Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
import cv2
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import noise
|
| 7 |
+
import io
|
| 8 |
+
import base64
|
| 9 |
+
from pydantic import BaseModel
|
| 10 |
+
|
| 11 |
+
app = FastAPI(title="Advanced Material Map Generator API")
|
| 12 |
+
|
| 13 |
+
# Request model for input
|
| 14 |
+
class MapRequest(BaseModel):
|
| 15 |
+
image_base64: str
|
| 16 |
+
normal_strength: float = 1.0
|
| 17 |
+
normal_blur: int = 5
|
| 18 |
+
normal_bilateral: bool = False
|
| 19 |
+
normal_color: float = 0.3
|
| 20 |
+
disp_contrast: float = 1.0
|
| 21 |
+
disp_noise: bool = False
|
| 22 |
+
disp_noise_scale: float = 0.1
|
| 23 |
+
disp_edge: float = 1.0
|
| 24 |
+
rough_invert: bool = True
|
| 25 |
+
rough_sharpness: float = 1.0
|
| 26 |
+
rough_detail: float = 0.5
|
| 27 |
+
rough_freq: float = 0.5
|
| 28 |
+
|
| 29 |
+
def generate_normal_map(image: np.ndarray, strength: float, blur_size: int, use_bilateral: bool, color_influence: float) -> Image.Image:
|
| 30 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 31 |
+
if use_bilateral:
|
| 32 |
+
gray = cv2.bilateralFilter(gray, 9, 75, 75)
|
| 33 |
+
else:
|
| 34 |
+
gray = cv2.GaussianBlur(gray, (blur_size, blur_size), 0)
|
| 35 |
+
|
| 36 |
+
levels = 3
|
| 37 |
+
normal_map = np.zeros((gray.shape[0], gray.shape[1], 3), dtype=np.float32)
|
| 38 |
+
for i in range(levels):
|
| 39 |
+
scale = 1 / (2 ** i)
|
| 40 |
+
resized = cv2.resize(gray, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
|
| 41 |
+
sobel_x = cv2.Scharr(resized, cv2.CV_64F, 1, 0)
|
| 42 |
+
sobel_y = cv2.Scharr(resized, cv2.CV_64F, 0, 1)
|
| 43 |
+
sobel_x = cv2.resize(sobel_x, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR)
|
| 44 |
+
sobel_y = cv2.resize(sobel_y, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR)
|
| 45 |
+
normal_map[..., 0] += sobel_x * (1.0 / levels)
|
| 46 |
+
normal_map[..., 1] += sobel_y * (1.0 / levels)
|
| 47 |
+
|
| 48 |
+
normal_map[..., 0] = cv2.normalize(normal_map[..., 0], None, -strength, strength, cv2.NORM_MINMAX)
|
| 49 |
+
normal_map[..., 1] = cv2.normalize(normal_map[..., 1], None, -strength, strength, cv2.NORM_MINMAX)
|
| 50 |
+
normal_map[..., 2] = 1.0
|
| 51 |
+
|
| 52 |
+
color_factor = color_influence * strength
|
| 53 |
+
normal_map[..., 0] += (image[..., 0] / 255.0 - 0.5) * color_factor
|
| 54 |
+
normal_map[..., 1] += (image[..., 1] / 255.0 - 0.5) * color_factor
|
| 55 |
+
|
| 56 |
+
norm = np.linalg.norm(normal_map, axis=2, keepdims=True)
|
| 57 |
+
normal_map = np.divide(normal_map, norm, out=np.zeros_like(normal_map), where=norm != 0)
|
| 58 |
+
normal_map = (normal_map + 1) * 127.5
|
| 59 |
+
normal_map = np.clip(normal_map, 0, 255).astype(np.uint8)
|
| 60 |
+
return Image.fromarray(normal_map)
|
| 61 |
+
|
| 62 |
+
def generate_displacement_map(image: np.ndarray, contrast: float, add_noise: bool, noise_scale: float, edge_boost: float) -> Image.Image:
|
| 63 |
+
img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 64 |
+
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
| 65 |
+
img = clahe.apply(img)
|
| 66 |
+
img = cv2.convertScaleAbs(img, alpha=contrast, beta=0)
|
| 67 |
+
laplacian = cv2.Laplacian(img, cv2.CV_64F)
|
| 68 |
+
laplacian = cv2.convertScaleAbs(laplacian, alpha=edge_boost, beta=0)
|
| 69 |
+
img = cv2.addWeighted(img, 1.0, laplacian, 0.5 * edge_boost, 0)
|
| 70 |
+
if add_noise:
|
| 71 |
+
height, width = img.shape
|
| 72 |
+
noise_map = np.zeros((height, width), dtype=np.float32)
|
| 73 |
+
for y in range(height):
|
| 74 |
+
for x in range(width):
|
| 75 |
+
noise_map[y, x] = noise.pnoise2(x / 50.0, y / 50.0, octaves=6) * noise_scale * 255
|
| 76 |
+
img = cv2.add(img, noise_map.astype(np.uint8))
|
| 77 |
+
return Image.fromarray(img)
|
| 78 |
+
|
| 79 |
+
def generate_roughness_map(image: np.ndarray, invert: bool, sharpness: float, detail_boost: float, frequency_weight: float) -> Image.Image:
|
| 80 |
+
img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
| 81 |
+
low_freq = cv2.bilateralFilter(img, 9, 75, 75)
|
| 82 |
+
high_freq = cv2.subtract(img, low_freq)
|
| 83 |
+
img = cv2.addWeighted(low_freq, 1.0 - frequency_weight, high_freq, frequency_weight, 0)
|
| 84 |
+
if invert:
|
| 85 |
+
img = 255 - img
|
| 86 |
+
blurred = cv2.GaussianBlur(img, (5, 5), 0)
|
| 87 |
+
img = cv2.addWeighted(img, 1.0 + sharpness, blurred, -sharpness, 0)
|
| 88 |
+
img = cv2.addWeighted(img, 1.0 + detail_boost, blurred, -detail_boost, 0)
|
| 89 |
+
return Image.fromarray(img)
|
| 90 |
+
|
| 91 |
+
def image_to_base64(img: Image.Image) -> str:
|
| 92 |
+
buffered = io.BytesIO()
|
| 93 |
+
img.save(buffered, format="PNG")
|
| 94 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 95 |
+
|
| 96 |
+
@app.post("/generate_maps/")
|
| 97 |
+
async def generate_maps(request: MapRequest):
|
| 98 |
+
try:
|
| 99 |
+
# Decode base64 image
|
| 100 |
+
image_bytes = base64.b64decode(request.image_base64)
|
| 101 |
+
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
|
| 102 |
+
img_array = np.array(image)
|
| 103 |
+
|
| 104 |
+
# Generate maps
|
| 105 |
+
normal_map = generate_normal_map(
|
| 106 |
+
img_array, request.normal_strength, request.normal_blur,
|
| 107 |
+
request.normal_bilateral, request.normal_color
|
| 108 |
+
)
|
| 109 |
+
displacement_map = generate_displacement_map(
|
| 110 |
+
img_array, request.disp_contrast, request.disp_noise,
|
| 111 |
+
request.disp_noise_scale, request.disp_edge
|
| 112 |
+
)
|
| 113 |
+
roughness_map = generate_roughness_map(
|
| 114 |
+
img_array, request.rough_invert, request.rough_sharpness,
|
| 115 |
+
request.rough_detail, request.rough_freq
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Convert to base64
|
| 119 |
+
normal_base64 = image_to_base64(normal_map)
|
| 120 |
+
displacement_base64 = image_to_base64(displacement_map)
|
| 121 |
+
roughness_base64 = image_to_base64(roughness_map)
|
| 122 |
+
|
| 123 |
+
return JSONResponse(content={
|
| 124 |
+
"status": "success",
|
| 125 |
+
"normal_map": normal_base64,
|
| 126 |
+
"displacement_map": displacement_base64,
|
| 127 |
+
"roughness_map": roughness_base64
|
| 128 |
+
})
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
raise HTTPException(status_code=500, detail=str(e))
|