Spaces:
Paused
Paused
File size: 9,396 Bytes
dd5925f bfaf0f2 dd5925f bfaf0f2 dd5925f bfaf0f2 dd5925f ed57794 bfaf0f2 dd5925f bfaf0f2 dd5925f bfaf0f2 dd5925f 8729e50 dd5925f bfaf0f2 dd5925f bfaf0f2 dd5925f bfaf0f2 ed57794 bfaf0f2 dd5925f bfaf0f2 ed57794 dd5925f bfaf0f2 dd5925f 8729e50 dd5925f bfaf0f2 ed57794 bfaf0f2 dd5925f ed57794 dd5925f d960f3d bfaf0f2 dd5925f bfaf0f2 ed57794 bfaf0f2 dd5925f ed57794 bfaf0f2 ed57794 dd5925f ed57794 dd5925f ed57794 dd5925f bfaf0f2 ed57794 dd5925f ed57794 dd5925f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
import gradio as gr
import matplotlib.pyplot as plt
import seaborn as sns
import io
import zipfile
import joblib
from PIL import Image
import warnings
warnings.filterwarnings('ignore')
# Function to load and preprocess data
def load_and_preprocess_data(file):
try:
data = pd.read_csv(file.name)
# Convert suits and ranks to numerical values
suit_order = {'spades': 0, 'hearts': 1, 'clubs': 2, 'diamonds': 3}
rank_order = {'ace': 0, '2': 1, '3': 2, '4': 3, '5': 4, '6': 5, '7': 6, '8': 7, '9': 8, '10': 9,
'jack': 10, 'queen': 11, 'king': 12}
data['Dragon Suit Num'] = data['Dragon Suit'].map(suit_order)
data['Dragon Rank Num'] = data['Dragon Rank'].map(rank_order)
data['Tiger Suit Num'] = data['Tiger Suit'].map(suit_order)
data['Tiger Rank Num'] = data['Tiger Rank'].map(rank_order)
data['Lion Suit Num'] = data['Lion Suit'].map(suit_order)
data['Lion Rank Num'] = data['Lion Rank'].map(rank_order)
return data, None
except Exception as e:
return None, f"Error loading data: {str(e)}"
# Feature engineering
def create_features(data, n_games=3):
features = []
for i in range(n_games, len(data)):
game_features = []
for j in range(1, n_games + 1):
game_features.extend([
data['Dragon Suit Num'].iloc[i - j],
data['Dragon Rank Num'].iloc[i - j],
data['Tiger Suit Num'].iloc[i - j],
data['Tiger Rank Num'].iloc[i - j],
data['Lion Suit Num'].iloc[i - j],
data['Lion Rank Num'].iloc[i - j]
])
for j in range(1, n_games + 1):
game_features.extend([
data['Dragon Suit Num'].iloc[i - j] * data['Dragon Rank Num'].iloc[i - j],
data['Tiger Suit Num'].iloc[i - j] * data['Tiger Rank Num'].iloc[i - j],
data['Lion Suit Num'].iloc[i - j] * data['Lion Rank Num'].iloc[i - j]
])
recent_games = data.iloc[i-n_games:i]
suit_freq = recent_games[['Dragon Suit Num', 'Tiger Suit Num', 'Lion Suit Num']].values.flatten()
rank_freq = recent_games[['Dragon Rank Num', 'Tiger Rank Num', 'Lion Rank Num']].values.flatten()
game_features.extend([
np.mean(suit_freq), np.std(suit_freq),
np.mean(rank_freq), np.std(rank_freq)
])
features.append(game_features)
columns = ([f'{hand}_{attr}_t-{j}' for j in range(1, n_games + 1)
for hand in ['Dragon', 'Tiger', 'Lion'] for attr in ['Suit', 'Rank']] +
[f'{hand}_suit_rank_inter_t-{j}' for j in range(1, n_games + 1)
for hand in ['Dragon', 'Tiger', 'Lion']] +
['suit_mean', 'suit_std', 'rank_mean', 'rank_std'])
return pd.DataFrame(features, columns=columns)
# Function to plot confusion matrix
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(6, 4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
plt.close()
return img
# Function to plot accuracy bar chart
def plot_accuracy_chart(accuracies):
plt.figure(figsize=(8, 5))
plt.bar(accuracies.keys(), accuracies.values(), color='skyblue')
plt.title('Model Accuracy Comparison')
plt.ylabel('Accuracy')
plt.xticks(rotation=45)
plt.ylim(0, 1)
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
plt.close()
return img
# Function to create a ZIP file of models
def create_model_zip(models):
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
for model_name, model in models.items():
model_buffer = io.BytesIO()
joblib.dump(model, model_buffer)
model_buffer.seek(0)
zip_file.writestr(f"{model_name}_model.pkl", model_buffer.getvalue())
zip_buffer.seek(0)
return zip_buffer
# Training function with progress tracking and model saving
def train_model(file, n_estimators, learning_rate, max_depth, subsample, progress=gr.Progress()):
progress(0, desc="Starting...")
results = []
try:
# Load and preprocess data
progress(0.1, desc="Loading and preprocessing data...")
data, error = load_and_preprocess_data(file)
if error:
return error, None, None, None
# Create features
progress(0.2, desc="Engineering features...")
n_games = 3
features = create_features(data, n_games)
targets = {
'dragon_suit': data['Dragon Suit Num'][n_games:],
'dragon_rank': data['Dragon Rank Num'][n_games:],
'tiger_suit': data['Tiger Suit Num'][n_games:],
'tiger_rank': data['Tiger Rank Num'][n_games:],
'lion_suit': data['Lion Suit Num'][n_games:],
'lion_rank': data['Lion Rank Num'][n_games:]
}
# Scale features
progress(0.3, desc="Scaling features...")
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
features_scaled = pd.DataFrame(features_scaled, columns=features.columns)
accuracies = {}
confusion_matrices = []
trained_models = {}
# Train models
for i, (target_name, target) in enumerate(targets.items()):
progress(0.4 + (i / len(targets)) * 0.4, desc=f"Training {target_name} model...")
# Split data
X_train, X_test, y_train, y_test = train_test_split(
features_scaled, target, test_size=0.2, random_state=42
)
# Apply SMOTE
smote = SMOTE(random_state=42)
X_train_res, y_train_res = smote.fit_resample(X_train, y_train)
# Train model
model = XGBClassifier(
random_state=42,
eval_metric='mlogloss',
n_estimators=int(n_estimators),
learning_rate=float(learning_rate),
max_depth=int(max_depth),
subsample=float(subsample)
)
model.fit(
X_train_res,
y_train_res,
eval_set=[(X_test, y_test)],
early_stopping_rounds=10,
verbose=False
)
# Save model
trained_models[target_name] = model
# Evaluate
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred, zero_division=0)
accuracies[target_name] = accuracy
results.append(f"**{target_name} Results**\n")
results.append(f"Accuracy: {accuracy:.2f}\n")
results.append(f"Classification Report:\n{report}\n")
# Generate confusion matrix plot
cm_plot = plot_confusion_matrix(y_test, y_pred, f"Confusion Matrix - {target_name}")
confusion_matrices.append(cm_plot)
progress(0.9, desc="Generating visualizations and model archive...")
# Generate accuracy bar chart
accuracy_plot = plot_accuracy_chart(accuracies)
# Create ZIP file of models
model_zip = create_model_zip(trained_models)
progress(1.0, desc="Completed!")
return "\n".join(results), accuracy_plot, confusion_matrices, model_zip
except Exception as e:
return f"Error during training: {str(e)}", None, None, None
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Card Game Prediction Model Training")
gr.Markdown("Upload the training dataset and configure hyperparameters to train the model. Track progress, view results, and download trained models.")
file_input = gr.File(label="Upload TRAINING_CARD_DATA.csv")
n_estimators = gr.Slider(50, 300, value=100, step=10, label="Number of Estimators")
learning_rate = gr.Slider(0.01, 0.3, value=0.1, step=0.01, label="Learning Rate")
max_depth = gr.Slider(3, 10, value=5, step=1, label="Max Depth")
subsample = gr.Slider(0.5, 1.0, value=0.8, step=0.1, label="Subsample")
train_button = gr.Button("Train Model")
output_text = gr.Textbox(label="Training Results")
accuracy_plot = gr.Image(label="Accuracy Comparison")
confusion_plots = gr.Gallery(label="Confusion Matrices")
model_download = gr.File(label="Download Trained Models (ZIP)")
train_button.click(
fn=train_model,
inputs=[file_input, n_estimators, learning_rate, max_depth, subsample],
outputs=[output_text, accuracy_plot, confusion_plots, model_download]
)
demo.launch() |