Spaces:
Running
Running
Tony Wu
commited on
Commit
·
66d537f
1
Parent(s):
658164b
style: apply linter
Browse files- data/model_handler.py +16 -14
data/model_handler.py
CHANGED
|
@@ -1,12 +1,15 @@
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
from typing import Dict
|
| 4 |
-
|
| 5 |
import pandas as pd
|
| 6 |
-
from
|
|
|
|
|
|
|
| 7 |
|
| 8 |
BLOCKLIST = ["impactframes"]
|
| 9 |
|
|
|
|
| 10 |
class ModelHandler:
|
| 11 |
def __init__(self, model_infos_path="model_infos.json"):
|
| 12 |
self.api = HfApi()
|
|
@@ -28,21 +31,20 @@ class ModelHandler:
|
|
| 28 |
repositories = [model.modelId for model in models] # type: ignore
|
| 29 |
|
| 30 |
for repo_id in repositories:
|
| 31 |
-
org_name = repo_id.split(
|
| 32 |
if org_name in BLOCKLIST:
|
| 33 |
continue
|
| 34 |
-
|
| 35 |
-
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith('_metrics.json') or f == 'results.json']
|
| 36 |
|
| 37 |
-
|
|
|
|
| 38 |
if len(files) == 0:
|
| 39 |
continue
|
| 40 |
else:
|
| 41 |
for file in files:
|
| 42 |
-
if file.endswith(
|
| 43 |
-
model_name = repo_id.replace(
|
| 44 |
else:
|
| 45 |
-
model_name = file.split(
|
| 46 |
|
| 47 |
if model_name not in self.model_infos:
|
| 48 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
|
@@ -61,7 +63,7 @@ class ModelHandler:
|
|
| 61 |
print(f"Error loading {model_name} - {e}")
|
| 62 |
continue
|
| 63 |
|
| 64 |
-
#self._save_model_infos()
|
| 65 |
|
| 66 |
model_res = {}
|
| 67 |
if len(self.model_infos) > 0:
|
|
@@ -69,7 +71,7 @@ class ModelHandler:
|
|
| 69 |
res = self.model_infos[model]["results"]
|
| 70 |
dataset_res = {}
|
| 71 |
for dataset in res.keys():
|
| 72 |
-
#for each keyword check if it is in the dataset name if not continue
|
| 73 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
| 74 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
| 75 |
continue
|
|
@@ -77,9 +79,9 @@ class ModelHandler:
|
|
| 77 |
dataset_nickname = get_datasets_nickname(dataset)
|
| 78 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
| 79 |
model_res[model] = dataset_res
|
| 80 |
-
|
| 81 |
df = pd.DataFrame(model_res).T
|
| 82 |
-
|
| 83 |
return df
|
| 84 |
return pd.DataFrame()
|
| 85 |
|
|
@@ -104,7 +106,7 @@ class ModelHandler:
|
|
| 104 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
| 105 |
df.sort_values("Average", ascending=False, inplace=True)
|
| 106 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
| 107 |
-
#multiply values by 100 if they are floats and round to 1 decimal place
|
| 108 |
for col in df.columns:
|
| 109 |
if df[col].dtype == "float64":
|
| 110 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|
|
|
|
| 1 |
import json
|
| 2 |
import os
|
| 3 |
from typing import Dict
|
| 4 |
+
|
| 5 |
import pandas as pd
|
| 6 |
+
from huggingface_hub import HfApi, hf_hub_download, metadata_load
|
| 7 |
+
|
| 8 |
+
from .dataset_handler import VIDORE_DATASETS_KEYWORDS, get_datasets_nickname
|
| 9 |
|
| 10 |
BLOCKLIST = ["impactframes"]
|
| 11 |
|
| 12 |
+
|
| 13 |
class ModelHandler:
|
| 14 |
def __init__(self, model_infos_path="model_infos.json"):
|
| 15 |
self.api = HfApi()
|
|
|
|
| 31 |
repositories = [model.modelId for model in models] # type: ignore
|
| 32 |
|
| 33 |
for repo_id in repositories:
|
| 34 |
+
org_name = repo_id.split("/")[0]
|
| 35 |
if org_name in BLOCKLIST:
|
| 36 |
continue
|
|
|
|
|
|
|
| 37 |
|
| 38 |
+
files = [f for f in self.api.list_repo_files(repo_id) if f.endswith("_metrics.json") or f == "results.json"]
|
| 39 |
+
|
| 40 |
if len(files) == 0:
|
| 41 |
continue
|
| 42 |
else:
|
| 43 |
for file in files:
|
| 44 |
+
if file.endswith("results.json"):
|
| 45 |
+
model_name = repo_id.replace("/", "_")
|
| 46 |
else:
|
| 47 |
+
model_name = file.split("_metrics.json")[0]
|
| 48 |
|
| 49 |
if model_name not in self.model_infos:
|
| 50 |
readme_path = hf_hub_download(repo_id, filename="README.md")
|
|
|
|
| 63 |
print(f"Error loading {model_name} - {e}")
|
| 64 |
continue
|
| 65 |
|
| 66 |
+
# self._save_model_infos()
|
| 67 |
|
| 68 |
model_res = {}
|
| 69 |
if len(self.model_infos) > 0:
|
|
|
|
| 71 |
res = self.model_infos[model]["results"]
|
| 72 |
dataset_res = {}
|
| 73 |
for dataset in res.keys():
|
| 74 |
+
# for each keyword check if it is in the dataset name if not continue
|
| 75 |
if not any(keyword in dataset for keyword in VIDORE_DATASETS_KEYWORDS):
|
| 76 |
print(f"{dataset} not found in ViDoRe datasets. Skipping ...")
|
| 77 |
continue
|
|
|
|
| 79 |
dataset_nickname = get_datasets_nickname(dataset)
|
| 80 |
dataset_res[dataset_nickname] = res[dataset][metric]
|
| 81 |
model_res[model] = dataset_res
|
| 82 |
+
|
| 83 |
df = pd.DataFrame(model_res).T
|
| 84 |
+
|
| 85 |
return df
|
| 86 |
return pd.DataFrame()
|
| 87 |
|
|
|
|
| 106 |
df.insert(len(df.columns) - len(cols_to_rank), "Average", df[cols_to_rank].mean(axis=1, skipna=False))
|
| 107 |
df.sort_values("Average", ascending=False, inplace=True)
|
| 108 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
| 109 |
+
# multiply values by 100 if they are floats and round to 1 decimal place
|
| 110 |
for col in df.columns:
|
| 111 |
if df[col].dtype == "float64":
|
| 112 |
df[col] = df[col].apply(lambda x: round(x * 100, 1))
|