Spaces:
Runtime error
Runtime error
modified TOKENIZERS_PARALLELISM to false
Browse files
app.py
CHANGED
|
@@ -18,6 +18,8 @@ from data_provider.data_utils import smiles2data, reformat_smiles
|
|
| 18 |
import gradio as gr
|
| 19 |
from datetime import datetime
|
| 20 |
|
|
|
|
|
|
|
| 21 |
## for pyg bug
|
| 22 |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
| 23 |
## for A5000 gpus
|
|
@@ -131,7 +133,7 @@ class InferenceRunner:
|
|
| 131 |
solvent = smiles_split(solvent) if solvent else []
|
| 132 |
assert reactant and product
|
| 133 |
except:
|
| 134 |
-
raise
|
| 135 |
|
| 136 |
extracted_molecules = {product[0]: "$-1$"}
|
| 137 |
for mol in reactant+solvent:
|
|
@@ -304,7 +306,7 @@ def main(args):
|
|
| 304 |
btn.click(fn=online_chat, inputs=[reaction_string, temperature], outputs=[out])
|
| 305 |
clear_btn.click(fn=lambda:("", ""), inputs=[], outputs=[reaction_string, out])
|
| 306 |
|
| 307 |
-
demo.launch(
|
| 308 |
|
| 309 |
|
| 310 |
|
|
|
|
| 18 |
import gradio as gr
|
| 19 |
from datetime import datetime
|
| 20 |
|
| 21 |
+
## disable online tokenizers parallelism to avoid deadlocks
|
| 22 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 23 |
## for pyg bug
|
| 24 |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
| 25 |
## for A5000 gpus
|
|
|
|
| 133 |
solvent = smiles_split(solvent) if solvent else []
|
| 134 |
assert reactant and product
|
| 135 |
except:
|
| 136 |
+
raise gr.Error('Please input a valid reaction string')
|
| 137 |
|
| 138 |
extracted_molecules = {product[0]: "$-1$"}
|
| 139 |
for mol in reactant+solvent:
|
|
|
|
| 306 |
btn.click(fn=online_chat, inputs=[reaction_string, temperature], outputs=[out])
|
| 307 |
clear_btn.click(fn=lambda:("", ""), inputs=[], outputs=[reaction_string, out])
|
| 308 |
|
| 309 |
+
demo.launch()
|
| 310 |
|
| 311 |
|
| 312 |
|
demo.py
CHANGED
|
@@ -1,30 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import argparse
|
| 4 |
import warnings
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
from pytorch_lightning.loggers import CSVLogger
|
| 9 |
-
from pytorch_lightning.callbacks import TQDMProgressBar
|
| 10 |
from data_provider.pretrain_dm import PretrainDM
|
| 11 |
from data_provider.tune_dm import *
|
| 12 |
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
|
| 13 |
from model.blip2_model import Blip2Model
|
| 14 |
-
from model.dist_funs import MyDeepSpeedStrategy
|
| 15 |
-
from data_provider.reaction_action_dataset import ActionDataset
|
| 16 |
from data_provider.data_utils import json_read, json_write
|
| 17 |
from data_provider.data_utils import smiles2data, reformat_smiles
|
|
|
|
|
|
|
| 18 |
|
|
|
|
|
|
|
| 19 |
## for pyg bug
|
| 20 |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
| 21 |
## for A5000 gpus
|
| 22 |
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
class InferenceRunner:
|
| 26 |
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
|
| 27 |
-
smiles_type='default', device='cuda',
|
| 28 |
self.model = model
|
| 29 |
self.rxn_max_len = rxn_max_len
|
| 30 |
self.smi_max_len = smi_max_len
|
|
@@ -36,11 +120,42 @@ class InferenceRunner:
|
|
| 36 |
self.collater = Collater([], [])
|
| 37 |
self.device = device
|
| 38 |
self.smiles_type = smiles_type
|
| 39 |
-
self.predict_rxn_condition = predict_rxn_condition
|
| 40 |
self.args = args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
smiles_list = []
|
| 45 |
prompt = ''
|
| 46 |
prompt += 'Reactants: '
|
|
@@ -72,58 +187,44 @@ class InferenceRunner:
|
|
| 72 |
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
|
| 73 |
smiles_list.append(smi)
|
| 74 |
|
| 75 |
-
if predict_rxn_condition:
|
| 76 |
-
for value, token in param_dict['extracted_duration'].items():
|
| 77 |
-
action_sequence = action_sequence.replace(token, value)
|
| 78 |
-
for value, token in param_dict['extracted_temperature'].items():
|
| 79 |
-
action_sequence = action_sequence.replace(token, value)
|
| 80 |
-
else:
|
| 81 |
-
prompt += 'Temperatures: '
|
| 82 |
-
for value, token in param_dict['extracted_temperature'].items():
|
| 83 |
-
prompt += f'{token}: {value} '
|
| 84 |
-
|
| 85 |
-
prompt += 'Durations: '
|
| 86 |
-
for value, token in param_dict['extracted_duration'].items():
|
| 87 |
-
prompt += f'{token}: {value} '
|
| 88 |
-
|
| 89 |
prompt += 'Action Squence: '
|
| 90 |
-
return prompt, smiles_list
|
| 91 |
|
| 92 |
def get_action_elements(self, rxn_dict):
|
| 93 |
-
|
| 94 |
-
input_text, smiles_list, output_text = self.make_prompt(rxn_dict, self.smi_max_len, self.predict_rxn_condition)
|
| 95 |
-
output_text = output_text.strip() + '\n'
|
| 96 |
|
| 97 |
graph_list = []
|
| 98 |
for smiles in smiles_list:
|
| 99 |
graph_item = smiles2data(smiles)
|
| 100 |
graph_list.append(graph_item)
|
| 101 |
-
return
|
| 102 |
-
|
|
|
|
| 103 |
@torch.no_grad()
|
| 104 |
-
def predict(self, rxn_dict):
|
| 105 |
-
|
| 106 |
-
result_dict =
|
| 107 |
-
'raw': rxn_dict,
|
| 108 |
-
'index': rxn_id,
|
| 109 |
-
'input': input_text,
|
| 110 |
-
'target': output_text
|
| 111 |
-
}
|
| 112 |
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
return result_dict
|
| 124 |
|
|
|
|
| 125 |
def tokenize(self, rxn_dict):
|
| 126 |
-
|
| 127 |
if graph_list:
|
| 128 |
graphs = self.collater(graph_list).to(self.device)
|
| 129 |
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]
|
|
@@ -139,13 +240,10 @@ class InferenceRunner:
|
|
| 139 |
return_attention_mask=True).to(self.device)
|
| 140 |
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
|
| 141 |
input_prompt_tokens['is_mol_token'] = is_mol_token
|
| 142 |
-
return
|
| 143 |
-
|
| 144 |
|
| 145 |
def main(args):
|
| 146 |
device = torch.device('cuda')
|
| 147 |
-
data_list = json_read('demo.json')
|
| 148 |
-
pl.seed_everything(args.seed)
|
| 149 |
# model
|
| 150 |
if args.init_checkpoint:
|
| 151 |
model = Blip2Model(args).to(device)
|
|
@@ -171,54 +269,51 @@ def main(args):
|
|
| 171 |
rxn_max_len=args.rxn_max_len,
|
| 172 |
smi_max_len=args.smi_max_len,
|
| 173 |
device=device,
|
| 174 |
-
predict_rxn_condition=args.predict_rxn_condition,
|
| 175 |
args=args
|
| 176 |
)
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
|
| 187 |
-
parser = argparse.ArgumentParser()
|
| 188 |
-
parser.add_argument('--filename', type=str, default="main")
|
| 189 |
-
parser.add_argument('--seed', type=int, default=42, help='random seed')
|
| 190 |
-
# MM settings
|
| 191 |
-
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
|
| 192 |
-
parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
|
| 193 |
-
parser.add_argument('--iupac_prediction', action='store_true', default=False)
|
| 194 |
-
parser.add_argument('--ckpt_path', type=str, default=None)
|
| 195 |
-
# parser = Trainer.add_argparse_args(parser)
|
| 196 |
-
parser = Blip2Model.add_model_specific_args(parser) # add model args
|
| 197 |
-
parser = PretrainDM.add_model_specific_args(parser)
|
| 198 |
-
parser.add_argument('--accelerator', type=str, default='gpu')
|
| 199 |
-
parser.add_argument('--devices', type=str, default='0,1,2,3')
|
| 200 |
-
parser.add_argument('--precision', type=str, default='bf16-mixed')
|
| 201 |
-
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
|
| 202 |
-
parser.add_argument('--max_epochs', type=int, default=10)
|
| 203 |
-
parser.add_argument('--enable_flash', action='store_true', default=False)
|
| 204 |
-
parser.add_argument('--disable_graph_cache', action='store_true', default=False)
|
| 205 |
-
parser.add_argument('--predict_rxn_condition', action='store_true', default=False)
|
| 206 |
-
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
|
| 207 |
-
parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
|
| 208 |
-
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
|
| 209 |
-
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
|
| 210 |
-
parser.add_argument('--tqdm_interval', type=int, default=50)
|
| 211 |
-
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
|
| 212 |
-
args = parser.parse_args()
|
| 213 |
|
| 214 |
-
if args.enable_flash:
|
| 215 |
-
replace_opt_attn_with_flash_attn()
|
| 216 |
-
print("=========================================")
|
| 217 |
-
for k, v in sorted(vars(args).items()):
|
| 218 |
-
print(k, '=', v)
|
| 219 |
-
print("=========================================")
|
| 220 |
-
return args
|
| 221 |
|
| 222 |
-
if __name__ == '__main__':
|
| 223 |
-
main(get_args())
|
| 224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import subprocess
|
| 2 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 3 |
+
subprocess.run('pip install -U timm', shell=True)
|
| 4 |
+
import spaces
|
| 5 |
import os
|
| 6 |
import torch
|
| 7 |
import argparse
|
| 8 |
import warnings
|
| 9 |
+
from rdkit import Chem
|
| 10 |
+
from rdkit.Chem import CanonSmiles
|
| 11 |
+
from rdkit.Chem import MolFromSmiles, MolToSmiles
|
|
|
|
|
|
|
| 12 |
from data_provider.pretrain_dm import PretrainDM
|
| 13 |
from data_provider.tune_dm import *
|
| 14 |
from model.opt_flash_attention import replace_opt_attn_with_flash_attn
|
| 15 |
from model.blip2_model import Blip2Model
|
|
|
|
|
|
|
| 16 |
from data_provider.data_utils import json_read, json_write
|
| 17 |
from data_provider.data_utils import smiles2data, reformat_smiles
|
| 18 |
+
import gradio as gr
|
| 19 |
+
from datetime import datetime
|
| 20 |
|
| 21 |
+
## disable online tokenizers parallelism to avoid deadlocks
|
| 22 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 23 |
## for pyg bug
|
| 24 |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
|
| 25 |
## for A5000 gpus
|
| 26 |
torch.set_float32_matmul_precision('medium') # can be medium (bfloat16), high (tensorfloat32), highest (float32)
|
| 27 |
|
| 28 |
+
def smiles_split(string, separator='.'):
|
| 29 |
+
string = str(string)
|
| 30 |
+
mols = []
|
| 31 |
+
for smi in string.split(separator):
|
| 32 |
+
mol = MolFromSmiles(smi)
|
| 33 |
+
if mol is None:
|
| 34 |
+
continue # Skip invalid SMILES strings
|
| 35 |
+
mols.append(mol)
|
| 36 |
+
|
| 37 |
+
parts = []
|
| 38 |
+
current_part = []
|
| 39 |
+
charge_count = 0
|
| 40 |
+
|
| 41 |
+
for mol in mols:
|
| 42 |
+
charge = Chem.GetFormalCharge(mol)
|
| 43 |
+
if charge==0:
|
| 44 |
+
if current_part:
|
| 45 |
+
smiles = '.'.join([MolToSmiles(m) for m in current_part])
|
| 46 |
+
smiles = CanonSmiles(smiles)
|
| 47 |
+
parts.append(smiles)
|
| 48 |
+
current_part = []
|
| 49 |
+
charge_count = 0
|
| 50 |
+
parts.append(MolToSmiles(mol))
|
| 51 |
+
else:
|
| 52 |
+
charge_count += charge
|
| 53 |
+
current_part.append(mol)
|
| 54 |
+
if charge_count == 0:
|
| 55 |
+
smiles = '.'.join([MolToSmiles(m) for m in current_part])
|
| 56 |
+
smiles = CanonSmiles(smiles)
|
| 57 |
+
parts.append(smiles)
|
| 58 |
+
current_part = []
|
| 59 |
+
charge_count = 0
|
| 60 |
+
if current_part:
|
| 61 |
+
smiles = '.'.join([MolToSmiles(m) for m in current_part])
|
| 62 |
+
smiles = CanonSmiles(smiles)
|
| 63 |
+
parts.append(smiles)
|
| 64 |
+
|
| 65 |
+
return parts
|
| 66 |
+
|
| 67 |
+
def get_args():
|
| 68 |
+
parser = argparse.ArgumentParser()
|
| 69 |
+
parser.add_argument('--filename', type=str, default="main")
|
| 70 |
+
parser.add_argument('--seed', type=int, default=42, help='random seed')
|
| 71 |
+
# MM settings
|
| 72 |
+
parser.add_argument('--mode', type=str, default='pretrain', choices=['pretrain', 'ft', 'eval', 'pretrain_eval'])
|
| 73 |
+
parser.add_argument('--strategy_name', type=str, default='mydeepspeed')
|
| 74 |
+
parser.add_argument('--iupac_prediction', action='store_true', default=False)
|
| 75 |
+
parser.add_argument('--ckpt_path', type=str, default=None)
|
| 76 |
+
# parser = Trainer.add_argparse_args(parser)
|
| 77 |
+
parser = Blip2Model.add_model_specific_args(parser) # add model args
|
| 78 |
+
parser = PretrainDM.add_model_specific_args(parser)
|
| 79 |
+
parser.add_argument('--accelerator', type=str, default='gpu')
|
| 80 |
+
parser.add_argument('--devices', type=str, default='0,1,2,3')
|
| 81 |
+
parser.add_argument('--precision', type=str, default='bf16-mixed')
|
| 82 |
+
parser.add_argument('--downstream_task', type=str, default='action', choices=['action', 'synthesis', 'caption', 'chebi'])
|
| 83 |
+
parser.add_argument('--max_epochs', type=int, default=10)
|
| 84 |
+
parser.add_argument('--enable_flash', action='store_true', default=False)
|
| 85 |
+
parser.add_argument('--disable_graph_cache', action='store_true', default=False)
|
| 86 |
+
parser.add_argument('--generate_restrict_tokens', action='store_true', default=False)
|
| 87 |
+
parser.add_argument('--train_restrict_tokens', action='store_true', default=False)
|
| 88 |
+
parser.add_argument('--smiles_type', type=str, default='default', choices=['default', 'canonical', 'restricted', 'unrestricted', 'r_smiles'])
|
| 89 |
+
parser.add_argument('--accumulate_grad_batches', type=int, default=1)
|
| 90 |
+
parser.add_argument('--tqdm_interval', type=int, default=50)
|
| 91 |
+
parser.add_argument('--check_val_every_n_epoch', type=int, default=1)
|
| 92 |
+
args = parser.parse_args()
|
| 93 |
+
|
| 94 |
+
if args.enable_flash:
|
| 95 |
+
replace_opt_attn_with_flash_attn()
|
| 96 |
+
return args
|
| 97 |
+
|
| 98 |
+
app_config = {
|
| 99 |
+
"init_checkpoint": "all_checkpoints/ckpt_tune_hybridFeb11_May31/last_converted.ckpt",
|
| 100 |
+
"filename": "app",
|
| 101 |
+
"opt_model": "facebook/galactica-1.3b",
|
| 102 |
+
"num_workers": 4,
|
| 103 |
+
"rxn_max_len": 512,
|
| 104 |
+
"text_max_len": 512,
|
| 105 |
+
"precision": "bf16-mixed",
|
| 106 |
+
"max_inference_len": 512,
|
| 107 |
+
}
|
| 108 |
|
| 109 |
class InferenceRunner:
|
| 110 |
def __init__(self, model, tokenizer, rxn_max_len, smi_max_len,
|
| 111 |
+
smiles_type='default', device='cuda', args=None):
|
| 112 |
self.model = model
|
| 113 |
self.rxn_max_len = rxn_max_len
|
| 114 |
self.smi_max_len = smi_max_len
|
|
|
|
| 120 |
self.collater = Collater([], [])
|
| 121 |
self.device = device
|
| 122 |
self.smiles_type = smiles_type
|
|
|
|
| 123 |
self.args = args
|
| 124 |
+
time_stamp = datetime.now().strftime("%Y.%m.%d-%H:%M")
|
| 125 |
+
self.cache_dir = f'results/{self.args.filename}/{time_stamp}'
|
| 126 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 127 |
+
|
| 128 |
+
def make_query_dict(self, rxn_string):
|
| 129 |
+
try:
|
| 130 |
+
reactant, solvent, product = rxn_string.split('>')
|
| 131 |
+
reactant = smiles_split(reactant)
|
| 132 |
+
product = smiles_split(product)
|
| 133 |
+
solvent = smiles_split(solvent) if solvent else []
|
| 134 |
+
assert reactant and product
|
| 135 |
+
except:
|
| 136 |
+
raise gr.Error('Please input a valid reaction string')
|
| 137 |
+
|
| 138 |
+
extracted_molecules = {product[0]: "$-1$"}
|
| 139 |
+
for mol in reactant+solvent:
|
| 140 |
+
extracted_molecules[mol] = f"${len(extracted_molecules)}$"
|
| 141 |
|
| 142 |
+
result_dict = {}
|
| 143 |
+
result_dict['time_stamp'] = datetime.now().strftime("%Y.%m.%d %H:%M:%S.%f")[:-3]
|
| 144 |
+
result_dict['reaction_string'] = rxn_string
|
| 145 |
+
result_dict['REACTANT'] = reactant
|
| 146 |
+
result_dict['SOLVENT'] = solvent
|
| 147 |
+
result_dict['CATALYST'] = []
|
| 148 |
+
result_dict['PRODUCT'] = product
|
| 149 |
+
result_dict['extracted_molecules'] = extracted_molecules
|
| 150 |
+
return result_dict
|
| 151 |
+
|
| 152 |
+
def save_prediction(self, result_dict):
|
| 153 |
+
os.makedirs(self.cache_dir, exist_ok=True)
|
| 154 |
+
result_id = result_dict['time_stamp']
|
| 155 |
+
result_path = os.path.join(self.cache_dir, f'{result_id}.json')
|
| 156 |
+
json_write(result_path, result_dict)
|
| 157 |
+
|
| 158 |
+
def make_prompt(self, param_dict, smi_max_len=128):
|
| 159 |
smiles_list = []
|
| 160 |
prompt = ''
|
| 161 |
prompt += 'Reactants: '
|
|
|
|
| 187 |
prompt += f'[START_SMILES]{smiles_wrapper(smi)}[END_SMILES] '
|
| 188 |
smiles_list.append(smi)
|
| 189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
prompt += 'Action Squence: '
|
| 191 |
+
return prompt, smiles_list
|
| 192 |
|
| 193 |
def get_action_elements(self, rxn_dict):
|
| 194 |
+
input_text, smiles_list = self.make_prompt(rxn_dict, self.smi_max_len)
|
|
|
|
|
|
|
| 195 |
|
| 196 |
graph_list = []
|
| 197 |
for smiles in smiles_list:
|
| 198 |
graph_item = smiles2data(smiles)
|
| 199 |
graph_list.append(graph_item)
|
| 200 |
+
return graph_list, input_text
|
| 201 |
+
|
| 202 |
+
@spaces.GPU
|
| 203 |
@torch.no_grad()
|
| 204 |
+
def predict(self, rxn_dict, temperature=1):
|
| 205 |
+
graphs, prompt_tokens = self.tokenize(rxn_dict)
|
| 206 |
+
result_dict = rxn_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
samples = {'graphs': graphs, 'prompt_tokens': prompt_tokens}
|
| 208 |
+
assert prompt_tokens.input_ids.is_cuda
|
| 209 |
+
assert graphs.is_cuda
|
| 210 |
+
prediction = self.model.blip2opt.generate(
|
| 211 |
+
samples,
|
| 212 |
+
do_sample=self.args.do_sample,
|
| 213 |
+
num_beams=self.args.num_beams,
|
| 214 |
+
max_length=self.args.max_inference_len,
|
| 215 |
+
min_length=self.args.min_inference_len,
|
| 216 |
+
num_captions=self.args.num_generate_captions,
|
| 217 |
+
temperature=temperature,
|
| 218 |
+
use_graph=True
|
| 219 |
+
)[0]
|
| 220 |
+
for k, v in result_dict['extracted_molecules'].items():
|
| 221 |
+
prediction = prediction.replace(v, k)
|
| 222 |
+
result_dict['prediction'] = prediction
|
| 223 |
return result_dict
|
| 224 |
|
| 225 |
+
@spaces.GPU
|
| 226 |
def tokenize(self, rxn_dict):
|
| 227 |
+
graph_list, input_text = self.get_action_elements(rxn_dict)
|
| 228 |
if graph_list:
|
| 229 |
graphs = self.collater(graph_list).to(self.device)
|
| 230 |
input_prompt = smiles_handler(input_text, self.mol_ph, self.is_gal)[0]
|
|
|
|
| 240 |
return_attention_mask=True).to(self.device)
|
| 241 |
is_mol_token = input_prompt_tokens.input_ids == self.mol_token_id
|
| 242 |
input_prompt_tokens['is_mol_token'] = is_mol_token
|
| 243 |
+
return graphs, input_prompt_tokens
|
|
|
|
| 244 |
|
| 245 |
def main(args):
|
| 246 |
device = torch.device('cuda')
|
|
|
|
|
|
|
| 247 |
# model
|
| 248 |
if args.init_checkpoint:
|
| 249 |
model = Blip2Model(args).to(device)
|
|
|
|
| 269 |
rxn_max_len=args.rxn_max_len,
|
| 270 |
smi_max_len=args.smi_max_len,
|
| 271 |
device=device,
|
|
|
|
| 272 |
args=args
|
| 273 |
)
|
| 274 |
+
example_inputs = json_read('demo.json')
|
| 275 |
+
example_inputs = [[e] for e in example_inputs]
|
| 276 |
|
| 277 |
+
def online_chat(reaction_string, temperature=1):
|
| 278 |
+
data_item = infer_runner.make_query_dict(reaction_string)
|
| 279 |
+
result = infer_runner.predict(data_item, temperature=temperature)
|
| 280 |
+
infer_runner.save_prediction(result)
|
| 281 |
+
prediction = result['prediction'].replace(' ; ', ' ;\n')
|
| 282 |
+
return prediction
|
| 283 |
+
|
| 284 |
+
with gr.Blocks(css="""
|
| 285 |
+
.center { display: flex; justify-content: center; }
|
| 286 |
+
""") as demo:
|
| 287 |
+
gr.HTML(
|
| 288 |
+
"""
|
| 289 |
+
<center><h1><b>ReactXT</b></h1></center>
|
| 290 |
+
<p style="font-size:20px; font-weight:bold;">This is the demo page of our ACL 2024 paper
|
| 291 |
+
<i>ReactXT: Understanding Molecular “Reaction-ship” via Reaction-Contextualized Molecule-Text Pretraining.</i></p>
|
| 292 |
+
""")
|
| 293 |
+
with gr.Row(elem_classes="center"):
|
| 294 |
+
gr.Image(value="./figures/frameworks.jpg", elem_classes="center", width=800, label="Framework of ReactXT")
|
| 295 |
+
gr.HTML(
|
| 296 |
+
"""
|
| 297 |
+
<p style="font-size:16px;"> Please input one chemical reaction below, and we will generate the predicted experimental procedure.</p>
|
| 298 |
+
<p style="font-size:16px;"> The reaction should be in form of <b>Reactants>Reagents>Product</b>.</p>
|
| 299 |
+
""")
|
| 300 |
|
| 301 |
+
reaction_string = gr.Textbox(placeholder="Input one reaction", label='Input Reaction')
|
| 302 |
+
gr.Examples(example_inputs, [reaction_string,], fn=online_chat, label='Example Reactions')
|
| 303 |
+
with gr.Row():
|
| 304 |
+
btn = gr.Button("Submit")
|
| 305 |
+
clear_btn = gr.Button("Clear")
|
| 306 |
+
temperature = gr.Slider(0.1, 1, value=1, label='Temperature')
|
| 307 |
+
with gr.Row():
|
| 308 |
+
out = gr.Textbox(label="ReactXT's Output", placeholder="Predicted experimental procedure")
|
| 309 |
+
btn.click(fn=online_chat, inputs=[reaction_string, temperature], outputs=[out])
|
| 310 |
+
clear_btn.click(fn=lambda:("", ""), inputs=[], outputs=[reaction_string, out])
|
| 311 |
|
| 312 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
|
|
|
|
|
|
| 315 |
|
| 316 |
+
if __name__ == '__main__':
|
| 317 |
+
args = get_args()
|
| 318 |
+
vars(args).update(app_config)
|
| 319 |
+
main(args)
|