Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import requests | |
| import time | |
| from ast import literal_eval | |
| def infer(prompt, | |
| model_name, | |
| max_new_tokens=10, | |
| temperature=0.0, | |
| top_p=1.0, | |
| num_completions=1, | |
| seed=42, | |
| stop="\n"): | |
| model_name_map = { | |
| "GPT-JT-6B-v1": "Together-gpt-JT-6B-v1", | |
| } | |
| my_post_dict = { | |
| "type": "general", | |
| "payload": { | |
| "max_tokens": int(max_new_tokens), | |
| "n": int(num_completions), | |
| "temperature": float(temperature), | |
| "top_p": float(top_p), | |
| "model": model_name_map[model_name], | |
| "prompt": [prompt], | |
| "request_type": "language-model-inference", | |
| "stop": stop.split(";"), | |
| "best_of": 1, | |
| "echo": False, | |
| "seed": int(seed), | |
| "prompt_embedding": False, | |
| }, | |
| "returned_payload": {}, | |
| "status": "submitted", | |
| "source": "dalle", | |
| } | |
| job_id = requests.post("https://planetd.shift.ml/jobs", json=my_post_dict).json()['id'] | |
| for i in range(100): | |
| time.sleep(1) | |
| ret = requests.get(f"https://planetd.shift.ml/job/{job_id}", json={'id': job_id}).json() | |
| if ret['status'] == 'finished': | |
| break | |
| return ret['returned_payload']['result']['inference_result'][0]['choices'][0]['text'] | |
| st.title("GPT-JT") | |
| col1, col2 = st.columns([1, 3]) | |
| with col1: | |
| model_name = st.selectbox("Model", ["GPT-JT-6B-v1"]) | |
| max_new_tokens = st.text_input('Max new tokens', "10") | |
| temperature = st.text_input('temperature', "0.0") | |
| top_p = st.text_input('top_p', "1.0") | |
| num_completions = st.text_input('num_completions (only the best one will be returend)', "1") | |
| stop = st.text_input('stop, split by;', repr('\n')) | |
| seed = st.text_input('seed', "42") | |
| with col2: | |
| s_example = "Please answer the following question:\n\nQuestion: Where is Zurich?\nAnswer:" | |
| prompt = st.text_area( | |
| "Prompt", | |
| value=s_example, | |
| max_chars=4096, | |
| height=400, | |
| ) | |
| generated_area = st.empty() | |
| generated_area.markdown("(Generate here)") | |
| button_submit = st.button("Submit") | |
| if button_submit: | |
| generated_area.markdown(prompt) | |
| report_text = infer( | |
| prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, | |
| num_completions=num_completions, seed=seed, stop=literal_eval(stop), | |
| ) | |
| generated_area.markdown(prompt + "_" + report_text + "_") | |