Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -11,119 +11,92 @@ from huggingface_hub import login
|
|
| 11 |
# ==========================================
|
| 12 |
# 1. APP SETUP
|
| 13 |
# ==========================================
|
|
|
|
| 14 |
|
| 15 |
-
app = FastAPI(
|
| 16 |
-
title="FunctionGemma Brain API",
|
| 17 |
-
version="1.0.0",
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
-
# Global variables
|
| 21 |
MODEL_ID = "google/functiongemma-270m-it"
|
| 22 |
tokenizer = None
|
| 23 |
model = None
|
| 24 |
|
| 25 |
# ==========================================
|
| 26 |
-
# 2.
|
| 27 |
# ==========================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
class HealthResponse(BaseModel):
|
| 35 |
-
status: str
|
| 36 |
-
model: str
|
| 37 |
-
auth_status: str
|
| 38 |
|
| 39 |
# ==========================================
|
| 40 |
-
# 3. STARTUP
|
| 41 |
# ==========================================
|
| 42 |
-
|
| 43 |
@app.on_event("startup")
|
| 44 |
async def startup():
|
| 45 |
global tokenizer, model
|
| 46 |
-
|
| 47 |
-
# A. Authenticate using Environment Variable
|
| 48 |
-
print("🔐 Checking for HF_TOKEN...")
|
| 49 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
try:
|
| 56 |
-
login(token=hf_token)
|
| 57 |
-
print("✅ Authentication successful.")
|
| 58 |
-
except Exception as e:
|
| 59 |
-
print(f"❌ Authentication Failed: {e}")
|
| 60 |
-
raise RuntimeError(f"Hugging Face login failed: {e}")
|
| 61 |
-
|
| 62 |
-
# B. Load Model
|
| 63 |
-
print(f"🧠 Loading Model: {MODEL_ID}...")
|
| 64 |
-
try:
|
| 65 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 66 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 67 |
-
MODEL_ID,
|
| 68 |
-
device_map="cpu",
|
| 69 |
-
torch_dtype=torch.float32,
|
| 70 |
-
)
|
| 71 |
-
print("✅ Model Loaded Successfully.")
|
| 72 |
-
except Exception as e:
|
| 73 |
-
print(f"❌ Model Load Failed: {e}")
|
| 74 |
-
raise RuntimeError(f"Model load failed: {e}")
|
| 75 |
|
| 76 |
# ==========================================
|
| 77 |
# 4. API ENDPOINT
|
| 78 |
# ==========================================
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
@app.post("/generate")
|
| 81 |
async def generate_function_call(request: ChatRequest):
|
| 82 |
-
if model
|
| 83 |
-
raise HTTPException(status_code=503, detail="Model not ready")
|
| 84 |
|
| 85 |
try:
|
| 86 |
-
# System
|
| 87 |
-
system_content =
|
| 88 |
-
"You are a model that can do function calling with the following functions."
|
| 89 |
-
)
|
| 90 |
if request.include_date:
|
| 91 |
today = datetime.date.today().isoformat()
|
| 92 |
system_content += f" Today is {today}."
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
|
|
|
| 99 |
inputs = tokenizer.apply_chat_template(
|
| 100 |
messages,
|
| 101 |
tools=request.tools,
|
| 102 |
add_generation_prompt=True,
|
| 103 |
-
return_tensors="pt",
|
| 104 |
return_dict=True,
|
|
|
|
| 105 |
)
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
do_sample=False, # deterministic
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
generated_text = tokenizer.decode(
|
| 114 |
-
outputs[0][len(inputs["input_ids"][0]):],
|
| 115 |
-
skip_special_tokens=True,
|
| 116 |
-
)
|
| 117 |
|
| 118 |
return {"response": generated_text}
|
| 119 |
|
| 120 |
except Exception as e:
|
| 121 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 122 |
-
|
| 123 |
-
@app.get("/", response_model=HealthResponse)
|
| 124 |
-
def health_check():
|
| 125 |
-
return {
|
| 126 |
-
"status": "running",
|
| 127 |
-
"model": MODEL_ID,
|
| 128 |
-
"auth_status": "secure_env",
|
| 129 |
-
}
|
|
|
|
| 11 |
# ==========================================
|
| 12 |
# 1. APP SETUP
|
| 13 |
# ==========================================
|
| 14 |
+
app = FastAPI(title="FunctionGemma Brain API", version="1.0.0")
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
MODEL_ID = "google/functiongemma-270m-it"
|
| 17 |
tokenizer = None
|
| 18 |
model = None
|
| 19 |
|
| 20 |
# ==========================================
|
| 21 |
+
# 2. FEW-SHOT EXAMPLES (The Teacher)
|
| 22 |
# ==========================================
|
| 23 |
+
# We teach the model the correct tool names here.
|
| 24 |
+
# This list simulates a previous conversation so the model knows what to do.
|
| 25 |
+
FEW_SHOT_MESSAGES = [
|
| 26 |
+
# Example 1: Counting/Stats
|
| 27 |
+
{"role": "user", "content": "How many regions are there?"},
|
| 28 |
+
{"role": "model", "content": "<start_function_call>call:get_aggregate_stats{target_entity:revenue_region}<end_function_call>"},
|
| 29 |
+
|
| 30 |
+
# Example 2: Specific Search
|
| 31 |
+
{"role": "user", "content": "What is the water level in Aadale dam?"},
|
| 32 |
+
{"role": "model", "content": "<start_function_call>call:search_specific_dam{dam_name:Aadale}<end_function_call>"},
|
| 33 |
+
|
| 34 |
+
# Example 3: Filtering
|
| 35 |
+
{"role": "user", "content": "Show me Major dams in Pune."},
|
| 36 |
+
{"role": "model", "content": "<start_function_call>call:filter_dams{district:Pune,project_type:Major}<end_function_call>"},
|
| 37 |
|
| 38 |
+
# Example 4: Irrelevant Question (Teach it to NOT call functions for random stuff)
|
| 39 |
+
{"role": "user", "content": "What is the capital of France?"},
|
| 40 |
+
{"role": "model", "content": "I cannot answer that as it is not related to the dam database."}
|
| 41 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# ==========================================
|
| 44 |
+
# 3. STARTUP
|
| 45 |
# ==========================================
|
|
|
|
| 46 |
@app.on_event("startup")
|
| 47 |
async def startup():
|
| 48 |
global tokenizer, model
|
|
|
|
|
|
|
|
|
|
| 49 |
hf_token = os.getenv("HF_TOKEN")
|
| 50 |
+
if not hf_token: raise RuntimeError("HF_TOKEN missing")
|
| 51 |
+
login(token=hf_token)
|
| 52 |
|
| 53 |
+
print(f"🧠 Loading {MODEL_ID}...")
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 55 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map="cpu", torch_dtype=torch.float32)
|
| 56 |
+
print("✅ Model Loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# ==========================================
|
| 59 |
# 4. API ENDPOINT
|
| 60 |
# ==========================================
|
| 61 |
+
class ChatRequest(BaseModel):
|
| 62 |
+
query: str
|
| 63 |
+
tools: List[Dict[str, Any]]
|
| 64 |
+
include_date: bool = True
|
| 65 |
|
| 66 |
@app.post("/generate")
|
| 67 |
async def generate_function_call(request: ChatRequest):
|
| 68 |
+
if not model: raise HTTPException(status_code=503, detail="Model loading")
|
|
|
|
| 69 |
|
| 70 |
try:
|
| 71 |
+
# 1. System Prompt
|
| 72 |
+
system_content = "You are a model that can do function calling with the following functions."
|
|
|
|
|
|
|
| 73 |
if request.include_date:
|
| 74 |
today = datetime.date.today().isoformat()
|
| 75 |
system_content += f" Today is {today}."
|
| 76 |
|
| 77 |
+
# 2. Construct History: System -> Examples -> Current User Query
|
| 78 |
+
messages = [{"role": "system", "content": system_content}]
|
| 79 |
+
|
| 80 |
+
# Inject the examples!
|
| 81 |
+
messages.extend(FEW_SHOT_MESSAGES)
|
| 82 |
+
|
| 83 |
+
# Add the actual user query
|
| 84 |
+
messages.append({"role": "user", "content": request.query})
|
| 85 |
|
| 86 |
+
# 3. Tokenize
|
| 87 |
inputs = tokenizer.apply_chat_template(
|
| 88 |
messages,
|
| 89 |
tools=request.tools,
|
| 90 |
add_generation_prompt=True,
|
|
|
|
| 91 |
return_dict=True,
|
| 92 |
+
return_tensors="pt",
|
| 93 |
)
|
| 94 |
|
| 95 |
+
# 4. Generate
|
| 96 |
+
outputs = model.generate(**inputs, max_new_tokens=128, do_sample=False)
|
| 97 |
+
generated_text = tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
return {"response": generated_text}
|
| 100 |
|
| 101 |
except Exception as e:
|
| 102 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|