Spaces:
Running
Running
File size: 27,891 Bytes
4cd3373 1e5e637 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 cf0b63e 4cd3373 19b89fd caafa78 1096512 19b89fd 4cd3373 caafa78 4cd3373 19b89fd 4cd3373 caafa78 f3725ae caafa78 4cd3373 caafa78 4cd3373 f3725ae caafa78 4cd3373 caafa78 4cd3373 caafa78 4cd3373 caafa78 4cd3373 caafa78 4cd3373 caafa78 5226654 4cd3373 caafa78 4cd3373 19b89fd 4cd3373 19b89fd 4cd3373 19b89fd 4cd3373 b8af74f d42c09b 4cd3373 b8af74f d42c09b b8af74f d42c09b 4cd3373 d42c09b b8af74f 4cd3373 d42c09b b8af74f 4cd3373 b8af74f d42c09b 19b89fd d42c09b b8af74f 19b89fd f3725ae b8af74f d42c09b b2315b7 cf0b63e 145cbd2 cf0b63e c617c61 9985acb 4139bca db3b63a c617c61 9985acb 3c6955e 19b89fd 3c6955e 9985acb 3c6955e 9985acb c617c61 9985acb c617c61 9985acb c617c61 3c6955e c617c61 3c6955e c617c61 9985acb c617c61 b65b846 c617c61 b65b846 382d630 c617c61 9985acb 3c6955e 9985acb 3c6955e 9985acb 3c6955e 9985acb 3c6955e 9985acb 3c6955e 9985acb 3c6955e 9985acb 3c6955e 9985acb 145cbd2 3c6955e 145cbd2 3c6955e 145cbd2 3c6955e 145cbd2 3c6955e 9985acb 145cbd2 3c6955e 145cbd2 3c6955e 145cbd2 9985acb 3c6955e d6b8b1b 3c6955e 6895c9e a75b152 6895c9e a75b152 6895c9e a75b152 a2ab4a1 abc41be a75b152 2dca78b b392d21 c05048d cf0b63e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
# universal_lora_trainer_gradio.py
import spaces
import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from pathlib import Path
from torch.utils.data import Dataset, DataLoader
from peft import LoraConfig, get_peft_model
from accelerate import Accelerator
from huggingface_hub import create_repo, upload_folder, hf_hub_download
# transformers optional
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
TRANSFORMERS_AVAILABLE = True
except Exception:
TRANSFORMERS_AVAILABLE = False
# ---------------- Helpers ----------------
def is_hub_repo_like(s):
return "/" in s and not Path(s).exists()
def download_from_hf(repo_id, filename, token=None):
token = token or os.environ.get("HF_TOKEN")
return hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset", token=token)
# ---------------- Dataset ----------------
class MediaTextDataset(Dataset):
def __init__(self, source, csv_name="dataset.csv", text_columns=None, max_records=None):
self.is_hub = is_hub_repo_like(source)
token = os.environ.get("HF_TOKEN")
if self.is_hub:
file_path = download_from_hf(source, csv_name, token)
else:
file_path = Path(source) / csv_name
# fallback to parquet if CSV missing
if not Path(file_path).exists():
alt = Path(str(file_path).replace(".csv", ".parquet"))
if alt.exists():
file_path = alt
else:
raise FileNotFoundError(f"Dataset file not found: {file_path}")
self.df = pd.read_parquet(file_path) if str(file_path).endswith(".parquet") else pd.read_csv(file_path)
if max_records:
self.df = self.df.head(max_records)
self.text_columns = text_columns or ["short_prompt", "long_prompt"]
def __len__(self):
return len(self.df)
def __getitem__(self, i):
rec = self.df.iloc[i]
out = {"text": {}}
for col in self.text_columns:
out["text"][col] = rec[col] if col in rec else ""
return out
# ---------------- Model loader ----------------
def load_pipeline_auto(base_model, dtype=torch.float16):
if "gemma" in base_model.lower():
if not TRANSFORMERS_AVAILABLE:
raise RuntimeError("Transformers not installed for LLM support.")
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=dtype)
return {"model": model, "tokenizer": tokenizer}
else:
raise NotImplementedError("Only Gemma LLM supported in this script.")
def find_target_modules(model):
candidates = ["q_proj", "k_proj", "v_proj", "out_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
names = [n for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
targets = [n.split(".")[-1] for n in names if any(c in n for c in candidates)]
if not targets:
targets = [n.split(".")[-1] for n, m in model.named_modules() if isinstance(m, torch.nn.Linear)]
return targets
def unwrap_batch(batch, short_col, long_col):
if isinstance(batch, (list, tuple)):
ex = batch[0]
if "text" in ex:
return ex
if "short" in ex and "long" in ex:
return {"text": {short_col: ex.get("short",""), long_col: ex.get("long","")}}
return {"text": ex}
if isinstance(batch, dict):
first_elem = {}
is_batched = any(isinstance(v, (list, tuple, np.ndarray, torch.Tensor)) for v in batch.values())
if is_batched:
for k, v in batch.items():
try: first = v[0]
except Exception: first = v
first_elem[k] = first
if "text" in first_elem:
t = first_elem["text"]
if isinstance(t, (list, tuple)) and len(t) > 0:
return {"text": t[0] if isinstance(t[0], dict) else {short_col: t[0], long_col: ""}}
if isinstance(t, dict): return {"text": t}
return {"text": {short_col: str(t), long_col: ""}}
if ("short" in first_elem and "long" in first_elem) or (short_col in first_elem and long_col in first_elem):
s = first_elem.get(short_col, first_elem.get("short", ""))
l = first_elem.get(long_col, first_elem.get("long", ""))
return {"text": {short_col: str(s), long_col: str(l)}}
return {"text": {short_col: str(first_elem)}}
if "text" in batch and isinstance(batch["text"], dict):
return {"text": batch["text"]}
s = batch.get(short_col, batch.get("short", ""))
l = batch.get(long_col, batch.get("long", ""))
return {"text": {short_col: str(s), long_col: str(l)}}
return {"text": {short_col: str(batch), long_col: ""}}
# ---------------- LoRA Training ----------------
from tempfile import TemporaryDirectory
from accelerate import Accelerator
@spaces.GPU(duration=110)
def train_lora_stream(base_model, dataset_src, csv_name, text_cols,
epochs=1, lr=1e-4, r=8, alpha=16, batch_size=1,
num_workers=0, max_train_records=None, hf_repo_id=None):
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if device=="cuda" else torch.float32
accelerator = Accelerator()
pipe = load_pipeline_auto(base_model, dtype=dtype)
model_obj = pipe["model"]
tokenizer = pipe["tokenizer"]
model_obj.train()
target_modules = find_target_modules(model_obj)
lora_config = LoraConfig(r=r, lora_alpha=alpha, target_modules=target_modules, lora_dropout=0.0)
lora_module = get_peft_model(model_obj, lora_config)
dataset = MediaTextDataset(dataset_src, csv_name, text_columns=text_cols, max_records=max_train_records)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
optimizer = torch.optim.AdamW(lora_module.parameters(), lr=lr)
lora_module, optimizer, loader = accelerator.prepare(lora_module, optimizer, loader)
max_steps = 150
step_counter = 0
logs = []
yield f"[INFO] Starting LoRA training on {device.upper()} (max {max_steps} steps)...\n", 0.0
for ep in range(epochs):
yield f"[DEBUG] Epoch {ep+1}/{epochs}\n", step_counter / max_steps
for batch in loader:
if step_counter >= max_steps:
break
ex = unwrap_batch(batch, text_cols[0], text_cols[1])
texts = ex.get("text", {})
short_text = str(texts.get(text_cols[0], "") or "")
long_text = str(texts.get(text_cols[1], "") or "")
enc = tokenizer(short_text, text_pair=long_text, return_tensors="pt",
padding="max_length", truncation=True, max_length=512)
enc = {k: v.to(accelerator.device) for k,v in enc.items()}
enc["labels"] = enc["input_ids"].clone()
outputs = lora_module(**enc)
loss = getattr(outputs, "loss", None)
if loss is None:
logits = outputs.logits if hasattr(outputs, "logits") else outputs[0]
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)),
enc["labels"].view(-1),
ignore_index=tokenizer.pad_token_id
)
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
logs.append(f"[DEBUG] Step {step_counter}, Loss: {loss.item():.6f}")
step_counter += 1
yield "\n".join(logs[-10:]), step_counter / max_steps
if step_counter >= max_steps:
break
# ---------------- Upload to HF ----------------
HF_TOKEN = os.environ.get("HF_TOKEN")
if not hf_repo_id:
raise ValueError("β HF repo ID required for upload.")
if not HF_TOKEN:
raise ValueError("β HF_TOKEN missing.")
hf_repo_id = hf_repo_id.strip()
logs.append(f"[INFO] π Uploading LoRA to Hugging Face repo: {hf_repo_id}")
create_repo(hf_repo_id, repo_type="model", exist_ok=True, token=HF_TOKEN)
with TemporaryDirectory() as tmp_dir:
lora_module.save_pretrained(tmp_dir)
upload_folder(folder_path=tmp_dir, repo_id=hf_repo_id, repo_type="model", token=HF_TOKEN)
link = f"https://huggingface.co/{hf_repo_id}"
logs.append(f"[INFO] β
Uploaded successfully: {link}")
yield "\n".join(logs), link
# ---------------- CPU Inference ----------------
from peft import PeftModel
from peft import PeftModel
import torch
def generate_long_prompt_cpu(base_model, lora_repo, short_prompt, max_length=200):
device = torch.device("cpu")
# Load base model in float32
pipe = load_pipeline_auto(base_model, dtype=torch.float32)
base_model_obj = pipe["model"].to(device)
tokenizer = pipe["tokenizer"]
base_model_obj.eval()
# Load LoRA adapter on CPU
lora_model = PeftModel.from_pretrained(
base_model_obj,
lora_repo,
torch_dtype=torch.float32,
device_map={"": device}
)
lora_model.eval()
# OPTIONAL: merge LoRA into base model to avoid PEFT runtime issues
merged_model = lora_model.merge_and_unload()
merged_model.eval()
# Tokenize input
input_ids = tokenizer(short_prompt, return_tensors="pt").input_ids.to(device)
# Generate safely
with torch.no_grad():
outputs = merged_model.generate(
input_ids,
max_length=max_length,
do_sample=True,
top_p=0.95,
top_k=50
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# ---------------- Gradio UI ----------------
# ---------------- Gradio UI ----------------
import gradio as gr
def run_ui():
import gradio as gr
with gr.Blocks(title="Prompt Enhancer Trainer + Inference UI") as demo:
gr.Markdown("# β¨ Prompt Enhancer Trainer + Inference Playground")
gr.Markdown("Train, test, and debug your LoRA-enhanced Gemma model easily.Use ZerpGPU to Train else CPU will work for other stuff")
gr.Markdown("""
π **Quick Links:**
- [π View DataSet (rahul7star/prompt-enhancer-dataset-01)](https://huggingface.co/datasets/rahul7star/prompt-enhancer-dataset-01)
- [π€ View Trained Model (rahul7star/gemma-3-270m-ccebc0)](https://huggingface.co/rahul7star/gemma-3-270m-ccebc0)
""")
with gr.Tabs():
# =========================================================
# 1οΈβ£ TRAIN LORA TAB
# =========================================================
with gr.Tab("Train LoRA"):
with gr.Row():
base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
dataset = gr.Textbox(label="Dataset folder or HF repo", value="rahul7star/prompt-enhancer-dataset-01")
csvname = gr.Textbox(label="CSV/Parquet file", value="train-00000-of-00001.csv")
short_col = gr.Textbox(label="Short prompt column", value="short_prompt")
long_col = gr.Textbox(label="Long prompt column", value="long_prompt")
repo = gr.Textbox(label="HF repo to upload LoRA", value="rahul7star/gemma-3-270m-ccebc0")
with gr.Row():
batch_size = gr.Number(value=1, label="Batch size")
num_workers = gr.Number(value=0, label="DataLoader num_workers")
r = gr.Number(value=8, label="LoRA rank")
a = gr.Number(value=16, label="LoRA alpha")
ep = gr.Number(value=1, label="Epochs")
lr = gr.Number(value=1e-4, label="Learning rate")
max_records = gr.Number(value=1000, label="Max training records")
logs = gr.Textbox(label="Logs (streaming)", lines=25)
def launch_train(bm, ds, csv, sc, lc, batch, num_w, r_, a_, ep_, lr_, max_rec, repo_):
gen = train_lora_stream(
bm, ds, csv, [sc, lc],
epochs=int(ep_), lr=float(lr_), r=int(r_), alpha=int(a_),
batch_size=int(batch), num_workers=int(num_w),
max_train_records=int(max_rec), hf_repo_id=repo_
)
for item in gen:
yield item
btn = gr.Button("π Start Training")
btn.click(
fn=launch_train,
inputs=[
base_model, dataset, csvname, short_col, long_col,
batch_size, num_workers, r, a, ep, lr, max_records, repo
],
outputs=[logs],
queue=True
)
# =========================================================
# 2οΈβ£ INFERENCE (CPU) TAB
# =========================================================
with gr.Tab("Inference (CPU)"):
inf_base_model = gr.Textbox(label="Base model", value="google/gemma-3-4b-it")
inf_lora_repo = gr.Textbox(label="LoRA HF repo", value="rahul7star/gemma-3-270m-ccebc0")
short_prompt = gr.Textbox(label="Short prompt")
long_prompt_out = gr.Textbox(label="Generated long prompt", lines=5)
inf_btn = gr.Button("π Generate Long Prompt")
inf_btn.click(
fn=generate_long_prompt_cpu,
inputs=[inf_base_model, inf_lora_repo, short_prompt],
outputs=[long_prompt_out]
)
# =========================================================
# 3οΈβ£ SHOW TRAINABLE PARAMS TAB
# =========================================================
with gr.Tab("Show Trainable Params"):
gr.Markdown("### π§© View Trainable Parameters in Your LoRA-Enhanced Model")
with gr.Row():
base_model_name = gr.Textbox(label="Base Model", value="google/gemma-2b-it")
check_btn = gr.Button("π Show Trainable Layers")
param_output = gr.Textbox(label="Trainable Parameters Info", lines=30)
def show_trainable_layers(base_model_name):
import torch
from peft import get_peft_model, LoraConfig
from transformers import AutoModelForCausalLM
import io
import contextlib
buf = io.StringIO()
print(f"[INFO] Loading base model: {base_model_name}", file=buf)
model = AutoModelForCausalLM.from_pretrained(base_model_name)
print("[INFO] Initializing LoRA configuration...", file=buf)
config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"q_proj", "k_proj", "v_proj",
"o_proj", "gate_proj", "up_proj", "down_proj"
]
)
print("[INFO] Applying LoRA adapters...", file=buf)
model = get_peft_model(model, config)
print("[INFO] Counting trainable parameters...", file=buf)
with contextlib.redirect_stdout(buf):
model.print_trainable_parameters()
print("\n[INFO] Listing all LoRA-injected layers...", file=buf)
lora_layers = [name for name, _ in model.named_modules() if "lora" in name.lower()]
if not lora_layers:
print("β οΈ No LoRA layers detected. Check target_modules configuration.", file=buf)
else:
print(f"β
Found {len(lora_layers)} LoRA-injected submodules:\n", file=buf)
for i, layer_name in enumerate(lora_layers[:200]):
print(f" {i+1:03d}. {layer_name}", file=buf)
if len(lora_layers) > 200:
print(f"...and {len(lora_layers)-200} more layers (truncated)", file=buf)
explanation = """
ββββββββββββββββββββββββββββ
### π What βAdapter (90)β Means
When you initialize LoRA on a large model like **Gemma**, the code scans the model
to find all modules that can receive LoRA layers β typically:
- **q_proj, k_proj, v_proj** β Query, Key, Value projections
- **o_proj / out_proj** β Output of attention
- **gate_proj, up_proj, down_proj** β Feed-forward MLPs
Each matching layer gets two small trainable matrices **(A, B)** injected.
So if you see:
> Adapter (90)
That means **90 total submodules** were wrapped with LoRA adapters.
You can view them above π, or print them programmatically with:
```python
for name, module in model.named_modules():
if "lora" in name.lower():
print(name)
"""
print(explanation, file=buf)
return buf.getvalue()
check_btn.click(show_trainable_layers, inputs=[base_model_name], outputs=[param_output])
# =========================================================
# 4οΈβ£ CODE DEBUG TAB
# =========================================================
with gr.Tab("Code Debug"):
gr.Markdown("### π§© Code Debug β Understand What's Happening Line by Line")
gr.Markdown("""
#### π§° Step-by-Step Breakdown
**1οΈβ£ `f"[INFO] Loading base model: {base_model}"`**
β Logs which model is being loaded (e.g., `google/gemma-2b-it`)
**2οΈβ£ `AutoModelForCausalLM.from_pretrained(base_model)`**
β Downloads the base Gemma model weights and tokenizer.
**3οΈβ£ `get_peft_model(model, config)`**
β Wraps the model with LoRA and injects adapters into `q_proj`, `k_proj`, `v_proj`, etc.
**4οΈβ£ Expected console output:**
[INFO] Loading base model: google/gemma-2b-it
[INFO] Preparing dataset...
[INFO] Injecting LoRA adapters...
trainable params: 3.5M || all params: 270M || trainable%: 1.3%
**5οΈβ£ `trainer.train()`**
β Starts training loop and shows live progress.
**6οΈβ£ `upload_file(...)`**
β Uploads all model files to your chosen HF repo.
---
### π What βAdapter (90)β Means
When you initialize LoRA on Gemma, it finds **90 target layers** such as:
- `q_proj`, `k_proj`, `v_proj`
- `o_proj`
- `gate_proj`, `up_proj`, `down_proj`
Each layer gets small trainable matrices (A, B).
So:
> **Adapter (90)** β 90 modules modified by LoRA.
To list them:
```python
for name, module in model.named_modules():
if "lora" in name.lower():
print(name)
""")
# =========================================================
# 5οΈβ£ CODE EXPLAIN TAB
# =========================================================
with gr.Tab("Code Explain"):
explain_md = gr.Markdown("""
### π§© Universal Dynamic LoRA Trainer & Inference β Code Explanation
This project provides an **end-to-end LoRA fine-tuning and inference system** for language models like **Gemma**, built with **Gradio**, **PEFT**, and **Accelerate**.
It supports both **training new LoRAs** and **generating text** with existing ones β all in a single interface.
---
#### **1οΈβ£ Imports Overview**
- **Core libs:** `os`, `torch`, `gradio`, `numpy`, `pandas`
- **Training libs:** `peft` (`LoraConfig`, `get_peft_model`), `accelerate` (`Accelerator`)
- **Modeling:** `transformers` (for Gemma base model)
- **Hub integration:** `huggingface_hub` (for uploading adapters)
- **Spaces:** `spaces` β for execution within Hugging Face Spaces
---
#### **2οΈβ£ Dataset Loading**
- Uses a lightweight **MediaTextDataset** class to load:
- CSV / Parquet files
- or directly from a Hugging Face dataset repo
- Expects two columns:
`short_prompt` β Input text
`long_prompt` β Target expanded text
- Supports batching, missing-column checks, and configurable max record limits.
---
#### **3οΈβ£ Model Loading & Preparation**
- Loads **Gemma model and tokenizer** via `AutoModelForCausalLM` and `AutoTokenizer`.
- Automatically detects **target modules** (e.g. `q_proj`, `v_proj`) for LoRA injection.
- Supports `float16` or `bfloat16` precision with `Accelerator` for optimal memory usage.
---
#### **4οΈβ£ LoRA Training Logic**
- Core formula:
\[
W_{eff} = W + \alpha \times (B @ A)
\]
- Only **A** and **B** matrices are trainable; base model weights remain frozen.
- Configurable parameters:
`r` (rank), `alpha` (scaling), `epochs`, `lr`, `batch_size`
- Training logs stream live in the UI, showing step-by-step loss values.
- After training, the adapter is **saved locally** and **uploaded to Hugging Face Hub**.
---
#### **5οΈβ£ CPU Inference Mode**
- Runs entirely on **CPU**, no GPU required.
- Loads base Gemma model + trained LoRA weights (`PeftModel.from_pretrained`).
- Optionally merges LoRA with base model.
- Expands the short prompt β long descriptive text using standard generation parameters (e.g., top-p / top-k sampling).
---
#### **6οΈβ£ LoRA Internals Explained**
- LoRA injects low-rank matrices (A, B) into **attention Linear layers**.
- Example:
\[
Q_{new} = Q + \alpha \times (B @ A)
\]
- Significantly reduces training cost:
- Memory: ~1β2% of full model
- Compute: trains faster with minimal GPU load
- Scalable to large models like Gemma 3B / 4B with rank β€ 16.
---
#### **7οΈβ£ Gradio UI Structure**
- **Train LoRA Tab:**
Configure model, dataset, LoRA parameters, and upload target.
Press **π Start Training** to stream training logs live.
- **Inference (CPU) Tab:**
Type a short prompt β Generates expanded long-form version via trained LoRA.
- **Code Explain Tab:**
Detailed breakdown of logic + simulated console output below.
---
### π§Ύ Example Log Simulation
```python
print(f"[INFO] Loading base model: {base_model}")
# -> Loads Gemma base model (fp16) on CUDA
# [INFO] Base model google/gemma-3-4b-it loaded successfully
print(f"[INFO] Preparing dataset from: {dataset_path}")
# -> Loads dataset or CSV file
# [DATA] 980 samples loaded, columns: short_prompt, long_prompt
print("[INFO] Initializing LoRA configuration...")
# -> Creates LoraConfig(r=8, alpha=16, target_modules=['q_proj', 'v_proj'])
# [CONFIG] LoRA applied to 96 attention layers
print("[INFO] Starting training loop...")
# [TRAIN] Step 1 | Loss: 2.31
# [TRAIN] Step 50 | Loss: 1.42
# [TRAIN] Step 100 | Loss: 0.91
# [TRAIN] Epoch 1 complete (avg loss: 1.21)
print("[INFO] Saving LoRA adapter...")
# -> Saves safetensors and config locally
print(f"[UPLOAD] Pushing adapter to {hf_repo_id}")
# -> Uploads model to Hugging Face Hub
# [UPLOAD] adapter_model.safetensors (67.7 MB)
# [SUCCESS] LoRA uploaded successfully π
```
### π§© Universal Dynamic LoRA Trainer & Inference β Code Explanation
This project provides an **end-to-end LoRA fine-tuning and inference system** for language models like **Gemma**, built with **Gradio**, **PEFT**, and **Accelerate**.
It supports both **training new LoRAs** and **generating text** with existing ones β all in a single interface.
---
#### **1οΈβ£ Imports Overview**
- **Core libs:** `os`, `torch`, `gradio`, `numpy`, `pandas`
- **Training libs:** `peft` (`LoraConfig`, `get_peft_model`), `accelerate` (`Accelerator`)
- **Modeling:** `transformers` (for Gemma base model)
- **Hub integration:** `huggingface_hub` (for uploading adapters)
- **Spaces:** `spaces` β for execution within Hugging Face Spaces
---
#### **2οΈβ£ Dataset Loading**
- Uses a lightweight **MediaTextDataset** class to load:
- CSV / Parquet files
- or directly from a Hugging Face dataset repo
- Expects two columns:
`short_prompt` β Input text
`long_prompt` β Target expanded text
- Supports batching, missing-column checks, and configurable max record limits.
---
#### **3οΈβ£ Model Loading & Preparation**
- Loads **Gemma model and tokenizer** via `AutoModelForCausalLM` and `AutoTokenizer`.
- Automatically detects **target modules** (e.g. `q_proj`, `v_proj`) for LoRA injection.
- Supports `float16` or `bfloat16` precision with `Accelerator` for optimal memory usage.
---
#### **4οΈβ£ LoRA Training Logic**
- Core formula:
\[
W_{eff} = W + \alpha \times (B @ A)
\]
- Only **A** and **B** matrices are trainable; base model weights remain frozen.
- Configurable parameters:
`r` (rank), `alpha` (scaling), `epochs`, `lr`, `batch_size`
- Training logs stream live in the UI, showing step-by-step loss values.
- After training, the adapter is **saved locally** and **uploaded to Hugging Face Hub**.
---
#### **5οΈβ£ CPU Inference Mode**
- Runs entirely on **CPU**, no GPU required.
- Loads base Gemma model + trained LoRA weights (`PeftModel.from_pretrained`).
- Optionally merges LoRA with base model.
- Expands the short prompt β long descriptive text using standard generation parameters (e.g., top-p / top-k sampling).
---
#### **6οΈβ£ π§ What LoRA Does (A & B Injection Explained)**
When you fine-tune a large model (like Gemma or Llama), youβre adjusting **billions** of parameters in large weight matrices.
LoRA avoids this by **injecting two small low-rank matrices (A and B)** into selected layers instead of modifying the full weight.
---
##### **Step 1: Regular Linear Layer**
\[
y = W x
\]
Here, **W** is a huge matrix (e.g., 4096Γ4096).
---
##### **Step 2: LoRA Layer Modification**
Instead of updating W directly, LoRA adds a lightweight update:
\[
W' = W + \Delta W
\]
\[
\Delta W = B A
\]
Where:
- **A** β β^(r Γ d)
- **B** β β^(d Γ r)
- and **r βͺ d** (e.g., r=8 instead of 4096)
So youβre training only a *tiny fraction* of parameters.
---
##### **Step 3: Where LoRA Gets Injected**
It targets critical sub-layers such as:
- **q_proj, k_proj, v_proj** β Query, Key, Value projections in attention
- **o_proj / out_proj** β Output projection
- **gate_proj, up_proj, down_proj** β Feed-forward layers
When you see:
> `Adapter (90)`
That means 90 total layers (from these modules) were wrapped with LoRA adapters.
---
##### **Step 4: Training Efficiency**
- Base weights (`W`) stay **frozen**
- Only `(A, B)` are **trainable**
- Compute and memory are drastically reduced
| Metric | Full Fine-Tune | LoRA Fine-Tune |
|---------|----------------|----------------|
| Trainable Params | 2B+ | ~3M |
| GPU Memory | 40GB+ | <6GB |
| Time | 10β20 hrs | <1 hr |
---
##### **Step 5: Inference Equation**
At inference time:
\[
y = (W + \alpha \times B A) x
\]
Where **Ξ±** controls the strength of the adapterβs influence.
---
##### **Step 6: Visualization**
Base Layer:
y = W * x
LoRA Layer:
y = (W + B@A) * x
β β
| βββ Small rank-A adapter (trainable)
βββββ Small rank-B adapter (trainable)
---
##### **Step 7: Example in Code**
```python
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
lora_dropout=0.05
)
model = get_peft_model(model, config)
model.print_trainable_parameters()
Expected output:
trainable params: 3,278,848 || all params: 2,040,000,000 || trainable%: 0.16%
""")
return demo
if __name__ == "__main__":
run_ui().launch(server_name="0.0.0.0", server_port=7860, share=True)
|