010545662604272366, -0.04489579424262047, 0.0284977238625288, 0.054964639246463776, -0.006697653327137232, -0.05918915197253227, -0.024074368178844452, -0.08951491862535477, 0.0860653892159462, -0.06520449370145798, 0.05008251219987869, 0.040459830313920975, 0.08004102110862732, 0.02571169286966324, -0.015328285284340382, 0.06364291161298752, -0.018536105751991272, 0.11286351829767227, -0.04497769847512245, 0.035631511360406876, 0.026211896911263466, -0.08697570115327835, -0.02346617542207241, -0.020172443240880966, 0.10825508087873459, -0.07833356410264969, 0.037623949348926544, -0.030825471505522728, 0.05256346985697746, -0.032483700662851334, 0.01949908956885338, -0.06853670626878738, 0.06023816764354706, 0.04301181063055992, -0.051948852837085724, 0.016019335016608238, -0.03036806359887123, -0.10352770239114761, 0.05577026680111885, -0.031609874218702316, 0.012801769189536572, -0.024307694286108017, -0.04034747928380966, -0.08200227469205856, -0.03875129297375679, -0.007126738782972097, -0.019650030881166458, 0.11798225343227386, 0.09415163844823837, -0.07609306275844574, -0.03877418115735054, 0.05753041058778763, -0.028554514050483704, -0.018995890393853188, -0.06164528802037239, 0.04554038867354393, 0.035503726452589035, 0.005593498703092337, 0.044384267181158066, -0.03955332562327385, 0.08108062297105789, 0.029177820309996605, 0.014367626048624516, -0.0411229282617569, 0.06652279198169708, 6.976161655039698e-32, -0.011964548379182816, 0.05504576116800308, 0.0072175427339971066, 0.016307786107063293, -0.014877400361001492, 0.009854757227003574, 0.01499865297228098, 0.05037344992160797, -0.0010520901996642351, -0.009917985647916794, 0.09100323170423508, 0.043000198900699615, -0.1277202069759369, -0.013468782417476177, -0.017305394634604454, 0.014578931033611298, -0.0352606326341629, 0.015471488237380981, 0.036706000566482544, 0.004024541936814785, -0.039440736174583435, 0.0017651303205639124, -0.03794737905263901, 0.10574381798505783, 0.019826149567961693, 0.02052396908402443, -0.03026791661977768, -0.046660732477903366, 0.01704203523695469, 0.011596547439694405, 0.051048506051301956, -0.03159477561712265, -0.030180424451828003, -0.05443008616566658, 0.12011146545410156, 0.07414360344409943, -0.13192370533943176, 0.04821927472949028, 0.03641802445054054, -0.005603542551398277, -0.015191447921097279, 0.008474176749587059, 0.007344662211835384, -0.06445126235485077, -0.01620412990450859, -0.05699532479047775, 0.024860277771949768, -0.054219454526901245, 0.034711092710494995, -0.03715703636407852, -0.04641979932785034, 0.12630286812782288, -0.04102012887597084, 0.054866258054971695, -0.003069482510909438, -0.031300466507673264, -0.011619177646934986, -0.02521730586886406, 0.0042430018074810505, -0.06012360006570816, -0.0015336889773607254, 0.03957294672727585, -0.06858014315366745, -0.00534778693690896 ]
46 Chapter 3 3.4 Linear inequalities You can solve linear inequalities using similar methods to those for solving linear equations. β–  The solution of an inequality is the set o f all real numbers x that make the inequality true. Example 7 Find the set of values of x for which: a 5x + 9 > x + 20 b 12 βˆ’ 3 x < 27 c 3(x βˆ’ 5) > 5 βˆ’ 2(x βˆ’ 8) a 5x + 9 > x + 20 4x + 9 > 20 4x > 11 x > 2.75 b 12 – 3x < 27 –3x < 15 x > –5 c 3(x – 5) > 5 – 2( x – 8) 3x – 15 > 5 – 2x + 16 5x > 5 + 16 + 15 5x > 36 x > 7.2Subtract 12 from both sides. Divide both sides by βˆ’3. (You therefore need to turn round the inequality sign.) In set notation {x : x > βˆ’5}. Multiply out (note: βˆ’2 Γ— βˆ’8 = +16).Rearrange to get x > …In set notation {x : x > 7.2}. –6 –4 –2 0 2 4 6 Here the solution sets are x < βˆ’1 or x > 3. –6 –4 –2 0 2 4 6Here there is no overlap and the two inequalities have to be written separately as x < βˆ’1 or x > 3.β—‹ is used for < and > and means the end value is not included. ● is used for < and > and means the end value is included. These are the only real values that satisfy both equalities simultaneously so the solution is βˆ’2 < x < 4.You may sometimes need to find the set of values for which two inequalities are true together. Number lines can be useful to find your solution. For example, in the number line below the solution set is x > βˆ’2 and x < 4. In se t notation x > βˆ’2 and x < 4 is written { x : βˆ’2 < x < 4} or alternatively { x : x > βˆ’2} β‹‚ { x : x < 4} x < βˆ’1 or x > 3 is written { x : x < βˆ’1} ⋃ { x : x > 3}Notation You c an write the solution to this inequality using set notation as { x : x > 2.75}. This means the set of all values x for which x is greater than or equal to 2.75.Notation Rearrange to get x > …
[ 0.016399066895246506, 0.06043170019984245, 0.09353082627058029, -0.05480608716607094, 0.019891047850251198, 0.00316721317358315, -0.0984192043542862, 0.034346237778663635, -0.12316211313009262, 0.06643901765346527, -0.012915395200252533, -0.06189008429646492, 0.019199756905436516, 0.009743538685142994, 0.007073414511978626, 0.006102447863668203, -0.012889093719422817, -0.004862567875534296, -0.06110592186450958, 0.0046461522579193115, -0.013823186978697777, -0.07846438139677048, -0.07523345947265625, 0.019224099814891815, 0.08421443402767181, -0.10133003443479538, -0.07107996940612793, -0.049028635025024414, -0.025755297392606735, -0.010282795876264572, -0.014749298803508282, -0.0830719843506813, 0.10190414637327194, -0.08932285010814667, -0.010985750705003738, 0.051728591322898865, -0.009434113278985023, 0.0537090003490448, 0.0031468451488763094, 0.009891227819025517, -0.005161150824278593, 0.03579326346516609, -0.001019989955238998, -0.024991802871227264, 0.01034675445407629, -0.02632138878107071, 0.05359724164009094, -0.04563656076788902, 0.04229434207081795, 0.03037666156888008, 0.008263710886240005, -0.05196226015686989, 0.053751252591609955, 0.08114372938871384, -0.06132042407989502, -0.06597769260406494, 0.019505245611071587, -0.05914400517940521, -0.0353073924779892, 0.006827244535088539, -0.04459521546959877, -0.024049492552876472, 0.0137092350050807, 0.04730891063809395, 0.07085859775543213, 0.06888306885957718, 0.01454836130142212, 0.01257892232388258, -0.0198442954570055, 0.020917506888508797, -0.08430630713701248, 0.02875816635787487, 0.022034408524632454, -0.02133692242205143, 0.016293969005346298, 0.06517622619867325, -0.05795624107122421, -0.11044226586818695, 0.024772293865680695, 0.0067419083788990974, 0.011506027542054653, 0.0346253477036953, 0.06278162449598312, 0.013100548647344112, 0.00929141603410244, -0.03147411346435547, 0.17212152481079102, 0.06321115046739578, -0.03457588702440262, 0.06761377304792404, 0.01887519657611847, -0.010742646642029285, 0.009794393554329872, -0.0021135953720659018, 0.005438109394162893, -0.11590657383203506, 0.019577745348215103, 0.01336018368601799, -0.0076932585798203945, 0.007473694626241922, -0.004478415474295616, -0.08897930383682251, 0.029038801789283752, -0.012417987920343876, -0.0007769098156131804, 0.00008578126289648935, -0.0401691310107708, -0.029321124777197838, 0.02634541690349579, -0.04595085605978966, -0.03125576674938202, -0.11117909848690033, 0.022534146904945374, 0.06897228211164474, 0.04407928138971329, -0.04849633574485779, 0.014316127635538578, 0.04230588302016258, -0.002294322242960334, -0.09074917435646057, -0.06281061470508575, -0.04053815081715584, -0.001866075093857944, -0.0360911600291729, -0.03259597718715668, 0.0014844076940789819, 0.06600894778966904, 0.006550328340381384, -0.09563151746988297, -0.11118990927934647, 0.021966001018881798, -0.018369778990745544, -0.02866998128592968, -0.04771172255277634, -0.03128180652856827, -0.0714099109172821, -0.03152639418840408, 0.026780229061841965, -0.029716357588768005, -0.04082239791750908, 0.015290223062038422, 0.04090430215001106, 0.11246117204427719, 0.08753033727407455, 0.017699498683214188, 0.003822924103587866, -0.015980971977114677, -0.024632062762975693, -0.031830113381147385, -0.12334350496530533, -0.028484545648097992, 0.02305036224424839, 0.05810747668147087, 0.07362508028745651, -0.12094047665596008, -0.05858072265982628, -0.04136110842227936, 0.01377646904438734, -0.0032159320544451475, 0.05126750096678734, -0.06084267422556877, 0.057944320142269135, 0.026209769770503044, 0.061291735619306564, -0.03849881887435913, 0.021829314529895782, -0.02375025302171707, 0.04815825819969177, -0.06097972020506859, -0.07015825062990189, 0.10864285379648209, 0.016858920454978943, 0.03706640005111694, 0.1205618679523468, -0.06894619762897491, 0.039918508380651474, 0.03443760797381401, 0.03161225467920303, -0.0680684819817543, 0.0866774320602417, 0.03254036605358124, -0.04494558274745941, 0.0039224643260240555, -0.0050384956412017345, -0.03193041682243347, 0.03326144069433212, 0.028261004015803337, -0.06035332381725311, -0.01250283233821392, -0.10090429335832596, 0.021150782704353333, -0.08998037874698639, -0.01056008879095316, 0.07425623387098312, -0.061843715608119965, -0.07136748731136322, 0.037553977221250534, 0.00972495786845684, -0.012871582992374897, 0.017816096544265747, -0.013776920735836029, -0.010618596337735653, 0.01436175499111414, 0.04380333423614502, 0.0006523181800730526, 0.0267442986369133, -0.05670367553830147, -0.024279609322547913, 0.07091321796178818, 0.015329425223171711, -0.10024948418140411, 0.012397016398608685, -0.06597583740949631, -0.007583573926240206, 0.02539285272359848, -0.06628027558326721, 0.0846521407365799, -0.029656976461410522, -0.029397331178188324, 0.025165127590298653, -0.029699141159653664, -0.03304062411189079, 0.047648001462221146, -7.643164920750303e-33, -0.06610912829637527, 0.0495787039399147, -0.056740470230579376, -0.03651224449276924, 0.030469495803117752, 0.014782963320612907, 0.04372745752334595, -0.11175613105297089, 0.02022688277065754, -0.036800529807806015, 0.02629033476114273, -0.002801454858854413, -0.038706663995981216, -0.030276324599981308, -0.006253386847674847, -0.07020626962184906, -0.026985548436641693, -0.008312861435115337, 0.04511642828583717, -0.04947209358215332, 0.032983869314193726, -0.04846280440688133, -0.062207482755184174, 0.0226715337485075, 0.04186408221721649, -0.011221335269510746, 0.05128660425543785, 0.047840237617492676, -0.01041216030716896, -0.004439949057996273, -0.05402844026684761, 0.027682138606905937, 0.062307972460985184, 0.044922709465026855, -0.008078656159341335, -0.12444225698709488, 0.020392481237649918, -0.04301777482032776, 0.0399455763399601, -0.06578880548477173, -0.012791489250957966, 0.03170626610517502, 0.06115991622209549, 0.027258172631263733, -0.012219361960887909, 0.023076049983501434, 0.05996531993150711, 0.04988286271691322, 0.003997871186584234, 0.08265232294797897, 0.03353043645620346, 0.009097193367779255, -0.020158642902970314, -0.006141249090433121, 0.004087988752871752, -0.028879277408123016, 0.021890806034207344, 0.005891308654099703, -0.022145507857203484, 0.02032107673585415, -0.005775946658104658, -0.08836696296930313, 0.13529092073440552, 0.02440149150788784, -0.08560363948345184, 0.07747715711593628, -0.039394836872816086, -0.0509926974773407, 0.01729213446378708, 0.0035470493603497744, -0.007786812726408243, -0.017087195068597794, 0.017393846064805984, -0.044305890798568726, 0.011899460107088089, 0.04911723732948303, -0.032038308680057526, 0.05913389101624489, 0.003996117971837521, 0.029270866885781288, -0.027785522863268852, 0.024450138211250305, 0.06599712371826172, -0.06772208213806152, -0.12102818489074707, 0.04751545935869217, 0.06506878137588501, 0.05517478659749031, 0.032311342656612396, -0.011567603796720505, 0.052177369594573975, 0.031257640570402145, -0.05934995040297508, -0.0356169268488884, 0.1378023624420166, 6.834611564049556e-32, 0.005206648260354996, -0.02103971131145954, -0.07861440628767014, 0.052969880402088165, 0.03376222774386406, -0.010410926304757595, -0.011059253476560116, 0.05217303708195686, 0.041851941496133804, -0.059341683983802795, 0.044790834188461304, -0.008510884828865528, -0.07337982952594757, 0.025168871507048607, -0.03412524610757828, -0.024259202182292938, -0.078652024269104, -0.005795312579721212, 0.04219469055533409, -0.012254700995981693, 0.0003044566255994141, 0.020065253600478172, -0.018224388360977173, 0.04481741413474083, 0.04976169764995575, 0.0044933948665857315, -0.09936416149139404, 0.08208242803812027, 0.04632017761468887, 0.04490572586655617, 0.031977180391550064, 0.0010624458082020283, 0.040740810334682465, -0.04615858197212219, 0.14613395929336548, 0.0593181774020195, -0.011798552237451077, 0.007032547611743212, -0.029804522171616554, -0.04525231942534447, 0.04572214186191559, -0.014528323896229267, -0.03193887695670128, -0.06459738314151764, -0.043882083147764206, -0.06552698463201523, 0.05473003536462784, -0.03692835569381714, 0.08382134884595871, -0.04195525124669075, -0.011734196916222572, 0.12881344556808472, 0.005754492245614529, 0.0587981678545475, -0.019621828570961952, -0.03073190338909626, -0.04015656188130379, -0.03775204345583916, -0.021600984036922455, -0.1309121549129486, 0.05624660104513168, 0.021577855572104454, -0.03364258632063866, 0.016089102253317833 ]
47 Equations and inequalities Example 8 Find the set of values of x for which: a 3x βˆ’ 5 < x + 8 and 5x > x βˆ’ 8 b x – 5 > 1 – x or 15 – 3x > 5 + 2x. c 4x + 7 > 3 and 17 < 11 + 2x. a 3x – 5 < x + 8 5x > x – 8 2x – 5 < 8 4x > – 8 2x < 13 x > –2 x < 6.5 –/four.ss01 –2 0 /four.ss01 2 6 8 x < 6.5 x > –2 So the required set of values is – 2 < x < 6.5. b x – 5 > 1 – x 15 – 3x > 5 + 2x 2x – 5 > 1 10 – 3x > 2x 2x > 6 10 > 5x x > 3 2 > x x < 2 x < 3 x > 2–/four.ss01 –2 0 /four.ss01 2 6 8 The solution is x > 3 or x < 2.Draw a number line to illustrate the two inequalities. The two sets of values overlap (intersect) where βˆ’2 < x < 6.5. Notice here how this is written when x lies between two values. In set notation this can be written as {x : βˆ’2 < x < 6.5}. Draw a number line. Note that there is no overlap between the two sets of values. In set notation this can be written as {x : x < 2} ⋃ {x : x > 3}. 1 Find the set of va lues of x for which: a 2x βˆ’ 3 < 5 b 5x + 4 > 39 c 6x βˆ’ 3 > 2x + 7 d 5x + 6 < βˆ’12 βˆ’ x e 15 βˆ’ x > 4 f 21 βˆ’ 2 x > 8 + 3x g 1 + x < 25 + 3x h 7x βˆ’ 7 < 7 βˆ’ 7x i 5 βˆ’ 0.5 x > 1 j 5x + 4 > 12 βˆ’ 2xExercise 3D
[ 0.01421315222978592, 0.07041201740503311, 0.09081154316663742, -0.05478221923112869, 0.02662539854645729, 0.022491853684186935, -0.08873472362756729, 0.02521478198468685, -0.12184783071279526, 0.033061299473047256, -0.015564900822937489, -0.07961013913154602, 0.048516351729631424, 0.018879882991313934, 0.01766127720475197, 0.003929598722606897, 0.006510355044156313, -0.027941854670643806, -0.06370101124048233, -0.04347610101103783, -0.014684421010315418, -0.09327496588230133, -0.030122321099042892, -0.01908838376402855, 0.06116552650928497, -0.09721288830041885, -0.026662515476346016, -0.024619461968541145, 0.005381477065384388, -0.02629481628537178, -0.01982927694916725, -0.045586373656988144, 0.1112443283200264, -0.05220470204949379, 0.044075287878513336, 0.018257204443216324, 0.08037793636322021, 0.041206661611795425, -0.010891968384385109, -0.015295947901904583, -0.025653144344687462, 0.008210965432226658, 0.000978525960817933, 0.01367594487965107, -0.0381927415728569, 0.006135666277259588, 0.050839874893426895, -0.037755079567432404, 0.004225964657962322, -0.013105930760502815, 0.05807402357459068, -0.0007396807195618749, 0.04215611517429352, 0.0947035700082779, -0.04172065109014511, -0.07131240516901016, -0.002828909084200859, -0.0420842207968235, -0.07149811834096909, -0.015823446214199066, -0.03861657902598381, -0.03490697965025902, -0.010798395611345768, 0.036707475781440735, 0.03517737612128258, 0.09650242328643799, 0.02291707880795002, -0.03199058771133423, -0.006324721500277519, 0.06384368985891342, -0.153402179479599, 0.05449317395687103, -0.040237974375486374, -0.0867251604795456, 0.015176218934357166, -0.015416966751217842, -0.060513705015182495, -0.05047206953167915, -0.0007303459569811821, -0.05288432538509369, -0.009463779628276825, 0.010218601673841476, 0.05059012025594711, 0.021693766117095947, -0.03783737123012543, -0.06843919306993484, 0.11705373227596283, 0.07409148663282394, -0.01935512199997902, -0.01412668451666832, 0.04994777590036392, -0.01116151548922062, 0.013127506710588932, -0.02437601424753666, 0.055694106966257095, -0.1284925639629364, 0.009602071717381477, -0.054773878306150436, -0.02514095976948738, 0.01710166223347187, 0.022585634142160416, -0.0836709663271904, 0.06661149114370346, -0.00012345371942501515, -0.0190797857940197, -0.015248377807438374, -0.03288574889302254, -0.0480029322206974, 0.004415158182382584, -0.09285713732242584, -0.03942808508872986, -0.07027224451303482, -0.0027843245770782232, 0.053539253771305084, -0.021978113800287247, -0.06185686215758324, 0.04355134814977646, 0.048645664006471634, 0.05707607418298721, -0.014929378405213356, -0.036841221153736115, -0.033865686506032944, 0.020694801583886147, -0.04985525831580162, -0.04620848596096039, -0.008301382884383202, 0.034190256148576736, 0.03969959914684296, -0.019991355016827583, -0.12544193863868713, -0.005697184707969427, -0.026630239561200142, -0.018678709864616394, -0.02482924610376358, -0.0025148370768874884, -0.11850392073392868, -0.04484415054321289, 0.06030973419547081, -0.019039787352085114, -0.022518623620271683, -0.0037146923132240772, 0.05569121241569519, 0.07360804080963135, 0.04393090307712555, 0.03294089809060097, 0.0012732275063171983, -0.09563281387090683, -0.03494200482964516, -0.04622630402445793, -0.03705422207713127, -0.031053300946950912, 0.003495125798508525, 0.05846850946545601, 0.09199082106351852, -0.051508452743291855, -0.05910630524158478, -0.0524434968829155, -0.010150004178285599, -0.00775530468672514, 0.03542855381965637, -0.07560942322015762, 0.047140415757894516, 0.015452354215085506, 0.11020804941654205, 0.03350881114602089, -0.00682303449138999, 0.02475370094180107, 0.038724567741155624, -0.05390792340040207, -0.03576279804110527, 0.045559946447610855, 0.02576749213039875, 0.018320737406611443, 0.043181002140045166, -0.05888798087835312, -0.005380702670663595, 0.08303843438625336, 0.04670995473861694, -0.0766635611653328, 0.10904645174741745, 0.0577719546854496, -0.053927842527627945, -0.03794540464878082, -0.0022998482454568148, -0.06675530970096588, 0.012435086071491241, -0.00783519633114338, -0.018530838191509247, 0.004905458074063063, -0.01521677803248167, 0.024674877524375916, -0.14443251490592957, 0.03735297918319702, 0.06581717729568481, -0.07201655954122543, -0.0329122431576252, 0.008879668079316616, -0.0031911765690892935, -0.05957057327032089, -0.0015352857299149036, 0.04289357364177704, -0.003099215216934681, 0.08635236322879791, 0.05819683521986008, -0.02647782862186432, 0.01952630840241909, -0.08232953399419785, 0.011094427667558193, 0.07869547605514526, 0.011216576211154461, -0.035934608429670334, 0.039900947362184525, -0.08108970522880554, -0.017680155113339424, 0.004289655946195126, -0.06467290222644806, 0.09866680204868317, -0.08805080503225327, -0.023383919149637222, -0.03801232576370239, -0.01698950305581093, -0.040804289281368256, 0.009156402200460434, -6.314298679188446e-33, -0.08513224869966507, 0.012498450465500355, -0.0765032172203064, -0.07379963248968124, -0.012532423250377178, 0.008702688850462437, 0.03804782032966614, -0.035175688564777374, 0.055465277284383774, -0.017663752660155296, 0.08769286423921585, 0.021979883313179016, -0.023587960749864578, 0.008276054635643959, -0.05993478000164032, -0.06460227072238922, -0.048921361565589905, 0.04957059025764465, 0.06721396744251251, -0.015457694418728352, 0.03514183685183525, 0.007643990218639374, -0.004085136577486992, 0.010563828982412815, 0.02010442689061165, 0.04818720370531082, 0.0363248810172081, -0.028326358646154404, 0.014740058220922947, -0.0176150631159544, 0.012457547709345818, -0.007745719514787197, 0.06780306994915009, 0.014276537112891674, 0.007244830019772053, -0.13534896075725555, 0.008483598940074444, -0.030845392495393753, 0.053856268525123596, -0.017654992640018463, 0.01626680977642536, -0.01830543763935566, 0.09158466011285782, 0.04149077832698822, 0.0019490162376314402, 0.007330575957894325, 0.02445688471198082, 0.0913442000746727, 0.04562638700008392, 0.010274030268192291, 0.05048073083162308, -0.04315947741270065, -0.0659828707575798, 0.0024761976674199104, 0.08060114830732346, -0.026173315942287445, 0.017329908907413483, -0.018130648881196976, 0.029894258826971054, -0.01944642700254917, 0.010050320997834206, -0.0779731348156929, 0.08453652262687683, 0.025069545954465866, -0.06762662529945374, 0.0377623476088047, -0.022283663973212242, -0.08628436923027039, 0.018820028752088547, -0.021623779088258743, 0.05662240460515022, -0.0631943792104721, -0.014770588837563992, -0.0955621525645256, -0.04391183331608772, 0.04297216981649399, 0.006536646746098995, 0.07373178750276566, 0.04511208459734917, 0.00627446174621582, -0.09405982494354248, 0.06917797029018402, 0.02918749861419201, 0.010272443294525146, -0.0827309861779213, 0.03058226779103279, 0.11036349087953568, 0.0396689809858799, 0.06472060084342957, 0.006213840562850237, 0.038086969405412674, -0.007564533967524767, 0.003060889197513461, -0.04139255732297897, 0.09984643012285233, 6.706212316109237e-32, -0.011613992042839527, -0.009092427790164948, -0.06022176519036293, 0.04806288331747055, 0.004071356263011694, -0.0336044616997242, -0.10233639925718307, 0.0010290135396644473, 0.04925708845257759, -0.0598837211728096, 0.10049823671579361, 0.06792599707841873, -0.1202278882265091, 0.023197785019874573, -0.032078295946121216, 0.0030607508961111307, -0.051949772983789444, 0.030367165803909302, 0.03231123834848404, 0.014986386522650719, -0.0017929681343957782, 0.0883876159787178, 0.00462930416688323, 0.06122796609997749, 0.04482077807188034, -0.005444992333650589, -0.0994497761130333, -0.009992252103984356, 0.05080395191907883, 0.0792577862739563, 0.0332692451775074, 0.013263450004160404, -0.02597058191895485, -0.014444740489125252, 0.08028896152973175, 0.04245069995522499, -0.032626837491989136, 0.0007286987383849919, 0.017783114686608315, 0.026614166796207428, 0.04416266083717346, -0.0009574968717060983, -0.032038282603025436, -0.05454910546541214, -0.0036218450404703617, -0.09367166459560394, 0.025446755811572075, -0.004627718590199947, 0.031614191830158234, -0.07418274879455566, -0.07886350154876709, 0.1332721710205078, 0.014990980736911297, 0.037652477622032166, 0.0195977333933115, -0.03419660031795502, 0.012889307923614979, -0.024524778127670288, -0.00286694779060781, -0.09155963361263275, 0.054221730679273605, 0.06829799711704254, -0.06754077225923538, 0.04618428647518158 ]
48 Chapter 3 3.5 Quadratic inequalities β–  To solve a quadratic inequality: β€’ Rearr ange so that the right-hand side of the inequality is 0 β€’ Solve the corresponding quadratic equation to find the critical values β€’ Sketch the graph of the quadratic function β€’ Use your sketch to find the required set of values. The sketch shows the graph of f(x) = x2 – 4x βˆ’ 5 = (x + 1)(x – 5) –1 5y x OThe solutions to the quadratic inequality x2 – 4x – 5 > 0 are the x-values when the curve is above the x-axis (the darker part of the curve). This is when x < βˆ’1 or x > 5. In set notation the solution is {x : x < βˆ’1} ⋃ {x : x > 5}. The solutions to the quadratic inequality x 2 – 4x – 5 < 0 are the x-values when the curve is below the x-axis (the lighter part of the curve). This is when x > βˆ’1 and x < 5 or –1 < x < 5. In set notation the solution is {x : βˆ’1 < x < 5}.The solutions to f(x) = 0 are x = βˆ’1 and x = 5. These are called the critical values.A = { x : 3x + 5 > 2} B = { x : x __ 2 + 1 < 3 } C = { x : 11 < 2x βˆ’ 1} Given that A β‹‚ ( B ⋃ C ) = {x : p < x < q } ⋃ {x : x > r }, find the values of p , q and r .Challenge2 Find the set of va lues of x for which: a 2(x βˆ’ 3) > 0 b 8(1 βˆ’ x) > x βˆ’ 1 c 3(x + 7) < 8 βˆ’ x d 2(x βˆ’ 3) βˆ’ (x + 12) < 0 e 1 + 11(2 βˆ’ x) < 10(x βˆ’ 4) f 2(x βˆ’ 5) > 3(4 βˆ’ x) g 12x βˆ’ 3(x βˆ’ 3) < 45 h x βˆ’ 2(5 + 2x) < 11 i x(x βˆ’ 4) > x2 + 2 j x(5 βˆ’ x) > 3 + x βˆ’ x2 k 3x + 2x(x βˆ’ 3) < 2(5 + x2) l x(2x βˆ’ 5) < 4x( x + 3) ________ 2 βˆ’ 9 3 Use set notation to describe the set of v alues of x for which: a 3(x βˆ’ 2) > x βˆ’ 4 and 4x + 12 > 2x + 17 b 2x βˆ’ 5 < x βˆ’ 1 and 7(x + 1) > 23 βˆ’ x c 2x βˆ’ 3 > 2 and 3(x + 2) < 12 + x d 15 βˆ’ x < 2(11 βˆ’ x) and 5(3x βˆ’ 1) > 12x + 19 e 3x + 8 < 20 and 2(3x βˆ’ 7) > x + 6 f 5x + 3 < 9 or 5(2x + 1) > 27 g 4(3x + 7) < 20 or 2(3x βˆ’ 5) > 7 βˆ’ 6 x ______ 2
[ 0.07065148651599884, 0.09809315949678421, 0.08456576615571976, -0.06121457368135452, -0.03244809806346893, 0.038358449935913086, -0.0027155124116688967, 0.060875989496707916, -0.07765325158834457, 0.07579487562179565, -0.03589198365807533, -0.06194010004401207, -0.009178942069411278, 0.1039406880736351, -0.04848784953355789, 0.02158941701054573, -0.0483858585357666, -0.05399315431714058, -0.05637722462415695, -0.0494694821536541, -0.013033241033554077, -0.10256209969520569, -0.03312110900878906, -0.06661196798086166, 0.08033887296915054, -0.09368915855884552, -0.01993410289287567, -0.11502328515052795, -0.006233503110706806, -0.0003995191946160048, 0.05358361825346947, -0.057006172835826874, -0.0036671028938144445, -0.04105796664953232, 0.025779878720641136, -0.0017185016768053174, 0.04393686354160309, 0.022571006789803505, 0.05960690230131149, -0.021467464044690132, 0.03354496881365776, 0.006717017386108637, -0.08943149447441101, -0.04185082018375397, -0.030862262472510338, -0.014661439694464207, -0.021834449842572212, -0.08138152956962585, 0.07685719430446625, 0.03532518446445465, -0.005906559061259031, 0.017891133204102516, -0.009560083039104939, 0.056031398475170135, -0.03950386494398117, -0.044362619519233704, 0.0547395795583725, -0.09508991986513138, -0.051732346415519714, 0.08761262148618698, 0.05003717541694641, 0.003850995795801282, -0.037612564861774445, 0.04539060220122337, 0.03836900368332863, 0.013973102904856205, 0.06494475901126862, 0.02229798026382923, -0.036418367177248, 0.09959975630044937, -0.09286721795797348, -0.07063250243663788, 0.035709820687770844, -0.06517382711172104, 0.04798653721809387, 0.01384709868580103, -0.03749934211373329, -0.020826173946261406, -0.007302338723093271, -0.06538441777229309, 0.008883554488420486, 0.03387035056948662, 0.058496277779340744, 0.012294127605855465, -0.06876733154058456, -0.07964970171451569, 0.06664874404668808, 0.05603613331913948, 0.0037774115335196257, 0.05294394865632057, 0.010290813632309437, 0.00942473765462637, 0.016904395073652267, -0.023854311555624008, 0.031037045642733574, -0.10014566034078598, 0.08393292874097824, -0.009976356290280819, -0.04382344335317612, 0.019445639103651047, -0.019915543496608734, -0.06543650478124619, 0.004504152107983828, 0.02295316383242607, -0.029184069484472275, 0.03230423852801323, 0.03307485207915306, 0.022906960919499397, -0.0031053652055561543, -0.08129662275314331, -0.03843935579061508, -0.08384615182876587, 0.024613777175545692, 0.09066170454025269, 0.03451243042945862, -0.0010189693421125412, 0.060973428189754486, 0.00118797249160707, -0.013162201270461082, -0.055264703929424286, -0.014018076471984386, -0.04179685562849045, 0.000004858380179939559, -0.023253172636032104, -0.0539412684738636, -0.003260923083871603, 0.03173268586397171, 0.013881819322705269, 0.026326442137360573, -0.05545517057180405, 0.01622130535542965, -0.03384200111031532, -0.011214496567845345, -0.07948043197393417, -0.016576318070292473, -0.10766083002090454, -0.019628731533885002, 0.09860439598560333, -0.0025908935349434614, -0.03887975588440895, -0.02675904519855976, 0.039493780583143234, 0.05573342740535736, 0.04910234361886978, 0.013736008666455746, -0.04352443665266037, -0.02809709869325161, -0.00987556204199791, 0.012286465615034103, -0.060408949851989746, -0.022921212017536163, -0.01121043972671032, 0.04989885911345482, 0.13890425860881805, 0.03601166978478432, -0.09694622457027435, -0.07275762408971786, 0.03441168740391731, -0.0009870716603472829, 0.003745569847524166, -0.06478182226419449, -0.005044632591307163, -0.022388743236660957, 0.01550925150513649, -0.0440465547144413, 0.015121608041226864, 0.013775837607681751, 0.047305792570114136, 0.037568096071481705, -0.11888141930103302, 0.07268298417329788, 0.028993967920541763, 0.030210893601179123, 0.07720955461263657, -0.04740944877266884, 0.012554211542010307, 0.07347515970468521, 0.03763609752058983, 0.013561452738940716, 0.03848922252655029, 0.03728323057293892, -0.037281740456819534, -0.0284352358430624, -0.010221708565950394, 0.05670371279120445, -0.042547691613435745, 0.0003588291583582759, -0.09818388521671295, 0.017665473744273186, -0.083128422498703, 0.01732412911951542, -0.07895666360855103, 0.019123131409287453, 0.06525691598653793, -0.09007364511489868, -0.0013067666441202164, 0.050816189497709274, 0.05248209089040756, -0.09315445274114609, 0.019487984478473663, 0.038784921169281006, -0.005485575646162033, 0.13306282460689545, 0.06728846579790115, -0.007961669936776161, -0.03434617817401886, -0.043121226131916046, 0.01401848066598177, 0.0166451558470726, -0.008354620076715946, -0.037614334374666214, 0.032017070800065994, -0.05461164191365242, -0.016881262883543968, 0.023756764829158783, -0.06023993715643883, 0.09752587974071503, 0.010136015713214874, -0.059371788054704666, 0.01932266168296337, -0.1067105382680893, 0.0597122386097908, 0.024267729371786118, -2.4164585941975916e-33, -0.016444258391857147, -0.021646620705723763, -0.0801955908536911, -0.0031028911471366882, -0.031962234526872635, -0.014271785505115986, 0.06609687954187393, -0.07004369795322418, 0.029559368267655373, 0.08994966000318527, -0.0009009168134070933, 0.022891608998179436, -0.026808321475982666, 0.06256411224603653, -0.03810479864478111, -0.04113555699586868, -0.03362688049674034, 0.06299936771392822, -0.038761354982852936, -0.09098096191883087, 0.0845034047961235, -0.04866037890315056, 0.004022838082164526, -0.03394879773259163, 0.038044992834329605, 0.06051408872008324, 0.0854690745472908, -0.045021966099739075, 0.03857988864183426, 0.0032957298681139946, -0.05522691830992699, -0.008102171123027802, 0.006731869652867317, 0.006497751455754042, 0.042441997677087784, -0.08264848589897156, 0.002143530175089836, -0.13225342333316803, 0.12761518359184265, -0.04978358373045921, 0.04493061453104019, 0.016032841056585312, 0.10277600586414337, 0.010356339626014233, 0.03057612106204033, 0.04148022085428238, 0.02806258015334606, 0.019180770963430405, -0.02885490655899048, 0.045843783766031265, 0.01850380375981331, -0.023819953203201294, 0.060278043150901794, 0.010777294635772705, 0.0457821823656559, -0.05201398581266403, 0.05609942972660065, 0.06204644963145256, -0.005648917984217405, 0.060995329171419144, 0.0039820424281060696, -0.08638593554496765, 0.02015852928161621, 0.002751097548753023, -0.06564919650554657, -0.00842322874814272, -0.004906792193651199, -0.004982704762369394, 0.038384102284908295, 0.04049818217754364, -0.03313795477151871, -0.019532110542058945, 0.023399468511343002, -0.06423412263393402, -0.04764208570122719, 0.01799752190709114, -0.04969785362482071, 0.04806225001811981, 0.05663786828517914, -0.06608578562736511, -0.027745293453335762, 0.06723586469888687, -0.0508107915520668, -0.03998548537492752, -0.0771666169166565, 0.028367485851049423, -0.0038880594074726105, 0.08404338359832764, 0.07807634025812149, 0.0030246409587562084, -0.011067759245634079, -0.01906587928533554, -0.09137176722288132, -0.010929538868367672, -0.025284353643655777, 5.658517711108349e-32, -0.05692296475172043, -0.004218041431158781, -0.009131846949458122, 0.03996775671839714, -0.007727424148470163, 0.004655114840716124, 0.06469997763633728, -0.02629254385828972, 0.040556661784648895, -0.03527267277240753, 0.10379064083099365, 0.041681598871946335, -0.1064034029841423, 0.05262702703475952, -0.05310193449258804, 0.02190142311155796, -0.04723012074828148, 0.04360583797097206, -0.01125279814004898, -0.04079202935099602, -0.008189716376364231, 0.01068957895040512, -0.0496620312333107, 0.010963698849081993, -0.02294374257326126, 0.030469514429569244, -0.05071762576699257, -0.011168581433594227, 0.05147260054945946, 0.04645894840359688, -0.04192475602030754, -0.017734892666339874, 0.029539551585912704, -0.028233714401721954, 0.06761913001537323, 0.029830919578671455, -0.06630025058984756, 0.04527095705270767, -0.01451683696359396, -0.012205330654978752, -0.009751495905220509, -0.004101521801203489, -0.011631585657596588, -0.014242877252399921, -0.09324363619089127, -0.0858805850148201, 0.10758744180202484, -0.06985289603471756, 0.040625687688589096, 0.01198164839297533, -0.050047408789396286, 0.14338579773902893, 0.06342216581106186, 0.10180357843637466, -0.01696300134062767, -0.025686735287308693, -0.010131427086889744, -0.001195525866933167, 0.019773166626691818, -0.046547774225473404, -0.023219678550958633, 0.06080015003681183, -0.06273284554481506, 0.00244241114705801 ]
49 Equations and inequalities Example 9 Find the set of values of x for which: 3 βˆ’ 5x βˆ’ 2x2 < 0. 3 βˆ’ 5 x βˆ’ 2x2 = 0 2x2 + 5 x βˆ’ 3 = 0 (2x βˆ’ 1)( x + 3) = 0 x = 1 __ 2 or x = βˆ’ 3 –3 1 2xy O So the required set of values is x < βˆ’3 or x > 1 __ 2 .Multiply by βˆ’1 (so it’s easier to factorise). 1 _ 2 and βˆ’3 ar e the critical values. Draw a sketch to show the shape of the graph and the critical values. Since the coefficient of x2 is negative, the graph is β€˜upside-down ⋃-shaped’. It crosses the x-axis at βˆ’3 and 1 _ 2 . ← Section 2.4 3 βˆ’ 5x βˆ’ 2x2 < 0 ( y < 0) for the outer parts of the graph, belo w the x-axis, as shown by the paler parts of the curve. In set notation this can be written as {x : x < βˆ’3} ⋃ {x : x > 1 _ 2 }.Quadratic equation. Example 10 a Find the set of va lues of x for which 12 + 4x > x2. b Hence find the set of va lues for which 12 + 4x > x2 and 5x – 3 > 2. a 12 + 4x > x2 0 > x2 βˆ’ 4 x βˆ’ 12 x2 βˆ’ 4 x βˆ’ 12 < 0 x2 βˆ’ 4 x βˆ’ 12 = 0 (x + 2)( x βˆ’ 6) = 0 x = βˆ’2 or x = 6 Sketch of y = x2 βˆ’ 4 x βˆ’ 12 –26 xy O x2 βˆ’ 4 x βˆ’ 12 < 0 Solution: βˆ’ 2 < x < 6You can use a table to check your solution. βˆ’2 < x < 6 Use the critical values to split the real number line into sets. –26 x < βˆ’2 βˆ’2 < x < 6 x > 6 x + 2 βˆ’ + + x βˆ’ 6 βˆ’ βˆ’ + (x + 2)(x βˆ’ 6) + βˆ’ + For each set, check whether the set of values makes the value of the bracket positive or negative. For example, if x < βˆ’2, (x + 2) is negative, (x – 6) is negative, and (x + 2)(x – 6) is (neg) Γ— (neg) = positive. In set notation the solution is {x : βˆ’2 < x < 6}.
[ 0.05509074777364731, 0.05949096754193306, 0.08756668120622635, -0.0159253291785717, 0.0013059937627986073, -0.012959757819771767, -0.03409389778971672, 0.0058800168335437775, -0.12255316227674484, 0.05643250793218613, -0.015162782743573189, -0.09216229617595673, -0.03740864247083664, 0.03606010600924492, 0.00830383412539959, 0.022363515570759773, -0.022907067090272903, -0.009563332423567772, -0.052402909845113754, -0.02561206929385662, -0.002875734819099307, -0.08516012132167816, -0.08975107222795486, -0.038288287818431854, 0.08030076324939728, -0.05728466436266899, -0.028104450553655624, -0.06871286779642105, 0.014758133329451084, -0.017224488779902458, 0.014054890722036362, -0.039452847093343735, 0.057742372155189514, -0.02030828967690468, 0.05445925146341324, 0.016755959019064903, 0.04949205368757248, 0.03138532489538193, -0.029237430542707443, -0.025136234238743782, 0.014000366441905499, -0.019721759483218193, -0.029841385781764984, -0.023777587339282036, 0.03373783454298973, 0.0048505086451768875, 0.02326231822371483, -0.047115739434957504, 0.003149240044876933, 0.023482494056224823, 0.005862475838512182, 0.04320235550403595, 0.05081181228160858, 0.08461765944957733, -0.07044816762208939, -0.1290685385465622, 0.034714847803115845, -0.06228509917855263, -0.11605538427829742, -0.01260660495609045, -0.01594569720327854, -0.008366510272026062, -0.048266056925058365, 0.059526391327381134, -0.006780093070119619, 0.06141374632716179, 0.034759216010570526, 0.00006749672320438549, -0.06851477175951004, 0.08037079125642776, -0.14680172502994537, 0.02083793841302395, 0.009530534036457539, -0.11835437268018723, -0.033586956560611725, 0.0365789569914341, -0.04514124616980553, -0.06736398488283157, -0.007467497605830431, -0.01919212006032467, 0.015240970999002457, 0.021505914628505707, 0.04952148720622063, 0.012524789199233055, -0.08680862188339233, -0.0029883855022490025, 0.09286092966794968, 0.06545259058475494, -0.017881788313388824, 0.029122887179255486, 0.05247678980231285, 0.029048558324575424, 0.028790928423404694, 0.013855303637683392, 0.06885286420583725, -0.07257309556007385, -0.030642924830317497, -0.033173322677612305, -0.02009725756943226, 0.049495600163936615, 0.009625950828194618, -0.08863682299852371, -0.004238460678607225, 0.027108244597911835, -0.030478952452540398, 0.00014069373719394207, 0.0337371788918972, -0.04422881826758385, -0.014409467577934265, -0.011630133725702763, -0.02792329154908657, -0.09423153102397919, 0.030498022213578224, 0.016837015748023987, -0.009410763159394264, 0.008177840150892735, 0.020456330850720406, 0.09046587347984314, 0.020498165860772133, -0.06520495563745499, -0.005820857360959053, -0.10109568387269974, 0.047752346843481064, -0.04057225584983826, -0.030595792457461357, 0.029658645391464233, 0.04192062467336655, 0.0384620800614357, 0.001167759415693581, -0.088631771504879, -0.06816641241312027, -0.019782472401857376, -0.004119011573493481, -0.013739369809627533, -0.020458586513996124, -0.01866734027862549, -0.049440063536167145, 0.07302086800336838, 0.002145481528714299, 0.016451910138130188, -0.021692363545298576, 0.05289530009031296, 0.0550612173974514, 0.04123322665691376, 0.03844064474105835, -0.013288931921124458, -0.07198189944028854, 0.019276699051260948, -0.06377145648002625, -0.006838466972112656, -0.0029250355437397957, -0.018539492040872574, 0.0767766684293747, 0.1262955516576767, -0.01898699626326561, -0.12103062123060226, -0.09654553979635239, -0.03166135773062706, 0.005162321962416172, 0.016225358471274376, -0.07844191789627075, 0.023740142583847046, -0.007051846478134394, 0.11118268221616745, -0.007799943909049034, 0.020602436736226082, 0.002197341062128544, 0.012333904393017292, -0.030964786186814308, -0.08204766362905502, 0.05773157626390457, 0.07481525093317032, 0.011337201111018658, 0.04784560948610306, -0.0041797407902777195, 0.025221051648259163, 0.06329029053449631, -0.0053505548276007175, -0.031052859500050545, 0.09244830906391144, 0.03308381885290146, -0.06346222013235092, -0.02237805724143982, -0.045773252844810486, -0.009807289578020573, -0.016197875142097473, 0.027444081380963326, -0.028919769451022148, 0.014987883158028126, -0.0021779679227620363, 0.03829989954829216, -0.11759000271558762, 0.05797621235251427, 0.06168001890182495, -0.09261073917150497, -0.0724184438586235, 0.020079651847481728, 0.051059409976005554, -0.09318773448467255, -0.014625554904341698, 0.07997234910726547, -0.026889534667134285, 0.14037595689296722, 0.05474013090133667, -0.001090132282115519, 0.02082892134785652, -0.05723854899406433, -0.01848398521542549, 0.06625719368457794, -0.0026353553403168917, -0.056391630321741104, 0.05705677345395088, -0.0715075209736824, -0.008848868310451508, -0.005527488421648741, -0.057243797928094864, 0.051766231656074524, -0.06946342438459396, -0.012697204016149044, 0.025882398709654808, -0.021828994154930115, 0.0016280364943668246, 0.06667739152908325, -6.1497559186962196e-33, -0.07897839695215225, -0.024484878405928612, -0.12236641347408295, -0.06638367474079132, 0.0018066811608150601, -0.008401638828217983, 0.020883265882730484, -0.07621018588542938, 0.05447997897863388, 0.028535714372992516, 0.00013433804269880056, 0.028414329513907433, 0.005995430983603001, -0.003055563196539879, -0.02123616263270378, -0.08478991687297821, -0.04552751034498215, 0.041807472705841064, 0.03771335631608963, -0.05639928579330444, 0.05969349294900894, 0.0002832179015967995, -0.06323466449975967, 0.014249015599489212, 0.006765213795006275, 0.08622054755687714, 0.019092226400971413, -0.06666240841150284, -0.009935085661709309, 0.0028588564600795507, -0.017021100968122482, 0.02512335777282715, 0.0654647946357727, 0.03748488798737526, 0.00025690990150906146, -0.06009947508573532, 0.02493942156434059, -0.05735080689191818, 0.09140357375144958, -0.009133451618254185, 0.07003217190504074, 0.012573947198688984, 0.06628008186817169, -0.014922389760613441, -0.013831287622451782, -0.0014590687351301312, 0.013616245239973068, 0.0652993842959404, -0.015644434839487076, 0.034427400678396225, 0.0032252997625619173, -0.06967375427484512, -0.023646783083677292, -0.0016490448033437133, 0.10635337233543396, -0.030450692400336266, 0.03056287206709385, 0.022616561502218246, 0.00915464386343956, 0.03458067402243614, -0.02410183846950531, -0.07357075810432434, 0.04036489501595497, 0.014853973872959614, -0.05900498479604721, 0.042607929557561874, -0.03965320438146591, -0.027473077178001404, 0.0006389031768776476, -0.021428439766168594, -0.039653848856687546, -0.05997291952371597, 0.0022306530736386776, -0.13338084518909454, -0.08529890328645706, 0.045118048787117004, -0.006615645717829466, 0.025194885209202766, 0.03711423650383949, -0.12399479746818542, -0.05807679519057274, 0.036271560937166214, -0.013578413985669613, 0.04478360712528229, -0.033989883959293365, 0.05461579188704491, 0.05966806784272194, 0.04728029668331146, 0.09197959303855896, 0.011781911365687847, 0.041349973529577255, 0.022767730057239532, -0.005869044456630945, -0.0393143966794014, -0.007650941144675016, 6.358497560652952e-32, -0.022360660135746002, -0.0005996544496156275, -0.03535725176334381, 0.052534069865942, -0.02904500998556614, -0.008908720687031746, -0.06754040718078613, -0.0423860140144825, 0.032213740050792694, -0.03523816168308258, 0.12940549850463867, 0.10904891788959503, -0.08999660611152649, 0.020832283422350883, -0.02542552910745144, 0.03266063705086708, -0.07651493698358536, 0.052404846996068954, 0.01277146115899086, -0.019193509593605995, 0.01758461631834507, 0.0401080846786499, -0.08311726152896881, 0.05619143694639206, 0.04856382682919502, 0.011359100230038166, 0.00010652803030097857, -0.005849977023899555, 0.01583554595708847, 0.07028550654649734, -0.0025998493656516075, -0.011283345520496368, -0.010094682686030865, -0.056957196444272995, 0.1019418016076088, 0.061015743762254715, -0.04436498507857323, 0.03938083350658417, -0.040565501898527145, -0.021478921175003052, 0.001913837157189846, 0.016111359000205994, -0.007608127314597368, -0.042546942830085754, -0.004024284891784191, -0.0673215314745903, 0.016407759860157967, -0.07613997161388397, 0.05890943109989166, -0.08170401304960251, -0.05818301439285278, 0.15031971037387848, 0.04806965962052345, 0.07202521711587906, 0.005270824767649174, -0.0025039007887244225, -0.0025140326470136642, 0.03887717425823212, -0.008949886076152325, -0.02875882014632225, 0.03978215157985687, 0.08779483288526535, -0.09681764245033264, 0.0101180924102664 ]
50 Chapter 3 Example 11 Find the set of values for which 6 __ x > 2 , x β‰  0b Solving 12 + 4 x > x2 gives βˆ’ 2 < x < 6. Solving 5 x βˆ’ 3 > 2 gives x > 1. –/four.ss01–202/four.ss0168 –2 < x < 6 x > 1 The two sets of values overlap where 1 < x < 6. So the solution is 1 < x < 6. 6 __ x > x 6x > 2x2 6x βˆ’ 2x2 > 0 6x βˆ’ 2x2 = 0 x(6 βˆ’ 2 x) = 0 x = 0 or x = 3 3xy O The solution is 0 < x < 3. 1 Find the set of va lues of x for which: a x2 βˆ’ 11x + 24 < 0 b 12 βˆ’ x βˆ’ x2 > 0 c x2 βˆ’ 3x βˆ’ 10 > 0 d x2 + 7x + 12 > 0 e 7 + 13 x βˆ’ 2x2 > 0 f 10 + x βˆ’ 2x2 < 0 g 4x2 βˆ’ 8x + 3 < 0 h βˆ’2 + 7x βˆ’ 3x2 < 0 i x2 βˆ’ 9 < 0 j 6x2 + 11x βˆ’ 10 > 0 k x2 βˆ’ 5x > 0 l 2x2 + 3x < 0 2 Find the set of va lues of x for which: a x2 < 10 βˆ’ 3x b 11 < x2 + 10 c x(3 βˆ’ 2x) > 1 d x(x + 11) < 3(1 βˆ’ x2)Exercise 3EThis question is easier if you represent the information in more than one way. Use a sketch graph to solve the quadratic inequality, and use a number line to combine it with the linear inequality.Problem-solving In set notation this can be written as {x : 1 < x < 6}. Solve the corresponding quadratic equation to find the critical values. Sketch y = x (6 – 2 x). You are interested in the values of x where the graph is above the x -axis.x = 0 can still be a critical value even though xΒ β‰ Β 0. But it would not be part of the solution set, even if the inequality was > rather than > . x cou ld be either positive or negative, so you can’t multiply both sides of this inequality by x . Instead, multiply both sides by x 2. Because x2 is never negative, and x β‰  0 so x2 β‰  0, the inequality sign stays the same.Watch out
[ 0.024654731154441833, 0.07744352519512177, 0.008240856230258942, 0.018361078575253487, -0.01585080660879612, -0.015765078365802765, -0.020603101700544357, -0.022759582847356796, -0.07385197281837463, 0.07337115705013275, 0.026658974587917328, -0.02294725552201271, 0.030172277241945267, -0.037580616772174835, -0.019134286791086197, 0.008207175880670547, -0.05009763687849045, 0.0020183860324323177, -0.07257358729839325, -0.01679474487900734, 0.008349139243364334, -0.05170402675867081, -0.04684269800782204, 0.012917543761432171, 0.08973636478185654, -0.10401251912117004, -0.009943741373717785, -0.0588848702609539, 0.05416002869606018, -0.001194394426420331, 0.02645273320376873, -0.0018494396936148405, 0.02791614830493927, -0.025971142575144768, 0.05603413283824921, 0.05869043990969658, 0.09402959793806076, 0.05992155522108078, -0.08729491382837296, 0.03418093919754028, -0.04893738403916359, 0.01422976516187191, -0.02539031393826008, -0.08103980869054794, 0.02132192812860012, 0.004081012215465307, -0.03584500402212143, 0.006997228600084782, -0.020169934257864952, -0.043028879910707474, 0.023250054568052292, -0.0013777677668258548, 0.0037439055740833282, 0.05847553163766861, -0.11609841883182526, -0.06521638482809067, -0.028923075646162033, -0.02898530662059784, -0.08504420518875122, 0.0673980563879013, -0.02955307997763157, 0.00915457308292389, -0.011982939206063747, 0.0462590828537941, 0.03193502500653267, 0.05284459888935089, 0.0033590274397283792, 0.02055124193429947, -0.024198226630687714, 0.05560678616166115, -0.12816385924816132, 0.06382518261671066, -0.0036711974535137415, -0.01651979424059391, 0.019166836515069008, 0.020954271778464317, -0.08053005486726761, -0.05421802029013634, -0.011176113970577717, 0.017977917566895485, -0.08580343425273895, -0.0021773295011371374, 0.07017861306667328, 0.0648384690284729, -0.024204527959227562, -0.005270111840218306, 0.10283831506967545, -0.06385035067796707, 0.045158423483371735, 0.03543613478541374, 0.0839652568101883, -0.0774109959602356, -0.03834550082683563, 0.004964816849678755, 0.0051237489096820354, -0.12840555608272552, -0.007464257068932056, -0.0012070754310116172, 0.025715602561831474, 0.08407842367887497, 0.03484481945633888, -0.02108919993042946, 0.04292869567871094, 0.03676985576748848, -0.01653897576034069, -0.06506942212581635, -0.040205758064985275, -0.047849319875240326, 0.04199989512562752, -0.11982547491788864, 0.010895686224102974, -0.10060007870197296, 0.023639792576432228, 0.024866437539458275, 0.050291769206523895, -0.039959266781806946, 0.0441964790225029, 0.004833265673369169, -0.0036557933781296015, -0.09006766229867935, 0.023203544318675995, -0.06114009767770767, -0.010352850891649723, -0.03755221515893936, -0.06417293846607208, -0.027980227023363113, 0.07028509676456451, 0.01445694174617529, -0.046242956072092056, -0.10849485546350479, -0.014963889494538307, -0.07820690423250198, -0.013837047852575779, -0.005163040477782488, 0.005790464114397764, -0.011694247834384441, -0.05116232484579086, 0.10572758316993713, 0.018672913312911987, -0.048350222408771515, -0.020357467234134674, 0.020342541858553886, 0.008588630706071854, -0.028435666114091873, 0.02856685034930706, 0.045649055391550064, -0.06829442083835602, -0.05102401226758957, -0.0049684918485581875, -0.023557137697935104, -0.03279262036085129, 0.018857695162296295, 0.054523732513189316, 0.13577166199684143, -0.028445033356547356, -0.028614727780222893, -0.030568165704607964, 0.005406874231994152, 0.011657025665044785, 0.046188730746507645, -0.10999693721532822, 0.07485898584127426, -0.014652185142040253, 0.0888073593378067, -0.007611754350364208, 0.008444738574326038, 0.02624451369047165, 0.014405340887606144, -0.04530033469200134, -0.07963000237941742, 0.07662186026573181, 0.021721478551626205, 0.053808391094207764, 0.08066388219594955, -0.055870648473501205, 0.07225370407104492, 0.033327121287584305, 0.013393607921898365, 0.004512233193963766, 0.05006597563624382, 0.01395330112427473, -0.03403696417808533, -0.054651159793138504, -0.02647404931485653, -0.020847363397479057, 0.016775459051132202, -0.08753801882266998, -0.07028668373823166, 0.0257699154317379, -0.01178255770355463, 0.000786236603744328, -0.0644986480474472, 0.03269191458821297, 0.0866081491112709, -0.10226694494485855, -0.0821210965514183, 0.02825414389371872, 0.04162894934415817, -0.06409937888383865, -0.030419986695051193, 0.013001547195017338, -0.014379279688000679, 0.04771517589688301, -0.020128043368458748, 0.016767732799053192, -0.03744201362133026, -0.03878175839781761, -0.03446574509143829, 0.087870754301548, -0.005194595083594322, -0.023549003526568413, -0.010493976064026356, -0.07132986187934875, -0.044185835868120193, -0.01815742440521717, -0.050293564796447754, 0.02166757360100746, -0.06963784992694855, -0.07200803607702255, 0.007503862492740154, 0.012261124327778816, -0.022665465250611305, 0.06185334920883179, -6.463305077782649e-33, -0.08211511373519897, 0.02590678073465824, -0.09945109486579895, -0.05616052821278572, 0.026563173159956932, -0.025490082800388336, 0.03171972930431366, -0.010607894510030746, 0.022390568628907204, -0.0008661982719786465, 0.013685494661331177, 0.007796014193445444, -0.051426324993371964, 0.009422339498996735, -0.041285838931798935, -0.03662563115358353, -0.01923743635416031, -0.0005815971526317298, 0.048616837710142136, 0.05717941001057625, 0.06002978980541229, 0.05631769821047783, -0.02742220088839531, 0.012246119789779186, 0.04386444017291069, 0.056554365903139114, 0.0946081131696701, -0.0710836797952652, -0.046107273548841476, -0.023084836080670357, -0.03459339588880539, -0.009928666986525059, 0.13320468366146088, -0.015170309692621231, -0.035554006695747375, -0.11160144954919815, 0.0592181533575058, -0.031974148005247116, -0.0012149635003879666, -0.057988788932561874, 0.06059110909700394, 0.05086711049079895, 0.0009376141824759543, -0.012919796630740166, -0.02562153898179531, 0.06908509135246277, 0.06559254974126816, 0.08006109297275543, 0.027054594829678535, 0.022249994799494743, -0.014424925670027733, -0.026288222521543503, 0.05990457162261009, 0.04619865119457245, 0.08936372399330139, -0.0101995337754488, 0.06529774516820908, 0.027507193386554718, 0.05150842294096947, 0.010172957554459572, -0.017192145809531212, -0.05468810722231865, 0.09852540493011475, 0.009627916850149632, 0.017582476139068604, 0.02922140620648861, -0.05889921262860298, -0.036256093531847, 0.013291374780237675, 0.03067065216600895, -0.05635097995400429, -0.008173682726919651, -0.05808265507221222, -0.13505591452121735, 0.0038895634934306145, 0.07914423942565918, -0.016213055700063705, 0.03752991184592247, 0.03411859646439552, -0.05798770859837532, -0.1335795670747757, 0.030387436971068382, 0.02464226633310318, -0.022370213642716408, -0.11291151493787766, 0.050081316381692886, 0.0758724957704544, 0.05402457341551781, 0.07940027117729187, -0.03135167807340622, 0.048535577952861786, 0.011301028542220592, -0.022679435089230537, -0.05698252469301224, 0.07749570161104202, 8.752481143673203e-32, -0.003164837136864662, -0.09343838691711426, -0.07784375548362732, 0.015398875810205936, 0.045099757611751556, 0.05756299942731857, -0.04955168813467026, 0.021518712863326073, 0.020360464230179787, 0.006539375986903906, 0.04233403503894806, 0.012414918281137943, -0.023805828765034676, -0.019931264221668243, -0.06316465139389038, 0.0071868556551635265, -0.023368997499346733, 0.032226406037807465, 0.00015412233187817037, -0.0018821469275280833, 0.029765158891677856, 0.015814319252967834, -0.05151461809873581, 0.03899950906634331, 0.051106054335832596, 0.016385072842240334, -0.05425557494163513, -0.00784339476376772, 0.027486946433782578, -0.0014618762070313096, 0.04425601288676262, -0.04835239797830582, 0.00045281529310159385, 0.02874099276959896, 0.09411393105983734, 0.0528840608894825, -0.02448265813291073, 0.03147771209478378, -0.09143194556236267, -0.028398912400007248, -0.02900419943034649, -0.03911582753062248, -0.08947566896677017, 0.019134970381855965, 0.030573852360248566, -0.09404416382312775, 0.04729600250720978, -0.02114187367260456, 0.08351294696331024, -0.07472950220108032, -0.05140705034136772, 0.1303156167268753, 0.02847500890493393, 0.07502679526805878, 0.0010252244537696242, -0.06286456435918808, -0.09262794256210327, -0.005077693145722151, -0.010186723433434963, -0.058629877865314484, 0.0010338961146771908, 0.06534433364868164, -0.08111057430505753, 0.020714789628982544 ]
51 Equations and inequalities 3 Use set notation to describe the set of v alues of x for which: a x2 βˆ’ 7x + 10 < 0 and 3x + 5 < 17 b x2 βˆ’ x βˆ’ 6 > 0 and 10 βˆ’ 2x < 5 c 4x2 βˆ’ 3x βˆ’ 1 < 0 and 4(x + 2) < 15 βˆ’ (x + 7) d 2x2 βˆ’ x βˆ’ 1 < 0 and 14 < 3x βˆ’ 2 e x2 βˆ’ x βˆ’ 12 > 0 and 3x + 17 > 2 f x2 βˆ’ 2x βˆ’ 3 < 0 and x2 βˆ’ 3x + 2 > 0 4 Given tha t x β‰  0, find the set of values of x for which: a 2 __ x < 1 b 5 > 4 __ x c 1 __ x + 3 > 2 d 6 + 5 __ x > 8 __ x e 25 > 1 ___ x 2 f 6 ___ x 2 + 7 __ x < 3 5 a Find the range of values of k for which the equation x2 βˆ’ kx + (k + 3) = 0 has no real roots. b Find the range of v alues of p for which the roots of the equation px2 + px βˆ’ 2 = 0 are real. 6 Find the set of va lues of x for which x2 βˆ’ 5x βˆ’ 14 > 0. (4 marks) 7 Find the set of va lues of x for which a 2(3x βˆ’ 1) < 4 – 3x (2 marks) b 2x2 – 5x – 3 < 0 (4 marks) c both 2(3x – 1) < 4 – 3x and 2x2 – 5x – 3 < 0. (2 marks) 8 Given tha t x β‰  3, find the set of values for which 5 _____ x – 3 < 2 . (6 marks) 9 The equation kx2 – 2kx + 3 = 0, where k is a constant, has no real roots. Prove that k satisfies the inequality 0 < k < 3. (4 marks)P The quadratic equation ax2 + bx + c = 0 has real roots if b2 βˆ’ 4ac > 0. ← Section 2.5Hint E E Multiply both sides of the inequality by ( x βˆ’ 3)2.Problem-solvingE/P E/P 3.6 Inequalities on graphs You may be asked to interpret graphically the solutions to inequalities by considering the graphs of functions that are related to them. β–  The values of x for which the curve y = f(x) is below the curve y = g(x) satisfy the inequality f(x) < g( x). β–  The values of x for which the curve y = f(x) is above the curve y = g(x) satisfy the inequality f(x) > g( x).
[ 0.02889794111251831, 0.09589443355798721, 0.09131527692079544, -0.06901653856039047, -0.005281904712319374, 0.07542191445827484, -0.05173761025071144, -0.008276140317320824, -0.1181059256196022, 0.04395867511630058, -0.04577496275305748, -0.07411419600248337, 0.06039924919605255, 0.039319440722465515, -0.0390905998647213, 0.005486749578267336, 0.0281234048306942, -0.04202890396118164, -0.03513072058558464, -0.021378044039011, 0.019460860639810562, -0.08012619614601135, -0.06720908731222153, -0.053684577345848083, 0.09319902211427689, -0.05174282565712929, -0.0413864441215992, 0.0020301134791225195, -0.025695588439702988, -0.019227970391511917, 0.009348166175186634, -0.009669576771557331, 0.11505359411239624, -0.03229226544499397, 0.035536594688892365, 0.0237965639680624, 0.061287421733140945, 0.023869358003139496, -0.02918480895459652, -0.0054885572753846645, -0.03419658914208412, -0.013524992391467094, 0.04598909243941307, -0.03951852396130562, -0.0019460677867755294, 0.03153460472822189, 0.033653806895017624, -0.021455872803926468, 0.009546194225549698, -0.011165698058903217, 0.034101393073797226, 0.007342393975704908, 0.011484871618449688, 0.14858613908290863, -0.05641556531190872, -0.11494322866201401, 0.0407380685210228, -0.0604865737259388, -0.03919867053627968, -0.02079569362103939, 0.013228042051196098, -0.04467133805155754, 0.01560561079531908, 0.015798956155776978, 0.03838647902011871, 0.04340715706348419, 0.014213562943041325, 0.036178868263959885, -0.016052648425102234, 0.011839915998280048, -0.13832414150238037, 0.07799425721168518, 0.011979823000729084, -0.07390113919973373, 0.04640490934252739, 0.06993725150823593, -0.027139905840158463, -0.049457550048828125, 0.012827549129724503, -0.0870773047208786, -0.0033914269879460335, -0.008694211952388287, 0.07901263982057571, 0.043815214186906815, -0.025708038359880447, -0.06421278417110443, 0.1243339255452156, 0.08472317457199097, -0.015883684158325195, -0.011550535447895527, -0.010699514299631119, -0.0015673977322876453, 0.031025191769003868, -0.016839629039168358, 0.005383902695029974, -0.1455935686826706, 0.026452502235770226, -0.03429456800222397, -0.019927484914660454, 0.07243888080120087, 0.030599897727370262, 0.004616953432559967, 0.03394537791609764, 0.010936640202999115, -0.00300391367636621, 0.0058295088820159435, 0.0013493780279532075, -0.04432349652051926, -0.005559826735407114, -0.08832216262817383, -0.02639084681868553, -0.08884534239768982, 0.03193996474146843, 0.06782137602567673, -0.009433820843696594, -0.07592076808214188, 0.0445224791765213, 0.022013381123542786, -0.0036073026712983847, -0.06770073622465134, -0.052633874118328094, -0.028201811015605927, 0.02817891538143158, -0.015076818875968456, -0.0020976366940885782, -0.00820234976708889, 0.03298040106892586, 0.03776523470878601, -0.093739815056324, -0.1248311847448349, -0.007511155214160681, -0.02422751486301422, 0.03404344245791435, -0.028087982907891273, -0.0027471582870930433, -0.06519247591495514, -0.013704748824238777, 0.02318757027387619, -0.06723281741142273, -0.005038444884121418, -0.014778828248381615, 0.08621285110712051, 0.07591038942337036, 0.015162901021540165, 0.07640805095434189, -0.01716996729373932, -0.06646884977817535, 0.013275341130793095, -0.05455394461750984, -0.013921424746513367, -0.05261993035674095, 0.002654843032360077, 0.09353921562433243, 0.12411467730998993, -0.09452646970748901, -0.08129480481147766, -0.06527259200811386, -0.021435163915157318, -0.0027872626669704914, 0.021307149901986122, -0.042875051498413086, 0.0009076208807528019, 0.005679064430296421, 0.08333297818899155, -0.011676663532853127, 0.026540610939264297, 0.011837652884423733, 0.013952251523733139, -0.07338615506887436, -0.03735547512769699, 0.039603590965270996, 0.04643779620528221, -0.004194931592792273, 0.0540093369781971, -0.01906757615506649, -0.02817612700164318, 0.054934438318014145, 0.01773688569664955, -0.09031462669372559, 0.0994790717959404, 0.04931254684925079, -0.09170743823051453, -0.028806161135435104, -0.048603661358356476, -0.07572285085916519, 0.024086294695734978, -0.02950255200266838, -0.017389584332704544, -0.0010140122612938285, -0.05573936179280281, 0.010394066572189331, -0.0847863182425499, 0.041488949209451675, 0.058115404099226, -0.06809363514184952, -0.036793820559978485, -0.0011801131768152118, 0.022539861500263214, -0.09556221961975098, 0.011439184658229351, 0.027936343103647232, 0.004047109745442867, 0.053673408925533295, -0.0015226893592625856, -0.018437260761857033, -0.012929869815707207, -0.07493811100721359, -0.045204658061265945, 0.057950906455516815, 0.037484295666217804, -0.07198639959096909, 0.06244494020938873, -0.07827454805374146, -0.021898893639445305, -0.028947891667485237, -0.08004537224769592, 0.06508124619722366, -0.10986915230751038, -0.07198905944824219, -0.024294478818774223, -0.008710788562893867, -0.027554579079151154, 0.04540088772773743, -1.106442212703537e-32, -0.058960795402526855, 0.009339656680822372, -0.09739569574594498, -0.07918746024370193, 0.0315910242497921, -0.0009376159287057817, 0.06543669104576111, -0.04001428559422493, 0.04715928062796593, -0.0140775665640831, 0.09725288301706314, -0.004091517999768257, -0.037802956998348236, -0.0368347093462944, -0.05926290899515152, -0.0412159264087677, -0.05708467215299606, 0.01409906055778265, 0.040771398693323135, 0.021007340401411057, 0.01329873502254486, -0.016256799921393394, -0.04406765475869179, -0.0036030984483659267, -0.013981741853058338, 0.03176623582839966, 0.037882719188928604, -0.014253932051360607, -0.005243224091827869, -0.04418354481458664, -0.013033116236329079, -0.03635106608271599, 0.060876619070768356, 0.07011266052722931, -0.03674648329615593, -0.05813553184270859, 0.02999858185648918, -0.013943755999207497, 0.026489704847335815, 0.0011000391095876694, 0.05256464704871178, 0.042813338339328766, 0.047026168555021286, 0.06304012984037399, 0.0024190847761929035, 0.04078046604990959, 0.051202449947595596, 0.09231202304363251, 0.015611142851412296, 0.05096613988280296, 0.019672716036438942, -0.03120991215109825, -0.08427230268716812, -0.0030077716801315546, 0.05863300710916519, -0.013183845207095146, -0.001120549044571817, -0.01641612872481346, 0.024935944005846977, -0.022450745105743408, -0.02424224093556404, -0.07676735520362854, 0.05119475722312927, 0.046703774482011795, -0.057109370827674866, 0.07131777703762054, -0.0588485524058342, -0.041754450649023056, -0.03462109714746475, -0.04575594514608383, 0.03545575961470604, -0.038041453808546066, -0.010827284306287766, -0.05377180129289627, -0.0839708223938942, -0.00007402887422358617, 0.012784093618392944, 0.09779846668243408, 0.0039856997318565845, -0.012047204189002514, -0.06146660074591637, 0.012162579223513603, 0.03525242954492569, -0.01579231023788452, -0.05630915239453316, 0.05311175808310509, 0.06488130241632462, 0.030680062249302864, 0.04782715067267418, -0.02326957695186138, 0.059855952858924866, 0.03170301020145416, 0.015859637409448624, -0.008659790270030499, 0.08371415734291077, 8.589090367644782e-32, -0.006501685827970505, -0.013123449869453907, -0.07548975199460983, 0.015975292772054672, 0.03855002298951149, -0.022351577877998352, -0.024609746411442757, 0.00473271356895566, -0.03908083215355873, -0.008434196002781391, 0.1281040608882904, 0.018291015177965164, -0.11712466180324554, 0.0023591758217662573, 0.00029773396090604365, -0.02610028348863125, -0.06443589180707932, 0.03566333279013634, 0.03337942808866501, -0.0355236791074276, -0.017554011195898056, 0.04838509112596512, -0.04084128513932228, 0.048223745077848434, 0.030022086575627327, -0.009962116368114948, -0.06323754042387009, 0.005462624132633209, 0.05642498657107353, 0.037662554532289505, 0.050826556980609894, 0.007448410149663687, -0.004940354265272617, -0.09491779655218124, 0.10535135120153427, 0.07216812670230865, -0.03529234975576401, -0.0077211675234138966, -0.012649043463170528, -0.040097132325172424, 0.06357134133577347, 0.0053945258259773254, -0.023252593353390694, -0.06346268206834793, 0.0104092787951231, -0.07937207818031311, 0.019256645813584328, -0.029309861361980438, 0.03489316627383232, -0.1040983721613884, -0.05117829889059067, 0.1348109096288681, 0.015692779794335365, 0.04439661279320717, -0.01937701180577278, 0.02905457839369774, -0.03109678067266941, 0.04139496758580208, 0.0036758023779839277, -0.12040553241968155, 0.024863174185156822, 0.12811149656772614, -0.06111537292599678, 0.015941018238663673 ]
52 Chapter 3 Example 12 L1 has equation y = 12 + 4x. L2 has equation y = x2. The diagram shows a sketch of L1 and L2 on the same axes. a Find the coordinates of P1 and P2, the points of intersection. b Hence write down the solution to the inequality 12 + 4x > x2.y x OL1: y = 12 + 4x L2: y = x2P1 P2 a x2 = 12 + 4 x x2 βˆ’ 4 x βˆ’ 12 = 0 (x βˆ’ 6)( x + 2) = 0 x = 6 and x = βˆ’ 2 substitute into y = x2 when x = 6, y = 36 P1 (6, 36) when x = βˆ’ 2, y = 4 P2 (βˆ’2, 4) b 12 + 4x > x2 when the graph of L1 is above the graph of L2 βˆ’2 < x < 6This is the range of values of x for which the graph of y = 12 + 4x is above the graph of y = x2 i.e. between the two points of intersection. In set notation this is {x : βˆ’2 < x < 6}.Equate to find the points of intersection, then rearrange to solve the quadratic equation. Factorise to find the x-coordinates at the points of intersection. 1 L1 has equation 2y + 3x = 6. L2 has the equation x βˆ’ y = 5. The diagram shows a sketch of L1 and L2. a Find the coordinates of P, the point of intersection. b Hence write down the solution to the inequality 2 y + 3x > x – y.y x O L1: 2y + 3x = 6L2: x – y = 5Exercise 3Fy x 2 5 Oy = g(x)y = f(x) The solutions to f(x) = g(x) are x = 2 and x = 5.f(x) is below g(x) when 2 < x < 5. These values of x satisfy f(x) < g(x).f(x) is above g(x) when x < 2 and when x > 5. These values of x satisfy f(x) > g(x).
[ 0.07161044329404831, 0.05860932171344757, -0.00026715637068264186, -0.02531319297850132, 0.005367380101233721, -0.025871116667985916, -0.0031512973364442587, 0.0499584823846817, -0.09999948740005493, 0.044180333614349365, 0.03993464633822441, -0.0017477524233981967, 0.0232989601790905, 0.037575483322143555, -0.07471968233585358, -0.02958429418504238, -0.014100436121225357, 0.0003206884430255741, -0.05549636483192444, -0.03480372205376625, -0.025886915624141693, -0.11209581047296524, -0.04915647953748703, -0.04596838727593422, 0.05085631087422371, -0.13798320293426514, -0.054638899862766266, -0.04235769808292389, 0.0368817001581192, 0.03189685568213463, 0.10303085297346115, 0.006604885682463646, 0.024178754538297653, 0.025883778929710388, 0.01312243938446045, 0.04401649162173271, 0.08943764120340347, 0.01485997624695301, 0.03196591138839722, -0.05764235556125641, -0.09374872595071793, -0.07027173787355423, -0.004978940822184086, -0.0986897274851799, 0.02256501279771328, -0.07456636428833008, -0.04087371006608009, 0.022842759266495705, 0.03302445262670517, -0.05193017050623894, 0.04641206935048103, -0.03430239111185074, 0.009151151403784752, 0.02719142846763134, -0.01939699612557888, 0.04179299250245094, -0.015436193905770779, -0.029163794592022896, 0.03153175115585327, 0.09467294067144394, 0.07896580547094345, -0.0587121844291687, -0.054389920085668564, 0.021597348153591156, 0.03283533826470375, 0.008910676464438438, -0.0022095271851867437, 0.04921962320804596, -0.06616440415382385, 0.08468450605869293, -0.12984894216060638, 0.03934943303465843, -0.004971430636942387, -0.07616209983825684, 0.02077750489115715, -0.0386338047683239, -0.030137378722429276, -0.06619628518819809, -0.03004549816250801, -0.04773455485701561, -0.0365755520761013, 0.06468871235847473, -0.03175235912203789, 0.024719655513763428, -0.031250499188899994, 0.0010215917136520147, 0.06088510900735855, -0.06002327799797058, 0.07343194633722305, 0.019274329766631126, 0.03453497588634491, 0.020824555307626724, -0.02941671945154667, -0.009576904587447643, 0.030136484652757645, -0.16633310914039612, 0.07990077883005142, 0.031582824885845184, 0.03910175710916519, 0.1085711270570755, -0.012161729857325554, 0.016497377306222916, -0.012186786159873009, 0.03953798860311508, 0.053734853863716125, 0.021891942247748375, 0.010818527080118656, -0.032891470938920975, 0.02754276990890503, -0.06393172591924667, 0.013156168162822723, -0.05129040405154228, 0.0026248274371027946, 0.06832051277160645, 0.09398883581161499, -0.012977711856365204, 0.06526932865381241, -0.048735007643699646, -0.015757806599140167, -0.04328390210866928, 0.01755775883793831, -0.04024170711636543, -0.03406064212322235, -0.03827786073088646, -0.014850799925625324, -0.04001644253730774, -0.00806387234479189, 0.004759570583701134, -0.0007152666221372783, -0.06498990207910538, -0.03350922837853432, -0.04326673224568367, 0.008278338238596916, -0.08188779652118683, -0.0025597757194191217, -0.01943269744515419, -0.028292030096054077, 0.08238831907510757, -0.046197470277547836, -0.058258116245269775, 0.060058336704969406, -0.013916374184191227, 0.05378280207514763, 0.015734579414129257, -0.011206637136638165, 0.023168770596385002, -0.09638551622629166, -0.012181051075458527, 0.0225787665694952, 0.00044697950943373144, -0.012789178639650345, -0.0287412591278553, -0.01912645250558853, 0.13176079094409943, -0.02139163948595524, -0.030364319682121277, -0.030142806470394135, -0.013471231795847416, 0.03870675712823868, 0.02715030126273632, -0.06384588778018951, 0.047832489013671875, -0.004471576306968927, 0.026466453447937965, -0.03040069341659546, -0.006429403554648161, -0.02275335043668747, 0.11969725787639618, 0.00974200014024973, -0.05579695850610733, 0.04356474429368973, 0.031254660338163376, 0.0002500558039173484, 0.04332791268825531, -0.06264057010412216, -0.03336277976632118, -0.0027234936133027077, -0.039919592440128326, -0.027976779267191887, 0.07447680085897446, -0.01213799323886633, -0.11049801856279373, 0.03739887848496437, -0.008758582174777985, -0.004196662921458483, 0.02997792512178421, 0.04899787902832031, 0.006090361159294844, -0.06688253581523895, 0.04532988369464874, 0.023702947422862053, -0.08003934472799301, -0.01927373930811882, 0.08162697404623032, -0.10120438039302826, -0.09276144951581955, 0.06913488358259201, 0.04197799786925316, -0.05383063480257988, -0.03537924587726593, -0.035242531448602676, 0.035195086151361465, 0.01071816124022007, -0.08023620396852493, -0.05777248740196228, 0.038344964385032654, -0.01562570594251156, -0.0029320635367184877, 0.003597768722102046, 0.01734156161546707, -0.0027360988315194845, -0.017256734892725945, -0.08682763576507568, -0.029950831085443497, 0.00020170699281152338, 0.0036036204546689987, 0.09622278064489365, -0.01890280283987522, -0.1047964096069336, -0.008911654353141785, -0.028247641399502754, 0.020397638902068138, 0.10860128700733185, -6.085121729158241e-33, -0.011247389949858189, 0.06826823204755783, -0.048964839428663254, -0.1165633350610733, -0.025466421619057655, 0.005835835821926594, 0.11524965614080429, -0.06009555980563164, 0.05978509783744812, 0.08184126764535904, 0.0579042062163353, -0.010905128903687, -0.025348959490656853, 0.013518223538994789, -0.006171848624944687, -0.052990466356277466, -0.008010423742234707, -0.014658895321190357, -0.027364581823349, -0.027851171791553497, 0.006584505550563335, -0.0043959226459264755, -0.020719759166240692, -0.06144427880644798, 0.011460965499281883, 0.01323486678302288, 0.07164411246776581, -0.03547794371843338, -0.07188691198825836, 0.008581879548728466, 0.008773455396294594, -0.04937474802136421, 0.0697360411286354, 0.021941479295492172, 0.0057077184319496155, -0.04380728676915169, -0.02381446212530136, -0.04071289300918579, 0.06261855363845825, -0.11575523763895035, 0.04203192517161369, 0.04114176705479622, 0.026776116341352463, -0.004361483734101057, 0.005211992189288139, 0.05433616042137146, 0.08151083439588547, 0.0775497779250145, 0.006040878128260374, 0.010579337365925312, 0.018610401079058647, -0.006986734922975302, 0.033043332397937775, -0.0785130113363266, 0.10338642448186874, -0.021073533222079277, 0.023487884551286697, -0.045018505305051804, 0.009217418730258942, -0.04204277694225311, 0.010633138939738274, 0.003972355742007494, 0.05682555213570595, 0.04306420683860779, -0.0059293108060956, 0.0005370483850128949, -0.05642620101571083, -0.050580866634845734, 0.09195239841938019, 0.0026913403999060392, -0.08332037180662155, -0.01506266463547945, -0.031033135950565338, -0.0677371695637703, 0.03291219845414162, 0.038410402834415436, -0.012355905957520008, 0.04129777103662491, 0.07809358835220337, -0.03826909512281418, -0.08583259582519531, 0.055489689111709595, -0.030109120532870293, -0.03701147809624672, -0.06374193727970123, 0.08469022065401077, -0.009109719656407833, 0.044860731810331345, 0.029864918440580368, -0.018741659820079803, 0.029011311009526253, 0.02528817020356655, -0.04608943313360214, -0.02532108686864376, 0.08046787232160568, 8.459030733933927e-32, -0.0011285695945844054, 0.01701929047703743, -0.05753788724541664, -0.0563737116754055, 0.04975474625825882, 0.09562062472105026, 0.058715399354696274, 0.0900610089302063, 0.046871062368154526, 0.01782754622399807, 0.007756057195365429, -0.0056781102903187275, 0.01173649076372385, -0.025835441425442696, -0.06527600437402725, 0.0056664771400392056, -0.026563145220279694, -0.050373539328575134, 0.026178212836384773, -0.07160693407058716, -0.06167948991060257, -0.0396418534219265, -0.02263479307293892, 0.051990289241075516, 0.035071175545454025, 0.06473556160926819, -0.08579950779676437, 0.00370183028280735, 0.05658606067299843, -0.07789543271064758, 0.07706569880247116, -0.07786767184734344, 0.03232776001095772, 0.0024596417788416147, 0.12315703928470612, -0.05072987824678421, -0.07832976430654526, 0.03976494446396828, 0.020442843437194824, -0.038463495671749115, -0.02823886089026928, -0.047483522444963455, -0.050822388380765915, -0.035818032920360565, 0.04225750267505646, 0.04292803630232811, 0.08147158473730087, -0.07398810982704163, 0.08140217512845993, -0.029796214774250984, -0.0586579293012619, 0.08069286495447159, 0.03471499681472778, 0.06132170557975769, -0.03243463858962059, -0.09818579256534576, 0.002940710633993149, 0.019940733909606934, -0.0065459078177809715, -0.020109685137867928, -0.028918173164129257, 0.04678616672754288, -0.11194227635860443, -0.03327533230185509 ]
53 Equations and inequalities The sketch shows the graphs of f(x) = x2 – 4x βˆ’ 12 g(x) = 6 + 5 x βˆ’ x2 a Find the coordinates of the points of intersection. b Fin d the set of values of x for which f( x) < g( x). Give your answer in set notation.y x O y = g(x)y = f (x)Challenge All the shaded points in this region satisfy the inequality y > f(x).3.7 Regions You can use shading on graphs to identify regions that satisfy linear and quadratic inequalities. β–  y < f(x) represents the points on the coordinate grid below the curve y = f(x). β–  y > f(x) represents the points on the coordinate grid above the curve y = f(x). y = f (x)y x OAll the unshaded points in this region satisfy the inequality y < f(x).2 For each pair of functions: i Sketch the gra phs of y = f(x) and y = g(x) on the same axes. ii Find the coordinates of any points of intersection. iii Write down the solutions to the inequa lity f(x) < g(x). a f(x ) = 3x – 7 b f(x ) = 8 – 5x c f(x ) = x2 + 5 g(x ) = 13 – 2x g(x ) = 14 – 3x g(x) = 5 – 2x d f(x ) = 3 – x2 e f(x ) = x2 – 5 f f(x ) = 7 – x2 g(x ) = 2x – 12 g(x) = 7x + 13 g(x) = 2x – 8 3 Find the set of va lues of x for which the curve with equation y = f(x) is below the line with equation y = g(x).a f(x ) = 3x2 βˆ’ 2x – 1 b f(x ) = 2x2 – 4x + 1 c f(x ) = 5x – 2x2 – 4 g(x ) = x + 5 g(x) = 3x – 2 g(x) = βˆ’2x – 1 d f(x ) = 2 __ x , x β‰  0 e f(x) = 3 __ x2 βˆ’ 4 __ x , x β‰  0 f f(x) = 2 _____ x + 1 , x β‰  βˆ’1 g(x ) = 1 g(x) = βˆ’1 g(x) = 8P
[ 0.0902569517493248, 0.07046928256750107, 0.07022906839847565, -0.032154425978660583, -0.04011542722582817, 0.025275414809584618, 0.026603639125823975, 0.004776309709995985, -0.15033164620399475, 0.04792482778429985, -0.04281258583068848, -0.026247045025229454, -0.040408939123153687, 0.02789643220603466, -0.07477625459432602, -0.02739955484867096, -0.0008401369559578598, 0.004337845835834742, -0.0766797885298729, -0.07660830765962601, -0.007792371790856123, -0.095893993973732, -0.01964309625327587, -0.06531558185815811, 0.07063283771276474, -0.13435155153274536, -0.058887165039777756, -0.06014736369252205, -0.0045826924033463, 0.0026177780237048864, 0.08289150148630142, -0.04258264601230621, 0.01392043475061655, -0.04801906272768974, 0.013844645582139492, 0.04332651570439339, 0.014755324460566044, 0.04732964560389519, 0.06100078299641609, -0.013103032484650612, -0.09466487169265747, -0.03566145524382591, -0.02051069214940071, -0.025544101372361183, 0.061023253947496414, -0.002651025541126728, 0.02796601504087448, 0.006057672202587128, -0.025046689435839653, 0.01630990393459797, 0.022006582468748093, -0.026260575279593468, -0.030968770384788513, 0.08160790055990219, -0.028476262465119362, -0.045117732137441635, 0.05126672983169556, -0.08495599031448364, 0.009717357344925404, 0.09763876348733902, 0.02965371496975422, 0.02866748906672001, -0.04431098699569702, 0.04966725409030914, 0.04094879329204559, 0.06310475617647171, 0.07606253772974014, -0.004787040874361992, -0.047117576003074646, 0.07915998995304108, -0.11408828943967819, 0.036631178110837936, -0.03641390800476074, -0.08042693883180618, -0.005442953202873468, 0.02308015152812004, -0.05240378901362419, -0.062213826924562454, -0.013824068009853363, -0.05288085713982582, -0.04312725365161896, 0.05516976863145828, 0.032885562628507614, 0.10311771929264069, -0.014352815225720406, 0.008988719433546066, 0.04322274401783943, 0.0019801852758973837, 0.005338555201888084, 0.04418858140707016, -0.007086507510393858, 0.02603628858923912, -0.007961235009133816, -0.061839986592531204, -0.0032425473909825087, -0.13503903150558472, 0.08018404245376587, -0.0009664234239608049, 0.0022542220540344715, 0.11467932909727097, 0.016262950375676155, 0.02697344869375229, 0.03701576963067055, 0.013119969516992569, 0.028897838667035103, -0.013583636842668056, -0.028066936880350113, -0.0035061780363321304, -0.028485119342803955, -0.033895429223775864, -0.023937487974762917, -0.02935369312763214, 0.010926634073257446, 0.050265196710824966, 0.04914040490984917, -0.05921809375286102, 0.07652512192726135, -0.04152149707078934, 0.02470516227185726, -0.04253528267145157, -0.007150681689381599, -0.050802603363990784, 0.020309044048190117, -0.0005486853187903762, -0.02356073074042797, -0.04724327102303505, -0.00044163077836856246, 0.011121965944766998, 0.019450530409812927, -0.10425326228141785, 0.023712029680609703, -0.011555965058505535, 0.04992980137467384, -0.05400371551513672, -0.009091474115848541, -0.04761861264705658, -0.04695506393909454, 0.08984459936618805, -0.00975114107131958, -0.007249580696225166, -0.009340928867459297, 0.08733364194631577, 0.11996787786483765, 0.028458600863814354, 0.0075554740615189075, 0.014943123795092106, -0.09946514666080475, -0.00317612336948514, -0.006170892622321844, -0.042084407061338425, 0.0239635668694973, -0.003300188574939966, 0.02434365637600422, 0.19250400364398956, -0.01755368523299694, -0.04138069227337837, -0.08236788958311081, 0.017049845308065414, -0.009070741012692451, -0.027456820011138916, -0.05829013139009476, 0.09721755236387253, -0.016604170203208923, 0.04289139807224274, -0.048704277724027634, -0.0051392377354204655, 0.01979217678308487, 0.02719922736287117, -0.04062006250023842, -0.056420180946588516, 0.05078703910112381, 0.018989019095897675, 0.002692939480766654, 0.054377004504203796, -0.02080393023788929, -0.06754234433174133, 0.025461705401539803, 0.006696593482047319, -0.06773748993873596, 0.0709322914481163, 0.025279516354203224, -0.07756690680980682, 0.030076637864112854, -0.03808116912841797, 0.011311696842312813, -0.03479647636413574, 0.011441316455602646, -0.040460266172885895, -0.04642655700445175, -0.011820525862276554, 0.006643247324973345, -0.08976218104362488, 0.0011353917652741075, 0.020446542650461197, -0.11209224164485931, -0.040799856185913086, -0.0023565373849123716, 0.06263529509305954, -0.07381041347980499, -0.01834619604051113, 0.05528445169329643, -0.002861263230443001, 0.0463654026389122, -0.02613358199596405, -0.004381421487778425, -0.015937164425849915, -0.06861045956611633, -0.013237244449555874, 0.04735655337572098, 0.0522233247756958, -0.05381402000784874, -0.0003029352519661188, -0.1136927381157875, 0.031073983758687973, 0.0929921567440033, -0.05473766475915909, 0.10157115012407303, -0.0527355931699276, -0.1265369951725006, -0.04240136593580246, -0.014453006908297539, -0.036119069904088974, 0.06029316782951355, 1.732396921809839e-33, -0.02821439318358898, 0.011346726678311825, -0.06800787150859833, -0.06039759889245033, 0.019755449146032333, -0.04920225962996483, 0.09142867475748062, -0.05019082501530647, 0.060383375734090805, 0.054976481944322586, 0.07051532715559006, 0.022806640714406967, 0.015264298766851425, 0.025898147374391556, -0.033630989491939545, -0.05778946354985237, -0.03409336134791374, -0.0199953094124794, -0.03750922530889511, 0.00562116876244545, 0.038043063133955, -0.00252217473462224, -0.003324701450765133, -0.027194714173674583, 0.04267718642950058, 0.023755360394716263, 0.08493531495332718, -0.05507250130176544, -0.06065697595477104, 0.05809119716286659, 0.026314781978726387, 0.004874954465776682, 0.05335061252117157, 0.0268096923828125, 0.03313539922237396, -0.09464099258184433, 0.0541657879948616, -0.04753193259239197, 0.08904975652694702, -0.050471965223550797, 0.052981290966272354, 0.061859190464019775, 0.07249189913272858, 0.028728947043418884, -0.01771824061870575, 0.0457332469522953, -0.013264305889606476, 0.04069714620709419, -0.03194029629230499, 0.03850915655493736, 0.008280240930616856, -0.05527694523334503, 0.019565746188163757, -0.013925083912909031, 0.12007810175418854, -0.005376155953854322, 0.066468246281147, -0.04476028308272362, 0.020517902448773384, 0.054571762681007385, -0.03521731123328209, -0.1009640246629715, 0.05656322091817856, -0.006571678444743156, -0.05204673483967781, -0.03672162815928459, -0.10000384598970413, -0.06964776664972305, 0.025758890435099602, 0.023872138932347298, -0.04003558307886124, -0.043543532490730286, -0.026671644300222397, -0.06770839542150497, 0.023097719997167587, 0.042014844715595245, -0.0005291630513966084, 0.0248397346585989, 0.02525367960333824, -0.020494556054472923, -0.048814963549375534, 0.05753589794039726, 0.018762847408652306, 0.025236545130610466, -0.07048066705465317, 0.1017310842871666, 0.02484414167702198, 0.03159995749592781, 0.07988761365413666, -0.010130529291927814, 0.0006880550063215196, 0.1088332086801529, -0.08999460190534592, -0.03294185921549797, 0.030045736581087112, 6.374712329728195e-32, -0.042139723896980286, 0.04082421585917473, -0.02825061045587063, 0.03168441727757454, 0.0552683025598526, 0.03668951988220215, 0.008647005073726177, 0.014989008195698261, 0.06353418529033661, -0.037243131548166275, 0.07486465573310852, -0.008633394725620747, -0.11214791983366013, -0.02945476956665516, 0.0026783510111272335, 0.01676206849515438, -0.053169529885053635, 0.01632518880069256, 0.007062061689794064, -0.018361613154411316, -0.02845144271850586, 0.014733238145709038, -0.05580732598900795, 0.06560945510864258, 0.03376483544707298, 0.0281230416148901, -0.04726870730519295, -0.02285717986524105, -0.005092869512736797, 0.02869861200451851, -0.009055979549884796, -0.0359044075012207, -0.03945288807153702, 0.004080704879015684, 0.1169201135635376, 0.020233988761901855, -0.10700328648090363, 0.02126404084265232, -0.025879835709929466, -0.032454632222652435, -0.007863185368478298, 0.0036488594487309456, 0.034696314483881, -0.016801228746771812, -0.012897799722850323, -0.06269999593496323, 0.0850939080119133, -0.006437013857066631, 0.05241818353533745, 0.0065301936119794846, -0.06060526892542839, 0.10496965050697327, 0.002548074582591653, 0.0004332885146141052, -0.05657432600855827, 0.0031860885210335255, 0.014757905155420303, 0.014142082072794437, -0.02322630025446415, -0.03271862864494324, -0.030324788764119148, 0.06585965305566788, -0.10930556803941727, 0.036536335945129395 ]
54 Chapter 3 β–  If y > f(x) or y < f(x) then the curve y = f(x) is not included in the region and is represented by a dotted line. β–  If y > f(x) or y < f(x) then the curve y = f(x) is included in the region and is represented by a solid line. Example 13 On graph paper, shade the region that satisfies the inequalities: y > βˆ’2, x < 5, y < 3x + 2 and x > 0. y x –5–2 –1 1234 567 –35 O10152025x = 0 x = 5 y = 3x + 2 y = –2Draw dotted lines for x = 0, x = 5. Draw solid lines for y = βˆ’2, y = 3x + 2.Shade the required region. Test a point in the region. Try (1, 2).For x = 1: 1 < 5 and 1 > 0 βœ“For y = 2: 2 > βˆ’2 and 2 < 3 + 2 βœ“ Example 14 On graph paper, shade the region that satisfies the inequalities: 2y + x < 14 y > x2 – 3x – 4 y x –5–1 12 3/four.ss01 567 –2 –3 –/four.ss015 O1015202530 –10y = x2 – 3x – /four.ss01 2y + x = 1/four.ss01Draw a dotted line for 2y + x = 14 and a solid line for y = x2 – 3x – 4. Shade the required region.Test a point in the region. Try (0, 0). 0 + 0 < 14 and 0 > 0 – 0 – 4 βœ“ Explore which regions on the g raph satisfy which inequalities using GeoGebra.Online
[ 0.031383588910102844, 0.08265526592731476, 0.021256988868117332, -0.05200735852122307, -0.022602982819080353, -0.010243067517876625, -0.09278827160596848, 0.00941680558025837, -0.09922920912504196, 0.03958097845315933, 0.0057642157189548016, 0.03810950741171837, 0.0738588273525238, 0.08055519312620163, -0.058318961411714554, -0.08605489879846573, -0.04445939511060715, 0.006835577078163624, -0.0505237802863121, -0.04859897121787071, -0.0008101736893877387, -0.05031643807888031, -0.10034731775522232, -0.025079069659113884, 0.03371330723166466, -0.10612897574901581, -0.05846892669796944, -0.03003920242190361, -0.010867646895349026, -0.012374822981655598, 0.09765685349702835, -0.03232144936919212, -0.011443433351814747, -0.03003171645104885, 0.024712443351745605, -0.044647183269262314, 0.04001889377832413, -0.0017287948867306113, 0.08537034690380096, -0.012449764646589756, -0.08565653860569, 0.010212216526269913, -0.01739593595266342, 0.0755690410733223, 0.048210788518190384, -0.010446769185364246, 0.030733522027730942, -0.0829119086265564, 0.021071970462799072, -0.000669775006826967, 0.06972512602806091, 0.05466637760400772, -0.014108303934335709, 0.030884472653269768, -0.045170534402132034, -0.0036312376614660025, 0.010565576143562794, -0.03375281020998955, -0.10242252051830292, 0.14097489416599274, 0.024205295369029045, 0.06190309301018715, -0.005417650565505028, 0.03741440922021866, 0.09033797681331635, 0.040241654962301254, 0.032265402376651764, -0.026891322806477547, -0.05342099443078041, 0.1308392733335495, -0.1347751021385193, -0.06976626068353653, -0.026545299217104912, -0.07885053753852844, -0.010957556776702404, -0.003944744355976582, -0.0219595767557621, 0.030034426599740982, -0.03481269255280495, -0.05052261799573898, -0.05226275697350502, 0.07300914824008942, 0.02635275386273861, 0.10205188393592834, -0.049467846751213074, 0.040257468819618225, 0.030244629830121994, -0.05471443757414818, -0.008812193758785725, 0.08543293923139572, -0.04017845168709755, 0.06245295703411102, -0.0384662039577961, -0.030707266181707382, 0.012385048903524876, -0.058441754430532455, -0.0007234481745399535, -0.032392051070928574, -0.004499183502048254, 0.05425553396344185, -0.006349653005599976, -0.09236271679401398, -0.005420372821390629, 0.005946133751422167, 0.02557157352566719, -0.06370456516742706, 0.042357608675956726, 0.002724012127146125, -0.04629432410001755, -0.0332103855907917, 0.004527426324784756, 0.005070623010396957, 0.000044005686504533514, 0.054101377725601196, 0.06964104622602463, -0.12097135931253433, -0.03353624418377876, 0.008317719213664532, 0.030471784994006157, -0.06682990491390228, -0.0046574268490076065, -0.019035672768950462, -0.04861126467585564, -0.016385354101657867, -0.013189682736992836, -0.04035300761461258, 0.006602390669286251, -0.030664851889014244, 0.04326067492365837, -0.10176648944616318, 0.004548171069473028, -0.05800490453839302, 0.06897015124559402, -0.05583149939775467, 0.0027446961030364037, -0.0646917074918747, -0.08980796486139297, 0.07571379840373993, 0.007076576352119446, 0.0031159210484474897, 0.025961099192500114, 0.02530374750494957, 0.1055753231048584, 0.016309423372149467, 0.020588237792253494, -0.004545563366264105, -0.05185738205909729, 0.02275528386235237, 0.026209034025669098, -0.06688585877418518, 0.013176762498915195, -0.013521615415811539, 0.019896456971764565, 0.10198651254177094, 0.005445555318146944, -0.00786782056093216, -0.08153475075960159, 0.04313056915998459, 0.017963185906410217, -0.04125748202204704, -0.041792403906583786, 0.09401071816682816, -0.031157374382019043, 0.051842041313648224, -0.1043282002210617, -0.015488623641431332, 0.05471387878060341, -0.012534596025943756, -0.004532505292445421, -0.03934058919548988, 0.054830990731716156, -0.005933630745857954, -0.029685908928513527, 0.07864369451999664, -0.018553948029875755, 0.03721761703491211, 0.022408541291952133, 0.011368873529136181, -0.032015688717365265, 0.018252898007631302, 0.10814154148101807, -0.11695381999015808, -0.002628342481330037, -0.023946810513734818, -0.009309018962085247, -0.10826356709003448, -0.045623715966939926, -0.07078123837709427, -0.0008918421808630228, 0.005338754970580339, -0.010726012289524078, -0.09829964488744736, -0.009227519854903221, 0.06742778420448303, -0.05727698653936386, -0.018329283222556114, 0.05517352744936943, 0.06364213675260544, -0.05329179763793945, 0.04189195856451988, -0.026536807417869568, -0.004791880492120981, 0.0673704445362091, 0.06413023918867111, -0.04461916536092758, 0.02833482250571251, -0.024607975035905838, -0.0546499527990818, 0.009623984806239605, 0.010747595690190792, -0.07377002388238907, 0.047404300421476364, -0.08703237771987915, -0.024844512343406677, -0.024092257022857666, 0.02308119460940361, 0.09882404655218124, -0.07226265966892242, -0.1446578949689865, 0.0006861841538920999, 0.039510902017354965, 0.009328266605734825, -0.00823440495878458, 6.808484861304286e-34, -0.040805086493492126, 0.060902081429958344, -0.019387904554605484, -0.0005382602685131133, -0.007150853518396616, -0.07349088042974472, 0.117100290954113, 0.031287092715501785, 0.021827759221196175, 0.036197539418935776, 0.019504090771079063, 0.03179362788796425, -0.0575733557343483, -0.01929977536201477, -0.01954776979982853, -0.05587765574455261, -0.0716104730963707, -0.034173764288425446, -0.008994709700345993, 0.01985275372862816, 0.054392099380493164, -0.027129491791129112, -0.007565016858279705, 0.01913008838891983, -0.045932888984680176, 0.01921970583498478, 0.09262502193450928, -0.03425830975174904, -0.024422531947493553, 0.04924263805150986, -0.01177696231752634, -0.011432988569140434, -0.007718167267739773, 0.012154928408563137, 0.0024672255385667086, -0.11913148313760757, 0.03331327065825462, -0.09496523439884186, 0.057492874562740326, 0.004782006144523621, 0.0558563768863678, 0.020029664039611816, 0.09594498574733734, 0.00481566833332181, -0.07554604113101959, 0.06967717409133911, 0.0219776201993227, 0.09592253714799881, -0.011844130232930183, 0.03070865012705326, 0.0016767771448940039, -0.02797485701739788, 0.0494035966694355, 0.06333104521036148, 0.08843070268630981, -0.007535872515290976, -0.045775704085826874, -0.05438090115785599, 0.018038811162114143, -0.006676895543932915, 0.0012603271752595901, -0.028206193819642067, 0.028516873717308044, 0.022309526801109314, -0.031115597113966942, -0.012425628490746021, -0.07162131369113922, -0.05814739689230919, 0.13872130215168, 0.04696120321750641, 0.053275879472494125, 0.0007802097825333476, 0.0076380460523068905, -0.06513050943613052, -0.014194073155522346, -0.0014436065685003996, -0.036938972771167755, 0.02353888750076294, 0.061265408992767334, 0.03231819346547127, -0.005479705985635519, 0.09975086152553558, -0.03993653878569603, 0.021939409896731377, -0.03369073569774628, 0.03674209117889404, -0.0552917942404747, 0.02923537977039814, 0.029092879965901375, 0.039380062371492386, -0.006426856853067875, 0.019827691838145256, -0.06755463033914566, -0.10320694744586945, -0.02806614525616169, 7.064217349112621e-32, -0.05465158820152283, -0.08838637918233871, -0.03495573252439499, 0.08907991647720337, 0.015715090557932854, 0.026777422055602074, 0.059768225997686386, -0.03473404794931412, 0.0058556413277983665, -0.023942530155181885, 0.0605657696723938, 0.0370878167450428, -0.06959464401006699, -0.003839812008664012, -0.01486742403358221, 0.054728567600250244, 0.03724159300327301, -0.039678480476140976, -0.014888450503349304, 0.01609652489423752, -0.015020590275526047, -0.03521218150854111, -0.05375037342309952, 0.029954619705677032, 0.03208150342106819, -0.014712642878293991, -0.06859765946865082, 0.056659117341041565, 0.0339755117893219, -0.033535491675138474, -0.01018733810633421, 0.028471997007727623, 0.054583992809057236, -0.04619831591844559, 0.07499286532402039, 0.0002632474061101675, -0.08036032319068909, 0.0034628543071448803, -0.0029007629491388798, -0.04164682328701019, 0.0024489189963787794, 0.008238150738179684, 0.024290254339575768, -0.018949847668409348, 0.012940778397023678, -0.06767278164625168, 0.11558635532855988, -0.042866889387369156, 0.023620426654815674, 0.026215579360723495, -0.0031929260585457087, 0.10256265103816986, 0.030126454308629036, 0.04066004604101181, -0.029141513630747795, -0.0037432254757732153, 0.0047617945820093155, -0.049658406525850296, -0.008676203899085522, 0.00725272111594677, 0.0889400914311409, 0.09041351079940796, -0.04152734950184822, 0.03543410077691078 ]
55 Equations and inequalities 1 On a coordinate grid, shade the r egion that satisfies the inequalities: y > x – 2, y < 4x and y < 5 – x. 2 On a coordinate grid, shade the r egion that satisfies the inequalities: x > βˆ’1, y + x < 4, 2x + y < 5 and y > βˆ’2. 3 On a coordinate grid, shade the r egion that satisfies the inequalities: y > (3 – x)(2 + x) and y + x > 3. 4 On a coordinate grid, shade the r egion that satisfies the inequalities: y > x2 – 2 and y < 9 – x2. 5 On a coordinate grid, shade the r egion that satisfies the inequalities: y > (x – 3)2, y + x > 5 and y < x – 1. 6 The sketch shows the gr aphs of the straight lines with equations: y = x + 1, y = 7 – x and x = 1. a Work out the coor dinates of the points of intersection of the functions. b Write down the set of inequalities that represent the shaded region shown in the sketch. 7 The sketch shows the gr aphs of the curves with equations: y = 2 – 5x – x2, 2x + y = 0 and x + y = 4. Write down the set of inequalities that represent the shaded region shown in the sketch. 8 a On a coordinate grid, shade the r egion that satisfies the inequalities y < x + 4, y + 5x + 3 > 0, y > βˆ’1 and x < 2. b Work out the coor dinates of the vertices of the shaded region. c Which of the v ertices lie within the region identified by the inequalities? d Work out the ar ea of the shaded region.Oy x –1–2–12 4 613 5712345678 y = 7 – xy = x + 1x = 1 Oy x–1 –2–3 1 –4–5–6 –2 2312345678 –1P A vertex is only included if both intersecting lines are included.Problem-solvingExercise 3G
[ 0.013747014105319977, -0.003816975513473153, 0.06681542098522186, -0.0416809543967247, 0.0060602519661188126, 0.015252506360411644, -0.059428147971630096, -0.024008916690945625, -0.1666114628314972, 0.05208682641386986, -0.09709397703409195, -0.010302322916686535, 0.03112560696899891, 0.07661455124616623, 0.0008384769898839295, 0.009533477947115898, -0.05885998532176018, 0.006220927927643061, -0.054171737283468246, -0.05310048535466194, -0.043885212391614914, -0.10415459424257278, -0.1079925149679184, -0.008423862978816032, -0.003653694177046418, -0.04792967066168785, -0.023457560688257217, -0.05557374656200409, -0.024999769404530525, 0.004851713310927153, 0.09045855700969696, 0.0042979419231414795, 0.043070100247859955, -0.07614590227603912, 0.017200415953993797, -0.01255039218813181, 0.07717437297105789, 0.026710085570812225, 0.0021903207525610924, -0.05719677358865738, 0.001703705289401114, 0.009406986646354198, -0.019271112978458405, 0.049296047538518906, 0.03399607166647911, 0.007063582073897123, 0.06518219411373138, -0.08621755987405777, 0.031668487936258316, -0.004122416488826275, 0.01250364538282156, -0.016944196075201035, -0.0008160432334989309, 0.07182182371616364, -0.02457352913916111, -0.07984934747219086, 0.032900985330343246, -0.03864019736647606, -0.08831620961427689, 0.052978094667196274, 0.03390716388821602, -0.019596075639128685, -0.049372173845767975, 0.057963259518146515, -0.014735670760273933, 0.023996135219931602, 0.04794776439666748, -0.017065970227122307, -0.030957890674471855, 0.11571679264307022, -0.12584619224071503, -0.019422216340899467, -0.07165324687957764, -0.1178307756781578, -0.008620659820735455, 0.015951840206980705, -0.047668229788541794, -0.024568604305386543, -0.01132948324084282, -0.04602915421128273, 0.013162791728973389, 0.04356122761964798, 0.04530356451869011, 0.0493285171687603, -0.026549771428108215, -0.017958873882889748, 0.05953824520111084, 0.08272355049848557, -0.007325970102101564, 0.08798707276582718, 0.0024702020455151796, 0.038058631122112274, -0.018255848437547684, -0.05950268357992172, 0.015105458907783031, -0.1081085056066513, 0.061269763857126236, -0.0784609317779541, 0.0023070138413459063, 0.04248322546482086, 0.009560593403875828, -0.051032740622758865, 0.05818558484315872, -0.04367857053875923, 0.006466992199420929, -0.008339866064488888, 0.06433454155921936, -0.009703251533210278, -0.04636567085981369, -0.04749505594372749, -0.014331155456602573, -0.04210891202092171, 0.010418360121548176, 0.061003122478723526, -0.028866156935691833, -0.05594827979803085, 0.05913260206580162, 0.02102748490869999, 0.04150043800473213, -0.03883298486471176, -0.04265555739402771, 0.030896421521902084, 0.04189743474125862, -0.03366081044077873, -0.05183029919862747, -0.05089375376701355, -0.04518287256360054, 0.007403124589473009, 0.03078334964811802, -0.052629198879003525, -0.048267289996147156, -0.01583697833120823, 0.04720231145620346, 0.04269633814692497, -0.0028784184250980616, -0.004403965547680855, 0.008751616813242435, 0.05350903794169426, -0.01407646294683218, 0.04891917482018471, -0.03440813347697258, 0.07746490836143494, 0.06812535971403122, -0.015955204144120216, -0.014553605578839779, -0.0489717572927475, -0.0827278196811676, 0.042009592056274414, -0.03683416545391083, -0.0033060696441680193, -0.004670619964599609, 0.011739306151866913, 0.016313889995217323, 0.12207651883363724, 0.004700986202806234, -0.027965916320681572, -0.065303735435009, 0.06493084877729416, 0.03407569229602814, 0.005350777879357338, -0.03703664615750313, 0.06739357113838196, 0.005012397188693285, 0.05785096436738968, -0.03199651464819908, -0.009345158003270626, 0.03730306029319763, 0.055833399295806885, -0.07181102782487869, -0.02699216641485691, 0.007490853313356638, 0.038330040872097015, -0.02786519005894661, 0.058783791959285736, -0.0010186668951064348, -0.010369166731834412, 0.08371030539274216, 0.00445523438975215, -0.09095587581396103, 0.09900245815515518, -0.032335832715034485, -0.17756015062332153, 0.009436478838324547, 0.0028431524988263845, -0.010492289438843727, -0.06866859644651413, 0.0069660316221416, 0.033455897122621536, -0.06352946162223816, -0.042991843074560165, 0.007893497124314308, -0.15995950996875763, 0.0729672908782959, 0.09302486479282379, -0.11551060527563095, -0.05700568109750748, -0.006235170643776655, 0.05903318151831627, -0.07042785733938217, -0.03584805503487587, 0.01082321722060442, 0.03651532530784607, 0.09650997072458267, 0.018989644944667816, 0.05662338808178902, -0.02225351706147194, -0.03367459774017334, -0.04325287789106369, 0.01167788915336132, 0.055328454822301865, -0.0410647988319397, 0.008668535389006138, -0.042013052850961685, 0.02300948090851307, 0.011797002516686916, -0.03954480215907097, 0.06403731554746628, -0.07084731012582779, -0.0893627256155014, 0.016839688643813133, 0.030222859233617783, -0.03911294788122177, -0.0000825825409265235, -5.978472432785996e-33, -0.0775703638792038, -0.005430252756923437, -0.08530399948358536, -0.038912173360586166, -0.04487815871834755, -0.05396256595849991, 0.1105242520570755, 0.019802864640951157, 0.06905896961688995, 0.03014455921947956, 0.08120231330394745, 0.03599857538938522, -0.006334417033940554, 0.049875445663928986, -0.027827460318803787, -0.08966976404190063, -0.09467606991529465, -0.02478477917611599, -0.0037637250497937202, 0.0010492209112271667, 0.001249831635504961, 0.005830985493957996, -0.01889832876622677, 0.03105946071445942, -0.053767841309309006, 0.06922676414251328, 0.06852350383996964, -0.0629160925745964, -0.016824498772621155, 0.047407254576683044, -0.0042582000605762005, -0.02324754372239113, 0.010168276727199554, 0.023839501664042473, 0.003961824346333742, -0.07955370843410492, 0.009885613806545734, -0.0535263828933239, 0.07400689274072647, -0.004545149393379688, 0.03542052581906319, -0.017380211502313614, 0.10731717199087143, 0.023288754746317863, 0.002386688720434904, -0.013227244839072227, 0.017335960641503334, 0.09551024436950684, -0.08010628819465637, 0.01210344024002552, -0.019162466749548912, -0.03189106285572052, -0.05707786604762077, 0.04202306643128395, 0.1039794459939003, -0.0949314758181572, 0.01865559257566929, -0.010268463753163815, 0.03983362391591072, -0.016364028677344322, -0.004131976515054703, -0.049088820815086365, 0.07596658915281296, 0.051708661019802094, -0.06039854884147644, 0.0700642392039299, -0.01824076473712921, -0.07825051993131638, 0.05337024852633476, 0.027722377330064774, 0.030741024762392044, -0.09527716040611267, -0.0005583862075582147, -0.09855460375547409, -0.06856011599302292, 0.028835687786340714, 0.023341365158557892, 0.10152972489595413, 0.04154276102781296, 0.007454649079591036, -0.06417110562324524, 0.08351367712020874, 0.01888863928616047, 0.07094289362430573, -0.02658923529088497, 0.04526152089238167, 0.048761043697595596, 0.05857286602258682, 0.06903692334890366, 0.02581820636987686, 0.017602864652872086, 0.008477501571178436, 0.00002281265551573597, -0.057926200330257416, 0.054123103618621826, 7.121575595960994e-32, 0.0009986584773287177, 0.004490176681429148, -0.029727213084697723, 0.06879062950611115, -0.019158542156219482, 0.020531469956040382, 0.00447250297293067, -0.004468085709959269, -0.04649718850851059, -0.04291248321533203, 0.08115552365779877, 0.01043819822371006, -0.04757760837674141, -0.04284724220633507, -0.03239700570702553, 0.01349011529237032, -0.024599706754088402, 0.05724533647298813, -0.03347872942686081, -0.02081335335969925, -0.03716699779033661, 0.02720762975513935, -0.03062247298657894, 0.06166888773441315, 0.02830834873020649, 0.01170858833938837, -0.08102987706661224, -0.04276124760508537, 0.02992422506213188, 0.018850378692150116, 0.03593287616968155, -0.03545933961868286, 0.01742076501250267, -0.012372036464512348, 0.07954241335391998, 0.052144166082143784, -0.11308087408542633, 0.023894447833299637, -0.04426361247897148, -0.0526687391102314, -0.0003621558134909719, -0.01750946417450905, 0.02947939932346344, -0.01949562318623066, 0.0171134565025568, -0.05856689065694809, 0.027396148070693016, -0.00375952385365963, 0.015964072197675705, 0.003081410424783826, -0.026945488527417183, 0.13477230072021484, -0.02807443216443062, 0.07378751039505005, -0.00460885651409626, -0.0062207793816924095, 0.017803676426410675, 0.005391097627580166, -0.018280452117323875, -0.04318669065833092, 0.015847478061914444, 0.07260014116764069, -0.09001694619655609, -0.037752263247966766 ]
56 Chapter 3 1 2kx βˆ’ y = 4 4kx + 3y = βˆ’2 are two simultaneous equations, where k is a constant.a Show that y = βˆ’2. (3 marks) b Find an expression f or x in terms of the constant k. (1 mark) 2 Solve the simultaneous equa tions: x + 2y = 3 x2 βˆ’ 4y2 = βˆ’33 (7 marks) 3 Given the sim ultaneous equations x βˆ’ 2y = 13xy βˆ’ y 2 = 8 a Show that 5 y2 + 3y βˆ’ 8 = 0. (2 marks) b Hence find the pairs (x, y) for which the simultaneous equations are satisfied. (5 marks) 4 a By eliminating y from the equations x + y = 2x 2 + xy βˆ’ y2 = βˆ’1 show that x2 βˆ’ 6x + 3 = 0. (2 marks) b Hence, or otherwise solve the sim ultaneous equations x + y = 2 x2 + xy βˆ’ y2 = βˆ’1 giving x and y in the form a Β± b βˆšβ€―__ 6 , where a and b are integers. (5 marks) 5 a Given tha t 3x = 9y βˆ’ 1, show that x = 2y βˆ’ 2. (1 mark) b Solve the simultaneous equa tions: x = 2y βˆ’ 2 x2 = y2 + 7 (6 marks) 6 Solve the simultaneous equa tions: x + 2y = 3x 2 βˆ’ 2y + 4y2 = 18 (7 marks) 7 The curve and the line giv en by the equations kx2 βˆ’ xy + (k + 1)x = 1 βˆ’ k __ 2 x + y = 1 where k is a non-zero constant, intersect at a single point. a Find the value of k. (5 marks) b Give the coor dinates of the point of intersection of the line and the curve. (3 marks)E E E E E E E/PMixed exercise 3
[ -0.09015283733606339, 0.14823301136493683, -0.02453632839024067, 0.050311993807554245, -0.01488872617483139, -0.0227879099547863, -0.0119157200679183, -0.03125980123877525, -0.050314657390117645, -0.024703843519091606, -0.005999353714287281, -0.013044092804193497, 0.03844192996621132, -0.02671974152326584, 0.030214160680770874, -0.03286191076040268, -0.06635435670614243, 0.008187179453670979, -0.052538685500621796, 0.0266894344240427, 0.005608031060546637, -0.033824559301137924, -0.0684567466378212, -0.023560378700494766, 0.03055344894528389, 0.0019097509793937206, 0.006730010267347097, -0.02477823570370674, 0.04040360823273659, -0.033526141196489334, 0.03386140614748001, 0.06327704340219498, -0.020678667351603508, 0.039100099354982376, 0.08483442664146423, 0.039426203817129135, 0.0667501762509346, -0.018177160993218422, 0.011761248111724854, -0.08483854681253433, -0.06234592944383621, -0.00014640459266956896, -0.02970297820866108, -0.012446192093193531, -0.008580714464187622, -0.020985716953873634, -0.04290783032774925, 0.051225095987319946, 0.03897109627723694, 0.0009034121176227927, 0.06482907384634018, -0.01085021160542965, -0.07449562847614288, 0.034316517412662506, 0.01740133948624134, -0.037238724529743195, 0.0026066615246236324, 0.07346434891223907, -0.059788573533296585, 0.053560007363557816, -0.00775539968162775, 0.020026858896017075, -0.02673252485692501, 0.045240115374326706, 0.02433183789253235, 0.05252879858016968, -0.00021270755678415298, -0.025589250028133392, 0.02876088209450245, 0.08821940422058105, -0.1424107849597931, 0.04589042440056801, -0.07038981467485428, 0.00868767686188221, 0.07390859723091125, -0.052753202617168427, -0.023867081850767136, -0.06358333677053452, 0.008772146888077259, -0.014256308786571026, -0.015423065051436424, -0.026692204177379608, 0.01852663978934288, 0.0012432393850758672, 0.025563493371009827, 0.00197847792878747, -0.08640669286251068, -0.05220148712396622, 0.014671793207526207, -0.024406185373663902, 0.09722281247377396, 0.019592825323343277, -0.026599209755659103, -0.045575983822345734, 0.06957089900970459, -0.06277891248464584, 0.0028887963853776455, -0.013149934820830822, 0.07073744386434555, 0.161972314119339, 0.07035554945468903, -0.043313268572092056, -0.02380027435719967, 0.044868919998407364, 0.004643418826162815, -0.03436256945133209, 0.08296910673379898, -0.049764323979616165, -0.04504377022385597, -0.03129178285598755, -0.08563060313463211, -0.07579544186592102, -0.01225709356367588, 0.018576771020889282, 0.05627879872918129, 0.026870351284742355, 0.10290065407752991, -0.012265205383300781, 0.06645321100950241, -0.10598622262477875, -0.03763073310256004, -0.012361869215965271, 0.07878768444061279, -0.010120345279574394, -0.006982183549553156, -0.09511807560920715, -0.028131838887929916, 0.006503687705844641, -0.03841189667582512, -0.05778738856315613, 0.029466085135936737, -0.04455415904521942, 0.00882432609796524, -0.06079927086830139, 0.010935001075267792, 0.00512901833280921, -0.0455746166408062, 0.11643770337104797, 0.02746228687465191, -0.007892812602221966, -0.010286924429237843, 0.04659297317266464, -0.021469561383128166, -0.006003949325531721, -0.03479214012622833, 0.009074127301573753, 0.014205684885382652, -0.00563263101503253, -0.017993349581956863, 0.021131690591573715, 0.037930116057395935, -0.027737630531191826, 0.015043198131024837, 0.09282888472080231, 0.010117501020431519, -0.058263592422008514, -0.009432745166122913, -0.057285282760858536, 0.07233809679746628, 0.019653640687465668, -0.03456534445285797, 0.05657317116856575, 0.020283998921513557, 0.004751281812787056, -0.00795768667012453, 0.020698249340057373, 0.04956379905343056, 0.06108599901199341, -0.01623658277094364, -0.019361676648259163, 0.008372791111469269, 0.03010878898203373, -0.02315184473991394, 0.08546213805675507, 0.03949416056275368, 0.008816673420369625, 0.12220664322376251, -0.04498758539557457, -0.01161972712725401, 0.0717945545911789, -0.055220142006874084, -0.05603383108973503, -0.027506183832883835, 0.050364911556243896, -0.042941171675920486, -0.059946052730083466, -0.000976945273578167, 0.06443352997303009, -0.08587741106748581, 0.06967522203922272, 0.04402380436658859, -0.011524171568453312, 0.0299691129475832, 0.024320483207702637, -0.14022327959537506, 0.003386000171303749, 0.0024521767627447844, -0.0396062508225441, -0.07465490698814392, 0.04506600275635719, 0.04135088622570038, 0.019366556778550148, 0.03198859468102455, -0.03558996319770813, 0.023311367258429527, -0.037677232176065445, -0.045539792627096176, 0.046346332877874374, -0.006821350194513798, 0.09090403467416763, 0.04234099015593529, 0.023812217637896538, -0.07097872346639633, -0.035199642181396484, -0.031143851578235626, -0.058042798191308975, 0.015753235667943954, -0.06548609584569931, -0.04465954378247261, 0.019938569515943527, -0.0575484074652195, -0.023390457034111023, 0.06372401863336563, -1.0534247726191624e-33, -0.027844490483403206, 0.012459656223654747, -0.1512499302625656, -0.041582733392715454, 0.002976643620058894, -0.01547850389033556, 0.04680844768881798, -0.07571893185377121, 0.0957794040441513, 0.04931216314435005, 0.047748055309057236, -0.006405755877494812, -0.017396118491888046, 0.03661424294114113, -0.019716685637831688, -0.050416249781847, 0.023287804797291756, -0.003752155462279916, 0.04080432653427124, -0.02639755979180336, 0.01588287763297558, -0.027887482196092606, -0.038143571466207504, -0.041196804493665695, -0.06857319921255112, -0.033703286200761795, 0.06655065715312958, -0.10779964923858643, -0.0836958959698677, 0.06734371930360794, 0.02391052059829235, -0.036772068589925766, 0.02207178808748722, -0.02142348326742649, 0.0022948875557631254, -0.08545820415019989, -0.01522678043693304, -0.013756743632256985, 0.0035961621906608343, -0.04710902273654938, 0.1144878938794136, 0.00219703302718699, 0.047590844333171844, -0.08488854020833969, 0.06319181621074677, 0.072332002222538, 0.030563201755285263, -0.007423372007906437, -0.011576701886951923, 0.013523293659090996, 0.04729516804218292, -0.08086744695901871, -0.042195647954940796, 0.026711363345384598, 0.1569540947675705, -0.0793154388666153, 0.011675277724862099, -0.014495381154119968, 0.044109929352998734, -0.035221345722675323, 0.028521310538053513, -0.027618611231446266, 0.05756845325231552, 0.015738926827907562, 0.006927886512130499, -0.020257869735360146, -0.03295445069670677, -0.07206087559461594, 0.04825370013713837, 0.010650607757270336, -0.03655557334423065, -0.005668490193784237, -0.12268617004156113, -0.0830678716301918, 0.016537079587578773, -0.0025605608243495226, -0.06419502198696136, 0.04772241413593292, 0.07214588671922684, -0.03487139195203781, -0.08646807074546814, 0.05882204324007034, 0.011144458316266537, -0.006236921530216932, -0.0853394865989685, 0.04424845799803734, 0.07934220135211945, 0.07756873220205307, 0.02532549947500229, -0.03477894887328148, 0.04477400705218315, -0.01901252195239067, 0.0066976239904761314, -0.09539823979139328, 0.07235255092382431, 9.495467629536991e-32, -0.010979600250720978, -0.032236650586128235, -0.044739145785570145, 0.007456102408468723, 0.04945359751582146, 0.039781320840120316, -0.02532445266842842, 0.010690195485949516, 0.028257222846150398, -0.05221101641654968, 0.13871382176876068, -0.03332453593611717, -0.07132259756326675, -0.011009248904883862, -0.07247748970985413, 0.03056829608976841, -0.07675162702798843, 0.04025604575872421, -0.05979962646961212, -0.0382777601480484, -0.04774196073412895, 0.02855476550757885, -0.06103156879544258, 0.06062231585383415, 0.01510525681078434, 0.07675039768218994, -0.04943273589015007, 0.03605657070875168, -0.10291485488414764, 0.012258869595825672, 0.08963726460933685, -0.046115849167108536, 0.058748759329319, -0.04524313285946846, 0.022161617875099182, 0.0336652547121048, 0.047403525561094284, 0.043564386665821075, -0.024644749239087105, -0.0009486735798418522, -0.05670972540974617, 0.026269670575857162, 0.008885525166988373, 0.024027569219470024, 0.02309582754969597, 0.04362102597951889, -0.01154247671365738, -0.14111122488975525, -0.025652529671788216, -0.020985035225749016, -0.06781622767448425, 0.011784043163061142, 0.02745947428047657, -0.0106142433360219, 0.0026479042135179043, -0.12050008773803711, -0.06903824210166931, -0.01672278344631195, 0.022443505004048347, -0.01565781980752945, -0.007696462795138359, 0.04616042599081993, -0.0576852522790432, -0.031814608722925186 ]
57 Equations and inequalities 8 A person throws a ba ll in a sports hall. The height of the ball, h m, h x can be modelled in relation to the horizontal distance from the point it was thrown from by the quadratic equation: h = βˆ’ 3 __ 10 x2 + 5 _ 2 x + 3 _ 2 The hall has a sloping ceiling which can be mode lled with equation h = 15 __ 2 βˆ’ 1 _ 5 x. Determine w hether the model predicts that the ball will hit the ceiling. (5 marks) 9 Give y our answers in set notation. a Solve the inequality 3 x βˆ’ 8 > x + 13. (2 marks) b Solve the inequality x2 βˆ’ 5x βˆ’ 14 > 0. (4 marks) 10 Find the set of va lues of x for which (x βˆ’ 1)(x βˆ’ 4) < 2(x βˆ’ 4). (6 marks) 11 a Use algebr a to solve (x βˆ’ 1)(x + 2) = 18. (2 marks) b Hence, or otherwise, find the set of values of x for which (x βˆ’ 1)(x + 2) > 18. Give your answer in set notation. (2 marks) 12 Find the set of va lues of x for which: a 6x βˆ’ 7 < 2x + 3 (2 marks) b 2x2 βˆ’ 11x + 5 < 0 (4 marks) c 5 < 20 ___ x (4 marks) d both 6x βˆ’ 7 < 2x + 3 and 2x2 βˆ’ 11x + 5 < 0. (2 marks) 13 Find the set of va lues of x that satisfy 8 __ x2 + 1 < 9 __ x , x β‰  0 (5 marks) 14 Find the values of k for which kx2 + 8x + 5 = 0 has real roots. (3 marks) 15 The equation 2x2 + 4kx βˆ’ 5k = 0, where k is a constant, has no real roots. Prove that k satisfies the inequality βˆ’ 5 _ 2 < k < 0. (3 marks) 16 a Sketch the gra phs of y = f(x) = x2 + 2x – 15 and g(x) = 6 βˆ’ 2x on the same axes. (4 marks) b Find the coordinates of any points of intersection. (3 marks) c Write down the set of values of x for which f(x) > g(x). (1 mark) 17 Find the set of va lues of x for which the curve with equation y = 2x2 + 3x βˆ’ 15 is below the line with equation y = 8 + 2x. (5 marks) 18 On a coordinate grid, shade the r egion that satisfies the inequalities: y > x2 + 4x – 12 and y < 4 – x2. (5 marks) 19 a On a coordinate grid, shade the r egion that satisfies the inequalities y + x < 6, y < 2x + 9, y > 3 and x > 0. (6 marks) b Work out the ar ea of the shaded region. (2 marks)E/P E E E E E E/P E E E E/P
[ 0.12120036780834198, 0.07510519027709961, 0.04953298717737198, -0.1295887976884842, -0.017856335267424583, 0.00521425623446703, -0.00046839952119626105, -0.0020667442586272955, -0.08508830517530441, 0.02139967679977417, -0.008192496374249458, -0.05544678866863251, 0.11054953932762146, 0.04850732535123825, -0.048186011612415314, 0.06143324449658394, 0.01815546303987503, 0.0036824068520218134, -0.06935679912567139, -0.05234166607260704, 0.019023649394512177, -0.015322207473218441, -0.03424225375056267, -0.007017274387180805, -0.004465526435524225, -0.11717730015516281, -0.018551409244537354, 0.03233357146382332, -0.07158228754997253, -0.03954608738422394, -0.026528963819146156, -0.027825359255075455, 0.06626448035240173, -0.023974843323230743, 0.02920330874621868, 0.05591776967048645, 0.06227278336882591, 0.013135268352925777, -0.08842762559652328, 0.016455665230751038, -0.016457440331578255, -0.005304649006575346, -0.002701043151319027, -0.03169737011194229, 0.03662629425525665, 0.08477023243904114, 0.005358451511710882, -0.018410388380289078, -0.02064538560807705, 0.00423216400668025, 0.03262448310852051, 0.004459970630705357, -0.008970426395535469, 0.0751098021864891, 0.021086249500513077, -0.022034846246242523, 0.032939694821834564, -0.06914662569761276, 0.0012589331017807126, 0.005778743885457516, -0.012289099395275116, -0.0038678532000631094, -0.024450620636343956, -0.0047635165974497795, 0.048745326697826385, 0.028144115582108498, -0.058160535991191864, -0.055586349219083786, 0.04898431897163391, 0.09385990351438522, -0.07299559563398361, -0.010364341549575329, -0.028491927310824394, -0.11941538751125336, 0.020292459055781364, -0.0004343604960013181, -0.05777106434106827, -0.10084443539381027, 0.012574841268360615, -0.008425254374742508, -0.04033295065164566, -0.08623804152011871, -0.05219879746437073, 0.06482573598623276, -0.06736297160387039, -0.03592372685670853, -0.01101386547088623, 0.09894715994596481, -0.03911232948303223, -0.012277261354029179, 0.0467817485332489, -0.06149353086948395, -0.026681216433644295, 0.047807954251766205, 0.044808827340602875, -0.08196161687374115, -0.013445978052914143, -0.11146552115678787, 0.012965372763574123, 0.14103756844997406, -0.046274758875370026, 0.003966107498854399, 0.04063640907406807, -0.03243355453014374, 0.03356706351041794, -0.06458739191293716, 0.0004247906035743654, 0.0682467445731163, -0.020820558071136475, -0.027833756059408188, -0.00407178932800889, -0.021201424300670624, 0.03509513661265373, 0.12355265766382217, 0.035526927560567856, -0.038319893181324005, 0.04124436900019646, -0.011523743160068989, -0.09659667313098907, -0.03606431186199188, -0.019772334024310112, 0.001562835997901857, 0.03966163471341133, -0.055512845516204834, -0.03133757412433624, 0.04440143704414368, 0.016726402565836906, 0.08355232328176498, -0.06348099559545517, -0.05505429953336716, 0.015747303143143654, -0.0637163519859314, 0.019857682287693024, -0.04205348342657089, -0.013802947476506233, -0.029202625155448914, 0.011464487761259079, 0.07482962310314178, -0.0038639793638139963, -0.05119980126619339, -0.04617650806903839, 0.005474094767123461, 0.12189406901597977, 0.011531516909599304, 0.019256511703133583, 0.05890296399593353, -0.08924748003482819, 0.04968103766441345, -0.013089570216834545, -0.041081976145505905, -0.061391089111566544, 0.0037141412030905485, 0.027309181168675423, 0.08156860619783401, -0.047771770507097244, -0.07845810800790787, -0.06187859922647476, 0.027332555502653122, -0.01098528504371643, -0.024927735328674316, -0.12841331958770752, 0.03536317124962807, 0.001032594358548522, 0.06461033225059509, 0.07399840652942657, 0.013101431541144848, -0.003389138262718916, -0.06286458671092987, -0.017360182479023933, -0.05379890650510788, 0.07696367800235748, 0.03978632017970085, 0.016852522268891335, 0.03570742905139923, 0.0034663802944123745, 0.03247546777129173, 0.04135129973292351, 0.01115956250578165, -0.014588437043130398, 0.026445502415299416, 0.01952015608549118, -0.11174941807985306, 0.002896001562476158, 0.039329372346401215, -0.024376146495342255, -0.02242571860551834, -0.038030944764614105, -0.010217721574008465, -0.0097282063215971, 0.005106515251100063, 0.021705836057662964, -0.04133730009198189, -0.002127554267644882, 0.10721936821937561, -0.05759566277265549, -0.04662923887372017, 0.04303957521915436, 0.01580687426030636, -0.06477930396795273, -0.010418938472867012, -0.007930213585495949, 0.032158080488443375, 0.04701000824570656, 0.06948209553956985, 0.03978811949491501, 0.01983720064163208, 0.003346770303323865, -0.009613088332116604, -0.0007057683542370796, 0.037887029349803925, -0.08067571371793747, 0.03441232442855835, -0.10922052711248398, -0.07424848526716232, 0.06469479948282242, -0.057105205953121185, -0.02531418763101101, -0.02506352588534355, -0.08721909672021866, 0.029276371002197266, -0.023859040811657906, 0.013776279054582119, 0.04130887612700462, 6.73681763396404e-33, -0.08337762951850891, 0.055141981691122055, -0.05566670373082161, -0.12467315793037415, 0.02260146290063858, -0.05137091875076294, 0.03208168223500252, -0.022237369790673256, 0.14801941812038422, 0.017559099942445755, 0.0008665176574140787, -0.0006149409455247223, -0.01690482534468174, 0.023439357057213783, 0.019861551001667976, -0.1050923690199852, -0.01336943544447422, -0.01084853895008564, -0.013865654356777668, 0.000004765226549352519, -0.039227575063705444, 0.0036406517028808594, -0.016981549561023712, -0.02253769524395466, -0.05709948018193245, 0.031133264303207397, 0.024462910369038582, 0.0008061937987804413, -0.03374921530485153, 0.026741886511445045, 0.011140279471874237, -0.02458558790385723, 0.01423531211912632, 0.09393169730901718, 0.01921388879418373, -0.06694387644529343, 0.06091684475541115, -0.04461154341697693, -0.006121201440691948, -0.07109585404396057, 0.05737680569291115, 0.04290807619690895, 0.0036148044746369123, 0.05048240348696709, 0.058955904096364975, 0.01823398843407631, 0.05071881413459778, -0.0037389425560832024, -0.009890413843095303, 0.017987826839089394, 0.011186590418219566, 0.008978771977126598, -0.05871983617544174, 0.011393346823751926, 0.09577300399541855, -0.0490126758813858, -0.034283481538295746, -0.023412376642227173, 0.0673915445804596, -0.023124318569898605, 0.03917114809155464, -0.07267455756664276, 0.054257217794656754, 0.09996567666530609, -0.06476513296365738, 0.047137144953012466, -0.04332033172249794, -0.03194401040673256, -0.062182340770959854, 0.03851256147027016, -0.05753618851304054, 0.056523606181144714, 0.01505403220653534, -0.005819123238325119, -0.05293678492307663, 0.00207188306376338, -0.019898517057299614, 0.027278363704681396, 0.01077139750123024, -0.01752386800944805, -0.033513154834508896, 0.07348358631134033, 0.0869683101773262, -0.017536478117108345, -0.05078841745853424, -0.04060503840446472, 0.02742438018321991, 0.003224979154765606, 0.11524640768766403, 0.04102148115634918, 0.07788984477519989, 0.049467865377664566, 0.02936204895377159, -0.06775786727666855, -0.04559420049190521, 6.069015619842052e-32, -0.07204487174749374, 0.03013945370912552, -0.020619114860892296, 0.03836415708065033, 0.02707226574420929, 0.08114686608314514, -0.009230760857462883, -0.05797380954027176, -0.029986048117280006, -0.04564977064728737, 0.12303922325372696, 0.04326574131846428, -0.05249061807990074, 0.007448200136423111, -0.04661544784903526, -0.036929164081811905, -0.022747859358787537, 0.05520472675561905, 0.03183666989207268, -0.01251799426972866, -0.0008722394704818726, 0.04940618574619293, -0.0068689086474478245, 0.0581207349896431, 0.07345064729452133, 0.049693115055561066, -0.14996668696403503, -0.037892621010541916, -0.007193636614829302, 0.008534453809261322, 0.029736146330833435, 0.02287434972822666, 0.023623498156666756, -0.034491971135139465, 0.05939208343625069, 0.07296352833509445, -0.04370001703500748, -0.02004692703485489, -0.032377153635025024, 0.030529795214533806, -0.006526364479213953, -0.08591927587985992, 0.029731929302215576, -0.05390927195549011, 0.038652025163173676, -0.07293517887592316, 0.04012390971183777, -0.06818736344575882, 0.046040479093790054, -0.04335783049464226, -0.07863227277994156, 0.10756966471672058, 0.010608049109578133, 0.017895039170980453, 0.008262433111667633, 0.0394599474966526, -0.02406415343284607, 0.04030568525195122, 0.05111391469836235, -0.07564666867256165, 0.08686912059783936, 0.07852049916982651, -0.06971258670091629, 0.047241393476724625 ]
58 Chapter 3 1 Find the possible values of k for the quadratic equation 2 kx2 + 5kx + 5k βˆ’ 3 = 0 to have real roots. 2 A strai ght line has equation y = 2 x – k and a parabola has equation y = 3 x2 + 2kx + 5 where k is a constant. Find the range of values of k for which the line and the parabola do not intersect.Challenge 1 Linear simultaneous equations can be solved using elimination or substit ution. 2 Simultaneous equations with one linear and one quadratic equation can hav e up to two pairs of solutions. You need to make sure the solutions are paired correctly. 3 The solutions of a pair o f simultaneous equations represent the points of intersection of their graphs. 4 For a pair o f simultaneous equations that produce a quadratic equation of the form ax2 + bx + c = 0: ‒ b2 – 4ac > 0 two r eal solutions ‒ b2 – 4ac = 0 one real solution ‒ b2 – 4ac < 0 no real solutions 5 The solution of an inequality is the set o f all real numbers x that make the inequality true. 6 To solve a quadr atic inequality: ‒  Rearrange  so that the right-hand  side of the inequality  is 0 ‒  Solv e the corr esponding  quadratic  equation to find the critical values ‒  Sketch the graph of the quadratic  function ‒  Use your sket ch to find the requir ed set of values . 7 The values of x for which the curve y = f(x) is below the curve y = g(x) satisfy the inequality f(x) < g(x). The values of x for which the curve y = f(x) is above the curve y = g(x) satisfy the inequality f(x) > g(x). 8 y < f(x) represents the points on the coordinate grid below the curve y = f(x). y > f(x) represents the points on the coordinate grid above the curve y = f(x). 9 If y > f(x) or y < f(x) then the curve y = f(x) is not included in the region and is represented by a dotted line. If y > f(x) or y < f(x) then the curve y = f(x) is included in the region and is represented by a solid line.Summary of key points
[ -0.018340013921260834, 0.10894034057855606, 0.027495136484503746, 0.03568187728524208, 0.010295405052602291, 0.004010218195617199, -0.040273331105709076, -0.035356562584638596, -0.07253070175647736, 0.005796846933662891, -0.006365366745740175, -0.02673928439617157, 0.025214320048689842, 0.015133421868085861, 0.027456844225525856, 0.03509204462170601, -0.04605964198708534, 0.016643621027469635, -0.08383816480636597, 0.030009763315320015, -0.046458788216114044, -0.059601929038763046, -0.0818871408700943, -0.008579266257584095, 0.026635151356458664, -0.09251642972230911, 0.03588993847370148, -0.03795824944972992, 0.05012427270412445, -0.01645829528570175, 0.015053924173116684, 0.02402215637266636, 0.003174180630594492, -0.0023133032955229282, 0.05263494327664375, -0.022871501743793488, 0.07678930461406708, 0.04175746813416481, 0.03161541745066643, -0.0713798850774765, -0.0788106843829155, -0.014148781076073647, -0.060577843338251114, -0.06172075867652893, 0.018126068636775017, 0.04684019088745117, -0.06946054846048355, -0.037781067192554474, 0.04652971029281616, -0.04169327765703201, -0.030513759702444077, -0.037011340260505676, -0.05513937398791313, 0.02797870896756649, 0.022966956719756126, -0.01951693184673786, -0.06717327982187271, -0.03711983561515808, -0.0433783084154129, 0.1110541895031929, 0.038302838802337646, 0.06244337186217308, 0.014399070292711258, 0.05322745814919472, 0.018098680302500725, 0.06291837245225906, 0.06793198734521866, -0.014476594515144825, 0.010818151757121086, 0.0693981796503067, -0.0850868821144104, 0.035318851470947266, -0.03510493412613869, -0.023481208831071854, -0.006303930189460516, -0.006482027471065521, -0.06450293958187103, -0.08777142316102982, -0.01930549181997776, -0.011449766345322132, 0.030703941360116005, -0.028353914618492126, 0.04390762746334076, 0.008153459057211876, -0.042468685656785965, -0.02335004135966301, 0.058989256620407104, 0.0723944902420044, 0.001978253247216344, 0.00917506031692028, 0.08272229135036469, -0.0018976718420162797, 0.0024222147185355425, -0.05898936837911606, -0.0069767022505402565, -0.017682287842035294, 0.03214188665151596, -0.02814478799700737, 0.031156934797763824, 0.0995752215385437, 0.03034917265176773, -0.10614901781082153, -0.019578633829951286, 0.05178144946694374, 0.011829206719994545, 0.03983841836452484, 0.03195672109723091, 0.007976057007908821, 0.004633340518921614, -0.0010710220085456967, -0.04826907441020012, -0.042442262172698975, -0.004814493004232645, 0.029927939176559448, 0.09288466721773148, 0.0762384682893753, 0.07917823642492294, -0.048891011625528336, 0.029079025611281395, -0.11719566583633423, -0.029922138899564743, -0.05817372724413872, 0.05827098712325096, -0.046212535351514816, -0.013506640680134296, -0.02169712632894516, -0.00004020387859782204, 0.003803854575380683, -0.033195462077856064, -0.041072290390729904, 0.03556634485721588, -0.057123761624097824, -0.04102829471230507, -0.08419431000947952, 0.014559485949575901, 0.05155940353870392, -0.02344699390232563, 0.08672642707824707, -0.015691878274083138, -0.07666011154651642, 0.016376640647649765, -0.006642072927206755, 0.059262149035930634, 0.07811557501554489, 0.025223147124052048, 0.025390328839421272, -0.02667166292667389, 0.06225602701306343, -0.03351302817463875, -0.02146170847117901, 0.03629988431930542, 0.022816365584731102, 0.05621282011270523, 0.09413004666566849, 0.003182787913829088, -0.05413266643881798, 0.002183890901505947, 0.0036649678368121386, -0.015688231214880943, 0.024431202560663223, -0.01985081285238266, 0.029187537729740143, -0.10021378099918365, 0.03869691491127014, 0.00221796752884984, -0.029942229390144348, -0.02205335721373558, 0.03312307223677635, -0.03416188061237335, -0.04239195957779884, 0.048411015421152115, 0.07838035374879837, 0.007320166099816561, 0.07355187833309174, 0.014934835024178028, 0.024166099727153778, 0.07975710183382034, 0.026249445974826813, -0.0056168800219893456, 0.05654280632734299, 0.004855846520513296, 0.007107913959771395, -0.00804051198065281, -0.015772899612784386, 0.032837338745594025, -0.08036414533853531, 0.06437260657548904, -0.017158374190330505, -0.04794809967279434, -0.0446765162050724, -0.0012372961500659585, -0.04103800654411316, 0.007303709164261818, 0.010383323766291142, -0.13894811272621155, -0.014951599761843681, -0.006291941273957491, 0.036279886960983276, -0.106673464179039, -0.03840973600745201, 0.01713242195546627, -0.0032932886388152838, 0.020593564957380295, 0.02244499884545803, -0.006616794969886541, 0.02214794233441353, -0.054602328687906265, 0.025614582002162933, -0.006720638833940029, -0.007745811250060797, -0.03600859269499779, 0.09023799002170563, -0.05935421213507652, -0.05881790444254875, -0.022630704566836357, -0.09877187013626099, -0.008253399282693863, -0.03473902493715286, -0.13515250384807587, 0.06676362454891205, -0.10100803524255753, -0.0077554755844175816, 0.06627857685089111, -7.050237672342871e-34, 0.060921747237443924, 0.017524776980280876, -0.13710717856884003, -0.015529405325651169, 0.04564367234706879, 0.05674521252512932, -0.018634691834449768, -0.1245361939072609, 0.06350918114185333, 0.01785740815103054, 0.11410801857709885, -0.022404981777071953, -0.001250994624570012, 0.12633982300758362, -0.056844741106033325, 0.03927445784211159, -0.017000837251544, 0.026616407558321953, 0.055154573172330856, -0.03196880966424942, 0.06614015996456146, 0.022487275302410126, -0.025477377697825432, -0.052417755126953125, -0.016737034544348717, 0.05459795147180557, 0.07632862776517868, -0.01694510504603386, -0.04410333186388016, 0.07413863390684128, -0.02212366834282875, -0.026946552097797394, 0.015317045152187347, 0.03126014396548271, -0.03399757668375969, -0.039300400763750076, -0.022301891818642616, -0.022941794246435165, 0.040051788091659546, -0.03996441513299942, 0.03183230757713318, 0.026076074689626694, 0.07124414294958115, -0.017787303775548935, 0.04912164434790611, 0.08781098574399948, 0.06346649676561356, 0.06821271032094955, 0.015809589996933937, -0.016253918409347534, 0.05107935518026352, -0.003661723341792822, -0.019887173548340797, 0.012434720993041992, 0.09120384603738785, -0.08590705692768097, 0.009670814499258995, 0.0036460403352975845, 0.03897521644830704, -0.006733357440680265, 0.05698911100625992, -0.06860467046499252, 0.08147601038217545, 0.03792461380362511, 0.018242018297314644, 0.04109828174114227, -0.016164960339665413, 0.030595162883400917, 0.03950393572449684, -0.009031963534653187, -0.0609700046479702, 0.010327686555683613, -0.05126147344708443, -0.01396460272371769, -0.03521789610385895, 0.05260153114795685, -0.14495575428009033, 0.06415500491857529, 0.05285050719976425, -0.11727999895811081, -0.06012196093797684, 0.03550422191619873, 0.018736563622951508, -0.08450129628181458, -0.08434459567070007, 0.06994837522506714, -0.0033700999338179827, -0.01435913611203432, 0.06333334743976593, -0.02738095447421074, 0.07682144641876221, -0.06679102033376694, -0.009435949847102165, -0.07142937928438187, 0.052638985216617584, 7.079193734889272e-32, -0.07414169609546661, 0.0009205294772982597, -0.062167033553123474, 0.05475137010216713, 0.04509669914841652, 0.00013121575466357172, -0.019639937207102776, -0.02339022420346737, -0.011266370303928852, -0.03025086224079132, 0.10700459778308868, -0.0578964464366436, -0.14382337033748627, -0.012320819310843945, -0.06019149720668793, -0.0076830037869513035, -0.0758146271109581, 0.061796046793460846, -0.03386487439274788, 0.002147071063518524, -0.039860423654317856, -0.01608470268547535, -0.07287032902240753, 0.0431378111243248, 0.046019505709409714, 0.03301677852869034, -0.09396648406982422, 0.0010730534559115767, -0.030710339546203613, 0.021681880578398705, 0.05426981672644615, 0.02127080038189888, -0.006618875078856945, -0.0071780006401240826, 0.048064224421978, 0.0543907955288887, -0.06671424955129623, 0.014337234199047089, -0.06848270446062088, -0.041536394506692886, -0.01064286008477211, -0.06012238934636116, -0.052651163190603256, 0.030191980302333832, -0.032677650451660156, -0.03740057349205017, -0.010062605142593384, -0.16327503323554993, 0.07540369033813477, 0.040498748421669006, -0.0026895960327237844, 0.11112072318792343, -0.008718537166714668, 0.05927347391843796, -0.020235272124409676, -0.07327647507190704, -0.010493185371160507, -0.035628922283649445, 0.03462880849838257, -0.04618997499346733, 0.01223362609744072, 0.00664846645668149, -0.07648982107639313, 0.007059973664581776 ]
59 Graphs and transformations After completing this chapter you should be able to: ● Sketch cubic gr aphs β†’ pages 60 βˆ’ 64 ● Sketch quartic graphs β†’ pages 64 βˆ’ 66 ● Sketch reciprocal graphs of the form y = a __ x and y = a __ x2 β†’ pages 66 βˆ’ 67 ● Use intersection points of graphs to solve equations β†’ pages 68 βˆ’ 71 ● Translate graphs β†’ pages 71 βˆ’ 75 ● Stretch graphs β†’ pages 75 βˆ’ 78 ● Transform graphs of unfamiliar functions β†’ pages 79 βˆ’ 81Objectives 1 Factorise these quadratic expressions: a x2 + 6x + 5 b x2 – 4x + 3 ← GCSE Mathematics 2 Sketch the graphs of the following functions: a y = (x + 2)(x – 3) b y = x2 – 6x – 7 ← Section 2.4 3 a Copy and complete the table of values for the function y = x3 + x – 2. x–2 –1.5 –1–0.5 0 0.5 1 1.5 2 y–12–6.875 –2–1.375 b Use your table o f values to draw the graph of y = x3 + x – 2. ← GCSE Mathematics 4 Solve each pair of simultaneous equations: a y = 2x b y = x2 x + y = 7 y = 2x + 1 ← Sections 3.1, 3.2Prior knowledge check Many complicated functions can be understood by transforming simpler functions using stretches, reflections and translations. Particle physicists compare observed results with transformations of known functions to determine the nature of subatomic particles.4
[ -0.03661707416176796, 0.017481405287981033, -0.017667531967163086, -0.02939244545996189, -0.053239304572343826, 0.04152761772274971, -0.07440423220396042, -0.0017043008701875806, -0.11775834113359451, 0.04791460931301117, -0.0443246029317379, -0.05406191200017929, -0.04597516357898712, -0.009220963343977928, -0.0348263680934906, 0.060706350952386856, -0.014979490078985691, 0.048011235892772675, -0.04579101502895355, -0.0550219789147377, 0.02702941745519638, -0.041982635855674744, -0.01649576984345913, -0.09501096606254578, 0.12680745124816895, -0.06630925089120865, -0.008035601116716862, -0.008099389262497425, -0.011181308887898922, -0.05668816715478897, 0.01795203424990177, 0.04295291006565094, 0.04461919143795967, 0.0046133678406476974, 0.04463474825024605, -0.007799339946359396, 0.09056034684181213, -0.0007929489947855473, 0.03270358592271805, -0.04546700045466423, 0.013460299000144005, 0.09053073078393936, -0.009623618796467781, 0.02047664113342762, 0.11659933626651764, -0.07363160699605942, -0.08585740625858307, -0.05257115885615349, 0.04304870590567589, -0.0802944153547287, -0.04753660783171654, -0.003775776829570532, -0.02938852086663246, 0.03466714546084404, 0.043474871665239334, -0.039620522409677505, 0.01287646871060133, -0.01680908538401127, 0.0005407835706137121, -0.005938840098679066, -0.009451874531805515, 0.04211987555027008, -0.024990761652588844, 0.04199909418821335, -0.03345225006341934, 0.04701276868581772, 0.0704163908958435, 0.022399358451366425, -0.042635850608348846, 0.1211637631058693, -0.06980298459529877, 0.057093486189842224, -0.10914728045463562, 0.004059312399476767, 0.07347451150417328, 0.004287650343030691, -0.017821917310357094, 0.0000824617818580009, -0.07655121386051178, -0.051933664828538895, -0.05733554810285568, -0.007078813388943672, 0.10097154974937439, 0.026725994423031807, 0.020346568897366524, -0.048109643161296844, 0.028789913281798363, 0.04238487780094147, -0.01243546325713396, -0.06025933846831322, -0.012003162875771523, 0.014582259580492973, 0.0024798999074846506, -0.1517276018857956, -0.032339293509721756, -0.09254644811153412, -0.03964858502149582, -0.025484690442681313, 0.0873185247182846, 0.05995824187994003, 0.011529575102031231, 0.04478906840085983, 0.06984174251556396, 0.02431594766676426, -0.05165022984147072, -0.06183212995529175, 0.001561862649396062, -0.050476834177970886, -0.010923938825726509, -0.05723320692777634, -0.03515239804983139, -0.05110449716448784, -0.0034000612795352936, -0.004953539464622736, 0.12090405076742172, -0.10238058120012283, 0.04915405064821243, -0.021987617015838623, 0.0451546311378479, 0.026355737820267677, 0.015508592128753662, 0.000955757568590343, 0.06127529591321945, -0.012710672803223133, -0.0828978419303894, -0.028944555670022964, -0.08697736263275146, 0.04595174640417099, 0.0020755776204168797, 0.004515230190008879, 0.06524915993213654, 0.0450415164232254, 0.06358455121517181, -0.023656390607357025, -0.018390880897641182, -0.09122832864522934, -0.05393867567181587, 0.06800542026758194, -0.0496988520026207, 0.05987819656729698, 0.020605774596333504, 0.14520584046840668, 0.0018345139687880874, 0.05292340740561485, -0.0020065868739038706, -0.0009751942125149071, -0.0646267905831337, -0.04993179813027382, -0.016050467267632484, -0.034940723329782486, -0.0003507875371724367, 0.02281581051647663, 0.008601185865700245, 0.10358146578073502, 0.027012405917048454, -0.04772696644067764, -0.012919696979224682, -0.0008949837647378445, -0.02047780714929104, -0.004753903951495886, -0.02345360442996025, 0.04487567022442818, -0.08174433559179306, 0.024639753624796867, 0.0016528521664440632, -0.028654927387833595, 0.000035679400752997026, 0.02818685956299305, -0.020912649109959602, 0.02565084770321846, 0.0054371352307498455, -0.06207556650042534, 0.041270699352025986, 0.13167718052864075, 0.016109764575958252, 0.02892374061048031, 0.11558929085731506, -0.07228861004114151, -0.08682312816381454, -0.006906301714479923, 0.02551094815135002, -0.033670615404844284, -0.0009023817256093025, 0.052166685461997986, 0.013229770585894585, -0.04019681736826897, -0.03408414125442505, 0.029121603816747665, 0.028404470533132553, -0.004849093966186047, 0.0014713139971718192, -0.05045416206121445, -0.021345624700188637, 0.034595590084791183, -0.11165585368871689, -0.05271127074956894, 0.02821439877152443, 0.012964019551873207, -0.15880340337753296, -0.02899470552802086, 0.05559517815709114, -0.008897156454622746, 0.05192821845412254, -0.017593059688806534, -0.010194323025643826, -0.0503678098320961, -0.11942286044359207, -0.054972365498542786, -0.051170509308576584, -0.008623374626040459, -0.015819571912288666, -0.01099473051726818, -0.001855434151366353, 0.023495269939303398, 0.04678057134151459, -0.08047638088464737, 0.03738555684685707, -0.04393323138356209, -0.15457074344158173, -0.01934652589261532, 0.019265681505203247, -0.0036604246124625206, 0.06715351343154907, -1.4580443463450906e-33, 0.008434493094682693, -0.022839752957224846, -0.09262640029191971, 0.035863980650901794, 0.02448178455233574, -0.07394372671842575, 0.08868664503097534, -0.03614816069602966, 0.08448595553636551, 0.0024011791683733463, 0.06692082434892654, -0.010079351253807545, 0.01596820540726185, 0.03324068337678909, -0.07965084910392761, -0.11324426531791687, 0.020082484930753708, -0.049045201390981674, -0.05086561664938927, -0.03731340914964676, -0.0038578424137085676, 0.020998511463403702, 0.005867138039320707, -0.05269502475857735, -0.03114188089966774, 0.08304302394390106, 0.07309778779745102, -0.07424795627593994, -0.03961430862545967, 0.04883749037981033, -0.030188867822289467, 0.02744070626795292, 0.0008745791274122894, -0.06482360512018204, -0.033856235444545746, -0.01378310564905405, 0.013222886249423027, -0.04140237346291542, 0.02135918289422989, 0.012263037264347076, 0.0679951161146164, 0.019119735807180405, 0.05201996862888336, -0.027957936748862267, 0.04198510944843292, 0.06895643472671509, 0.03945697098970413, 0.0506497398018837, -0.06094921752810478, -0.05007411539554596, -0.0023806917015463114, -0.030195731669664383, 0.0905577540397644, -0.017093274742364883, 0.13651584088802338, 0.01690010353922844, 0.037304796278476715, -0.04063238576054573, 0.03508676588535309, 0.002625862369313836, -0.07672945410013199, -0.11786490678787231, -0.020007861778140068, 0.027113132178783417, -0.0557631216943264, -0.06723299622535706, -0.035760488361120224, -0.070036381483078, 0.004446773324161768, -0.03220609948039055, -0.0028363342862576246, 0.030425017699599266, 0.03111465461552143, -0.04141246899962425, 0.019503779709339142, -0.024581056088209152, 0.014056374318897724, 0.02686213329434395, 0.014120309613645077, -0.0531238317489624, -0.041503239423036575, -0.03771565482020378, 0.0040107835084199905, 0.02443639375269413, -0.029714366421103477, -0.006877865642309189, 0.07452699542045593, 0.0961315780878067, 0.08633360266685486, -0.06501223146915436, 0.038342367857694626, -0.015533091500401497, 0.01624455861747265, 0.012301770970225334, 0.029569562524557114, 7.212777500663892e-32, -0.018244661390781403, 0.07031217217445374, 0.02309482917189598, 0.012938002124428749, 0.04600511118769646, 0.03071625344455242, 0.03460327163338661, 0.010247630067169666, 0.04203573614358902, 0.005097596440464258, 0.07174795120954514, 0.09138087928295135, -0.018126221373677254, 0.02797597274184227, -0.03150997310876846, -0.009148966521024704, 0.0008303647045977414, 0.06391417235136032, 0.041292183101177216, 0.009732436388731003, -0.11447861045598984, 0.03743704408407211, 0.02850978635251522, 0.07962879538536072, -0.030578428879380226, 0.028071552515029907, 0.02695433795452118, -0.07544679194688797, 0.003682662034407258, 0.012284339405596256, 0.01761612482368946, 0.06554285436868668, 0.0004277767729945481, -0.06936179846525192, 0.07219690829515457, -0.0004931089351885021, -0.0410456620156765, 0.04314671829342842, 0.011151068843901157, 0.0010451897978782654, -0.04040063917636871, 0.011123868636786938, -0.0009785487782210112, 0.02938457950949669, -0.016428083181381226, -0.059284038841724396, 0.041550248861312866, 0.019747000187635422, 0.007414717227220535, -0.024823343381285667, 0.002508779987692833, -0.02096869982779026, 0.011637292802333832, -0.07100149244070053, 0.04752717539668083, -0.04801526293158531, -0.05751018971204758, 0.007695953827351332, 0.0009635706664994359, 0.047831375151872635, -0.01446308009326458, 0.1210632175207138, -0.06834528595209122, 0.015579202212393284 ]
60 Chapter 4 4.1 Cubic graphs A cubic function has the form f(x) = ax3 + bx2 + cx + d, where a, b, c and d are real numbers and a is non-zero. The graph of a cubic function can take several different forms, depending on the exact nature of the function. Oy x Oy x Oy x Oy x β–  If p is a root of the function f( x), then the graph of y = f(x) touches or crosses the x-axis at the point ( p, 0). You can sketch the graph of a cubic function by finding the roots of the function.For these two functions a is positive. For these two functions a is negative. Example 1 Sketch the curves with the following equations and show the points where they cross the coordinate axes. a y = (x βˆ’ 2)(1 βˆ’ x)(1 + x) b y = x(x + 1)(x + 2) a y = (x – 2)(1 – x )(1 + x ) 0 = (x βˆ’ 2)(1 βˆ’ x )(1 + x ) So x = 2, x = 1 or x = βˆ’ 1 So the curve crosses the x -axis at (2, 0), (1, 0) and ( βˆ’1, 0). When x = 0, y = βˆ’ 2 Γ— 1 Γ— 1 = βˆ’ 2 So the curve crosses the y -axis at (0, βˆ’ 2). x β†’ ∞ , y β†’ βˆ’ ∞ x β†’ βˆ’βˆž, y β†’ ∞ 2 1 O –2–1 xy b y = x(x + 1)( x + 2) 0 = x(x + 1)( x + 2) So x = 0, x = – 1 or x = – 2Find the value of y when x = 0. Check what happens to y for large positive and negative values of x. The x3 term in the expanded function would be x Γ— (–x) Γ— x = –x3 so the curve has a negative x3 coefficient. Put y = 0 and solve for x. Explore the graph of y = (x – p )(x – q )(x – r ) where p , q and r are constants using GeoGebra.Online Put y = 0 and solve for x.
[ 0.0032486168202012777, 0.03257373720407486, -0.010477319359779358, -0.018678398802876472, 0.01271580159664154, 0.016270004212856293, -0.07692519575357437, -0.012573858723044395, -0.01479581743478775, 0.09336422383785248, 0.039575833827257156, -0.012838655151426792, -0.08487225323915482, 0.020225809887051582, 0.05094953626394272, 0.008969388902187347, -0.07210247963666916, 0.027885502204298973, -0.025020349770784378, 0.03639855235815048, 0.039553504437208176, -0.03564463555812836, -0.07058343291282654, -0.061440903693437576, 0.00926514808088541, -0.0366334468126297, 0.058914490044116974, 0.026594063267111778, -0.009029602631926537, -0.012266555801033974, 0.029112232849001884, 0.04330277815461159, 0.059997882694005966, -0.015394285321235657, 0.052860770374536514, -0.0604129396378994, 0.022745469585061073, -0.014613128267228603, 0.028179388493299484, -0.01805698126554489, 0.029239583760499954, 0.04756578430533409, 0.060152675956487656, 0.023871850222349167, 0.05964190512895584, -0.048983149230480194, 0.019638823345303535, -0.052972570061683655, 0.03763210400938988, -0.00624775281175971, 0.020961448550224304, 0.033494435250759125, -0.0735095888376236, 0.03798328712582588, 0.04454522579908371, -0.041047364473342896, 0.04487849399447441, -0.06980106979608536, 0.015445614233613014, -0.000014978595572756603, 0.07418657839298248, 0.06275646388530731, -0.01813606172800064, 0.011389240622520447, 0.03890873119235039, 0.07484188675880432, -0.01819263957440853, -0.06494773179292679, -0.03627907484769821, 0.0533662885427475, -0.005778308492153883, -0.001437854254618287, -0.06366828083992004, 0.0005803798558190465, -0.004809974227100611, -0.02163134701550007, -0.012218596413731575, -0.0009430635254830122, -0.09152521193027496, 0.024311505258083344, -0.09378377348184586, 0.09661009162664413, 0.05663250759243965, 0.04773672670125961, -0.02260700985789299, 0.0009581397171132267, 0.05387207120656967, -0.011826787143945694, -0.04642872139811516, -0.008088101632893085, 0.0019664920400828123, 0.09183334559202194, -0.05759282410144806, -0.09637340903282166, -0.06266600638628006, -0.038062430918216705, -0.0031688823364675045, -0.00811216700822115, -0.004808240104466677, -0.03510658070445061, -0.08005890250205994, 0.04890132695436478, -0.02532663382589817, 0.05707613378763199, -0.05772138759493828, 0.021092789247632027, 0.030362771824002266, -0.02477092109620571, 0.0005763226072303951, -0.03173274174332619, 0.017477182671427727, 0.02761065773665905, -0.01498421747237444, -0.012369755655527115, 0.06608791649341583, -0.10858842730522156, -0.03150716423988342, -0.062249310314655304, 0.009956584312021732, 0.0151723837479949, 0.0748557522892952, -0.026901906356215477, 0.018715040758252144, -0.03949238732457161, -0.03314487263560295, -0.011679732240736485, -0.03557044267654419, 0.04974007606506348, 0.026859262958168983, -0.02842678874731064, 0.09914512932300568, -0.006088629364967346, -0.014682125300168991, -0.03569215163588524, -0.014879224821925163, -0.02713838405907154, -0.09475535154342651, 0.10469929128885269, -0.005091600585728884, 0.022239714860916138, 0.08569709211587906, 0.09044177830219269, -0.002851199358701706, 0.10109066218137741, 0.009925798512995243, -0.10791771113872528, -0.04493335634469986, -0.016412606462836266, 0.02807270921766758, -0.05047561600804329, 0.031797703355550766, 0.054602425545454025, -0.006388556677848101, 0.08813851326704025, -0.005252140574157238, -0.08026814460754395, -0.02366616018116474, -0.08211264759302139, 0.006754002533853054, 0.041887860745191574, 0.03853093087673187, -0.018500953912734985, -0.1219797134399414, 0.08651890605688095, -0.06579677015542984, 0.03752453252673149, 0.06487616896629333, 0.07075167447328568, -0.002163046970963478, -0.028334196656942368, -0.02560686506330967, -0.04068470001220703, 0.008975062519311905, 0.0686991959810257, -0.04856758937239647, -0.03441907465457916, 0.002050996758043766, 0.0044412375427782536, 0.050712428987026215, -0.05072489753365517, 0.11372198164463043, 0.03370707109570503, 0.038681596517562866, -0.021589703857898712, 0.0523909330368042, -0.013270474970340729, -0.03681259602308273, -0.002721199067309499, 0.029939942061901093, -0.08668337762355804, 0.030242808163166046, 0.01840221881866455, -0.11554165184497833, 0.054212380200624466, -0.16228243708610535, -0.003149969270452857, 0.04457418620586395, 0.04490481689572334, -0.02834372967481613, 0.10769984871149063, 0.012261156924068928, -0.017051100730895996, 0.06619185209274292, 0.032912664115428925, -0.13652148842811584, 0.03996749967336655, -0.03671426698565483, -0.013751503080129623, -0.13289305567741394, -0.020226554945111275, -0.13453534245491028, 0.0010020635090768337, 0.0071356575936079025, -0.013059888035058975, -0.04260218143463135, 0.005570698995143175, 0.02867935597896576, -0.010133256204426289, -0.14118634164333344, -0.0032152007333934307, -0.014140610583126545, -0.010526240803301334, 0.018022572621703148, 1.3433127916269736e-33, 0.01019788533449173, 0.007526184897869825, -0.013937794603407383, 0.023814735934138298, -0.05477572977542877, -0.004536097403615713, 0.051757339388132095, -0.007542097009718418, 0.03458000347018242, 0.010336263105273247, 0.025909235700964928, 0.08233832567930222, -0.046377550810575485, 0.08109910786151886, -0.014045950025320053, 0.07051301747560501, -0.05706285685300827, -0.029740605503320694, -0.06569546461105347, -0.012369929812848568, 0.03691955655813217, -0.00957451481372118, -0.09457730501890182, -0.03639981150627136, -0.0022910130210220814, 0.024197032675147057, 0.012693308293819427, -0.0132183488458395, 0.0011823717504739761, -0.008966401219367981, -0.050184670835733414, 0.06407493352890015, 0.011897969990968704, -0.017593106254935265, -0.002350377384573221, 0.053886573761701584, -0.0046973880380392075, -0.056734342128038406, 0.008926606737077236, 0.003583094570785761, -0.02358158864080906, 0.038129743188619614, 0.14990979433059692, -0.006489137187600136, 0.07223521918058395, 0.07717572897672653, -0.0009035299299284816, -0.010253959335386753, -0.03891598433256149, 0.03921274095773697, -0.10675913095474243, -0.09089101850986481, 0.060380447655916214, 0.06315796077251434, 0.08805229514837265, 0.016412362456321716, -0.041978295892477036, -0.03214346989989281, -0.0458153560757637, -0.0003755760262720287, -0.015499352477490902, -0.09530177712440491, -0.0071578542701900005, 0.02881569042801857, -0.048801489174366, -0.02073788456618786, -0.10238640010356903, -0.0601055771112442, 0.01329509261995554, 0.023300381377339363, 0.01824994757771492, 0.051605015993118286, -0.03086072765290737, -0.006489401683211327, -0.10214533656835556, -0.037004679441452026, -0.05022840574383736, 0.03724007308483124, 0.013986545614898205, -0.09279059618711472, 0.06982351094484329, 0.02017815038561821, -0.0344206802546978, 0.019338618963956833, -0.014846780337393284, -0.00005588261774391867, 0.03578253462910652, 0.10622035712003708, 0.07386524230241776, 0.04971998557448387, 0.03759494796395302, 0.02925490401685238, -0.10805480182170868, 0.029256215319037437, -0.02068319171667099, 6.171137279316914e-32, -0.05386029928922653, 0.027723906561732292, 0.003175350371748209, -0.009919230826199055, 0.02420082315802574, -0.06499340385198593, 0.0705769881606102, -0.046327512711286545, 0.04311183840036392, -0.03603426367044449, 0.07550899684429169, 0.022481610998511314, -0.053490571677684784, 0.015359921380877495, -0.001498156925663352, 0.0682828277349472, 0.07192245125770569, 0.02755884826183319, 0.017703013494610786, 0.008654940873384476, -0.054469604045152664, -0.027333742007613182, -0.04212086647748947, 0.0707000344991684, 0.023595457896590233, 0.00044450873974710703, 0.11825833469629288, -0.02632838673889637, 0.017753932625055313, -0.0478416383266449, 0.05552350729703903, 0.09895237535238266, 0.005623193457722664, -0.02092103660106659, 0.06540118902921677, 0.014007392339408398, 0.0032875665929168463, -0.07698407024145126, -0.055315542966127396, -0.041194021701812744, 0.015686949715018272, -0.07892654836177826, -0.07512953132390976, -0.04232561215758324, -0.09062102437019348, -0.04251520335674286, -0.005856323521584272, -0.029816584661602974, 0.011538888327777386, 0.03169975429773331, 0.044275298714637756, -0.03652796521782875, -0.00598698016256094, -0.03399200364947319, 0.04493677616119385, 0.0125820841640234, 0.025292683392763138, -0.044974301010370255, -0.027738092467188835, 0.04064106196165085, -0.10710924118757248, 0.0974387526512146, 0.08510147780179977, 0.030815739184617996 ]
61Graphs and transformations So the curve crosses the x -axis at (0, 0), ( βˆ’1, 0) and ( βˆ’2, 0). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ βˆ’ ∞ –1 1 –2O xyYou know that the curve crosses the x-axis at (0, 0) so you don’t need to calculate the y-intercept separately. Check what happens to y for large positive and negative values of x. Example 2 Sketch the following curves. a y = (x βˆ’ 1)2(x + 1) b y = x3 βˆ’ 2x2 βˆ’ 3x c y = (x βˆ’ 2)3 a y = (x βˆ’ 1)2(x + 1) 0 = ( x βˆ’ 1)2(x + 1) So x = 1 or x = βˆ’ 1 So the curve crosses the x -axis at ( –1, 0) and touches the x -axis at (1, 0). When x = 0, y = ( βˆ’1)2 Γ— 1 = 1 So the curve crosses the y -axis at (0, 1). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ βˆ’ ∞ y x O –1 11 b y = x3 βˆ’ 2x3 βˆ’ 3 x = x(x2 βˆ’ 2x βˆ’ 3) = x(x βˆ’ 3)( x + 1) 0 = x(x βˆ’ 3)( x + 1) So x = 0, x = 3 or x = βˆ’ 1 So the curve crosses the x -axis at (0, 0), (3, 0) and ( βˆ’1, 0). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ βˆ’ ∞ y x O –1 3Put y = 0 and solve for x. (x – 1) is squared so x = 1 is a β€˜double’ repeated root. This means that the curve just touches the x-axis at (1, 0). Find the value of y when x = 0. Check what happens to y for large positive and negative values of x. This is a cubic curve with a positive coefficient of x 3 and three distinct roots.The x3 term in the expanded function would be x Γ— x Γ— x = x3 so the curve has a positive x3 coefficient. Check what happens to y for large positive and negative values of x. x β†’ ∞, y β†’ ∞ x = 1 is a β€˜double’ repeated root. x β†’ βˆ’βˆž, y β†’ βˆ’βˆž First factorise.
[ -0.03504672273993492, -0.06179558113217354, -0.020597711205482483, 0.017770398408174515, -0.03536147251725197, 0.0028470130637288094, -0.002689863322302699, -0.011815594509243965, -0.06821368634700775, 0.03606843948364258, 0.0377005971968174, -0.05392921715974808, -0.001179443788714707, 0.00905555672943592, -0.10937006771564484, -0.007881379686295986, 0.03474630042910576, -0.025550654157996178, -0.015874866396188736, -0.016636302694678307, 0.05902029201388359, -0.06154470518231392, -0.045934055000543594, -0.04246982932090759, 0.026588160544633865, -0.05888591706752777, 0.04694809392094612, -0.013206391595304012, -0.037033308297395706, 0.023515328764915466, 0.04371749237179756, -0.04296238347887993, 0.028589701279997826, 0.09548094123601913, 0.07364542037248611, 0.0014307507080957294, 0.028816312551498413, -0.005252438131719828, 0.018615737557411194, 0.01739000529050827, 0.024138933047652245, 0.07053504139184952, 0.010109338909387589, -0.019001130014657974, 0.06474477797746658, -0.11529414355754852, -0.05392651632428169, -0.07862405478954315, 0.09286686778068542, 0.015385658480226994, 0.06748770922422409, 0.06428235024213791, -0.00801158044487238, 0.04905300587415695, -0.049037039279937744, 0.008715198375284672, -0.025544770061969757, -0.03487734869122505, -0.018713613972067833, -0.029377704486250877, -0.0473051555454731, 0.04269394278526306, -0.04783029481768608, 0.03841933235526085, -0.03214816376566887, 0.0689643919467926, 0.06680966168642044, -0.03191081061959267, -0.021671876311302185, 0.05625733733177185, -0.06102506071329117, -0.014136971905827522, -0.026611199602484703, -0.05560368299484253, 0.000452402833616361, -0.04519197717308998, -0.032342854887247086, 0.05838261544704437, -0.048781923949718475, -0.08541727811098099, -0.09026449918746948, -0.026267878711223602, 0.09750952571630478, 0.08313392102718353, -0.010203185491263866, 0.038429081439971924, 0.047293346375226974, 0.03327765688300133, -0.04865170270204544, 0.052595946937799454, 0.04853644222021103, 0.08646830171346664, -0.05542070046067238, -0.07559739053249359, 0.009249590337276459, -0.06684571504592896, 0.0594274140894413, -0.048921212553977966, 0.0642148032784462, 0.0637269914150238, 0.028576893731951714, -0.05924142524600029, 0.0017285775393247604, 0.08461663126945496, 0.02904389053583145, -0.007550740614533424, -0.050848379731178284, 0.0009834517259150743, -0.04239572957158089, -0.005037352442741394, 0.06323599815368652, -0.07002389430999756, 0.04577626287937164, -0.0015044116880744696, 0.14302584528923035, -0.07508329302072525, -0.008679306134581566, 0.02221439592540264, 0.0104873301461339, -0.04865814000368118, 0.06229250878095627, -0.03461720421910286, 0.05803006514906883, -0.00010003898933064193, -0.11271950602531433, 0.06173749640583992, -0.01734130270779133, -0.036621253937482834, -0.013154502958059311, -0.008772140368819237, 0.05651434138417244, -0.05642245337367058, -0.021720848977565765, 0.027243325486779213, 0.026520010083913803, 0.021235020831227303, -0.08444110304117203, 0.11886393278837204, 0.009785096161067486, -0.025128645822405815, 0.0032697999849915504, 0.059579428285360336, 0.03218637779355049, 0.002856495091691613, -0.018992504104971886, 0.004596450366079807, -0.0594300851225853, 0.04614437744021416, 0.034962404519319534, -0.01370177697390318, 0.027462942525744438, -0.03757861256599426, 0.021469296887516975, 0.054154831916093826, 0.004045484121888876, -0.026113661006093025, -0.043944887816905975, -0.021808046847581863, -0.031767603009939194, -0.051092639565467834, -0.04754089564085007, 0.03480864688754082, -0.07469774037599564, 0.020413456484675407, 0.01457137893885374, 0.03852491453289986, -0.006832500454038382, 0.05851266533136368, 0.04844610020518303, 0.08281826227903366, 0.0748058632016182, -0.00327692786231637, -0.008628436364233494, 0.004399911034852266, 0.051381032913923264, -0.008692965842783451, 0.05392547324299812, 0.03459332883358002, -0.0330643430352211, -0.04289097711443901, -0.024853017181158066, -0.058967363089323044, 0.015426844358444214, 0.03367059305310249, -0.006138189230114222, -0.08159588277339935, 0.0006366216694004834, -0.06283379346132278, 0.0047777993604540825, -0.00821483600884676, -0.007996230386197567, -0.05074487254023552, -0.021990912035107613, 0.12289931625127792, -0.09722757339477539, -0.028528617694973946, 0.007721007335931063, 0.018228255212306976, -0.08800890296697617, 0.03565436974167824, 0.026117008179426193, 0.06180282309651375, 0.08257818222045898, 0.05782156065106392, 0.02384296990931034, 0.020111335441470146, 0.005355692468583584, 0.04596247524023056, 0.004916018806397915, -0.016707977280020714, 0.046023961156606674, -0.00559413293376565, -0.006592173129320145, 0.03772205859422684, 0.008958880789577961, -0.054314736276865005, -0.030657174065709114, 0.021155277267098427, -0.11971265822649002, -0.0017273102421313524, -0.010964160785079002, -0.027249015867710114, 0.039261698722839355, -1.1525115995537886e-33, 0.04549097269773483, -0.008628849871456623, -0.06535442918539047, -0.02141791209578514, 0.013086964376270771, -0.05952536687254906, 0.053927551954984665, 0.10069777816534042, 0.08188943564891815, 0.019999731332063675, 0.09282726049423218, 0.03916972130537033, -0.047281358391046524, 0.004150619730353355, 0.006901598535478115, -0.03437822684645653, 0.020481843501329422, -0.0894540324807167, -0.0368468202650547, -0.08142708986997604, 0.015210411511361599, -0.008422649465501308, 0.0416395477950573, 0.009115039370954037, 0.007000180426985025, 0.0021602725610136986, 0.063445545732975, -0.07667525112628937, -0.05081199109554291, 0.02026495896279812, -0.06612902879714966, -0.022290533408522606, 0.10168694704771042, 0.06777062267065048, -0.09354693442583084, 0.03955991938710213, -0.08802890032529831, -0.07513710856437683, 0.05276673659682274, 0.014173327945172787, 0.06266332417726517, 0.06876273453235626, 0.04468845948576927, 0.03801025450229645, 0.007126232143491507, 0.027486825361847878, -0.021802963688969612, 0.10959111899137497, -0.03358130156993866, 0.06255601346492767, -0.055678222328424454, -0.05265337973833084, 0.08323332667350769, 0.024155274033546448, 0.14857056736946106, -0.00619635870680213, 0.0029573882929980755, -0.06721275299787521, 0.043403737246990204, -0.10659336298704147, 0.027189210057258606, -0.03878894820809364, -0.05228675156831741, 0.06550176441669464, 0.03065718151628971, -0.007588434964418411, -0.04589512571692467, -0.10951822251081467, -0.01788206957280636, -0.00026151002384722233, 0.06965582072734833, 0.05760541930794716, -0.07154988497495651, -0.04857391491532326, -0.05280953273177147, -0.10423204302787781, -0.032756906002759933, -0.030405845493078232, 0.06347133219242096, -0.11004743725061417, -0.056488484144210815, 0.029918501153588295, -0.04786201938986778, 0.02558327093720436, -0.03025495447218418, -0.03861895576119423, -0.031853772699832916, 0.0908266007900238, 0.040048833936452866, 0.02200825698673725, 0.014695783145725727, 0.01402097474783659, -0.1212673932313919, -0.018167613074183464, 0.028941748663783073, 7.570412252946766e-32, -0.030637357383966446, 0.0007631444022990763, 0.03832462430000305, 0.034907590597867966, -0.04158640652894974, 0.04050549864768982, -0.015613183379173279, -0.12414935976266861, 0.030573014169931412, -0.0846421867609024, 0.10227207839488983, 0.07954432815313339, -0.1163552924990654, 0.06957408785820007, -0.03651917353272438, 0.010547718964517117, 0.03288881108164787, -0.02393432892858982, -0.011888307519257069, -0.003839161479845643, -0.07137864828109741, -0.03436398133635521, -0.036622900515794754, 0.02148042991757393, -0.046958040446043015, -0.0493776798248291, -0.07211025804281235, -0.026873260736465454, -0.05508074164390564, -0.07736831158399582, -0.003535799216479063, 0.0000227697346417699, -0.006592385470867157, -0.052248675376176834, 0.07329530268907547, -0.029078073799610138, -0.0920049175620079, 0.06873854249715805, -0.02787899784743786, -0.02745893783867359, -0.05081360787153244, 0.014858581125736237, -0.007316358853131533, 0.049441784620285034, -0.0076932357624173164, 0.024630917236208916, 0.05093050003051758, 0.00948014110326767, 0.04396462067961693, -0.045360829681158066, -0.021982340142130852, 0.04199918732047081, 0.03406769037246704, 0.03196685016155243, 0.01585688441991806, -0.07509738951921463, -0.08761728554964066, -0.004578079096972942, 0.03719072788953781, 0.010090311989188194, -0.050323184579610825, 0.030406109988689423, -0.05972343310713768, -0.015384008176624775 ]
62 Chapter 4 Example 3 Sketch the curve with equation y = (x – 1)(x2 + x + 2). y = ( x – 1)( x2 + x + 2) 0 = ( x – 1)( x2 + x + 2) So x = 1 only and the curve crosses the x-axis at (1, 0). When x = 0, y = ( –1)(2) = – 2 So the curve crosses the y -axis at (0, – 2). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ βˆ’ ∞ y x O –21The quadratic factor x2 + x + 2 gives no solutions since the discriminant b2 – 4ac = (1)2 – 4(1)(2) = –7. ← Section 2.5 A cubi c graph could intersect the x-axis at 1, 2 or 3 points. Watch out Check what happens to y for large positive and negative values of x. You haven’t got enough information y x to know the exact shape of the graph. It could also be shaped like this: 1 Sketch the following curves and indicate clearly the points of intersection with the axes: a y = (x – 3)(x – 2)(x + 1) b y = (x – 1)(x + 2)(x + 3) c y = (x + 1)(x + 2)(x + 3) d y = (x + 1)(1 – x)(x + 3) e y = (x – 2)(x – 3)(4 – x) f y = x(x – 2)(x + 1) g y = x(x + 1)(x – 1) h y = x(x + 1)(1 – x) i y = (x – 2)(2x – 1)(2x + 1) j y = x(2x – 1)(x + 3)Exercise 4Ac y = (x – 2)3 0 = ( x – 2)3 So x = 2 and the curve crosses the x -axis at (2, 0) only. When x = 0, y = ( βˆ’2)3 = βˆ’8 So the curve crosses the y -axis at (0, – 8). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ βˆ’ ∞ y x O –82Check what happens to y for large positive and negative values of x. x = 2 is a β€˜triple’ repeated root.
[ -0.06215880811214447, 0.018444951623678207, -0.059025369584560394, -0.009412138722836971, -0.018618078902363777, 0.02903864160180092, -0.02831733599305153, 0.06893282383680344, -0.10405362397432327, 0.047036632895469666, 0.03328702226281166, -0.00296430173330009, 0.014659454114735126, 0.04748493805527687, -0.05681167170405388, -0.018941741436719894, -0.07148487120866776, -0.04453869163990021, -0.0069715301506221294, -0.04054570943117142, 0.04826578497886658, 0.015341092832386494, -0.09702704846858978, -0.04800792038440704, 0.053551893681287766, -0.12364659458398819, 0.011273223906755447, -0.03396207094192505, 0.026800526306033134, 0.003950031474232674, 0.04451408609747887, -0.03490295261144638, 0.005809785332530737, 0.0321008637547493, 0.07054217159748077, 0.00986650213599205, 0.06511223316192627, 0.023349180817604065, 0.008914239704608917, 0.020891187712550163, 0.01686924509704113, 0.0669720247387886, -0.054674334824085236, 0.0007284641033038497, 0.10204584151506424, -0.053921982645988464, -0.0027372995391488075, -0.10670531541109085, 0.0023708418011665344, -0.014661472290754318, 0.03793700784444809, 0.0482218861579895, -0.013584203086793423, 0.04990290477871895, -0.061519235372543335, 0.002954190131276846, -0.06977864354848862, 0.0011748431716114283, -0.02737264521420002, 0.026388896629214287, -0.0013836942380294204, -0.004926703870296478, -0.03662363067269325, 0.06348992139101028, -0.025486016646027565, 0.004127266351133585, 0.03014657273888588, -0.02158777415752411, -0.009859750047326088, 0.12056289613246918, -0.13694362342357635, -0.07955260574817657, -0.00973817240446806, -0.05804470553994179, 0.0238118227571249, -0.08658197522163391, -0.04378886520862579, -0.01669269986450672, -0.0415772907435894, -0.060929831117391586, -0.03965160995721817, -0.02016778290271759, 0.07811437547206879, 0.08817361295223236, 0.002846432849764824, -0.0006322391564026475, 0.0467543862760067, -0.03749806806445122, 0.014073215425014496, -0.00827416218817234, 0.07523266226053238, 0.002030176343396306, -0.060256924480199814, -0.013039731420576572, 0.03861209750175476, -0.06780295073986053, 0.05097538232803345, -0.060377851128578186, 0.0532209612429142, 0.07959900796413422, -0.01490423921495676, -0.04390941187739372, -0.02296575717628002, 0.049166589975357056, 0.05314100533723831, -0.0761183351278305, 0.03786840662360191, -0.027749937027692795, -0.05916779488325119, -0.06105562672019005, 0.05211777240037918, -0.0802014172077179, 0.04900066927075386, 0.011972550302743912, 0.07844694703817368, -0.10205385833978653, -0.013937090523540974, -0.006538220681250095, 0.01778915338218212, -0.01945592649281025, 0.03528650477528572, -0.027777573093771935, 0.012321152724325657, -0.01448393240571022, -0.10663379728794098, 0.0026803931687027216, 0.034288663417100906, 0.007235844153910875, -0.017374910414218903, -0.10767189413309097, 0.013940301723778248, -0.09341656416654587, -0.05940207839012146, -0.006534588523209095, 0.0040030525997281075, -0.020467707887291908, -0.11205984652042389, 0.14185672998428345, 0.01452142558991909, 0.004783767741173506, -0.06594938784837723, 0.031074823811650276, 0.016207708045840263, -0.03364170715212822, 0.029725192114710808, -0.05591924861073494, 0.011926934123039246, 0.05303342267870903, 0.018153764307498932, 0.02926952950656414, -0.02492280676960945, -0.033867042511701584, 0.05238538607954979, 0.08655410259962082, 0.06768740713596344, 0.02657054178416729, 0.014383461326360703, -0.02674655243754387, 0.025727344676852226, -0.03861132636666298, -0.08513559401035309, 0.06260950863361359, -0.07458849251270294, 0.02805255353450775, 0.015894899144768715, -0.03750791400671005, 0.004651848692446947, 0.043541356921195984, 0.055379465222358704, -0.010202777571976185, 0.0746302604675293, 0.002843001391738653, 0.04389241337776184, 0.09002557396888733, 0.02543727494776249, 0.0028216582722961903, 0.05319700762629509, 0.06396953016519547, 0.008231301791965961, 0.022429998964071274, -0.0007341198506765068, -0.0320739783346653, 0.0012254492612555623, -0.04593830183148384, -0.036909110844135284, 0.003611411666497588, -0.06592229008674622, 0.016673646867275238, 0.06961327791213989, 0.06029633432626724, -0.027591092512011528, -0.07845387607812881, -0.0808897614479065, 0.11294235289096832, -0.04617491364479065, -0.05922004580497742, 0.03609807416796684, 0.07268741726875305, -0.04388358071446419, 0.019970718771219254, -0.08542106300592422, 0.04367997869849205, 0.037296362221241, 0.002864023670554161, -0.032850805670022964, -0.02586675062775612, -0.004828508943319321, 0.013855453580617905, -0.03649039939045906, -0.017711946740746498, 0.05016850680112839, 0.01034517027437687, -0.05800419673323631, -0.0651303231716156, -0.008587529882788658, -0.005082925781607628, 0.033193089067935944, -0.008360076695680618, -0.1511443555355072, 0.06277584284543991, 0.01005670614540577, -0.009635153226554394, -0.008307650685310364, -3.9225607311886475e-33, -0.04515839368104935, 0.052240513265132904, -0.09648574143648148, -0.03917720168828964, -0.01808743178844452, 0.005082491785287857, 0.049781572073698044, 0.1272759586572647, 0.05728418752551079, 0.02968357317149639, 0.052497148513793945, 0.04407787322998047, -0.0655030906200409, 0.015449638478457928, -0.028521781787276268, -0.09583046287298203, -0.03689754381775856, -0.06432541459798813, 0.01310157123953104, -0.06566701084375381, -0.009220144711434841, 0.006001549772918224, -0.036342039704322815, -0.0024713294114917517, -0.019654173403978348, -0.004887903109192848, 0.04502533748745918, -0.060165904462337494, 0.0009493157849647105, 0.03313394635915756, -0.054686788469552994, -0.03894262760877609, 0.0031075445003807545, 0.009174097329378128, -0.008085486479103565, -0.008143506944179535, -0.011341524310410023, -0.07152082771062851, 0.04015164449810982, 0.00315098837018013, 0.03726024553179741, 0.014093919657170773, 0.09403324127197266, -0.015101349912583828, 0.007216268684715033, 0.04661155119538307, 0.05406883358955383, 0.059346165508031845, -0.03207610920071602, 0.04173034429550171, -0.02716374769806862, -0.05402405560016632, 0.07777509838342667, 0.02132328599691391, 0.13090673089027405, 0.0028162552043795586, 0.014477330259978771, -0.09114857017993927, 0.013418102636933327, -0.11468415707349777, -0.0067827035672962666, -0.04341382160782814, -0.03437644988298416, 0.11810072511434555, 0.0315965935587883, -0.04187715798616409, -0.10621295124292374, -0.09695001691579819, 0.02529747411608696, -0.014921353198587894, 0.02546478435397148, 0.0687238872051239, -0.026933075860142708, -0.11874198168516159, -0.03310489282011986, -0.02130810171365738, -0.007615101523697376, -0.028669118881225586, 0.05334779620170593, -0.127416729927063, -0.02006835862994194, 0.072547547519207, 0.034296683967113495, 0.02562960796058178, -0.04957835376262665, 0.027126912027597427, 0.01664869859814644, 0.13987703621387482, 0.010248465463519096, 0.07387036085128784, 0.03511805087327957, -0.029708757996559143, -0.11154148727655411, -0.0387951098382473, 0.022104285657405853, 8.366934278030053e-32, -0.12302333861589432, -0.07289797812700272, -0.027187269181013107, 0.022494001314044, 0.0178374070674181, 0.04418383166193962, 0.07956815510988235, -0.07632790505886078, 0.04191641882061958, -0.046203505247831345, 0.0353027880191803, 0.03300156444311142, -0.03583722934126854, 0.039594054222106934, -0.015294312499463558, 0.03809959813952446, 0.0035212531220167875, -0.030206656083464622, -0.03691394254565239, 0.0020851728040724993, -0.033634766936302185, -0.027330150827765465, -0.11273904144763947, -0.00538576440885663, 0.006020662374794483, -0.03861185535788536, -0.018220962956547737, 0.008782545104622841, 0.024980826303362846, -0.016402054578065872, -0.004151312168687582, 0.019587162882089615, 0.0683944821357727, 0.005054621025919914, 0.040175456553697586, -0.05616392940282822, 0.0018973405240103602, 0.041516587138175964, -0.030033767223358154, -0.06160934269428253, 0.014370978809893131, -0.0066326940432190895, 0.014254985377192497, 0.008172730915248394, -0.020569127053022385, 0.04162648320198059, 0.09902486950159073, 0.07498334348201752, 0.01496365386992693, 0.04192096367478371, -0.025369569659233093, 0.06689698994159698, 0.06380301713943481, 0.011634215712547302, 0.06969647109508514, -0.052192702889442444, -0.05146398767828941, 0.004197062458842993, 0.022374795749783516, 0.0011207540519535542, -0.027704128995537758, 0.04789033532142639, 0.007457389496266842, 0.017197253182530403 ]
63Graphs and transformations 2 Sketch the curves with the f ollowing equations: a y = (x + 1)2(x – 1) b y = (x + 2)(x – 1)2 c y = (2 – x)(x + 1)2 d y = (x – 2)(x + 1)2 e y = x2(x + 2) f y = (x – 1)2x g y = (1 – x)2(3 + x) h y = (x – 1)2(3 – x) i y = x2(2 – x) j y = x2(x – 2) 3 Factorise the follo wing equations and then sketch the curves: a y = x3 + x2 – 2x b y = x3 + 5x2 + 4x c y = x3 + 2x2 + x d y = 3x + 2x2 – x3 e y = x3 – x2 f y = x – x3 g y = 12x3 – 3x h y = x3 – x2 – 2x i y = x3 – 9x j y = x3 – 9x2 4 Sketch the following curves and indicate the coordinates of the points where the curves cross the axes: a y = (x – 2)3 b y = (2 – x)3 c y = (x – 1)3 d y = (x + 2)3 e y = –(x + 2)3 f y = (x + 3)3 g y = (x – 3)3 h y = (1 – x)3 i y = – (x – 2)3 j y = – (x – 1 _ 2 ) 3 5 The graph of y = x3 + bx2 + cx + d is shown opposite, where b, c and d y 1 –2–3 O x –6 are real constants. a Find the values of b, c and d. (3 marks) b Write down the coor dinates of the point where the curve crosses the y-axis. (1 mark) 6 The graph of y = ax3 + bx2 + cx + d is shown opposite, where a, b, c and d y x –12 3 O2 are real constants. Find the values of a, b, c and d. (4 marks) 7 Given tha t f(x) = (x – 10)(x2 – 2x) + 12x a Express f(x ) in the form x(ax2 + bx + c) where a, b and c are real constants. (3 marks) b Hence factorise f(x) complete ly. (2 marks) c Sketch the gra ph of y = f(x) showing clearly the points where the graph intersects the axes. (3 marks)P Start by writing the equation in the form y = (x – p)(x – q)(x – r).Problem-solving P E
[ -0.01981847919523716, -0.026236642152071, -0.0863470509648323, -0.0945146381855011, -0.017643878236413002, 0.0764419212937355, -0.005962705239653587, -0.025070903822779655, -0.08162569999694824, -0.032204121351242065, -0.01351320743560791, -0.03305774927139282, 0.008042678236961365, 0.012390163727104664, -0.08824853599071503, -0.018785471096634865, -0.07948125898838043, -0.050856295973062515, -0.04737338796257973, -0.10102871805429459, 0.014676518738269806, -0.10784832388162613, -0.059176795184612274, -0.10226631909608841, 0.06784357875585556, -0.03243884816765785, -0.0419434979557991, -0.01765606179833412, -0.024651097133755684, -0.05691922456026077, -0.02184785157442093, 0.006798091344535351, 0.07383735477924347, 0.023875761777162552, 0.08633193373680115, 0.019220713526010513, -0.008620229549705982, 0.019266357645392418, 0.06834851205348969, -0.008354194462299347, -0.05096893012523651, 0.03594439476728439, 0.012181592173874378, 0.001562229124829173, 0.06888936460018158, 0.0007042073993943632, -0.01999278925359249, 0.029534069821238518, 0.03337618708610535, 0.02479337528347969, 0.060268182307481766, -0.01377182174474001, -0.07208571583032608, 0.03285503759980202, 0.02368827536702156, 0.0059611620381474495, -0.01631017029285431, 0.021987412124872208, -0.02183133363723755, 0.03907529637217522, -0.017120307311415672, 0.018624749034643173, -0.02275884710252285, 0.0444837287068367, -0.06306519359350204, 0.09722477942705154, 0.10565046221017838, -0.041140999644994736, -0.020482756197452545, 0.07995107024908066, -0.0480395145714283, 0.09631428122520447, -0.07258924841880798, -0.0578262135386467, 0.02793343923985958, 0.04149769991636276, 0.013417099602520466, 0.07269105315208435, -0.05315246433019638, -0.08239896595478058, -0.09749051928520203, -0.06245720013976097, 0.1076013445854187, 0.027130350470542908, -0.00562072591856122, 0.02780681662261486, -0.013079126365482807, -0.016345789656043053, 0.006654121447354555, 0.0588267557322979, -0.0769425481557846, 0.05716162919998169, -0.053160395473241806, -0.07168840616941452, -0.03801233321428299, -0.08758999407291412, 0.04453306645154953, 0.0042324368841946125, 0.05973350629210472, 0.07441374659538269, 0.002572831930592656, 0.02817949466407299, 0.11632280796766281, 0.05453037843108177, -0.038901083171367645, -0.013696207664906979, -0.06107901781797409, -0.0224448349326849, -0.059506818652153015, -0.004298255778849125, -0.04167494550347328, -0.05322567746043205, 0.06464970111846924, -0.0073969061486423016, 0.03608187288045883, -0.09790999442338943, -0.002739088609814644, 0.004856090061366558, 0.014675994403660297, -0.013430933468043804, 0.015427041798830032, 0.036592401564121246, 0.059416502714157104, 0.028466086834669113, -0.059311091899871826, -0.04837307706475258, -0.09162906557321548, 0.016335753723978996, -0.012264416553080082, 0.0031106595415621996, 0.04718209058046341, -0.009782637469470501, -0.0030225992668420076, -0.029728984460234642, -0.026884332299232483, 0.01904374174773693, -0.04128878191113472, 0.07852466404438019, -0.032926734536886215, -0.005375498440116644, 0.00908418744802475, 0.13231772184371948, 0.057111095637083054, 0.018327070400118828, 0.05328909680247307, -0.03253559768199921, -0.11132913827896118, 0.05100387707352638, 0.038354914635419846, 0.030350212007761, -0.031069345772266388, 0.01811516471207142, -0.018329216167330742, 0.0962858498096466, 0.012046802788972855, -0.05722270533442497, -0.045623112469911575, -0.011820359155535698, -0.08085222542285919, -0.0038224186282604933, -0.02698751725256443, 0.04046139121055603, -0.01739075779914856, 0.011856134980916977, 0.08816494792699814, -0.04985526204109192, 0.03616851940751076, 0.027736345306038857, -0.024577977135777473, 0.015190129168331623, 0.02780759148299694, -0.03431329131126404, 0.0005636521382257342, 0.09867316484451294, 0.051666658371686935, -0.002566921291872859, 0.09378796070814133, -0.05712888389825821, -0.05328655615448952, 0.015953030437231064, 0.051488492637872696, -0.030756276100873947, 0.0031480176839977503, -0.007113623898476362, -0.048708174377679825, -0.03818512335419655, 0.023260949179530144, 0.048257458955049515, -0.00994839332997799, 0.007267998997122049, -0.05333452299237251, 0.0037036570720374584, -0.031014101579785347, 0.051651518791913986, -0.09249047935009003, -0.013687369413673878, 0.01584300771355629, 0.04893350228667259, -0.08546923100948334, -0.03309261053800583, 0.07196345180273056, 0.0667693242430687, 0.111869677901268, 0.06568293273448944, 0.037249498069286346, -0.06497013568878174, -0.08631237596273422, -0.06720061600208282, -0.06668407469987869, 0.0056089614517986774, -0.03537948057055473, -0.00009228872659150511, -0.0027583211194723845, 0.021546628326177597, -0.047858431935310364, -0.07356464862823486, 0.017932377755641937, -0.05184473842382431, -0.06705481559038162, -0.005003770347684622, 0.04111180827021599, -0.0764402374625206, 0.051079388707876205, 5.9434353542917995e-33, -0.00020374928135424852, 0.026259558275341988, -0.09053893387317657, 0.014291036874055862, -0.019230080768465996, -0.07167722284793854, 0.033066749572753906, 0.04101381450891495, 0.04712299630045891, 0.017456991598010063, 0.11834724992513657, 0.02022220753133297, -0.030710536986589432, -0.06845401972532272, -0.05832388997077942, -0.06315863877534866, 0.03574502468109131, -0.03720816597342491, -0.036963678896427155, 0.01857300102710724, 0.021322667598724365, 0.025707747787237167, 0.01641620136797428, 0.007938570342957973, -0.05114663764834404, 0.061519671231508255, 0.05922044813632965, -0.06595933437347412, -0.021566331386566162, 0.0541280172765255, -0.02178146131336689, -0.03831632062792778, 0.019997701048851013, 0.028720976784825325, -0.039032235741615295, 0.02958306297659874, 0.029147649183869362, -0.001542230136692524, 0.0034946552477777004, 0.032071858644485474, 0.02465463988482952, 0.10857842117547989, 0.012123039923608303, 0.02574697509407997, -0.02118866518139839, 0.0798291265964508, 0.006490419153124094, 0.07516766339540482, -0.00898707378655672, 0.0037452084943652153, -0.0331241711974144, -0.06311266869306564, -0.03341522067785263, -0.03653920441865921, 0.03936600685119629, 0.02323395200073719, -0.006425154395401478, -0.04783235117793083, 0.057219985872507095, -0.07216103374958038, -0.03728676214814186, -0.05388384684920311, -0.07849101722240448, 0.07948818057775497, -0.04920612648129463, -0.15063433349132538, -0.09395725280046463, -0.04806630685925484, -0.03481542691588402, 0.03193056210875511, 0.053689975291490555, 0.020762991160154343, -0.004144052974879742, -0.03595450893044472, 0.03161722049117088, -0.08874654769897461, 0.049856480211019516, 0.06186610832810402, -0.023531349375844002, -0.016881641000509262, -0.09823465347290039, 0.03204664587974548, 0.02609751932322979, 0.0161344725638628, 0.01851457729935646, -0.005087863653898239, 0.09419979155063629, 0.05473487079143524, 0.09919039905071259, 0.022361913695931435, 0.044903021305799484, 0.05840672552585602, 0.03825912997126579, 0.006780271418392658, -0.003611593274399638, 8.805953206197758e-32, 0.02217528037726879, 0.039259232580661774, 0.010566538199782372, 0.013912691734731197, 0.05843181535601616, 0.0037636784836649895, 0.03673500940203667, -0.004761705175042152, 0.01812935620546341, -0.09417501837015152, 0.12909768521785736, 0.11347853392362595, -0.07645297050476074, 0.07861004769802094, 0.039211779832839966, -0.002223541494458914, -0.008715025149285793, -0.005804603453725576, 0.03394297510385513, -0.0013817125000059605, -0.09340944141149521, -0.035944223403930664, -0.03619231656193733, 0.03026607260107994, -0.07055100798606873, -0.06606852263212204, -0.05942602455615997, -0.10805144906044006, -0.03859741985797882, -0.023442506790161133, 0.013738760724663734, 0.021436434239149094, 0.030907735228538513, -0.06322896480560303, 0.050463128834962845, 0.0075377230532467365, -0.11674891412258148, 0.07317257672548294, -0.03690672293305397, 0.017808379605412483, -0.011269645765423775, -0.0033301690127700567, -0.011306538246572018, 0.07867482304573059, 0.005660689901560545, 0.06015919893980026, 0.04236707091331482, 0.04780665785074234, 0.04765978083014488, -0.07692337036132812, -0.04531612619757652, 0.0005397468339651823, 0.03008096292614937, -0.07376468181610107, -0.03756416589021683, -0.012806834653019905, -0.02744845300912857, 0.03900981321930885, 0.021535737439990044, -0.009080921299755573, -0.04153374210000038, 0.013420653529465199, -0.0012479659635573626, 0.040881067514419556 ]
64 Chapter 4 Example 4 Sketch the following curves: a y = (x + 1)(x + 2)(x – 1)(x – 2) b y = x(x + 2)2(3 – x) c y = (x – 1)2(x – 3)2 a y = (x + 1)( x + 2)( x – 1)( x – 2) 0 = ( x + 1)( x + 2)( x – 1)( x – 2) So x = βˆ’ 1, βˆ’2, 1 or 2 The curve cuts the x -axis at ( –2, 0), ( –1, 0), (1, 0) and (2, 0). When x = 0, y = 1 Γ— 2 Γ— ( –1) Γ— (–2) = 4. So the curve cuts the y -axis at (0, 4). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ ∞ Oy x21/four.ss01 –1–2We know the general shape of the quartic graph so we can draw a smooth curve through the points.4.2 Quartic graphs A quartic function has the form f(x) = ax4 + bx3 + cx2 + dx + e, where a, b, c, d and e are real numbers and a is non-zero. The graph of a quartic function can take several different forms, depending on the exact nature of the function. y xy xy x You can sketch the graph of a quartic function by finding the roots of the function.This is a repeated root. These roots are distinct. For this function a is negative.For these two functions a is positive. Check what happens to y for large positive and negative values of x.Substitute x = 0 into the function to find the coordinates of the y-intercept.Set y = 0 and solve to find the roots of the function. Explore the graph of y = (x – p )(x – q )(x – r )(x – s ) where p , q, r and s are constants using GeoGebra.Online
[ -0.026368409395217896, 0.025389019399881363, -0.037942059338092804, -0.03609432652592659, -0.0020098411478102207, 0.04330183193087578, -0.057650335133075714, 0.037844374775886536, -0.05502891540527344, 0.05546768009662628, 0.049632325768470764, -0.027806919068098068, 0.004702458158135414, -0.03158736601471901, -0.025643862783908844, -0.006422041449695826, -0.11703097075223923, -0.0010847774101421237, -0.009088069200515747, -0.04959801211953163, 0.01954246126115322, -0.05388008803129196, -0.07687219232320786, -0.02957957051694393, 0.10100814700126648, -0.07157889008522034, 0.009029709734022617, -0.07513554394245148, -0.03288286179304123, -0.08513040095567703, 0.005707310978323221, 0.006435713730752468, 0.0781795009970665, 0.025043105706572533, 0.08313094824552536, 0.021572593599557877, 0.03792658448219299, 0.11707528680562973, 0.03356145694851875, -0.000040013335819821805, -0.020470324903726578, -0.021227791905403137, -0.036368951201438904, -0.014103325083851814, 0.09976072609424591, -0.046422481536865234, -0.0139654241502285, -0.029685160145163536, -0.0046867262572050095, -0.000652538612484932, 0.00044888531556352973, 0.02126449905335903, -0.06112891063094139, 0.057532671838998795, -0.04579582437872887, 0.011968325823545456, -0.10749012976884842, 0.004409961402416229, -0.0009051006054505706, 0.07681909948587418, -0.010367260314524174, 0.023266106843948364, -0.028698453679680824, 0.017797162756323814, -0.03504129499197006, -0.011208818294107914, 0.024401545524597168, -0.0891929417848587, 0.015318374149501324, 0.13194750249385834, -0.0772436261177063, -0.017117556184530258, -0.018506279215216637, -0.09679612517356873, -0.05887461453676224, -0.07030794769525528, -0.027859006077051163, 0.047605499625205994, -0.08754871040582657, -0.0372137688100338, -0.11115808039903641, -0.057277776300907135, 0.11982538551092148, 0.07449743151664734, -0.003338365349918604, -0.019244875758886337, 0.06323446333408356, -0.05659288913011551, 0.0059679001569747925, -0.028056884184479713, 0.02734188921749592, 0.015114719979465008, -0.1016782894730568, -0.04494195431470871, -0.01583646796643734, -0.12650613486766815, 0.029227571561932564, -0.040289923548698425, 0.031095772981643677, 0.09353461116552353, 0.000992308370769024, 0.00864440854638815, 0.031132422387599945, 0.07840994000434875, 0.015747729688882828, -0.019356435164809227, 0.030814694240689278, -0.047985706478357315, -0.008321127854287624, -0.06877300143241882, 0.01502296794205904, -0.07633277773857117, 0.011958920396864414, 0.04165741428732872, 0.07825952023267746, -0.06702352315187454, 0.011613091453909874, -0.013163777999579906, 0.029815439134836197, -0.02906983345746994, 0.04401835426688194, -0.03982112184166908, 0.028332754969596863, -0.01150768157094717, -0.019915243610739708, 0.00003710197051987052, -0.006810792721807957, 0.002557852305471897, -0.018840305507183075, -0.07125725597143173, 0.03351845592260361, -0.051897402852773666, 0.008985818363726139, -0.03986813873052597, -0.04941762238740921, -0.058638911694288254, -0.08879919350147247, 0.11814787983894348, -0.054730065166950226, -0.07350710779428482, -0.004675372503697872, 0.11798880249261856, 0.05820932239294052, -0.012927337549626827, 0.03873357176780701, -0.05191531404852867, -0.07316786795854568, 0.01808319427073002, 0.02107311226427555, 0.060042329132556915, -0.03746379539370537, -0.014343943446874619, -0.00749980378895998, 0.07867378741502762, -0.022327784448862076, -0.07794428616762161, -0.0005118842818774283, 0.005590368527919054, 0.013756463304162025, -0.011474954895675182, -0.03611650690436363, 0.042104847729206085, -0.07077568024396896, 0.06970907747745514, 0.06361420452594757, -0.04022856429219246, -0.019716918468475342, 0.08639980107545853, 0.03993110731244087, -0.07431388646364212, 0.01082085445523262, 0.02546052634716034, 0.007818096317350864, 0.09049376845359802, 0.03914772719144821, 0.06389852613210678, 0.06801801174879074, 0.06095657870173454, 0.01539185456931591, 0.04572296142578125, 0.05853172391653061, -0.017843924462795258, -0.015383409336209297, -0.04487045854330063, -0.013808385469019413, -0.0320865623652935, -0.024779485538601875, 0.028277935460209846, 0.05483205243945122, 0.01813923381268978, -0.051121581345796585, -0.032434675842523575, -0.08195362985134125, 0.11106070131063461, -0.06471549719572067, 0.026697780936956406, -0.010570583865046501, 0.05059990659356117, -0.1024908572435379, 0.05337340757250786, -0.004306554328650236, 0.05380719527602196, 0.04064226150512695, -0.0023884272668510675, -0.09264932572841644, 0.007687213830649853, -0.0319780632853508, 0.013057182542979717, -0.04897551238536835, 0.007676251232624054, 0.03164683282375336, 0.02866266295313835, -0.034934256225824356, -0.004482539836317301, -0.035660143941640854, -0.025634488090872765, 0.08464429527521133, -0.0633353590965271, -0.10501942038536072, 0.04753391817212105, 0.006642995402216911, -0.0008496844093315303, 0.01573672518134117, 9.985922223203244e-33, -0.06419755518436432, 0.035533297806978226, -0.06537336111068726, -0.005127563141286373, -0.011639907956123352, -0.060173045843839645, 0.031959909945726395, 0.04936888813972473, 0.023017622530460358, 0.013068165630102158, 0.05528569594025612, 0.048012807965278625, -0.05410837382078171, -0.022958282381296158, 0.024897636845707893, -0.12995833158493042, -0.05497104674577713, -0.021685391664505005, 0.01286291889846325, -0.03677918016910553, -0.04093560203909874, 0.021987663581967354, 0.015115607529878616, -0.035912320017814636, 0.01578272506594658, 0.02239997126162052, 0.03874458372592926, -0.06506931036710739, -0.002246349584311247, 0.008076772093772888, -0.0725102350115776, -0.050514474511146545, 0.008799085393548012, 0.031663890928030014, -0.0387655533850193, -0.0074562933295965195, -0.03500782698392868, 0.0038700599689036608, 0.012913643382489681, 0.012782922945916653, 0.0019034285796806216, 0.028975753113627434, 0.08933056890964508, 0.06670883297920227, -0.01468491367995739, 0.05622459203004837, 0.051375217735767365, 0.12884405255317688, -0.009418746456503868, 0.05457332730293274, -0.05761454999446869, -0.02492618001997471, 0.08975011855363846, 0.04415731877088547, 0.06348087638616562, -0.017366845160722733, -0.004352531395852566, -0.04691128432750702, -0.023772448301315308, -0.09002955257892609, -0.04624495282769203, 0.0012864969903603196, -0.10317860543727875, 0.07690434157848358, 0.03474601358175278, -0.03100987896323204, -0.03814515843987465, -0.08855365216732025, 0.006344515364617109, 0.015203378163278103, 0.05824429169297218, 0.16637206077575684, -0.035345450043678284, -0.0991155281662941, -0.03769331052899361, -0.034027550369501114, -0.03363202139735222, 0.013427921570837498, 0.01521326880902052, -0.00515584135428071, -0.04861703887581825, 0.03434731066226959, -0.03858990594744682, -0.002888722810894251, 0.01725379005074501, 0.013122839853167534, 0.01582525111734867, 0.12993910908699036, 0.07535567879676819, 0.015196267515420914, 0.07492075115442276, -0.02276219241321087, -0.024298423901200294, 0.019958872348070145, 0.005421421490609646, 7.32450823870955e-32, -0.04668965935707092, -0.0766318067908287, -0.04473751783370972, 0.06248682364821434, -0.023825349286198616, 0.07256180047988892, 0.03237754479050636, 0.05712800472974777, 0.04217083379626274, -0.1004050150513649, 0.04348799213767052, 0.04922262951731682, -0.1301024705171585, 0.13192808628082275, -0.03298420459032059, 0.05201644077897072, 0.02509867586195469, -0.0068372394889593124, -0.011895216070115566, 0.007000403944402933, -0.0173195768147707, -0.044577281922101974, -0.012010700069367886, 0.05926268547773361, 0.010756908915936947, -0.01831059530377388, -0.06789384037256241, -0.0016691242344677448, 0.03283783793449402, -0.005957141984254122, 0.013598978519439697, 0.01725882850587368, 0.04277092590928078, -0.024498941376805305, 0.07279295474290848, 0.0072048925794661045, -0.04513341933488846, 0.02529839053750038, 0.009048822335898876, -0.015095465816557407, 0.022765373811125755, 0.004423645790666342, -0.0017010164447128773, 0.03773607686161995, 0.019861357286572456, -0.02145927958190441, 0.06209108233451843, 0.02495402656495571, 0.03858272358775139, 0.05942336097359657, -0.029710175469517708, 0.05100800842046738, 0.0034354825038462877, 0.011202785186469555, 0.05256536230444908, -0.04214279726147652, -0.025537744164466858, -0.05206333473324776, 0.03954952210187912, -0.00985132809728384, -0.08700434118509293, 0.1130559891462326, 0.014015008695423603, 0.039524924010038376 ]
65Graphs and transformations b y = x(x + 2)2(3 – x ) 0 = x(x + 2)2(3 – x ) So x = 0, – 2 or 3 The curve cuts the x -axis at (0, 0), ( –2, 0) and (3, 0) x β†’ ∞ , y β†’ βˆ’ ∞ x β†’ βˆ’βˆž, y β†’ βˆ’ ∞ Oy x –2 3 c y = (x – 1)2(x – 3)2 0 = ( x – 1)2(x – 3)2 So x = 1 or 3 The curve touches the x -axis at (1, 0) and (3, 0). When x = 0, y = 9.So the curve cuts the y -axis at (0, 9). x β†’ ∞ , y β†’ ∞ x β†’ βˆ’βˆž, y β†’ ∞ Oy x9 13The coefficient of x4 in the expanded function will be negative so you know the general shape of the curve. These are both β€˜double’ repeated roots, so the curve will just touch the x-axis at these points. The coefficient of x4 in the expanded function will be positive. There are two β€˜double’ repeated roots. 1 Sketch the following curves and indicate clearly the points of intersection with the axes: a y = (x + 1)(x + 2)(x + 3)(x + 4) b y = x(x – 1)(x + 3)(x – 2) c y = x(x + 1)2(x + 2) d y = (2x – 1)(x + 2)(x – 1)(x – 2) e y = x2(4x + 1)(4x – 1) f y = –(x – 4)2(x – 2)2 g y = (x – 3)2(x + 1)2 h y = (x + 2)3(x – 3) i y = –(2x – 1)3(x + 5) j y = (x + 4)4 2 Sketch the following curves and indicate clearly the points of intersection with the axes:a y = (x + 2)(x – 1)(x2 – 3x + 2) b y = (x + 3)2(x2 – 5x + 6) c y = (x – 4)2(x2 – 11x + 30) d y = (x2 – 4x – 32)(x2 + 5x – 36) In part f the coefficient of x4 will be negative.Hint Factorise the qu adratic factor first.HintExercise 4BThere is a β€˜double’ repeated root at x = βˆ’2 so the graph just touches the x-axis at this point.
[ -0.010982220061123371, 0.0007282388978637755, -0.020355822518467903, -0.06434937566518784, -0.02992631494998932, 0.08556810021400452, -0.05478949472308159, -0.02541484497487545, -0.10181556642055511, 0.005921386182308197, -0.018012797459959984, -0.08479579538106918, 0.004696281161159277, -0.046110574156045914, -0.08018940687179565, 0.00621753977611661, -0.015015272423624992, -0.027341919019818306, -0.01009995024651289, -0.02772989124059677, 0.002522561466321349, -0.07912030816078186, -0.02476302906870842, -0.10869565606117249, 0.07993431389331818, -0.06365128606557846, -0.013834754936397076, -0.03775772824883461, -0.050247807055711746, -0.07239530980587006, -0.033107031136751175, -0.004352577496320009, 0.0054766028188169, -0.01708819717168808, 0.07086099684238434, -0.01419245358556509, 0.006240303628146648, 0.020859697833657265, -0.002013808349147439, 0.014045070856809616, -0.05907021835446358, 0.051304809749126434, 0.005178770981729031, 0.013459268026053905, 0.07921183109283447, -0.04513781517744064, -0.02512557990849018, -0.02768375538289547, 0.04949580505490303, 0.010805771686136723, 0.03351937234401703, 0.05126992240548134, 0.03935530409216881, 0.08456725627183914, 0.012018714100122452, -0.004535581450909376, -0.032988663762807846, 0.0536406934261322, 0.001529703033156693, 0.027030616998672485, 0.003946932964026928, 0.10423003882169724, -0.0018665976822376251, 0.039785999804735184, -0.06494022160768509, 0.09708023816347122, 0.027239622548222542, -0.01813601329922676, 0.010699841193854809, 0.07189599424600601, -0.05793466418981552, 0.04964283108711243, -0.05280749127268791, -0.05766754224896431, 0.029690397903323174, -0.059009943157434464, -0.03822196647524834, 0.0522463396191597, -0.029742291197180748, -0.07964400947093964, -0.10036146640777588, -0.023027027025818825, 0.07210343331098557, 0.1039896234869957, 0.0022966619580984116, 0.020230231806635857, 0.0370287150144577, 0.07039489597082138, -0.06897525489330292, 0.022515814751386642, -0.030765783041715622, 0.06701406836509705, -0.014640208333730698, -0.09614823758602142, 0.00879936944693327, -0.11400485038757324, 0.015375903807580471, -0.0021092984825372696, 0.060140687972307205, 0.04711436852812767, 0.012528854422271252, 0.050697628408670425, 0.040078260004520416, 0.053241148591041565, -0.010496428236365318, -0.04158959537744522, -0.036313511431217194, 0.026264570653438568, -0.03481413051486015, 0.02760864794254303, -0.05948665738105774, -0.034118566662073135, 0.02775336243212223, 0.02307240664958954, 0.042458426207304, -0.06782082468271255, -0.014039193280041218, -0.016165999695658684, -0.004712903872132301, -0.021773872897028923, -0.0004522419476415962, 0.019592028111219406, 0.04932212829589844, -0.004397890064865351, -0.1142418384552002, -0.02182168886065483, 0.011745375581085682, 0.01286392193287611, -0.014590412378311157, -0.018912257626652718, 0.07915007323026657, -0.0669211745262146, 0.007432658225297928, -0.029563525691628456, -0.0484338216483593, -0.005144092254340649, -0.04643266275525093, 0.09366462379693985, -0.025675805285573006, -0.02056964673101902, 0.018771175295114517, 0.13352979719638824, 0.05917202681303024, 0.04216767102479935, 0.03616245463490486, -0.030858952552080154, -0.1256154179573059, 0.03462539613246918, -0.025097651407122612, 0.0076511618681252, 0.001007078099064529, -0.012578506022691727, 0.031240250915288925, 0.10066841542720795, 0.029692290350794792, -0.12224869430065155, -0.030568929389119148, -0.0342455618083477, -0.06582273542881012, 0.005848417524248362, -0.000823098816908896, 0.035927437245845795, -0.04558834806084633, 0.03207860514521599, 0.04702601581811905, 0.021597273647785187, 0.08423322439193726, 0.0156230004504323, -0.008922217413783073, 0.03347179666161537, 0.03129877895116806, 0.0485459566116333, -0.04928932338953018, 0.11474724858999252, 0.06451782584190369, -0.02369869314134121, 0.07566117495298386, 0.01684904284775257, -0.02032928541302681, 0.037597838789224625, 0.04686226323246956, 0.026439204812049866, 0.03762800619006157, 0.02957509458065033, -0.05773715674877167, -0.0699392780661583, 0.016779400408267975, -0.036143675446510315, 0.020910706371068954, 0.026719029992818832, -0.0037726780865341425, 0.0011113723739981651, -0.0042391205206513405, 0.08358234912157059, -0.09541558474302292, -0.0356350839138031, 0.03048282116651535, 0.021848373115062714, -0.1048424020409584, -0.013997283764183521, 0.0604984275996685, 0.06212690845131874, 0.09102959930896759, 0.03354579955339432, -0.03246552124619484, -0.005416904576122761, -0.09862764179706573, -0.033102430403232574, -0.022012626752257347, -0.006747623905539513, 0.02959054335951805, 0.02501758746802807, -0.013086291961371899, -0.009334240108728409, -0.03602788969874382, -0.04782802611589432, 0.01902497187256813, -0.04313340410590172, -0.1127418652176857, 0.0343325138092041, -0.026607943698763847, -0.07141795754432678, 0.043261587619781494, -5.930843605742585e-33, 0.02722741663455963, 0.06250610947608948, -0.06986460834741592, -0.04888150468468666, 0.0017501215916126966, -0.11739495396614075, 0.05908868834376335, 0.012888920493423939, 0.05489078164100647, 0.0161970816552639, 0.09074295312166214, -0.01998223178088665, -0.04255779832601547, -0.005827162880450487, -0.010800075717270374, -0.0420655831694603, -0.00039157478022389114, -0.07593290507793427, -0.029347190633416176, -0.06127096712589264, 0.020611701533198357, -0.06548810750246048, -0.015086065046489239, 0.027324240654706955, -0.00035275286063551903, 0.03720715269446373, 0.030523153021931648, -0.07162543386220932, -0.012835840694606304, 0.03154508396983147, -0.05471562594175339, -0.0502605140209198, 0.06066844239830971, 0.08179730176925659, -0.05832141637802124, 0.012058568187057972, 0.008633939549326897, -0.041595689952373505, 0.09787783026695251, 0.06700565665960312, 0.03767404705286026, 0.04469696804881096, 0.03710322082042694, 0.02925434522330761, -0.029226239770650864, 0.0667816698551178, 0.04024632275104523, 0.10675860941410065, -0.03932779282331467, 0.028330091387033463, -0.04407224804162979, -0.08644839376211166, -0.00930716097354889, 0.01845051534473896, 0.1444627195596695, -0.013751380145549774, -0.05357649177312851, -0.01664605736732483, 0.053677789866924286, -0.11087046563625336, 0.026070486754179, -0.05182613432407379, -0.06336947530508041, 0.07905282825231552, -0.023133397102355957, -0.09627377241849899, -0.04835914820432663, -0.10606491565704346, -0.0440513901412487, -0.05037657544016838, 0.06762228161096573, 0.03142501413822174, -0.032075729221105576, -0.12164632976055145, -0.02348352037370205, -0.07367567718029022, -0.0003083009214606136, 0.028430938720703125, 0.03221815824508667, -0.06028738617897034, -0.07413085550069809, 0.019379347562789917, 0.027755530551075935, 0.06714878231287003, -0.03641176223754883, -0.008586439304053783, 0.07688231021165848, 0.0759807825088501, 0.07926953583955765, 0.06346921622753143, 0.021655766293406487, -0.031691066920757294, -0.03712575137615204, -0.0033091565128415823, -0.002899471204727888, 8.144286244029506e-32, -0.014923183247447014, 0.013358931057155132, 0.01495062094181776, 0.03462748974561691, 0.024663245305418968, 0.0067829350009560585, 0.017850330099463463, -0.030789386481046677, 0.013523364439606667, -0.06086140125989914, 0.05941929295659065, 0.06374450027942657, -0.12886805832386017, 0.08236204087734222, -0.01660846173763275, 0.018274907022714615, 0.0161337498575449, -0.052994538098573685, 0.022112125530838966, -0.032976023852825165, -0.11139442026615143, -0.004449890460819006, 0.005129714030772448, 0.023622214794158936, -0.08219282329082489, -0.058186303824186325, -0.08778806775808334, -0.05273230001330376, -0.06105804070830345, -0.06518042087554932, -0.014309488236904144, 0.05347567796707153, 0.003343042219057679, -0.02224459871649742, 0.0632450133562088, 0.01006955374032259, -0.10877147316932678, 0.06570758670568466, -0.005589327774941921, -0.00164405710529536, 0.00854901596903801, -0.00019145081751048565, -0.04749395325779915, 0.0567176453769207, -0.02612309344112873, -0.012254252098500729, 0.03633664548397064, 0.05912864953279495, 0.017256734892725945, -0.06339680403470993, -0.009983779862523079, 0.0329919271171093, 0.06957235187292099, -0.062133558094501495, 0.023510904982686043, -0.020264970138669014, -0.03908857703208923, 0.06129710376262665, -0.028575051575899124, 0.03456537425518036, -0.05042629316449165, 0.04407496750354767, -0.030507782474160194, 0.037052322179079056 ]
66 Chapter 4 3 The graph of y = x 4 + bx3 + cx2 + dx + e is shown opposite, where b, c, d and e are real constants. a Find the coordinates of point P. (2 marks) b Find the values of b, c, d and e. (3 marks) 4 Sketch the gra ph of y = (x + 5)(x – 4)(x2 + 5x + 14). (3 marks)E/P OPy x32 –2–1 E/P Consider the discriminant of the quadratic factor.Problem-solving 4.3 Reciprocal graphs You can sketch graphs of reciprocal functions such as y = 1 __ x , y = 1 __ x2 and y = βˆ’ 2 __ x by considering their as ymptotes. β–  The graphs of y = k __ x and y = k ___ x2 , where k is a real constant, have asymptotes at x = 0 and y = 0. An asy mptote is a line which the graph approaches but never reaches.Notation Oy x Oy x Oy x Oy x1 xy =–2 xy =2 x2y =–5 x2y = y = k __ x with k > 0. y = k __ x with k < 0. y = k __ x2 with k > 0. y = k __ x2 with k < 0.The graph of y = ax 4 + bx3 + cx2 + dx + e is shown, where a, b, c, d and e are real constants. Find the values of a, b, c, d and e. Oy x 3 –13Challenge
[ -0.04120328649878502, 0.08240365236997604, -0.03194872662425041, -0.04544990882277489, 0.04577682539820671, 0.037999581545591354, 0.01284794881939888, 0.02564185857772827, -0.03049370087683201, 0.060460373759269714, 0.03172998130321503, -0.06593326479196548, -0.04839285835623741, 0.042161427438259125, -0.06373589485883713, -0.09244492650032043, -0.029949095100164413, 0.007522475440055132, -0.06865322589874268, -0.014939908869564533, 0.07117322832345963, -0.06308171898126602, -0.054621193557977676, -0.045148324221372604, 0.0808371901512146, -0.027673998847603798, 0.06915107369422913, -0.01697923243045807, 0.0041161635890603065, -0.028192810714244843, -0.014310103841125965, -0.013471022248268127, 0.06755482405424118, 0.001111648976802826, 0.06749918311834335, -0.01078544557094574, 0.05227445438504219, -0.010182609781622887, 0.06227773055434227, -0.030849140137434006, 0.03641430661082268, 0.001969030825421214, -0.08074850589036942, 0.010941830463707447, 0.05053097754716873, -0.009476770646870136, -0.07557322829961777, 0.002843621652573347, 0.0745437741279602, -0.027627956122159958, 0.04113219305872917, -0.032811544835567474, -0.08232371509075165, 0.09391667693853378, -0.015751779079437256, -0.02519608847796917, 0.05860809609293938, 0.050755809992551804, 0.040255337953567505, 0.07621980458498001, 0.02807736024260521, 0.08358579128980637, -0.023157119750976562, 0.02033703587949276, 0.02932158298790455, -0.01917487196624279, 0.06657443195581436, -0.08602798730134964, -0.03692392632365227, 0.05720780789852142, -0.08964933454990387, -0.015874000266194344, -0.011116186156868935, -0.07122105360031128, 0.06843733042478561, -0.020324410870671272, -0.07049558311700821, -0.032996486872434616, 0.0068213073536753654, -0.058843161910772324, 0.004501092713326216, 0.025018135085701942, 0.07932298630475998, 0.04906497523188591, 0.020838918164372444, -0.023156020790338516, 0.05599437654018402, -0.0019566367845982313, -0.004968215711414814, 0.042250122874975204, 0.02554207295179367, 0.013751232996582985, -0.06675483286380768, -0.07728372514247894, -0.02757970057427883, -0.08453907072544098, 0.044710516929626465, -0.05145328491926193, 0.053295381367206573, 0.1276475191116333, -0.004420906770974398, 0.04178633168339729, 0.007803610526025295, -0.010938821360468864, -0.02362036518752575, -0.008158842101693153, 0.061578523367643356, -0.04193867743015289, 0.03884311392903328, -0.09323658794164658, -0.07150019705295563, -0.1021742895245552, 0.019490648061037064, 0.05828579142689705, 0.021765058860182762, -0.05934464558959007, 0.07960225641727448, -0.039401885122060776, -0.023674549534916878, -0.0824010893702507, 0.07052572816610336, -0.04211391508579254, -0.0004751902597490698, -0.030211741104722023, -0.04838462918996811, -0.07081697881221771, -0.05830399692058563, 0.039063211530447006, -0.005950138904154301, -0.047412943094968796, 0.12399882078170776, -0.06906764954328537, -0.002890749368816614, -0.040076062083244324, -0.07482349127531052, -0.06349847465753555, -0.01980212889611721, 0.049287375062704086, -0.030857188627123833, -0.06115102395415306, -0.03393488749861717, 0.1387973576784134, 0.001425446942448616, 0.04604966938495636, -0.020067861303687096, -0.04219968616962433, -0.01345368754118681, -0.021718351170420647, 0.025454530492424965, 0.022936083376407623, -0.03634711727499962, 0.006890988443046808, 0.006154713220894337, 0.09871426969766617, 0.00019955974130425602, -0.00884543638676405, -0.02250358834862709, -0.02626267448067665, 0.04563815891742706, -0.02774212881922722, -0.01894870214164257, 0.02367774397134781, -0.026401199400424957, 0.11222699284553528, 0.004443211946636438, -0.02763424441218376, 0.007518913131207228, 0.10394296050071716, -0.009304163046181202, 0.02131376601755619, 0.023258183151483536, 0.0003181718348059803, 0.017077695578336716, 0.10551215708255768, 0.05410326272249222, -0.06411100924015045, 0.13322001695632935, 0.067774698138237, 0.011788264848291874, 0.004922030959278345, -0.03519681468605995, -0.03844656050205231, -0.009177697822451591, 0.10019274801015854, 0.01573362573981285, -0.002673815004527569, 0.014500865712761879, 0.0868184044957161, -0.026672346517443657, 0.012581138871610165, 0.02145570144057274, -0.031269531697034836, -0.05487274006009102, 0.08684025704860687, -0.15795089304447174, -0.04865795373916626, 0.026999257504940033, 0.0667479932308197, -0.0971890538930893, -0.02234480157494545, 0.07809927314519882, -0.000992993009276688, 0.034981805831193924, 0.004839781671762466, -0.024566110223531723, -0.02063501626253128, -0.09058492630720139, 0.003811498638242483, -0.10068117082118988, 0.024158518761396408, -0.002190622501075268, -0.0021934586111456156, -0.03974328190088272, -0.04775593429803848, 0.022114038467407227, -0.05118543654680252, 0.07835716754198074, -0.06473986059427261, -0.10852600634098053, -0.02861822582781315, 0.01096117589622736, -0.05931499972939491, 0.035104334354400635, 1.3738472675800403e-33, 0.0487770140171051, 0.02069946750998497, -0.061910808086395264, -0.07246264070272446, -0.03382333740592003, 0.012392005883157253, 0.05457773059606552, -0.016183264553546906, 0.08331191539764404, 0.05988103896379471, 0.055922795087099075, 0.0367080494761467, -0.006834447383880615, -0.0201320331543684, -0.02063062973320484, 0.04028279706835747, -0.08456406742334366, 0.08404561132192612, -0.013660863973200321, -0.0632551908493042, -0.025611376389861107, 0.006957658100873232, 0.031427208334207535, 0.028759479522705078, 0.02007901854813099, -0.005587685853242874, 0.0771646499633789, -0.1477564126253128, -0.04506669566035271, -0.0373394601047039, -0.0301959328353405, -0.025658797472715378, -0.048670537769794464, 0.001105593517422676, -0.026638053357601166, -0.10009602457284927, -0.016702381893992424, -0.05089881271123886, -0.007415632717311382, -0.001995954429730773, -0.04217368736863136, 0.07102962583303452, 0.06767897307872772, -0.02484220266342163, 0.05951607599854469, 0.04195110872387886, 0.113686703145504, 0.008648218587040901, 0.005379976239055395, 0.05942923575639725, -0.046825796365737915, -0.004536078777164221, 0.041400179266929626, 0.049251358956098557, 0.08383481949567795, 0.019345413893461227, 0.0436515174806118, -0.024200839921832085, -0.03176095336675644, -0.0698511004447937, 0.003984104376286268, -0.022603554651141167, 0.020779520273208618, 0.013364214450120926, -0.050878867506980896, -0.030367432162165642, -0.0380813367664814, 0.0025347426999360323, 0.049076713621616364, -0.003375166794285178, -0.0028817341662943363, 0.041748445481061935, -0.04289091005921364, -0.007096883375197649, -0.05629436671733856, -0.03682711720466614, -0.07226397842168808, 0.03974561020731926, 0.07898838818073273, -0.004826005548238754, -0.05692768841981888, 0.0043177856132388115, 0.013018297962844372, -0.030708342790603638, -0.03712409362196922, 0.0578666590154171, 0.04286995530128479, 0.05913373455405235, 0.09358717501163483, -0.04208838939666748, -0.018137020990252495, -0.0036690186243504286, -0.09683912992477417, 0.04016886651515961, 0.050074782222509384, 8.405370004566065e-32, -0.03979434818029404, -0.03376515209674835, -0.02723935805261135, 0.04246097430586815, 0.044063542038202286, 0.002724472898989916, 0.050721339881420135, -0.0339934378862381, -0.056168679147958755, -0.030271343886852264, 0.07701710611581802, -0.05541504919528961, -0.07327823340892792, 0.039136163890361786, -0.0869976207613945, 0.009899375960230827, -0.04303775727748871, 0.028026055544614792, -0.0419091060757637, -0.04948398470878601, -0.02054019086062908, -0.0589626207947731, -0.03251941502094269, 0.022175993770360947, 0.009443596936762333, 0.09526429325342178, -0.04140263423323631, -0.04640618711709976, 0.01217698585242033, -0.03511131927371025, 0.05614297837018967, -0.02235187217593193, 0.006891068071126938, -0.004503296222537756, -0.07089519500732422, 0.0005561117432080209, 0.04234251007437706, 0.027925703674554825, 0.012282204814255238, 0.033099137246608734, -0.02655196562409401, -0.039231929928064346, -0.0382562093436718, 0.006847294978797436, -0.031096067279577255, 0.04326418787240982, 0.07111169397830963, -0.08025846630334854, 0.005567594431340694, 0.0041038780473172665, -0.044172853231430054, 0.057074613869190216, 0.02557472698390484, 0.0005341392825357616, 0.04647228121757507, -0.08319355547428131, -0.0595187246799469, -0.007761856075376272, -0.07539300620555878, -0.03103042207658291, -0.002108685439452529, 0.12680473923683167, -0.0806596428155899, 0.01966235227882862 ]
67Graphs and transformations Example 5 Sketch on the same diagram: a y = 4 __ x and y = 12 ___ x b y = – 1 __ x and y = – 3 __ x c y = 4 __ x2 and y = 10 ___ x2 a O12 xy = 12 xy =/four.ss01 xy = /four.ss01 xy =xy b c 10 x2 y =10 x2 y = /four.ss01 x2 y =/four.ss01 x2 y = x Oy1 xy = –1 xy = – 3 xy = –3 xy = – x OyThis is a y = k __ x graph with k > 0 In this quadrant, x > 0 so for any values of x: 12 ___ x > 4 __ x In this quadrant, x < 0 so for any values of x: 12 ___ x < 4 __ x This is a y = k __ x graph with k < 0 In this quadrant, x < 0 so for any values of x: βˆ’ 3 __ x > βˆ’ 1 __ x In this quadrant, x > 0 so for any values of x: βˆ’ 3 __ x < βˆ’ 1 __ x This is a y = k __ x2 graph with k > 0. x2 is always positive and k > 0 so the y-values are all positive. 1 Use a separate dia gram to sketch each pair of graphs. a y = 2 __ x and y = 4 __ x b y = 2 __ x and y = βˆ’ 2 __ x c y = βˆ’ 4 __ x and y = βˆ’ 2 __ x d y = 3 __ x and y = 8 __ x e y = βˆ’ 3 __ x and y = βˆ’ 8 __ x 2 Use a separate dia gram to sketch each pair of graphs. a y = 2 __ x2 and y = 5 __ x2 b y = 3 __ x2 and y = βˆ’ 3 __ x2 c y = βˆ’ 2 __ x2 and y = βˆ’ 6 __ x2 Exercise 4C Explore the graph of y = a __ x for different values of a in GeoGebra.Online
[ -0.050240013748407364, -0.07409496605396271, -0.04550836980342865, -0.10134229063987732, -0.07350761443376541, 0.005849129054695368, -0.05119254067540169, -0.04398998245596886, -0.05289403349161148, -0.02191075310111046, -0.032653696835041046, -0.04588412120938301, 0.03751184418797493, -0.03143702819943428, -0.09981934726238251, 0.018743135035037994, 0.00036027110763825476, 0.023605912923812866, -0.03268113359808922, -0.005262224934995174, 0.046639334410429, -0.14639738202095032, 0.025853199884295464, -0.08247008919715881, 0.09749503433704376, -0.05674358084797859, -0.04086985066533089, -0.022296559065580368, -0.027308110147714615, -0.02362081967294216, -0.06454862654209137, 0.041253622621297836, 0.02855786681175232, 0.032021209597587585, 0.033945564180612564, -0.05088059976696968, -0.0043774922378361225, 0.03797135874629021, 0.06933324784040451, 0.041410431265830994, -0.0566495805978775, 0.0767902061343193, 0.08239124715328217, -0.016399824991822243, -0.007254833355545998, -0.027057290077209473, -0.030111471191048622, 0.06694666296243668, 0.0681305080652237, -0.011103047989308834, 0.06417801231145859, -0.02574794925749302, -0.022965220734477043, 0.060180529952049255, -0.03436518833041191, 0.03685253858566284, 0.0312141515314579, 0.07666228711605072, 0.04023969545960426, -0.08405902236700058, 0.00819904450327158, 0.02348005585372448, -0.04132544994354248, -0.004190060775727034, -0.017617501318454742, 0.046586256474256516, 0.042316682636737823, -0.04839593917131424, -0.027221133932471275, 0.022202588617801666, -0.04579593241214752, 0.09804323315620422, -0.07516182214021683, -0.07930412143468857, 0.054141074419021606, -0.06167158484458923, 0.0024260361678898335, 0.07213979959487915, -0.043209291994571686, -0.09914946556091309, -0.14808650314807892, -0.0019088893895968795, 0.04827382415533066, 0.025377552956342697, 0.01708846725523472, 0.0007974897162057459, 0.025444963946938515, -0.029876666143536568, -0.019055213779211044, 0.042396243661642075, -0.03159349784255028, 0.046373870223760605, -0.0012038890272378922, -0.11650525033473969, 0.04654395580291748, -0.09849924594163895, 0.014174142852425575, 0.01702956296503544, 0.09359637647867203, 0.04772495850920677, 0.007214280776679516, 0.059466589242219925, 0.11931891739368439, 0.047435078769922256, -0.0634160190820694, -0.04994026571512222, -0.05242809280753136, -0.0263028834015131, -0.006286007352173328, -0.014565921388566494, -0.07779303938150406, -0.0374203696846962, 0.009219205938279629, 0.004420868586748838, -0.03786613047122955, -0.07932587713003159, -0.021789656952023506, 0.04112227261066437, 0.03324781358242035, 0.012626837939023972, 0.03717619553208351, 0.02245263382792473, -0.0012022324372082949, 0.01764300838112831, -0.05430889502167702, -0.015045465901494026, -0.08142060041427612, 0.026620734483003616, 0.008129882626235485, -0.018843427300453186, 0.07642839848995209, -0.01808355376124382, 0.05935484170913696, -0.016258111223578453, -0.03641830012202263, 0.013735556975007057, -0.0032647675834596157, 0.086789570748806, -0.059949006885290146, -0.006608699448406696, 0.014151106588542461, 0.1172749400138855, 0.05290471762418747, 0.017330849543213844, -0.0369730144739151, 0.01320898812264204, -0.07124002277851105, -0.014123603701591492, 0.012688476592302322, 0.02168520726263523, 0.004641302861273289, -0.04975522309541702, -0.02323674038052559, 0.11310799419879913, -0.05342082306742668, -0.011957085691392422, -0.018115907907485962, -0.036756303161382675, -0.09353944659233093, 0.019106825813651085, 0.010092721320688725, 0.06518883258104324, 0.020217442885041237, 0.017561785876750946, 0.05898938700556755, 0.03475195914506912, 0.052677396684885025, 0.06158401444554329, 0.0026129630859941244, 0.05714691802859306, 0.026567911729216576, -0.029334012418985367, 0.0148735037073493, 0.08720126748085022, 0.004214654676616192, -0.014880922622978687, 0.041029296815395355, -0.038513731211423874, -0.053834233433008194, -0.002735805930569768, 0.023871198296546936, -0.028760498389601707, 0.006806253921240568, 0.032863542437553406, -0.058662474155426025, 0.0025133683811873198, -0.0579187273979187, -0.004546249285340309, -0.07801391929388046, -0.034894466400146484, 0.021625090390443802, -0.044535811990499496, 0.022616224363446236, 0.031833235174417496, -0.14185109734535217, 0.0033908840268850327, 0.01101453136652708, -0.04117186367511749, -0.09861506521701813, 0.0022891040425747633, 0.07097220420837402, 0.06345300376415253, 0.07351218909025192, 0.03293033316731453, -0.03343638405203819, -0.03190818801522255, -0.02648613043129444, -0.055728599429130554, -0.06228930875658989, 0.04016489535570145, 0.00324080977588892, -0.01985771767795086, -0.040993582457304, 0.006521907635033131, 0.056874580681324005, -0.10226358473300934, 0.028155671432614326, -0.026040339842438698, 0.012903903611004353, -0.0718914270401001, -0.02528492547571659, -0.05041981860995293, 0.0789177194237709, -2.468073265445252e-33, 0.001866710837930441, 0.02481653168797493, -0.06043412536382675, -0.023678049445152283, 0.009005097672343254, -0.16630873084068298, 0.08089705556631088, -0.009245557710528374, 0.058038827031850815, 0.005861612968146801, 0.07654987275600433, -0.028329556807875633, -0.0880175307393074, -0.04954208806157112, -0.04411620274186134, -0.07711421698331833, 0.05993228778243065, 0.04784046858549118, -0.028471173718571663, -0.031251389533281326, 0.039824388921260834, 0.013283612206578255, 0.032603491097688675, 0.041169505566358566, -0.031786832958459854, 0.05888922140002251, 0.03445814177393913, -0.058046042919158936, -0.06530294567346573, 0.03953610360622406, -0.04251199588179588, -0.010625224560499191, 0.07042227685451508, 0.05260544270277023, -0.01886848732829094, 0.0021098197903484106, -0.029176555573940277, -0.03307366743683815, 0.01829575002193451, 0.01154016051441431, 0.05945051088929176, 0.09091784805059433, 0.0023507210426032543, 0.04095221683382988, -0.010257295332849026, 0.06258692592382431, 0.046316977590322495, 0.05839627608656883, 0.004997204057872295, -0.02225196361541748, -0.029025482013821602, -0.044297605752944946, 0.041847772896289825, -0.06190723553299904, 0.1377997249364853, 0.044457852840423584, 0.03321661427617073, -0.03352899104356766, 0.06150892749428749, -0.026913201436400414, -0.013571013696491718, -0.03540422394871712, 0.035517916083335876, -0.0291940625756979, -0.05859246477484703, -0.06216185912489891, -0.05312004312872887, -0.057736851274967194, -0.03469082713127136, 0.0009770473698154092, 0.037358783185482025, 0.038759659975767136, -0.06020571291446686, -0.05277848243713379, 0.0411844402551651, -0.08562034368515015, 0.03459412232041359, -0.012226912193000317, 0.0327763594686985, 0.005308728665113449, -0.13283874094486237, -0.0337197445333004, 0.011955255642533302, 0.07070659846067429, -0.016794554889202118, -0.020191341638565063, 0.12315282970666885, 0.08944776654243469, 0.08366433531045914, 0.035663194954395294, 0.006626116577535868, 0.03969866782426834, -0.008333812467753887, 0.0460154227912426, 0.0045291101559996605, 8.211647360056201e-32, 0.052080780267715454, 0.06742069125175476, 0.019641490653157234, 0.009721041657030582, 0.0006642547668889165, 0.03170175105333328, 0.028727389872074127, 0.02548140287399292, 0.05414249375462532, -0.03125797584652901, 0.10542266815900803, 0.13143572211265564, -0.08437720686197281, 0.06718683987855911, -0.006879474967718124, 0.024448033422231674, 0.013384978286921978, -0.007905377075076103, 0.031424637883901596, 0.03265790641307831, -0.09401622414588928, -0.009915724396705627, -0.03861046954989433, 0.056115251034498215, -0.06397262215614319, 0.009094112552702427, -0.11366705596446991, -0.02857254631817341, -0.02015013061463833, -0.05321304500102997, -0.014990161173045635, -0.03857996687293053, 0.01496991328895092, -0.0197453610599041, 0.031077902764081955, -0.03844829648733139, -0.037356916815042496, 0.06809400022029877, -0.012888969853520393, -0.02410551905632019, -0.02547544613480568, -0.030483074486255646, -0.049160443246364594, 0.07792231440544128, -0.018726440146565437, -0.001601851312443614, 0.029907794669270515, -0.014754507690668106, 0.014933151192963123, -0.0915425717830658, -0.04113325476646423, -0.020214591175317764, 0.0360974557697773, -0.03401365876197815, -0.016116604208946228, -0.07358837872743607, -0.02191236987709999, 0.03189724683761597, -0.0012061228044331074, 0.039164457470178604, -0.04090693220496178, 0.057926759123802185, -0.0935467928647995, 0.0077132838778197765 ]
68 Chapter 4 4.4 Points of intersection You can sketch curves of functions to show points of intersection and solutions to equations. β–  The x-coordinate(s) at the points of intersection of the curves with equations y = f(x) and y = g(x) are the solution(s) to the equation f( x) = g( x). a y x CBA 1 3Oy = x(x – 3) y = x2(1 – x) b From the graph there are three points wh ere the curves cross, labelled A, B and C. The x -coordinates are given by the solutions to the equation. x(x βˆ’ 3) = x2(1 βˆ’ x) x2 βˆ’ 3 x = x2 βˆ’ x3 x3 βˆ’ 3 x = 0 x(x2 βˆ’ 3) = 0 So x = 0 or x2 = 3 So x = βˆ’ βˆšβ€―__ 3 , 0, βˆšβ€―__ 3 Sub stitute into y = x2 (1 βˆ’ x) T he points of intersection are: A(βˆ’ βˆšβ€―__ 3 , 3 + 3 βˆšβ€―__ 3 ) B(0 , 0) C( βˆšβ€―__ 3 , 3 βˆ’ 3 βˆšβ€―__ 3 )A cubic curve will eventually get steeper than a quadratic curve, so the graphs will intersect for some negative value of x. There are three points of intersection so the equation x(x – 3) = x 2(1 – x) has three real roots. Multiply out brackets.Collect terms on one side.Factorise. The graphs intersect for these values of x, so you can substitute into either equation to find the y-coordinates. Leave your answers in surd form.Example 6 a On the same diagram sk etch the curves with equations y = x(x βˆ’ 3) and y = x2 (1 βˆ’ x ). b Find the coordinates of the points of intersection. Example 7 a On the same diagram sk etch the curves with equations y = x2(3x βˆ’ a) and y = b __ x , where a and b are positive constants. b State, gi ving a reason, the number of real solutions to the equation x2(3x βˆ’ a) βˆ’ b __ x = 0
[ 0.018378593027591705, 0.12505751848220825, 0.02858470380306244, 0.00849381648004055, -0.038004230707883835, 0.004909105133265257, 0.05547834932804108, 0.031587522476911545, -0.09973552823066711, 0.015139855444431305, 0.011190874502062798, -0.060521893203258514, -0.0472819060087204, 0.02537986822426319, -0.00779211800545454, 0.029528535902500153, -0.07752695679664612, -0.031145378947257996, 0.029695313423871994, -0.062320418655872345, -0.05716409161686897, -0.036488283425569534, -0.08243821561336517, -0.11515894532203674, -0.005612566601485014, -0.08046092092990875, -0.019353603944182396, -0.03556051477789879, -0.03150998055934906, -0.010987442918121815, 0.10476371645927429, 0.014902410097420216, 0.0028113853186368942, -0.019188638776540756, 0.05167228728532791, 0.09342870861291885, 0.06374740600585938, 0.03425324708223343, 0.034737516194581985, -0.059965163469314575, -0.035604894161224365, -0.003183589084073901, 0.018417708575725555, 0.017175739631056786, 0.07332470268011093, -0.01974678412079811, 0.006545533891767263, 0.03495194390416145, -0.013480402529239655, -0.03628746047616005, -0.017045825719833374, -0.042257439345121384, -0.11303368955850601, 0.000536417996045202, 0.0885297954082489, -0.0012961294269189239, -0.005851009860634804, -0.05684906244277954, 0.03630296513438225, 0.12893977761268616, 0.04896804690361023, 0.05096227675676346, -0.03508500009775162, 0.048154860734939575, -0.031017759814858437, 0.049114890396595, 0.11441025137901306, 0.021823285147547722, -0.009829255752265453, 0.11123654991388321, -0.07445734739303589, 0.016313103958964348, -0.029491454362869263, -0.08386710286140442, 0.01805313117802143, 0.012550926767289639, -0.017439451068639755, -0.021506808698177338, -0.0669521614909172, -0.00010844007192645222, -0.055119503289461136, 0.015222128480672836, 0.07198939472436905, 0.08933119475841522, -0.038254182785749435, 0.050999291241168976, 0.0324031338095665, -0.07242470234632492, 0.04139120131731033, -0.005414998158812523, 0.003461371874436736, -0.006824297830462456, -0.07721185684204102, -0.028701426461338997, -0.035621874034404755, -0.1098385602235794, 0.0023177426774054766, 0.029995063319802284, 0.04092764854431152, 0.0605294406414032, -0.08659107238054276, 0.02548964135348797, 0.06289483606815338, 0.06713160872459412, 0.03502151370048523, -0.014462311752140522, -0.05936829745769501, -0.028961116448044777, 0.023998994380235672, -0.07471943646669388, 0.036797940731048584, -0.012532602064311504, 0.010982688516378403, 0.017655011266469955, 0.0841236263513565, -0.023348841816186905, 0.07242858409881592, -0.09594529867172241, 0.055913448333740234, -0.05842122063040733, -0.012286407873034477, -0.022022372111678123, 0.03554293140769005, -0.02073824219405651, -0.005899322684854269, 0.023446429520845413, -0.002103680046275258, -0.014491312205791473, -0.012560693547129631, -0.0639224499464035, 0.024912793189287186, -0.09809353202581406, -0.06934449821710587, 0.00480284821242094, -0.04446195438504219, -0.04029830917716026, -0.13953526318073273, 0.06079084053635597, -0.028366856276988983, -0.06069841608405113, 0.05667390674352646, 0.047186948359012604, 0.004620022606104612, 0.04912802577018738, 0.034114252775907516, -0.0008002818212844431, -0.12112367898225784, 0.019977450370788574, -0.0048765926621854305, -0.05217485502362251, 0.007686515338718891, 0.03848278895020485, 0.01649593748152256, 0.1788640171289444, -0.002608031267300248, -0.047073185443878174, 0.019490953534841537, -0.04981542006134987, -0.0016462128842249513, -0.009338193573057652, 0.00945178885012865, 0.05066758021712303, -0.08293348550796509, 0.03923417255282402, 0.039795175194740295, -0.009912775829434395, 0.03935399278998375, 0.06695782393217087, 0.009976254776120186, -0.026411382481455803, -0.035658013075590134, -0.020879510790109634, -0.01532580703496933, 0.05331305414438248, -0.0015878913691267371, 0.015927841886878014, 0.04382825642824173, 0.02348785661160946, -0.03450429067015648, -0.009958920069038868, 0.03314347192645073, -0.05925736576318741, 0.014295210130512714, -0.03155290335416794, 0.022443683817982674, -0.009302460588514805, 0.004764549899846315, -0.005025496706366539, -0.0001344354241155088, 0.02515978179872036, -0.05331183969974518, -0.08537837117910385, -0.04790986701846123, 0.0923338234424591, -0.06623763591051102, -0.026266057044267654, 0.0646536648273468, 0.03378625586628914, -0.02785477787256241, 0.05459253862500191, 0.0026882700622081757, -0.026465805247426033, 0.008684436790645123, -0.055144619196653366, -0.09029579162597656, 0.020936667919158936, -0.04752204567193985, 0.05505763366818428, -0.05295689031481743, -0.03353498503565788, -0.006675730459392071, 0.011647619307041168, -0.08389453589916229, -0.041307464241981506, 0.04533693566918373, -0.05838556960225105, 0.005658098962157965, -0.029718056321144104, -0.1450309008359909, 0.03793760761618614, -0.03235534951090813, 0.035858944058418274, 0.033974889665842056, 3.6539424559395e-34, 0.01012422051280737, -0.011306547559797764, -0.04668624326586723, -0.02176865004003048, -0.025369780138134956, 0.028226615861058235, 0.06962507218122482, -0.026585346087813377, 0.036156293004751205, 0.05069397762417793, 0.07149907201528549, -0.017630454152822495, -0.07858088612556458, 0.04268724471330643, -0.0001312407257501036, -0.0343952551484108, -0.030058523640036583, -0.075606569647789, -0.055629629641771317, -0.014523512683808804, -0.023267360404133797, 0.009621115401387215, 0.018369298428297043, -0.051857441663742065, 0.006493499502539635, -0.02945740707218647, 0.06512273848056793, -0.07394038885831833, -0.014860430732369423, 0.061437979340553284, -0.02270621992647648, 0.004654929507523775, 0.050597596913576126, 0.0006797366077080369, 0.03395542502403259, 0.03711865097284317, -0.03401878848671913, -0.03733125701546669, 0.09527510404586792, -0.10257748514413834, 0.024840429425239563, -0.0360584519803524, 0.08238060772418976, 0.05700679123401642, 0.02696199156343937, 0.07575920224189758, -0.030259570106863976, 0.09599292278289795, 0.027445871382951736, 0.005190117284655571, -0.034705113619565964, -0.08230087906122208, 0.004679184406995773, 0.038472436368465424, 0.07018712162971497, 0.031956836581230164, 0.06724782288074493, -0.06396064162254333, 0.02807624824345112, -0.11342813819646835, 0.04354007914662361, -0.0380961075425148, -0.0013555745827034116, 0.04022585228085518, 0.029203234240412712, -0.07205741852521896, -0.048873420804739, -0.0641941949725151, 0.017834996804594994, 0.00912915263324976, 0.023091332986950874, 0.01820506900548935, -0.02755863405764103, -0.0666627287864685, 0.01845722086727619, 0.01621941663324833, -0.034289244562387466, -0.0013995813205838203, 0.03783635422587395, -0.09490115195512772, 0.019496778026223183, 0.10211466252803802, -0.06848039478063583, 0.052816540002822876, -0.008656238205730915, 0.045427389442920685, -0.03910977765917778, 0.07284452766180038, 0.11819673329591751, 0.010229921899735928, 0.05833509936928749, 0.056706503033638, -0.09297950565814972, 0.0018039323622360826, 0.04818425327539444, 7.456386949928303e-32, -0.07007626444101334, -0.002064615022391081, -0.00015151186380535364, 0.008454679511487484, 0.006236620247364044, -0.018881211057305336, 0.09602814167737961, -0.004202801268547773, 0.04463842883706093, -0.013409131206572056, 0.033169668167829514, 0.032549358904361725, -0.07037948071956635, 0.0014613744569942355, 0.027161112055182457, 0.08383047580718994, -0.0005038650706410408, -0.016638727858662605, 0.0533551350235939, -0.009053133428096771, -0.08156006783246994, -0.005486547015607357, 0.032082654535770416, 0.022407356649637222, 0.034054793417453766, -0.00843673013150692, 0.0011557851685211062, -0.058727577328681946, 0.01954638585448265, -0.06459861993789673, 0.015906859189271927, -0.023844171315431595, -0.018915073946118355, 0.01164817251265049, 0.13498608767986298, 0.025472814217209816, -0.1261509358882904, 0.01493625808507204, 0.029912035912275314, 0.014302660711109638, -0.050282031297683716, -0.032131973654031754, -0.03480852022767067, -0.040557071566581726, -0.032911818474531174, -0.08142726868391037, 0.0011212867684662342, -0.026281552389264107, 0.037823814898729324, 0.00945316907018423, -0.014130166731774807, 0.04525267332792282, -0.08117374777793884, -0.07533315569162369, 0.044201355427503586, 0.011408978141844273, 0.05286458879709244, -0.021584738045930862, 0.016155906021595, -0.01448520552366972, -0.14023493230342865, 0.09636102616786957, 0.0036305587273091078, 0.02050904743373394 ]
69Graphs and transformations a y x Oy = x2(3x – a) ab xy =b x 1 3y = b From the sketch there are only two points of i ntersection of the curves. This means there are only two values of x where x2 (3x βˆ’ a) = b __ x or x2 (3x βˆ’ a) – b __ x = 0 So this equation has two real solutions.You can sketch curves involving unknown constants. You should give any points of intersection with the coordinate axes in terms of the constants where appropriate.Problem-solving Example 8 a Sketch the curves y = 4 ___ x 2 and y = x 2(x – 3) on the same axes. b Using your sketch, sta te, with a reason, the number of real solutions to the equation x 4(x βˆ’ 3) βˆ’ 4 = 0. a y x y = x2(x – 3)/four.ss01 x2y = O 3 b There is a single point of intersection so the equation x2(x βˆ’ 3) = 4 ___ x2 has one real solution . Rearranging: x 4(x βˆ’ 3) = 4 x 4(x βˆ’ 3) βˆ’ 4 = 0 So this equation has one real solution.Set the functions equal to each other to form an equation with one real solution, then rearrange the equation into the form given in the question.Problem-solving You would not be expected to solve this equation in your exam. 1 In each case: i sketch the two curv es on the same axes ii state the number of points of intersection iii write down a suitab le equation which would give the x-coordinates of these points. (Y ou are not required to solve this equation.)Exercise 4D3x – a = 0 when x = 1 __ 3 a, so the graph of y = x2(3x – a) touches the x-axis at (0, 0) and intersects it at ( 1 __ 3 a, 0) You only need to state the number of solutions. You don’t need to find the solutions.
[ 0.008111045695841312, 0.004166868980973959, -0.04292477294802666, 0.019671732559800148, 0.012028956785798073, 0.008966078981757164, -0.029686151072382927, -0.026450615376234055, -0.02627275511622429, -0.012827538885176182, -0.03679974749684334, -0.06092631816864014, -0.005618855822831392, -0.02741081640124321, -0.01171176414936781, -0.014346500858664513, -0.0589560940861702, -0.018174488097429276, -0.02630944922566414, -0.006077247206121683, -0.016010740771889687, -0.12207488715648651, -0.020912395790219307, -0.10855555534362793, 0.07493521273136139, -0.04978235065937042, 0.00558669026941061, 0.015880098566412926, -0.028588440269231796, -0.014027549885213375, 0.04025309160351753, 0.09431339800357819, 0.028515031561255455, 0.030613599345088005, 0.09069710224866867, 0.05274951457977295, 0.03504078835248947, 0.005910961888730526, 0.046922434121370316, -0.05426565185189247, -0.04897310212254524, 0.010322721675038338, -0.008196428418159485, -0.03144212067127228, 0.02676231972873211, -0.06970357894897461, -0.03904908895492554, 0.05789819359779358, 0.13601157069206238, -0.021785032004117966, 0.018720868974924088, -0.03573701158165932, -0.03769518435001373, -0.015929458662867546, 0.016464022919535637, 0.02500217594206333, 0.05448097363114357, 0.02393246442079544, 0.014598967507481575, -0.00046872918028384447, 0.013422209769487381, 0.026811204850673676, 0.042259134352207184, 0.014087177813053131, 0.0016417312435805798, 0.025280628353357315, 0.049036409705877304, -0.0498131699860096, -0.021202079951763153, 0.06640167534351349, -0.05873846635222435, 0.09478477388620377, -0.028452714905142784, 0.0005642770556733012, 0.033184848725795746, -0.016375426203012466, 0.00540592335164547, 0.05050787702202797, -0.015710067003965378, -0.036400992423295975, -0.1268494725227356, -0.053420621901750565, 0.09297604858875275, 0.037139736115932465, -0.012428103014826775, 0.01771901547908783, 0.04730125144124031, -0.0045661660842597485, 0.002517752116546035, 0.03964115306735039, -0.021407345309853554, 0.0769418329000473, -0.027011321857571602, -0.11646399646997452, 0.03779832273721695, -0.1096353828907013, -0.033234842121601105, 0.010327684693038464, 0.041929565370082855, 0.06737196445465088, -0.011900672689080238, 0.06245865672826767, 0.039251163601875305, 0.0464835949242115, -0.029011745005846024, 0.021675987169146538, -0.023228593170642853, -0.027865437790751457, 0.0080863693729043, 0.013070947490632534, -0.07150264084339142, -0.08696942776441574, 0.05333664268255234, 0.02971928007900715, 0.08607463538646698, -0.0516260527074337, 0.016130995005369186, 0.034785352647304535, -0.01956387609243393, -0.060618143528699875, 0.020484665408730507, -0.03349481523036957, 0.05771822854876518, -0.011134185828268528, -0.09177359938621521, 0.00794240366667509, -0.08682100474834442, -0.0004965387634001672, -0.022304780781269073, 0.000677662726957351, 0.05129192769527435, -0.072512686252594, -0.06260078400373459, -0.007441012188792229, -0.03466411307454109, 0.016210848465561867, -0.1135726273059845, 0.09559057652950287, -0.012164338491857052, -0.04149773344397545, 0.022705238312482834, 0.1419827938079834, 0.07646912336349487, 0.04993031546473503, -0.0404876172542572, -0.014282837510108948, -0.05704312026500702, 0.041608963161706924, -0.03994809463620186, -0.02465479075908661, -0.03663637116551399, 0.014822251163423061, 0.012565082870423794, 0.15140792727470398, 0.011848066933453083, -0.04403936490416527, -0.01729712262749672, -0.06084282323718071, -0.10400660336017609, 0.018985318019986153, 0.009080380201339722, 0.0016970045398920774, -0.020417246967554092, 0.052816011011600494, -0.0047383117489516735, 0.005323980003595352, 0.0907401293516159, 0.09526094049215317, -0.024487340822815895, 0.03204985707998276, -0.0011346094543114305, 0.02837533876299858, -0.0025946919340640306, 0.09313396364450455, 0.024695493280887604, 0.06009212136268616, 0.05839302018284798, -0.025544047355651855, -0.06921190023422241, 0.02175016514956951, 0.026376847177743912, -0.057135630398988724, -0.029570743441581726, 0.03858742490410805, -0.007225071080029011, -0.011759716086089611, 0.04600859060883522, -0.008260658010840416, -0.02031164988875389, 0.004731175024062395, -0.014767788350582123, -0.022899247705936432, -0.04471883922815323, 0.04236578196287155, -0.1044682115316391, -0.025587746873497963, 0.05239453166723251, -0.022393397986888885, -0.10060545802116394, 0.019694533199071884, 0.06476906687021255, 0.010468602180480957, -0.0021442663855850697, 0.01145558338612318, 0.03604179248213768, 0.02334088459610939, -0.042000044137239456, 0.01609223522245884, -0.06358905136585236, 0.03775370866060257, -0.03949640318751335, 0.001965709263458848, -0.008622074499726295, 0.03691486269235611, -0.01672208309173584, -0.07717370986938477, 0.03686514124274254, -0.014221803285181522, -0.05103960260748863, 0.01993071474134922, -0.10021551698446274, -0.058799318969249725, 0.10757172852754593, 1.1472982821078918e-33, 0.05971703678369522, 0.018690211698412895, -0.11242391169071198, -0.04354158788919449, 0.01336120255291462, -0.056157179176807404, 0.08931413292884827, -0.033993907272815704, 0.05666014552116394, -0.03077598661184311, 0.0976349487900734, 0.02867945469915867, -0.011610988527536392, -0.022732321172952652, 0.0020837828051298857, -0.07378212362527847, 0.016924329102039337, -0.07091707736253738, 0.010931714437901974, -0.09427560120820999, 0.017586268484592438, -0.001196324243210256, -0.0014274261193349957, 0.009471730329096317, 0.006619640626013279, 0.056396517902612686, -0.01031856331974268, -0.05098259076476097, -0.06725513935089111, 0.05968879163265228, -0.09106823801994324, -0.030451228842139244, 0.02725815400481224, 0.026680007576942444, -0.03694368898868561, 0.01118298526853323, -0.06415344774723053, -0.0035909144207835197, 0.10861066728830338, -0.027474556118249893, -0.01916365884244442, 0.03174566477537155, 0.07312988489866257, 0.0470719113945961, -0.025156594812870026, 0.12142080813646317, 0.04501435533165932, 0.06003734841942787, -0.018190057948231697, -0.03134353458881378, -0.031608279794454575, -0.12499124556779861, 0.015714913606643677, -0.05002913624048233, 0.12375176697969437, 0.013620197772979736, 0.003199968719854951, -0.052987076342105865, 0.008420371450483799, -0.04191594198346138, 0.0019804961048066616, -0.04022545367479324, -0.00493339030072093, 0.03711162880063057, -0.052611470222473145, -0.02242175303399563, -0.06277012079954147, -0.1223529577255249, -0.03532668575644493, -0.039812974631786346, 0.017747247591614723, 0.061979249119758606, -0.08209795504808426, -0.06062248721718788, 0.05907442793250084, -0.046468302607536316, -0.007124222815036774, 0.030834008008241653, 0.06805524975061417, -0.034510962665081024, -0.06815126538276672, -0.001672455808147788, -0.029307784512639046, 0.03844573348760605, 0.03220073878765106, 0.007496816571801901, 0.066790372133255, 0.07335265725851059, 0.0849844366312027, 0.05808214098215103, 0.1127796396613121, 0.02526642195880413, -0.13157442212104797, 0.007397052366286516, 0.10176821798086166, 6.585650089005851e-32, -0.012480616569519043, 0.09877559542655945, 0.018604086712002754, -0.02528022602200508, -0.024579625576734543, 0.010033528320491314, 0.0017086752923205495, -0.025283221155405045, 0.02171679399907589, -0.054149337112903595, 0.02645402029156685, 0.07996000349521637, -0.06542517244815826, 0.07422231882810593, 0.0033993951510638, 0.022251160815358162, 0.005388846155256033, 0.012015195563435555, 0.05715714395046234, -0.05480686202645302, -0.1298791915178299, 0.04269915819168091, 0.04255947470664978, 0.06420467793941498, -0.050375692546367645, -0.05139460414648056, -0.05108991637825966, -0.06907342374324799, -0.07692161202430725, -0.017654314637184143, 0.014025491662323475, -0.0030229564290493727, -0.013908831402659416, -0.04796812683343887, 0.10299232602119446, 0.01022004708647728, -0.06779283285140991, 0.06385430693626404, 0.03519845008850098, -0.04495710879564285, -0.0073973676189780235, 0.0048337820917367935, -0.02175378054380417, 0.03216046467423439, 0.005025457125157118, -0.027298569679260254, 0.008380360901355743, -0.03723941370844841, 0.06476587057113647, -0.037331946194171906, 0.005669084843248129, -0.004053172655403614, 0.04923803731799126, -0.0030676675960421562, 0.008961062878370285, -0.06434256583452225, -0.02508123405277729, -0.009753447957336903, -0.04945699870586395, 0.007121618837118149, -0.05713803693652153, 0.07132501900196075, -0.10584506392478943, -0.002469941508024931 ]
70 Chapter 4 a y = x2, y = x(x2 βˆ’ 1) b y = x(x + 2), y = βˆ’ 3 __ x c y = x2, y = (x + 1)(x βˆ’ 1)2 d y = x2(1 βˆ’ x), y = βˆ’ 2 __ x e y = x(x βˆ’ 4), y = 1 __ x f y = x(x βˆ’ 4), y = βˆ’ 1 __ x g y = x(x βˆ’ 4), y = (x βˆ’ 2)3 h y = βˆ’x3, y = βˆ’ 2 __ x i y = βˆ’x3, y = x2 j y = – x3, y = βˆ’x(x + 2) k y = 4, y = x(x βˆ’ 1)(x + 2)2 l y = x3, y = x2(x + 1)2 2 a On the same axes sketch the curv es given by y = x2(x βˆ’ 3) and y = 2 __ x b Explain how your sk etch shows that there are only two real solutions to the equation x 3(x βˆ’ 3) = 2. 3 a On the same axes sketch the curv es given by y = (x + 1)3 and y = 3x(x βˆ’ 1). b Explain how your sk etch shows that there is only one real solution to the equation x 3 + 6x + 1 = 0. 4 a On the same axes sketch the curv es given by y = 1 __ x and y = βˆ’x(x βˆ’ 1)2. b Explain how your sk etch shows that there are no real solutions to the equation 1 + x2(x βˆ’ 1)2 = 0. 5 a On the same axes sketch the curv es given by y = x2(x + a) and y = b __ x where a and b are both positive constants. (5 marks) b Using your sketch, sta te, giving a reason, the number of real solutions to the equation x 4 + ax3 – b = 0. (1 mark) 6 a On the same set of axes sk etch the graphs of y = 4 __ x2 and y = 3x + 7. (3 marks) b Write down the n umber of real solutions to the equation 4 __ x2 = 3x + 7. (1 mark) c Show that y ou can rearrange the equation to give (x + 1)(x + 2)(3x – 2) = 0. (2 marks) d Hence determine the exact coor dinates of the points of intersection. (3 marks) 7 a On the same axes sketch the curv e y = x3 – 3x2 – 4x and the line y = 6x. b Find the coordinates of the points of intersection. 8 a On the same axes sketch the curv e y = (x2 – 1)(x – 2) and the line y = 14x + 2. b Find the coordinates of the points of intersection. 9 a On the same axes sketch the curv es with equations y = (x – 2)(x + 2)2 and y = –x2 – 8. b Find the coordinates of the points of intersection. 10 a Sketch the gra phs of y = x2 + 1 and 2y = x – 1. (3 marks) b Explain why ther e are no real solutions to the equation 2x2 – x + 3 = 0. (2 marks) c Work out the r ange of values of a such that the graphs of y = x2 + a and 2y = x – 1 have two points of intersection. (5 marks)E/P Even though you don’t know the values of a and b , you know they are positive, so you know the shapes of the graphs. You can label the point a on the x -axis on your sketch of y = x2(x + a).Problem-solving E P P E/P
[ 0.006487688515335321, 0.04751107469201088, -0.014701266773045063, -0.07448455691337585, -0.022692671045660973, 0.0914299488067627, 0.05339983105659485, 0.021131252869963646, -0.08924069255590439, 0.024006370455026627, 0.05221424996852875, -0.03407466039061546, 0.009938026778399944, -0.034749582409858704, -0.09107568114995956, -0.012044643051922321, -0.10545535385608673, -0.025199105963110924, -0.009287030436098576, -0.02703288570046425, 0.041956640779972076, -0.042883969843387604, -0.050047438591718674, -0.03138474002480507, 0.06971358507871628, 0.0069323210045695305, -0.029267149046063423, -0.037782084196805954, -0.039910174906253815, -0.07444414496421814, -0.03534660115838051, 0.031943630427122116, 0.06006123125553131, -0.012323418632149696, 0.06452732533216476, 0.11090271919965744, 0.08249203115701675, 0.047775521874427795, 0.020473487675189972, -0.02642926573753357, -0.06515186280012131, -0.019537825137376785, 0.007408004719763994, 0.017534727230668068, 0.028180792927742004, -0.018936995416879654, -0.05264173075556755, -0.010646125301718712, -0.011427651159465313, -0.05978890508413315, -0.00016691192286089063, 0.01606777496635914, -0.05958086997270584, 0.05849500745534897, 0.028993209823966026, -0.07527520507574081, -0.005975321866571903, 0.02025974541902542, -0.0038662420120090246, 0.059655915945768356, -0.037567514926195145, -0.008022363297641277, -0.0004183245764579624, 0.010119188576936722, -0.02375263348221779, 0.0803699716925621, 0.0016558022471144795, -0.09414009004831314, -0.02310926839709282, 0.11156146973371506, -0.12692616879940033, 0.020739402621984482, -0.06330857425928116, -0.054169122129678726, 0.025711214169859886, -0.003695616265758872, -0.013297045603394508, 0.030064759775996208, -0.00988525990396738, -0.03696266561746597, -0.0670807883143425, -0.012086049653589725, 0.13317464292049408, 0.018056655302643776, -0.005568955093622208, -0.007432733196765184, 0.05360513925552368, -0.023760518059134483, 0.04293148219585419, -0.03805050626397133, -0.010241848416626453, -0.04779323190450668, -0.02330033667385578, -0.013196192681789398, -0.011054180562496185, -0.09315718710422516, 0.03462694585323334, -0.06828827410936356, 0.07550704479217529, 0.12061626464128494, -0.021184707060456276, 0.019918110221624374, 0.041688863188028336, 0.03544081375002861, 0.01746929995715618, -0.012501271441578865, 0.038695622235536575, -0.04002152383327484, -0.0018175175646319985, -0.11836062371730804, -0.01863480545580387, -0.04548842832446098, -0.0069265710189938545, 0.02796107530593872, 0.00733683817088604, -0.11211124807596207, 0.007941915653645992, -0.08614110201597214, -0.04135425388813019, -0.03692321479320526, 0.034892115741968155, -0.04112647473812103, 0.11807776242494583, 0.05288436636328697, -0.009933396242558956, 0.024318182840943336, 0.008487436920404434, -0.003395536681637168, -0.03208170458674431, -0.10495982319116592, 0.03134581446647644, -0.041192252188920975, -0.05428731068968773, -0.035975851118564606, -0.03080521710216999, -0.015170203521847725, -0.03532613441348076, 0.05998501554131508, -0.05607777461409569, -0.010298572480678558, -0.08876027911901474, 0.09210748225450516, 0.027873266488313675, 0.0016877760645002127, 0.00856687780469656, -0.021544059738516808, -0.05070672929286957, -0.07224022597074509, 0.05169183760881424, 0.1223287582397461, 0.008261810056865215, -0.015223568305373192, 0.005373833235353231, 0.10540767014026642, -0.028084680438041687, -0.05607861652970314, -0.04552461579442024, -0.01570775732398033, 0.027228785678744316, -0.05020880699157715, -0.03445299342274666, 0.04840314760804176, -0.01299505028873682, 0.08831942081451416, 0.04327087849378586, 0.00287385331466794, -0.0013052471913397312, 0.08052975684404373, -0.024570375680923462, -0.014995578676462173, 0.0023607334587723017, -0.05450621619820595, 0.07921303808689117, 0.08258076012134552, 0.017104625701904297, 0.0340869314968586, 0.12174476683139801, 0.04601072892546654, -0.051156770437955856, 0.05799923837184906, 0.004127363208681345, -0.06051531806588173, -0.020992746576666832, 0.010236666537821293, -0.02265472151339054, -0.0173464547842741, -0.10258717834949493, 0.10275646299123764, -0.005860466975718737, 0.04209320992231369, -0.0054898615926504135, -0.031975459307432175, 0.052017588168382645, 0.08760741353034973, -0.1405317336320877, -0.0529882088303566, -0.007794107776135206, 0.009380258619785309, -0.10517861694097519, 0.006923574022948742, 0.059617068618535995, 0.028864428400993347, 0.08040542900562286, 0.02260485291481018, -0.030043121427297592, -0.08744018524885178, -0.09922393411397934, -0.06461358815431595, -0.04822386056184769, -0.0007727502379566431, -0.016240978613495827, 0.07822734862565994, -0.09099815040826797, -0.039484020322561264, -0.014212099835276604, -0.10984349250793457, 0.06821493804454803, -0.041579458862543106, -0.04590868204832077, -0.007930011488497257, -0.012296659871935844, -0.048315536230802536, -0.025532882660627365, 1.1610176787144302e-33, -0.04086841642856598, 0.039129871875047684, -0.08972170203924179, -0.0439961813390255, 0.009299643337726593, -0.04586225003004074, 0.04714826121926308, -0.06457746028900146, 0.068409264087677, 0.07169459015130997, 0.03720194846391678, 0.004414120223373175, -0.07366576045751572, -0.007932246662676334, -0.016773102805018425, -0.03196141496300697, -0.07228774577379227, 0.055322498083114624, 0.030031617730855942, 0.010842629708349705, -0.051159925758838654, -0.01724875718355179, -0.024467911571264267, -0.0353880450129509, -0.030529512092471123, 0.017542731016874313, 0.06995600461959839, -0.06535235792398453, -0.006656994111835957, -0.024556441232562065, -0.01812107115983963, -0.06755564361810684, 0.07315218448638916, 0.0733238235116005, -0.007149310316890478, -0.04385961592197418, 0.027160312980413437, -0.0266273096203804, -0.055528681725263596, 0.012157673947513103, 0.07634086161851883, 0.030223065987229347, 0.01175228413194418, 0.03377727046608925, 0.03708471357822418, 0.018892377614974976, 0.03208102658390999, 0.04536458104848862, 0.015404129400849342, 0.04338204115629196, -0.04092470183968544, -0.05737154185771942, -0.031047536060214043, 0.04870986193418503, 0.06787358969449997, 0.019809074699878693, 0.0204605869948864, -0.07581061869859695, 0.04893786460161209, -0.05973871797323227, -0.0007831219118088484, -0.00947173498570919, 0.04395624250173569, 0.039561040699481964, 0.006572597194463015, -0.09356865286827087, -0.08933109790086746, -0.0012748248409479856, -0.009936753660440445, -0.023212170228362083, -0.0014422948006540537, 0.09754937142133713, -0.029016394168138504, -0.03386582434177399, -0.02229982614517212, -0.0055373297072947025, -0.02089916355907917, 0.000542341498658061, -0.019513610750436783, -0.0202238317579031, -0.08208715170621872, 0.002172179752960801, 0.01812976598739624, 0.011301509104669094, -0.004773813299834728, 0.0012060068547725677, 0.13155962526798248, 0.10440731793642044, 0.1111086905002594, 0.03317786008119583, 0.03052639029920101, -0.028999775648117065, 0.044004395604133606, -0.012360841035842896, 0.004486164078116417, 1.0618798830794364e-31, -0.009652075357735157, -0.0395633764564991, -0.0420408733189106, 0.05983839929103851, 0.029770424589514732, 0.031904395669698715, 0.021418415009975433, -0.0036621522158384323, 0.0068473536521196365, -0.03375192731618881, 0.09199728071689606, 0.1329914927482605, -0.07737759500741959, 0.06575050950050354, -0.05480123311281204, 0.03413677215576172, -0.07938722521066666, -0.03212679922580719, -0.051814932376146317, -0.016668230295181274, -0.03366035968065262, -0.012954764999449253, -0.08685263991355896, 0.012772015295922756, 0.08066510409116745, 0.01711459830403328, -0.06452727317810059, -0.04180607944726944, 0.04067547246813774, 0.014210180379450321, 0.022389670833945274, -0.012848378159105778, 0.08957932144403458, -0.09991902858018875, 0.040714081376791, 0.029988925904035568, -0.03139827772974968, 0.03161370009183884, 0.006005047354847193, -0.004611331503838301, 0.005810614675283432, -0.007660359144210815, -0.004007458686828613, 0.02062671259045601, 0.02948959544301033, -0.03729360178112984, 0.020724734291434288, -0.046920500695705414, 0.009084843099117279, -0.026009568944573402, -0.07106553018093109, -0.016208728775382042, 0.04196780174970627, -0.004076993092894554, 0.08697137981653214, -0.046984925866127014, -0.021650968119502068, 0.0017736998852342367, -0.008970704860985279, -0.024139972403645515, -0.02095869928598404, 0.106825090944767, -0.04703768342733383, 0.056719254702329636 ]
71Graphs and transformations 11 a Sketch the gra phs of y = x2(x – 1)(x + 1) and y = 1 _ 3 x3 + 1. (5 marks) b Find the number of r eal solutions to the equation 3x2(x – 1)(x + 1) = x3 + 3. (1 mark)E/P 4.5 Translating graphs You can transform the graph of a function by altering the function. Adding or subtracting a constant β€˜outside’ the function translates a graph vertically. β–  The graph of y = f(x) + a is a translation of the graph y = f(x) by the vector ( 0 a ) . Adding or subtracting a constant β€˜inside’ the function translates the graph horizontally. β–  The graph of y = f(x + a) is a translation of the graph y = f(x) by the vector ( βˆ’a 0 ) . y x O2 4 1 3 –2 –4–5 –1 –3123456 –1y = f(x + 2) is a translation ( –2 0 ) , or 2 units in the direction of the negative x-axis.y = f(x) + 1 is a translation ( 0 1 ) , or 1 unit in the direction of the positive y-axis. Example 9 Sketch the graphs of: a y = x2 b y = (x βˆ’ 2)2 c y = x2 + 2 a y x O b y y = (x – 2)2 x/four.ss01 2 OThis is a translation by vector ( 2 0 ) . Remember to mark on the intersections with the axes.
[ -0.0686345025897026, 0.00405403645709157, -0.0477261021733284, -0.047871969640254974, -0.050703033804893494, 0.014110229909420013, -0.005732616409659386, -0.04154257848858833, 0.011037252843379974, 0.02051602117717266, 0.018284481018781662, -0.02727763168513775, -0.005836542695760727, 0.009617340750992298, -0.011987634934484959, -0.07238684594631195, -0.010002721101045609, 0.014293796382844448, -0.04770864546298981, -0.0812118798494339, -0.015060468576848507, -0.08941169083118439, -0.10817117989063263, -0.06615594029426575, 0.131564199924469, -0.045805320143699646, -0.025439107790589333, -0.04440870136022568, -0.06231372803449631, -0.06762129813432693, 0.008161941543221474, 0.0642092376947403, 0.02159075252711773, -0.039071258157491684, 0.07764340937137604, 0.0016005000798031688, 0.015191280283033848, -0.00045625591883435845, 0.008063297718763351, 0.013032229617238045, -0.012433765456080437, 0.08269534260034561, -0.017686642706394196, -0.02661590278148651, 0.10827937722206116, -0.03186091035604477, -0.03677717596292496, -0.009525532834231853, 0.03299064189195633, -0.04523563012480736, 0.026076912879943848, 0.0570216104388237, -0.051753364503383636, 0.0455949567258358, 0.025459522381424904, -0.016095789149403572, 0.0607011653482914, 0.010201522149145603, -0.01792922057211399, 0.06668267399072647, -0.01853473111987114, 0.04843716323375702, -0.02151518501341343, 0.04962484911084175, -0.004453373607248068, 0.040099386125802994, 0.004591764882206917, -0.06970258802175522, -0.011392735876142979, 0.10222731530666351, -0.10285741090774536, 0.040521133691072464, -0.04458179697394371, -0.0904177576303482, 0.03286183252930641, 0.02942027524113655, 0.01094019040465355, -0.005534206982702017, -0.0655035525560379, -0.05923400819301605, -0.043077655136585236, 0.018920283764600754, 0.06974364817142487, 0.06026756018400192, -0.0025289461482316256, 0.04025755822658539, 0.025335010141134262, 0.005137946456670761, -0.03775406628847122, 0.006800505332648754, -0.006777243223041296, 0.08488473296165466, -0.00820108875632286, -0.025568662211298943, 0.0027042056899517775, -0.08107801526784897, 0.017537707462906837, -0.0234712865203619, 0.052795469760894775, 0.0721379816532135, -0.0642227977514267, 0.07549258321523666, 0.03731173649430275, 0.011727388948202133, -0.0514807365834713, -0.06179993972182274, 0.04356386139988899, -0.025590822100639343, 0.03526540473103523, -0.026275943964719772, -0.01842667907476425, -0.058995768427848816, 0.009665883146226406, 0.1045306846499443, 0.04738523066043854, -0.053613245487213135, 0.026247410103678703, -0.006851101294159889, 0.0344858281314373, -0.05476919561624527, 0.03716667741537094, -0.04345359653234482, 0.02399379201233387, -0.0262918584048748, -0.07308807969093323, -0.014537016861140728, -0.06060992181301117, 0.0005495853256434202, 0.03534941002726555, 0.02069968357682228, 0.07505165785551071, -0.031682442873716354, 0.009360759519040585, -0.04661150276660919, -0.07405098527669907, -0.03228684142231941, -0.04822726175189018, 0.01830689236521721, -0.023979533463716507, 0.09431447088718414, 0.058914486318826675, 0.10730675607919693, -0.0017462638206779957, 0.05369257554411888, 0.04311997443437576, -0.02566215582191944, -0.041246447712183, 0.04172858968377113, -0.04947633668780327, 0.00041144402348436415, -0.06434962153434753, 0.06400424987077713, 0.003873229492455721, 0.037160370498895645, 0.03210059180855751, -0.05672839283943176, -0.04436672851443291, -0.06334017962217331, -0.05446800962090492, 0.03287892043590546, -0.09621977806091309, 0.00962953083217144, -0.04301733896136284, 0.06359443068504333, 0.05285046622157097, -0.01464688591659069, 0.08664168417453766, 0.0941484197974205, -0.015356160700321198, 0.05049007385969162, 0.015571731142699718, -0.0235621128231287, 0.012192082591354847, 0.09051479399204254, 0.016682375222444534, -0.01880936697125435, 0.1007159873843193, 0.03124055452644825, -0.05337485671043396, 0.05063927546143532, 0.0699426457285881, -0.04051358252763748, 0.01408930029720068, 0.03524725139141083, -0.08129649609327316, -0.07287582010030746, 0.0007435693987645209, 0.09418582171201706, -0.027560973539948463, 0.0322740264236927, -0.031053951010107994, -0.0006502672913484275, -0.011783326976001263, 0.12905345857143402, -0.09236381202936172, -0.07272005826234818, -0.0072722905315458775, 0.03181685507297516, -0.08465531468391418, -0.017828382551670074, 0.012024862691760063, 0.0488416887819767, 0.11727536469697952, 0.011391790583729744, -0.042875997722148895, -0.014497259631752968, -0.06798230111598969, -0.041854992508888245, -0.09380143880844116, -0.11205990612506866, 0.0018892004154622555, 0.03489173576235771, -0.0048230611719191074, -0.029565472155809402, -0.03461305424571037, -0.05797162652015686, 0.015853293240070343, -0.039866626262664795, -0.09266886860132217, 0.030022546648979187, 0.04466727748513222, -0.07451190054416656, 0.02899770252406597, -4.808763718221662e-34, -0.0052154758013784885, 0.057045694440603256, -0.060188084840774536, -0.011755402199923992, -0.04076429829001427, -0.08742590993642807, 0.06974641233682632, 0.07043293863534927, 0.09493940323591232, -0.00998859852552414, 0.0882057324051857, 0.05009735748171806, -0.0434892475605011, 0.005043966695666313, 0.01799403689801693, -0.06973687559366226, 0.02138250693678856, 0.015630481764674187, -0.0993179902434349, 0.0074716187082231045, 0.03826539218425751, 0.023851510137319565, 0.006263820454478264, 0.02849389612674713, -0.04596162587404251, 0.04807429760694504, 0.01830027811229229, -0.08962682634592056, 0.002057464327663183, -0.031981926411390305, -0.07520569860935211, -0.009920492768287659, -0.004165849182754755, 0.008259220980107784, -0.04715566337108612, 0.007489620242267847, -0.003355064196512103, -0.054905254393815994, 0.00027645882801152766, 0.07425443083047867, 0.03528576344251633, -0.007863864302635193, 0.052379805594682693, -0.005111068021506071, -0.018804755061864853, 0.026400024071335793, -0.0009697367204353213, 0.06424636393785477, -0.04865075647830963, -0.005511990748345852, -0.048233967274427414, -0.056057192385196686, -0.03485991805791855, 0.03735059127211571, 0.1615992933511734, 0.04822932183742523, 0.009113054722547531, 0.020259004086256027, -0.031227298080921173, -0.11909592151641846, -0.0026830032002180815, -0.03693192079663277, -0.05194015055894852, 0.004292103927582502, -0.09605292975902557, -0.08180471509695053, -0.07345293462276459, -0.03784910961985588, -0.01064123772084713, -0.007508900482207537, 0.12436230480670929, 0.014079255051910877, 0.05190019682049751, -0.04621235281229019, -0.009776460006833076, -0.06189970299601555, -0.06387798488140106, -0.002798332367092371, -0.009779665619134903, -0.10460752993822098, -0.024169309064745903, -0.03591408580541611, -0.03950844332575798, 0.08304339647293091, 0.02074158936738968, -0.03825182095170021, 0.05223654583096504, 0.08898510783910751, 0.07515303045511246, 0.0027667726390063763, 0.04056117311120033, 0.011270469054579735, -0.07769067585468292, 0.014538089744746685, 0.03624328225851059, 7.734953250197467e-32, 0.03601158410310745, 0.004718104377388954, -0.019815737381577492, 0.04503854736685753, 0.023855337873101234, -0.003555034287273884, 0.08170538395643234, -0.04523807391524315, -0.06606503576040268, -0.06102157011628151, 0.019572114571928978, 0.06968140602111816, -0.018874363973736763, 0.04389932006597519, -0.07296017557382584, -0.032927900552749634, -0.0010121524101123214, 0.03858988359570503, 0.018455103039741516, 0.018552672117948532, -0.08123032003641129, 0.038274917751550674, -0.041077904403209686, 0.05024482309818268, -0.04122927412390709, -0.04445536062121391, -0.02077881619334221, -0.054925523698329926, -0.002689244458451867, 0.0034476458095014095, 0.004501380957663059, -0.010039827786386013, 0.021164579316973686, -0.07576769590377808, 0.12519091367721558, -0.000855760183185339, -0.0964512974023819, 0.040888141840696335, -0.02582433447241783, -0.021114198490977287, -0.05474865064024925, -0.0013517627958208323, -0.03289405629038811, 0.01999483071267605, -0.022788578644394875, 0.05761513486504555, 0.020306680351495743, -0.06517130136489868, 0.09599707275629044, -0.025102755054831505, -0.025206828489899635, 0.04553212970495224, 0.08137047290802002, -0.07161732763051987, 0.005240228492766619, 0.02404153160750866, -0.01574140414595604, -0.03415518254041672, -0.006110052112489939, 0.07290726155042648, 0.03373696655035019, 0.1189960464835167, 0.046868450939655304, 0.030167223885655403 ]
72 Chapter 4 c y = x2 + 2 y x2 OThis is a translation by vector ( 0 2 ) . Remember to mark on the y-axis intersection. Example 10 f(x) = x3 g(x) = x(x – 2) Sketch the following graphs, indicating any points where the curves cross the axes:a y = f(x + 1) b y = g(x + 1) a The graph of f( x) is y x Oy = f( x) = x3 So the graph of y = f( x + 1) is y x Oy = f( x + 1) = ( x + 1)3 –11 b g(x) = x(x βˆ’ 2) The curve is y = x (x βˆ’ 2) 0 = x(x βˆ’ 2) So x = 0 or x = 2 y xy = g( x) = x(x – 2) 2 OFirst sketch y = f(x). This is a translation of the graph of y = f(x) by vector ( βˆ’1 0 ) . You could also write out the equation as y = (x + 1)3 and sketch the graph directly. First sketch g(x).Put y = 0 to find where the curve crosses the x-axis. Explore translations of the gr aph of y = x3 using GeoGebra.Online
[ -0.030355287715792656, 0.012230916880071163, -0.0545712448656559, -0.08790231496095657, -0.049356989562511444, 0.060417257249355316, 0.03651876747608185, -0.018507512286305428, -0.052644215524196625, 0.09456232935190201, -0.00821249932050705, -0.04320719838142395, 0.006469930522143841, 0.033455926924943924, -0.06415371596813202, 0.011098621413111687, -0.11463729292154312, 0.01324777863919735, 0.009784810245037079, -0.12836873531341553, 0.013216754421591759, -0.014872491359710693, -0.09083743393421173, -0.10324122756719589, 0.04052391275763512, -0.03804616257548332, -0.009523691609501839, -0.06493716686964035, -0.03570474311709404, -0.035818833857774734, 0.018733225762844086, 0.018167344853281975, -0.06588742882013321, 0.0013854437274858356, 0.023117544129490852, 0.01986023783683777, 0.011788062751293182, -0.016568318009376526, 0.0687343031167984, -0.004629557486623526, -0.08066507428884506, 0.006815788801759481, -0.012987462803721428, -0.0007127904100343585, 0.10054191946983337, 0.012293164618313313, -0.04921701177954674, -0.047196295112371445, 0.0035632008221000433, -0.023290501907467842, 0.002870290307328105, 0.025801202282309532, -0.06664988398551941, -0.00013212757767178118, 0.032893210649490356, 0.0257563516497612, 0.010198465548455715, -0.030423887073993683, 0.04234788194298744, 0.041550133377313614, 0.03140778839588165, 0.008951240219175816, 0.021279804408550262, 0.04658579081296921, 0.024852978065609932, 0.05447617545723915, -0.003884260542690754, 0.0084242457523942, -0.03187137097120285, 0.10683202743530273, -0.13640619814395905, 0.05058157816529274, -0.0008013257756829262, -0.02180028147995472, 0.00849812664091587, -0.06599067896604538, 0.02477683126926422, -0.012244480662047863, 0.05005590245127678, -0.0015299717197194695, -0.05426357686519623, 0.029504919424653053, 0.06985016167163849, 0.03456168994307518, -0.03920966386795044, -0.012007628567516804, 0.01097628939896822, -0.0740622729063034, 0.027518460527062416, -0.03888773173093796, 0.013757247477769852, 0.014550597406923771, -0.004744495265185833, -0.023491786792874336, 0.07328660041093826, -0.10640324652194977, 0.08163096010684967, -0.05748879909515381, 0.04280555620789528, 0.09314316511154175, -0.024521082639694214, 0.043418657034635544, 0.03491426259279251, 0.0660528615117073, 0.043831389397382736, -0.009363214485347271, 0.04191075265407562, -0.040427129715681076, -0.0193626768887043, -0.053207628428936005, -0.023760071024298668, -0.033921170979738235, -0.05000801011919975, 0.08703979104757309, 0.10503382980823517, -0.07041268050670624, 0.0698641911149025, -0.07579363882541656, 0.021255308762192726, -0.04926694929599762, 0.05119611695408821, -0.0494399294257164, -0.014224390499293804, 0.003267691470682621, -0.05611111968755722, -0.058242421597242355, -0.0025964484084397554, -0.021000975742936134, 0.03807689622044563, -0.053199414163827896, 0.018291296437382698, -0.054665546864271164, -0.028673656284809113, -0.058770060539245605, -0.017065517604351044, 0.044297248125076294, -0.10627766698598862, 0.05530455335974693, -0.030749546363949776, -0.03037181869149208, 0.057515162974596024, 0.11099524796009064, 0.06955613940954208, -0.0038888256531208754, 0.002705635968595743, -0.03214515745639801, -0.06375473737716675, 0.04274076223373413, 0.04926351457834244, 0.06137979403138161, -0.05951967462897301, 0.010778450407087803, -0.003799774218350649, 0.10513059049844742, 0.007821577601134777, -0.03969958797097206, 0.006894766818732023, -0.07960744202136993, 0.017780892550945282, -0.07459445297718048, -0.03391686826944351, -0.010673802345991135, -0.06219571828842163, 0.00787925161421299, 0.04634038731455803, -0.016083303838968277, -0.04967574402689934, 0.13981345295906067, 0.001770984148606658, -0.0019268819596618414, -0.00012918496213387698, -0.037639714777469635, 0.002924651838839054, 0.07530466467142105, 0.03798893094062805, -0.051535382866859436, 0.08737362176179886, 0.01264127530157566, -0.04545825719833374, 0.019222918897867203, 0.06142761558294296, -0.05273248255252838, -0.011411608196794987, -0.004634592682123184, -0.040564607828855515, -0.024900782853364944, -0.03413751721382141, 0.03677641600370407, -0.044539645314216614, 0.059553083032369614, -0.005708097945898771, -0.018788550049066544, -0.029824374243617058, 0.11217375099658966, -0.11833274364471436, -0.0242001935839653, 0.05939820781350136, 0.08065565675497055, -0.025838453322649002, 0.020114103332161903, -0.03903632238507271, 0.10099417716264725, 0.03201545402407646, 0.008453495800495148, -0.014198497869074345, -0.0368364080786705, -0.031892213970422745, -0.089454784989357, -0.031196491792798042, -0.019739601761102676, 0.01638079807162285, 0.01843675784766674, 0.0011201902525499463, -0.01859862729907036, 0.018285078927874565, -0.08277098089456558, 0.009562109597027302, -0.03892478346824646, -0.06959811598062515, 0.03379492834210396, -0.009019732475280762, -0.04053886607289314, -0.01287792157381773, -3.1684924927376736e-33, -0.0519171841442585, 0.024590661749243736, -0.04752172529697418, 0.001958083361387253, -0.08128217607736588, -0.0834011361002922, 0.11570349335670471, 0.018390005454421043, 0.05971340835094452, 0.04762407764792442, 0.03282729163765907, 0.005410967860370874, -0.12837089598178864, 0.08993133157491684, -0.006264807190746069, -0.04913915693759918, -0.053760427981615067, -0.017692366614937782, -0.003109204350039363, -0.006901318207383156, 0.019694054499268532, -0.07771388441324234, 0.03284817188978195, -0.04738215357065201, -0.030857015401124954, 0.01974380575120449, 0.05847007408738136, -0.05514111742377281, -0.001895503606647253, 0.014223809354007244, -0.08324579894542694, -0.05205103009939194, 0.08542013168334961, 0.06010498106479645, -0.04442187026143074, 0.06894084811210632, 0.03227180615067482, -0.024566244333982468, 0.028188439086079597, -0.004929356276988983, 0.015593601390719414, 0.08164288848638535, 0.07830397039651871, 0.013910720124840736, 0.0036672865971922874, 0.07160092890262604, 0.05379435047507286, 0.13196684420108795, -0.046509865671396255, 0.01114641409367323, -0.047788478434085846, -0.0630086213350296, 0.03680340573191643, 0.045211173593997955, 0.06917304545640945, 0.015901166945695877, 0.024980047717690468, -0.06796203553676605, 0.02559376135468483, -0.09057705849409103, -0.0847325399518013, -0.021201441064476967, 0.011583826504647732, 0.07187285274267197, 0.0604693666100502, -0.093952976167202, -0.06678890436887741, -0.03379368036985397, -0.015807252377271652, -0.03293462097644806, 0.04166746512055397, 0.0261235311627388, -0.058612506836652756, -0.10887590795755386, -0.012541417963802814, -0.00014995652600191534, -0.008820896036922932, -0.04417041316628456, -0.015572127886116505, -0.0695226639509201, -0.0017700925236567855, 0.021010931581258774, 0.02800842560827732, 0.07197748869657516, -0.00187207933049649, 0.034791961312294006, 0.0298711396753788, 0.09423909336328506, 0.020638663321733475, -0.0274258553981781, 0.11304237693548203, 0.06343796104192734, -0.08817354589700699, -0.03569521754980087, 0.12692905962467194, 8.556684927128489e-32, -0.018180880695581436, -0.044303275644779205, -0.04676373302936554, 0.01987554132938385, 0.052972037345170975, 0.05971960723400116, 0.07026571035385132, -0.009772381745278835, 0.006252251099795103, -0.06589028239250183, -0.03442370519042015, 0.033300552517175674, -0.015554562211036682, -0.005779316648840904, 0.021348590031266212, 0.03497910499572754, -0.01637241430580616, -0.03521641716361046, -0.052669551223516464, -0.028770117089152336, -0.045115429908037186, -0.018495142459869385, -0.08467251062393188, 0.07937373220920563, -0.05926332622766495, 0.04475647583603859, -0.019985247403383255, 0.014942142181098461, 0.02184372954070568, 0.0063032107427716255, -0.023948144167661667, 0.009609982371330261, -0.019997822120785713, -0.013148759491741657, 0.10310225933790207, -0.017020437866449356, -0.05081195384263992, 0.08583758026361465, 0.04092486947774887, -0.06975600123405457, -0.07203368097543716, -0.005884452257305384, 0.01847386732697487, 0.0002750973217189312, -0.0075589921325445175, 0.0012779913377016783, 0.02055838331580162, -0.037010032683610916, 0.05164986476302147, -0.014436603523790836, -0.05391271039843559, 0.018775783479213715, 0.06612244993448257, 0.03435318544507027, -0.012969952076673508, -0.05983463302254677, 0.00774862477555871, -0.046320755034685135, 0.07062411308288574, 0.05411108210682869, -0.11782046407461166, 0.03415001183748245, -0.013853915967047215, -0.058616720139980316 ]
73Graphs and transformations So the graph of y = g( x + 1) is y xy = g( x + 1) = (x + 1)( x – 1) 1 –1–1O β–  When you translate a function, any asymptotes are also translated. Example 11 Given that h(x) = 1 __ x , sketch the curve with equation y = h(x) + 1 and state the equations of any asymptotes and intersections with the axes . The graph of y = h( x) is Oy x1 xy = So the graph of y = h( x) + 1 is Oy x1 The curve crosses the x -axis once. y = h(x) + 1 = 1 __ x + 1 0 = 1 __ x + 1 βˆ’1 = 1 __ x x = βˆ’1 So t he curve intersects the x -axis at (βˆ’1, 0). The horizontal asymptote is y = 1. The vertical asymptote is x = 0.First sketch y = h(x ). The curve is translated by vector ( 0 1 ) so the asymptote is translated by the same vector. Put y = 0 to find where the curve crosses the x-axis. Remember to write down the equation of the vertical asymptote as well. It is the y-axis so it has equation x = 0.This is a translation of the graph of y = g(x) by vector ( βˆ’1 0 ) . You could also write out the equation and sketch the graph directly: y = g(x + 1) = (x + 1)(x + 1 – 2) = (x + 1)(x – 1)
[ -0.0021682120859622955, 0.05173252895474434, -0.011672512628138065, -0.04665299504995346, -0.10555767267942429, -0.003565988503396511, 0.06433342397212982, 0.019084274768829346, -0.027772502973675728, -0.017244718968868256, 0.01330284122377634, -0.010055229999125004, -0.005291614681482315, 0.06108197569847107, -0.06743825972080231, 0.0017463585827499628, -0.048231128603219986, 0.009514939971268177, -0.03822413459420204, -0.09768257290124893, 0.06170196458697319, -0.08655355125665665, -0.04335813596844673, -0.08221709728240967, 0.07510028779506683, -0.06102140620350838, -0.0027703428640961647, -0.05574602633714676, -0.01732390746474266, -0.04150375723838806, -0.03221522271633148, 0.032249823212623596, 0.028835058212280273, -0.0021378041710704565, 0.06482736021280289, 0.03467728570103645, 0.0011140219867229462, -0.01306330319494009, 0.024234501644968987, -0.0014224420301616192, -0.00723935104906559, -0.007658916991204023, -0.013342393562197685, 0.000028011152608087286, 0.0974937230348587, -0.09382904320955276, -0.05366738140583038, 0.01682977005839348, 0.023803628981113434, 0.0035978613886982203, 0.04687576740980148, 0.06640978157520294, -0.0958278551697731, 0.036180127412080765, -0.01618245802819729, -0.037009432911872864, -0.004538369830697775, -0.026741694658994675, 0.015003379434347153, 0.019589127972722054, -0.06056046485900879, 0.036958493292331696, -0.07557167112827301, 0.04860718920826912, -0.04839185252785683, 0.044808704406023026, 0.09031267464160919, -0.031387850642204285, 0.010818567126989365, 0.10136663913726807, -0.08382314443588257, 0.04278922826051712, -0.021756241098046303, -0.05233439430594444, 0.014889199286699295, 0.0036191169638186693, 0.04200882837176323, 0.09038814902305603, -0.07740789651870728, -0.047355882823467255, -0.09106563031673431, 0.01890619657933712, 0.12258153408765793, 0.0503927543759346, -0.08130937069654465, -0.008647304959595203, 0.042107779532670975, 0.04505375027656555, 0.016190646216273308, -0.07307539880275726, -0.019600804895162582, 0.029199160635471344, 0.005664857104420662, -0.09390965849161148, 0.010109895840287209, -0.03000558167695999, 0.02530045434832573, -0.020105483010411263, 0.0714380070567131, 0.04006287083029747, -0.07260315865278244, 0.04450460150837898, 0.0867752805352211, 0.09940288215875626, -0.023109404370188713, -0.02393420971930027, -0.02060464769601822, 0.01292372029274702, 0.0053944820538163185, -0.06271733343601227, -0.018136339262127876, -0.045197494328022, -0.021390872076153755, 0.03670240566134453, 0.06230848282575607, -0.08690976351499557, -0.021807007491588593, -0.04455693066120148, 0.00457120593637228, -0.005789881572127342, 0.05820637196302414, 0.016750691458582878, 0.09598741680383682, 0.03417475149035454, -0.0559425912797451, 0.022434430196881294, 0.023460131138563156, -0.00938620138913393, 0.025247322395443916, -0.003174138953909278, 0.08405383676290512, -0.0501784048974514, 0.05618949234485626, 0.0016224387800320983, -0.018828479573130608, 0.00497974269092083, -0.07437875866889954, 0.033746737986803055, -0.02999952808022499, 0.058452095836400986, 0.038676753640174866, 0.11673755943775177, -0.01724141649901867, 0.05022129788994789, 0.00806577317416668, -0.04930293932557106, -0.050618935376405716, 0.037057872861623764, -0.03386348485946655, 0.023807961493730545, -0.03948914259672165, 0.02496475726366043, -0.04697981849312782, 0.08224714547395706, 0.0527629591524601, -0.018616562709212303, -0.05815016105771065, -0.0632118359208107, -0.0910167247056961, -0.06108991801738739, -0.06173298507928848, -0.014427035115659237, -0.06373301148414612, 0.044276028871536255, 0.061374641954898834, -0.029902299866080284, 0.0087422551587224, 0.024203183129429817, -0.016702307388186455, 0.009025313891470432, 0.052261222153902054, -0.03597230464220047, 0.03209852799773216, 0.08171245455741882, 0.03981693461537361, 0.015651024878025055, 0.022488052025437355, -0.02298055961728096, -0.016828292980790138, 0.018621355295181274, 0.036105670034885406, -0.06447885930538177, 0.02120203897356987, -0.007561395410448313, -0.04339764639735222, -0.05577888712286949, -0.034409407526254654, 0.0810466930270195, 0.000041307230276288465, 0.01625889353454113, 0.0010769630316644907, -0.021995041519403458, 0.01904750056564808, 0.01862168498337269, -0.08027294278144836, -0.05368652939796448, -0.018734557554125786, 0.03374257683753967, -0.05480489879846573, -0.0172701645642519, -0.007791739422827959, 0.07671187818050385, 0.06575771421194077, 0.06214839592576027, -0.04317350685596466, -0.020278915762901306, -0.03953328728675842, -0.018896862864494324, -0.09476567804813385, -0.01150755025446415, -0.0017345219384878874, 0.06288973987102509, -0.027248498052358627, 0.05642322078347206, 0.011577397584915161, -0.07058294117450714, 0.006289609707891941, 0.027902070432901382, -0.05899728089570999, -0.01684907265007496, 0.019639264792203903, -0.07128705084323883, 0.05453922227025032, 9.558439559860311e-34, -0.039397284388542175, 0.02310865744948387, -0.061576686799526215, -0.025092842057347298, -0.004784437827765942, -0.09515560418367386, 0.04553686082363129, 0.0547928661108017, 0.038325633853673935, -0.005517000798135996, 0.10146168619394302, 0.01716446690261364, -0.0752478837966919, 0.01010191161185503, -0.026933126151561737, -0.08294834196567535, 0.07469088584184647, -0.02071930468082428, -0.09246309846639633, -0.0013869950780645013, 0.009045850485563278, 0.0021039238199591637, 0.052511997520923615, -0.010900616645812988, -0.11454501003026962, -0.007425674702972174, 0.011687998659908772, -0.04556279256939888, 0.0015980129828676581, 0.05513788014650345, -0.006507613696157932, -0.010795795358717442, 0.025494631379842758, 0.08959215134382248, -0.028867747634649277, 0.06669086962938309, -0.028916245326399803, -0.04359808191657066, 0.009489893913269043, 0.03901039436459541, 0.033810805529356, 0.033460669219493866, 0.07671856880187988, 0.00455754017457366, 0.05542673543095589, 0.018015922978520393, -0.03757566586136818, 0.09228929132223129, -0.06508534401655197, -0.028402462601661682, -0.046496205031871796, -0.08244451135396957, 0.027626218274235725, -0.003155403770506382, 0.12230759114027023, 0.04013983532786369, -0.021893328055739403, -0.07423469424247742, 0.006535084452480078, -0.11583815515041351, -0.005314322654157877, -0.01802893914282322, -0.05175777152180672, 0.07964778691530228, -0.08471279591321945, -0.11625050753355026, -0.052246447652578354, -0.05988860875368118, -0.04144681617617607, -0.03313945233821869, 0.07339800894260406, 0.006804945413023233, 0.020239846780896187, -0.033814687281847, 0.025420164689421654, -0.018483391031622887, -0.009836824610829353, -0.06880161166191101, 0.020490285009145737, -0.09862637519836426, -0.008118730038404465, 0.039065562188625336, -0.008229902014136314, 0.13848716020584106, 0.03597557544708252, -0.03896082192659378, 0.06554257869720459, 0.08364304900169373, 0.07439687103033066, 0.0049858721904456615, 0.023345762863755226, 0.08211296051740646, -0.0834224745631218, -0.03118763118982315, -0.01655529998242855, 6.361760732970835e-32, -0.019280502572655678, 0.011455941945314407, 0.060110390186309814, 0.03495670109987259, 0.02003045380115509, 0.036893583834171295, 0.03564801812171936, -0.09299785643815994, 0.012529649771749973, -0.06827962398529053, 0.07307837903499603, 0.10668741166591644, -0.08406843990087509, 0.061241019517183304, 0.021273983642458916, -0.041145384311676025, 0.009658081457018852, -0.0030530078802257776, 0.012371035292744637, 0.04587298631668091, -0.06573987752199173, 0.024472253397107124, -0.08407358080148697, 0.06694278866052628, -0.0644640177488327, -0.0030163791961967945, -0.004881137516349554, -0.07436849176883698, 0.00920439139008522, -0.026372507214546204, -0.023942310363054276, 0.04767671972513199, 0.060538556426763535, -0.024080142378807068, 0.11514665186405182, -0.0035579397808760405, -0.12421728670597076, 0.04143934324383736, 0.03214579075574875, -0.00729144923388958, -0.08892402052879333, 0.011081707663834095, 0.02335486002266407, 0.027870425954461098, -0.02812228910624981, 0.008207667618989944, 0.04470998793840408, -0.03465142473578453, 0.06945033371448517, -0.033241529017686844, -0.06622710078954697, -0.01018774975091219, 0.04162276163697243, -0.12697923183441162, -0.0023777044843882322, 0.030622271820902824, 0.043601762503385544, 0.005013014189898968, -0.029224704951047897, 0.051920875906944275, -0.04194622114300728, 0.1013139933347702, -0.01984473317861557, 0.027702441439032555 ]
74 Chapter 4 1 Apply the f ollowing transformations to the curves with equations y = f(x) where: i f(x ) = x2 ii f(x) = x3 iii f(x) = 1 __ x In each case state the coordina tes of points where the curves cross the axes and in iii state the equations of the asymptotes. a f(x + 2) b f(x) + 2 c f(x βˆ’ 1) d f(x) βˆ’ 1 e f(x ) βˆ’ 3 f f(x βˆ’ 3) 2 a Sketch the curve y = f(x) where f(x) = (x βˆ’ 1)(x + 2). b On separate dia grams sketch the graphs of i y = f(x + 2) ii y = f(x) + 2. c Find the equations of the curv es y = f(x + 2) and y = f(x) + 2, in terms of x, and use these equations to find the coordinates of the points where your graphs in part b cross the y-axis. 3 a Sketch the gra ph of y = f(x) where f(x) = x2(1 βˆ’ x). b Sketch the curve with equa tion y = f(x + 1). c By finding the equation f(x + 1) in terms of x, find the coordinates of the point in part b where the curve crosses the y-axis. 4 a Sketch the gra ph of y = f(x) where f(x) = x(x βˆ’ 2)2. b Sketch the curves with equa tions y = f(x) + 2 and y = f(x + 2). c Find the coordinates of the points where the graph of y = f(x + 2) crosses the axes. 5 a Sketch the gra ph of y = f(x) where f(x) = x(x βˆ’ 4). b Sketch the curves with equa tions y = f(x + 2) and y = f(x) + 4. c Find the equations of the curv es in part b in terms of x and hence find the coordinates of the points where the curves cross the axes. 6 a Sketch the gra ph of y = f(x) where f(x) = x2(x – 1)(x – 2). b Sketch the curves with equa tions y = f(x + 2) and y = f(x) – 1. 7 The point P(4, –1) lies on the curve with equation y = f(x). a State the coordina tes that point P is transformed to on the curve with equation y = f(x – 2). (1 mark) b State the coordina tes that point P is transformed to on the curve with equation y = f(x) + 3. (1 mark) 8 The graph of y = f(x) where f(x) = 1 __ x is translated so that the asymptotes are at x = 4 and y = 0. Write down the equation for the transformed function in the form y = 1 _____ x + a (3 marks) 9 a Sketch the gra ph of y = x3 – 5x2 + 6x, marking clearly the points of intersection with the axes. b Hence sketch y = (x – 2)3 – 5(x – 2)2 + 6(x – 2). E E/P PExercise 4E
[ -0.016780594363808632, 0.054968323558568954, -0.08192957192659378, -0.008509675040841103, 0.018274690955877304, 0.05182822793722153, 0.004271028097718954, 0.041193392127752304, -0.12794603407382965, -0.015121717937290668, 0.02162160724401474, -0.07069893181324005, 0.03224297985434532, 0.035096921026706696, -0.029587142169475555, 0.012667307630181313, -0.13084736466407776, 0.015182237140834332, -0.027190057560801506, -0.03474820405244827, 0.013001156970858574, -0.012953391298651695, -0.06253288686275482, -0.08579723536968231, -0.016758011654019356, -0.08086548745632172, -0.06016836687922478, -0.08496139198541641, -0.031026283279061317, -0.05376225709915161, 0.009939051233232021, 0.002767853904515505, 0.04833795130252838, 0.0005516057135537267, 0.07196111977100372, -0.027190957218408585, 0.03248141333460808, 0.008910979144275188, 0.026711633428931236, 0.002081676386296749, -0.0492670014500618, 0.05303505063056946, -0.01854366809129715, -0.027350693941116333, 0.1278456449508667, -0.060951560735702515, -0.015563622117042542, 0.024022923782467842, -0.03632974252104759, 0.01679130643606186, -0.01072030421346426, -0.0022076070308685303, -0.10634209960699081, 0.04667183384299278, 0.02848125994205475, -0.01640038564801216, -0.054152268916368484, -0.003672997932881117, -0.013015393167734146, 0.07824620604515076, -0.017557434737682343, 0.06063318997621536, -0.05217638984322548, 0.03147285431623459, -0.07888460159301758, 0.07155263423919678, 0.10779083520174026, -0.0516204908490181, -0.012113773263990879, 0.1357155442237854, -0.11152827739715576, 0.047448351979255676, -0.05772444233298302, -0.08880305290222168, 0.04622495546936989, 0.058441951870918274, -0.004233370069414377, 0.06462559849023819, -0.05243852734565735, -0.018347224220633507, -0.028943270444869995, -0.07617945969104767, 0.06728526204824448, 0.037135351449251175, -0.02772487886250019, 0.007237522397190332, 0.014369632117450237, -0.07300017029047012, 0.020939111709594727, -0.04041611775755882, -0.075342558324337, -0.029615184292197227, -0.06469028443098068, -0.005477324593812227, -0.005136142484843731, -0.05395715683698654, -0.03625424951314926, -0.04549267515540123, 0.10629929602146149, 0.10271049290895462, -0.07801944762468338, 0.03686906397342682, 0.06438690423965454, 0.04640442505478859, -0.05489800497889519, -0.029574772343039513, -0.00413513882085681, -0.05863313004374504, -0.05285244435071945, -0.007693280465900898, -0.019041603431105614, -0.05947162210941315, 0.016140080988407135, 0.0194417554885149, 0.11159178614616394, -0.0682673528790474, 0.0015951740788295865, 0.0460287407040596, -0.022167233750224113, -0.07491658627986908, 0.012012410908937454, 0.03669064864516258, 0.025312121957540512, 0.05439773201942444, 0.0023928030859678984, -0.022348038852214813, -0.029694633558392525, 0.00483397301286459, -0.0004892182187177241, -0.010036119259893894, 0.05328316614031792, -0.10188817232847214, -0.08846341073513031, -0.06852011382579803, 0.019919227808713913, 0.026345396414399147, -0.11723052710294724, 0.082240529358387, -0.041343804448843, 0.0262894444167614, 0.05089300125837326, 0.05758120119571686, 0.0027236761525273323, 0.022420980036258698, 0.0965842753648758, -0.029650112614035606, -0.009373180568218231, 0.04154745489358902, -0.00928241666406393, 0.016304848715662956, 0.01461738534271717, -0.04494012892246246, -0.012985012494027615, 0.10774217545986176, 0.08097287267446518, 0.013802903704345226, -0.021673358976840973, -0.02462473325431347, -0.02523638866841793, -0.028766347095370293, -0.026695169508457184, 0.031605709344148636, 0.008833532221615314, 0.027377769351005554, 0.056816499680280685, -0.057518452405929565, 0.015672920271754265, 0.10360883921384811, -0.02939501777291298, 0.050230689346790314, -0.009360096417367458, -0.09178201109170914, -0.005512642208486795, 0.11416361480951309, 0.05503474920988083, 0.07216053456068039, 0.1226930096745491, -0.024140039458870888, -0.017894001677632332, -0.01257010456174612, 0.08410710841417313, -0.048793964087963104, 0.0077636223286390305, -0.023095592856407166, -0.05816299095749855, -0.06789299845695496, 0.02655082941055298, 0.030182702466845512, 0.02722799964249134, -0.02235320396721363, -0.028744664043188095, -0.0935102179646492, -0.0007419256144203246, -0.02420196868479252, -0.03171272203326225, 0.023339955136179924, -0.007494446821510792, 0.010137954726815224, -0.021442046388983727, 0.030963808298110962, -0.03464096412062645, 0.0884261429309845, 0.04374028742313385, 0.04017239063978195, -0.06420524418354034, -0.029403941705822945, -0.07691669464111328, -0.10796181112527847, -0.07434757053852081, -0.050548236817121506, -0.015116591937839985, 0.04693107306957245, -0.0014238094445317984, 0.016065940260887146, -0.03372989967465401, -0.07047063112258911, 0.04444834217429161, 0.005200109910219908, -0.07782569527626038, 0.03993226960301399, 0.021998243406414986, -0.04198986291885376, 0.02658449485898018, -9.530660607969465e-33, -0.046927642077207565, 0.018694331869482994, -0.08320052921772003, 0.03033898025751114, -0.04907500743865967, -0.08087703585624695, 0.017744962126016617, 0.02601597085595131, 0.00914521049708128, 0.022327981889247894, 0.09767990559339523, -0.010651083663105965, -0.05486714839935303, -0.0379839725792408, -0.03132782131433487, -0.06738176941871643, 0.011334408074617386, -0.031057020649313927, -0.026154523715376854, -0.006308292504400015, 0.03537442535161972, 0.03189442306756973, 0.021595362573862076, 0.0043707238510251045, -0.12442608177661896, 0.016130920499563217, -0.008385876193642616, -0.018455056473612785, -0.07941222190856934, 0.08398673683404922, -0.05834439396858215, -0.027120856568217278, -0.02682812698185444, -0.026684477925300598, -0.024125682190060616, 0.0520387701690197, -0.06773650646209717, 0.00040181903750635684, 0.018340226262807846, 0.030449002981185913, 0.016566935926675797, 0.09877367317676544, 0.0669671893119812, -0.044256750494241714, 0.006795147899538279, 0.06633998453617096, 0.05994627624750137, 0.10529083013534546, 0.040887732058763504, -0.004373841919004917, -0.004141046665608883, -0.09536509960889816, -0.036224365234375, -0.0026401057839393616, -0.0014325006632134318, 0.05591517686843872, 0.019542960450053215, -0.0932934507727623, 0.017919640988111496, -0.10180789977312088, -0.042998041957616806, -0.02157926745712757, -0.09834088385105133, 0.05265212431550026, -0.021538808941841125, -0.08099713921546936, -0.08476296812295914, -0.03095802664756775, 0.0324457623064518, 0.03607293590903282, 0.01710376888513565, -0.05869432911276817, -0.014254126697778702, -0.0403694286942482, -0.031077921390533447, -0.008524246513843536, 0.0383891835808754, -0.03144809231162071, -0.003439090447500348, -0.015848252922296524, -0.024154234677553177, 0.010696292854845524, -0.0064619798213243484, 0.0727529227733612, -0.017841516062617302, -0.004559845197945833, 0.0667230561375618, 0.07802629470825195, 0.06947696954011917, 0.013254315592348576, -0.0024410556070506573, -0.00333613995462656, 0.04850487783551216, -0.031048940494656563, 0.0015506154159083962, 1.099842120490937e-31, -0.09140627086162567, 0.00918411836028099, 0.015147312544286251, 0.0671669989824295, 0.09082625806331635, 0.04006058722734451, 0.03663447126746178, -0.019652970135211945, 0.08247143775224686, -0.10688818991184235, 0.08511463552713394, 0.10048303008079529, -0.007427682168781757, 0.006537501700222492, 0.01390855386853218, 0.0004772824759129435, -0.0008695857832208276, 0.028057800605893135, -0.00658996170386672, -0.02251817286014557, -0.07711552828550339, -0.01769375614821911, -0.084018774330616, -0.025063542649149895, 0.00616455078125, -0.01684846542775631, -0.027727488428354263, -0.0844518318772316, -0.038612380623817444, 0.06022557616233826, 0.012414983473718166, -0.01821521855890751, 0.0765862986445427, -0.0296090766787529, 0.014259962365031242, -0.02073407731950283, -0.017778538167476654, 0.030246173962950706, -0.052200380712747574, -0.012981534935534, -0.00910111702978611, 0.029333150014281273, -0.011518983170390129, 0.02161775529384613, -0.04712434858083725, 0.020377948880195618, -0.012820105068385601, 0.02638520672917366, 0.08034976571798325, 0.017266489565372467, -0.004668102599680424, 0.05229039117693901, 0.017797335982322693, -0.0729428380727768, -0.03128048777580261, 0.022062575444579124, 0.02961939200758934, -0.018414853140711784, 0.008100882172584534, 0.08533070981502533, -0.11020521074533463, 0.0382402278482914, -0.023419378325343132, 0.03262215480208397 ]
75Graphs and transformations 10 a Sketch the gra ph of y = x2(x – 3)(x + 2), marking clearly the points of intersection with the axes. b Hence sketch y = (x + 2)2(x – 1)(x + 4). 11 a Sketch the gra ph of y = x3 + 4x2 + 4x. (6 marks) b The point with coordinates ( –1, 0) lies on the curve with equation y = (x + a)3 + 4(x + a)2 + 4(x + a) where a is a constant. Find the two possible values of a. (3 marks) 12 a Sketch the gra ph of y = x(x + 1)(x + 3)2. (4 marks) b Find the possible va lues of b such that the point (2, 0) lies on the curve with equation y = (x + b)(x + b + 1)(x + b + 3)2. (3 marks)P E/P E/P 1 Sketch the graph of y = (x – 3)3 + 2 and determine the coordinates of the point of inflection. β†’ Section 12.9 2 The point Q (–5, –7) lies on the curve with equation y = f( x). a Sta te the coordinates that point Q is transformed to on the curve with equation y = f( x + 2) – 5. b The c oordinates of the point Q on a transformed curve are ( –3, –6). Write down the transformation in the form y = f( x + a) – b.ChallengeLook at your sketch and picture the curve sliding to the left or right.Problem-solving 4.6 Stretching graphs Multiplying by a constant β€˜outside’ the function stretches the graph vertically. β–  The graph of y = af(x) is a stretch of the graph y = f(x) by a scale factor of a in the vertical direction. Oy x –11y = f(x)1 2y = 2f(x)y = f(x) Multiplying by a constant β€˜inside’ the function stretches the graph horizontally. β–  The graph of y = f(ax) is a stretch of the graph y = f(x) by a scale factor of 1 __ a in the horizontal direction. Oy x 2 64 y = f( x)1 3y = f(2x) y = f(x)2f(x) is a stretch with scale factor 2 in the y-direction. All y-coordinates are doubled. 1 _ 2 f(x) is a stretch with scale factor 1 _ 2 in the y-direction. All y-coordinates are halved. y = f ( 1 _ 3 x) is a stretch with scale factor 3 in the x-direction. All x-coordinates are tripled.y = f(2x) is a stretch with scale factor 1 _ 2 in the x-direction. All x-coordinates are halved.
[ -0.05483977869153023, 0.01898946799337864, -0.0563930906355381, -0.02154814451932907, -0.040815871208906174, 0.03966899961233139, -0.008281194604933262, 0.006534191779792309, -0.06808431446552277, 0.01998276822268963, 0.020941298454999924, -0.08860451728105545, -0.020887719467282295, -0.010503475554287434, -0.05198042467236519, -0.06421131640672684, -0.008755536749958992, -0.018291573971509933, -0.029088323935866356, -0.03856857493519783, 0.011972403153777122, -0.07243043184280396, -0.023628834635019302, -0.09962072223424911, 0.10725220292806625, -0.07089566439390182, -0.03424632549285889, -0.08148406445980072, -0.04180237650871277, -0.04729296267032623, 0.03401881456375122, 0.042947642505168915, 0.031175384297966957, -0.05659105256199837, 0.07598918676376343, 0.010116771794855595, 0.021216822788119316, 0.018844690173864365, 0.07247116416692734, 0.006659215781837702, 0.016538379713892937, 0.029411116614937782, -0.030958430841565132, -0.06699348986148834, 0.09198135882616043, -0.05623003467917442, -0.039300959557294846, -0.004503981210291386, 0.06946157664060593, -0.07182686775922775, 0.042874667793512344, 0.007465626113116741, -0.011209972202777863, 0.06928861141204834, 0.002653796225786209, 0.0303354449570179, 0.06727216392755508, 0.044656623154878616, 0.07360973954200745, 0.07538731396198273, 0.017970383167266846, 0.06256641447544098, -0.028084328398108482, 0.042256392538547516, -0.003992055542767048, 0.02988761104643345, 0.03889693319797516, -0.0961628258228302, -0.008653276599943638, 0.03815316781401634, -0.07854847609996796, 0.01748751848936081, -0.019518913701176643, -0.12324454635381699, 0.006831106264144182, -0.037937380373477936, 0.0013294549426063895, 0.006432714872062206, -0.04547414183616638, -0.0648905485868454, -0.04293757304549217, 0.04314514994621277, 0.060458436608314514, 0.04658064246177673, 0.04410478100180626, 0.0050486731342971325, 0.03607694059610367, -0.034138746559619904, -0.06700826436281204, 0.004243042320013046, -0.012120408937335014, 0.04349328204989433, -0.05946745723485947, -0.05125069618225098, 0.027652641758322716, -0.1526317298412323, 0.0347481332719326, -0.03387745842337608, 0.025738077238202095, 0.10571049898862839, -0.046379219740629196, 0.09881319850683212, 0.013290205970406532, -0.03654477745294571, 0.011080028489232063, 0.0018745441921055317, 0.04772872477769852, -0.02438986487686634, 0.01380067691206932, -0.01928708516061306, -0.02042463608086109, -0.03741725534200668, 0.02135670743882656, 0.07046960294246674, 0.04236387833952904, -0.040150970220565796, 0.06634768843650818, 0.015554478392004967, -0.01564430445432663, -0.06296371668577194, 0.054895903915166855, -0.0622110515832901, -0.006007588002830744, -0.025802655145525932, -0.09107650071382523, -0.022061733528971672, -0.09800328314304352, 0.03259965404868126, 0.051368292421102524, -0.026661448180675507, 0.08769591152667999, -0.053445227444171906, 0.003771968884393573, -0.042160455137491226, -0.1189369484782219, -0.05756261944770813, -0.06380367279052734, 0.04376325383782387, -0.059155385941267014, -0.006060271989554167, -0.0016116640763357282, 0.11082987487316132, -0.001151396194472909, 0.07806618511676788, 0.01453503780066967, 0.0029304216150194407, -0.07433062791824341, 0.030951984226703644, 0.02531852200627327, 0.004915285389870405, -0.021403810009360313, -0.004663569387048483, -0.00046855496475473046, 0.06053929403424263, 0.04173116013407707, -0.03439205139875412, -0.04816557466983795, -0.04299221187829971, -0.022976232692599297, 0.009762129746377468, -0.05568311735987663, 0.021177228540182114, -0.04544806107878685, 0.045455556362867355, 0.044985853135585785, -0.042309489101171494, 0.045522067695856094, 0.0923755094408989, 0.0000991787965176627, 0.08353284746408463, -0.005019110161811113, 0.02708270028233528, 0.0012520182644948363, 0.13946130871772766, 0.016573714092373848, -0.03458316996693611, 0.11692604422569275, -0.003737900871783495, -0.052540455013513565, 0.03344636783003807, 0.053999874740839005, -0.031623370945453644, -0.013658805750310421, 0.05523601919412613, -0.030725596472620964, -0.058943670243024826, 0.002144771860912442, 0.0656597837805748, -0.0031223921105265617, 0.033920641988515854, -0.04013213887810707, -0.015216845087707043, -0.030660366639494896, 0.114220529794693, -0.1403340846300125, -0.013933304697275162, 0.05953550338745117, 0.05880788341164589, -0.0639999657869339, 0.002791397739201784, 0.020756473764777184, 0.037924401462078094, 0.04696124419569969, -0.0036709345877170563, -0.057137563824653625, 0.011584995314478874, -0.045503418892621994, 0.012260973453521729, -0.09260019659996033, -0.022698624059557915, 0.07481937110424042, 0.05219675973057747, -0.03038782626390457, -0.010217631235718727, 0.022808894515037537, -0.04946737736463547, 0.0427980050444603, -0.07564753293991089, -0.14039911329746246, -0.024311672896146774, 0.012319764122366905, -0.07029937207698822, 0.02418350800871849, -2.9629242447177798e-33, 0.046747054904699326, 0.040077678859233856, -0.04670938104391098, -0.037831973284482956, -0.019118493422865868, -0.11024100333452225, 0.0989304631948471, 0.03343126177787781, 0.09477311372756958, 0.05538411810994148, 0.07653144747018814, 0.04026412591338158, -0.015729637816548347, 0.03216945379972458, 0.012156701646745205, -0.010543382726609707, 0.01296965777873993, 0.05108178034424782, -0.02928212657570839, -0.06649044156074524, -0.003991518169641495, 0.007770549040287733, 0.01832597516477108, 0.01850380189716816, -0.0134331239387393, 0.06395652890205383, 0.05137315019965172, -0.12237374484539032, -0.041325584053993225, -0.023069720715284348, -0.05969885364174843, -0.056091342121362686, 0.0015859572449699044, 0.00965815782546997, -0.04922039061784744, 0.0002104523591697216, -0.015361416153609753, -0.07769295573234558, 0.026572665199637413, 0.035873234272003174, -0.002893269993364811, 0.04215312749147415, 0.0658150240778923, 0.023033538833260536, -0.01458217017352581, 0.05522426217794418, 0.04458346217870712, 0.12344973534345627, -0.036685194820165634, 0.022746378555893898, -0.019330846145749092, -0.0792132318019867, -0.01465904526412487, 0.001282460754737258, 0.12957501411437988, 0.05920829996466637, 0.03330371528863907, -0.014541742391884327, -0.03126807138323784, -0.0920269712805748, -0.02851545624434948, -0.035110484808683395, -0.03862224519252777, -0.016361616551876068, -0.0632951483130455, -0.07766810804605484, -0.05232624337077141, -0.06586422026157379, 0.011295280419290066, -0.01828368380665779, 0.08494197577238083, 0.04431565850973129, -0.014272896572947502, -0.06696683168411255, -0.0054712421260774136, -0.10837550461292267, -0.045267075300216675, 0.01120550837367773, 0.02056298404932022, -0.04942669719457626, -0.04901841655373573, -0.07008369266986847, -0.0006378481048159301, 0.05120024457573891, 0.006288607604801655, 0.019348423928022385, 0.020252397283911705, 0.07675027847290039, 0.12741287052631378, -0.0038454767782241106, 0.06409952044487, -0.004368661902844906, -0.06392456591129303, 0.025800151750445366, 0.019474806264042854, 8.016328394217921e-32, 0.02714204043149948, 0.016876187175512314, -0.01177150383591652, 0.00911396648734808, -0.004964510910212994, -0.027080930769443512, 0.07562822103500366, -0.03695541247725487, -0.0073236748576164246, -0.061232153326272964, 0.05232306942343712, 0.014594298787415028, -0.08178770542144775, 0.09458107501268387, -0.06828419119119644, -0.0015197376487776637, -0.014898652210831642, -0.005336912348866463, -0.01505607832223177, -0.04660209268331528, -0.10168419033288956, 0.007295413874089718, -0.035206958651542664, 0.06190827488899231, -0.028568502515554428, 0.015376966446638107, -0.05753168836236, -0.10544361919164658, -0.025508590042591095, -0.013473778031766415, -0.0029445372056216, -0.031005486845970154, 0.007634075358510017, -0.06956786662340164, 0.0518689788877964, -0.03621921315789223, -0.0779266208410263, 0.058432437479496, 0.011303769424557686, 0.008556139655411243, 0.0020091573242098093, 0.0009092472027987242, -0.0386393740773201, 0.0064705428667366505, -0.021496206521987915, 0.05252429470419884, 0.0341244600713253, -0.02889876812696457, 0.06042703241109848, -0.01602860912680626, -0.05843166634440422, 0.05022360384464264, 0.05209873244166374, -0.054419878870248795, 0.020067324861884117, -0.022742098197340965, 0.0072182887233793736, 0.01871785894036293, -0.007646489888429642, 0.05170981585979462, 0.010432968847453594, 0.09560077637434006, -0.031087178736925125, 0.046029720455408096 ]
76 Chapter 4 Example 12 Given that f(x) = 9 βˆ’ x2, sketch the curves with equations: a y = f(2x) b y = 2f(x) a f(x) = 9 βˆ’ x2 So f(x) = (3 βˆ’ x)(3 + x ) The curve is y = (3 βˆ’ x )(3 + x ) 0 = (3 βˆ’ x )(3 + x ) So x = 3 or x = βˆ’ 3 So the curve crosses the x -axis at (3, 0) and (βˆ’3, 0). When x = 0, y = 3 Γ— 3 = 9 So the curve crosses the y -axis at (0, 9). The curve y = f( x) is 3 –39 O xy y = f(2 x) so the curve is 1.5 –1.59 O xy b y = 2f(x) so the curve is 3 –3/one.ss018 x OyYou can factorise the expression. Put y = 0 to find where the curve crosses the x-axis. Put x = 0 to find where the curve crosses the y-axis. First sketch y = f(x). y = f(ax) where a = 2 so it is a horizontal stretch with scale factor 1 _ 2 . Check: The curve is y = f(2x). So y = (3 βˆ’ 2x)(3 + 2x). When y = 0, x = βˆ’1.5 or x = 1.5.So the curve crosses the x-axis at (βˆ’1.5, 0) and (1.5, 0).When x = 0, y = 9.So the curve crosses the y-axis at (0, 9). y = af(x) where a = 2 so it is a vertical stretch with scale factor 2. Check: The curve is y = 2f(x). So y = 2(3 βˆ’ x)(3 + x).When y = 0, x = 3 or x = βˆ’3.So the curve crosses the x -axis at (βˆ’ 3, 0) and (3, 0). When x = 0, y = 2 Γ— 9 = 18.So the curve crosses the y-axis at (0, 18).
[ 0.011153441853821278, 0.11540050804615021, -0.06174931675195694, -0.02507524937391281, 0.025157272815704346, 0.04966996982693672, -0.04062652215361595, 0.012362489476799965, -0.08057485520839691, 0.022153962403535843, 0.016351742669939995, -0.039625946432352066, 0.013299515470862389, 0.010953579097986221, -0.036341723054647446, -0.07060438394546509, -0.12172470986843109, 0.008061633445322514, -0.04969581216573715, -0.0757938101887703, -0.0046524349600076675, -0.008378230966627598, -0.09026814252138138, -0.12061633169651031, 0.03463464975357056, -0.10236313939094543, -0.03278268501162529, -0.02730332873761654, -0.06748958677053452, -0.0651356652379036, 0.06366581469774246, 0.011162914335727692, -0.0011282303603366017, 0.032276540994644165, 0.06370251625776291, 0.03169172629714012, 0.03495018184185028, -0.0010187451262027025, 0.03928912431001663, -0.00786764919757843, -0.04660814255475998, -0.0058470843359827995, 0.009600224904716015, -0.017307763919234276, 0.08161204308271408, -0.03139515966176987, 0.005619919393211603, 0.011465199291706085, 0.07369054853916168, -0.04714040085673332, 0.022431757301092148, 0.06644219160079956, -0.0865817591547966, 0.03905100002884865, 0.018748614937067032, 0.007670286577194929, 0.03927714377641678, 0.030681144446134567, 0.01234729029238224, 0.08417822420597076, 0.012200049124658108, 0.013732141815125942, -0.02420448698103428, 0.03404310345649719, -0.015035992488265038, 0.07574643939733505, -0.014588435180485249, -0.07894370704889297, -0.031746651977300644, 0.10802434384822845, -0.12877513468265533, 0.021640969440340996, -0.00016259281255770475, -0.03198136389255524, -0.019225096330046654, -0.03700171783566475, 0.029492538422346115, 0.07026427239179611, -0.06000413000583649, -0.058476898819208145, -0.06413523852825165, -0.025073867291212082, 0.08284558355808258, 0.10238205641508102, 0.06146100535988808, 0.05733885243535042, 0.030596619471907616, -0.07964476197957993, 0.013980933465063572, 0.012850688770413399, -0.01985982060432434, 0.013000167906284332, -0.07952403277158737, 0.027943165972828865, 0.01079781074076891, -0.07659110426902771, -0.04444127157330513, -0.03439866751432419, 0.03222960606217384, 0.10786215960979462, 0.013062200509011745, 0.025740060955286026, -0.007922869175672531, 0.08124913275241852, 0.02744365856051445, -0.01314963586628437, 0.00496767507866025, -0.024602266028523445, -0.060371033847332, -0.04706810414791107, 0.033071234822273254, -0.0680476725101471, 0.003374592401087284, -0.005546052940189838, 0.12751075625419617, -0.07855839282274246, 0.017938781529664993, -0.007422571070492268, 0.012905271723866463, -0.07689987868070602, 0.03910205140709877, -0.04200029373168945, 0.059740323573350906, -0.046577610075473785, -0.024380922317504883, 0.001467161695472896, -0.014042823575437069, -0.013941888697445393, -0.009845558553934097, -0.05286724865436554, 0.028460822999477386, -0.09050628542900085, -0.04821009561419487, -0.05439239740371704, -0.002095377305522561, -0.004870667587965727, -0.15595823526382446, 0.15196266770362854, 0.04455491900444031, -0.02527480386197567, 0.030238162726163864, 0.03789878264069557, 0.06333161890506744, -0.009428056888282299, 0.04134991019964218, -0.04410732910037041, -0.044525131583213806, -0.008021255023777485, -0.015828611329197884, 0.036401502788066864, 0.03538565710186958, -0.036426398903131485, 0.020101133733987808, 0.10706507414579391, 0.01409014593809843, 0.005621445830911398, 0.002455496694892645, -0.05797422304749489, -0.014944014139473438, -0.06475212424993515, -0.016622714698314667, 0.05889594554901123, -0.0472877211868763, 0.06107693910598755, 0.018789106979966164, 0.024754386395215988, 0.0515831895172596, 0.026698337867856026, 0.004954793490469456, -0.031094007194042206, 0.01886998862028122, 0.028162416070699692, -0.008980275131762028, 0.0762878954410553, 0.04032421484589577, 0.04963575676083565, 0.0697268396615982, 0.01667151041328907, -0.0022502276115119457, 0.0037410135846585035, 0.12171746790409088, -0.07235094159841537, 0.00959502812474966, -0.05421896651387215, -0.01060173287987709, -0.009984211064875126, -0.014111470431089401, 0.01915138028562069, 0.03221631050109863, 0.016401084139943123, -0.031741999089717865, -0.010599440895020962, -0.052016645669937134, 0.08306040614843369, -0.0909143015742302, -0.015878062695264816, 0.06527207791805267, 0.08612436801195145, -0.06329020857810974, 0.05855702981352806, -0.009216382168233395, -0.03010551445186138, 0.09813430905342102, 0.04338856413960457, -0.09371865540742874, 0.019157877191901207, 0.011967101134359837, 0.006400546990334988, 0.04440366476774216, 0.045544009655714035, -0.09191424399614334, 0.026739120483398438, -0.028736261650919914, 0.021555639803409576, -0.020335284993052483, -0.05052267014980316, 0.0724744126200676, -0.023934468626976013, -0.12694884836673737, -0.004712569527328014, -0.06835176795721054, 0.0030658342875540257, 0.02567971684038639, 1.9951957653384468e-33, -0.034892674535512924, 0.07754329591989517, -0.08584776520729065, 0.01740238443017006, -0.03407565504312515, -0.014164835214614868, 0.10991374403238297, 0.033751871436834335, 0.04652886092662811, 0.06513393670320511, -0.01029881089925766, 0.028208307921886444, -0.08033058792352676, -0.0038570850156247616, -0.019002873450517654, -0.05339209362864494, -0.03780142217874527, -0.08609714359045029, 0.0063882265239953995, -0.06440377235412598, 0.03110305219888687, 0.02303994633257389, -0.018607379868626595, -0.019150545820593834, -0.01657191850244999, 0.007128527853637934, 0.06236329674720764, -0.07971344143152237, -0.03444649651646614, -0.034902431070804596, -0.06336880475282669, -0.03582775965332985, 0.05290338769555092, 0.03021211363375187, -0.021613914519548416, 0.03972082585096359, -0.049335695803165436, 0.011232882738113403, 0.03821681812405586, -0.0061797951348125935, 0.09149830788373947, 0.08036363124847412, 0.051915787160396576, -0.04369689151644707, -0.0143679678440094, 0.11150114983320236, -0.011727232486009598, 0.08003739267587662, 0.005020199343562126, 0.028236428275704384, -0.030693883076310158, -0.1257370561361313, 0.056436847895383835, 0.009873216040432453, 0.05074281990528107, 0.0030322729144245386, 0.011554224416613579, -0.13275308907032013, 0.013119888491928577, -0.021514704450964928, -0.051076650619506836, 0.004029375966638327, -0.03190857172012329, 0.09478685259819031, 0.005816091317683458, -0.030011897906661034, -0.0713334009051323, -0.0632801204919815, 0.07922237366437912, 0.016274496912956238, 0.01251231785863638, 0.12783953547477722, -0.002052419353276491, -0.1584606021642685, -0.04552159458398819, -0.03579295054078102, -0.04983818531036377, 0.01834379881620407, 0.06974869966506958, -0.10660205781459808, 0.001226358232088387, 0.006889128126204014, -0.053097087889909744, 0.036705125123262405, -0.02666645310819149, 0.009007811546325684, -0.016520729288458824, 0.06700891256332397, 0.05189478024840355, 0.017147595062851906, 0.08614541590213776, -0.018845349550247192, -0.06467972695827484, -0.08639736473560333, 0.07037560641765594, 8.336128685325229e-32, -0.06473524868488312, -0.006704185623675585, -0.01611975207924843, 0.01768028363585472, -0.0009110012906603515, 0.016013989225029945, 0.07861505448818207, -0.022478749975562096, 0.018572891131043434, -0.005088589619845152, 0.027990106493234634, 0.03269296884536743, -0.029047120362520218, 0.039674002677202225, 0.032910022884607315, 0.024866925552487373, 0.015189453028142452, -0.05607152357697487, 0.006115178111940622, -0.015048363246023655, -0.05338360741734505, -0.034467730671167374, -0.06262193620204926, 0.024775763973593712, 0.052078649401664734, 0.021708739921450615, 0.012078365311026573, -0.018473505973815918, 0.0050497837364673615, -0.08071893453598022, -0.0056737507693469524, -0.009307353757321835, 0.05010196566581726, -0.030391275882720947, 0.05676295608282089, -0.042647913098335266, 0.003299757605418563, 0.015697989612817764, -0.045761458575725555, -0.016268471255898476, 0.008323829621076584, -0.04689393192529678, 0.019691508263349533, -0.021323880180716515, -0.021928604692220688, -0.05165707692503929, -0.01781930774450302, 0.026344506070017815, 0.01807487942278385, 0.00647767074406147, -0.015236573293805122, 0.01860622689127922, 0.007247673813253641, -0.0234372615814209, 0.018542194738984108, -0.004378174897283316, 0.02254306711256504, -0.007171242032200098, -0.023544201627373695, -0.0473276749253273, -0.11852888762950897, 0.08921805024147034, -0.025594783946871758, -0.01632414385676384 ]
77Graphs and transformations Example 13 a Sketch the curve with equation y = x(x – 2)(x + 1). b On the same axes, sk etch the curves y = 2x(2x – 2)(2x + 1) and y = βˆ’x(x – 2)(x + 1). a Oy x 2y = x(x – 2)( x + 1) –1 b y = x(x – 2)( x + 1)y = 2 x(2x – 2)(2 x + 1)y = –x(x – 2)( x + 1) Oy x 2 –1y = –x(x – 2)(x + 1) is a stretch with scale factor –1 in the y-direction. Notice that this stretch has the effect of reflecting the curve in the x-axis. y = 2x(2x – 2)(2x + 1) is a stretch with scale factor 1 _ 2 in the x-dir ection. You need to work out the relationship between each new function and the original function. If x(x – 2)(x + 1) = f( x) then 2x(2x – 2)(2 x + 1) = f(2 x), and –x(x – 2)(x + 1) = – f(x).Problem-solving β–  The graph of y = –f(x) is a reflection of the graph of y = f(x) in the x-axis. β–  The graph of y = f(– x) is a reflection of the graph of y = f(x) in the y-axis. Example 14 On the same axes sketch the graphs of y = f(x), y = f(βˆ’x) and y = βˆ’f(x) where f(x) = x(x + 2). f(x) = x(x + 2) y x O 2 –2 y = –f(x)y = f( x) y = f(–x)y = f(βˆ’x) is y = (βˆ’x)(βˆ’x + 2) which is y = x2 βˆ’ 2x or y = x(x βˆ’ 2) and this is a reflection of the original curve in the y-axis. Alternatively multiply each x-coordinate by βˆ’1 and leave the y-coordinates unchanged. This is the same as a stretch parallel to the x-axis scale factor βˆ’1. y = βˆ’f(x) is y = βˆ’x(x + 2) and this is a reflection of the original curve in the x-axis. Alternatively multiply each y-coordinate by βˆ’1 and leave the x-coordinates unchanged. This is the same as a stretch parallel to the y-axis scale factor βˆ’1. Explore stretches of the graph of y = x (x – 2)( x + 1) using GeoGebra.Online
[ -0.08607317507266998, -0.013573684729635715, -0.030756376683712006, -0.07673896849155426, -0.03592035174369812, 0.05368461459875107, -0.055394891649484634, -0.008264830335974693, -0.07694945484399796, -0.04549087956547737, -0.005500972270965576, -0.025399621576070786, 0.01709596998989582, -0.05032398924231529, -0.08668231964111328, -0.02525498904287815, -0.02656141109764576, -0.01846071146428585, -0.02549111284315586, -0.042502060532569885, 0.0249753687530756, -0.1108175739645958, -0.035765063017606735, -0.08129974454641342, 0.11118119210004807, -0.08943918347358704, 0.001714429585263133, -0.04398924857378006, -0.01331798080354929, -0.06744489073753357, -0.0011559419799596071, 0.04281020537018776, 0.015311921946704388, 0.011925587430596352, 0.08527541905641556, -0.0066968235187232494, 0.027166131883859634, 0.023102618753910065, 0.03667300194501877, -0.005095070693641901, -0.004239234142005444, 0.017067840322852135, 0.027911311015486717, -0.02763601951301098, 0.0609247200191021, -0.026606708765029907, -0.05020726099610329, -0.0284752044826746, 0.06004232540726662, -0.027754174545407295, 0.06340168416500092, 0.0474073700606823, -0.014188675209879875, 0.007879804819822311, -0.06213697791099548, 0.022734494879841805, -0.006668010260909796, 0.04395470768213272, 0.029787475243210793, 0.006909498479217291, -0.004583005793392658, 0.0334942564368248, -0.0291744377464056, 0.06519141048192978, -0.033641260117292404, 0.056022390723228455, 0.044885680079460144, -0.042962636798620224, 0.019209641963243484, 0.03714120388031006, -0.08046755939722061, 0.05304897204041481, -0.06106964126229286, -0.07009661942720413, 0.01140409242361784, -0.061022497713565826, 0.002009423915296793, 0.05458056554198265, -0.006947381887584925, -0.10940540581941605, -0.0910959541797638, -0.05627748370170593, 0.09429635852575302, 0.043522804975509644, -0.011053070425987244, -0.00915861688554287, 0.06389674544334412, 0.018065961077809334, -0.035033877938985825, 0.031995050609111786, 0.001112287980504334, 0.030561937019228935, -0.01405235193669796, -0.09580117464065552, 0.042206913232803345, -0.12940141558647156, 0.035168904811143875, 0.007437800522893667, 0.07645902037620544, 0.06011698767542839, 0.01125869620591402, 0.04738190397620201, 0.029313305392861366, 0.09294486790895462, 0.012783440761268139, -0.05755852162837982, -0.056168220937252045, -0.01155303418636322, -0.007357548922300339, -0.011791515164077282, -0.05327539145946503, -0.06910084933042526, -0.01014809962362051, 0.06861218065023422, 0.015878649428486824, -0.09680277109146118, 0.036968182772397995, 0.0299705658107996, 0.024698356166481972, -0.03442384675145149, 0.055705856531858444, -0.002557370811700821, 0.04097963124513626, -0.00264963461086154, -0.063993439078331, -0.01648111455142498, -0.01555212028324604, 0.00723837548866868, -0.003912916872650385, -0.04033292084932327, 0.08412332832813263, -0.005599703174084425, 0.0424395389854908, -0.02085793949663639, -0.03391271457076073, -0.04566902667284012, -0.0400819331407547, 0.07603954523801804, -0.03085668385028839, 0.010349801741540432, 0.0123054888099432, 0.09565328061580658, 0.06524579226970673, 0.06222720444202423, -0.009518477134406567, -0.02893664874136448, -0.10306688398122787, 0.017670391127467155, 0.028993478044867516, 0.040596261620521545, -0.05128234997391701, -0.05339420959353447, -0.0025256199296563864, 0.08923278748989105, 0.07204937189817429, -0.06718175113201141, -0.04675962030887604, -0.054907966405153275, -0.061875488609075546, -0.03067697398364544, -0.04477567970752716, 0.05147923156619072, -0.06260059773921967, 0.03450248762965202, 0.051291875541210175, -0.04109867662191391, -0.001690313103608787, 0.08118417859077454, 0.025976093485951424, 0.03184042498469353, 0.011018434539437294, 0.042698170989751816, -0.0055611697025597095, 0.1280505657196045, 0.02498319000005722, -0.019468287006020546, 0.09140992909669876, -0.028019970282912254, -0.057911600917577744, -0.0006382517167367041, 0.07349355518817902, -0.014160492457449436, 0.02323845587670803, 0.030443822965025902, -0.07178143411874771, -0.05629661679267883, -0.04998233541846275, 0.0570659302175045, 0.01879267767071724, 0.04540617763996124, -0.0567176379263401, -0.0431453213095665, 0.0018044939497485757, 0.09361707419157028, -0.10432988405227661, -0.031205862760543823, 0.03517819195985794, 0.015004732646048069, -0.09883257001638412, 0.021018011495471, 0.05871133878827095, 0.08965450525283813, 0.09130171686410904, 0.031226105988025665, -0.019532812759280205, -0.033797603100538254, -0.05161614716053009, -0.02996811829507351, -0.08130760490894318, 0.025225037708878517, 0.024818599224090576, 0.05813445523381233, -0.03413233906030655, 0.030561594292521477, -0.02015675976872444, -0.10246118903160095, 0.020367087796330452, -0.04060108959674835, -0.035862404853105545, -0.0038586114533245564, -0.025749841704964638, -0.09557703137397766, 0.037922605872154236, -2.7141099268731186e-33, -0.025499368086457253, 0.017166098579764366, -0.0662568062543869, 0.016708333045244217, -0.03500239923596382, -0.14061222970485687, 0.08348773419857025, 0.010526226833462715, 0.0673358365893364, 0.01372387632727623, 0.058513518422842026, -0.002596555044874549, -0.0785636156797409, -0.03366130590438843, -0.014874226413667202, -0.024583876132965088, 0.03383354842662811, -0.01071570347994566, -0.044048111885786057, -0.03209250420331955, 0.030385656282305717, 0.00803808681666851, 0.021202439442276955, 0.003522430080920458, -0.055180326104164124, 0.06172117218375206, 0.06160981208086014, -0.08477379381656647, 0.018013840541243553, 0.029811998829245567, -0.07650242000818253, -0.07690747082233429, 0.053263600915670395, 0.053276702761650085, -0.08670774847269058, 0.04476764425635338, -0.011413304135203362, -0.01770944707095623, 0.0436614453792572, 0.057750869542360306, 0.031234199181199074, 0.04193181172013283, 0.027768075466156006, 0.02869483269751072, 0.03461555764079094, 0.03842264786362648, 0.006490804720669985, 0.15276020765304565, -0.014643044210970402, 0.0028433268889784813, -0.020450320094823837, -0.06067950651049614, 0.01860644854605198, -0.0009884119499474764, 0.11563795059919357, 0.026161234825849533, -0.010722311213612556, -0.05361369252204895, 0.006880756467580795, -0.09731761366128922, 0.001941403141245246, -0.011733971536159515, -0.03234146535396576, 0.04850127547979355, -0.046632930636405945, -0.08734745532274246, -0.04580296203494072, -0.06830542534589767, -0.0298266913741827, -0.04379692301154137, 0.10573678463697433, 0.04114019498229027, -0.019675159826874733, -0.07214974611997604, -0.0021411629859358072, -0.07934053987264633, -0.008624903857707977, 0.007180246990174055, -0.014351587742567062, -0.01928703673183918, -0.05459558963775635, 0.01621459424495697, 0.0228870902210474, 0.046829648315906525, 0.0176851823925972, 0.009113923646509647, 0.09723136574029922, 0.07743671536445618, 0.07283276319503784, 0.02211572602391243, 0.05605144798755646, -0.035529062151908875, -0.013601789250969887, 0.008649487048387527, 0.03946773707866669, 7.734223268205606e-32, 0.019975515082478523, 0.011906719766557217, 0.022977661341428757, -0.0000044781363612855785, 0.010909420438110828, 0.032822396606206894, 0.02511577308177948, -0.01707376539707184, 0.00880503561347723, -0.07115913182497025, 0.07399621605873108, 0.13186520338058472, -0.09070879220962524, 0.08941122144460678, 0.030546382069587708, 0.033982519060373306, -0.02739250846207142, -0.0234705600887537, -0.02055671438574791, -0.033817049115896225, -0.12605522572994232, -0.03766431286931038, -0.04798157885670662, 0.06774543225765228, -0.10207488387823105, -0.011560287326574326, -0.07438582926988602, -0.0883399173617363, -0.021509071812033653, 0.015217664651572704, -0.023458046838641167, 0.02112882025539875, 0.04936103895306587, -0.053160134702920914, 0.08216951787471771, -0.013098057359457016, -0.10507994890213013, 0.07338283210992813, 0.026950562372803688, 0.0026437335181981325, -0.022617366164922714, -0.02384340390563011, -0.012681723572313786, 0.06964771449565887, -0.01189162116497755, 0.025276266038417816, 0.05103554204106331, -0.007700510788708925, 0.023570619523525238, -0.07943928241729736, -0.04244600236415863, 0.009867043234407902, 0.05719301849603653, -0.03485502675175667, -0.006811192259192467, -0.0503375381231308, -0.04306546971201897, 0.03598993644118309, 0.052169911563396454, 0.006003060843795538, -0.05400766432285309, 0.05371911823749542, -0.05543886125087738, 0.03190308064222336 ]
78 Chapter 4 1 Apply the f ollowing transformations to the curves with equations y = f(x) where: i f(x ) = x2 ii f(x) = x3 iii f(x) = 1 __ x In each case show both f(x ) and the transformation on the same diagram. a f(2x) b f(βˆ’x ) c f( 1 _ 2 x) d f(4x) e f( 1 _ 4 x) f 2f(x ) g βˆ’f(x ) h 4f(x ) i 1 _ 2 f(x) j 1 _ 4 f(x) 2 a Sketch the curv e with equation y = f(x) where f(x) = x2 βˆ’ 4. b Sketch the gra phs of y = f(4x), 1 _ 3 y = f(x), y = f(βˆ’x) and y = βˆ’f(x). 3 a Sketch the curv e with equation y = f(x) where f(x) = (x βˆ’ 2)(x + 2)x. b Sketch the gra phs of y = f( 1 _ 2 x), y = f(2x) and y = βˆ’f(x). 4 a Sketch the curv e with equation y = x2(x – 3). b On the same axes, sk etch the curves with equations: i y = (2x)2(2x – 3) ii y = βˆ’x2(x – 3) 5 a Sketch the curv e y = x2 + 3x – 4. b On the same axes, sk etch the graph of 5y = x2 + 3x – 4. 6 a Sketch the gr aph of y = x2(x – 2)2. b On the same axes, sk etch the graph of 3y = –x2(x – 2)2. 7 The point P(2, βˆ’3) lies on the curve with equation y = f(x). a State the coordina tes that point P is transformed to on the curve with equation y = f(2x). (1 mark) b State the coordina tes that point P is transformed to on the curve with equation y = 4f(x). (1 mark) 8 The point Q( βˆ’2, 8) lies on the curve with equation y = f(x). State the coor dina tes that point Q is transformed to on the curve with equation y = f( 1 _ 2 x). (1 mark) 9 a Sketch the gr aph of y = (x – 2)(x – 3)2. (4 marks) b The graph of y = (ax – 2)(ax – 3)2 passes through the point (1, 0). Find two possible values for a . (3 marks) For part b, rearrange the s econd equation into the form y = 3f( x).Hint P Let f( x) = x2(x – 3) and try to write each of the equations in part b in terms of f( x).Problem-solving E E E/PExercise 4F 1 The point R(4, βˆ’ 6) lies on the curve with equation y = f(x). State the coordinates that point R is transformed to on the curve with equation y = 1 _ 3 f(2x). 2 The p oint S(βˆ’4, 7) is transformed to a point S9(βˆ’8, 1.75). Write down the transformation in the form y = af(bx).Challenge
[ -0.008617733605206013, 0.025739924982190132, -0.10825558006763458, -0.049027103930711746, 0.015980763360857964, 0.08586245775222778, 0.014097458682954311, 0.004709181841462851, -0.08724911510944366, -0.029178299009799957, 0.017304832115769386, -0.06409555673599243, 0.011816606856882572, 0.0232030488550663, -0.027653643861413002, -0.0038238416891545057, -0.13632717728614807, 0.00967564806342125, -0.04411696642637253, -0.05983884632587433, 0.0532958097755909, -0.06238788366317749, -0.08259832113981247, -0.11338648200035095, -0.00605771504342556, -0.065727099776268, -0.06009244546294212, -0.03766130656003952, -0.031202808022499084, -0.08028767257928848, 0.025446079671382904, 0.019673295319080353, 0.0321209616959095, 0.050074853003025055, 0.0619288794696331, 0.001921256771311164, -0.009696044027805328, 0.0045525566674768925, 0.05210462585091591, -0.020780475810170174, -0.0670974850654602, 0.04816848039627075, -0.0068291970528662205, -0.03289323300123215, 0.0726814940571785, -0.029898211359977722, 0.022754130885004997, 0.019455919042229652, -0.024798167869448662, 0.02501826360821724, 0.0028971524443477392, -0.03695223852992058, -0.09620721638202667, -0.018418217077851295, 0.061123643070459366, 0.01902008056640625, 0.013700383715331554, 0.07645200937986374, 0.0005395451444201171, 0.05329686030745506, -0.02211267128586769, 0.05833938345313072, -0.005568814929574728, 0.04715876281261444, -0.06756109744310379, 0.07371950149536133, 0.05858966335654259, -0.046950362622737885, -0.04359722137451172, 0.11227791011333466, -0.1097753569483757, 0.05125013366341591, -0.10080159455537796, -0.08014184236526489, 0.03305434435606003, 0.07162847369909286, 0.014310481958091259, 0.10335967689752579, -0.061449985951185226, -0.04313897714018822, -0.024100787937641144, -0.09666410833597183, 0.08621950447559357, -0.014834389090538025, -0.005463933572173119, 0.04769285023212433, -0.04438355565071106, -0.09021066874265671, 0.013966181315481663, -0.007965855300426483, -0.08220865577459335, -0.014934172853827477, -0.04631851613521576, -0.05399180203676224, -0.010540693067014217, -0.06878983974456787, -0.05791645124554634, -0.011306816712021828, 0.10512463003396988, 0.06671018153429031, -0.08425161242485046, -0.005123198498040438, 0.1426295042037964, 0.05508648231625557, -0.05893164873123169, -0.016300152987241745, -0.06342071294784546, -0.030608804896473885, -0.06634287536144257, 0.013917088508605957, 0.03885738179087639, -0.04851479083299637, -0.0012875152751803398, 0.0031367784831672907, 0.08564697206020355, -0.08165494352579117, -0.02269309014081955, 0.07821618765592575, -0.024023206904530525, -0.06575952470302582, -0.028333932161331177, 0.023029401898384094, 0.0015022136503830552, 0.05783764645457268, -0.009807122871279716, -0.06986548751592636, -0.027708491310477257, -0.005834984593093395, -0.024384619668126106, -0.015028699301183224, 0.02470579743385315, -0.04924895241856575, -0.07440274208784103, -0.06893383711576462, 0.015817854553461075, -0.0013845048379153013, -0.11894428730010986, 0.07744095474481583, -0.03610479459166527, 0.013744491152465343, 0.0026864896062761545, 0.07986602932214737, 0.03632959723472595, 0.024453017860651016, 0.0768430307507515, -0.025778472423553467, -0.027893511578440666, 0.01754835620522499, 0.027937844395637512, 0.05838119238615036, -0.04935217276215553, -0.07157053053379059, -0.011954644694924355, 0.07548199594020844, 0.015043006278574467, -0.015162416733801365, -0.037476640194654465, -0.014555827714502811, 0.006671702954918146, -0.036212190985679626, -0.016429590061306953, 0.03782404586672783, 0.03587932512164116, 0.0031038776505738497, 0.045406728982925415, -0.05713865906000137, 0.0012677961494773626, 0.12692669034004211, -0.018908794969320297, -0.0003782019193749875, 0.03453437238931656, -0.11257076263427734, 0.017673010006546974, 0.12220703810453415, 0.06395626813173294, 0.0917418822646141, 0.09924324601888657, -0.07275322824716568, -0.040843214839696884, -0.026264790445566177, 0.0753268152475357, -0.07026020437479019, 0.013076373375952244, -0.038857851177453995, -0.0432746559381485, -0.0019137754570692778, 0.02399687096476555, 0.06750630587339401, -0.005562968552112579, -0.024101898074150085, -0.03229339420795441, -0.021956324577331543, -0.00736126396805048, -0.00774924922734499, -0.008808314800262451, 0.013666572980582714, -0.011869235895574093, 0.03991309925913811, -0.03502647578716278, 0.030834045261144638, -0.015970513224601746, 0.07764822244644165, 0.10351830720901489, 0.027396127581596375, -0.058019351214170456, -0.02371428906917572, -0.04395940154790878, -0.11707381904125214, -0.10756617784500122, 0.023677516728639603, -0.0338263101875782, 0.025149613618850708, -0.0004692135553341359, 0.0382765531539917, -0.0037682149559259415, -0.02890358306467533, 0.06072413921356201, 0.05270915850996971, -0.04990531504154205, 0.04825817048549652, -0.013156807981431484, -0.016218174248933792, 0.05839582160115242, -7.12891773367623e-33, -0.062126077711582184, 0.03863785043358803, -0.059262268245220184, 0.06847267597913742, -0.04237954691052437, -0.023961102589964867, 0.014659358188509941, 0.009322162717580795, 0.03908830136060715, 0.014171412214636803, 0.07653800398111343, -0.034565236419439316, -0.06664474308490753, -0.061319269239902496, -0.05229513719677925, -0.08422260731458664, -0.012331304140388966, 0.003536459058523178, -0.04251660034060478, -0.012063325382769108, 0.03446974232792854, 0.03350627422332764, 0.024115730077028275, 0.030283113941550255, -0.11465433984994888, 0.01097732875496149, 0.0312572717666626, 0.02761639654636383, -0.03738643229007721, 0.056780919432640076, -0.05578348785638809, -0.018166033551096916, -0.004709594417363405, -0.041240084916353226, -0.01056615263223648, 0.04284954443573952, -0.03737761452794075, 0.040403302758932114, -0.0034312857314944267, 0.020998720079660416, 0.010465200990438461, 0.09715965390205383, 0.021344151347875595, -0.025931308045983315, -0.018822211772203445, 0.05603118613362312, 0.07837490737438202, 0.061327945441007614, 0.010970951057970524, -0.024335769936442375, -0.009978294372558594, -0.09860335290431976, -0.01785503327846527, -0.06495934724807739, -0.03793967142701149, 0.06921495497226715, 0.040586329996585846, -0.10055892914533615, -0.007754484191536903, -0.10707157850265503, -0.03615030273795128, 0.014227756299078465, -0.08115614205598831, 0.07814904302358627, -0.015590636059641838, -0.12340983748435974, -0.08699560165405273, -0.04161418229341507, 0.02076072245836258, 0.05632975697517395, 0.030489612370729446, -0.008454927243292332, 0.006122257094830275, -0.008791097439825535, 0.026922347024083138, -0.03554490953683853, 0.05593343824148178, -0.010937875136733055, -0.02869349718093872, 0.025755181908607483, -0.01851409487426281, -0.000390549743315205, 0.0056047760881483555, 0.03075183555483818, 0.010599828325212002, -0.01301606371998787, 0.06713934242725372, 0.05740921199321747, 0.037087857723236084, 0.013429708778858185, -0.01028421800583601, 0.020717915147542953, 0.06316138803958893, 0.002010082360357046, -0.043059997260570526, 1.0324129433413285e-31, -0.09281370043754578, 0.006119589786976576, 0.017547806724905968, 0.01577613316476345, 0.08503307402133942, 0.007824067026376724, 0.08513209223747253, 0.004401755053550005, 0.028477005660533905, -0.058711741119623184, 0.06903856247663498, 0.15453992784023285, -0.0017487788572907448, 0.02055744268000126, 0.04826854169368744, 0.02506866678595543, -0.009846706874668598, -0.002846313873305917, -0.030106283724308014, -0.013355785980820656, -0.061609260737895966, -0.051453907042741776, -0.052666373550891876, 0.02857683040201664, -0.026043085381388664, -0.04012419655919075, -0.034280743449926376, -0.0785529688000679, -0.04054800420999527, 0.03422151133418083, 0.00018351881590206176, -0.02311960980296135, 0.0527021586894989, -0.05265878885984421, 0.012521459721028805, -0.052855025976896286, -0.04471663385629654, 0.033756010234355927, -0.04489381983876228, 0.02054172195494175, -0.003996338229626417, 0.04032100364565849, 0.05337739735841751, 0.05121690407395363, -0.03777186572551727, 0.03719601407647133, 0.03279383108019829, 0.010564999654889107, 0.004271449986845255, 0.03717762604355812, 0.02090277709066868, -0.006185542326420546, 0.035863205790519714, -0.061983536928892136, -0.023159874603152275, -0.009447176940739155, 0.06230900436639786, -0.019589034840464592, 0.04107973724603653, 0.06729989498853683, -0.09461276978254318, 0.007313606794923544, 0.003601975506171584, -0.007718183100223541 ]
79Graphs and transformations 4.7 Transforming functions You can apply transformations to unfamiliar functions by considering how specific points and features are transformed. Example 15 The following diagram shows a sketch of the curve f(x) which passes through the origin. The points A(1, 4) and B(3, 1) also lie on the curve. Sketch the following: a y = f(x + 1) b y = f(x βˆ’ 1) c y = f(x) βˆ’ 4 d 2y = f(x) e y βˆ’ 1 = f(x) In each case you should show the positions of the images of the points O, A and B.y x Oy = f(x) B (3, 1)A (1, 4) a f(x + 1) O(2, 1)/four.ss01 –1 xy y = f( x + 1) b f(x βˆ’ 1) O(/four.ss01, 1) 1(2, /four.ss01) xy y = f( x – 1) c f(x) βˆ’ 4 y x O –/four.ss011 (3, –3)y = f( x) – 4Translate f(x) 1 unit in the direction of the negative x-axis. Translate f(x) 1 unit in the direction of the positive x-axis. Translate f(x) 4 units in the direction of the negative y-axis.
[ -0.016790170222520828, 0.02158244140446186, -0.05481753498315811, -0.07096415013074875, -0.04640055075287819, 0.04527558386325836, -0.01431749016046524, 0.0012071575038135052, -0.011572487652301788, -0.03747863322496414, 0.0028491325210779905, -0.015574891120195389, -0.027858257293701172, 0.012413457967340946, -0.03636348247528076, -0.04458470642566681, -0.02888108417391777, 0.04044263809919357, -0.0011150246718898416, -0.06355589628219604, 0.03638070449233055, -0.0781404972076416, -0.05823112279176712, -0.1697525531053543, 0.07277736812829971, -0.0807027816772461, 0.022219084203243256, -0.013011621311306953, -0.07374771684408188, -0.10234642028808594, 0.0018587177619338036, 0.009021628648042679, 0.011511058546602726, 0.023452432826161385, 0.06438083946704865, -0.028754794970154762, -0.0242579597979784, 0.05013692006468773, 0.06253049522638321, 0.007562537211924791, 0.026349512860178947, 0.06038500741124153, 0.05272921174764633, -0.012915479019284248, 0.06481341272592545, -0.06780384480953217, 0.0029248534701764584, 0.010143091902136803, 0.055544037371873856, -0.05430107191205025, 0.04330515116453171, 0.034039005637168884, -0.054811082780361176, -0.000503552844747901, 0.08566374331712723, 0.057626836001873016, 0.07587374746799469, 0.05600912496447563, 0.02680305205285549, 0.046043071895837784, 0.0009188978583551943, 0.061960771679878235, -0.03464015573263168, -0.0032052581664174795, -0.02946837805211544, 0.1132500022649765, 0.054398611187934875, -0.053359322249889374, -0.0021136384457349777, 0.07821536064147949, -0.1318519562482834, 0.02447544038295746, -0.05619365721940994, -0.04500735178589821, 0.012719007208943367, -0.016942953690886497, 0.04957036301493645, 0.11628692597150803, -0.06114238500595093, -0.0641583651304245, -0.05026204138994217, -0.008228588849306107, 0.08952342718839645, 0.03260830044746399, 0.01137311290949583, 0.05310256406664848, 0.00019159021030645818, -0.040115635842084885, 0.027463948354125023, -0.004382250364869833, -0.08674705773591995, 0.04049777612090111, -0.033089570701122284, -0.09057152271270752, -0.005266835913062096, -0.10440319031476974, 0.0013067509280517697, 0.0033464087173342705, 0.10287639498710632, 0.04964178055524826, -0.06622392684221268, 0.07999785244464874, 0.045514341443777084, 0.06693138182163239, -0.04275404289364815, -0.013182376511394978, -0.0543438084423542, -0.014726629480719566, 0.0003006989136338234, -0.05610504001379013, 0.001893355161882937, -0.03487930819392204, -0.08624601364135742, 0.05525054410099983, 0.053935740143060684, -0.1049630343914032, -0.02355375699698925, -0.02181079052388668, 0.0180618017911911, -0.00826498307287693, 0.037548549473285675, 0.027966827154159546, 0.010480217635631561, 0.01417940016835928, -0.10122371464967728, 0.032421715557575226, -0.06955830752849579, -0.02802979201078415, 0.031159156933426857, 0.029969926923513412, 0.08916405588388443, -0.025344252586364746, 0.004528042860329151, -0.03448835015296936, -0.04899809509515762, -0.02951877750456333, -0.06557770818471909, 0.04002809897065163, -0.019159313291311264, 0.0813073068857193, 0.01004522480070591, 0.1062568724155426, 0.0859544426202774, 0.02283991314470768, 0.019115786999464035, -0.04193073883652687, -0.07362735271453857, 0.000478549423860386, 0.048881784081459045, -0.006805435288697481, -0.001982530113309622, -0.008687661029398441, -0.016433555632829666, 0.0652398020029068, 0.012068871408700943, -0.007457928266376257, -0.06625142693519592, -0.05658029392361641, -0.02680124342441559, -0.03242524340748787, -0.03656252846121788, 0.0012589701218530536, -0.01143031008541584, 0.05203995853662491, 0.08512042462825775, -0.020325902849435806, 0.05750978738069534, 0.09391530603170395, 0.032914094626903534, 0.05023912340402603, -0.029741184785962105, -0.08090721815824509, 0.01151781901717186, 0.09239113330841064, 0.001400456763803959, 0.03611122816801071, 0.06252233684062958, 0.003521040314808488, -0.049289360642433167, -0.017618665471673012, 0.047421324998140335, -0.07397498935461044, 0.02617526426911354, 0.018189093098044395, -0.031989604234695435, -0.0865025445818901, -0.019293591380119324, 0.02844937890768051, 0.00014540096162818372, -0.001559077063575387, 0.0081110168248415, -0.008773870766162872, -0.013929840177297592, -0.02151845395565033, -0.11322464793920517, -0.0030751600861549377, 0.04893133416771889, 0.029035748913884163, -0.02178768627345562, 0.017485763877630234, -0.009797273203730583, 0.02258593589067459, 0.14433704316616058, 0.075999416410923, -0.07139983028173447, -0.032867614179849625, -0.019749963656067848, -0.023767102509737015, -0.03428587689995766, 0.00007042381912469864, 0.013617205433547497, 0.057158321142196655, 0.00797678530216217, -0.01698736660182476, -0.009678499773144722, -0.120700903236866, 0.07135030627250671, -0.00722018675878644, -0.06269245594739914, -0.005691241007298231, -0.013986362144351006, -0.040945738554000854, 0.04525407776236534, -3.0314546470157575e-33, -0.00562323909252882, 0.05213294178247452, -0.04192344471812248, 0.008626498281955719, -0.05852847173810005, -0.08180275559425354, 0.06361240893602371, 0.014752866700291634, 0.07455068826675415, 0.05216439440846443, -0.04088209569454193, 0.022440047934651375, -0.10953176766633987, -0.03058217279613018, -0.03660353273153305, -0.05635622888803482, 0.00038873188896104693, -0.03031846135854721, -0.11108226329088211, -0.02347254753112793, 0.033900804817676544, 0.03382435068488121, -0.01716412790119648, -0.025683054700493813, -0.105317622423172, 0.013140188530087471, 0.07915638387203217, -0.02600100263953209, -0.005887956358492374, 0.014647538773715496, -0.09348927438259125, -0.03105468861758709, 0.07013628631830215, 0.04537321254611015, -0.04766551032662392, 0.055059097707271576, -0.004644750151783228, -0.01613609306514263, 0.05144964158535004, 0.011971307918429375, 0.012059307657182217, 0.06314285844564438, 0.04937157779932022, 0.007223423570394516, 0.03267499431967735, 0.05301375687122345, 0.03604205325245857, 0.10194902122020721, -0.01922355778515339, 0.004000394139438868, -0.06763955950737, -0.06843994557857513, 0.012079199776053429, -0.01155718881636858, 0.08218028396368027, 0.03134167566895485, 0.03127265349030495, -0.08675143122673035, 0.014142770320177078, -0.07778625190258026, -0.04688600078225136, -0.0348745658993721, -0.05022188276052475, 0.028740454465150833, -0.07621566951274872, -0.1379527747631073, -0.07521384954452515, -0.03826315701007843, -0.04007291421294212, -0.054703082889318466, 0.11537062376737595, 0.04845711961388588, 0.00731884827837348, -0.05857344716787338, 0.024595772847533226, -0.05805308744311333, 0.017628392204642296, -0.022154856473207474, -0.048837609589099884, 0.03985943645238876, 0.009848187677562237, -0.02502640336751938, -0.015477685257792473, 0.08119223266839981, 0.017024947330355644, 0.00040615221951156855, 0.04535304754972458, 0.08957953006029129, 0.05649333447217941, 0.037011612206697464, -0.01965835504233837, 0.016511734575033188, -0.02519250474870205, -0.011125367134809494, -0.0045163813047111034, 7.773444224967967e-32, 0.001406054012477398, 0.05386639013886452, 0.016007015481591225, 0.04786806181073189, 0.0006607057293877006, -0.03768913820385933, 0.08130458742380142, -0.02381783537566662, -0.019731910899281502, -0.031218791380524635, 0.02038727141916752, 0.13081540167331696, -0.02322910726070404, 0.07645468413829803, 0.038714680820703506, -0.009243895299732685, 0.039329513907432556, -0.08256795257329941, -0.03831589221954346, -0.02786354534327984, -0.07466550916433334, 0.015707938000559807, -0.04553358629345894, 0.05050861835479736, -0.022828228771686554, -0.0039887456223368645, -0.04322083666920662, -0.03360065072774887, 0.011294220574200153, -0.05166105180978775, -0.04952665790915489, 0.0038735889829695225, 0.07929807901382446, -0.06988505274057388, 0.06544878333806992, -0.022700104862451553, -0.08283122628927231, 0.019649449735879898, -0.031582895666360855, 0.01393604651093483, 0.017799120396375656, 0.0020264936611056328, -0.0251668281853199, 0.019725767895579338, -0.0797397717833519, 0.019275344908237457, 0.06252086162567139, -0.005979551468044519, -0.01531313732266426, -0.07299023121595383, -0.03836441412568092, 0.010426326654851437, 0.04449935629963875, -0.12401161342859268, -0.0038439808413386345, 0.03135642036795616, 0.04852332919836044, -0.02072589471936226, 0.019241156056523323, 0.07720605283975601, -0.06851031631231308, 0.055934708565473557, 0.013904096558690071, 0.006277456413954496 ]
80 Chapter 4 d 2y = f(x) so y = 1 __ 2 f(x) (3, )(1, 2) 1 2y = f(x)1 2y x O e y βˆ’ 1 = f( x) so y = f( x) + 1 1y x O(3, 2)(1, 5) y = f( x) + 1Rearrange in the form y = … Stretch f(x) by scale factor 1 _ 2 in the y-dir ection. Rearrange in the form y = … Translate f(x) 1 unit in the direction of the positive y-axis. 1 The following diagram shows a sketch of the curve y x O(4, 4) C B DA2 1 6 with equation y = f(x). The points A(0, 2), B(1, 0), C(4, 4) and D(6, 0) lie on the curve. Sketch the following graphs and give the coordinates of the points, A, B, C and D after each transformation: a f(x + 1) b f(x ) βˆ’ 4 c f(x + 4) d f(2x ) e 3f(x ) f f( 1 _ 2 x) g 1 _ 2 f(x) h f(βˆ’ x) 2 The curve y = f(x) passes through the origin and y x Ox = 1y = 2 has horizontal asymptote y = 2 and vertical asymptote x = 1, as shown in the diagram. Sketch the following graphs. Give the equations of any asymptotes and give the coordinates of intersections with the axes after each transformation. a f(x ) + 2 b f(x + 1) c 2f(x ) d f(x ) βˆ’ 2 e f(2x ) f f( 1 _ 2 x) g 1 _ 2 f(x) h βˆ’f(x )Exercise 4G
[ -0.047331757843494415, 0.03014230914413929, -0.01388527825474739, 0.003610537853091955, -0.005678805988281965, 0.09377336502075195, 0.06767749786376953, -0.0213429294526577, 0.005796169862151146, 0.005806676112115383, 0.008952684700489044, -0.013110651634633541, 0.015286065638065338, 0.05770239606499672, -0.016853921115398407, -0.03748529776930809, -0.09528159350156784, 0.04476425051689148, -0.018394576385617256, -0.07852808386087418, 0.0701611116528511, 0.011257040314376354, -0.14395838975906372, -0.05105414614081383, 0.03614501655101776, 0.013265758752822876, -0.04189402610063553, -0.013699527829885483, -0.06018689274787903, -0.10345479100942612, 0.01848086342215538, 0.04422146454453468, -0.05535726621747017, 0.06994406133890152, 0.038832228630781174, 0.03510737046599388, 0.06356263905763626, -0.00822303257882595, 0.029768269509077072, -0.05016719922423363, -0.048026226460933685, 0.020060425624251366, -0.02278929203748703, 0.0047823358327150345, 0.06479861587285995, -0.002373764058575034, -0.0485035665333271, 0.06972486525774002, 0.06831822544336319, -0.05279644951224327, 0.003094827989116311, 0.041437193751335144, -0.09585981070995331, -0.030345642939209938, 0.08210489898920059, -0.06257247924804688, 0.07275021821260452, -0.021823683753609657, -0.02873295359313488, 0.07211983948945999, -0.0653780847787857, 0.007675219792872667, 0.00849162507802248, 0.012591551057994366, -0.016447078436613083, 0.1051839143037796, -0.041658706963062286, -0.0400884710252285, -0.08078163862228394, 0.10499628633260727, -0.12821845710277557, -0.019960317760705948, -0.02478562667965889, -0.04648980870842934, 0.1081710159778595, 0.037020985037088394, -0.02456422708928585, 0.030339641496539116, 0.048723552376031876, 0.030472731217741966, -0.030765678733587265, -0.039814598858356476, 0.0405627004802227, 0.0056022643111646175, -0.049396589398384094, 0.005746550392359495, -0.035263583064079285, -0.03892632946372032, 0.007345321588218212, -0.014908910728991032, 0.01997729204595089, 0.008496221154928207, -0.028667356818914413, 0.0015044895699247718, -0.0022085970267653465, -0.08635500818490982, 0.006874291691929102, -0.04807579889893532, 0.010821118950843811, 0.12593337893486023, -0.052577659487724304, 0.045408908277750015, 0.03819376975297928, 0.018573999404907227, -0.05376831814646721, -0.06501149386167526, 0.04721478745341301, -0.059397198259830475, 0.0474168136715889, -0.015779437497258186, 0.007745671551674604, -0.03393402323126793, -0.05984881892800331, 0.05788815766572952, 0.08207916468381882, -0.017902912572026253, 0.027730878442525864, -0.06988868862390518, 0.0065012420527637005, -0.08075415343046188, 0.040775783360004425, -0.042978812009096146, -0.03337045758962631, 0.003047540318220854, -0.03510279580950737, -0.08659016340970993, 0.03786979615688324, -0.013565798290073872, 0.03596179932355881, 0.009468144737184048, -0.0036847905721515417, -0.04932081326842308, 0.03868778795003891, -0.008000236004590988, -0.03136522322893143, 0.042249977588653564, -0.13594520092010498, 0.026582932099699974, -0.012039913795888424, 0.027502914890646935, 0.005738539155572653, 0.06820473819971085, 0.07926058024168015, -0.07709329575300217, 0.04495217278599739, 0.029590371996164322, 0.05643778294324875, -0.0003848455671686679, 0.04449526593089104, 0.0807260274887085, 0.02925153076648712, 0.010594256222248077, -0.03587808832526207, -0.014864839613437653, 0.025190390646457672, -0.035409022122621536, -0.03385182470083237, -0.05615746229887009, -0.06410801410675049, -0.02809533290565014, -0.08653419464826584, -0.035335227847099304, -0.04457509145140648, 0.04347442090511322, 0.03349067643284798, 0.0411544069647789, 0.0009927208302542567, 0.11788876354694366, -0.044621605426073074, 0.008380185812711716, 0.07104043662548065, -0.04814975708723068, 0.015497086569666862, 0.0696435421705246, -0.013852089643478394, 0.02981622703373432, 0.1364569514989853, 0.047914404422044754, 0.006015002727508545, 0.0277862586081028, 0.09578177332878113, -0.07895391434431076, -0.009493660181760788, 0.014770381152629852, -0.039275139570236206, -0.13970068097114563, -0.09328978508710861, 0.06758761405944824, -0.031587518751621246, 0.032456107437610626, 0.0464707612991333, 0.027532992884516716, -0.041054606437683105, 0.020824402570724487, -0.043026186525821686, -0.009165175259113312, 0.012344478629529476, 0.03924284875392914, -0.053843263536691666, 0.04192521423101425, 0.004030311480164528, 0.07440657168626785, 0.08145011961460114, 0.011722750030457973, 0.05208302289247513, -0.026938991621136665, -0.07893974334001541, -0.07340428233146667, -0.08499867469072342, -0.038663674145936966, 0.014715521596372128, 0.03740783408284187, -0.004132071975618601, -0.0071772984229028225, 0.008051971904933453, -0.10366431623697281, 0.03508700057864189, 0.038166116923093796, -0.07011765241622925, 0.0008569892379455268, 0.08835189044475555, -0.04708871617913246, 0.012806938961148262, -2.5086577589203684e-33, -0.056566022336483, 0.06145340949296951, -0.05416443571448326, -0.023149291053414345, -0.0336633026599884, -0.026835652068257332, 0.028572160750627518, 0.016540369018912315, 0.07566598057746887, 0.07522042840719223, -0.009175926446914673, 0.009392454288899899, -0.019109057262539864, -0.06566176563501358, -0.07331831008195877, -0.049393218010663986, -0.05139024183154106, 0.024384750053286552, -0.05444461107254028, 0.061349984258413315, 0.049936357885599136, -0.0351191908121109, -0.004315918777137995, 0.01821722462773323, -0.09650449454784393, 0.011140203103423119, 0.02074216865003109, -0.027530191466212273, 0.007016260642558336, 0.05951336398720741, -0.09687779098749161, -0.03876190632581711, 0.04114184528589249, 0.03304986655712128, -0.008462442085146904, -0.00042503775330260396, -0.013027042150497437, -0.019502421841025352, 0.049150675535202026, -0.005610258784145117, 0.06361062079668045, 0.04660555347800255, -0.004971650894731283, -0.06100115180015564, 0.08145734667778015, 0.02969708852469921, 0.03767433390021324, 0.017542356625199318, 0.015450102277100086, -0.0635564774274826, -0.06403060257434845, -0.06672350317239761, -0.03034607507288456, 0.09277071803808212, 0.0035300222225487232, 0.012220467440783978, 0.04920708388090134, -0.02092580683529377, -0.006906058173626661, -0.027798334136605263, -0.05989985540509224, -0.010674132965505123, -0.04582119360566139, 0.03101471997797489, -0.005016045644879341, -0.109431691467762, -0.08364438265562057, 0.01270067784935236, -0.06576190888881683, 0.04270917549729347, 0.04378755763173103, 0.010129790753126144, 0.002572237281128764, 0.007908191531896591, -0.043606437742710114, -0.01728106662631035, -0.03799829259514809, -0.01851639710366726, -0.04070718213915825, -0.0025175544433295727, 0.0006710559246130288, 0.05044206604361534, 0.006178900133818388, 0.033585648983716965, -0.004940299782902002, 0.012740397825837135, 0.12652023136615753, 0.05973353981971741, 0.06172095984220505, -0.02381269820034504, -0.04188881069421768, 0.04019855335354805, -0.006086569745093584, -0.06560014933347702, 0.0204518660902977, 9.079657074084746e-32, -0.07551703602075577, -0.08323153853416443, -0.02040092647075653, 0.07256053388118744, 0.11958853900432587, 0.00876945722848177, 0.05375847592949867, 0.03514338657259941, -0.02064051665365696, -0.08336284011602402, 0.009298713877797127, 0.0643441453576088, -0.020775513723492622, 0.10994115471839905, -0.03801726922392845, -0.02090262807905674, 0.006597532425075769, 0.019264444708824158, -0.09477895498275757, -0.032624103128910065, -0.019520673900842667, 0.001994726248085499, -0.12333478033542633, -0.040653351694345474, 0.0031121561769396067, -0.00091176712885499, -0.033037248998880386, -0.043018825352191925, -0.07098358869552612, 0.019409269094467163, -0.020083079114556313, -0.005808803718537092, -0.06920602172613144, -0.10654664039611816, 0.013285702094435692, 0.05415002629160881, -0.0659731850028038, 0.09591550379991531, -0.06783479452133179, 0.012081382796168327, -0.08104915171861649, 0.015022710897028446, -0.0023662999738007784, 0.013711064122617245, -0.023648587986826897, 0.001673602731898427, 0.018075549975037575, -0.05864777788519859, 0.048761650919914246, -0.02686203271150589, -0.017484314739704132, -0.03839440643787384, 0.0707966536283493, -0.005411764606833458, -0.04546277970075607, 0.020560581237077713, 0.04354194924235344, 0.017872804775834084, -0.01271376945078373, 0.07856833189725876, -0.056129105389118195, 0.08506154268980026, 0.07358260452747345, -0.026662487536668777 ]
81Graphs and transformations 3 The curve with equation y = f(x) passes through the y x OB CD A (–4, –6)–2 4 –3 points A(βˆ’4, βˆ’6), B(βˆ’2, 0), C(0, βˆ’3) and D(4, 0) as shown in the diagram. Sketch the following and give the coordinates of the points A, B, C and D after each transformation. a f(x βˆ’ 2) b f(x ) + 6 c f(2x ) d f(x + 4) e f(x ) + 3 f 3f(x ) g 1 _ 3 f(x) h f( 1 _ 4 x) i βˆ’f(x ) j f(βˆ’ x) 4 A sketch of the curv e y = f(x) is shown in the y x Ox = –21 diagram. The curve has a vertical asymptote with equation x = βˆ’2 and a horizontal asymptote with equation y = 0. The curve crosses the y-axis at (0, 1). a Sketch, on separa te diagrams, the graphs of: i 2f(x ) ii f(2x ) iii f(x βˆ’ 2) iv f(x ) βˆ’ 1 v f(βˆ’ x) vi βˆ’f(x ) In each case state the equations of any asymptotes and, if possible, points where the curve cuts the axes. b Suggest a possible equation f or f(x). 5 The point P(2, 1) lies on the gr aph with equation y = f(x). a On the graph of y = f(ax), the point P is mapped to the point Q(4, 1). Determine the value of a. (1 mark) b Write down the coor dinates of the point to which P maps under each transformation i f(x – 4) ii 3f(x ) iii 1 _ 2 f(x) – 4 (3 marks) 6 The diagram sho ws a sketch of a curve with equation y = f(x). The points A(βˆ’1, 0), B(0, 2), C(1, 2) and D(2, 0) lie on the curve. Sketch the following graphs and give the coordinates of the points A, B, C and D after each transformation: a y + 2 = f(x) b 1 _ 2 y = f(x) c y βˆ’ 3 = f(x) d 3y = f(x) e 2y βˆ’ 1 = f(x)E/P OABC Dy xP Rearrange each equation into the form y = …Problem-solving
[ -0.011856946162879467, 0.02744477614760399, -0.042537104338407516, -0.04090229421854019, -0.01198847871273756, 0.06760215014219284, -0.014975075609982014, -0.05927043408155441, -0.0823395624756813, -0.008436844684183598, -0.006486008875072002, -0.04300575330853462, -0.0010384637862443924, -0.010492788627743721, -0.08475387841463089, -0.02103600464761257, -0.06090943515300751, -0.009680572897195816, -0.06456082314252853, -0.038375530391931534, 0.04894215241074562, -0.05532343313097954, -0.000533567275851965, -0.17328369617462158, 0.10332532227039337, -0.06039079278707504, 0.03463560715317726, 0.007359621115028858, -0.08451784402132034, -0.06922915577888489, 0.003326472593471408, -0.015147583559155464, 0.02913452498614788, -0.005877169780433178, 0.1013421043753624, -0.02897169068455696, -0.01713920757174492, 0.043118916451931, 0.07728346437215805, -0.049431413412094116, 0.0035365389194339514, 0.01484060287475586, 0.0154538219794631, -0.005963907577097416, 0.0912506952881813, -0.021682053804397583, -0.03424633666872978, 0.02249431051313877, 0.07779262214899063, -0.030104773119091988, 0.035668518394231796, 0.04204905033111572, -0.035489536821842194, 0.016349809244275093, 0.06325293332338333, 0.010719955898821354, 0.07035607844591141, 0.049871884286403656, 0.054135825484991074, 0.050236523151397705, 0.012857426889240742, 0.08834468573331833, -0.03662300854921341, 0.027953198179602623, -0.02965417131781578, 0.14895179867744446, 0.07433199882507324, -0.07888273149728775, -0.01838316023349762, 0.06117436662316322, -0.09723007678985596, -0.005204659420996904, -0.09251173585653305, -0.041954487562179565, 0.046685751527547836, -0.01731245592236519, 0.009721554815769196, 0.07418043911457062, 0.010736086405813694, -0.05395878106355667, -0.019816871732473373, -0.00141045730561018, 0.048051830381155014, 0.057570476084947586, 0.05420580878853798, 0.015810662880539894, -0.017844220623373985, 0.010099323466420174, -0.006617405917495489, 0.08284898102283478, -0.09150862693786621, 0.021099675446748734, -0.05620046705007553, -0.08368818461894989, -0.036802615970373154, -0.11602462083101273, 0.016523415222764015, -0.049353230744600296, 0.05897226557135582, 0.07074207812547684, -0.018404746428132057, 0.1012243926525116, 0.03325319290161133, 0.044759947806596756, -0.0475328154861927, -0.039724431931972504, -0.06983125954866409, -0.024811288341879845, -0.02351854369044304, -0.019708743318915367, 0.008470322005450726, -0.06563565135002136, -0.0458303764462471, -0.0010929652489721775, 0.027803068980574608, -0.08036668598651886, 0.018094109371304512, -0.02100527100265026, 0.004769751336425543, -0.026825593784451485, 0.03285633400082588, 0.01956343464553356, 0.019193632528185844, 0.008805717341601849, -0.09062400460243225, -0.02715550735592842, -0.08774426579475403, 0.0243375226855278, 0.0025864660274237394, 0.0025786426849663258, 0.12498435378074646, -0.05943181738257408, 0.03200977295637131, -0.0645306259393692, -0.06941846013069153, -0.051303308457136154, -0.05825989693403244, 0.059948261827230453, -0.0013098653871566057, -0.034786731004714966, -0.013685345649719238, 0.12239804118871689, 0.07120367884635925, 0.01582675240933895, 0.03290031850337982, -0.039364635944366455, -0.09322167932987213, -0.02658015862107277, 0.04412386193871498, 0.01196979358792305, 0.027642423287034035, -0.008210470899939537, -0.03450952470302582, 0.08851084858179092, -0.016258303076028824, -0.02204737439751625, -0.05111555755138397, -0.03728009760379791, -0.021545737981796265, -0.01884228177368641, -0.044516511261463165, 0.042171329259872437, 0.049634527415037155, 0.051786791533231735, 0.05461745336651802, -0.0012219332857057452, 0.05755912512540817, 0.047205038368701935, 0.016393328085541725, -0.0005121935391798615, -0.04973848536610603, -0.055521637201309204, -0.013024960644543171, 0.11367230862379074, 0.045615438371896744, -0.04835907742381096, 0.08915376663208008, 0.04169879108667374, -0.007899414747953415, -0.024719418957829475, 0.09846998751163483, -0.0027598196174949408, 0.01286016684025526, 0.012009871192276478, 0.01052892580628395, -0.029374049976468086, 0.009637366980314255, 0.028970446437597275, -0.013382968492805958, 0.026343924924731255, -0.008656129240989685, -0.04027299955487251, -0.011850266717374325, -0.025009850040078163, -0.13509829342365265, 0.02120075561106205, 0.03679865971207619, 0.077369324862957, -0.06378630548715591, 0.004222465679049492, 0.07644175738096237, 0.021237891167402267, 0.12119665741920471, 0.051417842507362366, -0.09043494611978531, -0.04621312767267227, -0.05771580711007118, -0.028953412547707558, -0.0748106837272644, 0.016842687502503395, -0.041262853890657425, 0.04084128886461258, 0.021131888031959534, 0.033692214637994766, 0.007063997443765402, -0.06962086260318756, 0.04506662115454674, 0.006294150836765766, -0.09341114014387131, -0.009125081822276115, 0.0113593228161335, -0.048644889146089554, 0.060843780636787415, -4.883423037862232e-33, 0.020245954394340515, 0.00426507368683815, -0.03079037368297577, -0.003444345435127616, -0.03342348337173462, -0.04833376407623291, 0.05834157392382622, 0.031904205679893494, 0.07233221083879471, 0.09224969893693924, 0.016908051446080208, 0.01930960826575756, -0.05499280244112015, 0.02269701659679413, -0.028683792799711227, -0.03358583524823189, -0.04401306062936783, -0.08544814586639404, -0.02384585328400135, -0.039510659873485565, 0.015226680785417557, 0.006434714421629906, -0.011890104040503502, -0.005370829254388809, -0.02222171053290367, 0.020535411313176155, 0.07274098694324493, -0.0650179386138916, -0.028428208082914352, 0.02285311557352543, -0.03726501017808914, -0.04574206843972206, 0.0573449432849884, 0.040624018758535385, -0.051360126584768295, 0.02746501751244068, -0.016390936449170113, 0.002459933515638113, 0.03412126377224922, 0.07306656986474991, 0.013610606081783772, 0.11150075495243073, 0.029816381633281708, 0.0012175312731415033, 0.06017021834850311, 0.026657210662961006, 0.011458381079137325, 0.08122260123491287, -0.002387851011008024, 0.04946858808398247, -0.04767661541700363, -0.10601481795310974, 0.02567368559539318, -0.008974926546216011, 0.0840003490447998, 0.007353303488343954, -0.004785526543855667, -0.09411164373159409, 0.05331461504101753, -0.03046911023557186, -0.06615190953016281, -0.08092884719371796, -0.025404643267393112, -0.008081378415226936, -0.0682854950428009, -0.09688537567853928, -0.08503589034080505, -0.08148816972970963, -0.013027633540332317, -0.0509318970143795, 0.09873776137828827, -0.004749355837702751, -0.04691926762461662, -0.039322689175605774, 0.0028784573078155518, -0.08484822511672974, 0.007616596296429634, 0.027016792446374893, 0.04721982404589653, 0.011301782913506031, -0.06787726283073425, 0.0008940410916693509, 0.005637123249471188, 0.08504506200551987, -0.00781948957592249, -0.005503448657691479, 0.10043922811746597, 0.07852096110582352, 0.10774223506450653, 0.07553751766681671, 0.007624847814440727, 0.02025340311229229, 0.011664542369544506, -0.005045237950980663, -0.002743582706898451, 6.808519703691529e-32, -0.036044634878635406, 0.06989707052707672, -0.002759946510195732, 0.037039611488580704, 0.013231727294623852, -0.05121518671512604, 0.05564865469932556, -0.021064355969429016, 0.02126442641019821, -0.05413135886192322, 0.09432923793792725, 0.08701568841934204, -0.08425681293010712, 0.09569448977708817, -0.006894002202898264, 0.009096951223909855, 0.007777726743370295, -0.051853444427251816, -0.007738946471363306, -0.06603562831878662, -0.07591787725687027, -0.015662619844079018, 0.008844711817800999, 0.03608229011297226, 0.02253551408648491, 0.004251408390700817, -0.019444046542048454, -0.09979811310768127, -0.02671467326581478, -0.03318069875240326, -0.023930877447128296, -0.021609792485833168, 0.0010104754474014044, -0.06005154177546501, 0.0350402295589447, -0.020393436774611473, -0.0830078274011612, 0.019477542489767075, -0.004521805793046951, 0.054567717015743256, 0.04443059116601944, -0.03819117322564125, -0.043315332382917404, -0.014506809413433075, -0.03697403147816658, 0.017607709392905235, 0.04704321548342705, 0.014735812321305275, -0.0006455820403061807, -0.07367566227912903, -0.049496546387672424, -0.0007881476194597781, 0.014368678443133831, -0.09274572134017944, -0.011545585468411446, -0.031097810715436935, 0.003942204639315605, 0.02589271403849125, -0.01804659329354763, 0.044050995260477066, -0.0830347090959549, 0.008652166463434696, -0.03222215175628662, 0.04104433208703995 ]
82 Chapter 4 1 a On the same axes sketch the gr aphs of y = x2(x βˆ’ 2) and y = 2x βˆ’ x2. b By solving a suitable equa tion find the points of intersection of the two graphs. 2 a On the same axes sketch the curv es with equations y = 6 __ x and y = 1 + x. b The curves intersect at the points A and B . Find the coordinates of A and B . c The curve C with equa tion y = x2 + px + q, where p and q are integers, passes through A and B . Find the values of p and q . d Add C to y our sketch. 3 The diagram sho ws a sketch of the curve y = f(x). y x O2 BA (3, 4) y = 2 The point B (0, 0) lies on the curve and the point A (3, 4) is a maximum point. The line y = 2 is an asymptote. Sketch the following and in each case give the coordinates of the new positions of A and B and state the equation of the asymptote: a f(2x) b 1 _ 2 f(x) c f(x) βˆ’ 2 d f(x + 3) e f(x βˆ’ 3) f f(x) + 1 4 The diagram sho ws the curve with equation y = 5 + 2x βˆ’ x2 and the line with equation y = 2. The curve and the line intersect at the points A and B . Find the x -coordinates of A and B . (4 marks) 5 f(x ) = x2(x – 1)(x – 3). a Sketch the gra ph of y = f(x). (2 marks) b On the same axes, dr aw the line y = 2 – x. (2 marks) c State the number of real solutions to the equation x2(x – 1)(x – 3) = 2 – x. (1 mark) d Write down the coor dinates of the point where the graph with equation y = f(x) + 2 crosses the y-axis. (1 mark) 6 The figure shows a sk etch of the curve with equation y = f(x). On separate axes sketch the curves with equations:a y = f(– x) (2 marks) b y = –f(x) (2 marks) Mark on each sketch the x-coordinate of any point, or points, where the curve touches or crosses the x -axis.P Ey x Oy = 2 B A y = 5 + 2x – x2 E/P Ey x O –2 2Mixed exercise 4
[ -0.01696573570370674, 0.07196259498596191, -0.022713154554367065, 0.024965256452560425, -0.01977226324379444, 0.07208871096372604, 0.008239323273301125, 0.01169667113572359, -0.07628785818815231, -0.006508714985102415, 0.00936982873827219, -0.03800100088119507, -0.012277021072804928, 0.01382342167198658, -0.018131040036678314, 0.01012389175593853, -0.06476754695177078, -0.027715882286429405, -0.037311527878046036, -0.050002001225948334, -0.018189547583460808, -0.03124728612601757, -0.04140578955411911, -0.05298466607928276, 0.061993345618247986, -0.0908636823296547, 0.029962090775370598, -0.035966139286756516, 0.004085923545062542, -0.035231813788414, 0.11181996762752533, 0.02308644726872444, -0.01333682332187891, 0.03167126700282097, 0.058025896549224854, 0.05925263836979866, 0.10281265527009964, 0.035737864673137665, 0.02280084230005741, -0.06878352910280228, -0.06019311025738716, -0.058338578790426254, -0.07152166962623596, -0.01598075032234192, 0.07044057548046112, -0.02341901883482933, -0.046586498618125916, -0.01811198703944683, 0.040296830236911774, -0.008345418609678745, 0.024066997691988945, -0.0027423144783824682, -0.03983209282159805, -0.00921513233333826, -0.002345440909266472, 0.025822889059782028, -0.050667233765125275, -0.03109334222972393, -0.005544615443795919, 0.12022759020328522, -0.00004335862467996776, 0.030732542276382446, -0.0187729150056839, 0.06434816867113113, -0.02910877764225006, 0.03932597115635872, 0.06496786326169968, 0.014312822371721268, 0.005037212744355202, 0.07843703031539917, -0.038471709936857224, 0.03631960228085518, -0.04590170457959175, -0.06531234830617905, 0.015202527865767479, -0.04938288405537605, -0.03256654366850853, -0.041115280240774155, -0.017231784760951996, -0.03067612461745739, -0.04184304550290108, -0.019394826143980026, 0.05348912253975868, 0.049923405051231384, -0.021900692954659462, -0.003222949802875519, 0.023565270006656647, -0.04645314812660217, 0.059387072920799255, 0.011383438482880592, 0.05959298089146614, -0.017122449353337288, -0.04592645913362503, -0.06451615691184998, 0.022573575377464294, -0.12509307265281677, 0.057639673352241516, -0.05399663746356964, 0.011706126853823662, 0.09965550154447556, 0.03793148323893547, 0.014594021253287792, -0.012172355316579342, 0.10710571706295013, 0.04036417230963707, 0.02649405412375927, -0.01954522170126438, -0.0772949606180191, 0.025620583444833755, -0.032438866794109344, -0.004677262622863054, -0.09282899647951126, 0.020993413403630257, 0.062197599560022354, 0.107785664498806, -0.01653021201491356, 0.06854372471570969, -0.041120074689388275, -0.0034247965086251497, -0.07422134280204773, 0.07936163991689682, -0.10129678249359131, 0.03371179848909378, -0.013538457453250885, -0.04600943624973297, -0.04548267647624016, -0.04022785648703575, -0.029303347691893578, 0.03248997777700424, -0.062272779643535614, -0.012662691064178944, -0.05879559367895126, -0.007073964457958937, -0.03556787595152855, -0.018251748755574226, -0.002385578118264675, -0.04915345087647438, 0.06256043165922165, -0.02739677019417286, -0.08221878856420517, 0.08178107440471649, 0.08285390585660934, 0.00843378622084856, -0.037654977291822433, 0.019685976207256317, 0.011065812781453133, -0.09372322261333466, 0.0052267578430473804, 0.04296638071537018, -0.016554614529013634, 0.026078233495354652, 0.00552942231297493, 0.03352030739188194, 0.13501866161823273, 0.027744127437472343, 0.0028308217879384756, -0.0029017606284469366, -0.016361819580197334, 0.0057548098266124725, -0.0362829864025116, -0.10195708274841309, 0.04516609013080597, -0.10490137338638306, 0.0493515282869339, 0.06798108667135239, -0.04299521818757057, -0.004450809210538864, 0.09215737134218216, 0.02515118010342121, 0.021068399772047997, -0.013218740001320839, 0.053660809993743896, -0.038279447704553604, 0.033827826380729675, 0.03217398375272751, -0.043262772262096405, 0.0952782928943634, 0.04817407950758934, -0.03126849606633186, 0.009576570242643356, 0.010154134593904018, -0.03629940003156662, 0.01487435307353735, -0.027716465294361115, 0.02417985163629055, -0.07022059708833694, 0.017130598425865173, 0.04986773803830147, -0.002420481527224183, 0.08755598962306976, -0.027725106105208397, -0.0771738588809967, -0.017755698412656784, 0.13523124158382416, -0.0968664214015007, 0.010022818110883236, 0.0618676133453846, 0.04285574331879616, -0.12244394421577454, 0.0032900210935622454, 0.024189643561840057, 0.030205221846699715, 0.04295935109257698, -0.05983605608344078, 0.046655427664518356, -0.002206079661846161, -0.06345457583665848, 0.04638279974460602, -0.046210236847400665, -0.019994650036096573, 0.060297735035419464, 0.02786155790090561, -0.03605449199676514, -0.050276871770620346, -0.005279793404042721, -0.0837910994887352, 0.02831936813890934, -0.06129561364650726, -0.14012908935546875, 0.028114978224039078, -0.022081872448325157, -0.025840485468506813, 0.06357929855585098, 2.012099190432279e-33, -0.01825857348740101, -0.006057209335267544, -0.03127536550164223, -0.03436203673481941, -0.0625998005270958, -0.030493583530187607, 0.10460928827524185, -0.05197058618068695, 0.10556989163160324, 0.07510534673929214, 0.06554335355758667, 0.010628698393702507, -0.03907119855284691, 0.07516169548034668, -0.011483763344585896, 0.009056607261300087, -0.045415595173835754, -0.043002642691135406, -0.019827967509627342, -0.03360132500529289, -0.005421206820756197, -0.029252296313643456, -0.005856062285602093, -0.07746700942516327, 0.05203858017921448, 0.06625165790319443, 0.07579155266284943, -0.12969990074634552, -0.08106637001037598, 0.03188510239124298, -0.05111224949359894, -0.05109792202711105, 0.05164245516061783, -0.01654146797955036, -0.04229319840669632, -0.021248357370495796, 0.009404796175658703, -0.043277841061353683, 0.03552921116352081, -0.06853421777486801, 0.03079506941139698, 0.05577250197529793, 0.050990015268325806, 0.06013251096010208, 0.014348870143294334, 0.0487825833261013, -0.012813800014555454, 0.12404631078243256, -0.0219862163066864, 0.048289187252521515, 0.015251632779836655, -0.065278559923172, 0.07336925715208054, 0.006867376621812582, 0.13951687514781952, -0.014028158970177174, 0.06612657010555267, -0.03206194192171097, 0.013788647018373013, -0.08727158606052399, -0.0024175827857106924, -0.031690411269664764, -0.012052719481289387, 0.0715901106595993, 0.02949892356991768, -0.041745975613594055, -0.07816685736179352, -0.05466308444738388, 0.012037727981805801, 0.01931072026491165, 0.03783288970589638, 0.017927279695868492, -0.0137793542817235, -0.0845704972743988, -0.0379612073302269, 0.008154836483299732, -0.048278965055942535, 0.047709278762340546, 0.06124043092131615, -0.07719796895980835, -0.04578465223312378, 0.04376298561692238, -0.00014983947039581835, -0.01678190752863884, -0.026837484911084175, 0.053170908242464066, 0.06095840781927109, 0.027122657746076584, 0.05137944594025612, -0.020284973084926605, 0.00046458045835606754, 0.024994131177663803, -0.04537421092391014, -0.018771925941109657, 0.10249001532793045, 7.998395640148952e-32, -0.057841431349515915, -0.041659802198410034, -0.025677695870399475, -0.004107610322535038, 0.03143126890063286, 0.05815063416957855, 0.049355920404195786, 0.03663664311170578, -0.022876692935824394, -0.025985678657889366, 0.00574328051880002, 0.052697546780109406, -0.09663122147321701, 0.0408497154712677, -0.026220232248306274, 0.038552235811948776, -0.02443615160882473, 0.01884981244802475, -0.030839109793305397, -0.058018799871206284, -0.0661504715681076, -0.020420202985405922, -0.03136861324310303, 0.06454556435346603, -0.022091612219810486, 0.016677072271704674, -0.04737798124551773, -0.039194244891405106, 0.019831979647278786, -0.016498208045959473, -0.0035937472712248564, -0.042444150894880295, -0.07375585287809372, -0.004118173848837614, 0.09346485137939453, 0.019601086154580116, -0.09318061918020248, 0.11297371238470078, 0.01445193961262703, -0.010537593625485897, -0.06796109676361084, -0.06244347244501114, -0.0859338566660881, 0.0260008554905653, 0.013452179729938507, -0.005029548425227404, 0.06671498715877533, -0.04292427375912666, 0.051009651273489, -0.03891107812523842, -0.07472363114356995, 0.04579343646764755, -0.012508085928857327, 0.030726183205842972, 0.047076720744371414, -0.08327571302652359, -0.06889382749795914, 0.021140290424227715, 0.013852348551154137, -0.023479100316762924, -0.08194667100906372, 0.06350594758987427, -0.05613031983375549, -0.013788523152470589 ]
83Graphs and transformations 7 The diagram sho ws the graph of the quadratic function f(x). x O13 (2, –1)y y = f(x) The graph meets the x-axis at (1, 0) and (3, 0) and the minimum point is (2, βˆ’1). a Find the equation of the gr aph in the form y = ax2 + bx = c (2 marks) b On separate ax es, sketch the graphs of i y = f(x + 2) ii y = (2x). (2 marks) c On each graph la bel the coordinates of the points at which the graph meets the x-axis and label the coordinates of the minimum point. 8 f(x ) = (x βˆ’ 1)(x βˆ’ 2)(x + 1). a State the coordina tes of the point at which the graph y = f(x ) intersects the y -axis. (1 mark) b The graph of y = af(x) intersects the y -axis at (0, βˆ’ 4). Find the value of a . (1 mark) c The graph of y = f(x + b) passes through the origin. Find three possible values of b . (3 marks) 9 The point P(4, 3) lies on a curv e y = f(x). a State the coordina tes of the point to which P is transformed on the curve with equation: i y = f(3x) ii 1 _ 2 y = f(x) iii y = f(x βˆ’ 5) iv βˆ’y = f(x) v 2( y + 2) = f(x) b P is transf ormed to point (2, 3). Write down two possible transformations of f(x). c P is transf ormed to point (8, 6). Write down a possible transformation of f(x) if i f(x ) is translated only ii f(x ) is stretched only. 10 The curve C1 has equation y = βˆ’ a __ x2 where a is a positive constant. The curve C2 has the equation y = x2 (3x + b) where b is a positive constant. a Sketch C1 and C2 on the same set of axes, showing clearly the coordinates of any point where the curves touch or cross the axes. (4 marks) b Using your sketch sta te, giving reasons, the number of solutions to the equation x 4 (3x + b) + a = 0. (2 marks) 11 a Factorise completel y x3 βˆ’ 6x2 + 9x. (2 marks) b Sketch the curve of y = x3 βˆ’ 6x2 + 9x showing clearly the coordinates of the points where the curve touches or crosses the axes. (4 marks) c The point with coordinates ( βˆ’4, 0) lies on the curve with equation y = (x βˆ’ k)3 βˆ’ 6(x βˆ’ k)2 + 9(x βˆ’ k) where k is a constant. Find the two possible values of k. (3 marks) 12 f(x ) = x(x βˆ’ 2)2 Sketch on separate axes the graphs of: a y = f(x) (2 marks) b y = f(x + 3) (2 marks) Show on each sketch the coor dinates of the points where each graph crosses or meets the axes.E/P E/P P E/P E/P E
[ 0.00649389810860157, 0.0698540061712265, -0.018366096541285515, -0.10235852748155594, -0.03687293082475662, 0.06967819482088089, -0.022405508905649185, -0.019884124398231506, -0.05680349841713905, -0.04473491758108139, 0.000046465018385788426, -0.02134426310658455, -0.023704620078206062, -0.03490864858031273, -0.05686081200838089, -0.007920393720269203, -0.0015226922696456313, -0.03127157315611839, -0.015254716388881207, -0.09327228367328644, 0.041427113115787506, -0.09336024522781372, -0.01830012910068035, -0.1203174740076065, 0.040257763117551804, -0.13355007767677307, -0.028055883944034576, -0.029022101312875748, -0.06626564264297485, -0.020671645179390907, 0.00027513393433764577, 0.016386359930038452, 0.06441696733236313, 0.02668989822268486, 0.11855528503656387, -0.044656816869974136, 0.06977951526641846, 0.004182877484709024, 0.0876900851726532, -0.021141089498996735, -0.027314061298966408, 0.04922318831086159, 0.011061719618737698, -0.032809894531965256, 0.06304211914539337, -0.015246648341417313, -0.0651167780160904, 0.03133906424045563, 0.017977621406316757, -0.025527318939566612, 0.018057696521282196, 0.06924878805875778, -0.01158554945141077, 0.04544011503458023, 0.05503830686211586, 0.009467875584959984, 0.010779039934277534, 0.05436955764889717, 0.02464381605386734, 0.013481895439326763, -0.01354260928928852, 0.015571382828056812, -0.033131975680589676, 0.07402393221855164, -0.0035825290251523256, 0.09132498502731323, 0.06483794748783112, -0.042919911444187164, -0.06337828189134598, 0.06954843550920486, -0.09935028105974197, 0.0817677304148674, -0.0467677004635334, -0.04811578989028931, 0.03739366680383682, -0.026194358244538307, 0.02085108496248722, 0.019319523125886917, 0.03347114101052284, -0.05957358330488205, -0.025067510083317757, -0.014580599963665009, 0.06841333955526352, 0.055993203073740005, 0.041567228734493256, -0.0032889368012547493, 0.01288610603660345, -0.04762793704867363, -0.043471116572618484, -0.020032698288559914, -0.016600284725427628, 0.08878449350595474, 0.001317356713116169, -0.022059781476855278, -0.004405227955430746, -0.1680135577917099, -0.016613800078630447, -0.018660906702280045, 0.04019756242632866, 0.09918875992298126, -0.0504520982503891, 0.04546206444501877, 0.005386847537010908, 0.07202330976724625, -0.012688789516687393, -0.0275993924587965, 0.009934189729392529, -0.0773400291800499, 0.011008378118276596, 0.0003009748470503837, -0.10989196598529816, -0.040570154786109924, -0.0073737469501793385, 0.06165569648146629, 0.08259511739015579, -0.040042564272880554, -0.02415435202419758, -0.0006036476115696132, 0.037455279380083084, -0.033343859016895294, 0.009755810722708702, -0.01340056024491787, 0.08140960335731506, 0.011326069943606853, -0.07626951485872269, -0.03034329228103161, -0.0782114788889885, 0.03973649442195892, 0.013192003592848778, -0.02738737314939499, 0.030905157327651978, -0.08782771229743958, 0.01797964796423912, -0.059982456266880035, 0.03188565745949745, -0.0659516230225563, -0.09456818550825119, 0.06624360382556915, -0.039848338812589645, -0.03546271100640297, 0.05932076647877693, 0.07658100873231888, 0.03421067073941231, 0.03923967480659485, 0.027202019467949867, -0.03542531654238701, -0.08056356012821198, 0.0036306926049292088, -0.030164940282702446, -0.01777685433626175, -0.0900665745139122, -0.007808813359588385, -0.018047817051410675, 0.10161673277616501, 0.05065104737877846, -0.06727270036935806, -0.0780056044459343, -0.06489945203065872, -0.05760476365685463, -0.05860789120197296, -0.04517456516623497, 0.04823087528347969, -0.06276551634073257, 0.039337433874607086, 0.08347491919994354, -0.030945852398872375, 0.04755297675728798, 0.0665426179766655, 0.029464270919561386, 0.05132567137479782, 0.006673627067357302, 0.027832845225930214, 0.01758798398077488, 0.11290954053401947, 0.010793513618409634, -0.01579681783914566, 0.12434930354356766, 0.020698465406894684, -0.06012628600001335, 0.06911906599998474, 0.06893378496170044, -0.00656979251652956, 0.026377413421869278, 0.01036175899207592, -0.022549761459231377, -0.05409261956810951, 0.013748986646533012, 0.009634530171751976, -0.048702314496040344, 0.024376822635531425, -0.003297485178336501, -0.014408654533326626, -0.012499925680458546, 0.04796870797872543, -0.12325073778629303, -0.029324403032660484, 0.011488931253552437, 0.05512199550867081, -0.10600744187831879, -0.01701465994119644, 0.09531546384096146, 0.04134206473827362, 0.06272546947002411, 0.05202523246407509, 0.0010047265095636249, -0.014710335060954094, -0.12701211869716644, -0.05115346983075142, -0.07102634757757187, 0.02437254600226879, 0.007674023974686861, -0.012330293655395508, -0.02607092820107937, -0.0002734167210292071, -0.01039733923971653, -0.1269102394580841, -0.02635432407259941, -0.05687625706195831, -0.13030174374580383, -0.025925127789378166, 0.007345275487750769, 0.005917869973927736, 0.020500456914305687, -2.018344371513007e-33, 0.02924133464694023, 0.03234904259443283, -0.028273994103074074, -0.021132366731762886, -0.03716098144650459, -0.07373303174972534, 0.07445000857114792, -0.01204424537718296, 0.062302909791469574, 0.1440601348876953, 0.07340873032808304, -0.01990644447505474, -0.006087415385991335, -0.02959243394434452, -0.06753204762935638, -0.02486294135451317, -0.0070136128924787045, -0.012168597429990768, -0.028612764552235603, -0.05077457055449486, 0.039897020906209946, 0.048506882041692734, 0.03053559549152851, 0.015024637803435326, -0.011945427395403385, 0.02920186147093773, 0.09387033432722092, -0.06695330888032913, -0.016954215243458748, 0.04780139401555061, -0.053426533937454224, 0.011646646074950695, 0.005114346276968718, 0.01718214713037014, -0.030307887122035027, 0.0023930049501359463, 0.0135091133415699, -0.06406491249799728, 0.055822473019361496, 0.001006735023111105, 0.07919865846633911, 0.04756617918610573, 0.01694902405142784, -0.001422631205059588, 0.06604058295488358, 0.035782698541879654, 0.02588259056210518, 0.04024336114525795, 0.017830554395914078, 0.06096348911523819, 0.011826765723526478, -0.0897243469953537, 0.0041930824518203735, -0.013492336496710777, 0.10647501051425934, 0.007787936832755804, 0.00019816264102701098, -0.07359476387500763, -0.002432876266539097, -0.07258839160203934, -0.01547207497060299, -0.02913244627416134, -0.05560443922877312, 0.0748770460486412, -0.04492385312914848, -0.1030515506863594, -0.021486550569534302, -0.047179076820611954, 0.0002624989429023117, -0.00842826534062624, 0.041826747357845306, 0.03548111021518707, 0.039232946932315826, -0.0750131905078888, -0.037564948201179504, -0.01572078838944435, -0.041898686438798904, 0.04548675939440727, 0.009579523466527462, -0.07731647789478302, -0.04050249233841896, -0.0026376775931566954, 0.01419773232191801, 0.02391403168439865, 0.03604689985513687, 0.0011805640533566475, 0.07780764251947403, 0.041572876274585724, 0.11147347092628479, 0.015569797717034817, 0.04173315316438675, 0.007494180463254452, -0.01958329975605011, -0.02687647007405758, 0.021530237048864365, 7.271796721029978e-32, -0.02376691624522209, 0.039000365883111954, -0.02792425826191902, 0.006882620509713888, 0.0631820559501648, 0.012836987152695656, 0.041994187980890274, -0.0579800121486187, -0.038291335105895996, -0.045798469334840775, 0.04940733313560486, 0.14075089991092682, -0.05292532593011856, 0.06871983408927917, -0.026027264073491096, -0.009493441320955753, -0.024437015876173973, 0.005729201249778271, -0.017926204949617386, -0.04149876534938812, -0.05300695449113846, -0.005173036362975836, -0.042594268918037415, 0.10004989057779312, -0.0721748098731041, -0.021934784948825836, -0.039004452526569366, -0.09446481615304947, 0.022352954372763634, -0.03099614568054676, -0.04367074370384216, 0.07043168693780899, -0.02254575490951538, -0.03714723885059357, 0.054703980684280396, -0.006907064933329821, -0.06163410097360611, 0.03340201452374458, -0.014775498770177364, 0.03236076980829239, -0.024805817753076553, -0.03808889910578728, -0.015053587965667248, 0.010285935364663601, -0.036744993180036545, 0.04642312973737717, 0.05796685442328453, -0.06251966953277588, 0.027383899316191673, -0.060202471911907196, 0.034702759236097336, 0.0015733273467049003, 0.08403395861387253, -0.06615373492240906, -0.06786200404167175, -0.06433660537004471, -0.00466235401108861, 0.02013787068426609, 0.010923714376986027, 0.016992520540952682, -0.016952836886048317, 0.05698772892355919, -0.02517494186758995, -0.007594537455588579 ]
84 Chapter 4 13 Given tha t f(x) = 1 __ x , x β‰  0, a Sketch the gra ph of y = f(x) – 2 and state the equations of the asymptotes. (3 marks) b Find the coordinates of the point where the curve y = f(x) – 2 cuts a coordinate axis. (2 marks) c Sketch the gra ph of y = f(x + 3). (2 marks) d State the equations of the asymptotes and the coordinates of the point where the curve cuts a coordinate axis. (2 marks)E The point R (6, – 4) l ies on the curve with equation y = f( x). State the coordinates that point R is transformed to on the curve with equation y = f( x + c ) – d .Challenge 1 If p is a r oot of the function f( x), then the graph of y = f(x) touches or crosses the x-axis at the point (p, 0). 2 The graphs of y = k __ x and y = k __ x2 , where k is a real constant, have asymptotes at x = 0 and y = 0. 3 The x-coordinate(s) at the points of intersection of the curves with equations y = f(x) and y = g(x) are the solution(s) to the equation f( x) = g( x). 4 The graph of y = f(x) + a is a translation of the graph y = f(x) by the vector ( 0 a ) . 5 The graph of y = f(x + a) is a translation of the graph y = f(x) by the vector ( –a 0 ) . 6 When you translat e a function, any asymptotes are also translated. 7 The graph of y = af(x) is a stretch of the graph y = f(x) by a scale factor of a in the vertical direction. 8 The graph of y = f(ax) is a stretch of the graph y = f( x) by a scale factor of 1 __ a in the horizontal direction. 9 The graph of y = –f( x) is a reflection of the graph of y = f(x) in the x-axis. 10 The graph of y = f(– x) is a reflection of the graph of y = f(x) in the y-axis.Summary of key points
[ 0.005548852030187845, 0.11908348649740219, 0.001617048867046833, 0.014689534902572632, -0.009964574128389359, -0.019769061356782913, 0.0358993262052536, 0.10491347312927246, -0.018443966284394264, 0.0034839999862015247, 0.07910178601741791, -0.06592093408107758, -0.05153549462556839, 0.013913234695792198, -0.026045240461826324, -0.06177949532866478, -0.08349082618951797, -0.018455786630511284, -0.010413069278001785, -0.027566615492105484, 0.014335487969219685, 0.046293970197439194, -0.00894168484956026, -0.022035110741853714, 0.06539039313793182, -0.10062602907419205, -0.03325473144650459, -0.0728820338845253, -0.009429003112018108, -0.06518832594156265, 0.024636201560497284, 0.011488445103168488, 0.0014302694471552968, -0.0004975875490345061, 0.07031066715717316, 0.01294636819511652, 0.03966343775391579, -0.02806512825191021, 0.07251310348510742, -0.00900453794747591, 0.0056058494374156, 0.057565443217754364, -0.05816502869129181, -0.030940404161810875, 0.14190636575222015, -0.02597106620669365, -0.07645648717880249, -0.01311611570417881, 0.007091313134878874, 0.018675612285733223, -0.048446156084537506, 0.06875333935022354, -0.08976081013679504, 0.07622350752353668, -0.0038112588226795197, 0.012251888401806355, 0.04077920690178871, 0.04673052579164505, 0.011353516951203346, 0.08518736809492111, 0.017463451251387596, 0.07110632210969925, -0.039137035608291626, 0.03838373348116875, -0.009669274091720581, 0.05115458369255066, 0.012062495574355125, -0.06380557268857956, 0.04684069752693176, 0.10866934061050415, -0.1507103145122528, -0.0015853835502639413, -0.01342515368014574, -0.09041725099086761, 0.07314001768827438, -0.017380939796566963, 0.0010053908918052912, 0.029975222423672676, -0.05379663035273552, -0.02542945183813572, -0.01831378974020481, 0.024243665859103203, 0.08216328173875809, 0.03325739875435829, 0.010487040504813194, -0.0024813972413539886, 0.008795910514891148, -0.027409853413701057, 0.004040316212922335, -0.035848040133714676, 0.013604188337922096, 0.049046240746974945, -0.03503280133008957, 0.0005580068100243807, 0.030808862298727036, -0.05772903561592102, -0.02101757936179638, -0.04744500294327736, 0.05479278042912483, 0.10670804232358932, -0.07830437272787094, 0.03151436150074005, -0.0026577734388411045, 0.036068156361579895, -0.02636478841304779, -0.032036490738391876, 0.05850338935852051, -0.08662385493516922, 0.011765970848500729, -0.061891429126262665, -0.010694360360503197, -0.040045365691185, 0.03934238478541374, 0.05189768224954605, 0.10529026389122009, -0.030787155032157898, 0.01497979462146759, -0.0542517714202404, -0.021150868386030197, -0.05768870189785957, 0.053262900561094284, -0.07333630323410034, -0.005462340544909239, -0.024462521076202393, -0.05736960470676422, 0.010855683125555515, -0.06241929531097412, 0.003491281531751156, 0.030912643298506737, 0.021300183609128, 0.09473946690559387, -0.11027568578720093, -0.012667655013501644, -0.01560221891850233, -0.07072105258703232, -0.04486508294939995, -0.0693851038813591, 0.05853298678994179, 0.018819058313965797, -0.02872154675424099, 0.034453537315130234, 0.08839883655309677, -0.08865343779325485, 0.05320873484015465, 0.07240547239780426, 0.0023019223008304834, 0.0060902065597474575, -0.005462737288326025, 0.009954163804650307, -0.027072779834270477, -0.005961144808679819, 0.011060497723519802, -0.005418367218226194, 0.04642815515398979, 0.10254082828760147, 0.038818903267383575, -0.060797207057476044, -0.04119044169783592, -0.07569564878940582, 0.0011154274689033628, -0.04670143499970436, 0.043529026210308075, -0.01159887295216322, 0.014208689332008362, 0.060628004372119904, -0.007725376635789871, 0.07444553822278976, 0.045679595321416855, -0.04189812391996384, 0.0878789871931076, 0.041737258434295654, -0.015963567420840263, 0.03392885625362396, 0.06651098281145096, 0.0009860377758741379, -0.004306707065552473, 0.12053344398736954, 0.07437489926815033, -0.0044561042450368404, 0.029865948483347893, 0.03021932765841484, -0.05386530980467796, 0.0540301650762558, -0.0027871711645275354, -0.045135073363780975, -0.0864655077457428, -0.030604196712374687, 0.06096033751964569, 0.021004565060138702, 0.052717313170433044, -0.0041549052111804485, -0.04435137286782265, -0.02813607268035412, 0.05868792161345482, -0.07374905794858932, -0.0713464766740799, -0.0017591712530702353, 0.01814696565270424, -0.03028956986963749, 0.017836133018136024, -0.0023066133726388216, 0.009501401335000992, -0.023954523727297783, 0.02097475528717041, -0.035640597343444824, 0.04513755440711975, -0.07565057277679443, 0.031125273555517197, -0.06504318863153458, -0.11701833456754684, 0.03849590942263603, -0.0017990126507356763, -0.07881607115268707, -0.006584624759852886, 0.016872022300958633, -0.05731244385242462, 0.04120059311389923, -0.08798430860042572, -0.12904495000839233, 0.05400008708238602, 0.02774316631257534, -0.016154004260897636, 0.01294801663607359, 7.035808295515535e-33, 0.03137928992509842, 0.034479204565286636, -0.03437446802854538, -0.02763807401061058, -0.03853057697415352, -0.10306347906589508, 0.0834323912858963, 0.046910375356674194, 0.05519266054034233, 0.04785962402820587, 0.07722488790750504, 0.04645445570349693, -0.029333319514989853, -0.0033307888079434633, 0.04521641880273819, -0.045022912323474884, 0.032065827399492264, 0.07184354215860367, -0.02765454538166523, -0.00306219351477921, -0.030548911541700363, 0.013875598087906837, 0.03499671816825867, -0.0030808954034000635, -0.007466591894626617, 0.009760686196386814, -0.009717773646116257, -0.0992635041475296, -0.10300970822572708, 0.05292773246765137, -0.06441584974527359, -0.017428163439035416, -0.02936888299882412, -0.03975986689329147, -0.049560222774744034, -0.03422878310084343, -0.03332878276705742, -0.018616266548633575, 0.01014676783233881, 0.029816001653671265, 0.014278206042945385, 0.021213581785559654, 0.08077194541692734, -0.031009385362267494, -0.016878029331564903, 0.024698903784155846, 0.06301194429397583, 0.07378140836954117, -0.05317874997854233, 0.041503556072711945, -0.021250857040286064, -0.08107901364564896, 0.019033309072256088, 0.030841946601867676, 0.10967262089252472, 0.05674426257610321, 0.020329387858510017, -0.031105173751711845, -0.013837633654475212, -0.1282157003879547, -0.029648426920175552, -0.022090714424848557, -0.04763982817530632, -0.01561175286769867, -0.05590497702360153, -0.07173390686511993, -0.08194547891616821, -0.05910254269838333, 0.036148566752672195, 0.020066265016794205, 0.025908615440130234, 0.010062657296657562, 0.011308497749269009, -0.06830870360136032, -0.06813625991344452, -0.030364476144313812, -0.10276521742343903, -0.046807125210762024, 0.05027338117361069, -0.07711640745401382, -0.010871405713260174, 0.026693809777498245, -0.04537395387887955, 0.06759530305862427, -0.041495125740766525, -0.006164376623928547, 0.021230395883321762, 0.0675099790096283, 0.09001464396715164, -0.026721376925706863, -0.01735357567667961, 0.012259083800017834, -0.009007973596453667, -0.014441238716244698, 0.04901449754834175, 7.501446587131198e-32, -0.04448629170656204, -0.020867574959993362, 0.02873925492167473, 0.060940567404031754, 0.07687897980213165, 0.04741733521223068, 0.041828688234090805, -0.07658777385950089, -0.03091522492468357, -0.10440968722105026, 0.02885906957089901, 0.048516277223825455, -0.08149775862693787, 0.05909363925457001, -0.08325400948524475, -0.007171081844717264, 0.013894339092075825, 0.04364557936787605, -0.009223978966474533, -0.018200740218162537, -0.050020329654216766, 0.04417767748236656, -0.09352651238441467, 0.03258037194609642, 0.03769480064511299, -0.01743527129292488, -0.007815640419721603, -0.09266122430562973, -0.008962288498878479, -0.05424867942929268, 0.034054066985845566, -0.0382031686604023, 0.08210776001214981, -0.04022723436355591, 0.028084682300686836, -0.0055125062353909016, -0.04013727977871895, -0.010257003828883171, -0.0005816894117742777, 0.02889222651720047, -0.03127316012978554, 0.0073763709515333176, -0.037374284118413925, -0.005260374862700701, -0.03578667342662811, -0.003506293287500739, 0.018266228958964348, -0.030279511585831642, 0.09050892293453217, 0.05097818002104759, 0.02297055348753929, 0.11259568482637405, 0.024187350645661354, -0.07455607503652573, 0.0019237082451581955, 0.039059195667505264, -0.004458884708583355, -0.022708678618073463, -0.09855298697948456, 0.030772840604186058, -0.026469001546502113, 0.1370929777622223, -0.04408349469304085, 0.03963598981499672 ]
Review exercise 851 1 a Write down the value of 8 1 _ 3 . (1 mark) b Find the value of 8 βˆ’ 2 _ 3 . (2 marks) ← Section 1.4 2 a Find the value of 12 5 4 _ 3 . (2 marks) b Simplify 24x2 Γ· 18 x 4 _ 3 . (2 marks) ← Sections 1.1, 1.4 3 a Express βˆšβ€―___ 80 in the form a βˆšβ€―__ 5 , where a is an integer. (2 marks) b Express (4 βˆ’ βˆšβ€―__ 5 )2 in the form b + c βˆšβ€―__ 5 , where b and c are integers. (2 marks) ← Section 1.5 4 a Expand and simplify (4 + βˆšβ€―__ 3 )(4 βˆ’ βˆšβ€―__ 3 ). (2 marks) b Express 26 ______ 4 + βˆšβ€―__ 3 in the form a + b βˆšβ€―__ 3 , where a and b are integers. (3 marks) ← Sections 1.5, 1.6 5 Here are three numbers: 1 βˆ’ √ __ k , 2 + 5 √ __ k and 2 √ __ k Given tha t k is a positive integer, find: a the mean of the three n umbers. (2 marks) b the range of the thr ee numbers. (1 mark) ← Section 1.5 6 Given that y = 1 ___ 25 x 4 , express each of the following in the form kxn, where k and n are constants. a yβˆ’1 (1 mark) b 5 y 1 _ 2 (1 mark) ← Section 1.4E E E E/p E7 Find the area of this tr apezium in cm2. Give your answer in the form a + b √ __ 2 , where a and b are integers to be found. (4 marks) ← Section 1.5 (5 + 3 2) cm3 + 2 cm 2 2 cm 8 Given that p = 3 βˆ’ 2 √ __ 2 and q = 2 βˆ’ √ __ 2 , find the value of p + q _____ p βˆ’ q . Give y our answer in the form m + n √ __ 2 , where m and n are rational numbers to be found. (4 marks) ← Sections 1.5, 1.6 9 a Factorise the expression x 2 βˆ’ 10x +16. (1 mark) b Hence, or otherwise, solv e the equation 82y βˆ’ 10(8y) + 16 = 0. (2 marks) ← Sections 1.3, 2.1 10 x2 βˆ’ 8x βˆ’ 29 (x + a)2 + b, where a and b are constants. a Find the value of a and the value of b. (2 marks) b Hence, or otherwise, sho w that the roots of x2 βˆ’ 8x βˆ’ 29 = 0 are c Β± d βˆšβ€―__ 5 , where c and d are integers. (3 marks) ← Sections 2.1, 2.2E/p E E/p E
[ 0.0707051083445549, 0.08695950359106064, -0.004012358840554953, -0.05049767345190048, 0.01238033827394247, 0.12074267119169235, -0.012086556293070316, -0.00391438277438283, -0.0718291699886322, -0.0012865080498158932, 0.01211061142385006, -0.09725109487771988, 0.027754759415984154, -0.024009214714169502, -0.0017249444499611855, -0.0464085154235363, -0.036924369633197784, 0.059266943484544754, -0.08911590278148651, -0.004200151655822992, 0.07396434247493744, -0.05872536078095436, -0.0059335967525839806, 0.02715851366519928, 0.09299325197935104, -0.053293947130441666, -0.07000410556793213, -0.044830322265625, -0.045877885073423386, -0.07675151526927948, 0.04869697988033295, 0.013005804270505905, 0.14114698767662048, -0.038370199501514435, -0.026811674237251282, -0.0013247184688225389, -0.0019887336529791355, 0.028726018965244293, -0.011166810989379883, -0.024433355778455734, -0.0626077651977539, 0.0013973413733765483, 0.007916436530649662, 0.04046576842665672, 0.01315094530582428, -0.05191420018672943, 0.0409221351146698, 0.01819656789302826, 0.04809866100549698, -0.007454471196979284, 0.005635540932416916, 0.03603582829236984, -0.06781864166259766, 0.017277279868721962, 0.03176940977573395, -0.06610820442438126, 0.012979457154870033, -0.03620663285255432, -0.06766986101865768, 0.02174576371908188, -0.019781362265348434, 0.009304533712565899, 0.0026467922143638134, 0.002641103696078062, -0.0375232994556427, 0.07764872163534164, 0.024552643299102783, -0.06836439669132233, 0.04448015242815018, 0.02346515841782093, -0.0554322712123394, 0.06532319635152817, 0.011896220035851002, -0.05239289999008179, 0.0443725548684597, -0.008317110128700733, -0.16789332032203674, 0.00011550044291652739, -0.005390547215938568, -0.060470100492239, -0.03338673710823059, -0.02851513773202896, 0.0680197924375534, -0.035834427922964096, 0.009964781813323498, 0.003499689046293497, 0.013328689150512218, 0.09661708027124405, 0.04994821920990944, -0.05324147269129753, 0.08185138553380966, 0.0033405935391783714, -0.020111462101340294, 0.024543603882193565, 0.0783572643995285, 0.016443738713860512, -0.0298455897718668, -0.08714959770441055, 0.022065995261073112, 0.08788267523050308, 0.046666469424963, -0.015486150048673153, -0.009544221684336662, -0.01930665224790573, -0.10629045218229294, 0.023838359862565994, -0.007183799520134926, -0.04510989785194397, 0.07121523469686508, -0.1180553287267685, -0.07476826012134552, 0.030674757435917854, 0.003905755467712879, 0.008311162702739239, -0.007227268069982529, 0.031180614605545998, 0.09998564422130585, 0.017050765454769135, -0.0287946667522192, 0.005949995014816523, 0.052648723125457764, -0.041915636509656906, 0.117420494556427, -0.05174098163843155, -0.00927889347076416, -0.051545239984989166, 0.03703109920024872, 0.009333058260381222, -0.038993727415800095, -0.0482349768280983, 0.037706926465034485, -0.04476980119943619, -0.04969331622123718, -0.012004547752439976, -0.0648299902677536, -0.11659584194421768, -0.02132245898246765, 0.08148883283138275, -0.00012659034109674394, -0.0843525379896164, 0.08059433102607727, 0.05862627923488617, -0.007170720957219601, -0.05027611926198006, -0.04576489329338074, 0.06032446026802063, -0.015829917043447495, -0.03117837943136692, 0.019671248272061348, 0.02550882287323475, -0.03481539711356163, 0.032443877309560776, 0.00990096665918827, 0.08753234148025513, 0.002046414418146014, -0.06226416304707527, 0.019225360825657845, -0.023829041048884392, -0.002172544365748763, 0.030856192111968994, -0.08651931583881378, 0.03939739242196083, 0.0016196424840018153, 0.04966389760375023, 0.11053585261106491, 0.022693302482366562, 0.03935560584068298, 0.036713797599077225, -0.01182086206972599, -0.06370195001363754, 0.03391622379422188, -0.03466019406914711, 0.05663277208805084, 0.08128964155912399, 0.02763913758099079, -0.07896064966917038, 0.12119323760271072, 0.0018323652911931276, -0.01887124963104725, -0.013507887721061707, 0.09637758880853653, 0.007707905489951372, 0.002906948793679476, 0.025982722640037537, 0.007956573739647865, 0.0054731955751776695, 0.02696058712899685, 0.04022044315934181, 0.018433136865496635, 0.016160380095243454, -0.013594957999885082, -0.07324394583702087, -0.09207389503717422, 0.007717890664935112, -0.039074160158634186, -0.0525553897023201, -0.010749584063887596, -0.030949823558330536, -0.12473519146442413, 0.040926653891801834, 0.005146848037838936, 0.019551998004317284, 0.0867171660065651, -0.029312167316675186, 0.025763481855392456, -0.023043183609843254, -0.00964417029172182, -0.05421599745750427, 0.08494306355714798, 0.04467279464006424, 0.0004947782726958394, -0.03915939852595329, -0.06608816981315613, -0.12104838341474533, 0.04261113703250885, 0.03459103778004646, 0.0010544315446168184, -0.04027592018246651, -0.03378484770655632, -0.02724437601864338, -0.00746871717274189, -0.1108986884355545, 0.06149822473526001, 6.61238274072187e-33, -0.1054893508553505, 0.06632282584905624, -0.1206897646188736, -0.030638422816991806, -0.03909694403409958, -0.00021106787608005106, 0.054285816848278046, -0.03839978575706482, 0.04335048422217369, 0.060407690703868866, 0.008961673825979233, -0.008755385875701904, 0.05593961849808693, 0.04714295268058777, -0.08268367499113083, -0.03838139772415161, -0.130987748503685, 0.05024341866374016, 0.07919103652238846, -0.056785523891448975, -0.02474728412926197, 0.0023297490552067757, 0.0057465373538434505, 0.06531641632318497, -0.010624924674630165, 0.032033372670412064, 0.0590183399617672, -0.08997795730829239, 0.01429719664156437, 0.056763432919979095, -0.02087077684700489, -0.050657160580158234, 0.05277621001005173, 0.0019162100506946445, -0.04275483638048172, -0.06285656988620758, 0.04083411395549774, 0.010496268048882484, 0.05508117005228996, 0.0344448983669281, 0.11710517108440399, 0.009475107304751873, 0.01870156265795231, 0.004550708923488855, 0.02005738392472267, -0.02869267389178276, 0.06067292392253876, 0.05928459390997887, -0.0005043658311478794, -0.0176861509680748, -0.030426902696490288, 0.01399365533143282, -0.05601543188095093, -0.00016784077160991728, 0.04701452702283859, -0.03133682161569595, 0.03812011703848839, -0.010312850587069988, 0.08322380483150482, 0.0007452519494108856, -0.07210583984851837, -0.01622661016881466, 0.0221718680113554, 0.015495491214096546, 0.0016271136701107025, -0.0560590997338295, -0.07193167507648468, 0.07534654438495636, -0.007724976632744074, 0.014689713716506958, 0.01796780154109001, 0.019918039441108704, -0.08023063093423843, -0.05730057880282402, 0.03738703206181526, 0.01877032220363617, 0.06068304926156998, 0.055527858436107635, -0.07403720170259476, -0.02979445271193981, -0.08448547124862671, -0.028958357870578766, -0.0030038373079150915, -0.05553768202662468, -0.0667521134018898, -0.021981025114655495, 0.12344997376203537, 0.07440470904111862, -0.04503175988793373, 0.027209162712097168, -0.03034505993127823, -0.019702469930052757, 0.02924024872481823, -0.04007946327328682, -0.01960047520697117, 8.844466515360924e-32, -0.018581299111247063, -0.01127565372735262, -0.008193831890821457, -0.000661384838167578, 0.016057314351201057, 0.03649770841002464, -0.022313015535473824, 0.05188992992043495, 0.08477551490068436, -0.017594289034605026, 0.10739828646183014, -0.030721666291356087, -0.03771086037158966, 0.060826387256383896, -0.07378478348255157, -0.03832605481147766, 0.01388145238161087, -0.008355550467967987, -0.05044243112206459, 0.008353889919817448, 0.027180349454283714, 0.017803329974412918, -0.003411374520510435, 0.047431349754333496, 0.05293600261211395, 0.027083158493041992, -0.10523845255374908, 0.024483732879161835, -0.0009376640664413571, -0.044575031846761703, 0.01703587733209133, 0.03522159531712532, -0.0367666594684124, -0.025099774822592735, -0.03995019569993019, 0.030486080795526505, 0.034235041588544846, 0.05585091561079025, -0.0025511595886200666, 0.09168846160173416, -0.07540443539619446, -0.09814441949129105, -0.01050176564604044, -0.029144305735826492, 0.09489460289478302, -0.05772608518600464, -0.05148377642035484, 0.024455348029732704, -0.04446837306022644, -0.05065309628844261, -0.08262190967798233, 0.009863419458270073, 0.00711795873939991, 0.0031813308596611023, 0.02837243117392063, -0.048823390156030655, -0.021563135087490082, -0.06961777061223984, -0.04873838648200035, 0.018467292189598083, 0.006912630051374435, 0.05630222335457802, -0.010655484162271023, 0.057055868208408356 ]
86 Review exercise 1 11 The functions f and g are defined as f( x) = x(x βˆ’ 2) and g(x) = x + 5, x ∈ ℝ . Given tha t f(a) = g(a) and a > 0, find the value of a to three significant figures. (3 marks) ← Sections 2.1, 2.3 12 An athlete launches a shot put from shoulder height. The height of the shot put, in metr es, above the ground tΒ seconds after launch, can be modelled by the following function: h(t) = 1.7 + 10t βˆ’ 5t 2 t > 0 a Give the ph ysical meaning of the constant term 1.7 in the context of the model. b Use the model to calcula te how many seconds after launch the shot put hits the ground. c Rearrange h( t) into the form AΒ βˆ’Β B(tΒ βˆ’Β C)2 and give the values of the constants A, B and C. d Using your answ er to part c or otherwise, find the maximum height of the shot put, and the time at which this maximum height is reached. ← Section 2.6 13 Given that f(x) = x2 βˆ’ 6x + 18, x > 0, a express f( x) in the form (x βˆ’ a)2 + b, where a and b are integers. (2 marks) The curve C with equation y = f(x), x > 0, meets the y-axis at P and has a minimum point at Q. b Sketch the gra ph of C, showing the coordinates of P and Q. (3 marks) The line y = 41 meets C at the point R. c Find the x-coor dinate of R, giving your answer in the form p + q βˆšβ€―__ 2 , where p and q are integers. (2 marks) ← Sections 2.2, 2.4 14 The function h(x) = x2 + 2 √ __ 2 x + k has equal roots. a Find the value of k. (1 mark) b Sketch the gra ph of y = h(x), clearly labelling any intersections with the coordinate axes. (3 marks) ← Sections 1.5, 2.4, 2.5E/p p E/p E15 The function g(x) is defined as g( x) = x9 βˆ’ 7x6 βˆ’ 8x3, x ∈ ℝ . a Write g(x ) in the f orm x3(x3 + a)(x3 + b), where a and b are integers. (1 mark) b Hence find the three roots of g(x). (1 mark) ← Section 2.3 16 Given that x2 + 10x + 36 (x + a)2 + b, where a and b are constants, a find the value of a and the value of b. (2 marks) b Hence show that the equa tion x2 + 10x + 36 = 0 has no real roots. (2 marks) The equation x2 + 10x + k = 0 has equal roots.c Find the value of k. (2 marks) d For this va lue of k, sketch the graph of y = x2 + 10x + k, showing the coordinates of any points at which theΒ graph meets the coordinate axes. (3 marks) ← Sections 2.2, 2.4, 2.5 17 Given that x2 + 2x + 3 (x + a)2 + b, a find the value of the constants a and b (2 marks) b Sketch the gra ph of y = x2 + 2x + 3, indicating clearly the coordinates of any intersections with the coordinate axes. (3 marks) c Find the value of the discriminant of x2 + 2x + 3. Explain how the sign of the discriminant relates to your sketch in part b. (2 marks) The equation x2 + kx + 3 = 0, where k is a constant, has no real roots. d Find the set of possible v alues of k, giving your answer in surd form. (2 marks) ← Section 2.2, 2.4, 2.5E/p E/p E/p
[ 0.015314262360334396, 0.11579277366399765, 0.06447824835777283, -0.059130195528268814, -0.035781342536211014, 0.02937139943242073, 0.024608595296740532, 0.03117590956389904, -0.031325217336416245, 0.03970177844166756, 0.059722110629081726, -0.03183305263519287, -0.05115228146314621, 0.04436951130628586, -0.02598971500992775, -0.025063736364245415, 0.018505828455090523, -0.026985250413417816, -0.06742679327726364, -0.05282562971115112, -0.017092786729335785, 0.0020691263489425182, 0.07149980962276459, -0.05359949171543121, -0.011897364631295204, -0.049358151853084564, -0.058813270181417465, -0.027117885649204254, -0.04697456210851669, -0.011751745827496052, -0.10324868559837341, -0.07879148423671722, 0.02663411572575569, -0.020866544917225838, -0.03752555325627327, 0.041104137897491455, -0.05909966304898262, 0.0480327233672142, 0.041230667382478714, -0.005510509014129639, -0.004314708989113569, -0.055949583649635315, -0.002142858924344182, -0.06577138602733612, 0.0737091451883316, 0.07357905060052872, 0.004874274600297213, 0.036354195326566696, -0.02656937949359417, 0.047202255576848984, -0.018051862716674805, 0.07907012104988098, -0.09919475764036179, -0.006158596370369196, -0.023260798305273056, -0.05710068717598915, 0.04659261554479599, -0.06527301669120789, 0.025419708341360092, 0.04501606896519661, -0.054656073451042175, 0.06826740503311157, 0.005819341633468866, 0.021497955545783043, 0.03567029908299446, 0.05436820909380913, -0.044944897294044495, -0.09696820378303528, 0.044269412755966187, 0.11036030203104019, -0.0867692306637764, 0.07676584273576736, -0.029067300260066986, -0.09784730523824692, -0.0001269236672669649, -0.04263560473918915, -0.030640285462141037, -0.022556010633707047, -0.05590025708079338, 0.02341311052441597, 0.005465212278068066, -0.053585827350616455, -0.030103743076324463, 0.08574934303760529, 0.007244102191179991, 0.061945561319589615, 0.07820035517215729, 0.10489989817142487, -0.03636323660612106, 0.02628064528107643, -0.010178196243941784, 0.016517922282218933, -0.014282655902206898, -0.048578858375549316, -0.046819057315588, 0.009497400373220444, 0.019565680995583534, -0.0648886188864708, -0.018557967618107796, 0.13998094201087952, 0.02851772867143154, -0.010989687405526638, 0.058628592640161514, 0.0646958276629448, 0.03775377944111824, -0.02008148841559887, 0.022091897204518318, -0.009311678819358349, -0.06537112593650818, -0.0037338093388825655, 0.05529339984059334, 0.024576406925916672, -0.007366901263594627, 0.08553139865398407, 0.04724578931927681, -0.037374455481767654, 0.04505099728703499, -0.01989760808646679, 0.036459244787693024, -0.11015399545431137, 0.07137666642665863, -0.049973271787166595, 0.020912302657961845, -0.10537557303905487, -0.08260507881641388, -0.052041176706552505, 0.026584787294268608, 0.0189583208411932, -0.06445902585983276, -0.04598028212785721, 0.03390990570187569, -0.009395741857588291, -0.041859451681375504, -0.06689132750034332, -0.06611844152212143, -0.06915193796157837, -0.01800556480884552, 0.04371769353747368, 0.0005699643515981734, -0.018794972449541092, 0.017535774037241936, 0.01757480390369892, 0.06975565105676651, 0.017321299761533737, 0.030702386051416397, 0.058771759271621704, -0.00989497173577547, 0.013645058497786522, 0.04523877054452896, -0.039529141038656235, 0.026408281177282333, 0.030094264075160027, 0.04584677889943123, 0.1460220366716385, -0.009335549548268318, -0.030867457389831543, -0.09220384061336517, -0.08056968450546265, -0.06269939243793488, -0.047243114560842514, -0.11934943497180939, 0.0005934836808592081, -0.06029490381479263, -0.07094144821166992, 0.056147050112485886, -0.008077315054833889, 0.08216950297355652, 0.005357114132493734, -0.05084752291440964, 0.01475655846297741, 0.00735063711181283, -0.07373294979333878, -0.04146223142743111, 0.019222483038902283, 0.040356505662202835, 0.0066634006798267365, 0.04826151579618454, 0.011035967618227005, -0.018786584958434105, -0.032310061156749725, 0.08157491683959961, -0.10044325888156891, 0.02457364648580551, 0.03554992377758026, 0.03980835899710655, -0.03687293827533722, -0.025140227749943733, 0.029568396508693695, 0.06898277252912521, 0.035690922290086746, 0.025240426883101463, -0.03278549388051033, 0.004170448984950781, 0.0369456522166729, -0.0830039232969284, -0.006521514151245356, 0.0032792517449706793, 0.1114678680896759, 0.014050581492483616, 0.048294685781002045, 0.07421379536390305, -0.027164869010448456, 0.038686603307724, 0.05589822307229042, 0.032629359513521194, -0.03881075233221054, -0.019218243658542633, -0.00776089821010828, 0.0224089827388525, -0.019298477098345757, -0.09288238734006882, -0.043462369590997696, -0.0925285667181015, 0.005926464684307575, 0.06744575500488281, 0.011652360670268536, 0.00624007498845458, -0.013980682939291, -0.13514584302902222, 0.058148596435785294, -0.05307692661881447, 0.02830100990831852, 0.020540907979011536, 5.904652122238326e-33, -0.02273366041481495, 0.04996070638298988, -0.04020993411540985, -0.02779567986726761, 0.06476490944623947, -0.030665017664432526, 0.03825576603412628, -0.0350613072514534, 0.0701899379491806, 0.09057990461587906, 0.04945722222328186, 0.02590247429907322, -0.05366210639476776, -0.044340040534734726, 0.015347158536314964, -0.08116379380226135, 0.004974523559212685, -0.016753170639276505, -0.14872770011425018, 0.025134995579719543, 0.12400471419095993, 0.01639821194112301, 0.021509042009711266, -0.011370746418833733, -0.026014648377895355, 0.004718757700175047, 0.049078021198511124, -0.05789439007639885, -0.0012991997646167874, -0.033747341483831406, -0.010335474275052547, 0.01853804849088192, 0.08395586162805557, 0.1104620024561882, -0.016675367951393127, -0.05080045387148857, 0.09331407397985458, 0.03470601513981819, 0.01996578276157379, -0.03660762682557106, 0.015346490778028965, 0.014000301249325275, 0.043101854622364044, 0.06123398616909981, 0.002997295232489705, -0.006077783647924662, -0.020989172160625458, 0.006013606674969196, -0.03447619453072548, 0.029787935316562653, -0.003337122732773423, -0.03752699866890907, -0.002674586372449994, -0.002206065459176898, 0.07056307047605515, -0.03441878780722618, 0.0439462773501873, -0.04776200279593468, 0.041178323328495026, 0.025507714599370956, 0.018979663029313087, -0.03785330429673195, -0.014523602090775967, 0.10052263736724854, -0.09102863818407059, -0.0046396986581385136, -0.07018040120601654, -0.05994395911693573, -0.07637479901313782, 0.07282332330942154, 0.003937805537134409, 0.07072791457176208, 0.0874418243765831, -0.07669781893491745, -0.09335830062627792, -0.016604091972112656, -0.08458198606967926, -0.02484617568552494, 0.046400286257267, -0.0207805298268795, -0.017479535192251205, -0.047126587480306625, 0.04731728509068489, 0.037582628428936005, -0.0566081665456295, 0.027475396171212196, -0.005954962223768234, 0.001752647920511663, 0.025923877954483032, 0.020136384293437004, 0.03871002420783043, 0.10556209832429886, -0.006901327054947615, -0.030045025050640106, -0.02684546448290348, 7.143629045476771e-32, -0.04884756729006767, 0.08207646757364273, -0.051622048020362854, 0.05206990987062454, -0.01989372819662094, 0.0748598501086235, -0.017561810091137886, -0.0995379239320755, 0.03333429992198944, -0.026487169787287712, 0.037813421338796616, 0.018533596768975258, -0.07531726360321045, 0.006184047088027, -0.06976206600666046, -0.08754794299602509, -0.0376114696264267, 0.003153276862576604, -0.0599086657166481, 0.008275818079710007, -0.04062916338443756, 0.00708600040525198, -0.07892774045467377, 0.10729900002479553, 0.0360541045665741, -0.036456480622291565, -0.07099339365959167, 0.019579477608203888, 0.006173888221383095, -0.035717081278562546, 0.01427086815237999, 0.035258352756500244, -0.03859460726380348, -0.031948018819093704, 0.04901540279388428, 0.027428211644291878, -0.02286618761718273, 0.007299497723579407, -0.03123178705573082, 0.006539948750287294, -0.0067948708310723305, -0.021174954250454903, 0.023536039516329765, 0.04532017558813095, -0.037000950425863266, -0.05333438515663147, 0.02015833742916584, -0.04803701117634773, 0.055676914751529694, 0.04653478413820267, -0.017021888867020607, 0.08657486736774445, -0.04325403273105621, 0.020975643768906593, 0.03232723847031593, 0.036605581641197205, 0.02320488728582859, -0.026214828714728355, -0.03563787788152695, -0.08059823513031006, -0.04669622331857681, 0.0642331913113594, -0.05666934698820114, 0.056818295270204544 ]
87 Review exercise 1 18 a By eliminating y from the equations: y = x βˆ’ 4, 2x2 βˆ’ xy = 8, show that x2 + 4x βˆ’ 8 = 0. (2 marks) b Hence, or otherwise, solv e the simultaneous equations: y = x βˆ’ 4,2x 2 βˆ’ xy = 8, giving your answers in the form a Β± b βˆšβ€―__ 3 , where a and b are integers. (4 marks) ← Section 3.2 19 Find the set of va lues of x for which: a 3(2x + 1) > 5 βˆ’ 2x, (2 marks) b 2x2 βˆ’ 7x + 3 > 0, (3 marks) c both 3(2 x + 1) > 5 βˆ’ 2x and 2x2 βˆ’ 7x + 3 > 0. (1 mark) ← Sections 3.4, 3.5 20 The functions p and q are defined as p(x ) = βˆ’2(x + 1) and q(x) = x2 βˆ’ 5x + 2, x ∈ ℝ . Show alge braically that there is no value of x for which p(x ) = q(x). (3 marks) ← Sections 2.3, 2.5 21 a Solve the simultaneous equations: y + 2x = 5 2x2 βˆ’ 3x βˆ’ y = 16. (5 marks) b Hence, or otherwise, find the set of values of x for which: 2x2 βˆ’ 3x βˆ’ 16 > 5 βˆ’ 2x. (2 marks) ← Sections 3.2, 3.5 22 The equation x2 + kx + (k + 3) = 0, where k is a constant, has different real roots. a Show that k2 βˆ’ 4k βˆ’ 12 > 0. (2 marks) b Find the set of possible v alues of k. (2 marks) ← Sections 2.5, 3.5 23 Find the set of va lues for which 6 _____ x + 5 < 2, x β‰  βˆ’5. (6 marks) ← Section 3.5E E E/p E E/p E24 The functions f and g are defined as f( x) = 9 βˆ’ x2 and g(x) = 14 βˆ’ 6x, x ∈ ℝ . a On the same set of axes , sketch the graphs of y = f(x) and y = g(x). Indicate clearly the coordinates of anyΒ points where the graphs intersect with each other or the coordinate axes. (5 marks) b On your sketch, shade the r egion that satisfies the inequalities y > 0 and f(x)Β >Β g(x). (1 mark) ← Sections 3.2, 3.3, 3.7 25 a Factorise completely x3 βˆ’ 4x. (1 mark) b Sketch the curve with equa tion y = x3 βˆ’ 4x, showing the coordinates of the points where the curve crosses the x-axis. (2 marks) c On a separate dia gram, sketch the curve with equation y = (x βˆ’ 1)3 βˆ’ 4(x βˆ’ 1) showing the coordinates of the pointsΒ where the curve crosses the x-axis. (2 marks) ← Sections 1.3, 4.1, 4.5 26 O P(3, –2)y x 2 4 The figure shows a sketch of the curve with equation y = f(x). The curve crosses the x-axis at the points (2, 0) and (4, 0). The minimum point on the curve is P(3, βˆ’2). In separate diagrams, sketch the curves with equation a y = βˆ’f(x) (2 marks) b y = f(2 x) (2 marks) On each diagram, gi ve the coordinates of the points at which the curve crosses the x-axis, and the coordinates of the image of P under the given transformation. ← Sections 4.6, 4.7E E/p E
[ 0.008966542780399323, 0.07969505339860916, 0.008859998546540737, -0.0068662879057228565, 0.007101622875779867, 0.012006348930299282, 0.012291046790778637, -0.02132152020931244, -0.06928626447916031, 0.03507368639111519, 0.08422739803791046, -0.0928497388958931, 0.06862367689609528, -0.004826024174690247, -0.024570206180214882, -0.04775827378034592, -0.007351549807935953, -0.009028511121869087, -0.06355880200862885, 0.05461300164461136, 0.05307672917842865, -0.060573920607566833, -0.048891838639974594, -0.010353636927902699, 0.1067146584391594, -0.04373284429311752, -0.08431561291217804, -0.03205154463648796, -0.01802819035947323, -0.023331156000494957, 0.0722072497010231, 0.050618916749954224, 0.07520664483308792, 0.011988821439445019, 0.06689861416816711, 0.0036530352663248777, 0.01545090414583683, 0.06317295134067535, 0.020813006907701492, -0.10097850859165192, -0.05698699504137039, -0.07226266711950302, 0.0017579242121428251, -0.044963810592889786, 0.04815037176012993, -0.040408018976449966, 0.08872638642787933, -0.01316913589835167, 0.05282389745116234, -0.040057189762592316, 0.020201193168759346, 0.03635668754577637, -0.004010007716715336, 0.06923088431358337, 0.00014242291217669845, -0.03746770694851875, 0.04624234512448311, -0.018010787665843964, 0.006669399328529835, 0.060407888144254684, -0.0016167431604117155, -0.01944134756922722, -0.004654333461076021, 0.03055817447602749, 0.023503849282860756, 0.019720375537872314, -0.04338585585355759, -0.019337302073836327, 0.08540351688861847, 0.01143922284245491, -0.0323813296854496, 0.09605973213911057, -0.048031728714704514, -0.02390499971807003, 0.03490201383829117, 0.007272736635059118, -0.06687630712985992, -0.07435891777276993, 0.059635378420352936, -0.007957211695611477, 0.004964700434356928, -0.02488475665450096, 0.03931016847491264, -0.028240634128451347, 0.024587707594037056, -0.036335621029138565, -0.003592178924009204, 0.0422181598842144, 0.008795768953859806, -0.05280943214893341, 0.014008789323270321, 0.01838582567870617, -0.006948210299015045, 0.01961139403283596, 0.10828983783721924, -0.10519774258136749, 0.047203004360198975, -0.07919228821992874, -0.01485128328204155, 0.09685392677783966, -0.017293155193328857, -0.022281020879745483, -0.018228335306048393, 0.0030315984040498734, 0.02451992966234684, 0.040829263627529144, 0.021613461896777153, -0.03729415684938431, 0.08133363723754883, -0.04375011846423149, -0.03769981861114502, -0.016353892162442207, -0.008845677599310875, 0.06262258440256119, -0.015096377581357956, 0.03189586475491524, 0.09930521994829178, 0.062090691179037094, -0.017011748626828194, -0.08649802207946777, -0.0053949179127812386, -0.05432987958192825, 0.09392689913511276, -0.030602559447288513, -0.046550214290618896, -0.062447454780340195, -0.025381524115800858, 0.0024128968361765146, -0.04301910847425461, -0.07963637262582779, 0.015783915296196938, -0.07919459789991379, -0.031346820294857025, -0.06060022488236427, -0.08047167956829071, -0.08382467180490494, -0.0884329155087471, 0.0922289490699768, -0.0005738101899623871, -0.06346062570810318, 0.031727444380521774, 0.04595131799578667, 0.0499342679977417, 0.00036768504651263356, -0.027370227500796318, 0.021845189854502678, 0.012121552601456642, -0.024068910628557205, 0.040150854736566544, 0.03572206199169159, -0.09112630784511566, -0.028968967497348785, -0.011610317975282669, 0.06915295124053955, -0.03694390133023262, -0.041227295994758606, -0.057269494980573654, -0.0064156269654631615, -0.0233730748295784, 0.024217922240495682, -0.1018182784318924, 0.02844177559018135, 0.009991500526666641, 0.03978951275348663, 0.0041769128292799, 0.06136699393391609, 0.023169957101345062, 0.07727628946304321, 0.01262239646166563, -0.005928018130362034, 0.015405677258968353, 0.04601896181702614, 0.04728484898805618, 0.051309652626514435, 0.025333721190690994, -0.10132409632205963, 0.08726243674755096, 0.034995097666978836, -0.0691022276878357, 0.056422941386699677, 0.04552885517477989, -0.06149476766586304, -0.04450864717364311, 0.00469611119478941, 0.05549109727144241, 0.017707576975226402, 0.01289958693087101, 0.018425459042191505, -0.0372617170214653, 0.016548385843634605, -0.03365078568458557, -0.06933127343654633, -0.014506649225950241, 0.04341058433055878, -0.054727837443351746, -0.06260563433170319, 0.038873616605997086, -0.07626376301050186, -0.1297796219587326, 0.1064758151769638, 0.03242786228656769, 0.03841078281402588, 0.11350156366825104, -0.06582623720169067, 0.06654303520917892, 0.003503232728689909, -0.012557393871247768, 0.016036301851272583, 0.09306419640779495, 0.03266804292798042, 0.05696260184049606, 0.06880276650190353, -0.06330624967813492, -0.0708969458937645, -0.026495756581425667, -0.03609035909175873, 0.042376577854156494, -0.04782792180776596, -0.06565188616514206, -0.016992950811982155, -0.058161091059446335, -0.08093500137329102, 0.06632530689239502, 4.984860577992014e-35, -0.010027439333498478, 0.06019110977649689, -0.10186640173196793, -0.03903132304549217, -0.05010534077882767, -0.0355132520198822, 0.041020046919584274, -0.057409267872571945, 0.08952954411506653, 0.03405202925205231, 0.02916898764669895, -0.031164435669779778, 0.01898682303726673, 0.10181206464767456, 0.011464256793260574, 0.006015438120812178, -0.1158953607082367, 0.010732277296483517, 0.09033177047967911, 0.0007713476079516113, -0.03127172961831093, 0.011848601512610912, -0.04593115299940109, -0.022807952016592026, 0.044223155826330185, 0.026172403246164322, 0.06062260642647743, -0.04390115663409233, -0.045718926936388016, 0.054842621088027954, -0.012041996233165264, -0.10457215458154678, 0.029900263994932175, 0.010145684704184532, 0.02583879418671131, -0.016120463609695435, -0.03667273372411728, -0.09099745750427246, 0.0211959145963192, -0.0623411126434803, 0.05981941893696785, 0.07245281338691711, 0.019859835505485535, 0.03199049085378647, 0.0710163414478302, 0.06388892978429794, 0.02657272294163704, 0.045977748930454254, -0.016993429511785507, 0.04727834463119507, -0.016850149258971214, -0.036033958196640015, -0.10921148955821991, 0.023263635113835335, 0.07296962291002274, -0.12394307553768158, 0.03582795336842537, 0.04880102351307869, 0.0056739808060228825, -0.0024442970752716064, -0.045295316725969315, -0.0806250274181366, 0.03312794491648674, 0.014058900997042656, -0.0024322562385350466, 0.01066659390926361, -0.03393315151333809, -0.0003826842294074595, 0.00790372584015131, 0.04245408624410629, 0.02405608631670475, -0.033126406371593475, -0.07972454279661179, -0.04973370581865311, -0.04951756075024605, -0.013732362538576126, -0.03384524956345558, 0.03459445387125015, 0.028276856988668442, -0.04665515199303627, -0.12854495644569397, -0.008159930817782879, -0.0032202431466430426, -0.021953457966446877, -0.10444875806570053, 0.023980528116226196, 0.0744573175907135, 0.04674839228391647, 0.027706170454621315, -0.007630136329680681, 0.044287145137786865, -0.0075128753669559956, 0.05411029979586601, -0.026956908404827118, 0.027590082958340645, 8.163885849087941e-32, -0.04543222114443779, 0.005707947537302971, -0.052206963300704956, -0.010160801000893116, 0.013188144192099571, -0.016320139169692993, -0.05541395768523216, 0.09750384092330933, 0.003605710342526436, -0.05661440268158913, 0.076349176466465, 0.0052175624296069145, -0.10537684708833694, 0.0652720257639885, -0.044196728616952896, -0.0011656847782433033, -0.0176070686429739, 0.007350846193730831, -0.04200273007154465, -0.07682476937770844, -0.09679315984249115, 0.02910904586315155, -0.054269615560770035, 0.05256574600934982, 0.09379930794239044, 0.007637700531631708, -0.1005992516875267, 0.00834929384291172, 0.025931507349014282, 0.04229554161429405, 0.03878770023584366, -0.04816429316997528, -0.0484146811068058, -0.12300930172204971, 0.04611373320221901, 0.0023004922550171614, -0.008120703510940075, 0.0532015822827816, -0.004728897474706173, 0.029068538919091225, -0.0418723039329052, 0.010418171994388103, -0.008718582801520824, -0.0032837828621268272, 0.021919643506407738, 0.0018403290305286646, 0.003428442869335413, -0.048991262912750244, -0.009725157171487808, -0.057780731469392776, -0.0593985877931118, 0.03456917405128479, 0.05164821445941925, 0.06181420758366585, 0.00442889891564846, -0.054229531437158585, -0.010671899653971195, -0.021616721525788307, 0.03929220139980316, -0.04256686568260193, -0.06875500082969666, 0.10154394805431366, -0.07300976663827896, 0.010529372841119766 ]
88 Review exercise 1 27 13 4 Oy x The figure shows a sketch of the curve with equation y = f(x). The curve passes through the points (0, 3) and (4, 0) and touches the x-axis at the point (1, 0). On separate diagrams, sketch the curves with equations a y = f( x + 1) (2 marks) b y = 2f(x) (2 marks) c y = f ( 1 _ 2 x) (2 marks) On each diagram, sho w clearly the coordinates of all the points where the curve meets the axes. ← Sections 4.5, 4.6, 4.7 28 Given that f(x) = 1 __ x , x β‰  0, a sketch the gra ph of y = f(x) + 3 and state the equations of the asymptotes (2 marks) b find the coordinates of the point where y = f(x) + 3 crosses a coordinate axis. (2 marks) ← Sections 4.3, 4.5 29 The quartic function t is defined as t(x ) = (x2 βˆ’ 5x + 2)(x2 βˆ’ 5x + 4), x ∈ ℝ . a Find the four roots of t(x), giving your answers to 3 significant figures where necessary. (3 marks) b Sketch the gra ph of y = t(x), showing clearly the coordinates of all the pointsΒ where the curve meets the axes. (2 marks) ← Sections 4.2, 2.1 30 The point (6, βˆ’8) lies on the gr aph of yΒ =Β f(x). State the coordinates of the point to which P is transformed on the graph with equation: a y = βˆ’f(x) (1 mark) b y = f(x βˆ’ 3) (1 mark) c 2y = f(x) (1 mark) ← Section 4.7E E E E31 The curve C1 has equation y = βˆ’ a __ x , where a is a positive constant. The curve C2 has equation y = (x βˆ’ b)2, where b is a positive constant.a Sketch C1 and C2 on the same set of axes. Label any points where either curve meets the coordinate axes, givingΒ your coordinates in terms of a and b. (4 marks) b Using your sketch, sta te the number of real solutions to the equation x(x βˆ’ 5) 2 = 7. (1 mark) ← Sections 4.3, 4.4 32 a Sketch the graph of y = 1 __ x 2 βˆ’ 4 , showing clearl y the coordinates of the points where the curve crosses the coordinate axes and stating theΒ equations of the asymptotes. (4 marks) b The curve with y = 1 _______ (x + k)2 βˆ’ 4 passes thr ough the origin. Find the two possible values of k. (2 marks) ← Sections 4.1, 4.5, 4.7E/p E/p 1 a Solve the equation x2Β βˆ’Β 10 xΒ +Β 9Β =Β 0 b Hen ce, or otherwise, solve the equation 3x βˆ’ 2(3x βˆ’ 10) = βˆ’ 1 ← Sections 1.1, 1.3, 2.1 2 A rectangle has an area of 6 cm2 and a perimeter of 8 βˆšβ€―__ 2 cm. Find the dimensions of the re ctangle, giving your answers as surds in their simplest form. ← Sections 1.5, 2.2 3 Show algebraically that the graphs of yΒ  = 3x3 + x2 βˆ’ x and y = 2 x(x βˆ’ 1)( x + 1) have only one point of intersection, and find the coordinates of this point. ← Section 3.3 4 The quartic function f( x) = (x2 + x – 20)( x2 + x – 2) has three roots in common with the function g(x) = f(x βˆ’ k), where k is a constant. Find the two possible values of k . ← Sections 4.2, 4.5, 4.7Challenge
[ 0.03879060968756676, 0.057683419436216354, -0.027005931362509727, 0.0028135222382843494, 0.012351617217063904, 0.0805431380867958, 0.003618121612817049, 0.01488406676799059, -0.04734433814883232, 0.018454739823937416, 0.04179245978593826, -0.0864107683300972, -0.024212485179305077, 0.0494622141122818, -0.07968652993440628, -0.02317138761281967, -0.07763411104679108, -0.062059950083494186, 0.03076784871518612, -0.039638616144657135, -0.009425719268620014, -0.03788195922970772, -0.0645427256822586, -0.09516147524118423, -0.01999323070049286, -0.07241927832365036, 0.002937916899099946, -0.07934916764497757, -0.11192311346530914, -0.07053488492965698, 0.03660154715180397, 0.022319860756397247, 0.0028197907377034426, 0.04805145412683487, 0.04149412363767624, 0.003918641712516546, 0.06191985681653023, 0.01618197374045849, 0.10670001059770584, 0.008061720058321953, -0.048956505954265594, -0.03916831314563751, 0.033718280494213104, -0.0228322334587574, 0.12424539029598236, -0.0428069531917572, 0.021063227206468582, -0.010594142600893974, 0.014036349952220917, 0.028012264519929886, 0.027656251564621925, -0.002071729861199856, -0.08599455654621124, -0.03252299502491951, 0.05423698201775551, 0.0956779271364212, 0.01488474477082491, 0.010054233483970165, -0.02619079314172268, 0.05786609277129173, 0.002138913841918111, 0.035919055342674255, -0.007996239699423313, 0.02810177020728588, -0.019882744178175926, 0.08800265938043594, 0.05825922265648842, -0.001300465315580368, 0.01753373257815838, 0.09136800467967987, -0.1036202684044838, -0.0013080800417810678, -0.016378648579120636, -0.08205341547727585, 0.017452867701649666, -0.010531567968428135, 0.012172332964837551, 0.0910680741071701, -0.0833563283085823, -0.0686897560954094, -0.10773154348134995, -0.0201805979013443, 0.12603561580181122, 0.062354087829589844, -0.03232505917549133, 0.04146556556224823, -0.014554946683347225, -0.09507229924201965, 0.00497622461989522, 0.0024365060962736607, -0.00016532724839635193, 0.05203936621546745, -0.0743970200419426, -0.05343165621161461, -0.010518716648221016, -0.12003854662179947, -0.005648317281156778, -0.05980209633708, -0.03308532387018204, 0.1190599873661995, -0.11747933179140091, 0.044404298067092896, 0.01651168055832386, 0.07669994235038757, -0.0558754988014698, 0.037075404077768326, -0.009791314601898193, -0.047912828624248505, -0.027447110041975975, -0.05143610015511513, 0.012194307520985603, -0.030758880078792572, -0.025431668385863304, 0.044347286224365234, 0.08593190461397171, -0.031514763832092285, 0.031793735921382904, -0.056531716138124466, -0.013100650161504745, -0.0468551330268383, 0.05683578550815582, -0.043721120804548264, 0.04700641706585884, 0.010678998194634914, -0.04585455358028412, -0.019601233303546906, -0.04175631329417229, -0.01638760231435299, 0.02560502290725708, 0.01852116547524929, 0.0416109524667263, -0.06817511469125748, -0.017567329108715057, -0.04947420582175255, -0.019964244216680527, 0.027017580345273018, -0.11423337459564209, 0.11121595650911331, -0.011026439256966114, -0.054588042199611664, 0.04023456946015358, 0.04580700397491455, -0.012682047672569752, -0.07535658031702042, 0.0611572228372097, -0.020432379096746445, -0.04217223450541496, 0.006837534252554178, 0.012244801968336105, 0.027256369590759277, 0.02573966421186924, -0.0390021838247776, -0.0136440834030509, 0.08738157153129578, 0.00021310585725586861, -0.013086766935884953, -0.04485761374235153, -0.05819661542773247, 0.009131232276558876, -0.05469280481338501, -0.07644260674715042, 0.013034932315349579, -0.031073585152626038, 0.032854802906513214, 0.04232173040509224, -0.024590076878666878, 0.0015306257409974933, 0.09894758462905884, 0.03426630049943924, -0.022187380120158195, 0.03431333974003792, -0.03284836933016777, -0.04304467514157295, 0.08299339562654495, -0.01065852027386427, 0.02896290458738804, 0.08488832414150238, 0.08070492744445801, 0.020508596673607826, 0.014900946989655495, 0.07450776547193527, -0.04371541738510132, -0.01884409412741661, -0.07648268342018127, -0.033159732818603516, -0.06988084316253662, -0.04059656709432602, 0.027155278250575066, -0.012427106499671936, 0.028636101633310318, -0.026073100045323372, -0.036211561411619186, -0.05165902525186539, 0.06721673160791397, -0.08803368359804153, 0.025053661316633224, 0.09647753834724426, 0.06996780633926392, -0.04024209454655647, 0.04953594133257866, -0.026170803233981133, 0.011656928807497025, 0.06902025640010834, 0.08215314894914627, -0.0458473339676857, -0.02192862331867218, -0.004544925410300493, 0.036866866052150726, -0.016856011003255844, -0.03323729708790779, -0.061282120645046234, 0.00026313753915019333, -0.06471768021583557, -0.012457199394702911, 0.005507797002792358, -0.08716244995594025, 0.04601983726024628, -0.0036402540281414986, -0.09705370664596558, 0.01167603861540556, -0.01812008023262024, 0.019919106736779213, 0.04854649677872658, 1.6861118317462115e-33, -0.0248711034655571, 0.10080765932798386, 0.0073120808228850365, 0.007059447932988405, -0.027377663180232048, -0.039814289659261703, 0.07460713386535645, 0.06369994580745697, 0.05277438834309578, 0.08974961936473846, 0.04097527638077736, -0.012357749976217747, -0.05456734076142311, -0.013162939809262753, 0.029458170756697655, -0.014066859148442745, -0.004462561570107937, -0.002378455363214016, -0.05409688502550125, -0.07672159373760223, 0.04871390014886856, 0.04201047867536545, 0.06303130835294724, -0.026125796139240265, -0.05417356640100479, 0.05321985110640526, 0.06136958301067352, -0.10121514648199081, -0.06857713311910629, 0.054951343685388565, -0.03597484529018402, 0.001313293818384409, 0.0425480455160141, -0.01002942118793726, 0.011796249076724052, 0.030849818140268326, 0.008576199412345886, -0.028203638270497322, 0.09955189377069473, 0.027847344055771828, 0.049612339586019516, 0.08993741124868393, 0.054323531687259674, 0.0019505080999806523, 0.006051521748304367, 0.04621125012636185, -0.013076038099825382, 0.04862705245614052, 0.006608001887798309, 0.016461113467812538, -0.06294657289981842, -0.09573563188314438, 0.06109670549631119, -0.010123908519744873, 0.044789791107177734, 0.042860567569732666, 0.018417097628116608, -0.14104028046131134, -0.010177269577980042, -0.10842812061309814, -0.0022721460554748774, -0.0063034724444150925, -0.09718944132328033, 0.07468179613351822, 0.01804210990667343, -0.07570397108793259, -0.1067599281668663, -0.05004042014479637, 0.002860196866095066, -0.0055104829370975494, 0.014097939245402813, 0.026868147775530815, -0.05108645558357239, -0.0721031129360199, -0.0075706844218075275, -0.020675310865044594, -0.03844689205288887, 0.006375971715897322, 0.04600679501891136, -0.05422881618142128, 0.021461186930537224, 0.11113445460796356, -0.037358399480581284, 0.06278737634420395, -0.016716845333576202, 0.03632132709026337, 0.058385465294122696, 0.04185739532113075, 0.08223722875118256, 0.034393735229969025, 0.03411196172237396, 0.01924309879541397, -0.05396168306469917, -0.05533063784241676, -0.013665981590747833, 8.357476250483337e-32, -0.12241000682115555, 0.0005162435118108988, 0.03473542258143425, 0.015361754223704338, 0.006681185215711594, 0.018870949745178223, 0.05785109102725983, -0.02742677368223667, 0.015174498781561852, -0.047311801463365555, 0.050334226340055466, 0.026570595800876617, -0.07315083593130112, 0.07867300510406494, 0.009332549758255482, -0.0035644688177853823, 0.023243946954607964, -0.021108733490109444, -0.060102641582489014, 0.0016165929846465588, 0.002996788825839758, -0.02624598890542984, -0.026654260233044624, 0.024776402860879898, 0.0044893305748701096, 0.05941648408770561, 0.018886420875787735, -0.0737064853310585, -0.0628829374909401, -0.05395198613405228, 0.0033554090186953545, -0.03819292411208153, 0.04328586906194687, 0.024539252743124962, 0.06226792559027672, 0.01391880214214325, -0.019916780292987823, 0.02158466912806034, -0.05638926848769188, -0.007834172807633877, -0.018277788534760475, -0.048322390764951706, 0.03891594335436821, 0.0013095729518681765, -0.042421773076057434, -0.0492437370121479, -0.008109897375106812, -0.007896491326391697, 0.010177713818848133, 0.0295582078397274, -0.06245240196585655, 0.026839086785912514, 0.04261099547147751, -0.030009683221578598, 0.0213920995593071, -0.0027099300641566515, 0.01345055177807808, -0.03841998800635338, -0.02090814895927906, 0.09818798303604126, -0.12341894209384918, 0.10755957663059235, -0.013683199882507324, -0.05519302561879158 ]
89 Straight line graphs After completing this unit you should be able to: ● Calculat e the gradient of a line joining a pair of points β†’ pages 90 – 91 ● Understand the link between the equation o f a line, and its gradient and intercept β†’ pages 91 – 93 ● Find the equation of a line given (i) the gr adient and one point on the line or (ii) two points on the line β†’ pages 93 – 95 ● Find the point of intersection f or a pair of straight lines β†’ pages 95 – 96 ● Know and use the rules for parallel and perpendicular gradients β†’ pages 97 – 100 ● Solve length and area problems on coordinate grids β†’ pages 100 – 103 ● Use straight line graphs to construct mathematical models β†’ pages 103 – 108Objectives 1 Find the point of intersection o f the following pairs of lines.a y = 4x + 7 and 3y = 2x βˆ’ 1 b y = 5x βˆ’ 1 and 3x + 7y = 11 c 2x βˆ’ 5y = βˆ’1 and 5x βˆ’ 7y = 14 ← GC SE Mathematics 2 Simplify each of the following: a βˆšβ€―___ 80 b βˆšβ€―____ 200 c βˆšβ€―____ 125 ← Sec tion 1.5 3 Make y the subject of each equation: a 6x + 3y βˆ’ 15 = 0 b 2x βˆ’ 5y βˆ’ 9 = 0 c 3x βˆ’ 7y + 12 = 0 ← GCSE MathematicsPrior knowledge check Straight line graphs are used in mathematical modelling. Economists use straight line graphs to model how the price and availability of a good affect the supply and demand. β†’Β ExerciseΒ 5HΒ Q95
[ 0.024515662342309952, 0.05557006597518921, 0.0007674279040656984, -0.04259038716554642, -0.022908538579940796, 0.04945764318108559, -0.05691401660442352, -0.05434376373887062, -0.10876592248678207, 0.01933881640434265, 0.0350445993244648, -0.0353688970208168, -0.008358057588338852, 0.00601972034201026, -0.10732350498437881, 0.002365975407883525, -0.07495336979627609, 0.0882340595126152, -0.02727297879755497, -0.06299695372581482, 0.0010254489025101066, 0.014944887720048428, -0.04953176528215408, -0.03830613195896149, 0.02649698406457901, 0.009985199198126793, 0.03708537295460701, -0.011573150753974915, 0.006536273751407862, -0.02595232054591179, 0.024383999407291412, -0.027960576117038727, 0.10788077861070633, 0.04443933442234993, -0.013313774019479752, -0.07287658005952835, 0.11103235185146332, 0.05483574792742729, 0.02996188960969448, -0.0877937451004982, -0.08005405217409134, 0.05328163877129555, -0.012919661588966846, 0.05493207648396492, 0.06601536273956299, 0.015419756062328815, -0.044254861772060394, -0.038245078176259995, 0.027852052822709084, -0.0854509100317955, 0.022451404482126236, -0.007485809735953808, -0.047707699239254, 0.03691176325082779, 0.06837714463472366, 0.006677977275103331, 0.019052989780902863, -0.0020702548790723085, -0.04606962203979492, 0.05698990449309349, 0.023154115304350853, -0.014029544778168201, -0.03289353474974632, 0.03402809798717499, -0.02594316005706787, 0.0315316841006279, -0.00021415734954643995, 0.06524733453989029, -0.04067728668451309, 0.0933765172958374, -0.1575385183095932, 0.021940410137176514, -0.033496588468551636, -0.009358135052025318, -0.013414433225989342, 0.02636897563934326, 0.022611254826188087, 0.04018283635377884, -0.05806906148791313, -0.1091044619679451, -0.02291817031800747, 0.05513827130198479, 0.004730858840048313, 0.03440196067094803, 0.041806332767009735, -0.034565143287181854, 0.03623059391975403, 0.07742723822593689, -0.013943466357886791, -0.019028961658477783, 0.04514259845018387, 0.017515387386083603, -0.04747270047664642, -0.02580154500901699, 0.054066259413957596, 0.028757257387042046, -0.06770659238100052, -0.0834055244922638, 0.004464380908757448, 0.06644953042268753, -0.018406659364700317, -0.017099084332585335, -0.0371156707406044, 0.09179917722940445, 0.03901653736829758, 0.02418709173798561, 0.05894838646054268, -0.013914366252720356, 0.007876367308199406, -0.0720277950167656, -0.05890914052724838, 0.02849048748612404, 0.0315999910235405, -0.06729951500892639, 0.09768154472112656, -0.038282789289951324, 0.021857919171452522, -0.05350034683942795, 0.06991352885961533, 0.0207726638764143, -0.004687414970248938, -0.02487792819738388, 0.03547628968954086, 0.04223618283867836, -0.05787378549575806, 0.06330801546573639, -0.007612342946231365, -0.006868393160402775, 0.008280878886580467, -0.010600837878882885, 0.02845154143869877, -0.021512525156140327, -0.011142845265567303, -0.006232015788555145, -0.016666829586029053, 0.012175117619335651, -0.008714618161320686, 0.05533025786280632, -0.045442476868629456, -0.05171816796064377, 0.09431871026754379, 0.12282302230596542, 0.0547158382833004, -0.03369244933128357, -0.041226305067539215, -0.01646868884563446, -0.05682587996125221, 0.014436410740017891, -0.007655626628547907, 0.022594662383198738, 0.10177334398031235, -0.03757340833544731, 0.03954280912876129, 0.07720016688108444, -0.024528775364160538, 0.002495533088222146, -0.00778214493766427, 0.01307659037411213, -0.010656945407390594, -0.025662284344434738, -0.050477586686611176, 0.05216963589191437, -0.03930447995662689, 0.05492508038878441, 0.0381874181330204, -0.02965674176812172, 0.09317891299724579, 0.007312464527785778, -0.05666134133934975, 0.05313311517238617, 0.07552728801965714, -0.018829254433512688, -0.005835942458361387, 0.1404510736465454, -0.039394211024045944, -0.03115716576576233, 0.13346266746520996, 0.006762255914509296, -0.02101544849574566, -0.04310256987810135, -0.027189424261450768, -0.03516183793544769, 0.026204312220215797, -0.08460858464241028, -0.009549584239721298, 0.03327464312314987, 0.010433772578835487, 0.13907380402088165, -0.018370958045125008, 0.05671599134802818, 0.008845154196023941, -0.024466820061206818, -0.09621656686067581, 0.0528804212808609, -0.1603577882051468, -0.035268403589725494, 0.02226717583835125, -0.020108584314584732, -0.08070289343595505, -0.11319419741630554, 0.03072918951511383, -0.054168786853551865, 0.004743879660964012, 0.04842372238636017, 0.019131507724523544, -0.0002709936525207013, -0.03511859104037285, -0.023572951555252075, -0.0487380288541317, 0.0740835890173912, 0.02188301272690296, -0.049399103969335556, 0.019435467198491096, 0.0030638144817203283, 0.0319012813270092, -0.09023620188236237, 0.016075633466243744, -0.09097817540168762, -0.12346016615629196, 0.07031626999378204, 0.02038792334496975, 0.03544124215841293, 0.012028918601572514, 9.278662537143999e-33, 0.007954331114888191, 0.005085463635623455, -0.05807686969637871, -0.025599809363484383, 0.007689920254051685, -0.01058698259294033, 0.0742715522646904, -0.014107899740338326, 0.07325347512960434, 0.09668376296758652, -0.008868718519806862, 0.030158042907714844, -0.037228889763355255, 0.04606147110462189, -0.016561849042773247, -0.0559762604534626, -0.012067887000739574, -0.03414255380630493, -0.006418891251087189, -0.0148314218968153, -0.014769205823540688, -0.04898200184106827, -0.02212367206811905, 0.043667566031217575, 0.02892088145017624, -0.015522971749305725, 0.16089636087417603, -0.09565705806016922, -0.05332354083657265, 0.012957597151398659, 0.019228432327508926, -0.07286500185728073, -0.011798035353422165, -0.016193248331546783, -0.06665114313364029, -0.01245421264320612, 0.0062114279717206955, 0.04517567530274391, -0.04671629145741463, -0.06425628811120987, 0.09718802571296692, 0.10079898685216904, 0.06926950067281723, -0.10093367099761963, -0.025708410888910294, 0.023104486986994743, -0.015528984367847443, 0.007193182595074177, -0.08194879442453384, 0.03593717887997627, 0.03676464408636093, -0.03790849447250366, 0.08193214237689972, -0.0004948019632138312, 0.0222829207777977, -0.05477696284651756, 0.0020622864831238985, -0.046551529318094254, 0.05820295959711075, 0.025319566950201988, -0.067690409719944, -0.037009142339229584, -0.014245576225221157, 0.029411714524030685, -0.025319186970591545, -0.10274240374565125, -0.055668096989393234, -0.0304301455616951, -0.04175088554620743, -0.061136409640312195, -0.034251801669597626, 0.08914671838283539, 0.023512646555900574, -0.03943122923374176, 0.009246923960745335, -0.03796909749507904, 0.017959747463464737, -0.01137146633118391, 0.070005401968956, -0.043376266956329346, -0.047728944569826126, -0.009650681167840958, 0.0479687862098217, -0.009058733470737934, 0.039752423763275146, -0.039538607001304626, 0.0357208289206028, 0.07134682685136795, 0.08768366277217865, -0.02528301626443863, -0.05963921546936035, -0.03812647610902786, -0.05215471237897873, -0.05518774688243866, 0.063571497797966, 6.886111734800606e-32, -0.1008506566286087, 0.04974609613418579, 0.03016859106719494, 0.04483357071876526, 0.019010894000530243, 0.0489802360534668, 0.009378471411764622, 0.03794575482606888, -0.03427032753825188, -0.0070785353891551495, 0.016587750986218452, 0.01849035732448101, -0.0946556106209755, 0.05475214123725891, 0.037394169718027115, -0.02469789981842041, -0.008219928480684757, 0.051034871488809586, 0.004385926760733128, -0.02840466983616352, -0.036068908870220184, 0.04518922045826912, -0.008480053395032883, 0.0762694776058197, 0.027097895741462708, 0.05445685610175133, 0.06884321570396423, -0.015194974839687347, 0.016012227162718773, -0.08484157919883728, 0.006499472074210644, 0.021691253408789635, 0.022796398028731346, 0.005236984696239233, 0.05377935618162155, -0.006041174288839102, -0.07392355054616928, 0.06191495433449745, -0.039376191794872284, 0.03231145441532135, -0.00010635595390340313, -0.048147473484277725, 0.0415164940059185, -0.057596806436777115, 0.03342089056968689, 0.0378749743103981, -0.08879755437374115, -0.05192781239748001, -0.06559915840625763, -0.008249299600720406, 0.03260447084903717, 0.025408528745174408, 0.03435434401035309, -0.020316055044531822, -0.03654193505644798, -0.059466857463121414, 0.042043980211019516, -0.013372756540775299, -0.08397312462329865, -0.005979740060865879, -0.0023401672951877117, 0.08552125841379166, -0.09506744891405106, -0.03503115847706795 ]
90 Chapter 5 y x O(x2, y2) (x1, y1)x2 – x 1y2 – y 15.1 y = mx + c You can find the gradient of a straight line joining two points by considering the vertical distance and the horizontal distance between the points. β–  The gradient m of a line joining the point with coordinates ( x 1 , y 1 ) to the point with coordinates ( x 2 , y 2 ) can be calculated using the f ormula m = y2 βˆ’ y1 ______ x2 βˆ’ x1 a βˆ’ (βˆ’5) ________ 4 βˆ’ 2 = βˆ’1 So a + 5 ______ 2 = βˆ’1 a + 5 = βˆ’ 2 a = βˆ’7Example 2 The line joining (2, βˆ’5) to (4, a) has gradient βˆ’1. Work out the value of a. Use m = y2 βˆ’ y1 ______ x2 βˆ’ x1 . Here m = βˆ’1, (x1, y1) = (2, βˆ’5) and (x2, y2) = (4, a).Example 1 Work out the gradient of the line joining (βˆ’2, 7) and (4, 5) y x O(–2, 7) (4, 5) m = 5 βˆ’ 7 _______ 4 βˆ’ (βˆ’2) = βˆ’ 2 __ 6 = βˆ’ 1 __ 3 Use m = y2 βˆ’ y1 ______ x2 βˆ’ x1 . Here (x1, y1) = (βˆ’2, 7) and (x2, y2) = (4, 5) 1 Work out the gradients of the lines joining these pairs of points: a (4, 2), (6, 3) b (βˆ’1, 3), (5, 4) c (βˆ’4, 5), (1, 2) d (2, βˆ’3), (6, 5) e (βˆ’3, 4), (7, βˆ’6) f (βˆ’ 12, 3), (βˆ’2, 8) g (βˆ’2, βˆ’4), (10, 2) h ( 1 _ 2 , 2), ( 3 _ 4 , 4) i ( 1 _ 4 , 1 _ 2 ), ( 1 _ 2 , 2 _ 3 ) j (βˆ’2.4, 9.6), (0, 0) k (1.3, βˆ’2.2), (8.8, βˆ’4.7) l (0, 5a), (10 a, 0) m (3b , βˆ’2b), (7b, 2b) n ( p, p2), (q, q2)Exercise 5A Explore the gradient fo rmula using GeoGebra.Online
[ -0.01725941151380539, -0.0033452033530920744, 0.028358004987239838, 0.00020366208627820015, -0.0051992908120155334, 0.08801115304231644, 0.021469373255968094, -0.03211066499352455, -0.0009195214370265603, 0.03231723606586456, 0.0053368001244962215, -0.010094579309225082, 0.08013003319501877, 0.030854662880301476, -0.07312855869531631, -0.021006044000387192, -0.032479315996170044, 0.02287384867668152, -0.05513095110654831, -0.035003580152988434, -0.0025821903254836798, -0.01637071557343006, -0.09877581894397736, -0.010712381452322006, 0.006488148123025894, 0.04899671673774719, -0.04484780132770538, -0.013296783901751041, 0.0027456197421997786, -0.05874849855899811, 0.03971012309193611, -0.040478430688381195, 0.03670957684516907, 0.04880743473768234, 0.052539579570293427, 0.02624373883008957, 0.07114172726869583, 0.022585365921258926, 0.0029709695372730494, -0.003155570477247238, -0.08243684470653534, 0.009606365114450455, -0.00023770108236931264, 0.0027352692559361458, -0.04245533421635628, 0.021913906559348106, 0.0166401918977499, 0.014384171925485134, 0.0013018136378377676, 0.0135755380615592, 0.0832776352763176, -0.0600474588572979, -0.11003987491130829, -0.01144260074943304, -0.02196006290614605, 0.04861878603696823, -0.0014693388948217034, -0.07640669494867325, 0.047124963253736496, 0.0772463008761406, -0.011448071338236332, 0.021545521914958954, -0.005571629386395216, 0.06525574624538422, -0.06931786239147186, -0.0577671192586422, 0.05085127800703049, -0.06623861938714981, -0.04198634624481201, 0.058949150145053864, -0.11682716757059097, -0.03102508746087551, 0.0294193048030138, -0.04348469525575638, -0.03165562078356743, 0.023490697145462036, 0.03898884356021881, -0.036130741238594055, -0.04798157513141632, -0.12817129492759705, -0.0009294934570789337, 0.05686476454138756, -0.04527997225522995, 0.03729316219687462, -0.028257200494408607, -0.020553553476929665, -0.016994407400488853, 0.085089311003685, 0.014293225482106209, -0.011177588254213333, 0.0709589496254921, 0.02244235761463642, -0.1159120723605156, 0.030431285500526428, 0.027636313810944557, 0.04942752793431282, 0.0009842412546277046, -0.06305156648159027, 0.028696373105049133, 0.07730285823345184, -0.020605456084012985, 0.06846573948860168, -0.06798230111598969, 0.0033069984056055546, 0.09108921885490417, 0.08653748035430908, 0.07623977959156036, -0.01948884315788746, 0.08040644228458405, -0.02812378667294979, -0.09253088384866714, -0.02140915021300316, 0.00687052309513092, 0.013439084403216839, 0.08117364346981049, 0.02177254483103752, 0.07511758804321289, -0.03647797927260399, 0.09026086330413818, -0.04991183429956436, 0.0012182972859591246, -0.12981252372264862, -0.005220666527748108, 0.0146377794444561, -0.04555141180753708, 0.005056579131633043, 0.005388204008340836, -0.055150214582681656, 0.01001674309372902, -0.020519623532891273, -0.051620565354824066, -0.04653065279126167, -0.02480553276836872, -0.010103123262524605, -0.025037117302417755, 0.020463738590478897, -0.0956520140171051, 0.02537517249584198, -0.05811242386698723, -0.04875911772251129, 0.058843158185482025, 0.034165214747190475, 0.061687834560871124, 0.00048607971984893084, -0.05063805729150772, -0.010525288060307503, -0.0008296385640278459, 0.06244994327425957, 0.004659153986722231, 0.051751188933849335, 0.049302730709314346, -0.05697285011410713, -0.015492626465857029, -0.006064575631171465, -0.01915055513381958, -0.06436465680599213, -0.009142591618001461, 0.014931801706552505, 0.017737215384840965, -0.04594741761684418, -0.07665970921516418, 0.007173970807343721, -0.0814111977815628, 0.035194557160139084, 0.031123431399464607, 0.0015187477692961693, 0.04567409306764603, 0.09334749728441238, 0.03502470999956131, 0.09618700295686722, 0.05117536708712578, -0.0031768789049237967, -0.1023637056350708, 0.030842110514640808, -0.07509186863899231, -0.0070144482888281345, 0.07140782475471497, 0.05057590827345848, 0.0003525081556290388, -0.030010385438799858, 0.00937341433018446, -0.03617478534579277, -0.01753932610154152, -0.026812709867954254, -0.02924385480582714, -0.015315096825361252, 0.004075601696968079, 0.018546219915151596, -0.08909332752227783, 0.03683600574731827, 0.04474906250834465, -0.06123987212777138, -0.03852391988039017, 0.04010351747274399, -0.11284234374761581, 0.002023152308538556, 0.061011236160993576, -0.044196367263793945, 0.008086911402642727, -0.03880145773291588, 0.033167775720357895, 0.013500499539077282, -0.032187141478061676, 0.023395219817757607, 0.016760682687163353, -0.05193537473678589, -0.0006865279865451157, -0.07976164668798447, -0.109189972281456, 0.049983978271484375, 0.052936457097530365, 0.010125662200152874, -0.05706052482128143, 0.049009647220373154, 0.0024124227929860353, -0.07639241963624954, 0.010615939274430275, 0.019139815121889114, -0.05209007486701012, -0.013867142610251904, -0.02896863780915737, 0.059246405959129333, -0.006906083784997463, -7.198495244301401e-33, -0.03287258371710777, -0.018052583560347557, 0.005269412416964769, -0.06898506730794907, -0.0035701121669262648, -0.06928517669439316, 0.050304118543863297, -0.018815094605088234, -0.006990504451096058, 0.20099090039730072, -0.02018597349524498, 0.00108105328399688, 0.00006518482405226678, 0.019652169197797775, 0.03920203447341919, -0.047508951276540756, 0.016537779942154884, 0.04679342731833458, -0.001440729247406125, -0.04781217873096466, -0.0012716040946543217, -0.04100159928202629, -0.026118118315935135, -0.024905536323785782, 0.03127650171518326, -0.03863608092069626, 0.048908475786447525, -0.009364602155983448, -0.02579171024262905, 0.04380160570144653, -0.03827127814292908, -0.06700283288955688, 0.014641928486526012, 0.050967756658792496, -0.026090426370501518, 0.038082778453826904, -0.08316443115472794, 0.014802565798163414, -0.00010209889296675101, -0.12238462269306183, 0.022901099175214767, 0.09940024465322495, 0.12453727424144745, -0.054034408181905746, 0.003492729738354683, 0.08274681121110916, -0.017751997336745262, -0.0705195739865303, -0.002189805032685399, 0.025233741849660873, -0.01877688057720661, -0.05139591172337532, -0.005809290334582329, 0.03748196363449097, -0.053833670914173126, -0.05537354201078415, -0.08315461128950119, -0.006248533260077238, 0.021114574745297432, -0.03664065897464752, -0.01876017265021801, 0.020921457558870316, -0.042865291237831116, 0.059008341282606125, 0.030980300158262253, 0.02096143178641796, -0.07304911315441132, 0.013637772761285305, 0.011152010411024094, -0.019490284845232964, -0.10202606767416, 0.06256521493196487, 0.0246672835201025, 0.022118045017123222, -0.06425543129444122, -0.0788612887263298, 0.0496368445456028, -0.006957066245377064, 0.06375196576118469, -0.006284326780587435, -0.009722459129989147, 0.057976994663476944, 0.040537044405937195, 0.0015258266357704997, 0.03807086497545242, 0.03554176166653633, 0.01756521686911583, 0.03645716980099678, 0.06399504840373993, -0.003269483568146825, -0.10322372615337372, 0.04624304547905922, -0.03800496459007263, -0.07367246598005295, 0.030618799850344658, 8.171814558484237e-32, -0.15847645699977875, -0.015046617016196251, -0.0013535915641114116, 0.044391825795173645, 0.05344010517001152, 0.09318965673446655, -0.016502631828188896, -0.013362592086195946, 0.016011444851756096, -0.06283984333276749, -0.029939496889710426, 0.011172694154083729, -0.020612429827451706, 0.08506201207637787, 0.03942996636033058, 0.03277210518717766, -0.00836851168423891, -0.035994790494441986, -0.041720300912857056, -0.00883703213185072, -0.019724519923329353, 0.011011680588126183, -0.08208242803812027, 0.0005771709838882089, 0.009419315494596958, -0.025275496765971184, -0.012783280573785305, 0.0353308767080307, 0.0482599139213562, -0.06579262018203735, 0.07187971472740173, -0.07972445338964462, 0.002251390600576997, 0.09007725864648819, 0.06229833886027336, 0.019757824018597603, -0.056405872106552124, 0.05136914923787117, 0.012996471486985683, -0.006067371927201748, -0.010804684832692146, -0.036645274609327316, 0.0025898825842887163, -0.050846438854932785, 0.02578093856573105, -0.0019111076835542917, -0.06679516285657883, -0.08465499430894852, -0.062373947352170944, 0.0038483371026813984, 0.11613749712705612, 0.05601492524147034, 0.08439148962497711, 0.10944615304470062, -0.0926763191819191, -0.11990843713283539, 0.13391079008579254, -0.05419256165623665, 0.02238485962152481, 0.04869760572910309, -0.042101722210645676, 0.05359265208244324, -0.07174032926559448, -0.04419231414794922 ]
91Straight line graphs 2 The line joining (3, βˆ’5) to (6, a) has a gradient 4. Work out the value of a. 3 The line joining (5, b) to (8, 3) has gr adient βˆ’3. Work out the value of b. 4 The line joining (c, 4) to (7, 6) has gr adient 3 _ 4 . Work out the value of c. 5 The line joining (βˆ’1, 2 d ) to (1, 4) has gradient βˆ’ 1 _ 4 . Work out the value of d. 6 The line joining (βˆ’3, βˆ’2) to (2e, 5) has gradient 2. Work out the value of e. 7 The line joining (7, 2) to ( f, 3f ) has gradient 4. Wor k out the value of f. 8 The line joining (3, βˆ’4) to ( βˆ’g, 2g) has gradient βˆ’3. Work out the value of g. 9 Show that the points A(2, 3), B(4, 4) and C(10,7) can be joined by a straight line. 10 Show that the points A(βˆ’2a, 5a), B(0, 4a) and points C(6a, a) are collinear. (3 marks) ● The equation of a straight line can be writt en in the form y = mx + c, where m is the gradient and c is the y-intercept. ● The equation of a straight line can also be writt en in the form ax + by + c = 0, where a, b and c are integers.P E/P Poi nts are collinear if they all lie on the same straight line.NotationFind the gradient of the line joining the points A and B and the line joining the points A and C .Problem-solving y x Oy = mx + c cm 1 a Gradient = βˆ’3 a nd y-intercept = (0, 2). b y = 4 __ 3 x + 5 __ 3 Grad ient = 4 __ 3 and y -intercept = (0, 5 __ 3 ).Example 3 Write down the gradient and y-intercept of these lines: a y = βˆ’3 x + 2 b 4x βˆ’ 3y + 5 = 0 Use f ractions rather than decimals in coordinate geometry questions.Watch outRearrange the equation into the form y = mx + c. From this m = 4 _ 3 and c = 5 _ 3 Compare y = βˆ’3x + 2 with y = mx + c. From this, m = βˆ’3 and c = 2.
[ 0.028725745156407356, 0.03366002440452576, 0.0209120512008667, -0.06412093341350555, -0.03791247680783272, 0.03455302119255066, -0.01980348862707615, -0.07750751078128815, -0.08368227630853653, 0.023953501135110855, 0.01275207195430994, -0.03535762056708336, -0.02082219533622265, -0.013173596002161503, -0.07926227897405624, 0.009692234918475151, -0.02318441867828369, 0.06149446591734886, -0.12027380615472794, -0.038262005895376205, -0.03926714137196541, -0.043625976890325546, -0.09027866274118423, -0.019722163677215576, 0.08273126929998398, -0.009328853338956833, 0.018371082842350006, 0.012924172915518284, 0.040014710277318954, -0.07336835563182831, 0.06265068054199219, -0.022165430709719658, 0.0559401661157608, 0.02749253436923027, 0.04245690256357193, -0.017481226474046707, 0.07471994310617447, 0.09328348189592361, -0.005451641511172056, -0.038785841315984726, -0.05544716864824295, -0.018160728737711906, -0.05720539018511772, 0.005848378874361515, -0.0020723254419863224, 0.03829880431294441, -0.011685275472700596, -0.011686091311275959, 0.0029958824161440134, 0.02292974293231964, 0.01681428775191307, -0.0052406364120543, -0.07500328123569489, -0.019351335242390633, 0.006646143738180399, 0.0023866123519837856, 0.053629692643880844, -0.04373347386717796, 0.013456995598971844, 0.04697349667549133, 0.03890303522348404, 0.05065923556685448, -0.05799168348312378, 0.03799733519554138, -0.027376336976885796, 0.08066597580909729, -0.007718899752944708, -0.03846507519483566, -0.06107703596353531, 0.046565622091293335, -0.12285402417182922, 0.008525070734322071, -0.012790157459676266, -0.12349630147218704, -0.036760393530130386, 0.01623208075761795, 0.017462152987718582, -0.021809367462992668, -0.06448815762996674, -0.11643651872873306, -0.05358780547976494, 0.09902278333902359, 0.008929690346121788, 0.10043228417634964, 0.015079223550856113, -0.00913329515606165, 0.012926317751407623, 0.09220252931118011, -0.013893899507820606, 0.001770099624991417, 0.029447034001350403, 0.06978403031826019, -0.05944089591503143, 0.006261141505092382, 0.01825954020023346, -0.009226275607943535, -0.027619419619441032, -0.05384621024131775, 0.009976156055927277, 0.09876440465450287, 0.013833642937242985, 0.0191135685890913, -0.11426035314798355, 0.06671672314405441, 0.01195453479886055, 0.01948269084095955, 0.04272424429655075, -0.024313392117619514, -0.005271310918033123, -0.04757649078965187, -0.003013191744685173, -0.02715630643069744, 0.0302740428596735, -0.03420122340321541, 0.06748321652412415, -0.049964968115091324, -0.02543243207037449, -0.012225558049976826, 0.08673904091119766, -0.041572991758584976, 0.0504705011844635, -0.08224185556173325, 0.06945569813251495, -0.031076928600668907, -0.08453961461782455, -0.01716979220509529, -0.015332868322730064, 0.032412443310022354, 0.018689114600419998, -0.018151499330997467, 0.03085312992334366, -0.05571379140019417, -0.006748579442501068, -0.04969284310936928, -0.08667577058076859, -0.051213618367910385, -0.04883338510990143, 0.06594701111316681, -0.030556006357073784, -0.06780711561441422, 0.02642819844186306, 0.0843837633728981, 0.03837452828884125, -0.002268117154017091, -0.03656025975942612, -0.03158088028430939, -0.06384836882352829, -0.02220766991376877, 0.009594187140464783, 0.05653009191155434, 0.033294446766376495, -0.026833435520529747, 0.06162724271416664, 0.055086519569158554, -0.045177292078733444, -0.01648394949734211, -0.03161457180976868, 0.007852084003388882, -0.029592519626021385, -0.03194078058004379, -0.059351660311222076, 0.09086635708808899, -0.02121410146355629, 0.06641387194395065, 0.06272367388010025, 0.04527902975678444, 0.09235728532075882, -0.00866993609815836, 0.026145942509174347, -0.005193023011088371, 0.04630396142601967, 0.007155325263738632, -0.045588068664073944, 0.1459764540195465, -0.01325797475874424, -0.03687560185790062, 0.0909789428114891, 0.015595235861837864, -0.0011616848642006516, -0.05116969719529152, 0.0685558095574379, -0.02370358631014824, -0.00019440478354226798, -0.031114233657717705, -0.013174616731703281, -0.023767590522766113, 0.018147684633731842, 0.10845210403203964, -0.08569823950529099, 0.0441700704395771, 0.04331605136394501, -0.03305387124419212, -0.0660429298877716, 0.05725012719631195, -0.1352936029434204, -0.032802481204271317, 0.06183647736907005, 0.00328175351023674, -0.10589371621608734, -0.07146687060594559, 0.09429092705249786, 0.030598841607570648, 0.028242329135537148, 0.04706883430480957, -0.011527798138558865, 0.007672043051570654, 0.0014304679352790117, -0.04129081591963768, -0.058394886553287506, 0.030163444578647614, 0.05157538503408432, 0.017397327348589897, -0.04857313260436058, 0.01846870221197605, 0.04959683120250702, -0.08459336310625076, 0.02773221768438816, -0.06081831082701683, -0.10520947724580765, 0.029755529016256332, -0.021287959069013596, 0.025226643308997154, 0.013446444645524025, 3.0013559764097086e-34, -0.03812748193740845, 0.06065317988395691, -0.0331522673368454, -0.0325697660446167, 0.015397106297314167, 0.002960074692964554, 0.08728672564029694, -0.028983546420931816, 0.028208758682012558, 0.1360044926404953, 0.011845680885016918, -0.003604752477258444, -0.0610223151743412, 0.035707540810108185, 0.026836469769477844, -0.0653521716594696, -0.01547167543321848, -0.009294050745666027, -0.02771640010178089, -0.05224933102726936, 0.02239750698208809, -0.04051724076271057, -0.09789150953292847, 0.02668525092303753, 0.09440837800502777, -0.0006862437003292143, 0.05584869906306267, -0.10180367529392242, -0.030766058713197708, -0.03284787759184837, 0.010947637259960175, -0.024000050500035286, 0.025432974100112915, 0.02605349011719227, -0.06164420023560524, -0.009370685555040836, 0.04332973062992096, -0.031926799565553665, -0.01699814759194851, -0.045173704624176025, 0.06265070289373398, 0.14654840528964996, 0.016886243596673012, -0.05365941300988197, -0.06548243761062622, 0.036876726895570755, 0.026409877464175224, -0.01129649206995964, -0.03325530141592026, 0.05151712894439697, 0.027293914929032326, -0.037796009331941605, 0.04893777519464493, 0.05088810995221138, 0.044278185814619064, -0.03422415629029274, 0.029900526627898216, -0.00043933058623224497, 0.04645409435033798, 0.03891102597117424, -0.08162357658147812, -0.1026773527264595, -0.0076517886482179165, 0.059629082679748535, -0.0023959060199558735, -0.03514181450009346, -0.028974078595638275, -0.012786678038537502, 0.017205774784088135, -0.03887607157230377, 0.013199597597122192, 0.08129525929689407, 0.011345630511641502, -0.05689641088247299, 0.008827265352010727, -0.06867073476314545, 0.013333898037672043, 0.004913826938718557, 0.06731590628623962, -0.07417979091405869, -0.04719115048646927, -0.04420087859034538, 0.08306919783353806, 0.035040829330682755, 0.037779223173856735, -0.01836157776415348, 0.03705313429236412, 0.06359993666410446, 0.11829305440187454, 0.05273128300905228, -0.09849663078784943, 0.010307453572750092, -0.07929801195859909, -0.06768310070037842, 0.06231747940182686, 7.554576580799664e-32, -0.03828892856836319, 0.03369961678981781, -0.044931355863809586, 0.04378712549805641, 0.01684800535440445, 0.047352951020002365, 0.02189624309539795, -0.010588780976831913, -0.07317567616701126, 0.005660394672304392, 0.03301111236214638, 0.025854431092739105, -0.10498877614736557, 0.05645810812711716, 0.03847747668623924, -0.010373626835644245, -0.04939596354961395, -0.008015209808945656, -0.016579678282141685, -0.0716734454035759, -0.06666646152734756, 0.02706189453601837, 0.025041488930583, 0.07140521705150604, 0.037185188382864, 0.0005245743086561561, 0.03332531452178955, -0.014379452913999557, 0.030976973474025726, -0.06310250610113144, -0.0005698289023712277, 0.013974359259009361, 0.023357482627034187, 0.00004762494791066274, 0.04481852427124977, 0.04466832056641579, -0.0999884307384491, 0.05534820631146431, -0.019889790564775467, 0.02451646514236927, 0.05383927747607231, -0.04937046766281128, 0.044463805854320526, -0.07745593786239624, 0.003560652257874608, 0.008949283510446548, 0.0028188559226691723, -0.032753828912973404, -0.05756852403283119, -0.009071222506463528, 0.03486994653940201, 0.08314740657806396, 0.03634997084736824, 0.012779681012034416, -0.051185160875320435, -0.11569973081350327, 0.09200131893157959, 0.01999444141983986, -0.04484980180859566, -0.06181854009628296, 0.003546077525243163, 0.03113127313554287, -0.11321833729743958, -0.03239581733942032 ]