Spaces:
Running
Running
| import gradio as gr | |
| from app.utils import (add_rank_and_format, deprecated_get_refresh_function, | |
| filter_models, get_refresh_function) | |
| from data.deprecated_model_handler import DeprecatedModelHandler | |
| from data.model_handler import ModelHandler | |
| METRICS = [ | |
| "ndcg_at_1", | |
| "ndcg_at_5", | |
| "ndcg_at_10", | |
| "ndcg_at_100", | |
| "recall_at_1", | |
| "recall_at_5", | |
| "recall_at_10", | |
| "recall_at_100", | |
| ] | |
| def main(): | |
| # Get new results | |
| model_handler = ModelHandler() | |
| initial_metric = "ndcg_at_5" | |
| model_handler.get_vidore_data(initial_metric) | |
| data_benchmark_1 = model_handler.render_df(initial_metric, benchmark_version=1) | |
| data_benchmark_1 = add_rank_and_format(data_benchmark_1, benchmark_version=1) | |
| data_benchmark_2 = model_handler.render_df(initial_metric, benchmark_version=2) | |
| data_benchmark_2 = add_rank_and_format(data_benchmark_2, benchmark_version=2) | |
| num_datasets_1 = len(data_benchmark_1.columns) - 3 | |
| num_scores_1 = len(data_benchmark_1) * num_datasets_1 | |
| num_models_1 = len(data_benchmark_1) | |
| num_datasets_2 = len(data_benchmark_2.columns) - 3 | |
| num_scores_2 = len(data_benchmark_2) * num_datasets_2 | |
| num_models_2 = len(data_benchmark_2) | |
| # Get deprecated results | |
| deprecated_model_handler = DeprecatedModelHandler() | |
| initial_metric = "ndcg_at_5" | |
| deprecated_model_handler.get_vidore_data(initial_metric) | |
| deprecated_data_benchmark_1 = deprecated_model_handler.render_df(initial_metric, benchmark_version=1) | |
| deprecated_data_benchmark_1 = add_rank_and_format(deprecated_data_benchmark_1, benchmark_version=1) | |
| deprecated_data_benchmark_2 = deprecated_model_handler.render_df(initial_metric, benchmark_version=2) | |
| deprecated_data_benchmark_2 = add_rank_and_format(deprecated_data_benchmark_2, benchmark_version=2) | |
| deprecated_num_datasets_1 = len(deprecated_data_benchmark_1.columns) - 3 | |
| deprecated_num_scores_1 = len(deprecated_data_benchmark_1) * deprecated_num_datasets_1 | |
| deprecated_num_models_1 = len(deprecated_data_benchmark_1) | |
| deprecated_num_datasets_2 = len(deprecated_data_benchmark_2.columns) - 3 | |
| deprecated_num_scores_2 = len(deprecated_data_benchmark_2) * deprecated_num_datasets_2 | |
| deprecated_num_models_2 = len(deprecated_data_benchmark_2) | |
| css = """ | |
| table > thead { | |
| white-space: normal | |
| } | |
| table { | |
| --cell-width-1: 250px | |
| } | |
| table > tbody > tr > td:nth-child(2) > div { | |
| overflow-x: auto | |
| } | |
| .filter-checkbox-group { | |
| max-width: max-content; | |
| } | |
| #markdown size | |
| .markdown { | |
| font-size: 1rem; | |
| } | |
| .alert-info { | |
| background-color: #e3f2fd; | |
| border-left: 4px solid #2196f3; | |
| padding: 5px 15px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as block: | |
| with gr.Tabs(): | |
| with gr.TabItem("ViDoRe V3"): | |
| gr.Markdown("# ViDoRe V3: a comprehensive evaluation of retrieval for enterprise use-case 👷♂️") | |
| gr.Markdown( | |
| """ | |
| Visual Document Retrieval Benchmark 3 leaderboard. To submit results, refer to the corresponding tab. | |
| Refer to: | |
| - 🤗 The [blogpost](https://huggingface.co/blog/QuentinJG/introducing-vidore-v3) for all the details on the datasets, | |
| - 🤗 The [dataset collection](https://huggingface.co/collections/vidore/vidore-benchmark-v3), | |
| - 📝 The [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics. | |
| """ | |
| ) | |
| gr.Markdown(""" | |
| As the reference results are now hosted on the [MTEB Leaderboard](https://mteb-leaderboard.hf.space/?benchmark_name=ViDoRe(v3)), | |
| we embed it here. | |
| """ ) | |
| gr.Markdown( | |
| """**💡 To display English-only results:** | |
| - Under *Customize this Benchmark*, unselect the French datasets (*Vidore3EnergyRetrieval*, *Vidore3FinanceFrRetrieval*, *Vidore3PhysicsRetrieval*), | |
| - Go to the *Performance per language* tab (you might have to click on the three dots on the right of the tab bar to see it), | |
| - The *eng-Latn* column will show English-only results (= English queries on English documents).""", | |
| elem_classes="alert-info" | |
| ) | |
| gr.HTML( | |
| """ | |
| <iframe | |
| src="https://mteb-leaderboard.hf.space/?benchmark_name=ViDoRe(v3)" | |
| style="width:100%; height:1000px; border:2px solid black; border-radius:10px;" | |
| ></iframe> | |
| """ | |
| ) | |
| with gr.TabItem("ViDoRe V2"): | |
| gr.Markdown("# ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍") | |
| gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀") | |
| gr.Markdown( | |
| """ | |
| Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab. | |
| Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models. | |
| """ | |
| ) | |
| datasets_columns_2 = list(data_benchmark_2.columns[4:]) | |
| with gr.Row(): | |
| metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric") | |
| research_textbox_2 = gr.Textbox( | |
| placeholder="🔍 Search Models... [press enter]", | |
| label="Filter Models by Name", | |
| ) | |
| column_checkboxes_2 = gr.CheckboxGroup( | |
| choices=datasets_columns_2, value=datasets_columns_2, label="Select Columns to Display" | |
| ) | |
| with gr.Row(): | |
| datatype_2 = ["number", "markdown"] + ["number"] * (num_datasets_2 + 1) | |
| dataframe_2 = gr.Dataframe(data_benchmark_2, datatype=datatype_2, type="pandas") | |
| def update_data_2(metric, search_term, selected_columns): | |
| model_handler.get_vidore_data(metric) | |
| data = model_handler.render_df(metric, benchmark_version=2) | |
| data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns) | |
| data = filter_models(data, search_term) | |
| # data = remove_duplicates(data) # Add this line | |
| if selected_columns: | |
| data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns] | |
| return data | |
| with gr.Row(): | |
| refresh_button_2 = gr.Button("Refresh") | |
| refresh_button_2.click( | |
| get_refresh_function(model_handler, benchmark_version=2), | |
| inputs=[metric_dropdown_2], | |
| outputs=dataframe_2, | |
| concurrency_limit=20, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown( | |
| """ | |
| **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side. | |
| Those numbers are not numbers obtained from the organisations that released those models. | |
| """ | |
| ) | |
| # Automatically refresh the dataframe when the dropdown value changes | |
| metric_dropdown_2.change( | |
| get_refresh_function(model_handler, benchmark_version=2), | |
| inputs=[metric_dropdown_2], | |
| outputs=dataframe_2, | |
| ) | |
| research_textbox_2.submit( | |
| lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns), | |
| inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2], | |
| outputs=dataframe_2, | |
| ) | |
| column_checkboxes_2.change( | |
| lambda metric, search_term, selected_columns: update_data_2(metric, search_term, selected_columns), | |
| inputs=[metric_dropdown_2, research_textbox_2, column_checkboxes_2], | |
| outputs=dataframe_2, | |
| ) | |
| gr.Markdown( | |
| f""" | |
| - **Total Datasets**: {num_datasets_2} | |
| - **Total Scores**: {num_scores_2} | |
| - **Total Models**: {num_models_2} | |
| """ | |
| + r""" | |
| Please consider citing: | |
| ```bibtex | |
| @misc{faysse2024colpaliefficientdocumentretrieval, | |
| title={ColPali: Efficient Document Retrieval with Vision Language Models}, | |
| author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, | |
| year={2024}, | |
| eprint={2407.01449}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2407.01449}, | |
| } | |
| @misc{macé2025vidorebenchmarkv2raising, | |
| title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval}, | |
| author={Quentin Macé and António Loison and Manuel Faysse}, | |
| year={2025}, | |
| eprint={2505.17166}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2505.17166}, | |
| } | |
| ``` | |
| """ | |
| ) | |
| with gr.TabItem("ViDoRe V1"): | |
| gr.Markdown("# ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍") | |
| gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀") | |
| gr.Markdown( | |
| """ | |
| Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab. | |
| Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models. | |
| """ | |
| ) | |
| datasets_columns_1 = list(data_benchmark_1.columns[4:]) | |
| with gr.Row(): | |
| metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric") | |
| research_textbox_1 = gr.Textbox( | |
| placeholder="🔍 Search Models... [press enter]", | |
| label="Filter Models by Name", | |
| ) | |
| column_checkboxes_1 = gr.CheckboxGroup( | |
| choices=datasets_columns_1, value=datasets_columns_1, label="Select Columns to Display" | |
| ) | |
| with gr.Row(): | |
| datatype_1 = ["number", "markdown"] + ["number"] * (num_datasets_1 + 1) | |
| dataframe_1 = gr.Dataframe(data_benchmark_1, datatype=datatype_1, type="pandas") | |
| def update_data_1(metric, search_term, selected_columns): | |
| model_handler.get_vidore_data(metric) | |
| data = model_handler.render_df(metric, benchmark_version=1) | |
| data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns) | |
| data = filter_models(data, search_term) | |
| if selected_columns: | |
| data = data[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + selected_columns] | |
| return data | |
| with gr.Row(): | |
| refresh_button_1 = gr.Button("Refresh") | |
| refresh_button_1.click( | |
| get_refresh_function(model_handler, benchmark_version=1), | |
| inputs=[metric_dropdown_1], | |
| outputs=dataframe_1, | |
| concurrency_limit=20, | |
| ) | |
| # Automatically refresh the dataframe when the dropdown value changes | |
| metric_dropdown_1.change( | |
| get_refresh_function(model_handler, benchmark_version=1), | |
| inputs=[metric_dropdown_1], | |
| outputs=dataframe_1, | |
| ) | |
| research_textbox_1.submit( | |
| lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns), | |
| inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1], | |
| outputs=dataframe_1, | |
| ) | |
| column_checkboxes_1.change( | |
| lambda metric, search_term, selected_columns: update_data_1(metric, search_term, selected_columns), | |
| inputs=[metric_dropdown_1, research_textbox_1, column_checkboxes_1], | |
| outputs=dataframe_1, | |
| ) | |
| gr.Markdown( | |
| f""" | |
| - **Total Datasets**: {num_datasets_1} | |
| - **Total Scores**: {num_scores_1} | |
| - **Total Models**: {num_models_1} | |
| """ | |
| + r""" | |
| Please consider citing: | |
| ```bibtex | |
| @misc{faysse2024colpaliefficientdocumentretrieval, | |
| title={ColPali: Efficient Document Retrieval with Vision Language Models}, | |
| author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, | |
| year={2024}, | |
| eprint={2407.01449}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2407.01449}, | |
| } | |
| @misc{macé2025vidorebenchmarkv2raising, | |
| title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval}, | |
| author={Quentin Macé and António Loison and Manuel Faysse}, | |
| year={2025}, | |
| eprint={2505.17166}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2505.17166}, | |
| } | |
| ``` | |
| """ | |
| ) | |
| with gr.TabItem("📚 Submit your model"): | |
| gr.Markdown("# How to Submit a New Model to the Leaderboard") | |
| gr.Markdown( | |
| """ | |
| To submit a new model to the ViDoRe leaderboard, follow these steps: | |
| 1. **Evaluate your model**: | |
| - Follow the evaluation procedure provided in the [ViDoRe GitHub repository](https://github.com/illuin-tech/vidore-benchmark/) that uses MTEB. | |
| 2. **Format your submission file**: | |
| - Add the generated files to [MTEB results](https://github.com/embeddings-benchmark/results) project. Check the [Colpali results](https://github.com/embeddings-benchmark/results/tree/main/results/vidore__colpali-v1.3/1b5c8929330df1a66de441a9b5409a878f0de5b0) for an example. | |
| And you're done! Your model will appear on the leaderboard when you click refresh! Once the space | |
| gets rebooted, it will appear on startup. | |
| Note: For proper hyperlink redirection, please ensure that your model repository name is in | |
| kebab-case, e.g. `my-model-name`. | |
| """ | |
| ) | |
| with gr.TabItem("Deprecated ViDoRe V1"): | |
| gr.Markdown( | |
| "## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the " | |
| "[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, " | |
| "which is no longer maintained. Results should be computed using the " | |
| "[mteb](https://github.com/embeddings-benchmark/mteb) package as described " | |
| "[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>" | |
| ) | |
| gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>") | |
| gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe: The Visual Document Retrieval Benchmark 1 📚🔍") | |
| gr.Markdown("### From the paper - ColPali: Efficient Document Retrieval with Vision Language Models 👀") | |
| gr.Markdown( | |
| """ | |
| Visual Document Retrieval Benchmark 1 leaderboard. To submit results, refer to the corresponding tab. | |
| Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics, tasks and models. | |
| """ | |
| ) | |
| deprecated_datasets_columns_1 = list(deprecated_data_benchmark_1.columns[3:]) | |
| with gr.Row(): | |
| deprecated_metric_dropdown_1 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric") | |
| deprecated_research_textbox_1 = gr.Textbox( | |
| placeholder="🔍 Search Models... [press enter]", | |
| label="Filter Models by Name", | |
| ) | |
| deprecated_column_checkboxes_1 = gr.CheckboxGroup( | |
| choices=deprecated_datasets_columns_1, value=deprecated_datasets_columns_1, label="Select Columns to Display" | |
| ) | |
| with gr.Row(): | |
| deprecated_datatype_1 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_1 + 1) | |
| deprecated_dataframe_1 = gr.Dataframe(deprecated_data_benchmark_1, datatype=deprecated_datatype_1, type="pandas") | |
| def deprecated_update_data_1(metric, search_term, selected_columns): | |
| deprecated_model_handler.get_vidore_data(metric) | |
| data = deprecated_model_handler.render_df(metric, benchmark_version=1) | |
| data = add_rank_and_format(data, benchmark_version=1, selected_columns=selected_columns) | |
| data = filter_models(data, search_term) | |
| # data = remove_duplicates(data) # Add this line | |
| if selected_columns: | |
| data = data[["Rank", "Model", "Average"] + selected_columns] | |
| return data | |
| with gr.Row(): | |
| deprecated_refresh_button_1 = gr.Button("Refresh") | |
| deprecated_refresh_button_1.click( | |
| deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1), | |
| inputs=[deprecated_metric_dropdown_1], | |
| outputs=deprecated_dataframe_1, | |
| concurrency_limit=20, | |
| ) | |
| # Automatically refresh the dataframe when the dropdown value changes | |
| deprecated_metric_dropdown_1.change( | |
| deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=1), | |
| inputs=[deprecated_metric_dropdown_1], | |
| outputs=deprecated_dataframe_1, | |
| ) | |
| deprecated_research_textbox_1.submit( | |
| lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns), | |
| inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1], | |
| outputs=deprecated_dataframe_1, | |
| ) | |
| deprecated_column_checkboxes_1.change( | |
| lambda metric, search_term, selected_columns: deprecated_update_data_1(metric, search_term, selected_columns), | |
| inputs=[deprecated_metric_dropdown_1, deprecated_research_textbox_1, deprecated_column_checkboxes_1], | |
| outputs=deprecated_dataframe_1, | |
| ) | |
| gr.Markdown( | |
| f""" | |
| - **Total Datasets**: {deprecated_num_datasets_1} | |
| - **Total Scores**: {deprecated_num_scores_1} | |
| - **Total Models**: {deprecated_num_models_1} | |
| """ | |
| + r""" | |
| Please consider citing: | |
| ```bibtex | |
| @misc{faysse2024colpaliefficientdocumentretrieval, | |
| title={ColPali: Efficient Document Retrieval with Vision Language Models}, | |
| author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, | |
| year={2024}, | |
| eprint={2407.01449}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2407.01449}, | |
| } | |
| @misc{macé2025vidorebenchmarkv2raising, | |
| title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval}, | |
| author={Quentin Macé and António Loison and Manuel Faysse}, | |
| year={2025}, | |
| eprint={2505.17166}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2505.17166}, | |
| } | |
| ``` | |
| """ | |
| ) | |
| with gr.TabItem("Deprecated ViDoRe V2"): | |
| gr.Markdown( | |
| "## <span style='color:red'>Deprecation notice: This leaderboard contains the results computed with the " | |
| "[vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) package, " | |
| "which is no longer maintained. Results should be computed using the " | |
| "[mteb](https://github.com/embeddings-benchmark/mteb) package as described " | |
| "[here](https://github.com/illuin-tech/vidore-benchmark/blob/main/README.md).</span>" | |
| ) | |
| gr.Markdown("## <span style='color:red'>Missing results in the new leaderboard are being added as they are re-computed.</span>") | |
| gr.Markdown("# <span style='color:red'>[Deprecated]</span> ViDoRe V2: A new visual Document Retrieval Benchmark 📚🔍") | |
| gr.Markdown("### A harder dataset benchmark for visual document retrieval 👀") | |
| gr.Markdown( | |
| """ | |
| Visual Document Retrieval Benchmark 2 leaderboard. To submit results, refer to the corresponding tab. | |
| Refer to the [ColPali paper](https://arxiv.org/abs/2407.01449) for details on metrics and models. | |
| """ | |
| ) | |
| deprecated_datasets_columns_2 = list(deprecated_data_benchmark_2.columns[3:]) | |
| with gr.Row(): | |
| deprecated_metric_dropdown_2 = gr.Dropdown(choices=METRICS, value=initial_metric, label="Select Metric") | |
| deprecated_research_textbox_2 = gr.Textbox( | |
| placeholder="🔍 Search Models... [press enter]", | |
| label="Filter Models by Name", | |
| ) | |
| deprecated_column_checkboxes_2 = gr.CheckboxGroup( | |
| choices=deprecated_datasets_columns_2, value=deprecated_datasets_columns_2, label="Select Columns to Display" | |
| ) | |
| with gr.Row(): | |
| deprecated_datatype_2 = ["number", "markdown"] + ["number"] * (deprecated_num_datasets_2 + 1) | |
| deprecated_dataframe_2 = gr.Dataframe(deprecated_data_benchmark_2, datatype=deprecated_datatype_2, type="pandas") | |
| def deprecated_update_data_2(metric, search_term, selected_columns): | |
| deprecated_model_handler.get_vidore_data(metric) | |
| data = deprecated_model_handler.render_df(metric, benchmark_version=2) | |
| data = add_rank_and_format(data, benchmark_version=2, selected_columns=selected_columns) | |
| data = filter_models(data, search_term) | |
| # data = remove_duplicates(data) # Add this line | |
| if selected_columns: | |
| data = data[["Rank", "Model", "Average"] + selected_columns] | |
| return data | |
| with gr.Row(): | |
| deprecated_refresh_button_2 = gr.Button("Refresh") | |
| deprecated_refresh_button_2.click( | |
| deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2), | |
| inputs=[deprecated_metric_dropdown_2], | |
| outputs=deprecated_dataframe_2, | |
| concurrency_limit=20, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown( | |
| """ | |
| **Note**: For now, all models were evaluated using the vidore-benchmark package and custom retrievers on our side. | |
| Those numbers are not numbers obtained from the organisations that released those models. | |
| """ | |
| ) | |
| # Automatically refresh the dataframe when the dropdown value changes | |
| deprecated_metric_dropdown_2.change( | |
| deprecated_get_refresh_function(deprecated_model_handler, benchmark_version=2), | |
| inputs=[deprecated_metric_dropdown_2], | |
| outputs=deprecated_dataframe_2, | |
| ) | |
| deprecated_research_textbox_2.submit( | |
| lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns), | |
| inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2], | |
| outputs=deprecated_dataframe_2, | |
| ) | |
| deprecated_column_checkboxes_2.change( | |
| lambda metric, search_term, selected_columns: deprecated_update_data_2(metric, search_term, selected_columns), | |
| inputs=[deprecated_metric_dropdown_2, deprecated_research_textbox_2, deprecated_column_checkboxes_2], | |
| outputs=deprecated_dataframe_2, | |
| ) | |
| gr.Markdown( | |
| f""" | |
| - **Total Datasets**: {deprecated_num_datasets_2} | |
| - **Total Scores**: {deprecated_num_scores_2} | |
| - **Total Models**: {deprecated_num_models_2} | |
| """ | |
| + r""" | |
| Please consider citing: | |
| ```bibtex | |
| @misc{faysse2024colpaliefficientdocumentretrieval, | |
| title={ColPali: Efficient Document Retrieval with Vision Language Models}, | |
| author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo}, | |
| year={2024}, | |
| eprint={2407.01449}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2407.01449}, | |
| } | |
| @misc{macé2025vidorebenchmarkv2raising, | |
| title={ViDoRe Benchmark V2: Raising the Bar for Visual Retrieval}, | |
| author={Quentin Macé and António Loison and Manuel Faysse}, | |
| year={2025}, | |
| eprint={2505.17166}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.IR}, | |
| url={https://arxiv.org/abs/2505.17166}, | |
| } | |
| ``` | |
| """ | |
| ) | |
| block.queue(max_size=10).launch(debug=True) | |
| if __name__ == "__main__": | |
| main() | |