Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,26 +3,24 @@
|
|
| 3 |
Universal Dynamic LoRA Trainer (Accelerate + PEFT + Gradio)
|
| 4 |
- Gemma LLM default
|
| 5 |
- Auto LoRA target modules
|
| 6 |
-
- CSV/Parquet
|
| 7 |
-
-
|
| 8 |
-
- Live logs (tokenization, forward/backward, step loss)
|
| 9 |
-
- Live progress bar
|
| 10 |
"""
|
| 11 |
|
| 12 |
-
import os, torch, gradio as gr, pandas as pd
|
| 13 |
from pathlib import Path
|
| 14 |
-
from tqdm.auto import tqdm
|
| 15 |
-
from huggingface_hub import create_repo, upload_folder, hf_hub_download
|
| 16 |
from torch.utils.data import Dataset, DataLoader
|
|
|
|
| 17 |
from peft import LoraConfig, get_peft_model
|
| 18 |
from accelerate import Accelerator
|
| 19 |
import torch.nn as nn
|
|
|
|
| 20 |
|
| 21 |
-
#
|
| 22 |
try:
|
| 23 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 24 |
TRANSFORMERS_AVAILABLE = True
|
| 25 |
-
except
|
| 26 |
TRANSFORMERS_AVAILABLE = False
|
| 27 |
|
| 28 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -55,8 +53,9 @@ class MediaTextDataset(Dataset):
|
|
| 55 |
|
| 56 |
self.text_columns = text_columns or ["short_prompt", "long_prompt"]
|
| 57 |
|
|
|
|
| 58 |
print(f"[DEBUG] Loaded dataset: {file_path}, columns: {list(self.df.columns)}")
|
| 59 |
-
print(f"[DEBUG] Sample
|
| 60 |
|
| 61 |
def __len__(self):
|
| 62 |
return len(self.df)
|
|
@@ -66,31 +65,30 @@ class MediaTextDataset(Dataset):
|
|
| 66 |
text_data = {col: rec[col] if col in rec else "" for col in self.text_columns}
|
| 67 |
return {"text": text_data}
|
| 68 |
|
| 69 |
-
# ----------------
|
| 70 |
def load_pipeline_auto(base_model, dtype=torch.float16):
|
| 71 |
-
|
| 72 |
-
if "gemma" in low:
|
| 73 |
if not TRANSFORMERS_AVAILABLE:
|
| 74 |
-
raise RuntimeError("Transformers not installed
|
| 75 |
print(f"[INFO] Using Gemma LLM for {base_model}")
|
| 76 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 77 |
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
|
| 78 |
return {"model": model, "tokenizer": tokenizer}
|
| 79 |
else:
|
| 80 |
-
raise NotImplementedError("Only Gemma LLM
|
| 81 |
|
| 82 |
-
def find_target_modules(model
|
| 83 |
candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
| 84 |
names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
|
| 85 |
targets = [n.split(".")[-1] for n in names if n.split(".")[-1] in candidates]
|
| 86 |
if not targets:
|
| 87 |
targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
|
| 88 |
-
print(
|
| 89 |
else:
|
| 90 |
print(f"[INFO] LoRA target modules detected: {targets}")
|
| 91 |
return targets
|
| 92 |
|
| 93 |
-
# ---------------- Training
|
| 94 |
def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
| 95 |
epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1, num_workers=0,
|
| 96 |
max_train_records=None):
|
|
@@ -98,17 +96,13 @@ def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
|
| 98 |
pipe = load_pipeline_auto(base_model)
|
| 99 |
model_obj = pipe["model"]
|
| 100 |
tokenizer = pipe["tokenizer"]
|
| 101 |
-
target_modules = find_target_modules(model_obj
|
| 102 |
lcfg = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
|
| 103 |
lora_module = get_peft_model(model_obj, lcfg)
|
| 104 |
|
| 105 |
dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
|
| 106 |
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
| 107 |
-
|
| 108 |
-
# Prepare with accelerator
|
| 109 |
-
lora_module, opt, loader = accelerator.prepare(
|
| 110 |
-
lora_module, torch.optim.AdamW(lora_module.parameters(), lr=lr), loader
|
| 111 |
-
)
|
| 112 |
|
| 113 |
total_steps = epochs * len(loader)
|
| 114 |
step_counter = 0
|
|
@@ -117,7 +111,7 @@ def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
|
| 117 |
yield "[DEBUG] Starting training loop...\n", 0.0
|
| 118 |
|
| 119 |
for ep in range(epochs):
|
| 120 |
-
yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter/total_steps
|
| 121 |
for i, batch in enumerate(loader):
|
| 122 |
ex = batch[0]
|
| 123 |
texts = ex["text"]
|
|
@@ -125,7 +119,7 @@ def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
|
| 125 |
# Tokenization
|
| 126 |
tokens = tokenizer([texts.get("short_prompt",""), texts.get("long_prompt","")],
|
| 127 |
padding=True, truncation=True, return_tensors="pt").to(DEVICE)
|
| 128 |
-
logs.append(f"[DEBUG] Step {step_counter},
|
| 129 |
|
| 130 |
# Forward pass
|
| 131 |
outputs = lora_module(**tokens)
|
|
@@ -138,17 +132,17 @@ def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
|
| 138 |
opt.zero_grad()
|
| 139 |
|
| 140 |
step_counter += 1
|
| 141 |
-
|
| 142 |
-
yield "\n".join(logs[-10:]), step_counter/total_steps
|
| 143 |
|
| 144 |
Path(output_dir).mkdir(exist_ok=True)
|
| 145 |
lora_module.save_pretrained(output_dir)
|
| 146 |
yield f"[INFO] LoRA saved to {output_dir}\n", 1.0
|
| 147 |
|
| 148 |
-
# ---------------- Upload ----------------
|
| 149 |
def upload_adapter(local, repo_id):
|
| 150 |
-
token=os.environ.get("HF_TOKEN")
|
| 151 |
-
if not token:
|
|
|
|
| 152 |
create_repo(repo_id, exist_ok=True)
|
| 153 |
upload_folder(local, repo_id=repo_id, repo_type="model", token=token)
|
| 154 |
return f"https://huggingface.co/{repo_id}"
|
|
@@ -159,43 +153,46 @@ def run_ui():
|
|
| 159 |
gr.Markdown("# 🌐 Universal Dynamic LoRA Trainer (Gemma LLM)")
|
| 160 |
|
| 161 |
with gr.Row():
|
| 162 |
-
base_model=gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
|
| 163 |
-
dataset=gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
|
| 164 |
-
csvname=gr.Textbox(label="CSV/Parquet file", value="train.csv")
|
| 165 |
-
short_col=gr.Textbox(label="Short prompt column", value="short_prompt")
|
| 166 |
-
long_col=gr.Textbox(label="Long prompt column", value="long_prompt")
|
| 167 |
-
out=gr.Textbox(label="Output dir", value="./adapter_out")
|
| 168 |
-
repo=gr.Textbox(label="Upload HF repo (optional)", value="
|
|
|
|
| 169 |
with gr.Row():
|
| 170 |
batch_size = gr.Number(value=1, label="Batch size")
|
| 171 |
num_workers = gr.Number(value=0, label="DataLoader num_workers")
|
| 172 |
-
r=gr.Slider(1,64,value=8,label="LoRA rank")
|
| 173 |
-
a=gr.Slider(1,64,value=16,label="LoRA alpha")
|
| 174 |
-
ep=gr.Number(value=1,label="Epochs")
|
| 175 |
-
lr=gr.Number(value=1e-4,label="Learning rate")
|
| 176 |
max_records = gr.Number(value=1000, label="Max training records")
|
| 177 |
-
btn=gr.Button("🚀 Start Training")
|
| 178 |
-
|
| 179 |
-
|
|
|
|
| 180 |
|
| 181 |
-
def launch(bm,ds,csv,sc,lc,out_dir,batch,num_w,r_,a_,ep_,lr_,max_rec,repo_):
|
| 182 |
-
# Stream logs from generator
|
| 183 |
for log_text, prog in train_lora_stream(
|
| 184 |
bm, ds, csv, [sc, lc], out_dir,
|
| 185 |
int(ep_), float(lr_), int(r_), int(a_),
|
| 186 |
int(batch), int(num_w), max_train_records=int(max_rec)
|
| 187 |
):
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
# Upload if repo provided
|
| 191 |
if repo_:
|
| 192 |
link = upload_adapter(out_dir, repo_)
|
| 193 |
-
yield f"[INFO] Uploaded to {link}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
-
btn.click(launch,
|
| 196 |
-
[base_model,dataset,csvname,short_col,long_col,out,batch_size,num_workers,r,a,ep,lr,max_records,repo],
|
| 197 |
-
[logs, progress])
|
| 198 |
return demo
|
| 199 |
|
| 200 |
-
if __name__=="__main__":
|
| 201 |
run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)
|
|
|
|
| 3 |
Universal Dynamic LoRA Trainer (Accelerate + PEFT + Gradio)
|
| 4 |
- Gemma LLM default
|
| 5 |
- Auto LoRA target modules
|
| 6 |
+
- CSV/Parquet support
|
| 7 |
+
- Live logs and progress
|
|
|
|
|
|
|
| 8 |
"""
|
| 9 |
|
| 10 |
+
import os, torch, gradio as gr, pandas as pd
|
| 11 |
from pathlib import Path
|
|
|
|
|
|
|
| 12 |
from torch.utils.data import Dataset, DataLoader
|
| 13 |
+
from tqdm.auto import tqdm
|
| 14 |
from peft import LoraConfig, get_peft_model
|
| 15 |
from accelerate import Accelerator
|
| 16 |
import torch.nn as nn
|
| 17 |
+
from huggingface_hub import create_repo, upload_folder, hf_hub_download
|
| 18 |
|
| 19 |
+
# Transformers support
|
| 20 |
try:
|
| 21 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 22 |
TRANSFORMERS_AVAILABLE = True
|
| 23 |
+
except:
|
| 24 |
TRANSFORMERS_AVAILABLE = False
|
| 25 |
|
| 26 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 53 |
|
| 54 |
self.text_columns = text_columns or ["short_prompt", "long_prompt"]
|
| 55 |
|
| 56 |
+
# Debug prints
|
| 57 |
print(f"[DEBUG] Loaded dataset: {file_path}, columns: {list(self.df.columns)}")
|
| 58 |
+
print(f"[DEBUG] Sample row:\n{self.df.head(3)}")
|
| 59 |
|
| 60 |
def __len__(self):
|
| 61 |
return len(self.df)
|
|
|
|
| 65 |
text_data = {col: rec[col] if col in rec else "" for col in self.text_columns}
|
| 66 |
return {"text": text_data}
|
| 67 |
|
| 68 |
+
# ---------------- Model Loader ----------------
|
| 69 |
def load_pipeline_auto(base_model, dtype=torch.float16):
|
| 70 |
+
if "gemma" in base_model.lower():
|
|
|
|
| 71 |
if not TRANSFORMERS_AVAILABLE:
|
| 72 |
+
raise RuntimeError("Transformers not installed")
|
| 73 |
print(f"[INFO] Using Gemma LLM for {base_model}")
|
| 74 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 75 |
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
|
| 76 |
return {"model": model, "tokenizer": tokenizer}
|
| 77 |
else:
|
| 78 |
+
raise NotImplementedError("Only Gemma LLM supported currently")
|
| 79 |
|
| 80 |
+
def find_target_modules(model):
|
| 81 |
candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
|
| 82 |
names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
|
| 83 |
targets = [n.split(".")[-1] for n in names if n.split(".")[-1] in candidates]
|
| 84 |
if not targets:
|
| 85 |
targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
|
| 86 |
+
print("[WARNING] No standard attention modules found, using all Linear layers")
|
| 87 |
else:
|
| 88 |
print(f"[INFO] LoRA target modules detected: {targets}")
|
| 89 |
return targets
|
| 90 |
|
| 91 |
+
# ---------------- Training generator ----------------
|
| 92 |
def train_lora_stream(base_model, dataset_src, csv_name, text_cols, output_dir,
|
| 93 |
epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1, num_workers=0,
|
| 94 |
max_train_records=None):
|
|
|
|
| 96 |
pipe = load_pipeline_auto(base_model)
|
| 97 |
model_obj = pipe["model"]
|
| 98 |
tokenizer = pipe["tokenizer"]
|
| 99 |
+
target_modules = find_target_modules(model_obj)
|
| 100 |
lcfg = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
|
| 101 |
lora_module = get_peft_model(model_obj, lcfg)
|
| 102 |
|
| 103 |
dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
|
| 104 |
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
| 105 |
+
lora_module, opt, loader = accelerator.prepare(lora_module, torch.optim.AdamW(lora_module.parameters(), lr=lr), loader)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
total_steps = epochs * len(loader)
|
| 108 |
step_counter = 0
|
|
|
|
| 111 |
yield "[DEBUG] Starting training loop...\n", 0.0
|
| 112 |
|
| 113 |
for ep in range(epochs):
|
| 114 |
+
yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter / total_steps
|
| 115 |
for i, batch in enumerate(loader):
|
| 116 |
ex = batch[0]
|
| 117 |
texts = ex["text"]
|
|
|
|
| 119 |
# Tokenization
|
| 120 |
tokens = tokenizer([texts.get("short_prompt",""), texts.get("long_prompt","")],
|
| 121 |
padding=True, truncation=True, return_tensors="pt").to(DEVICE)
|
| 122 |
+
logs.append(f"[DEBUG] Step {step_counter}, input_ids shape: {tokens['input_ids'].shape}")
|
| 123 |
|
| 124 |
# Forward pass
|
| 125 |
outputs = lora_module(**tokens)
|
|
|
|
| 132 |
opt.zero_grad()
|
| 133 |
|
| 134 |
step_counter += 1
|
| 135 |
+
yield "\n".join(logs[-10:]), step_counter / total_steps
|
|
|
|
| 136 |
|
| 137 |
Path(output_dir).mkdir(exist_ok=True)
|
| 138 |
lora_module.save_pretrained(output_dir)
|
| 139 |
yield f"[INFO] LoRA saved to {output_dir}\n", 1.0
|
| 140 |
|
| 141 |
+
# ---------------- HF Upload ----------------
|
| 142 |
def upload_adapter(local, repo_id):
|
| 143 |
+
token = os.environ.get("HF_TOKEN")
|
| 144 |
+
if not token:
|
| 145 |
+
raise RuntimeError("HF_TOKEN missing")
|
| 146 |
create_repo(repo_id, exist_ok=True)
|
| 147 |
upload_folder(local, repo_id=repo_id, repo_type="model", token=token)
|
| 148 |
return f"https://huggingface.co/{repo_id}"
|
|
|
|
| 153 |
gr.Markdown("# 🌐 Universal Dynamic LoRA Trainer (Gemma LLM)")
|
| 154 |
|
| 155 |
with gr.Row():
|
| 156 |
+
base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
|
| 157 |
+
dataset = gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
|
| 158 |
+
csvname = gr.Textbox(label="CSV/Parquet file", value="train.csv")
|
| 159 |
+
short_col = gr.Textbox(label="Short prompt column", value="short_prompt")
|
| 160 |
+
long_col = gr.Textbox(label="Long prompt column", value="long_prompt")
|
| 161 |
+
out = gr.Textbox(label="Output dir", value="./adapter_out")
|
| 162 |
+
repo = gr.Textbox(label="Upload HF repo (optional)", value="")
|
| 163 |
+
|
| 164 |
with gr.Row():
|
| 165 |
batch_size = gr.Number(value=1, label="Batch size")
|
| 166 |
num_workers = gr.Number(value=0, label="DataLoader num_workers")
|
| 167 |
+
r = gr.Slider(1, 64, value=8, label="LoRA rank")
|
| 168 |
+
a = gr.Slider(1, 64, value=16, label="LoRA alpha")
|
| 169 |
+
ep = gr.Number(value=1, label="Epochs")
|
| 170 |
+
lr = gr.Number(value=1e-4, label="Learning rate")
|
| 171 |
max_records = gr.Number(value=1000, label="Max training records")
|
| 172 |
+
btn = gr.Button("🚀 Start Training")
|
| 173 |
+
|
| 174 |
+
logs_box = gr.Textbox(label="Logs", lines=20)
|
| 175 |
+
progress_bar = gr.Progress()
|
| 176 |
|
| 177 |
+
def launch(bm, ds, csv, sc, lc, out_dir, batch, num_w, r_, a_, ep_, lr_, max_rec, repo_):
|
|
|
|
| 178 |
for log_text, prog in train_lora_stream(
|
| 179 |
bm, ds, csv, [sc, lc], out_dir,
|
| 180 |
int(ep_), float(lr_), int(r_), int(a_),
|
| 181 |
int(batch), int(num_w), max_train_records=int(max_rec)
|
| 182 |
):
|
| 183 |
+
progress_bar.progress = prog
|
| 184 |
+
yield log_text
|
|
|
|
| 185 |
if repo_:
|
| 186 |
link = upload_adapter(out_dir, repo_)
|
| 187 |
+
yield f"[INFO] Uploaded to {link}"
|
| 188 |
+
|
| 189 |
+
btn.click(
|
| 190 |
+
launch,
|
| 191 |
+
[base_model, dataset, csvname, short_col, long_col, out, batch_size, num_workers, r, a, ep, lr, max_records, repo],
|
| 192 |
+
logs_box
|
| 193 |
+
)
|
| 194 |
|
|
|
|
|
|
|
|
|
|
| 195 |
return demo
|
| 196 |
|
| 197 |
+
if __name__ == "__main__":
|
| 198 |
run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)
|