File size: 2,165 Bytes
6fad936 b1a2bad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
tags:
- image-classification
- forest-fire
- keras
- tensorflow
datasets:
- elmadafri/the-wildfire-dataset
---
# 🔥 Forest Fire Detection Model
This model detects forest fires in images using a deep learning CNN trained on the [Wildfire Dataset](https://www.kaggle.com/datasets/elmadafri/the-wildfire-dataset).
## Model Details
- **Architecture:** Sequential CNN with Conv2D, MaxPooling2D, Dense, Dropout layers.
- **Input Size:** 150x150 RGB images
- **Output:** Binary classification (`fire` or `nofire`)
- **Framework:** TensorFlow / Keras
## Training Data
- **Dataset:** [The Wildfire Dataset](https://www.kaggle.com/datasets/elmadafri/the-wildfire-dataset)
- **Classes:** `fire`, `nofire`
- **Preprocessing:** Images resized to 150x150, normalized to [0, 1]
## Training Script
The model was trained using the following script (see attached notebook for full details):
```python
model = Sequential([
Input(shape=(150, 150, 3)),
Conv2D(32, (3,3), activation='relu'),
MaxPooling2D(pool_size=(2,2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Conv2D(128, (3, 3), activation='relu'),
MaxPooling2D(pool_size=(2, 2)),
Flatten(),
Dense(512, activation='relu'),
Dropout(0.5),
Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(...)
```
## Intended Use
- **Use Case:** Automated detection of forest fires in aerial or ground images.
- **Limitations:** Not suitable for video, may not generalize to all forest types or lighting conditions.
## How to Use
```python
import requests
API_URL = "https://api-inference.huggingface.co/models/YOUR_USERNAME/YOUR_MODEL_NAME"
headers = {"Authorization": "Bearer YOUR_HF_API_TOKEN"}
with open("your_image.jpg", "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, files={"file": data})
print(response.json())
```
## Evaluation
- **Test Accuracy:** 70%
- **Metrics:** Not suitable for video, may not generalize to all forest types or lighting conditions.
## Citation
If you use this model, please cite the dataset and this repository. |