File size: 9,396 Bytes
dd5925f
 
bfaf0f2
dd5925f
bfaf0f2
dd5925f
 
 
bfaf0f2
 
dd5925f
ed57794
 
bfaf0f2
dd5925f
 
 
 
bfaf0f2
dd5925f
bfaf0f2
dd5925f
 
8729e50
dd5925f
 
 
 
 
 
 
 
 
 
bfaf0f2
dd5925f
bfaf0f2
dd5925f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfaf0f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed57794
 
 
 
 
 
 
 
 
 
 
 
 
bfaf0f2
 
 
dd5925f
 
 
bfaf0f2
 
 
ed57794
dd5925f
 
bfaf0f2
dd5925f
 
 
 
 
 
 
 
 
 
 
 
8729e50
 
dd5925f
 
 
bfaf0f2
 
ed57794
bfaf0f2
 
 
 
 
dd5925f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed57794
 
 
dd5925f
 
 
d960f3d
bfaf0f2
dd5925f
 
 
 
bfaf0f2
 
 
 
 
ed57794
bfaf0f2
 
dd5925f
ed57794
 
 
bfaf0f2
ed57794
dd5925f
 
ed57794
dd5925f
 
 
 
ed57794
dd5925f
 
 
 
 
 
 
 
bfaf0f2
 
 
 
ed57794
dd5925f
 
 
 
ed57794
dd5925f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import io
import zipfile
import joblib
from PIL import Image
import warnings
warnings.filterwarnings('ignore')

# Function to load and preprocess data
def load_and_preprocess_data(file):
    try:
        data = pd.read_csv(file.name)
        
        # Convert suits and ranks to numerical values
        suit_order = {'spades': 0, 'hearts': 1, 'clubs': 2, 'diamonds': 3}
        rank_order = {'ace': 0, '2': 1, '3': 2, '4': 3, '5': 4, '6': 5, '7': 6, '8': 7, '9': 8, '10': 9, 
                      'jack': 10, 'queen': 11, 'king': 12}
        
        data['Dragon Suit Num'] = data['Dragon Suit'].map(suit_order)
        data['Dragon Rank Num'] = data['Dragon Rank'].map(rank_order)
        data['Tiger Suit Num'] = data['Tiger Suit'].map(suit_order)
        data['Tiger Rank Num'] = data['Tiger Rank'].map(rank_order)
        data['Lion Suit Num'] = data['Lion Suit'].map(suit_order)
        data['Lion Rank Num'] = data['Lion Rank'].map(rank_order)
        
        return data, None
    except Exception as e:
        return None, f"Error loading data: {str(e)}"

# Feature engineering
def create_features(data, n_games=3):
    features = []
    for i in range(n_games, len(data)):
        game_features = []
        for j in range(1, n_games + 1):
            game_features.extend([
                data['Dragon Suit Num'].iloc[i - j],
                data['Dragon Rank Num'].iloc[i - j],
                data['Tiger Suit Num'].iloc[i - j],
                data['Tiger Rank Num'].iloc[i - j],
                data['Lion Suit Num'].iloc[i - j],
                data['Lion Rank Num'].iloc[i - j]
            ])
        for j in range(1, n_games + 1):
            game_features.extend([
                data['Dragon Suit Num'].iloc[i - j] * data['Dragon Rank Num'].iloc[i - j],
                data['Tiger Suit Num'].iloc[i - j] * data['Tiger Rank Num'].iloc[i - j],
                data['Lion Suit Num'].iloc[i - j] * data['Lion Rank Num'].iloc[i - j]
            ])
        recent_games = data.iloc[i-n_games:i]
        suit_freq = recent_games[['Dragon Suit Num', 'Tiger Suit Num', 'Lion Suit Num']].values.flatten()
        rank_freq = recent_games[['Dragon Rank Num', 'Tiger Rank Num', 'Lion Rank Num']].values.flatten()
        game_features.extend([
            np.mean(suit_freq), np.std(suit_freq),
            np.mean(rank_freq), np.std(rank_freq)
        ])
        features.append(game_features)
    
    columns = ([f'{hand}_{attr}_t-{j}' for j in range(1, n_games + 1) 
                for hand in ['Dragon', 'Tiger', 'Lion'] for attr in ['Suit', 'Rank']] +
               [f'{hand}_suit_rank_inter_t-{j}' for j in range(1, n_games + 1) 
                for hand in ['Dragon', 'Tiger', 'Lion']] +
               ['suit_mean', 'suit_std', 'rank_mean', 'rank_std'])
    return pd.DataFrame(features, columns=columns)

# Function to plot confusion matrix
def plot_confusion_matrix(y_true, y_pred, title):
    cm = confusion_matrix(y_true, y_pred)
    plt.figure(figsize=(6, 4))
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
    plt.title(title)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
    return img

# Function to plot accuracy bar chart
def plot_accuracy_chart(accuracies):
    plt.figure(figsize=(8, 5))
    plt.bar(accuracies.keys(), accuracies.values(), color='skyblue')
    plt.title('Model Accuracy Comparison')
    plt.ylabel('Accuracy')
    plt.xticks(rotation=45)
    plt.ylim(0, 1)
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    img = Image.open(buf)
    plt.close()
    return img

# Function to create a ZIP file of models
def create_model_zip(models):
    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
        for model_name, model in models.items():
            model_buffer = io.BytesIO()
            joblib.dump(model, model_buffer)
            model_buffer.seek(0)
            zip_file.writestr(f"{model_name}_model.pkl", model_buffer.getvalue())
    zip_buffer.seek(0)
    return zip_buffer

# Training function with progress tracking and model saving
def train_model(file, n_estimators, learning_rate, max_depth, subsample, progress=gr.Progress()):
    progress(0, desc="Starting...")
    results = []
    
    try:
        # Load and preprocess data
        progress(0.1, desc="Loading and preprocessing data...")
        data, error = load_and_preprocess_data(file)
        if error:
            return error, None, None, None
        
        # Create features
        progress(0.2, desc="Engineering features...")
        n_games = 3
        features = create_features(data, n_games)
        targets = {
            'dragon_suit': data['Dragon Suit Num'][n_games:],
            'dragon_rank': data['Dragon Rank Num'][n_games:],
            'tiger_suit': data['Tiger Suit Num'][n_games:],
            'tiger_rank': data['Tiger Rank Num'][n_games:],
            'lion_suit': data['Lion Suit Num'][n_games:],
            'lion_rank': data['Lion Rank Num'][n_games:]
        }
        
        # Scale features
        progress(0.3, desc="Scaling features...")
        scaler = StandardScaler()
        features_scaled = scaler.fit_transform(features)
        features_scaled = pd.DataFrame(features_scaled, columns=features.columns)
        
        accuracies = {}
        confusion_matrices = []
        trained_models = {}
        
        # Train models
        for i, (target_name, target) in enumerate(targets.items()):
            progress(0.4 + (i / len(targets)) * 0.4, desc=f"Training {target_name} model...")
            
            # Split data
            X_train, X_test, y_train, y_test = train_test_split(
                features_scaled, target, test_size=0.2, random_state=42
            )
            
            # Apply SMOTE
            smote = SMOTE(random_state=42)
            X_train_res, y_train_res = smote.fit_resample(X_train, y_train)
            
            # Train model
            model = XGBClassifier(
                random_state=42,
                eval_metric='mlogloss',
                n_estimators=int(n_estimators),
                learning_rate=float(learning_rate),
                max_depth=int(max_depth),
                subsample=float(subsample)
            )
            
            model.fit(
                X_train_res,
                y_train_res,
                eval_set=[(X_test, y_test)],
                early_stopping_rounds=10,
                verbose=False
            )
            
            # Save model
            trained_models[target_name] = model
            
            # Evaluate
            y_pred = model.predict(X_test)
            accuracy = accuracy_score(y_test, y_pred)
            report = classification_report(y_test, y_pred, zero_division=0)
            accuracies[target_name] = accuracy
            
            results.append(f"**{target_name} Results**\n")
            results.append(f"Accuracy: {accuracy:.2f}\n")
            results.append(f"Classification Report:\n{report}\n")
            
            # Generate confusion matrix plot
            cm_plot = plot_confusion_matrix(y_test, y_pred, f"Confusion Matrix - {target_name}")
            confusion_matrices.append(cm_plot)
        
        progress(0.9, desc="Generating visualizations and model archive...")
        # Generate accuracy bar chart
        accuracy_plot = plot_accuracy_chart(accuracies)
        
        # Create ZIP file of models
        model_zip = create_model_zip(trained_models)
        
        progress(1.0, desc="Completed!")
        return "\n".join(results), accuracy_plot, confusion_matrices, model_zip
    
    except Exception as e:
        return f"Error during training: {str(e)}", None, None, None

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Card Game Prediction Model Training")
    gr.Markdown("Upload the training dataset and configure hyperparameters to train the model. Track progress, view results, and download trained models.")
    
    file_input = gr.File(label="Upload TRAINING_CARD_DATA.csv")
    n_estimators = gr.Slider(50, 300, value=100, step=10, label="Number of Estimators")
    learning_rate = gr.Slider(0.01, 0.3, value=0.1, step=0.01, label="Learning Rate")
    max_depth = gr.Slider(3, 10, value=5, step=1, label="Max Depth")
    subsample = gr.Slider(0.5, 1.0, value=0.8, step=0.1, label="Subsample")
    
    train_button = gr.Button("Train Model")
    
    output_text = gr.Textbox(label="Training Results")
    accuracy_plot = gr.Image(label="Accuracy Comparison")
    confusion_plots = gr.Gallery(label="Confusion Matrices")
    model_download = gr.File(label="Download Trained Models (ZIP)")
    
    train_button.click(
        fn=train_model,
        inputs=[file_input, n_estimators, learning_rate, max_depth, subsample],
        outputs=[output_text, accuracy_plot, confusion_plots, model_download]
    )

demo.launch()