Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark
Paper
β’
2211.13523
β’
Published
image
imagewidth (px) 640
640
|
|---|
This dataset is part of the Roboflow 100 benchmark, a diverse collection of 100 object detection datasets spanning 7 imagery domains.
| Split | Images |
|---|---|
| Train | 3,528 |
| Validation | 1,008 |
| Test | 504 |
| Total | 5,040 |
from libreyolo import LIBREYOLO
# Load a model
model = LIBREYOLO(model_path="libreyoloXnano.pt")
# Train on this dataset
model.train(data='path/to/data.yaml', epochs=100)
from huggingface_hub import snapshot_download
# Download the dataset
snapshot_download(
repo_id="Libre-YOLO/cloud-types",
repo_type="dataset",
local_dir="./cloud-types"
)
cloud-types/
βββ data.yaml # Dataset configuration
βββ README.md # This file
βββ train/
β βββ images/ # Training images
β βββ labels/ # Training labels (YOLO format)
βββ valid/
β βββ images/ # Validation images
β βββ labels/ # Validation labels
βββ test/
βββ images/ # Test images (if available)
βββ labels/ # Test labels
Labels are in YOLO format (one .txt file per image):
<class_id> <x_center> <y_center> <width> <height>
All coordinates are normalized to [0, 1].
If you use this dataset, please cite the Roboflow 100 benchmark:
@misc{rf100_2022,
Author = {Floriana Ciaglia and Francesco Saverio Zuppichini and Paul Guerrie and Mark McQuade and Jacob Solawetz},
Title = {Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark},
Year = {2022},
Eprint = {arXiv:2211.13523},
}
This dataset is released under the CC-BY-4.0 license. Please check the original source for any additional terms.