results
This model is a fine-tuned version of prajjwal1/bert-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0081
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 125 | 1.4595 | 0.666 | 0.5919 | 0.7955 | 0.6412 |
| No log | 2.0 | 250 | 1.2117 | 0.894 | 0.8814 | 0.8937 | 0.8839 |
| No log | 3.0 | 375 | 0.9703 | 0.924 | 0.9164 | 0.9352 | 0.9149 |
| 1.2705 | 4.0 | 500 | 0.7647 | 0.934 | 0.9284 | 0.9428 | 0.9262 |
| 1.2705 | 5.0 | 625 | 0.5898 | 0.97 | 0.9664 | 0.9722 | 0.9659 |
| 1.2705 | 6.0 | 750 | 0.4600 | 0.97 | 0.9664 | 0.9722 | 0.9659 |
| 1.2705 | 7.0 | 875 | 0.3596 | 0.97 | 0.9664 | 0.9722 | 0.9659 |
| 0.5486 | 8.0 | 1000 | 0.2753 | 0.97 | 0.9664 | 0.9722 | 0.9659 |
| 0.5486 | 9.0 | 1125 | 0.1988 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.5486 | 10.0 | 1250 | 0.1469 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.5486 | 11.0 | 1375 | 0.1139 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1935 | 12.0 | 1500 | 0.0904 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1935 | 13.0 | 1625 | 0.0743 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1935 | 14.0 | 1750 | 0.0630 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.1935 | 15.0 | 1875 | 0.0542 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0781 | 16.0 | 2000 | 0.0473 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0781 | 17.0 | 2125 | 0.0418 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0781 | 18.0 | 2250 | 0.0374 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0781 | 19.0 | 2375 | 0.0337 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0449 | 20.0 | 2500 | 0.0305 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0449 | 21.0 | 2625 | 0.0279 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0449 | 22.0 | 2750 | 0.0256 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0449 | 23.0 | 2875 | 0.0236 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0305 | 24.0 | 3000 | 0.0219 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0305 | 25.0 | 3125 | 0.0204 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0305 | 26.0 | 3250 | 0.0190 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0305 | 27.0 | 3375 | 0.0178 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0224 | 28.0 | 3500 | 0.0167 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0224 | 29.0 | 3625 | 0.0157 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0224 | 30.0 | 3750 | 0.0149 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0224 | 31.0 | 3875 | 0.0141 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0181 | 32.0 | 4000 | 0.0134 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0181 | 33.0 | 4125 | 0.0127 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0181 | 34.0 | 4250 | 0.0121 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0181 | 35.0 | 4375 | 0.0116 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0141 | 36.0 | 4500 | 0.0111 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0141 | 37.0 | 4625 | 0.0107 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0141 | 38.0 | 4750 | 0.0103 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0141 | 39.0 | 4875 | 0.0099 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0120 | 40.0 | 5000 | 0.0096 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0120 | 41.0 | 5125 | 0.0093 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0120 | 42.0 | 5250 | 0.0091 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0120 | 43.0 | 5375 | 0.0088 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0108 | 44.0 | 5500 | 0.0087 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0108 | 45.0 | 5625 | 0.0085 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0108 | 46.0 | 5750 | 0.0083 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0108 | 47.0 | 5875 | 0.0082 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0096 | 48.0 | 6000 | 0.0082 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0096 | 49.0 | 6125 | 0.0081 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0096 | 50.0 | 6250 | 0.0081 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 5.0.0
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.2
- Downloads last month
- 22
Model tree for avkumararun/results
Base model
prajjwal1/bert-tiny