Spaces:
Runtime error
Runtime error
Commit
·
ae87366
1
Parent(s):
971b34a
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,97 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import json
|
| 4 |
|
| 5 |
+
from langchain.document_loaders import DataFrameLoader
|
| 6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 7 |
+
from langchain.llms import HuggingFaceHub
|
| 8 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings
|
| 9 |
+
from langchain.vectorstores import Chroma
|
| 10 |
+
from langchain.chains import RetrievalQA
|
| 11 |
+
from trafilatura import fetch_url, extract
|
| 12 |
+
from trafilatura.spider import focused_crawler
|
| 13 |
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def loading_website():
|
| 17 |
+
return "Loading..."
|
| 18 |
+
|
| 19 |
+
def url_changes(url, pages_to_visit, urls_to_scrape, repo_id):
|
| 20 |
+
to_visit, links = focused_crawler(url, max_seen_urls=pages_to_visit, max_known_urls=urls_to_scrape)
|
| 21 |
+
print(f"{len(links)} to be crawled")
|
| 22 |
+
|
| 23 |
+
results_df = pd.DataFrame()
|
| 24 |
+
for url in links:
|
| 25 |
+
downloaded = fetch_url(url)
|
| 26 |
+
if downloaded:
|
| 27 |
+
result = extract(downloaded, output_format='json')
|
| 28 |
+
result = json.loads(result)
|
| 29 |
+
|
| 30 |
+
results_df = pd.concat([results_df, pd.DataFrame.from_records([result])])
|
| 31 |
+
|
| 32 |
+
loader = DataFrameLoader(results_df, page_content_column="text")
|
| 33 |
+
documents = loader.load()
|
| 34 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 35 |
+
texts = text_splitter.split_documents(documents)
|
| 36 |
+
embeddings = HuggingFaceHubEmbeddings()
|
| 37 |
+
db = Chroma.from_documents(texts, embeddings)
|
| 38 |
+
retriever = db.as_retriever()
|
| 39 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature":0.1, "max_new_tokens":250})
|
| 40 |
+
global qa
|
| 41 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
| 42 |
+
return "Ready"
|
| 43 |
+
|
| 44 |
+
def add_text(history, text):
|
| 45 |
+
history = history + [(text, None)]
|
| 46 |
+
return history, ""
|
| 47 |
+
|
| 48 |
+
def bot(history):
|
| 49 |
+
response = infer(history[-1][0])
|
| 50 |
+
history[-1][1] = response['result']
|
| 51 |
+
return history
|
| 52 |
+
|
| 53 |
+
def infer(question):
|
| 54 |
+
|
| 55 |
+
query = question
|
| 56 |
+
result = qa({"query": query})
|
| 57 |
+
|
| 58 |
+
return result
|
| 59 |
+
|
| 60 |
+
css="""
|
| 61 |
+
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
title = """
|
| 65 |
+
<div style="text-align: center;max-width: 700px;">
|
| 66 |
+
<h1>Chat with your website</h1>
|
| 67 |
+
<p style="text-align: center;">Enter target URL, click the "Load website to LangChain" button</p>
|
| 68 |
+
</div>
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
with gr.Blocks(css=css) as demo:
|
| 73 |
+
with gr.Column(elem_id="col-container"):
|
| 74 |
+
gr.HTML(title)
|
| 75 |
+
|
| 76 |
+
with gr.Column():
|
| 77 |
+
target_url = gr.Textbox(label="Load URL", placeholder="Enter target URL here. EX: https://www.penta.co.kr/")
|
| 78 |
+
#pdf_doc = gr.File(label="Load URL", file_types=['.pdf'], type="file")
|
| 79 |
+
repo_id = gr.Dropdown(label="LLM", choices=["google/flan-ul2", "OpenAssistant/oasst-sft-1-pythia-12b", "beomi/KoAlpaca-Polyglot-12.8B"], value="google/flan-ul2")
|
| 80 |
+
with gr.Row():
|
| 81 |
+
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
|
| 82 |
+
load_pdf = gr.Button("Load website to langchain")
|
| 83 |
+
|
| 84 |
+
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
|
| 85 |
+
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
|
| 86 |
+
submit_btn = gr.Button("Send message")
|
| 87 |
+
#load_pdf.click(loading_pdf, None, langchain_status, queue=False)
|
| 88 |
+
repo_id.change(url_changes, inputs=[target_url, gr.Number(value=20, visible=False), gr.Number(value=200, visible=False), repo_id], outputs=[langchain_status], queue=False)
|
| 89 |
+
load_pdf.click(url_changes, inputs=[target_url, gr.Number(value=20, visible=False), gr.Number(value=200, visible=False), repo_id], outputs=[langchain_status], queue=False)
|
| 90 |
+
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
|
| 91 |
+
bot, chatbot, chatbot
|
| 92 |
+
)
|
| 93 |
+
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
|
| 94 |
+
bot, chatbot, chatbot
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
demo.launch()
|