Commit
·
b0ecc50
1
Parent(s):
97a6fba
learning assistant usecase
Browse files
community_usecase/learning-assistant/README.md
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Learning Assistant
|
| 2 |
+
|
| 3 |
+
This code example searches the internet for relevant learning materials depending on the user's knowledge level and devises a concrete learning roadmap all tailored to the user.
|
| 4 |
+
|
| 5 |
+
## How to use
|
| 6 |
+
|
| 7 |
+
1. Set up the OPENAI api key in the .env file
|
| 8 |
+
|
| 9 |
+
```bash
|
| 10 |
+
OPENAI_API_KEY = 'xxx'
|
| 11 |
+
```
|
| 12 |
+
|
| 13 |
+
2. Copy the python script to the owl/examples folder.
|
| 14 |
+
|
| 15 |
+
3. Run the script
|
| 16 |
+
|
| 17 |
+
```bash
|
| 18 |
+
python run_gpt4o.py
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
4. You can find the entire thought process of the agent within the log file.
|
| 22 |
+
|
| 23 |
+
5. Video demo - https://drive.google.com/drive/folders/1msrNNwjeZ0DKhSXCi2w1ljz_hULSusa_?usp=sharing
|
community_usecase/learning-assistant/run_gpt4o.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import logging
|
| 3 |
+
import json
|
| 4 |
+
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
from camel.models import ModelFactory
|
| 7 |
+
from camel.types import ModelPlatformType
|
| 8 |
+
|
| 9 |
+
from camel.toolkits import (
|
| 10 |
+
SearchToolkit,
|
| 11 |
+
BrowserToolkit,
|
| 12 |
+
)
|
| 13 |
+
from camel.societies import RolePlaying
|
| 14 |
+
from camel.logger import set_log_level, get_logger
|
| 15 |
+
|
| 16 |
+
import pathlib
|
| 17 |
+
|
| 18 |
+
base_dir = pathlib.Path(__file__).parent.parent
|
| 19 |
+
env_path = base_dir / "owl" / ".env"
|
| 20 |
+
load_dotenv(dotenv_path=str(env_path))
|
| 21 |
+
|
| 22 |
+
set_log_level(level="DEBUG")
|
| 23 |
+
logger = get_logger(__name__)
|
| 24 |
+
file_handler = logging.FileHandler("learning_journey.log")
|
| 25 |
+
file_handler.setLevel(logging.DEBUG)
|
| 26 |
+
formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
| 27 |
+
file_handler.setFormatter(formatter)
|
| 28 |
+
logger.addHandler(file_handler)
|
| 29 |
+
|
| 30 |
+
root_logger = logging.getLogger()
|
| 31 |
+
root_logger.addHandler(file_handler)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def construct_learning_society(task: str) -> RolePlaying:
|
| 35 |
+
"""Construct a society of agents for the learning journey companion.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
task (str): The learning task description including what the user wants to learn and what they already know.
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
RolePlaying: A configured society of agents for the learning companion.
|
| 42 |
+
"""
|
| 43 |
+
models = {
|
| 44 |
+
"user": ModelFactory.create(
|
| 45 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
| 46 |
+
model_type="gpt-4o",
|
| 47 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
| 48 |
+
model_config_dict={"temperature": 0.4},
|
| 49 |
+
),
|
| 50 |
+
"assistant": ModelFactory.create(
|
| 51 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
| 52 |
+
model_type="gpt-4o",
|
| 53 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
| 54 |
+
model_config_dict={"temperature": 0.4},
|
| 55 |
+
),
|
| 56 |
+
"content_researcher": ModelFactory.create(
|
| 57 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
| 58 |
+
model_type="gpt-4o",
|
| 59 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
| 60 |
+
model_config_dict={"temperature": 0.2},
|
| 61 |
+
),
|
| 62 |
+
"planning": ModelFactory.create(
|
| 63 |
+
model_platform=ModelPlatformType.OPENAI_COMPATIBLE_MODEL,
|
| 64 |
+
model_type="gpt-4o",
|
| 65 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
| 66 |
+
model_config_dict={"temperature": 0.3},
|
| 67 |
+
),
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
browser_toolkit = BrowserToolkit(
|
| 71 |
+
headless=False,
|
| 72 |
+
web_agent_model=models["content_researcher"],
|
| 73 |
+
planning_agent_model=models["planning"],
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
tools = [
|
| 77 |
+
*browser_toolkit.get_tools(),
|
| 78 |
+
SearchToolkit().search_duckduckgo,
|
| 79 |
+
]
|
| 80 |
+
|
| 81 |
+
user_agent_kwargs = {
|
| 82 |
+
"model": models["user"],
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
assistant_agent_kwargs = {
|
| 86 |
+
"model": models["assistant"],
|
| 87 |
+
"tools": tools,
|
| 88 |
+
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
task_kwargs = {
|
| 92 |
+
"task_prompt": task,
|
| 93 |
+
"with_task_specify": False,
|
| 94 |
+
}
|
| 95 |
+
|
| 96 |
+
society = RolePlaying(
|
| 97 |
+
**task_kwargs,
|
| 98 |
+
user_role_name="learner",
|
| 99 |
+
user_agent_kwargs=user_agent_kwargs,
|
| 100 |
+
assistant_role_name="learning_companion",
|
| 101 |
+
assistant_agent_kwargs=assistant_agent_kwargs,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
return society
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def analyze_chat_history(chat_history):
|
| 108 |
+
"""Analyze chat history and extract tool call information."""
|
| 109 |
+
print("\n============ Tool Call Analysis ============")
|
| 110 |
+
logger.info("========== Starting tool call analysis ==========")
|
| 111 |
+
|
| 112 |
+
tool_calls = []
|
| 113 |
+
for i, message in enumerate(chat_history):
|
| 114 |
+
if message.get("role") == "assistant" and "tool_calls" in message:
|
| 115 |
+
for tool_call in message.get("tool_calls", []):
|
| 116 |
+
if tool_call.get("type") == "function":
|
| 117 |
+
function = tool_call.get("function", {})
|
| 118 |
+
tool_info = {
|
| 119 |
+
"call_id": tool_call.get("id"),
|
| 120 |
+
"name": function.get("name"),
|
| 121 |
+
"arguments": function.get("arguments"),
|
| 122 |
+
"message_index": i,
|
| 123 |
+
}
|
| 124 |
+
tool_calls.append(tool_info)
|
| 125 |
+
print(f"Tool Call: {function.get('name')} Args: {function.get('arguments')}")
|
| 126 |
+
logger.info(f"Tool Call: {function.get('name')} Args: {function.get('arguments')}")
|
| 127 |
+
|
| 128 |
+
elif message.get("role") == "tool" and "tool_call_id" in message:
|
| 129 |
+
for tool_call in tool_calls:
|
| 130 |
+
if tool_call.get("call_id") == message.get("tool_call_id"):
|
| 131 |
+
result = message.get("content", "")
|
| 132 |
+
result_summary = result[:100] + "..." if len(result) > 100 else result
|
| 133 |
+
print(f"Tool Result: {tool_call.get('name')} Return: {result_summary}")
|
| 134 |
+
logger.info(f"Tool Result: {tool_call.get('name')} Return: {result_summary}")
|
| 135 |
+
|
| 136 |
+
print(f"Total tool calls found: {len(tool_calls)}")
|
| 137 |
+
logger.info(f"Total tool calls found: {len(tool_calls)}")
|
| 138 |
+
logger.info("========== Finished tool call analysis ==========")
|
| 139 |
+
|
| 140 |
+
with open("learning_journey_history.json", "w", encoding="utf-8") as f:
|
| 141 |
+
json.dump(chat_history, f, ensure_ascii=False, indent=2)
|
| 142 |
+
|
| 143 |
+
print("Records saved to learning_journey_history.json")
|
| 144 |
+
print("============ Analysis Complete ============\n")
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def run_learning_companion(task: str = None):
|
| 148 |
+
"""Run the learning companion with the given task.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
task (str, optional): The learning task description. Defaults to an example task.
|
| 152 |
+
"""
|
| 153 |
+
task = """
|
| 154 |
+
I want to learn about the transformers architecture in an llm.
|
| 155 |
+
I've also taken a basic statistics course.
|
| 156 |
+
I have about 10 hours per week to dedicate to learning. Devise a roadmap for me .
|
| 157 |
+
"""
|
| 158 |
+
|
| 159 |
+
society = construct_learning_society(task)
|
| 160 |
+
|
| 161 |
+
from owl.utils import run_society
|
| 162 |
+
answer, chat_history, token_count = run_society(society, round_limit = 5)
|
| 163 |
+
|
| 164 |
+
# Record tool usage history
|
| 165 |
+
analyze_chat_history(chat_history)
|
| 166 |
+
print(f"\033[94mAnswer: {answer}\033[0m")
|
| 167 |
+
|
| 168 |
+
if __name__ == "__main__":
|
| 169 |
+
run_learning_companion()
|