zR
commited on
Commit
·
d5275af
1
Parent(s):
7d23e9e
report
Browse files- README.md +4 -0
- README_en.md +7 -2
README.md
CHANGED
|
@@ -17,6 +17,10 @@ inference: false
|
|
| 17 |
|
| 18 |
Read this in [English](README_en.md).
|
| 19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
|
| 21 |
在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
|
| 22 |
除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
|
|
|
|
| 17 |
|
| 18 |
Read this in [English](README_en.md).
|
| 19 |
|
| 20 |
+
**2024/07/24,我们发布了与长文本相关的最新技术解读,关注 [这里](https://medium.com/@ChatGLM/glm-long-scaling-pre-trained-model-contexts-to-millions-caa3c48dea85) 查看我们在训练 GLM-4-9B 开源模型中关于长文本技术的技术报告**
|
| 21 |
+
|
| 22 |
+
## 模型介绍
|
| 23 |
+
|
| 24 |
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。
|
| 25 |
在语义、数学、推理、代码和知识等多方面的数据集测评中,GLM-4-9B 及其人类偏好对齐的版本 GLM-4-9B-Chat 均表现出较高的性能。
|
| 26 |
除了能进行多轮对话,GLM-4-9B-Chat 还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K
|
README_en.md
CHANGED
|
@@ -1,5 +1,9 @@
|
|
| 1 |
# GLM-4-9B-Chat-1M
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
## Model Introduction
|
| 4 |
|
| 5 |
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
|
|
@@ -32,7 +36,8 @@ The long text capability was further evaluated on LongBench, and the results are
|
|
| 32 |
|
| 33 |
**For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4).**
|
| 34 |
|
| 35 |
-
**Please strictly follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) to
|
|
|
|
| 36 |
|
| 37 |
### Use the following method to quickly call the GLM-4-9B-Chat-1M language model
|
| 38 |
|
|
@@ -47,7 +52,7 @@ from transformers import (
|
|
| 47 |
|
| 48 |
device = "cuda"
|
| 49 |
|
| 50 |
-
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat-1m",trust_remote_code=True)
|
| 51 |
|
| 52 |
query = "你好"
|
| 53 |
|
|
|
|
| 1 |
# GLM-4-9B-Chat-1M
|
| 2 |
|
| 3 |
+
**On July 24, 2024, we released the latest technical interpretation related to long texts. Check
|
| 4 |
+
out [here](https://medium.com/@ChatGLM/glm-long-scaling-pre-trained-model-contexts-to-millions-caa3c48dea85) to view our
|
| 5 |
+
technical report on long context technology in the training of the open-source GLM-4-9B model.**
|
| 6 |
+
|
| 7 |
## Model Introduction
|
| 8 |
|
| 9 |
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
|
|
|
|
| 36 |
|
| 37 |
**For more inference code and requirements, please visit our [github page](https://github.com/THUDM/GLM-4).**
|
| 38 |
|
| 39 |
+
**Please strictly follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) to
|
| 40 |
+
install, otherwise it will not run properly**
|
| 41 |
|
| 42 |
### Use the following method to quickly call the GLM-4-9B-Chat-1M language model
|
| 43 |
|
|
|
|
| 52 |
|
| 53 |
device = "cuda"
|
| 54 |
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat-1m", trust_remote_code=True)
|
| 56 |
|
| 57 |
query = "你好"
|
| 58 |
|