embeddinggemma-300m-tag-classification
This is a pretrained backbone model (google/embeddinggemma-300m) used for tag classification via contrastive learning.
Model Description
This model uses the google/embeddinggemma-300m backbone directly without fine-tuning. It's designed for zero-shot tag classification tasks where you want to use a pretrained embedding model for semantic similarity computation.
Usage
See the README.md for detailed usage examples using our module abstractions.
Model Architecture
- Backbone:
google/embeddinggemma-300m - Type: Pretrained backbone (no fine-tuning)
- Embedding Dimension: Varies by backbone model
Usage Example
"""
Example: Using EmbeddingGemma-300m for Tag Classification
This example shows how to use the pretrained EmbeddingGemma-300m backbone
for zero-shot tag classification using our module abstractions.
Installation:
pip install git+https://github.com/Pieces/TAG-module.git@main
# Or: pip install -e .
"""
import torch
from tags_model.models.backbone import SharedTextBackbone
from playground.validate_from_checkpoint import compute_ranked_tags
# Load the pretrained backbone
print("Loading EmbeddingGemma-300m...")
backbone = SharedTextBackbone(
model_name="google/embeddinggemma-300m",
embedding_dim=768,
freeze_backbone=True,
pooling_mode="mean",
)
backbone.eval()
print("โ Model loaded!")
# Example query
query_text = "How to implement OAuth2 authentication in a Python Flask API?"
# Candidate tags to rank
candidate_tags = [
"python", "flask", "oauth2", "authentication", "api",
"security", "web-development", "jwt", "rest-api", "backend"
]
print(f"\nQuery: {query_text}")
print(f"Candidate tags: {candidate_tags}\n")
# Encode query and tags
with torch.inference_mode():
query_emb = backbone.encode_texts([query_text], max_length=2048, return_dict=False)[0]
tag_embs = backbone.encode_texts(candidate_tags, max_length=2048, return_dict=False)
print(f"Query embedding shape: {query_emb.shape}")
print(f"Tag embeddings shape: {tag_embs.shape}")
# Rank tags by similarity
ranked_tags = compute_ranked_tags(
query_emb=query_emb,
pos_embs=torch.empty(0, 768), # No positives for zero-shot
neg_embs=torch.empty(0, 768), # No negatives for zero-shot
general_embs=tag_embs,
positive_tags=[],
negative_tags=[],
general_tags=candidate_tags,
)
# Display top-ranked tags
print("\n" + "="*60)
print("Top Ranked Tags:")
print("="*60)
for tag, rank, label, score in ranked_tags[:5]:
print(f"{rank:2d}. {tag:20s} (score: {score:.4f})")
print("\n" + "="*60)
print("Example complete!")
Running the Example
# Install the repository first
pip install git+https://github.com/Pieces/TAG-module.git@main
# Or for local development:
pip install -e .
# Run the example
python embeddinggemma_example.py
Citation
If you use this model, please cite:
@software{{tag_module,
title = {{TAG Module: Persona-Conditioned Contrastive Learning for Tag Classification}},
author = {{Your Name}},
year = {{2025}},
url = {{https://github.com/yourusername/tag-module}}
}}
License
Please refer to the original model license for the backbone model.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support