Coder-KP commited on
Commit
b1a2bad
·
verified ·
1 Parent(s): 30c931c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🔥 Forest Fire Detection Model
2
+
3
+ This model detects forest fires in images using a deep learning CNN trained on the [Wildfire Dataset](https://www.kaggle.com/datasets/elmadafri/the-wildfire-dataset).
4
+
5
+ ## Model Details
6
+
7
+ - **Architecture:** Sequential CNN with Conv2D, MaxPooling2D, Dense, Dropout layers.
8
+ - **Input Size:** 150x150 RGB images
9
+ - **Output:** Binary classification (`fire` or `nofire`)
10
+ - **Framework:** TensorFlow / Keras
11
+
12
+ ## Training Data
13
+
14
+ - **Dataset:** [The Wildfire Dataset](https://www.kaggle.com/datasets/elmadafri/the-wildfire-dataset)
15
+ - **Classes:** `fire`, `nofire`
16
+ - **Preprocessing:** Images resized to 150x150, normalized to [0, 1]
17
+
18
+ ## Training Script
19
+
20
+ The model was trained using the following script (see attached notebook for full details):
21
+
22
+ ```python
23
+ model = Sequential([
24
+ Input(shape=(150, 150, 3)),
25
+ Conv2D(32, (3,3), activation='relu'),
26
+ MaxPooling2D(pool_size=(2,2)),
27
+ Conv2D(64, (3, 3), activation='relu'),
28
+ MaxPooling2D(pool_size=(2, 2)),
29
+ Conv2D(128, (3, 3), activation='relu'),
30
+ MaxPooling2D(pool_size=(2, 2)),
31
+ Flatten(),
32
+ Dense(512, activation='relu'),
33
+ Dropout(0.5),
34
+ Dense(1, activation='sigmoid')
35
+ ])
36
+ model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
37
+ model.fit(...)
38
+ ```
39
+
40
+ ## Intended Use
41
+ - **Use Case:** Automated detection of forest fires in aerial or ground images.
42
+ - **Limitations:** Not suitable for video, may not generalize to all forest types or lighting conditions.
43
+
44
+ ## How to Use
45
+ ```python
46
+ import requests
47
+
48
+ API_URL = "https://api-inference.huggingface.co/models/YOUR_USERNAME/YOUR_MODEL_NAME"
49
+ headers = {"Authorization": "Bearer YOUR_HF_API_TOKEN"}
50
+
51
+ with open("your_image.jpg", "rb") as f:
52
+ data = f.read()
53
+ response = requests.post(API_URL, headers=headers, files={"file": data})
54
+ print(response.json())
55
+ ```
56
+
57
+ ## Evaluation
58
+ - **Test Accuracy:** 70%
59
+ - **Metrics:** Not suitable for video, may not generalize to all forest types or lighting conditions.
60
+
61
+ ## Citation
62
+ If you use this model, please cite the dataset and this repository.