results

This model is a fine-tuned version of prajjwal1/bert-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0081
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 125 1.4595 0.666 0.5919 0.7955 0.6412
No log 2.0 250 1.2117 0.894 0.8814 0.8937 0.8839
No log 3.0 375 0.9703 0.924 0.9164 0.9352 0.9149
1.2705 4.0 500 0.7647 0.934 0.9284 0.9428 0.9262
1.2705 5.0 625 0.5898 0.97 0.9664 0.9722 0.9659
1.2705 6.0 750 0.4600 0.97 0.9664 0.9722 0.9659
1.2705 7.0 875 0.3596 0.97 0.9664 0.9722 0.9659
0.5486 8.0 1000 0.2753 0.97 0.9664 0.9722 0.9659
0.5486 9.0 1125 0.1988 1.0 1.0 1.0 1.0
0.5486 10.0 1250 0.1469 1.0 1.0 1.0 1.0
0.5486 11.0 1375 0.1139 1.0 1.0 1.0 1.0
0.1935 12.0 1500 0.0904 1.0 1.0 1.0 1.0
0.1935 13.0 1625 0.0743 1.0 1.0 1.0 1.0
0.1935 14.0 1750 0.0630 1.0 1.0 1.0 1.0
0.1935 15.0 1875 0.0542 1.0 1.0 1.0 1.0
0.0781 16.0 2000 0.0473 1.0 1.0 1.0 1.0
0.0781 17.0 2125 0.0418 1.0 1.0 1.0 1.0
0.0781 18.0 2250 0.0374 1.0 1.0 1.0 1.0
0.0781 19.0 2375 0.0337 1.0 1.0 1.0 1.0
0.0449 20.0 2500 0.0305 1.0 1.0 1.0 1.0
0.0449 21.0 2625 0.0279 1.0 1.0 1.0 1.0
0.0449 22.0 2750 0.0256 1.0 1.0 1.0 1.0
0.0449 23.0 2875 0.0236 1.0 1.0 1.0 1.0
0.0305 24.0 3000 0.0219 1.0 1.0 1.0 1.0
0.0305 25.0 3125 0.0204 1.0 1.0 1.0 1.0
0.0305 26.0 3250 0.0190 1.0 1.0 1.0 1.0
0.0305 27.0 3375 0.0178 1.0 1.0 1.0 1.0
0.0224 28.0 3500 0.0167 1.0 1.0 1.0 1.0
0.0224 29.0 3625 0.0157 1.0 1.0 1.0 1.0
0.0224 30.0 3750 0.0149 1.0 1.0 1.0 1.0
0.0224 31.0 3875 0.0141 1.0 1.0 1.0 1.0
0.0181 32.0 4000 0.0134 1.0 1.0 1.0 1.0
0.0181 33.0 4125 0.0127 1.0 1.0 1.0 1.0
0.0181 34.0 4250 0.0121 1.0 1.0 1.0 1.0
0.0181 35.0 4375 0.0116 1.0 1.0 1.0 1.0
0.0141 36.0 4500 0.0111 1.0 1.0 1.0 1.0
0.0141 37.0 4625 0.0107 1.0 1.0 1.0 1.0
0.0141 38.0 4750 0.0103 1.0 1.0 1.0 1.0
0.0141 39.0 4875 0.0099 1.0 1.0 1.0 1.0
0.0120 40.0 5000 0.0096 1.0 1.0 1.0 1.0
0.0120 41.0 5125 0.0093 1.0 1.0 1.0 1.0
0.0120 42.0 5250 0.0091 1.0 1.0 1.0 1.0
0.0120 43.0 5375 0.0088 1.0 1.0 1.0 1.0
0.0108 44.0 5500 0.0087 1.0 1.0 1.0 1.0
0.0108 45.0 5625 0.0085 1.0 1.0 1.0 1.0
0.0108 46.0 5750 0.0083 1.0 1.0 1.0 1.0
0.0108 47.0 5875 0.0082 1.0 1.0 1.0 1.0
0.0096 48.0 6000 0.0082 1.0 1.0 1.0 1.0
0.0096 49.0 6125 0.0081 1.0 1.0 1.0 1.0
0.0096 50.0 6250 0.0081 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 5.0.0
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.2
Downloads last month
22
Safetensors
Model size
4.39M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for avkumararun/results

Finetuned
(83)
this model