catalystsec/MiniMax-M2.5-4bit-DWQ
This model was quantized to 4-bit using DWQ with mlx-lm version 0.30.7.
| Parameter | Value |
|---|---|
| DWQ learning rate | 3e-7 |
| Batch size | 1 |
| Dataset | allenai/tulu-3-sft-mixture |
| Initial validation loss | 0.077 |
| Final validation loss | 0.053 |
| Relative KL reduction | ≈31 % |
| Tokens processed | ≈1.11 M |
Perplexity
Evaluated on 210 samples of 512 tokens from the default mlx-lm calibration data.
| Model | Perplexity |
|---|---|
| 3-bit | 7.802 |
| 3-bit DWQ | 7.434 |
| 4-bit | 6.581 |
| 4-bit DWQ | 6.431 |
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("catalystsec/MiniMax-M2.5-4bit-DWQ")
prompt = "hello"
if tokenizer.chat_template is not None:
prompt = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
print(response)
- Downloads last month
- 98
Model size
229B params
Tensor type
BF16
·
U32
·
F32
·
Hardware compatibility
Log In
to add your hardware
4-bit
Model tree for catalystsec/MiniMax-M2.5-4bit-DWQ
Base model
MiniMaxAI/MiniMax-M2.5