Spaces:
Build error
Build error
| from huggingface_hub import HfApi, HfFolder | |
| import os | |
| api = HfApi() | |
| api.set_access_token(os.environ['HF_SECRET']) | |
| folder = HfFolder() | |
| folder.save_token(os.environ['HF_SECRET']) | |
| from threading import Lock | |
| import math | |
| import os | |
| import random | |
| from diffusers import StableDiffusionPipeline | |
| from diffusers.models.attention import get_global_heat_map, clear_heat_maps | |
| from matplotlib import pyplot as plt | |
| import gradio as gr | |
| import torch | |
| import torch.nn.functional as F | |
| import spacy | |
| if not os.environ.get('NO_DOWNLOAD_SPACY'): | |
| spacy.cli.download('en_core_web_sm') | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| device = "cuda" | |
| gen = torch.Generator(device='cuda') | |
| gen.manual_seed(12758672) | |
| orig_state = gen.get_state() | |
| pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=True).to(device) | |
| lock = Lock() | |
| nlp = spacy.load('en_core_web_sm') | |
| def expand_m(m, n: int = 1, o=512, mode='bicubic'): | |
| m = m.unsqueeze(0).unsqueeze(0) / n | |
| m = F.interpolate(m.float().detach(), size=(o, o), mode='bicubic', align_corners=False) | |
| m = (m - m.min()) / (m.max() - m.min() + 1e-8) | |
| m = m.cpu().detach() | |
| return m | |
| def predict(prompt, inf_steps, threshold): | |
| global lock | |
| with torch.cuda.amp.autocast(), lock: | |
| try: | |
| plt.close('all') | |
| except: | |
| pass | |
| gen.set_state(orig_state.clone()) | |
| clear_heat_maps() | |
| out = pipe(prompt, guidance_scale=7.5, height=512, width=512, do_intermediates=False, generator=gen, num_inference_steps=int(inf_steps)) | |
| heat_maps = get_global_heat_map() | |
| with torch.cuda.amp.autocast(dtype=torch.float32): | |
| m = 0 | |
| n = 0 | |
| w = '' | |
| w_idx = 0 | |
| fig, ax = plt.subplots() | |
| ax.imshow(out.images[0].cpu().float().detach().permute(1, 2, 0).numpy()) | |
| ax.set_xticks([]) | |
| ax.set_yticks([]) | |
| fig1, axs1 = plt.subplots(math.ceil(len(out.words) / 4), 4)#, figsize=(20, 20)) | |
| fig2, axs2 = plt.subplots(math.ceil(len(out.words) / 4), 4) # , figsize=(20, 20)) | |
| for idx in range(len(out.words) + 1): | |
| if idx == 0: | |
| continue | |
| word = out.words[idx - 1] | |
| m += heat_maps[idx] | |
| n += 1 | |
| w += word | |
| if '</w>' not in word: | |
| continue | |
| else: | |
| mplot = expand_m(m, n) | |
| spotlit_im = out.images[0].cpu().float().detach() | |
| w = w.replace('</w>', '') | |
| spotlit_im2 = torch.cat((spotlit_im, (1 - mplot.squeeze(0)).pow(1)), dim=0) | |
| if len(out.words) <= 4: | |
| a1 = axs1[w_idx % 4] | |
| a2 = axs2[w_idx % 4] | |
| else: | |
| a1 = axs1[w_idx // 4, w_idx % 4] | |
| a2 = axs2[w_idx // 4, w_idx % 4] | |
| a1.set_xticks([]) | |
| a1.set_yticks([]) | |
| a1.imshow(mplot.squeeze().numpy(), cmap='jet') | |
| a1.imshow(spotlit_im2.permute(1, 2, 0).numpy()) | |
| a1.set_title(w) | |
| mask = torch.ones_like(mplot) | |
| mask[mplot < threshold * mplot.max()] = 0 | |
| im2 = spotlit_im * mask.squeeze(0) | |
| a2.set_xticks([]) | |
| a2.set_yticks([]) | |
| a2.imshow(im2.permute(1, 2, 0).numpy()) | |
| a2.set_title(w) | |
| m = 0 | |
| n = 0 | |
| w_idx += 1 | |
| w = '' | |
| for idx in range(w_idx, len(axs1.flatten())): | |
| fig1.delaxes(axs1.flatten()[idx]) | |
| fig2.delaxes(axs2.flatten()[idx]) | |
| return fig, fig1, fig2 | |
| def set_prompt(prompt): | |
| return prompt | |
| with gr.Blocks() as demo: | |
| md = '''# DAAM: Attention Maps for Interpreting Stable Diffusion | |
| Check out the paper: [What the DAAM: Interpreting Stable Diffusion Using Cross Attention](http://arxiv.org/abs/2210.04885). | |
| See our (much cleaner) [DAAM codebase](https://github.com/castorini/daam) on GitHub. | |
| **Update**: We got a community grant! I'll continue running and updating the space, with a major release planned in December. | |
| ''' | |
| gr.Markdown(md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| dropdown = gr.Dropdown([ | |
| 'An angry, bald man doing research', | |
| 'Doing research at Comcast Applied AI labs', | |
| 'Professor Jimmy Lin from the University of Waterloo', | |
| 'Yann Lecun teaching machine learning on a chalkboard', | |
| 'A cat eating cake for her birthday', | |
| 'Steak and dollars on a plate', | |
| 'A fox, a dog, and a wolf in a field' | |
| ], label='Examples', value='An angry, bald man doing research') | |
| text = gr.Textbox(label='Prompt', value='An angry, bald man doing research') | |
| slider1 = gr.Slider(15, 35, value=25, interactive=True, step=1, label='Inference steps') | |
| slider2 = gr.Slider(0, 1.0, value=0.4, interactive=True, step=0.05, label='Threshold (tau)') | |
| submit_btn = gr.Button('Submit') | |
| with gr.Tab('Original Image'): | |
| p0 = gr.Plot() | |
| with gr.Tab('Soft DAAM Maps'): | |
| p1 = gr.Plot() | |
| with gr.Tab('Hard DAAM Maps'): | |
| p2 = gr.Plot() | |
| submit_btn.click(fn=predict, inputs=[text, slider1, slider2], outputs=[p0, p1, p2]) | |
| dropdown.change(set_prompt, dropdown, text) | |
| dropdown.update() | |
| demo.launch() | |