Commit
·
3b07d0f
1
Parent(s):
0f34d5f
Publish app
Browse files- app.py +1294 -0
- data/abstract_embeddings.npy +3 -0
- data/faiss_index.index +3 -0
- data/parte_205.csv +3 -0
- data/pmids.npy +3 -0
app.py
ADDED
|
@@ -0,0 +1,1294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import os
|
| 3 |
+
import faiss
|
| 4 |
+
import whisper
|
| 5 |
+
import ffmpeg
|
| 6 |
+
import tempfile
|
| 7 |
+
import requests
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import streamlit as st
|
| 11 |
+
|
| 12 |
+
from openai import OpenAI
|
| 13 |
+
from transformers import pipeline
|
| 14 |
+
from sentence_transformers import SentenceTransformer
|
| 15 |
+
from newsplease import NewsPlease
|
| 16 |
+
from streamlit_echarts import st_echarts
|
| 17 |
+
from streamlit_option_menu import option_menu
|
| 18 |
+
|
| 19 |
+
# NEWS to check
|
| 20 |
+
# https://fbe.unimelb.edu.au/newsroom/fake-news-in-the-age-of-covid-19 True Claim
|
| 21 |
+
# https://newssalutebenessere.altervista.org/covid-19-just-a-simple-flue-or-something-else/ False Claim
|
| 22 |
+
|
| 23 |
+
###### CONFIGURATIONS ######
|
| 24 |
+
# Debug mode
|
| 25 |
+
debug = False
|
| 26 |
+
|
| 27 |
+
# File paths
|
| 28 |
+
embeddings_file = r"./data/abstract_embeddings.npy"
|
| 29 |
+
pmid_file = r"./data/pmids.npy"
|
| 30 |
+
faiss_index_file = r"./data/faiss_index.index"
|
| 31 |
+
file_path = r'./data/parte_205.csv'
|
| 32 |
+
|
| 33 |
+
# Initialize OpenAI API client
|
| 34 |
+
client = OpenAI(
|
| 35 |
+
base_url="https://integrate.api.nvidia.com/v1",
|
| 36 |
+
api_key=st.secrets.nvidia
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Load data
|
| 40 |
+
data = pd.read_csv(file_path)
|
| 41 |
+
|
| 42 |
+
# Load the model
|
| 43 |
+
model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def get_article_data(url):
|
| 47 |
+
"""
|
| 48 |
+
Extracts article data from a specified URL.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
url (str): URL of the article to analyze.
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
dict: Structured article data, including: title, authors, publication date, and content.
|
| 55 |
+
"""
|
| 56 |
+
try:
|
| 57 |
+
# Make an HTTP request to the specified URL
|
| 58 |
+
response = requests.get(url)
|
| 59 |
+
# Check if the request was successful (i.e., status code 200)
|
| 60 |
+
response.raise_for_status()
|
| 61 |
+
|
| 62 |
+
# Extract the HTML content from the response
|
| 63 |
+
html_content = response.text
|
| 64 |
+
|
| 65 |
+
# Use NewsPlease to extract structured data from the HTML content
|
| 66 |
+
article = NewsPlease.from_html(html_content, url=url)
|
| 67 |
+
|
| 68 |
+
# Return the structured article data
|
| 69 |
+
return {
|
| 70 |
+
"title": article.title,
|
| 71 |
+
"authors": article.authors,
|
| 72 |
+
"date_publish": article.date_publish,
|
| 73 |
+
"content": article.maintext,
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
except requests.exceptions.RequestException as e:
|
| 77 |
+
return {"error": f"Error during URL retrieval: {e}"}
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
return {"error": f"Error processing the article: {e}"}
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def extract_and_split_claims(claims):
|
| 84 |
+
"""
|
| 85 |
+
Extracts and splits claims from a given string.
|
| 86 |
+
|
| 87 |
+
Args:
|
| 88 |
+
claims (str): String containing claims.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
dict: Dictionary containing the extracted claims.
|
| 92 |
+
"""
|
| 93 |
+
start_index = claims.find("Claim 1:")
|
| 94 |
+
if start_index != -1:
|
| 95 |
+
claims = claims[start_index:]
|
| 96 |
+
|
| 97 |
+
claim_lines = claims.strip().split("\n\n")
|
| 98 |
+
|
| 99 |
+
claims_dict = {}
|
| 100 |
+
for i, claim in enumerate(claim_lines, start=1):
|
| 101 |
+
claims_dict[f"Claim_{i}"] = claim
|
| 102 |
+
|
| 103 |
+
for var_name, claim_text in claims_dict.items():
|
| 104 |
+
globals()[var_name] = claim_text
|
| 105 |
+
|
| 106 |
+
return claims_dict
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def extract_label_and_score(result):
|
| 110 |
+
"""
|
| 111 |
+
Extracts the predicted label and score from the result string.
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
result (str): String containing the prediction result.
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
tuple: Predicted label and score.
|
| 118 |
+
"""
|
| 119 |
+
# Extract the predicted label
|
| 120 |
+
label_match = re.search(r"'labels': \['(.*?)'", result)
|
| 121 |
+
predicted_label = label_match.group(1) if label_match else None
|
| 122 |
+
|
| 123 |
+
# Extract the score
|
| 124 |
+
score_match = re.search(r"'scores': \[(\d+\.\d+)", result)
|
| 125 |
+
score_label = float(score_match.group(1)) if score_match else None
|
| 126 |
+
|
| 127 |
+
return predicted_label, score_label
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def clean_phrases(phrases, pattern):
|
| 131 |
+
"""
|
| 132 |
+
Clean and extract phrases from a list of strings using a specified pattern.
|
| 133 |
+
|
| 134 |
+
Args:
|
| 135 |
+
phrases (list): List of strings containing phrases.
|
| 136 |
+
pattern (str): Regular expression pattern to extract phrases.
|
| 137 |
+
|
| 138 |
+
Returns:
|
| 139 |
+
list: List of cleaned phrases as dictionaries with text and abstract keys
|
| 140 |
+
"""
|
| 141 |
+
cleaned_phrases = []
|
| 142 |
+
|
| 143 |
+
for phrase in phrases:
|
| 144 |
+
matches = re.findall(pattern, phrase)
|
| 145 |
+
cleaned_phrases.extend([{"text": match[0], "abstract": f"abstract_{match[1]}"} for match in matches])
|
| 146 |
+
|
| 147 |
+
return cleaned_phrases
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def highlight_phrases(abstract_text, phrases, color, label):
|
| 151 |
+
"""
|
| 152 |
+
Highlight phrases in the abstract text with the specified background color.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
abstract_text (str): Text of the abstract to highlight.
|
| 156 |
+
phrases (list): List of phrases to highlight.
|
| 157 |
+
color (str): Background color to use for highlighting.
|
| 158 |
+
label (str): Predicted label for the claim.
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
str: Abstract text with highlighted phrases.
|
| 162 |
+
"""
|
| 163 |
+
# Switch colors if the label is "False"
|
| 164 |
+
if label.lower() == "false":
|
| 165 |
+
color = "lightgreen" if color == "red" else color
|
| 166 |
+
|
| 167 |
+
# Highlight each phrase in the abstract text
|
| 168 |
+
for phrase in phrases:
|
| 169 |
+
abstract_text = re.sub(
|
| 170 |
+
re.escape(phrase["text"]),
|
| 171 |
+
f'<span style="background-color: {color}; font-weight: bold; border: 1px solid black; border-radius: 5px;">{phrase["text"]}</span>',
|
| 172 |
+
abstract_text,
|
| 173 |
+
flags=re.IGNORECASE
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
return abstract_text
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def parse_response(response):
|
| 180 |
+
"""
|
| 181 |
+
Parse the response from the model and extract the fields.
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
response (str): Response string from the model.
|
| 185 |
+
|
| 186 |
+
Returns:
|
| 187 |
+
tuple: Extracted fields from the response.
|
| 188 |
+
"""
|
| 189 |
+
# Initial values for the fields
|
| 190 |
+
first_label = "Non trovato"
|
| 191 |
+
justification = "Non trovato"
|
| 192 |
+
supporting = "Non trovato"
|
| 193 |
+
refusing = "Non trovato"
|
| 194 |
+
notes = "Non trovato"
|
| 195 |
+
|
| 196 |
+
# Regular expression patterns for extracting fields
|
| 197 |
+
patterns = {
|
| 198 |
+
"first_label": r"Label:\s*(.*?)\n",
|
| 199 |
+
"justification": r"Justification:\s*(.*?)(?=\nSupporting sentences)",
|
| 200 |
+
"supporting": r"Supporting sentences from abstracts:\n(.*?)(?=\nRefusing sentences)",
|
| 201 |
+
"refusing": r"Refusing sentences from abstracts:\n(.*?)(?=\nNote:)",
|
| 202 |
+
"notes": r"Note:\s*(.*)"
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
# Extract the fields using regular expressions
|
| 206 |
+
if match := re.search(patterns["first_label"], response, re.DOTALL):
|
| 207 |
+
first_label = match.group(1).strip()
|
| 208 |
+
if match := re.search(patterns["justification"], response, re.DOTALL):
|
| 209 |
+
justification = match.group(1).strip()
|
| 210 |
+
if match := re.search(patterns["supporting"], response, re.DOTALL):
|
| 211 |
+
supporting = [{"text": sentence.strip(), "abstract": f"abstract_{i+1}"} for i, sentence in enumerate(match.group(1).strip().split('\n'))]
|
| 212 |
+
if match := re.search(patterns["refusing"], response, re.DOTALL):
|
| 213 |
+
refusing = [{"text": sentence.strip(), "abstract": f"abstract_{i+1}"} for i, sentence in enumerate(match.group(1).strip().split('\n'))]
|
| 214 |
+
if match := re.search(patterns["notes"], response, re.DOTALL):
|
| 215 |
+
notes = match.group(1).strip()
|
| 216 |
+
|
| 217 |
+
# Return the extracted fields
|
| 218 |
+
return first_label, justification, supporting, refusing, notes
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def load_embeddings(embeddings_file, pmid_file, faiss_index_file, debug=False):
|
| 222 |
+
"""
|
| 223 |
+
Load embeddings, PMIDs, and FAISS index from the specified files.
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
embeddings_file (str): File path for the embeddings.
|
| 227 |
+
pmid_file (str): File path for the PMIDs.
|
| 228 |
+
faiss_index_file (str): File path for the FAISS index.
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
tuple: Tuple containing the embeddings, PMIDs, and FAISS index.
|
| 232 |
+
"""
|
| 233 |
+
# Check if the files exist
|
| 234 |
+
if not (os.path.exists(embeddings_file) and os.path.exists(pmid_file) and os.path.exists(faiss_index_file)):
|
| 235 |
+
raise FileNotFoundError("One or more files not found. Please check the file paths.")
|
| 236 |
+
|
| 237 |
+
# Load the embeddings and PMIDs
|
| 238 |
+
embeddings = np.load(embeddings_file)
|
| 239 |
+
pmids = np.load(pmid_file, allow_pickle=True)
|
| 240 |
+
|
| 241 |
+
# Load the FAISS index
|
| 242 |
+
index = faiss.read_index(faiss_index_file)
|
| 243 |
+
|
| 244 |
+
if debug:
|
| 245 |
+
print("Embeddings, PMIDs, and FAISS index loaded successfully.")
|
| 246 |
+
|
| 247 |
+
return embeddings, pmids, index
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def retrieve_top_abstracts(claim, model, index, pmids, data, top_k=5):
|
| 251 |
+
"""
|
| 252 |
+
Retrieve the top abstracts from the FAISS index for a given claim.
|
| 253 |
+
|
| 254 |
+
Args:
|
| 255 |
+
claim (str): Claim to fact-check.
|
| 256 |
+
model (SentenceTransformer): Sentence transformer model for encoding text.
|
| 257 |
+
index (faiss.IndexFlatIP): FAISS index for similarity search.
|
| 258 |
+
pmids (np.ndarray): Array of PMIDs for the abstracts.
|
| 259 |
+
data (pd.DataFrame): DataFrame containing the abstract data.
|
| 260 |
+
top_k (int): Number of top abstracts to retrieve.
|
| 261 |
+
|
| 262 |
+
Returns:
|
| 263 |
+
list: List of tuples containing the abstract text, PMID, and distance.
|
| 264 |
+
"""
|
| 265 |
+
# Encode the claim using the SentenceTransformer model
|
| 266 |
+
claim_embedding = model.encode([claim])
|
| 267 |
+
faiss.normalize_L2(claim_embedding) # Normalize the claim embedding (with L2 norm)
|
| 268 |
+
distances, indices = index.search(claim_embedding, top_k)
|
| 269 |
+
|
| 270 |
+
# Retrieve the top abstracts based on the indices
|
| 271 |
+
results = []
|
| 272 |
+
for j, i in enumerate(indices[0]):
|
| 273 |
+
pmid = pmids[i]
|
| 274 |
+
abstract_text = data[data['PMID'] == pmid]['AbstractText'].values[0]
|
| 275 |
+
distance = distances[0][j]
|
| 276 |
+
results.append((abstract_text, pmid, distance))
|
| 277 |
+
|
| 278 |
+
return results
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def generate_justification(query, justification):
|
| 282 |
+
"""
|
| 283 |
+
Generate a justification for the claim using the Zero-Shot Classification model.
|
| 284 |
+
|
| 285 |
+
Args:
|
| 286 |
+
query (str): Claim to fact-check.
|
| 287 |
+
justification (str): Justification for the claim.
|
| 288 |
+
|
| 289 |
+
Returns:
|
| 290 |
+
str: Final justification for the claim.
|
| 291 |
+
"""
|
| 292 |
+
# Define the classes for the Zero-Shot Classification model
|
| 293 |
+
Class = ["True", "False","NEI"]
|
| 294 |
+
|
| 295 |
+
# Generate the justification text
|
| 296 |
+
justification_text = (
|
| 297 |
+
f'Justification: "{justification}"'
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
# Limit the justification text to a maximum length
|
| 301 |
+
max_length = 512
|
| 302 |
+
if len(justification_text) > max_length:
|
| 303 |
+
justification_text = justification_text[:max_length]
|
| 304 |
+
|
| 305 |
+
# Generate the final justification using the Zero-Shot Classification model
|
| 306 |
+
output = zeroshot_classifier(
|
| 307 |
+
query,
|
| 308 |
+
Class,
|
| 309 |
+
hypothesis_template=f"The claim is '{{}}' for: {justification_text}",
|
| 310 |
+
multi_label=False
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# Prepare the final justification text
|
| 314 |
+
final_justification = f'{output}.'
|
| 315 |
+
|
| 316 |
+
return final_justification
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def llm_reasoning_template(query):
|
| 320 |
+
"""
|
| 321 |
+
Generate a template for the prompt used for justification generation by the LLM model.
|
| 322 |
+
|
| 323 |
+
Args:
|
| 324 |
+
query (str): Claim to fact-check.
|
| 325 |
+
|
| 326 |
+
Returns:
|
| 327 |
+
str: Reasoning template for the claim.
|
| 328 |
+
"""
|
| 329 |
+
llm_reasoning_prompt = f"""<<SYS>> [INST]
|
| 330 |
+
|
| 331 |
+
You are a helpful, respectful and honest Doctor. Always answer as helpfully as possible using the context text provided.
|
| 332 |
+
|
| 333 |
+
Use the information in Context.
|
| 334 |
+
|
| 335 |
+
Elaborate the Context to generate a new information.
|
| 336 |
+
|
| 337 |
+
Use only the knowledge in Context to answer.
|
| 338 |
+
|
| 339 |
+
Answer describing in a scentific way. Be formal during the answer. Use the third person.
|
| 340 |
+
|
| 341 |
+
Answer without mentioning the Context. Use it but don't refer to it in the text.
|
| 342 |
+
|
| 343 |
+
To answer, use max 300 word.
|
| 344 |
+
|
| 345 |
+
Create a Justification from the sentences given.
|
| 346 |
+
|
| 347 |
+
Use the structure: Justification: The claim is (label) because... (don't use the word "context")
|
| 348 |
+
|
| 349 |
+
Write as an online doctor to create the Justification.
|
| 350 |
+
|
| 351 |
+
After, give some sentences from Context from scientific papers: that supports the label and reject the label.
|
| 352 |
+
|
| 353 |
+
Supporting sentences from abstracts:
|
| 354 |
+
information sentence from abstract_1:
|
| 355 |
+
information sentence from abstract_2:
|
| 356 |
+
..
|
| 357 |
+
Refusing sentences from abstracts:
|
| 358 |
+
information sentence from abstract_1:
|
| 359 |
+
information sentence from abstract_2:
|
| 360 |
+
..
|
| 361 |
+
Add where it comes from (abstract_1, abstract_2, abstract_3, abstract_4, abstract_5)
|
| 362 |
+
|
| 363 |
+
With the answer, gives a line like: "Label:". Always put Label as first. After Label, give the Justification.
|
| 364 |
+
The justification will be always given as Justification:
|
| 365 |
+
Label can be yes, no, NEI, where yes: claim is true. no: claim is false. NEI: not enough information.
|
| 366 |
+
The Label will be chosen with a voting system of support/refuse before.
|
| 367 |
+
|
| 368 |
+
[/INST] <</SYS>>
|
| 369 |
+
|
| 370 |
+
[INST] Question: {query} [/INST]
|
| 371 |
+
[INST] Context from scientific papers:
|
| 372 |
+
"""
|
| 373 |
+
|
| 374 |
+
return llm_reasoning_prompt
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def claim_detection_template(full_text):
|
| 378 |
+
"""
|
| 379 |
+
Generate a template for the prompt used for claim detection by the LLM model.
|
| 380 |
+
|
| 381 |
+
Args:
|
| 382 |
+
full_text (str): Full text to analyze.
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
str: Template for claim detection.
|
| 386 |
+
"""
|
| 387 |
+
claim_detection_prompt = f"""<<SYS>> [INST]
|
| 388 |
+
|
| 389 |
+
Your task is to extract from the text potential health related question to verify their veracity.
|
| 390 |
+
|
| 391 |
+
The context extracted from the online where to take the claim is: {full_text}
|
| 392 |
+
|
| 393 |
+
Create simple claim of single sentence from the context.
|
| 394 |
+
|
| 395 |
+
Dont's use *
|
| 396 |
+
|
| 397 |
+
Give just the claim. Don't write other things.
|
| 398 |
+
|
| 399 |
+
Extract only health related claim.
|
| 400 |
+
|
| 401 |
+
Rank eventual claim like:
|
| 402 |
+
|
| 403 |
+
Claim 1:
|
| 404 |
+
Claim 2:
|
| 405 |
+
Claim 3:
|
| 406 |
+
|
| 407 |
+
Use always this structure.
|
| 408 |
+
Start every claim with "Claim " followed by the number.
|
| 409 |
+
|
| 410 |
+
The number of claims may go from 1 to a max of 5.
|
| 411 |
+
|
| 412 |
+
The claims have to be always health related. [/INST] <</SYS>>
|
| 413 |
+
"""
|
| 414 |
+
|
| 415 |
+
return claim_detection_prompt
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
# Page and Title Configuration
|
| 419 |
+
st.set_page_config(page_title="CER - Combining Evidence and Reasoning Demo", layout="wide", initial_sidebar_state="collapsed")
|
| 420 |
+
st.markdown("<h1 style='text-align: center; color: inherit;'>✔️✨ CER - Biomedical Fact Checker</h1>", unsafe_allow_html=True)
|
| 421 |
+
|
| 422 |
+
# Horizontal option menu for selecting the page
|
| 423 |
+
page = option_menu(None, ["Single claim check", "Page check", "Video check"],
|
| 424 |
+
icons=['check', 'ui-checks'],
|
| 425 |
+
menu_icon="cast", default_index=0, orientation="horizontal")
|
| 426 |
+
|
| 427 |
+
# Sidebar Configuration
|
| 428 |
+
st.sidebar.title("🔬 Combining Evidence and Reasoning Demo")
|
| 429 |
+
st.sidebar.caption("🔍 Fact-check biomedical claims using scientific evidence and reasoning.")
|
| 430 |
+
st.sidebar.markdown("---")
|
| 431 |
+
st.sidebar.caption("#### ℹ️ About")
|
| 432 |
+
st.sidebar.caption("This is a demo application for fact-checking biomedical claims using scientific evidence and reasoning. It uses a combination of language models, scientific literature, and reasoning to provide explanations for the predictions.")
|
| 433 |
+
|
| 434 |
+
# Load embeddings, PMIDs, and FAISS index
|
| 435 |
+
if 'embeddings_loaded' not in st.session_state:
|
| 436 |
+
embeddings, pmids, index = load_embeddings(embeddings_file, pmid_file, faiss_index_file, debug)
|
| 437 |
+
st.session_state.embeddings = embeddings
|
| 438 |
+
st.session_state.pmids = pmids
|
| 439 |
+
st.session_state.index = index
|
| 440 |
+
st.session_state.embeddings_loaded = True
|
| 441 |
+
else:
|
| 442 |
+
embeddings = st.session_state.embeddings
|
| 443 |
+
pmids = st.session_state.pmids
|
| 444 |
+
index = st.session_state.index
|
| 445 |
+
|
| 446 |
+
# Check if the claim and top_abstracts are in the session state
|
| 447 |
+
if 'claim' not in st.session_state:
|
| 448 |
+
st.session_state.claim = ""
|
| 449 |
+
|
| 450 |
+
if 'top_abstracts' not in st.session_state:
|
| 451 |
+
st.session_state.top_abstracts = []
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
#### Single claim check PAGE ####
|
| 455 |
+
if page == "Single claim check":
|
| 456 |
+
st.subheader("Single claim check")
|
| 457 |
+
st.caption("✨ Enter a single claim to fact-check and hit the button to see the results! 🔍")
|
| 458 |
+
|
| 459 |
+
st.session_state.claim = st.text_input("Claim to fact-check:")
|
| 460 |
+
|
| 461 |
+
if st.button("✨ Fact Check"):
|
| 462 |
+
|
| 463 |
+
if st.session_state.claim:
|
| 464 |
+
# Retrieve the top abstracts for the claim
|
| 465 |
+
top_abstracts = retrieve_top_abstracts(st.session_state.claim, model, index, pmids, data, top_k=5)
|
| 466 |
+
st.session_state.top_abstracts = top_abstracts
|
| 467 |
+
|
| 468 |
+
st.markdown("### **Results**")
|
| 469 |
+
|
| 470 |
+
with st.container():
|
| 471 |
+
for i, (abstract, pmid, distance) in enumerate(st.session_state.top_abstracts, 1):
|
| 472 |
+
pubmed_url = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
|
| 473 |
+
globals()[f"abstract_{i}"] = abstract
|
| 474 |
+
globals()[f"reference_{i}"] = pubmed_url
|
| 475 |
+
globals()[f"distance_{i}"] = distance
|
| 476 |
+
|
| 477 |
+
with st.spinner('🔍 We are checking...'):
|
| 478 |
+
try:
|
| 479 |
+
# Retrieve the question from the DataFrame
|
| 480 |
+
query = st.session_state.claim
|
| 481 |
+
|
| 482 |
+
# Generate the reasoning template
|
| 483 |
+
prompt_template = llm_reasoning_template(query)
|
| 484 |
+
|
| 485 |
+
# Add the abstracts to the prompt
|
| 486 |
+
for i in range(1, len(st.session_state.top_abstracts)):
|
| 487 |
+
prompt_template += f"{globals()[f'abstract_{i}']} ; "
|
| 488 |
+
prompt_template += f"{globals()[f'abstract_{i+1}']} [/INST]"
|
| 489 |
+
|
| 490 |
+
# Call the API
|
| 491 |
+
completion = client.chat.completions.create(
|
| 492 |
+
model="meta/llama-3.1-405b-instruct",
|
| 493 |
+
messages=[{"role": "user", "content": prompt_template}],
|
| 494 |
+
temperature=0.1,
|
| 495 |
+
top_p=0.7,
|
| 496 |
+
max_tokens=1024,
|
| 497 |
+
stream=True
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
# Collect the response
|
| 501 |
+
answer = ""
|
| 502 |
+
for chunk in completion:
|
| 503 |
+
if chunk.choices[0].delta.content:
|
| 504 |
+
answer += chunk.choices[0].delta.content
|
| 505 |
+
|
| 506 |
+
# Debug: Check the answer
|
| 507 |
+
if debug:
|
| 508 |
+
print(f"{answer}")
|
| 509 |
+
|
| 510 |
+
except Exception as e:
|
| 511 |
+
st.write(f"Error processing index: {e}")
|
| 512 |
+
|
| 513 |
+
with st.spinner('🤔💬 Justifying the check...'):
|
| 514 |
+
# Perform parsing and separate variables
|
| 515 |
+
zeroshot_classifier = pipeline(
|
| 516 |
+
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33"
|
| 517 |
+
)
|
| 518 |
+
first_label, justification, supporting, refusing, notes = parse_response(answer)
|
| 519 |
+
|
| 520 |
+
with st.spinner('🕵️♂️📜 We are finding evidence...'):
|
| 521 |
+
# Generate the justification for the claim
|
| 522 |
+
result = generate_justification(st.session_state.claim, justification)
|
| 523 |
+
predicted_label, score_label = extract_label_and_score(result)
|
| 524 |
+
|
| 525 |
+
if predicted_label == "True":
|
| 526 |
+
color = f"rgba(0, 204, 0, {score_label})" # Green
|
| 527 |
+
elif predicted_label == "False":
|
| 528 |
+
color = f"rgba(204, 0, 0, {score_label})" # Red
|
| 529 |
+
elif predicted_label == "NEI":
|
| 530 |
+
color = f"rgba(255, 255, 0, {score_label})" # Yellow
|
| 531 |
+
else:
|
| 532 |
+
color = "black" # Default color
|
| 533 |
+
|
| 534 |
+
# Calculate the confidence score
|
| 535 |
+
confidence = f"{score_label * 100:.2f}%"
|
| 536 |
+
st.caption(f"📝 The Claim: {st.session_state.claim}")
|
| 537 |
+
st.markdown(
|
| 538 |
+
f"**Prediction of claim:** Most likely <span style='color: {color}; font-weight: bold;'>{predicted_label}</span> with a confidence of <span style='color: {color}; font-weight: bold;'>{confidence}</span>",
|
| 539 |
+
unsafe_allow_html=True
|
| 540 |
+
)
|
| 541 |
+
st.markdown("### **Justification**")
|
| 542 |
+
st.markdown(f'<p> {justification}</p>', unsafe_allow_html=True)
|
| 543 |
+
|
| 544 |
+
# Extract the abstracts and references
|
| 545 |
+
abstracts = {}
|
| 546 |
+
for i in range(1, len(st.session_state.top_abstracts) + 1):
|
| 547 |
+
abstracts[f"abstract_{i}"] = globals()[f"abstract_{i}"]
|
| 548 |
+
|
| 549 |
+
pattern = r'"\s*(.*?)\s*"\s*\(abstract_(\d+)\)'
|
| 550 |
+
|
| 551 |
+
supporting_texts = []
|
| 552 |
+
for item in supporting:
|
| 553 |
+
try:
|
| 554 |
+
supporting_texts.append(item["text"])
|
| 555 |
+
except (TypeError, KeyError):
|
| 556 |
+
continue
|
| 557 |
+
supporting = clean_phrases(supporting_texts, pattern)
|
| 558 |
+
|
| 559 |
+
refusing_text = []
|
| 560 |
+
for item in refusing:
|
| 561 |
+
try:
|
| 562 |
+
refusing_text.append(item["text"])
|
| 563 |
+
except (TypeError, KeyError):
|
| 564 |
+
continue
|
| 565 |
+
refusing = clean_phrases(refusing_text, pattern)
|
| 566 |
+
|
| 567 |
+
if debug:
|
| 568 |
+
print(supporting)
|
| 569 |
+
print(refusing)
|
| 570 |
+
|
| 571 |
+
processed_abstracts = {}
|
| 572 |
+
for abstract_name, abstract_text in abstracts.items():
|
| 573 |
+
# Highlight supporting phrases in green
|
| 574 |
+
supporting_matches = [phrase for phrase in supporting if phrase["abstract"] == abstract_name]
|
| 575 |
+
abstract_text = highlight_phrases(abstract_text, supporting_matches, "lightgreen", predicted_label)
|
| 576 |
+
|
| 577 |
+
# Highlight refusing phrases in red
|
| 578 |
+
refusing_matches = [phrase for phrase in refusing if phrase["abstract"] == abstract_name]
|
| 579 |
+
abstract_text = highlight_phrases(abstract_text, refusing_matches, "red", predicted_label)
|
| 580 |
+
|
| 581 |
+
# Add only if supporting matches are found
|
| 582 |
+
if supporting_matches:
|
| 583 |
+
# Add the reference if a corresponding variable exists
|
| 584 |
+
reference_variable = f"reference_{abstract_name.split('_')[1]}"
|
| 585 |
+
if reference_variable in globals():
|
| 586 |
+
reference_value = globals()[reference_variable]
|
| 587 |
+
abstract_text += f"<br><br><strong>🔗 Reference:</strong> {reference_value}"
|
| 588 |
+
|
| 589 |
+
# Add the processed abstract
|
| 590 |
+
processed_abstracts[abstract_name] = abstract_text
|
| 591 |
+
|
| 592 |
+
# Iterate over the processed abstracts and remove duplicates
|
| 593 |
+
seen_contents = set() # Set to track already seen contents
|
| 594 |
+
evidence_counter = 1
|
| 595 |
+
|
| 596 |
+
# Display the results of the processed abstracts with numbered expanders
|
| 597 |
+
st.markdown("### **Scientific Evidence**")
|
| 598 |
+
|
| 599 |
+
# Add a legend for the colors
|
| 600 |
+
legend_html = """
|
| 601 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
| 602 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 603 |
+
<div style="width: 20px; height: 20px; background-color: lightgreen; margin-right: 10px; border-radius: 5px;"></div>
|
| 604 |
+
<div>Positive Evidence</div>
|
| 605 |
+
</div>
|
| 606 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 607 |
+
<div style="width: 20px; height: 20px; background-color: red; margin-right: 10px; border-radius: 5px;"></div>
|
| 608 |
+
<div>Negative Evidence</div>
|
| 609 |
+
</div>
|
| 610 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 611 |
+
<div style="width: 20px; height: 20px; background-color: yellow; margin-right: 10px; border-radius: 5px;"></div>
|
| 612 |
+
<div>Dubious Evidence</div>
|
| 613 |
+
</div>
|
| 614 |
+
</div>
|
| 615 |
+
"""
|
| 616 |
+
col1, col2 = st.columns([0.8, 0.2])
|
| 617 |
+
|
| 618 |
+
with col1:
|
| 619 |
+
if processed_abstracts:
|
| 620 |
+
tabs = st.tabs([f"Scientific Evidence {i}" for i in range(1, len(processed_abstracts) + 1)])
|
| 621 |
+
for tab, (name, content) in zip(tabs, processed_abstracts.items()):
|
| 622 |
+
if content not in seen_contents: # Check for duplicates
|
| 623 |
+
seen_contents.add(content)
|
| 624 |
+
with tab:
|
| 625 |
+
# Switch colors if the label is "False"
|
| 626 |
+
if predicted_label.lower() == "false":
|
| 627 |
+
content = content.replace("background-color: lightgreen", "background-color: tempcolor")
|
| 628 |
+
content = content.replace("background-color: red", "background-color: lightgreen")
|
| 629 |
+
content = content.replace("background-color: tempcolor", "background-color: red")
|
| 630 |
+
|
| 631 |
+
# Use `st.write` to display HTML directly
|
| 632 |
+
st.write(content, unsafe_allow_html=True)
|
| 633 |
+
else:
|
| 634 |
+
st.markdown("No relevant Scientific Evidence found")
|
| 635 |
+
|
| 636 |
+
with col2:
|
| 637 |
+
st.caption("Legend")
|
| 638 |
+
st.markdown(legend_html, unsafe_allow_html=True)
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
#### Web page check PAGE ####
|
| 642 |
+
elif page == "Page check":
|
| 643 |
+
st.subheader("Page check")
|
| 644 |
+
st.caption("✨ Enter a URL to fact-check the health-related claims on the page and hit the button to see the results! 🔍")
|
| 645 |
+
|
| 646 |
+
url = st.text_input("URL to fact-check:")
|
| 647 |
+
|
| 648 |
+
if st.button("✨ Fact Check") and url:
|
| 649 |
+
st.session_state.true_count = 0
|
| 650 |
+
st.session_state.false_count = 0
|
| 651 |
+
st.session_state.nei_count = 0
|
| 652 |
+
|
| 653 |
+
with st.spinner('🌐🔍 Extracting claims...'):
|
| 654 |
+
article_data = get_article_data(url)
|
| 655 |
+
|
| 656 |
+
try:
|
| 657 |
+
# Retrieve the claims from the article data
|
| 658 |
+
prompt_template = claim_detection_template(article_data)
|
| 659 |
+
|
| 660 |
+
# Call the API
|
| 661 |
+
completion = client.chat.completions.create(
|
| 662 |
+
model="meta/llama-3.1-405b-instruct",
|
| 663 |
+
messages=[{"role": "user", "content": prompt_template}],
|
| 664 |
+
temperature=0.1,
|
| 665 |
+
top_p=0.7,
|
| 666 |
+
max_tokens=1024,
|
| 667 |
+
stream=True
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
# Collect the response
|
| 671 |
+
answer = ""
|
| 672 |
+
for chunk in completion:
|
| 673 |
+
if chunk.choices[0].delta.content:
|
| 674 |
+
answer += chunk.choices[0].delta.content
|
| 675 |
+
|
| 676 |
+
# Debug: Controlla la risposta
|
| 677 |
+
print(f"{answer}")
|
| 678 |
+
|
| 679 |
+
except Exception as e:
|
| 680 |
+
print(f"Error {e}")
|
| 681 |
+
|
| 682 |
+
claims_dict = extract_and_split_claims(answer)
|
| 683 |
+
|
| 684 |
+
# Display the extracted claims
|
| 685 |
+
st.markdown("### **Claims Extracted**")
|
| 686 |
+
st.caption("🔍 Here are the health-related claims extracted from the page:")
|
| 687 |
+
cols = st.columns(3)
|
| 688 |
+
for i, (claim_key, claim_text) in enumerate(claims_dict.items(), 1):
|
| 689 |
+
col = cols[(i - 1) % 3]
|
| 690 |
+
with col.expander(f"Claim {i} 📝", expanded=True):
|
| 691 |
+
st.write(claim_text)
|
| 692 |
+
|
| 693 |
+
# Display the results for the extracted claims
|
| 694 |
+
st.markdown("### **Results**")
|
| 695 |
+
st.caption("🔍 Here are the results for the extracted claims:")
|
| 696 |
+
for claim_key, claim_text in claims_dict.items():
|
| 697 |
+
st.session_state.claim = claim_text
|
| 698 |
+
if st.session_state.claim:
|
| 699 |
+
top_abstracts = retrieve_top_abstracts(st.session_state.claim, model, index, pmids, data, top_k=5)
|
| 700 |
+
st.session_state.top_abstracts = top_abstracts # Salva i risultati
|
| 701 |
+
|
| 702 |
+
with st.expander(f"✔️ **Results for {claim_key}**", expanded=True):
|
| 703 |
+
for i, (abstract, pmid, distance) in enumerate(st.session_state.top_abstracts, 1):
|
| 704 |
+
pubmed_url = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
|
| 705 |
+
globals()[f"abstract_{i}"] = abstract
|
| 706 |
+
globals()[f"reference_{i}"] = pubmed_url
|
| 707 |
+
globals()[f"distance_{i}"] = distance
|
| 708 |
+
|
| 709 |
+
with st.spinner('🔍 We are checking...'):
|
| 710 |
+
try:
|
| 711 |
+
# Retrieve the question from the DataFrame
|
| 712 |
+
query = st.session_state.claim
|
| 713 |
+
|
| 714 |
+
# Generate the reasoning template
|
| 715 |
+
prompt_template = llm_reasoning_template(query)
|
| 716 |
+
|
| 717 |
+
# Add the abstracts to the prompt
|
| 718 |
+
for i in range(1, len(st.session_state.top_abstracts)):
|
| 719 |
+
prompt_template += f"{globals()[f'abstract_{i}']} ; "
|
| 720 |
+
prompt_template += f"{globals()[f'abstract_{i+1}']} [/INST]"
|
| 721 |
+
|
| 722 |
+
# Call the API
|
| 723 |
+
completion = client.chat.completions.create(
|
| 724 |
+
model="meta/llama-3.1-405b-instruct",
|
| 725 |
+
messages=[{"role": "user", "content": prompt_template}],
|
| 726 |
+
temperature=0.1,
|
| 727 |
+
top_p=0.7,
|
| 728 |
+
max_tokens=1024,
|
| 729 |
+
stream=True
|
| 730 |
+
)
|
| 731 |
+
|
| 732 |
+
# Collect the response
|
| 733 |
+
answer = ""
|
| 734 |
+
for chunk in completion:
|
| 735 |
+
if chunk.choices[0].delta.content:
|
| 736 |
+
answer += chunk.choices[0].delta.content
|
| 737 |
+
|
| 738 |
+
# Debug: Check the answer
|
| 739 |
+
if debug:
|
| 740 |
+
print(f"{answer}")
|
| 741 |
+
|
| 742 |
+
except Exception as e:
|
| 743 |
+
st.write(f"Error processing index: {e}")
|
| 744 |
+
|
| 745 |
+
with st.spinner('🤔💬 Justifying the check...'):
|
| 746 |
+
# Perform parsing and separate variables
|
| 747 |
+
zeroshot_classifier = pipeline(
|
| 748 |
+
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33"
|
| 749 |
+
)
|
| 750 |
+
first_label, justification, supporting, refusing, notes = parse_response(answer)
|
| 751 |
+
|
| 752 |
+
with st.spinner('🕵️♂️📜 We are finding evidence...'):
|
| 753 |
+
# Generate the justification for the claim
|
| 754 |
+
result = generate_justification(st.session_state.claim, justification)
|
| 755 |
+
predicted_label, score_label = extract_label_and_score(result)
|
| 756 |
+
|
| 757 |
+
# Update the counts based on the predicted label
|
| 758 |
+
if predicted_label == "True":
|
| 759 |
+
color = f"rgba(0, 204, 0, {score_label})" # Green
|
| 760 |
+
st.session_state.true_count += 1
|
| 761 |
+
elif predicted_label == "False":
|
| 762 |
+
color = f"rgba(204, 0, 0, {score_label})" # Red
|
| 763 |
+
st.session_state.false_count += 1
|
| 764 |
+
elif predicted_label == "NEI":
|
| 765 |
+
color = f"rgba(255, 255, 0, {score_label})" # Yellow
|
| 766 |
+
st.session_state.nei_count += 1
|
| 767 |
+
else:
|
| 768 |
+
color = "black" # Default color
|
| 769 |
+
|
| 770 |
+
confidence = f"{score_label * 100:.2f}%"
|
| 771 |
+
st.caption(f"📝 The Claim: {st.session_state.claim}")
|
| 772 |
+
st.markdown(
|
| 773 |
+
f"**Prediction of claim:** Most likely <span style='color: {color}; font-weight: bold;'>{predicted_label}</span> with a confidence of <span style='color: {color}; font-weight: bold;'>{confidence}</span>",
|
| 774 |
+
unsafe_allow_html=True
|
| 775 |
+
)
|
| 776 |
+
|
| 777 |
+
st.markdown("### **Justification**")
|
| 778 |
+
st.markdown(f'<p> {justification}</p>', unsafe_allow_html=True)
|
| 779 |
+
|
| 780 |
+
abstracts = {}
|
| 781 |
+
for i in range(1, len(st.session_state.top_abstracts) + 1):
|
| 782 |
+
abstracts[f"abstract_{i}"] = globals()[f"abstract_{i}"]
|
| 783 |
+
|
| 784 |
+
pattern = r'"\s*(.*?)\s*"\s*\(abstract_(\d+)\)'
|
| 785 |
+
|
| 786 |
+
supporting_texts = []
|
| 787 |
+
for item in supporting:
|
| 788 |
+
try:
|
| 789 |
+
supporting_texts.append(item["text"])
|
| 790 |
+
except (TypeError, KeyError):
|
| 791 |
+
continue
|
| 792 |
+
supporting = clean_phrases(supporting_texts, pattern)
|
| 793 |
+
|
| 794 |
+
refusing_text = []
|
| 795 |
+
for item in refusing:
|
| 796 |
+
try:
|
| 797 |
+
refusing_text.append(item["text"])
|
| 798 |
+
except (TypeError, KeyError):
|
| 799 |
+
continue
|
| 800 |
+
refusing = clean_phrases(refusing_text, pattern)
|
| 801 |
+
|
| 802 |
+
if debug:
|
| 803 |
+
print(supporting)
|
| 804 |
+
print(refusing)
|
| 805 |
+
|
| 806 |
+
processed_abstracts = {}
|
| 807 |
+
for abstract_name, abstract_text in abstracts.items():
|
| 808 |
+
# Highlight supporting phrases in green
|
| 809 |
+
supporting_matches = [phrase for phrase in supporting if phrase["abstract"] == abstract_name]
|
| 810 |
+
abstract_text = highlight_phrases(abstract_text, supporting_matches, "lightgreen", predicted_label)
|
| 811 |
+
|
| 812 |
+
# Highlight refusing phrases in red
|
| 813 |
+
refusing_matches = [phrase for phrase in refusing if phrase["abstract"] == abstract_name]
|
| 814 |
+
abstract_text = highlight_phrases(abstract_text, refusing_matches, "red", predicted_label)
|
| 815 |
+
|
| 816 |
+
# Add only if supporting matches are found
|
| 817 |
+
if supporting_matches:
|
| 818 |
+
# Add the reference if a corresponding variable exists
|
| 819 |
+
reference_variable = f"reference_{abstract_name.split('_')[1]}"
|
| 820 |
+
if reference_variable in globals():
|
| 821 |
+
reference_value = globals()[reference_variable]
|
| 822 |
+
abstract_text += f"<br><br><strong>🔗 Reference:</strong> {reference_value}"
|
| 823 |
+
|
| 824 |
+
# Add the processed abstract
|
| 825 |
+
processed_abstracts[abstract_name] = abstract_text
|
| 826 |
+
|
| 827 |
+
# Iterate over the processed abstracts and remove duplicates
|
| 828 |
+
seen_contents = set() # Set to track already seen contents
|
| 829 |
+
evidence_counter = 1
|
| 830 |
+
|
| 831 |
+
# Display the results of the processed abstracts with numbered expanders
|
| 832 |
+
st.markdown("### **Scientific Evidence**")
|
| 833 |
+
|
| 834 |
+
# Add a legend for the colors
|
| 835 |
+
legend_html = """
|
| 836 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
| 837 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 838 |
+
<div style="width: 20px; height: 20px; background-color: lightgreen; margin-right: 10px; border-radius: 5px;"></div>
|
| 839 |
+
<div>Positive Evidence</div>
|
| 840 |
+
</div>
|
| 841 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 842 |
+
<div style="width: 20px; height: 20px; background-color: red; margin-right: 10px; border-radius: 5px;"></div>
|
| 843 |
+
<div>Negative Evidence</div>
|
| 844 |
+
</div>
|
| 845 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 846 |
+
<div style="width: 20px; height: 20px; background-color: yellow; margin-right: 10px; border-radius: 5px;"></div>
|
| 847 |
+
<div>Dubious Evidence</div>
|
| 848 |
+
</div>
|
| 849 |
+
</div>
|
| 850 |
+
"""
|
| 851 |
+
col1, col2 = st.columns([0.8, 0.2])
|
| 852 |
+
|
| 853 |
+
with col1:
|
| 854 |
+
if processed_abstracts:
|
| 855 |
+
tabs = st.tabs([f"Scientific Evidence {i}" for i in range(1, len(processed_abstracts) + 1)])
|
| 856 |
+
for tab, (name, content) in zip(tabs, processed_abstracts.items()):
|
| 857 |
+
if content not in seen_contents: # Check for duplicates
|
| 858 |
+
seen_contents.add(content)
|
| 859 |
+
with tab:
|
| 860 |
+
# Switch colors if the label is "False"
|
| 861 |
+
if predicted_label.lower() == "false":
|
| 862 |
+
content = content.replace("background-color: lightgreen", "background-color: tempcolor")
|
| 863 |
+
content = content.replace("background-color: red", "background-color: lightgreen")
|
| 864 |
+
content = content.replace("background-color: tempcolor", "background-color: red")
|
| 865 |
+
|
| 866 |
+
# Use `st.write` to display HTML directly
|
| 867 |
+
st.write(content, unsafe_allow_html=True)
|
| 868 |
+
else:
|
| 869 |
+
st.markdown("No relevant Scientific Evidence found")
|
| 870 |
+
|
| 871 |
+
with col2:
|
| 872 |
+
st.caption("Legend")
|
| 873 |
+
st.markdown(legend_html, unsafe_allow_html=True)
|
| 874 |
+
|
| 875 |
+
st.markdown("### **Page Summary**")
|
| 876 |
+
st.caption("📊 Here is a summary of the results for the extracted claims:")
|
| 877 |
+
|
| 878 |
+
# Labels and Colors
|
| 879 |
+
labels = ['True', 'False', 'NEI']
|
| 880 |
+
colors = ['green', 'red', 'yellow']
|
| 881 |
+
|
| 882 |
+
# Sizes of the pie chart
|
| 883 |
+
sizes = [
|
| 884 |
+
st.session_state.true_count,
|
| 885 |
+
st.session_state.false_count,
|
| 886 |
+
st.session_state.nei_count
|
| 887 |
+
]
|
| 888 |
+
|
| 889 |
+
# Configure the Pie Chart Options
|
| 890 |
+
options = {
|
| 891 |
+
"tooltip": {"trigger": "item"},
|
| 892 |
+
"legend": {"top": "5%", "left": "center"},
|
| 893 |
+
"series": [
|
| 894 |
+
{
|
| 895 |
+
"name": "Document Status",
|
| 896 |
+
"type": "pie",
|
| 897 |
+
"radius": ["40%", "70%"],
|
| 898 |
+
"avoidLabelOverlap": False,
|
| 899 |
+
"itemStyle": {
|
| 900 |
+
"borderRadius": 10,
|
| 901 |
+
"borderColor": "#fff",
|
| 902 |
+
"borderWidth": 2,
|
| 903 |
+
},
|
| 904 |
+
"label": {"show": True, "position": "center"},
|
| 905 |
+
"emphasis": {
|
| 906 |
+
"label": {"show": True, "fontSize": "20", "fontWeight": "bold"}
|
| 907 |
+
},
|
| 908 |
+
"labelLine": {"show": False},
|
| 909 |
+
"data": [
|
| 910 |
+
{"value": sizes[0], "name": labels[0], "itemStyle": {"color": colors[0]}},
|
| 911 |
+
{"value": sizes[1], "name": labels[1], "itemStyle": {"color": colors[1]}},
|
| 912 |
+
{"value": sizes[2], "name": labels[2], "itemStyle": {"color": colors[2]}},
|
| 913 |
+
],
|
| 914 |
+
}
|
| 915 |
+
],
|
| 916 |
+
}
|
| 917 |
+
|
| 918 |
+
# Display the Pie Chart
|
| 919 |
+
st1, st2 = st.columns([0.6, 0.4])
|
| 920 |
+
|
| 921 |
+
with st1:
|
| 922 |
+
st.markdown("#### The page is :")
|
| 923 |
+
true_count = st.session_state.true_count
|
| 924 |
+
false_count = st.session_state.false_count
|
| 925 |
+
nei_count = st.session_state.nei_count
|
| 926 |
+
|
| 927 |
+
if true_count > 0 and false_count == 0:
|
| 928 |
+
reliability = '<span style="color: darkgreen; font-weight: bold;">Highly Reliable</span>'
|
| 929 |
+
elif true_count > false_count:
|
| 930 |
+
reliability = '<span style="color: lightgreen; font-weight: bold;">Fairly Reliable</span>'
|
| 931 |
+
elif true_count == 0:
|
| 932 |
+
reliability = '<span style="color: darkred; font-weight: bold;">Strongly Considered Unreliable</span>'
|
| 933 |
+
elif false_count > true_count:
|
| 934 |
+
reliability = '<span style="color: lightcoral; font-weight: bold;">Unlikely to be Reliable</span>'
|
| 935 |
+
elif (true_count == false_count) or (nei_count > true_count and nei_count > false_count and true_count != 0 and false_count != 0):
|
| 936 |
+
reliability = '<span style="color: yellow; font-weight: bold;">NEI</span>'
|
| 937 |
+
else:
|
| 938 |
+
reliability = '<span style="color: black; font-weight: bold;">Completely Reliable</span>'
|
| 939 |
+
|
| 940 |
+
st.markdown(f"The page is considered {reliability} because it contains {true_count} true claims, {false_count} false claims, and {nei_count} claims with not enough information.", unsafe_allow_html=True)
|
| 941 |
+
|
| 942 |
+
with st.popover("ℹ️ Understanding the Truthfulness Ratings"):
|
| 943 |
+
st.markdown("""
|
| 944 |
+
The reliability of the page is determined based on the number of true and false claims extracted from the page.
|
| 945 |
+
- If the page contains only true claims, it is considered **Highly Reliable**.
|
| 946 |
+
- If the page has more true claims than false claims, it is considered **Fairly Reliable**.
|
| 947 |
+
-If the page has more false claims than true claims, it is considered **Unlikely to be Reliable**.
|
| 948 |
+
- If the page contains only false claims, it is considered **Strongly Considered Unreliable**.
|
| 949 |
+
- If the page has an equal number of true and false claims, it is considered **NEI**.
|
| 950 |
+
""")
|
| 951 |
+
|
| 952 |
+
with st2:
|
| 953 |
+
st_echarts(
|
| 954 |
+
options=options, height="500px",
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
|
| 958 |
+
#### Video check PAGE ####
|
| 959 |
+
elif page == "Video check":
|
| 960 |
+
st.subheader("Video claim check")
|
| 961 |
+
st.caption("✨ Upload a video to fact-check and hit the button to see the results! 🔍")
|
| 962 |
+
|
| 963 |
+
video = st.file_uploader("Choose a video...", type=["mp4"])
|
| 964 |
+
video_box, text_box = st.columns([0.6, 0.4])
|
| 965 |
+
if video is not None:
|
| 966 |
+
with video_box:
|
| 967 |
+
with st.expander("▶️ See uploaded video", expanded=False):
|
| 968 |
+
st.video(video)
|
| 969 |
+
|
| 970 |
+
if st.button("✨ Fact Check") and video is not None:
|
| 971 |
+
with st.spinner('🎥🔄 Processing video...'):
|
| 972 |
+
# Save the video to a temporary file
|
| 973 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
|
| 974 |
+
temp_video.write(video.read())
|
| 975 |
+
temp_video_path = temp_video.name
|
| 976 |
+
|
| 977 |
+
# Extract the audio from the video
|
| 978 |
+
temp_audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
|
| 979 |
+
ffmpeg.input(temp_video_path).output(temp_audio_path, acodec="pcm_s16le", ar=16000, ac=1).run(overwrite_output=True)
|
| 980 |
+
|
| 981 |
+
# Transcribe the audio
|
| 982 |
+
model1 = whisper.load_model("small")
|
| 983 |
+
result = model1.transcribe(temp_audio_path)
|
| 984 |
+
|
| 985 |
+
# Extract the final text
|
| 986 |
+
transcribed_text = result["text"]
|
| 987 |
+
with text_box:
|
| 988 |
+
with st.expander("📝 Transcribed Text", expanded=False):
|
| 989 |
+
st.caption("🔍 Here is the transcribed text from the uploaded video:")
|
| 990 |
+
container = st.container(height=322)
|
| 991 |
+
container.write(transcribed_text)
|
| 992 |
+
|
| 993 |
+
st.session_state.true_count = 0
|
| 994 |
+
st.session_state.false_count = 0
|
| 995 |
+
st.session_state.nei_count = 0
|
| 996 |
+
|
| 997 |
+
with st.spinner('🌐🔍 Extracting claims from video...'):
|
| 998 |
+
try:
|
| 999 |
+
# Retrieve the claims from the video
|
| 1000 |
+
prompt_template = claim_detection_template(transcribed_text)
|
| 1001 |
+
|
| 1002 |
+
# Call the API
|
| 1003 |
+
completion = client.chat.completions.create(
|
| 1004 |
+
model="meta/llama-3.1-405b-instruct",
|
| 1005 |
+
messages=[{"role": "user", "content": prompt_template}],
|
| 1006 |
+
temperature=0.1,
|
| 1007 |
+
top_p=0.7,
|
| 1008 |
+
max_tokens=1024,
|
| 1009 |
+
stream=True
|
| 1010 |
+
)
|
| 1011 |
+
|
| 1012 |
+
# Collect the response
|
| 1013 |
+
answer = ""
|
| 1014 |
+
for chunk in completion:
|
| 1015 |
+
if chunk.choices[0].delta.content:
|
| 1016 |
+
answer += chunk.choices[0].delta.content
|
| 1017 |
+
|
| 1018 |
+
# Debug: Check the answer
|
| 1019 |
+
if debug:
|
| 1020 |
+
print(f"{answer}")
|
| 1021 |
+
|
| 1022 |
+
except Exception as e:
|
| 1023 |
+
print(f"Error {e}")
|
| 1024 |
+
|
| 1025 |
+
claims_dict = extract_and_split_claims(answer)
|
| 1026 |
+
|
| 1027 |
+
# Display the extracted claims
|
| 1028 |
+
st.markdown("### **Claims Extracted**")
|
| 1029 |
+
st.caption("🔍 Here are the health-related claims extracted from the video:")
|
| 1030 |
+
cols = st.columns(3)
|
| 1031 |
+
for i, (claim_key, claim_text) in enumerate(claims_dict.items(), 1):
|
| 1032 |
+
col = cols[(i - 1) % 3]
|
| 1033 |
+
with col.expander(f"Claim {i} 📝", expanded=True):
|
| 1034 |
+
st.write(claim_text)
|
| 1035 |
+
|
| 1036 |
+
# Display the results for the extracted claims
|
| 1037 |
+
st.markdown("### **Results**")
|
| 1038 |
+
st.caption("🔍 Here are the results for the extracted claims:")
|
| 1039 |
+
for claim_key, claim_text in claims_dict.items():
|
| 1040 |
+
st.session_state.claim = claim_text
|
| 1041 |
+
if st.session_state.claim:
|
| 1042 |
+
top_abstracts = retrieve_top_abstracts(st.session_state.claim, model, index, pmids, data, top_k=5)
|
| 1043 |
+
st.session_state.top_abstracts = top_abstracts # Salva i risultati
|
| 1044 |
+
|
| 1045 |
+
with st.expander(f"✔️ **Results for {claim_key}**", expanded=True):
|
| 1046 |
+
for i, (abstract, pmid, distance) in enumerate(st.session_state.top_abstracts, 1):
|
| 1047 |
+
pubmed_url = f"https://pubmed.ncbi.nlm.nih.gov/{pmid}/"
|
| 1048 |
+
globals()[f"abstract_{i}"] = abstract
|
| 1049 |
+
globals()[f"reference_{i}"] = pubmed_url
|
| 1050 |
+
globals()[f"distance_{i}"] = distance
|
| 1051 |
+
|
| 1052 |
+
with st.spinner('🔍 We are checking...'):
|
| 1053 |
+
try:
|
| 1054 |
+
# Retrieve the question from the DataFrame
|
| 1055 |
+
query = st.session_state.claim
|
| 1056 |
+
|
| 1057 |
+
# Generate the reasoning template
|
| 1058 |
+
prompt_template = llm_reasoning_template(query)
|
| 1059 |
+
|
| 1060 |
+
# Add the abstracts to the prompt
|
| 1061 |
+
for i in range(1, len(st.session_state.top_abstracts)):
|
| 1062 |
+
prompt_template += f"{globals()[f'abstract_{i}']} ; "
|
| 1063 |
+
prompt_template += f"{globals()[f'abstract_{i+1}']} [/INST]"
|
| 1064 |
+
|
| 1065 |
+
# Call the API
|
| 1066 |
+
completion = client.chat.completions.create(
|
| 1067 |
+
model="meta/llama-3.1-405b-instruct",
|
| 1068 |
+
messages=[{"role": "user", "content": prompt_template}],
|
| 1069 |
+
temperature=0.1,
|
| 1070 |
+
top_p=0.7,
|
| 1071 |
+
max_tokens=1024,
|
| 1072 |
+
stream=True
|
| 1073 |
+
)
|
| 1074 |
+
|
| 1075 |
+
# Collect the response
|
| 1076 |
+
answer = ""
|
| 1077 |
+
for chunk in completion:
|
| 1078 |
+
if chunk.choices[0].delta.content:
|
| 1079 |
+
answer += chunk.choices[0].delta.content
|
| 1080 |
+
|
| 1081 |
+
# Debug: Check the answer
|
| 1082 |
+
if debug:
|
| 1083 |
+
print(f"{answer}")
|
| 1084 |
+
|
| 1085 |
+
except Exception as e:
|
| 1086 |
+
st.write(f"Error processing index: {e}")
|
| 1087 |
+
|
| 1088 |
+
with st.spinner('🤔💬 Justifying the check...'):
|
| 1089 |
+
# Perform parsing and separate variables
|
| 1090 |
+
zeroshot_classifier = pipeline(
|
| 1091 |
+
"zero-shot-classification", model="MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33"
|
| 1092 |
+
)
|
| 1093 |
+
first_label, justification, supporting, refusing, notes = parse_response(answer)
|
| 1094 |
+
|
| 1095 |
+
with st.spinner('🕵️♂️📜 We are finding evidence...'):
|
| 1096 |
+
# Generate the justification for the claim
|
| 1097 |
+
result = generate_justification(st.session_state.claim, justification)
|
| 1098 |
+
predicted_label, score_label = extract_label_and_score(result)
|
| 1099 |
+
|
| 1100 |
+
# Update the counts based on the predicted label
|
| 1101 |
+
if predicted_label == "True":
|
| 1102 |
+
color = f"rgba(0, 204, 0, {score_label})" # Green
|
| 1103 |
+
st.session_state.true_count += 1
|
| 1104 |
+
elif predicted_label == "False":
|
| 1105 |
+
color = f"rgba(204, 0, 0, {score_label})" # Red
|
| 1106 |
+
st.session_state.false_count += 1
|
| 1107 |
+
elif predicted_label == "NEI":
|
| 1108 |
+
color = f"rgba(255, 255, 0, {score_label})" # Yellow
|
| 1109 |
+
st.session_state.nei_count += 1
|
| 1110 |
+
else:
|
| 1111 |
+
color = "black" # Default color
|
| 1112 |
+
|
| 1113 |
+
confidence = f"{score_label * 100:.2f}%"
|
| 1114 |
+
st.caption(f"📝 The Claim: {st.session_state.claim}")
|
| 1115 |
+
st.markdown(
|
| 1116 |
+
f"**Prediction of claim:** Most likely <span style='color: {color}; font-weight: bold;'>{predicted_label}</span> with a confidence of <span style='color: {color}; font-weight: bold;'>{confidence}</span>",
|
| 1117 |
+
unsafe_allow_html=True
|
| 1118 |
+
)
|
| 1119 |
+
|
| 1120 |
+
st.markdown("### **Justification**")
|
| 1121 |
+
st.markdown(f'<p> {justification}</p>', unsafe_allow_html=True)
|
| 1122 |
+
|
| 1123 |
+
abstracts = {}
|
| 1124 |
+
for i in range(1, len(st.session_state.top_abstracts) + 1):
|
| 1125 |
+
abstracts[f"abstract_{i}"] = globals()[f"abstract_{i}"]
|
| 1126 |
+
|
| 1127 |
+
pattern = r'"\s*(.*?)\s*"\s*\(abstract_(\d+)\)'
|
| 1128 |
+
|
| 1129 |
+
supporting_texts = []
|
| 1130 |
+
for item in supporting:
|
| 1131 |
+
try:
|
| 1132 |
+
supporting_texts.append(item["text"])
|
| 1133 |
+
except (TypeError, KeyError):
|
| 1134 |
+
continue
|
| 1135 |
+
supporting = clean_phrases(supporting_texts, pattern)
|
| 1136 |
+
|
| 1137 |
+
refusing_text = []
|
| 1138 |
+
for item in refusing:
|
| 1139 |
+
try:
|
| 1140 |
+
refusing_text.append(item["text"])
|
| 1141 |
+
except (TypeError, KeyError):
|
| 1142 |
+
continue
|
| 1143 |
+
refusing = clean_phrases(refusing_text, pattern)
|
| 1144 |
+
|
| 1145 |
+
processed_abstracts = {}
|
| 1146 |
+
for abstract_name, abstract_text in abstracts.items():
|
| 1147 |
+
# Highlight supporting phrases in green
|
| 1148 |
+
supporting_matches = [phrase for phrase in supporting if phrase["abstract"] == abstract_name]
|
| 1149 |
+
abstract_text = highlight_phrases(abstract_text, supporting_matches, "lightgreen", predicted_label)
|
| 1150 |
+
|
| 1151 |
+
# Highlight refusing phrases in red
|
| 1152 |
+
refusing_matches = [phrase for phrase in refusing if phrase["abstract"] == abstract_name]
|
| 1153 |
+
abstract_text = highlight_phrases(abstract_text, refusing_matches, "red", predicted_label)
|
| 1154 |
+
|
| 1155 |
+
if supporting_matches:
|
| 1156 |
+
# Add the reference if a corresponding variable exists
|
| 1157 |
+
reference_variable = f"reference_{abstract_name.split('_')[1]}"
|
| 1158 |
+
if reference_variable in globals():
|
| 1159 |
+
reference_value = globals()[reference_variable]
|
| 1160 |
+
abstract_text += f"<br><br><strong>🔗 Reference:</strong> {reference_value}"
|
| 1161 |
+
|
| 1162 |
+
# Add the processed abstract
|
| 1163 |
+
processed_abstracts[abstract_name] = abstract_text
|
| 1164 |
+
|
| 1165 |
+
# Iterate over the processed abstracts and remove duplicates
|
| 1166 |
+
seen_contents = set() # Set to track already seen contents
|
| 1167 |
+
evidence_counter = 1
|
| 1168 |
+
|
| 1169 |
+
# Display the results of the processed abstracts with numbered expanders
|
| 1170 |
+
st.markdown("### **Scientific Evidence**")
|
| 1171 |
+
|
| 1172 |
+
# Add a legend for the colors
|
| 1173 |
+
legend_html = """
|
| 1174 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
| 1175 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 1176 |
+
<div style="width: 20px; height: 20px; background-color: lightgreen; margin-right: 10px; border-radius: 5px;"></div>
|
| 1177 |
+
<div>Positive Evidence</div>
|
| 1178 |
+
</div>
|
| 1179 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 1180 |
+
<div style="width: 20px; height: 20px; background-color: red; margin-right: 10px; border-radius: 5px;"></div>
|
| 1181 |
+
<div>Negative Evidence</div>
|
| 1182 |
+
</div>
|
| 1183 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
| 1184 |
+
<div style="width: 20px; height: 20px; background-color: yellow; margin-right: 10px; border-radius: 5px;"></div>
|
| 1185 |
+
<div>Dubious Evidence</div>
|
| 1186 |
+
</div>
|
| 1187 |
+
</div>
|
| 1188 |
+
"""
|
| 1189 |
+
col1, col2 = st.columns([0.8, 0.2])
|
| 1190 |
+
|
| 1191 |
+
with col1:
|
| 1192 |
+
if processed_abstracts:
|
| 1193 |
+
tabs = st.tabs([f"Scientific Evidence {i}" for i in range(1, len(processed_abstracts) + 1)])
|
| 1194 |
+
for tab, (name, content) in zip(tabs, processed_abstracts.items()):
|
| 1195 |
+
if content not in seen_contents: # Check for duplicates
|
| 1196 |
+
seen_contents.add(content)
|
| 1197 |
+
with tab:
|
| 1198 |
+
# Switch colors if the label is "False"
|
| 1199 |
+
if predicted_label.lower() == "false":
|
| 1200 |
+
content = content.replace("background-color: lightgreen", "background-color: tempcolor")
|
| 1201 |
+
content = content.replace("background-color: red", "background-color: lightgreen")
|
| 1202 |
+
content = content.replace("background-color: tempcolor", "background-color: red")
|
| 1203 |
+
|
| 1204 |
+
# Use `st.write` to display HTML directly
|
| 1205 |
+
st.write(content, unsafe_allow_html=True)
|
| 1206 |
+
else:
|
| 1207 |
+
st.markdown("No relevant Scientific Evidence found")
|
| 1208 |
+
|
| 1209 |
+
with col2:
|
| 1210 |
+
st.caption("Legend")
|
| 1211 |
+
st.markdown(legend_html, unsafe_allow_html=True)
|
| 1212 |
+
|
| 1213 |
+
st.markdown("### **Video Summary**")
|
| 1214 |
+
st.caption("📊 Here is a summary of the results for the extracted claims:")
|
| 1215 |
+
|
| 1216 |
+
# Labels and Colors
|
| 1217 |
+
labels = ['True', 'False', 'NEI']
|
| 1218 |
+
colors = ['green', 'red', 'yellow']
|
| 1219 |
+
|
| 1220 |
+
# Sizes of the pie chart
|
| 1221 |
+
sizes = [
|
| 1222 |
+
st.session_state.true_count,
|
| 1223 |
+
st.session_state.false_count,
|
| 1224 |
+
st.session_state.nei_count
|
| 1225 |
+
]
|
| 1226 |
+
|
| 1227 |
+
# Configure the Pie Chart Options
|
| 1228 |
+
options = {
|
| 1229 |
+
"tooltip": {"trigger": "item"},
|
| 1230 |
+
"legend": {"top": "5%", "left": "center"},
|
| 1231 |
+
"series": [
|
| 1232 |
+
{
|
| 1233 |
+
"name": "Document Status",
|
| 1234 |
+
"type": "pie",
|
| 1235 |
+
"radius": ["40%", "70%"],
|
| 1236 |
+
"avoidLabelOverlap": False,
|
| 1237 |
+
"itemStyle": {
|
| 1238 |
+
"borderRadius": 10,
|
| 1239 |
+
"borderColor": "#fff",
|
| 1240 |
+
"borderWidth": 2,
|
| 1241 |
+
},
|
| 1242 |
+
"label": {"show": True, "position": "center"},
|
| 1243 |
+
"emphasis": {
|
| 1244 |
+
"label": {"show": True, "fontSize": "20", "fontWeight": "bold"}
|
| 1245 |
+
},
|
| 1246 |
+
"labelLine": {"show": False},
|
| 1247 |
+
"data": [
|
| 1248 |
+
{"value": sizes[0], "name": labels[0], "itemStyle": {"color": colors[0]}},
|
| 1249 |
+
{"value": sizes[1], "name": labels[1], "itemStyle": {"color": colors[1]}},
|
| 1250 |
+
{"value": sizes[2], "name": labels[2], "itemStyle": {"color": colors[2]}},
|
| 1251 |
+
],
|
| 1252 |
+
}
|
| 1253 |
+
],
|
| 1254 |
+
}
|
| 1255 |
+
|
| 1256 |
+
# Display the Pie Chart
|
| 1257 |
+
st1, st2 = st.columns([0.6, 0.4])
|
| 1258 |
+
|
| 1259 |
+
with st1:
|
| 1260 |
+
st.markdown("#### The Video is :")
|
| 1261 |
+
true_count = st.session_state.true_count
|
| 1262 |
+
false_count = st.session_state.false_count
|
| 1263 |
+
nei_count = st.session_state.nei_count
|
| 1264 |
+
|
| 1265 |
+
if true_count > 0 and false_count == 0:
|
| 1266 |
+
reliability = '<span style="color: darkgreen; font-weight: bold;">Highly Reliable</span>'
|
| 1267 |
+
elif true_count > false_count:
|
| 1268 |
+
reliability = '<span style="color: lightgreen; font-weight: bold;">Fairly Reliable</span>'
|
| 1269 |
+
elif true_count == 0:
|
| 1270 |
+
reliability = '<span style="color: darkred; font-weight: bold;">Strongly Considered Unreliable</span>'
|
| 1271 |
+
elif false_count > true_count:
|
| 1272 |
+
reliability = '<span style="color: lightcoral; font-weight: bold;">Unlikely to be Reliable</span>'
|
| 1273 |
+
elif (true_count == false_count) or (nei_count > true_count and nei_count > false_count and true_count != 0 and false_count != 0):
|
| 1274 |
+
reliability = '<span style="color: yellow; font-weight: bold;">NEI</span>'
|
| 1275 |
+
else:
|
| 1276 |
+
reliability = '<span style="color: black; font-weight: bold;">Completely Reliable</span>'
|
| 1277 |
+
|
| 1278 |
+
st.markdown(f"The video is considered {reliability} because it contains {true_count} true claims, {false_count} false claims, and {nei_count} claims with not enough information.", unsafe_allow_html=True)
|
| 1279 |
+
|
| 1280 |
+
with st.popover("ℹ️ Understanding the Truthfulness Ratings"):
|
| 1281 |
+
st.markdown("""
|
| 1282 |
+
The reliability of the video is determined based on the number of true and false claims extracted from the video.
|
| 1283 |
+
- If the video contains only true claims, it is considered **Highly Reliable**.
|
| 1284 |
+
- If the video has more true claims than false claims, it is considered **Fairly Reliable**.
|
| 1285 |
+
- If the video has more false claims than true claims, it is considered **Unlikely to be Reliable**.
|
| 1286 |
+
- If the video contains only false claims, it is considered **Strongly Considered Unreliable**.
|
| 1287 |
+
- If the video has an equal number of true and false claims, it is considered **NEI**.
|
| 1288 |
+
""")
|
| 1289 |
+
|
| 1290 |
+
with st2:
|
| 1291 |
+
st_echarts(
|
| 1292 |
+
options=options, height="500px",
|
| 1293 |
+
)
|
| 1294 |
+
|
data/abstract_embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b06d5719866779f5ff4c1d6fa6bff15951d5601d06b4c535d71ff573f06ad39b
|
| 3 |
+
size 153600128
|
data/faiss_index.index
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b03e1883853c41ecb1885ec9ded14d16a6e1aa99d40437cdcd3d05fd6865a41
|
| 3 |
+
size 153600045
|
data/parte_205.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27da6250b597f6409e28c2a32903446ba45f39f2c931e8973ab389aeb60f1837
|
| 3 |
+
size 149748082
|
data/pmids.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:556fcf26d0e2d8204a28a9f0c06a43dc3410088ec92b10a79dadd38d6d728c5a
|
| 3 |
+
size 800128
|