Spaces:
Running
Running
refactor: detach VibeVoiceDemo class into a separated module
Browse files
app.py
CHANGED
|
@@ -2,632 +2,19 @@
|
|
| 2 |
VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
|
| 3 |
"""
|
| 4 |
|
| 5 |
-
|
| 6 |
-
import argparse, os, time, traceback, json, sys, tempfile
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
from datetime import datetime
|
| 9 |
-
import threading
|
| 10 |
-
import numpy as np
|
| 11 |
-
import gradio as gr
|
| 12 |
-
import librosa
|
| 13 |
-
import soundfile as sf
|
| 14 |
import torch
|
|
|
|
| 15 |
|
| 16 |
-
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
|
| 17 |
-
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
|
| 18 |
-
from vibevoice.modular.lora_loading import load_lora_assets
|
| 19 |
-
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
|
| 20 |
-
from vibevoice.modular.streamer import AudioStreamer
|
| 21 |
from transformers.utils import logging
|
| 22 |
from transformers import set_seed
|
|
|
|
| 23 |
|
| 24 |
logging.set_verbosity_info()
|
| 25 |
logger = logging.get_logger(__name__)
|
| 26 |
|
| 27 |
|
| 28 |
-
class VibeVoiceDemo:
|
| 29 |
-
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5, adapter_path: Optional[str] = None):
|
| 30 |
-
"""Initialize the VibeVoice demo with model loading."""
|
| 31 |
-
self.model_path = model_path
|
| 32 |
-
self.device = device
|
| 33 |
-
self.inference_steps = inference_steps
|
| 34 |
-
self.adapter_path = adapter_path
|
| 35 |
-
self.loaded_adapter_root: Optional[str] = None
|
| 36 |
-
self.is_generating = False # Track generation state
|
| 37 |
-
self.stop_generation = False # Flag to stop generation
|
| 38 |
-
self.current_streamer = None # Track current audio streamer
|
| 39 |
-
self.load_model()
|
| 40 |
-
self.setup_voice_presets()
|
| 41 |
-
self.load_example_scripts() # Load example scripts
|
| 42 |
-
|
| 43 |
-
def load_model(self):
|
| 44 |
-
"""Load the VibeVoice model and processor."""
|
| 45 |
-
print(f"Loading processor & model from {self.model_path}")
|
| 46 |
-
self.loaded_adapter_root = None
|
| 47 |
-
# Normalize potential 'mpx'
|
| 48 |
-
if self.device.lower() == "mpx":
|
| 49 |
-
print("Note: device 'mpx' detected, treating it as 'mps'.")
|
| 50 |
-
self.device = "mps"
|
| 51 |
-
if self.device == "mps" and not torch.backends.mps.is_available():
|
| 52 |
-
print("Warning: MPS not available. Falling back to CPU.")
|
| 53 |
-
self.device = "cpu"
|
| 54 |
-
print(f"Using device: {self.device}")
|
| 55 |
-
# Load processor
|
| 56 |
-
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
|
| 57 |
-
# Decide dtype & attention
|
| 58 |
-
if self.device == "mps":
|
| 59 |
-
load_dtype = torch.float32
|
| 60 |
-
attn_impl_primary = "sdpa"
|
| 61 |
-
elif self.device == "cuda":
|
| 62 |
-
load_dtype = torch.bfloat16
|
| 63 |
-
attn_impl_primary = "flash_attention_2"
|
| 64 |
-
else:
|
| 65 |
-
load_dtype = torch.float32
|
| 66 |
-
attn_impl_primary = "sdpa"
|
| 67 |
-
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
|
| 68 |
-
# Load model
|
| 69 |
-
try:
|
| 70 |
-
if self.device == "mps":
|
| 71 |
-
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 72 |
-
self.model_path,
|
| 73 |
-
torch_dtype=load_dtype,
|
| 74 |
-
attn_implementation=attn_impl_primary,
|
| 75 |
-
device_map=None,
|
| 76 |
-
)
|
| 77 |
-
self.model.to("mps")
|
| 78 |
-
elif self.device == "cuda":
|
| 79 |
-
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 80 |
-
self.model_path,
|
| 81 |
-
torch_dtype=load_dtype,
|
| 82 |
-
device_map="cuda",
|
| 83 |
-
attn_implementation=attn_impl_primary,
|
| 84 |
-
)
|
| 85 |
-
else:
|
| 86 |
-
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 87 |
-
self.model_path,
|
| 88 |
-
torch_dtype=load_dtype,
|
| 89 |
-
device_map="cpu",
|
| 90 |
-
attn_implementation=attn_impl_primary,
|
| 91 |
-
)
|
| 92 |
-
except Exception as e:
|
| 93 |
-
if attn_impl_primary == 'flash_attention_2':
|
| 94 |
-
print(f"[ERROR] : {type(e).__name__}: {e}")
|
| 95 |
-
print(traceback.format_exc())
|
| 96 |
-
fallback_attn = "sdpa"
|
| 97 |
-
print(f"Falling back to attention implementation: {fallback_attn}")
|
| 98 |
-
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 99 |
-
self.model_path,
|
| 100 |
-
torch_dtype=load_dtype,
|
| 101 |
-
device_map=(self.device if self.device in ("cuda", "cpu") else None),
|
| 102 |
-
attn_implementation=fallback_attn,
|
| 103 |
-
)
|
| 104 |
-
if self.device == "mps":
|
| 105 |
-
self.model.to("mps")
|
| 106 |
-
else:
|
| 107 |
-
raise e
|
| 108 |
-
if self.adapter_path:
|
| 109 |
-
print(f"Loading fine-tuned assets from {self.adapter_path}")
|
| 110 |
-
report = load_lora_assets(self.model, self.adapter_path)
|
| 111 |
-
loaded_components = [
|
| 112 |
-
name for name, loaded in (
|
| 113 |
-
("language LoRA", report.language_model),
|
| 114 |
-
("diffusion head LoRA", report.diffusion_head_lora),
|
| 115 |
-
("diffusion head weights", report.diffusion_head_full),
|
| 116 |
-
("acoustic connector", report.acoustic_connector),
|
| 117 |
-
("semantic connector", report.semantic_connector),
|
| 118 |
-
)
|
| 119 |
-
if loaded
|
| 120 |
-
]
|
| 121 |
-
if loaded_components:
|
| 122 |
-
print(f"Loaded components: {', '.join(loaded_components)}")
|
| 123 |
-
else:
|
| 124 |
-
print("Warning: no adapter components were loaded; check the checkpoint path.")
|
| 125 |
-
if report.adapter_root is not None:
|
| 126 |
-
self.loaded_adapter_root = str(report.adapter_root)
|
| 127 |
-
print(f"Adapter assets resolved to: {self.loaded_adapter_root}")
|
| 128 |
-
else:
|
| 129 |
-
self.loaded_adapter_root = self.adapter_path
|
| 130 |
|
| 131 |
-
self.model.eval()
|
| 132 |
-
|
| 133 |
-
# Use SDE solver by default
|
| 134 |
-
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
|
| 135 |
-
self.model.model.noise_scheduler.config,
|
| 136 |
-
algorithm_type='sde-dpmsolver++',
|
| 137 |
-
beta_schedule='squaredcos_cap_v2'
|
| 138 |
-
)
|
| 139 |
-
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
| 140 |
-
|
| 141 |
-
if hasattr(self.model.model, 'language_model'):
|
| 142 |
-
print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
|
| 143 |
-
|
| 144 |
-
def setup_voice_presets(self):
|
| 145 |
-
"""Setup voice presets by scanning the voices directory."""
|
| 146 |
-
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
|
| 147 |
-
|
| 148 |
-
# Check if voices directory exists
|
| 149 |
-
if not os.path.exists(voices_dir):
|
| 150 |
-
print(f"Warning: Voices directory not found at {voices_dir}")
|
| 151 |
-
self.voice_presets = {}
|
| 152 |
-
self.available_voices = {}
|
| 153 |
-
return
|
| 154 |
-
|
| 155 |
-
# Scan for all WAV files in the voices directory
|
| 156 |
-
self.voice_presets = {}
|
| 157 |
-
|
| 158 |
-
# Get all .wav files in the voices directory
|
| 159 |
-
wav_files = [f for f in os.listdir(voices_dir)
|
| 160 |
-
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(voices_dir, f))]
|
| 161 |
-
|
| 162 |
-
# Create dictionary with filename (without extension) as key
|
| 163 |
-
for wav_file in wav_files:
|
| 164 |
-
# Remove .wav extension to get the name
|
| 165 |
-
name = os.path.splitext(wav_file)[0]
|
| 166 |
-
# Create full path
|
| 167 |
-
full_path = os.path.join(voices_dir, wav_file)
|
| 168 |
-
self.voice_presets[name] = full_path
|
| 169 |
-
|
| 170 |
-
# Sort the voice presets alphabetically by name for better UI
|
| 171 |
-
self.voice_presets = dict(sorted(self.voice_presets.items()))
|
| 172 |
-
|
| 173 |
-
# Filter out voices that don't exist (this is now redundant but kept for safety)
|
| 174 |
-
self.available_voices = {
|
| 175 |
-
name: path for name, path in self.voice_presets.items()
|
| 176 |
-
if os.path.exists(path)
|
| 177 |
-
}
|
| 178 |
-
|
| 179 |
-
if not self.available_voices:
|
| 180 |
-
raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
|
| 181 |
-
|
| 182 |
-
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
|
| 183 |
-
print(f"Available voices: {', '.join(self.available_voices.keys())}")
|
| 184 |
-
|
| 185 |
-
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
|
| 186 |
-
"""Read and preprocess audio file."""
|
| 187 |
-
try:
|
| 188 |
-
wav, sr = sf.read(audio_path)
|
| 189 |
-
if len(wav.shape) > 1:
|
| 190 |
-
wav = np.mean(wav, axis=1)
|
| 191 |
-
if sr != target_sr:
|
| 192 |
-
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
|
| 193 |
-
return wav
|
| 194 |
-
except Exception as e:
|
| 195 |
-
print(f"Error reading audio {audio_path}: {e}")
|
| 196 |
-
return np.array([])
|
| 197 |
-
|
| 198 |
-
def generate_podcast_streaming(self,
|
| 199 |
-
num_speakers: int,
|
| 200 |
-
script: str,
|
| 201 |
-
speaker_1: str = None,
|
| 202 |
-
speaker_2: str = None,
|
| 203 |
-
speaker_3: str = None,
|
| 204 |
-
speaker_4: str = None,
|
| 205 |
-
cfg_scale: float = 1.3,
|
| 206 |
-
disable_voice_cloning: bool = False) -> Iterator[tuple]:
|
| 207 |
-
try:
|
| 208 |
-
|
| 209 |
-
# Reset stop flag and set generating state
|
| 210 |
-
self.stop_generation = False
|
| 211 |
-
self.is_generating = True
|
| 212 |
-
|
| 213 |
-
# Validate inputs
|
| 214 |
-
if not script.strip():
|
| 215 |
-
self.is_generating = False
|
| 216 |
-
raise gr.Error("Error: Please provide a script.")
|
| 217 |
-
|
| 218 |
-
# Defend against common mistake
|
| 219 |
-
script = script.replace("β", "'")
|
| 220 |
-
|
| 221 |
-
if num_speakers < 1 or num_speakers > 4:
|
| 222 |
-
self.is_generating = False
|
| 223 |
-
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
|
| 224 |
-
|
| 225 |
-
# Collect selected speakers
|
| 226 |
-
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 227 |
-
|
| 228 |
-
# Validate speaker selections
|
| 229 |
-
for i, speaker in enumerate(selected_speakers):
|
| 230 |
-
if not speaker or speaker not in self.available_voices:
|
| 231 |
-
self.is_generating = False
|
| 232 |
-
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 233 |
-
|
| 234 |
-
voice_cloning_enabled = not disable_voice_cloning
|
| 235 |
-
|
| 236 |
-
# Build initial log
|
| 237 |
-
log = f"ποΈ Generating podcast with {num_speakers} speakers\n"
|
| 238 |
-
log += f"π Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
|
| 239 |
-
log += f"π Speakers: {', '.join(selected_speakers)}\n"
|
| 240 |
-
log += f"π Voice cloning: {'Enabled' if voice_cloning_enabled else 'Disabled'}\n"
|
| 241 |
-
if self.loaded_adapter_root:
|
| 242 |
-
log += f"π§© LoRA: {self.loaded_adapter_root}\n"
|
| 243 |
-
|
| 244 |
-
# Check for stop signal
|
| 245 |
-
if self.stop_generation:
|
| 246 |
-
self.is_generating = False
|
| 247 |
-
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 248 |
-
return
|
| 249 |
-
|
| 250 |
-
# Load voice samples when voice cloning is enabled
|
| 251 |
-
voice_samples = None
|
| 252 |
-
if voice_cloning_enabled:
|
| 253 |
-
voice_samples = []
|
| 254 |
-
for speaker_name in selected_speakers:
|
| 255 |
-
audio_path = self.available_voices[speaker_name]
|
| 256 |
-
audio_data = self.read_audio(audio_path)
|
| 257 |
-
if len(audio_data) == 0:
|
| 258 |
-
self.is_generating = False
|
| 259 |
-
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
|
| 260 |
-
voice_samples.append(audio_data)
|
| 261 |
-
|
| 262 |
-
# log += f"β
Loaded {len(voice_samples)} voice samples\n"
|
| 263 |
-
|
| 264 |
-
# Check for stop signal
|
| 265 |
-
if self.stop_generation:
|
| 266 |
-
self.is_generating = False
|
| 267 |
-
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 268 |
-
return
|
| 269 |
-
|
| 270 |
-
# Parse script to assign speaker ID's
|
| 271 |
-
lines = script.strip().split('\n')
|
| 272 |
-
formatted_script_lines = []
|
| 273 |
-
|
| 274 |
-
for line in lines:
|
| 275 |
-
line = line.strip()
|
| 276 |
-
if not line:
|
| 277 |
-
continue
|
| 278 |
-
|
| 279 |
-
# Check if line already has speaker format
|
| 280 |
-
if line.startswith('Speaker ') and ':' in line:
|
| 281 |
-
formatted_script_lines.append(line)
|
| 282 |
-
else:
|
| 283 |
-
# Auto-assign to speakers in rotation
|
| 284 |
-
speaker_id = len(formatted_script_lines) % num_speakers
|
| 285 |
-
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 286 |
-
|
| 287 |
-
formatted_script = '\n'.join(formatted_script_lines)
|
| 288 |
-
log += f"π Formatted script with {len(formatted_script_lines)} turns\n\n"
|
| 289 |
-
log += "π Processing with VibeVoice (streaming mode)...\n"
|
| 290 |
-
|
| 291 |
-
# Check for stop signal before processing
|
| 292 |
-
if self.stop_generation:
|
| 293 |
-
self.is_generating = False
|
| 294 |
-
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 295 |
-
return
|
| 296 |
-
|
| 297 |
-
start_time = time.time()
|
| 298 |
-
|
| 299 |
-
processor_kwargs = {
|
| 300 |
-
"text": [formatted_script],
|
| 301 |
-
"padding": True,
|
| 302 |
-
"return_tensors": "pt",
|
| 303 |
-
"return_attention_mask": True,
|
| 304 |
-
}
|
| 305 |
-
processor_kwargs["voice_samples"] = [voice_samples] if voice_samples is not None else None
|
| 306 |
-
|
| 307 |
-
inputs = self.processor(**processor_kwargs)
|
| 308 |
-
# Move tensors to device
|
| 309 |
-
target_device = self.device if self.device in ("cuda", "mps") else "cpu"
|
| 310 |
-
for k, v in inputs.items():
|
| 311 |
-
if torch.is_tensor(v):
|
| 312 |
-
inputs[k] = v.to(target_device)
|
| 313 |
-
|
| 314 |
-
# Create audio streamer
|
| 315 |
-
audio_streamer = AudioStreamer(
|
| 316 |
-
batch_size=1,
|
| 317 |
-
stop_signal=None,
|
| 318 |
-
timeout=None
|
| 319 |
-
)
|
| 320 |
-
|
| 321 |
-
# Store current streamer for potential stopping
|
| 322 |
-
self.current_streamer = audio_streamer
|
| 323 |
-
|
| 324 |
-
# Start generation in a separate thread
|
| 325 |
-
generation_thread = threading.Thread(
|
| 326 |
-
target=self._generate_with_streamer,
|
| 327 |
-
args=(inputs, cfg_scale, audio_streamer, voice_cloning_enabled)
|
| 328 |
-
)
|
| 329 |
-
generation_thread.start()
|
| 330 |
-
|
| 331 |
-
# Wait for generation to actually start producing audio
|
| 332 |
-
time.sleep(1) # Reduced from 3 to 1 second
|
| 333 |
-
|
| 334 |
-
# Check for stop signal after thread start
|
| 335 |
-
if self.stop_generation:
|
| 336 |
-
audio_streamer.end()
|
| 337 |
-
generation_thread.join(timeout=5.0) # Wait up to 5 seconds for thread to finish
|
| 338 |
-
self.is_generating = False
|
| 339 |
-
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 340 |
-
return
|
| 341 |
-
|
| 342 |
-
# Collect audio chunks as they arrive
|
| 343 |
-
sample_rate = 24000
|
| 344 |
-
all_audio_chunks = [] # For final statistics
|
| 345 |
-
pending_chunks = [] # Buffer for accumulating small chunks
|
| 346 |
-
chunk_count = 0
|
| 347 |
-
last_yield_time = time.time()
|
| 348 |
-
min_yield_interval = 15 # Yield every 15 seconds
|
| 349 |
-
min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
|
| 350 |
-
|
| 351 |
-
# Get the stream for the first (and only) sample
|
| 352 |
-
audio_stream = audio_streamer.get_stream(0)
|
| 353 |
-
|
| 354 |
-
has_yielded_audio = False
|
| 355 |
-
has_received_chunks = False # Track if we received any chunks at all
|
| 356 |
-
|
| 357 |
-
for audio_chunk in audio_stream:
|
| 358 |
-
# Check for stop signal in the streaming loop
|
| 359 |
-
if self.stop_generation:
|
| 360 |
-
audio_streamer.end()
|
| 361 |
-
break
|
| 362 |
-
|
| 363 |
-
chunk_count += 1
|
| 364 |
-
has_received_chunks = True # Mark that we received at least one chunk
|
| 365 |
-
|
| 366 |
-
# Convert tensor to numpy
|
| 367 |
-
if torch.is_tensor(audio_chunk):
|
| 368 |
-
# Convert bfloat16 to float32 first, then to numpy
|
| 369 |
-
if audio_chunk.dtype == torch.bfloat16:
|
| 370 |
-
audio_chunk = audio_chunk.float()
|
| 371 |
-
audio_np = audio_chunk.cpu().numpy().astype(np.float32)
|
| 372 |
-
else:
|
| 373 |
-
audio_np = np.array(audio_chunk, dtype=np.float32)
|
| 374 |
-
|
| 375 |
-
# Ensure audio is 1D and properly normalized
|
| 376 |
-
if len(audio_np.shape) > 1:
|
| 377 |
-
audio_np = audio_np.squeeze()
|
| 378 |
-
|
| 379 |
-
# Convert to 16-bit for Gradio
|
| 380 |
-
audio_16bit = convert_to_16_bit_wav(audio_np)
|
| 381 |
-
|
| 382 |
-
# Store for final statistics
|
| 383 |
-
all_audio_chunks.append(audio_16bit)
|
| 384 |
-
|
| 385 |
-
# Add to pending chunks buffer
|
| 386 |
-
pending_chunks.append(audio_16bit)
|
| 387 |
-
|
| 388 |
-
# Calculate pending audio size
|
| 389 |
-
pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
|
| 390 |
-
current_time = time.time()
|
| 391 |
-
time_since_last_yield = current_time - last_yield_time
|
| 392 |
-
|
| 393 |
-
# Decide whether to yield
|
| 394 |
-
should_yield = False
|
| 395 |
-
if not has_yielded_audio and pending_audio_size >= min_chunk_size:
|
| 396 |
-
# First yield: wait for minimum chunk size
|
| 397 |
-
should_yield = True
|
| 398 |
-
has_yielded_audio = True
|
| 399 |
-
elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
|
| 400 |
-
# Subsequent yields: either enough audio or enough time has passed
|
| 401 |
-
should_yield = True
|
| 402 |
-
|
| 403 |
-
if should_yield and pending_chunks:
|
| 404 |
-
# Concatenate and yield only the new audio chunks
|
| 405 |
-
new_audio = np.concatenate(pending_chunks)
|
| 406 |
-
new_duration = len(new_audio) / sample_rate
|
| 407 |
-
total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
|
| 408 |
-
|
| 409 |
-
log_update = log + f"π΅ Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
|
| 410 |
-
|
| 411 |
-
# Yield streaming audio chunk and keep complete_audio as None during streaming
|
| 412 |
-
yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
|
| 413 |
-
|
| 414 |
-
# Clear pending chunks after yielding
|
| 415 |
-
pending_chunks = []
|
| 416 |
-
last_yield_time = current_time
|
| 417 |
-
|
| 418 |
-
# Yield any remaining chunks
|
| 419 |
-
if pending_chunks:
|
| 420 |
-
final_new_audio = np.concatenate(pending_chunks)
|
| 421 |
-
total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
|
| 422 |
-
log_update = log + f"π΅ Streaming final chunk: {total_duration:.1f}s total\n"
|
| 423 |
-
yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
|
| 424 |
-
has_yielded_audio = True # Mark that we yielded audio
|
| 425 |
-
|
| 426 |
-
# Wait for generation to complete (with timeout to prevent hanging)
|
| 427 |
-
generation_thread.join(timeout=5.0) # Increased timeout to 5 seconds
|
| 428 |
-
|
| 429 |
-
# If thread is still alive after timeout, force end
|
| 430 |
-
if generation_thread.is_alive():
|
| 431 |
-
print("Warning: Generation thread did not complete within timeout")
|
| 432 |
-
audio_streamer.end()
|
| 433 |
-
generation_thread.join(timeout=5.0)
|
| 434 |
-
|
| 435 |
-
# Clean up
|
| 436 |
-
self.current_streamer = None
|
| 437 |
-
self.is_generating = False
|
| 438 |
-
|
| 439 |
-
generation_time = time.time() - start_time
|
| 440 |
-
|
| 441 |
-
# Check if stopped by user
|
| 442 |
-
if self.stop_generation:
|
| 443 |
-
yield None, None, "π Generation stopped by user", gr.update(visible=False)
|
| 444 |
-
return
|
| 445 |
-
|
| 446 |
-
# Debug logging
|
| 447 |
-
# print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
|
| 448 |
-
|
| 449 |
-
# Check if we received any chunks but didn't yield audio
|
| 450 |
-
if has_received_chunks and not has_yielded_audio and all_audio_chunks:
|
| 451 |
-
# We have chunks but didn't meet the yield criteria, yield them now
|
| 452 |
-
complete_audio = np.concatenate(all_audio_chunks)
|
| 453 |
-
final_duration = len(complete_audio) / sample_rate
|
| 454 |
-
|
| 455 |
-
final_log = log + f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
|
| 456 |
-
final_log += f"π΅ Final audio duration: {final_duration:.2f} seconds\n"
|
| 457 |
-
final_log += f"π Total chunks: {chunk_count}\n"
|
| 458 |
-
final_log += "β¨ Generation successful! Complete audio is ready.\n"
|
| 459 |
-
final_log += "π‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
|
| 460 |
-
|
| 461 |
-
# Yield the complete audio
|
| 462 |
-
yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
|
| 463 |
-
return
|
| 464 |
-
|
| 465 |
-
if not has_received_chunks:
|
| 466 |
-
error_log = log + f"\nβ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
|
| 467 |
-
yield None, None, error_log, gr.update(visible=False)
|
| 468 |
-
return
|
| 469 |
-
|
| 470 |
-
if not has_yielded_audio:
|
| 471 |
-
error_log = log + f"\nβ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
|
| 472 |
-
yield None, None, error_log, gr.update(visible=False)
|
| 473 |
-
return
|
| 474 |
-
|
| 475 |
-
# Prepare the complete audio
|
| 476 |
-
if all_audio_chunks:
|
| 477 |
-
complete_audio = np.concatenate(all_audio_chunks)
|
| 478 |
-
final_duration = len(complete_audio) / sample_rate
|
| 479 |
-
|
| 480 |
-
final_log = log + f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
|
| 481 |
-
final_log += f"π΅ Final audio duration: {final_duration:.2f} seconds\n"
|
| 482 |
-
final_log += f"π Total chunks: {chunk_count}\n"
|
| 483 |
-
final_log += "β¨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
|
| 484 |
-
final_log += "π‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
|
| 485 |
-
|
| 486 |
-
# Final yield: Clear streaming audio and provide complete audio
|
| 487 |
-
yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
|
| 488 |
-
else:
|
| 489 |
-
final_log = log + "β No audio was generated."
|
| 490 |
-
yield None, None, final_log, gr.update(visible=False)
|
| 491 |
-
|
| 492 |
-
except gr.Error as e:
|
| 493 |
-
# Handle Gradio-specific errors (like input validation)
|
| 494 |
-
self.is_generating = False
|
| 495 |
-
self.current_streamer = None
|
| 496 |
-
error_msg = f"β Input Error: {str(e)}"
|
| 497 |
-
print(error_msg)
|
| 498 |
-
yield None, None, error_msg, gr.update(visible=False)
|
| 499 |
-
|
| 500 |
-
except Exception as e:
|
| 501 |
-
self.is_generating = False
|
| 502 |
-
self.current_streamer = None
|
| 503 |
-
error_msg = f"β An unexpected error occurred: {str(e)}"
|
| 504 |
-
print(error_msg)
|
| 505 |
-
import traceback
|
| 506 |
-
traceback.print_exc()
|
| 507 |
-
yield None, None, error_msg, gr.update(visible=False)
|
| 508 |
-
|
| 509 |
-
def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer, voice_cloning_enabled: bool):
|
| 510 |
-
"""Helper method to run generation with streamer in a separate thread."""
|
| 511 |
-
try:
|
| 512 |
-
# Check for stop signal before starting generation
|
| 513 |
-
if self.stop_generation:
|
| 514 |
-
audio_streamer.end()
|
| 515 |
-
return
|
| 516 |
-
|
| 517 |
-
# Define a stop check function that can be called from generate
|
| 518 |
-
def check_stop_generation():
|
| 519 |
-
return self.stop_generation
|
| 520 |
-
|
| 521 |
-
outputs = self.model.generate(
|
| 522 |
-
**inputs,
|
| 523 |
-
max_new_tokens=None,
|
| 524 |
-
cfg_scale=cfg_scale,
|
| 525 |
-
tokenizer=self.processor.tokenizer,
|
| 526 |
-
generation_config={
|
| 527 |
-
'do_sample': False,
|
| 528 |
-
},
|
| 529 |
-
audio_streamer=audio_streamer,
|
| 530 |
-
stop_check_fn=check_stop_generation, # Pass the stop check function
|
| 531 |
-
verbose=False, # Disable verbose in streaming mode
|
| 532 |
-
refresh_negative=True,
|
| 533 |
-
is_prefill=voice_cloning_enabled,
|
| 534 |
-
)
|
| 535 |
-
|
| 536 |
-
except Exception as e:
|
| 537 |
-
print(f"Error in generation thread: {e}")
|
| 538 |
-
traceback.print_exc()
|
| 539 |
-
# Make sure to end the stream on error
|
| 540 |
-
audio_streamer.end()
|
| 541 |
-
|
| 542 |
-
def stop_audio_generation(self):
|
| 543 |
-
"""Stop the current audio generation process."""
|
| 544 |
-
self.stop_generation = True
|
| 545 |
-
if self.current_streamer is not None:
|
| 546 |
-
try:
|
| 547 |
-
self.current_streamer.end()
|
| 548 |
-
except Exception as e:
|
| 549 |
-
print(f"Error stopping streamer: {e}")
|
| 550 |
-
print("π Audio generation stop requested")
|
| 551 |
-
|
| 552 |
-
def load_example_scripts(self):
|
| 553 |
-
"""Load example scripts from the text_examples directory."""
|
| 554 |
-
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
| 555 |
-
self.example_scripts = []
|
| 556 |
-
|
| 557 |
-
# Check if text_examples directory exists
|
| 558 |
-
if not os.path.exists(examples_dir):
|
| 559 |
-
print(f"Warning: text_examples directory not found at {examples_dir}")
|
| 560 |
-
return
|
| 561 |
-
|
| 562 |
-
# Get all .txt files in the text_examples directory
|
| 563 |
-
txt_files = sorted([f for f in os.listdir(examples_dir)
|
| 564 |
-
if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
|
| 565 |
-
|
| 566 |
-
for txt_file in txt_files:
|
| 567 |
-
file_path = os.path.join(examples_dir, txt_file)
|
| 568 |
-
|
| 569 |
-
import re
|
| 570 |
-
# Check if filename contains a time pattern like "45min", "90min", etc.
|
| 571 |
-
time_pattern = re.search(r'(\d+)min', txt_file.lower())
|
| 572 |
-
if time_pattern:
|
| 573 |
-
minutes = int(time_pattern.group(1))
|
| 574 |
-
if minutes > 15:
|
| 575 |
-
print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
|
| 576 |
-
continue
|
| 577 |
-
|
| 578 |
-
try:
|
| 579 |
-
with open(file_path, 'r', encoding='utf-8') as f:
|
| 580 |
-
script_content = f.read().strip()
|
| 581 |
-
|
| 582 |
-
# Remove empty lines and lines with only whitespace
|
| 583 |
-
script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
|
| 584 |
-
|
| 585 |
-
if not script_content:
|
| 586 |
-
continue
|
| 587 |
-
|
| 588 |
-
# Parse the script to determine number of speakers
|
| 589 |
-
num_speakers = self._get_num_speakers_from_script(script_content)
|
| 590 |
-
|
| 591 |
-
# Add to examples list as [num_speakers, script_content]
|
| 592 |
-
self.example_scripts.append([num_speakers, script_content])
|
| 593 |
-
print(f"Loaded example: {txt_file} with {num_speakers} speakers")
|
| 594 |
-
|
| 595 |
-
except Exception as e:
|
| 596 |
-
print(f"Error loading example script {txt_file}: {e}")
|
| 597 |
-
|
| 598 |
-
if self.example_scripts:
|
| 599 |
-
print(f"Successfully loaded {len(self.example_scripts)} example scripts")
|
| 600 |
-
else:
|
| 601 |
-
print("No example scripts were loaded")
|
| 602 |
-
|
| 603 |
-
def _get_num_speakers_from_script(self, script: str) -> int:
|
| 604 |
-
"""Determine the number of unique speakers in a script."""
|
| 605 |
-
import re
|
| 606 |
-
speakers = set()
|
| 607 |
-
|
| 608 |
-
lines = script.strip().split('\n')
|
| 609 |
-
for line in lines:
|
| 610 |
-
# Use regex to find speaker patterns
|
| 611 |
-
match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
|
| 612 |
-
if match:
|
| 613 |
-
speaker_id = int(match.group(1))
|
| 614 |
-
speakers.add(speaker_id)
|
| 615 |
-
|
| 616 |
-
# If no speakers found, default to 1
|
| 617 |
-
if not speakers:
|
| 618 |
-
return 1
|
| 619 |
-
|
| 620 |
-
# Return the maximum speaker ID + 1 (assuming 0-based indexing)
|
| 621 |
-
# or the count of unique speakers if they're 1-based
|
| 622 |
-
max_speaker = max(speakers)
|
| 623 |
-
min_speaker = min(speakers)
|
| 624 |
-
|
| 625 |
-
if min_speaker == 0:
|
| 626 |
-
return max_speaker + 1
|
| 627 |
-
else:
|
| 628 |
-
# Assume 1-based indexing, return the count
|
| 629 |
-
return len(speakers)
|
| 630 |
-
|
| 631 |
|
| 632 |
def create_demo_interface(demo_instance: VibeVoiceDemo):
|
| 633 |
"""Create the Gradio interface with streaming support."""
|
|
@@ -1182,23 +569,6 @@ Potential for Deepfakes and Disinformation: High-quality synthetic speech can be
|
|
| 1182 |
return interface
|
| 1183 |
|
| 1184 |
|
| 1185 |
-
def convert_to_16_bit_wav(data):
|
| 1186 |
-
# Check if data is a tensor and move to cpu
|
| 1187 |
-
if torch.is_tensor(data):
|
| 1188 |
-
data = data.detach().cpu().numpy()
|
| 1189 |
-
|
| 1190 |
-
# Ensure data is numpy array
|
| 1191 |
-
data = np.array(data)
|
| 1192 |
-
|
| 1193 |
-
# Normalize to range [-1, 1] if it's not already
|
| 1194 |
-
if np.max(np.abs(data)) > 1.0:
|
| 1195 |
-
data = data / np.max(np.abs(data))
|
| 1196 |
-
|
| 1197 |
-
# Scale to 16-bit integer range
|
| 1198 |
-
data = (data * 32767).astype(np.int16)
|
| 1199 |
-
return data
|
| 1200 |
-
|
| 1201 |
-
|
| 1202 |
def parse_args():
|
| 1203 |
parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
|
| 1204 |
parser.add_argument(
|
|
|
|
| 2 |
VibeVoice Gradio Demo - High-Quality Dialogue Generation Interface with Streaming Support
|
| 3 |
"""
|
| 4 |
|
| 5 |
+
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
+
import gradio as gr
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from transformers.utils import logging
|
| 10 |
from transformers import set_seed
|
| 11 |
+
from model import VibeVoiceDemo
|
| 12 |
|
| 13 |
logging.set_verbosity_info()
|
| 14 |
logger = logging.get_logger(__name__)
|
| 15 |
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
def create_demo_interface(demo_instance: VibeVoiceDemo):
|
| 20 |
"""Create the Gradio interface with streaming support."""
|
|
|
|
| 569 |
return interface
|
| 570 |
|
| 571 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
def parse_args():
|
| 573 |
parser = argparse.ArgumentParser(description="VibeVoice Gradio Demo")
|
| 574 |
parser.add_argument(
|
model.py
ADDED
|
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import threading, librosa, torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
|
| 6 |
+
from typing import Iterator, Optional
|
| 7 |
+
import os, time, traceback
|
| 8 |
+
|
| 9 |
+
from vibevoice.modular.configuration_vibevoice import VibeVoiceConfig
|
| 10 |
+
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
|
| 11 |
+
from vibevoice.modular.lora_loading import load_lora_assets
|
| 12 |
+
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
|
| 13 |
+
from vibevoice.modular.streamer import AudioStreamer
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def convert_to_16_bit_wav(data):
|
| 18 |
+
# Check if data is a tensor and move to cpu
|
| 19 |
+
if torch.is_tensor(data):
|
| 20 |
+
data = data.detach().cpu().numpy()
|
| 21 |
+
|
| 22 |
+
# Ensure data is numpy array
|
| 23 |
+
data = np.array(data)
|
| 24 |
+
|
| 25 |
+
# Normalize to range [-1, 1] if it's not already
|
| 26 |
+
if np.max(np.abs(data)) > 1.0:
|
| 27 |
+
data = data / np.max(np.abs(data))
|
| 28 |
+
|
| 29 |
+
# Scale to 16-bit integer range
|
| 30 |
+
data = (data * 32767).astype(np.int16)
|
| 31 |
+
return data
|
| 32 |
+
|
| 33 |
+
class VibeVoiceDemo:
|
| 34 |
+
def __init__(self, model_path: str, device: str = "cuda", inference_steps: int = 5, adapter_path: Optional[str] = None):
|
| 35 |
+
"""Initialize the VibeVoice demo with model loading."""
|
| 36 |
+
self.model_path = model_path
|
| 37 |
+
self.device = device
|
| 38 |
+
self.inference_steps = inference_steps
|
| 39 |
+
self.adapter_path = adapter_path
|
| 40 |
+
self.loaded_adapter_root: Optional[str] = None
|
| 41 |
+
self.is_generating = False # Track generation state
|
| 42 |
+
self.stop_generation = False # Flag to stop generation
|
| 43 |
+
self.current_streamer = None # Track current audio streamer
|
| 44 |
+
self.load_model()
|
| 45 |
+
self.setup_voice_presets()
|
| 46 |
+
self.load_example_scripts() # Load example scripts
|
| 47 |
+
|
| 48 |
+
def load_model(self):
|
| 49 |
+
"""Load the VibeVoice model and processor."""
|
| 50 |
+
print(f"Loading processor & model from {self.model_path}")
|
| 51 |
+
self.loaded_adapter_root = None
|
| 52 |
+
# Normalize potential 'mpx'
|
| 53 |
+
if self.device.lower() == "mpx":
|
| 54 |
+
print("Note: device 'mpx' detected, treating it as 'mps'.")
|
| 55 |
+
self.device = "mps"
|
| 56 |
+
if self.device == "mps" and not torch.backends.mps.is_available():
|
| 57 |
+
print("Warning: MPS not available. Falling back to CPU.")
|
| 58 |
+
self.device = "cpu"
|
| 59 |
+
print(f"Using device: {self.device}")
|
| 60 |
+
# Load processor
|
| 61 |
+
self.processor = VibeVoiceProcessor.from_pretrained(self.model_path)
|
| 62 |
+
# Decide dtype & attention
|
| 63 |
+
if self.device == "mps":
|
| 64 |
+
load_dtype = torch.float32
|
| 65 |
+
attn_impl_primary = "sdpa"
|
| 66 |
+
elif self.device == "cuda":
|
| 67 |
+
load_dtype = torch.bfloat16
|
| 68 |
+
attn_impl_primary = "flash_attention_2"
|
| 69 |
+
else:
|
| 70 |
+
load_dtype = torch.float32
|
| 71 |
+
attn_impl_primary = "sdpa"
|
| 72 |
+
print(f"Using device: {self.device}, torch_dtype: {load_dtype}, attn_implementation: {attn_impl_primary}")
|
| 73 |
+
# Load model
|
| 74 |
+
try:
|
| 75 |
+
if self.device == "mps":
|
| 76 |
+
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 77 |
+
self.model_path,
|
| 78 |
+
torch_dtype=load_dtype,
|
| 79 |
+
attn_implementation=attn_impl_primary,
|
| 80 |
+
device_map=None,
|
| 81 |
+
)
|
| 82 |
+
self.model.to("mps")
|
| 83 |
+
elif self.device == "cuda":
|
| 84 |
+
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 85 |
+
self.model_path,
|
| 86 |
+
torch_dtype=load_dtype,
|
| 87 |
+
device_map="cuda",
|
| 88 |
+
attn_implementation=attn_impl_primary,
|
| 89 |
+
)
|
| 90 |
+
else:
|
| 91 |
+
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 92 |
+
self.model_path,
|
| 93 |
+
torch_dtype=load_dtype,
|
| 94 |
+
device_map="cpu",
|
| 95 |
+
attn_implementation=attn_impl_primary,
|
| 96 |
+
)
|
| 97 |
+
except Exception as e:
|
| 98 |
+
if attn_impl_primary == 'flash_attention_2':
|
| 99 |
+
print(f"[ERROR] : {type(e).__name__}: {e}")
|
| 100 |
+
print(traceback.format_exc())
|
| 101 |
+
fallback_attn = "sdpa"
|
| 102 |
+
print(f"Falling back to attention implementation: {fallback_attn}")
|
| 103 |
+
self.model = VibeVoiceForConditionalGenerationInference.from_pretrained(
|
| 104 |
+
self.model_path,
|
| 105 |
+
torch_dtype=load_dtype,
|
| 106 |
+
device_map=(self.device if self.device in ("cuda", "cpu") else None),
|
| 107 |
+
attn_implementation=fallback_attn,
|
| 108 |
+
)
|
| 109 |
+
if self.device == "mps":
|
| 110 |
+
self.model.to("mps")
|
| 111 |
+
else:
|
| 112 |
+
raise e
|
| 113 |
+
if self.adapter_path:
|
| 114 |
+
print(f"Loading fine-tuned assets from {self.adapter_path}")
|
| 115 |
+
report = load_lora_assets(self.model, self.adapter_path)
|
| 116 |
+
loaded_components = [
|
| 117 |
+
name for name, loaded in (
|
| 118 |
+
("language LoRA", report.language_model),
|
| 119 |
+
("diffusion head LoRA", report.diffusion_head_lora),
|
| 120 |
+
("diffusion head weights", report.diffusion_head_full),
|
| 121 |
+
("acoustic connector", report.acoustic_connector),
|
| 122 |
+
("semantic connector", report.semantic_connector),
|
| 123 |
+
)
|
| 124 |
+
if loaded
|
| 125 |
+
]
|
| 126 |
+
if loaded_components:
|
| 127 |
+
print(f"Loaded components: {', '.join(loaded_components)}")
|
| 128 |
+
else:
|
| 129 |
+
print("Warning: no adapter components were loaded; check the checkpoint path.")
|
| 130 |
+
if report.adapter_root is not None:
|
| 131 |
+
self.loaded_adapter_root = str(report.adapter_root)
|
| 132 |
+
print(f"Adapter assets resolved to: {self.loaded_adapter_root}")
|
| 133 |
+
else:
|
| 134 |
+
self.loaded_adapter_root = self.adapter_path
|
| 135 |
+
|
| 136 |
+
self.model.eval()
|
| 137 |
+
|
| 138 |
+
# Use SDE solver by default
|
| 139 |
+
self.model.model.noise_scheduler = self.model.model.noise_scheduler.from_config(
|
| 140 |
+
self.model.model.noise_scheduler.config,
|
| 141 |
+
algorithm_type='sde-dpmsolver++',
|
| 142 |
+
beta_schedule='squaredcos_cap_v2'
|
| 143 |
+
)
|
| 144 |
+
self.model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
| 145 |
+
|
| 146 |
+
if hasattr(self.model.model, 'language_model'):
|
| 147 |
+
print(f"Language model attention: {self.model.model.language_model.config._attn_implementation}")
|
| 148 |
+
|
| 149 |
+
def setup_voice_presets(self):
|
| 150 |
+
"""Setup voice presets by scanning the voices directory."""
|
| 151 |
+
voices_dir = os.path.join(os.path.dirname(__file__), "voices")
|
| 152 |
+
|
| 153 |
+
# Check if voices directory exists
|
| 154 |
+
if not os.path.exists(voices_dir):
|
| 155 |
+
print(f"Warning: Voices directory not found at {voices_dir}")
|
| 156 |
+
self.voice_presets = {}
|
| 157 |
+
self.available_voices = {}
|
| 158 |
+
return
|
| 159 |
+
|
| 160 |
+
# Scan for all WAV files in the voices directory
|
| 161 |
+
self.voice_presets = {}
|
| 162 |
+
|
| 163 |
+
# Get all .wav files in the voices directory
|
| 164 |
+
wav_files = [f for f in os.listdir(voices_dir)
|
| 165 |
+
if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac')) and os.path.isfile(os.path.join(voices_dir, f))]
|
| 166 |
+
|
| 167 |
+
# Create dictionary with filename (without extension) as key
|
| 168 |
+
for wav_file in wav_files:
|
| 169 |
+
# Remove .wav extension to get the name
|
| 170 |
+
name = os.path.splitext(wav_file)[0]
|
| 171 |
+
# Create full path
|
| 172 |
+
full_path = os.path.join(voices_dir, wav_file)
|
| 173 |
+
self.voice_presets[name] = full_path
|
| 174 |
+
|
| 175 |
+
# Sort the voice presets alphabetically by name for better UI
|
| 176 |
+
self.voice_presets = dict(sorted(self.voice_presets.items()))
|
| 177 |
+
|
| 178 |
+
# Filter out voices that don't exist (this is now redundant but kept for safety)
|
| 179 |
+
self.available_voices = {
|
| 180 |
+
name: path for name, path in self.voice_presets.items()
|
| 181 |
+
if os.path.exists(path)
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
if not self.available_voices:
|
| 185 |
+
raise gr.Error("No voice presets found. Please add .wav files to the demo/voices directory.")
|
| 186 |
+
|
| 187 |
+
print(f"Found {len(self.available_voices)} voice files in {voices_dir}")
|
| 188 |
+
print(f"Available voices: {', '.join(self.available_voices.keys())}")
|
| 189 |
+
|
| 190 |
+
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
|
| 191 |
+
"""Read and preprocess audio file."""
|
| 192 |
+
try:
|
| 193 |
+
wav, sr = sf.read(audio_path)
|
| 194 |
+
if len(wav.shape) > 1:
|
| 195 |
+
wav = np.mean(wav, axis=1)
|
| 196 |
+
if sr != target_sr:
|
| 197 |
+
wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
|
| 198 |
+
return wav
|
| 199 |
+
except Exception as e:
|
| 200 |
+
print(f"Error reading audio {audio_path}: {e}")
|
| 201 |
+
return np.array([])
|
| 202 |
+
|
| 203 |
+
def generate_podcast_streaming(self,
|
| 204 |
+
num_speakers: int,
|
| 205 |
+
script: str,
|
| 206 |
+
speaker_1: str = None,
|
| 207 |
+
speaker_2: str = None,
|
| 208 |
+
speaker_3: str = None,
|
| 209 |
+
speaker_4: str = None,
|
| 210 |
+
cfg_scale: float = 1.3,
|
| 211 |
+
disable_voice_cloning: bool = False) -> Iterator[tuple]:
|
| 212 |
+
try:
|
| 213 |
+
|
| 214 |
+
# Reset stop flag and set generating state
|
| 215 |
+
self.stop_generation = False
|
| 216 |
+
self.is_generating = True
|
| 217 |
+
|
| 218 |
+
# Validate inputs
|
| 219 |
+
if not script.strip():
|
| 220 |
+
self.is_generating = False
|
| 221 |
+
raise gr.Error("Error: Please provide a script.")
|
| 222 |
+
|
| 223 |
+
# Defend against common mistake
|
| 224 |
+
script = script.replace("β", "'")
|
| 225 |
+
|
| 226 |
+
if num_speakers < 1 or num_speakers > 4:
|
| 227 |
+
self.is_generating = False
|
| 228 |
+
raise gr.Error("Error: Number of speakers must be between 1 and 4.")
|
| 229 |
+
|
| 230 |
+
# Collect selected speakers
|
| 231 |
+
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 232 |
+
|
| 233 |
+
# Validate speaker selections
|
| 234 |
+
for i, speaker in enumerate(selected_speakers):
|
| 235 |
+
if not speaker or speaker not in self.available_voices:
|
| 236 |
+
self.is_generating = False
|
| 237 |
+
raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 238 |
+
|
| 239 |
+
voice_cloning_enabled = not disable_voice_cloning
|
| 240 |
+
|
| 241 |
+
# Build initial log
|
| 242 |
+
log = f"ποΈ Generating podcast with {num_speakers} speakers\n"
|
| 243 |
+
log += f"π Parameters: CFG Scale={cfg_scale}, Inference Steps={self.inference_steps}\n"
|
| 244 |
+
log += f"π Speakers: {', '.join(selected_speakers)}\n"
|
| 245 |
+
log += f"π Voice cloning: {'Enabled' if voice_cloning_enabled else 'Disabled'}\n"
|
| 246 |
+
if self.loaded_adapter_root:
|
| 247 |
+
log += f"π§© LoRA: {self.loaded_adapter_root}\n"
|
| 248 |
+
|
| 249 |
+
# Check for stop signal
|
| 250 |
+
if self.stop_generation:
|
| 251 |
+
self.is_generating = False
|
| 252 |
+
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 253 |
+
return
|
| 254 |
+
|
| 255 |
+
# Load voice samples when voice cloning is enabled
|
| 256 |
+
voice_samples = None
|
| 257 |
+
if voice_cloning_enabled:
|
| 258 |
+
voice_samples = []
|
| 259 |
+
for speaker_name in selected_speakers:
|
| 260 |
+
audio_path = self.available_voices[speaker_name]
|
| 261 |
+
audio_data = self.read_audio(audio_path)
|
| 262 |
+
if len(audio_data) == 0:
|
| 263 |
+
self.is_generating = False
|
| 264 |
+
raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
|
| 265 |
+
voice_samples.append(audio_data)
|
| 266 |
+
|
| 267 |
+
# log += f"β
Loaded {len(voice_samples)} voice samples\n"
|
| 268 |
+
|
| 269 |
+
# Check for stop signal
|
| 270 |
+
if self.stop_generation:
|
| 271 |
+
self.is_generating = False
|
| 272 |
+
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 273 |
+
return
|
| 274 |
+
|
| 275 |
+
# Parse script to assign speaker ID's
|
| 276 |
+
lines = script.strip().split('\n')
|
| 277 |
+
formatted_script_lines = []
|
| 278 |
+
|
| 279 |
+
for line in lines:
|
| 280 |
+
line = line.strip()
|
| 281 |
+
if not line:
|
| 282 |
+
continue
|
| 283 |
+
|
| 284 |
+
# Check if line already has speaker format
|
| 285 |
+
if line.startswith('Speaker ') and ':' in line:
|
| 286 |
+
formatted_script_lines.append(line)
|
| 287 |
+
else:
|
| 288 |
+
# Auto-assign to speakers in rotation
|
| 289 |
+
speaker_id = len(formatted_script_lines) % num_speakers
|
| 290 |
+
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 291 |
+
|
| 292 |
+
formatted_script = '\n'.join(formatted_script_lines)
|
| 293 |
+
log += f"π Formatted script with {len(formatted_script_lines)} turns\n\n"
|
| 294 |
+
log += "π Processing with VibeVoice (streaming mode)...\n"
|
| 295 |
+
|
| 296 |
+
# Check for stop signal before processing
|
| 297 |
+
if self.stop_generation:
|
| 298 |
+
self.is_generating = False
|
| 299 |
+
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 300 |
+
return
|
| 301 |
+
|
| 302 |
+
start_time = time.time()
|
| 303 |
+
|
| 304 |
+
processor_kwargs = {
|
| 305 |
+
"text": [formatted_script],
|
| 306 |
+
"padding": True,
|
| 307 |
+
"return_tensors": "pt",
|
| 308 |
+
"return_attention_mask": True,
|
| 309 |
+
}
|
| 310 |
+
processor_kwargs["voice_samples"] = [voice_samples] if voice_samples is not None else None
|
| 311 |
+
|
| 312 |
+
inputs = self.processor(**processor_kwargs)
|
| 313 |
+
# Move tensors to device
|
| 314 |
+
target_device = self.device if self.device in ("cuda", "mps") else "cpu"
|
| 315 |
+
for k, v in inputs.items():
|
| 316 |
+
if torch.is_tensor(v):
|
| 317 |
+
inputs[k] = v.to(target_device)
|
| 318 |
+
|
| 319 |
+
# Create audio streamer
|
| 320 |
+
audio_streamer = AudioStreamer(
|
| 321 |
+
batch_size=1,
|
| 322 |
+
stop_signal=None,
|
| 323 |
+
timeout=None
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
# Store current streamer for potential stopping
|
| 327 |
+
self.current_streamer = audio_streamer
|
| 328 |
+
|
| 329 |
+
# Start generation in a separate thread
|
| 330 |
+
generation_thread = threading.Thread(
|
| 331 |
+
target=self._generate_with_streamer,
|
| 332 |
+
args=(inputs, cfg_scale, audio_streamer, voice_cloning_enabled)
|
| 333 |
+
)
|
| 334 |
+
generation_thread.start()
|
| 335 |
+
|
| 336 |
+
# Wait for generation to actually start producing audio
|
| 337 |
+
time.sleep(1) # Reduced from 3 to 1 second
|
| 338 |
+
|
| 339 |
+
# Check for stop signal after thread start
|
| 340 |
+
if self.stop_generation:
|
| 341 |
+
audio_streamer.end()
|
| 342 |
+
generation_thread.join(timeout=5.0) # Wait up to 5 seconds for thread to finish
|
| 343 |
+
self.is_generating = False
|
| 344 |
+
yield None, "π Generation stopped by user", gr.update(visible=False)
|
| 345 |
+
return
|
| 346 |
+
|
| 347 |
+
# Collect audio chunks as they arrive
|
| 348 |
+
sample_rate = 24000
|
| 349 |
+
all_audio_chunks = [] # For final statistics
|
| 350 |
+
pending_chunks = [] # Buffer for accumulating small chunks
|
| 351 |
+
chunk_count = 0
|
| 352 |
+
last_yield_time = time.time()
|
| 353 |
+
min_yield_interval = 15 # Yield every 15 seconds
|
| 354 |
+
min_chunk_size = sample_rate * 30 # At least 2 seconds of audio
|
| 355 |
+
|
| 356 |
+
# Get the stream for the first (and only) sample
|
| 357 |
+
audio_stream = audio_streamer.get_stream(0)
|
| 358 |
+
|
| 359 |
+
has_yielded_audio = False
|
| 360 |
+
has_received_chunks = False # Track if we received any chunks at all
|
| 361 |
+
|
| 362 |
+
for audio_chunk in audio_stream:
|
| 363 |
+
# Check for stop signal in the streaming loop
|
| 364 |
+
if self.stop_generation:
|
| 365 |
+
audio_streamer.end()
|
| 366 |
+
break
|
| 367 |
+
|
| 368 |
+
chunk_count += 1
|
| 369 |
+
has_received_chunks = True # Mark that we received at least one chunk
|
| 370 |
+
|
| 371 |
+
# Convert tensor to numpy
|
| 372 |
+
if torch.is_tensor(audio_chunk):
|
| 373 |
+
# Convert bfloat16 to float32 first, then to numpy
|
| 374 |
+
if audio_chunk.dtype == torch.bfloat16:
|
| 375 |
+
audio_chunk = audio_chunk.float()
|
| 376 |
+
audio_np = audio_chunk.cpu().numpy().astype(np.float32)
|
| 377 |
+
else:
|
| 378 |
+
audio_np = np.array(audio_chunk, dtype=np.float32)
|
| 379 |
+
|
| 380 |
+
# Ensure audio is 1D and properly normalized
|
| 381 |
+
if len(audio_np.shape) > 1:
|
| 382 |
+
audio_np = audio_np.squeeze()
|
| 383 |
+
|
| 384 |
+
# Convert to 16-bit for Gradio
|
| 385 |
+
audio_16bit = convert_to_16_bit_wav(audio_np)
|
| 386 |
+
|
| 387 |
+
# Store for final statistics
|
| 388 |
+
all_audio_chunks.append(audio_16bit)
|
| 389 |
+
|
| 390 |
+
# Add to pending chunks buffer
|
| 391 |
+
pending_chunks.append(audio_16bit)
|
| 392 |
+
|
| 393 |
+
# Calculate pending audio size
|
| 394 |
+
pending_audio_size = sum(len(chunk) for chunk in pending_chunks)
|
| 395 |
+
current_time = time.time()
|
| 396 |
+
time_since_last_yield = current_time - last_yield_time
|
| 397 |
+
|
| 398 |
+
# Decide whether to yield
|
| 399 |
+
should_yield = False
|
| 400 |
+
if not has_yielded_audio and pending_audio_size >= min_chunk_size:
|
| 401 |
+
# First yield: wait for minimum chunk size
|
| 402 |
+
should_yield = True
|
| 403 |
+
has_yielded_audio = True
|
| 404 |
+
elif has_yielded_audio and (pending_audio_size >= min_chunk_size or time_since_last_yield >= min_yield_interval):
|
| 405 |
+
# Subsequent yields: either enough audio or enough time has passed
|
| 406 |
+
should_yield = True
|
| 407 |
+
|
| 408 |
+
if should_yield and pending_chunks:
|
| 409 |
+
# Concatenate and yield only the new audio chunks
|
| 410 |
+
new_audio = np.concatenate(pending_chunks)
|
| 411 |
+
new_duration = len(new_audio) / sample_rate
|
| 412 |
+
total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
|
| 413 |
+
|
| 414 |
+
log_update = log + f"π΅ Streaming: {total_duration:.1f}s generated (chunk {chunk_count})\n"
|
| 415 |
+
|
| 416 |
+
# Yield streaming audio chunk and keep complete_audio as None during streaming
|
| 417 |
+
yield (sample_rate, new_audio), None, log_update, gr.update(visible=True)
|
| 418 |
+
|
| 419 |
+
# Clear pending chunks after yielding
|
| 420 |
+
pending_chunks = []
|
| 421 |
+
last_yield_time = current_time
|
| 422 |
+
|
| 423 |
+
# Yield any remaining chunks
|
| 424 |
+
if pending_chunks:
|
| 425 |
+
final_new_audio = np.concatenate(pending_chunks)
|
| 426 |
+
total_duration = sum(len(chunk) for chunk in all_audio_chunks) / sample_rate
|
| 427 |
+
log_update = log + f"π΅ Streaming final chunk: {total_duration:.1f}s total\n"
|
| 428 |
+
yield (sample_rate, final_new_audio), None, log_update, gr.update(visible=True)
|
| 429 |
+
has_yielded_audio = True # Mark that we yielded audio
|
| 430 |
+
|
| 431 |
+
# Wait for generation to complete (with timeout to prevent hanging)
|
| 432 |
+
generation_thread.join(timeout=5.0) # Increased timeout to 5 seconds
|
| 433 |
+
|
| 434 |
+
# If thread is still alive after timeout, force end
|
| 435 |
+
if generation_thread.is_alive():
|
| 436 |
+
print("Warning: Generation thread did not complete within timeout")
|
| 437 |
+
audio_streamer.end()
|
| 438 |
+
generation_thread.join(timeout=5.0)
|
| 439 |
+
|
| 440 |
+
# Clean up
|
| 441 |
+
self.current_streamer = None
|
| 442 |
+
self.is_generating = False
|
| 443 |
+
|
| 444 |
+
generation_time = time.time() - start_time
|
| 445 |
+
|
| 446 |
+
# Check if stopped by user
|
| 447 |
+
if self.stop_generation:
|
| 448 |
+
yield None, None, "π Generation stopped by user", gr.update(visible=False)
|
| 449 |
+
return
|
| 450 |
+
|
| 451 |
+
# Debug logging
|
| 452 |
+
# print(f"Debug: has_received_chunks={has_received_chunks}, chunk_count={chunk_count}, all_audio_chunks length={len(all_audio_chunks)}")
|
| 453 |
+
|
| 454 |
+
# Check if we received any chunks but didn't yield audio
|
| 455 |
+
if has_received_chunks and not has_yielded_audio and all_audio_chunks:
|
| 456 |
+
# We have chunks but didn't meet the yield criteria, yield them now
|
| 457 |
+
complete_audio = np.concatenate(all_audio_chunks)
|
| 458 |
+
final_duration = len(complete_audio) / sample_rate
|
| 459 |
+
|
| 460 |
+
final_log = log + f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
|
| 461 |
+
final_log += f"π΅ Final audio duration: {final_duration:.2f} seconds\n"
|
| 462 |
+
final_log += f"π Total chunks: {chunk_count}\n"
|
| 463 |
+
final_log += "β¨ Generation successful! Complete audio is ready.\n"
|
| 464 |
+
final_log += "π‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
|
| 465 |
+
|
| 466 |
+
# Yield the complete audio
|
| 467 |
+
yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
|
| 468 |
+
return
|
| 469 |
+
|
| 470 |
+
if not has_received_chunks:
|
| 471 |
+
error_log = log + f"\nβ Error: No audio chunks were received from the model. Generation time: {generation_time:.2f}s"
|
| 472 |
+
yield None, None, error_log, gr.update(visible=False)
|
| 473 |
+
return
|
| 474 |
+
|
| 475 |
+
if not has_yielded_audio:
|
| 476 |
+
error_log = log + f"\nβ Error: Audio was generated but not streamed. Chunk count: {chunk_count}"
|
| 477 |
+
yield None, None, error_log, gr.update(visible=False)
|
| 478 |
+
return
|
| 479 |
+
|
| 480 |
+
# Prepare the complete audio
|
| 481 |
+
if all_audio_chunks:
|
| 482 |
+
complete_audio = np.concatenate(all_audio_chunks)
|
| 483 |
+
final_duration = len(complete_audio) / sample_rate
|
| 484 |
+
|
| 485 |
+
final_log = log + f"β±οΈ Generation completed in {generation_time:.2f} seconds\n"
|
| 486 |
+
final_log += f"π΅ Final audio duration: {final_duration:.2f} seconds\n"
|
| 487 |
+
final_log += f"π Total chunks: {chunk_count}\n"
|
| 488 |
+
final_log += "β¨ Generation successful! Complete audio is ready in the 'Complete Audio' tab.\n"
|
| 489 |
+
final_log += "π‘ Not satisfied? You can regenerate or adjust the CFG scale for different results."
|
| 490 |
+
|
| 491 |
+
# Final yield: Clear streaming audio and provide complete audio
|
| 492 |
+
yield None, (sample_rate, complete_audio), final_log, gr.update(visible=False)
|
| 493 |
+
else:
|
| 494 |
+
final_log = log + "β No audio was generated."
|
| 495 |
+
yield None, None, final_log, gr.update(visible=False)
|
| 496 |
+
|
| 497 |
+
except gr.Error as e:
|
| 498 |
+
# Handle Gradio-specific errors (like input validation)
|
| 499 |
+
self.is_generating = False
|
| 500 |
+
self.current_streamer = None
|
| 501 |
+
error_msg = f"β Input Error: {str(e)}"
|
| 502 |
+
print(error_msg)
|
| 503 |
+
yield None, None, error_msg, gr.update(visible=False)
|
| 504 |
+
|
| 505 |
+
except Exception as e:
|
| 506 |
+
self.is_generating = False
|
| 507 |
+
self.current_streamer = None
|
| 508 |
+
error_msg = f"β An unexpected error occurred: {str(e)}"
|
| 509 |
+
print(error_msg)
|
| 510 |
+
import traceback
|
| 511 |
+
traceback.print_exc()
|
| 512 |
+
yield None, None, error_msg, gr.update(visible=False)
|
| 513 |
+
|
| 514 |
+
def _generate_with_streamer(self, inputs, cfg_scale, audio_streamer, voice_cloning_enabled: bool):
|
| 515 |
+
"""Helper method to run generation with streamer in a separate thread."""
|
| 516 |
+
try:
|
| 517 |
+
# Check for stop signal before starting generation
|
| 518 |
+
if self.stop_generation:
|
| 519 |
+
audio_streamer.end()
|
| 520 |
+
return
|
| 521 |
+
|
| 522 |
+
# Define a stop check function that can be called from generate
|
| 523 |
+
def check_stop_generation():
|
| 524 |
+
return self.stop_generation
|
| 525 |
+
|
| 526 |
+
outputs = self.model.generate(
|
| 527 |
+
**inputs,
|
| 528 |
+
max_new_tokens=None,
|
| 529 |
+
cfg_scale=cfg_scale,
|
| 530 |
+
tokenizer=self.processor.tokenizer,
|
| 531 |
+
generation_config={
|
| 532 |
+
'do_sample': False,
|
| 533 |
+
},
|
| 534 |
+
audio_streamer=audio_streamer,
|
| 535 |
+
stop_check_fn=check_stop_generation, # Pass the stop check function
|
| 536 |
+
verbose=False, # Disable verbose in streaming mode
|
| 537 |
+
refresh_negative=True,
|
| 538 |
+
is_prefill=voice_cloning_enabled,
|
| 539 |
+
)
|
| 540 |
+
|
| 541 |
+
except Exception as e:
|
| 542 |
+
print(f"Error in generation thread: {e}")
|
| 543 |
+
traceback.print_exc()
|
| 544 |
+
# Make sure to end the stream on error
|
| 545 |
+
audio_streamer.end()
|
| 546 |
+
|
| 547 |
+
def stop_audio_generation(self):
|
| 548 |
+
"""Stop the current audio generation process."""
|
| 549 |
+
self.stop_generation = True
|
| 550 |
+
if self.current_streamer is not None:
|
| 551 |
+
try:
|
| 552 |
+
self.current_streamer.end()
|
| 553 |
+
except Exception as e:
|
| 554 |
+
print(f"Error stopping streamer: {e}")
|
| 555 |
+
print("π Audio generation stop requested")
|
| 556 |
+
|
| 557 |
+
def load_example_scripts(self):
|
| 558 |
+
"""Load example scripts from the text_examples directory."""
|
| 559 |
+
examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
|
| 560 |
+
self.example_scripts = []
|
| 561 |
+
|
| 562 |
+
# Check if text_examples directory exists
|
| 563 |
+
if not os.path.exists(examples_dir):
|
| 564 |
+
print(f"Warning: text_examples directory not found at {examples_dir}")
|
| 565 |
+
return
|
| 566 |
+
|
| 567 |
+
# Get all .txt files in the text_examples directory
|
| 568 |
+
txt_files = sorted([f for f in os.listdir(examples_dir)
|
| 569 |
+
if f.lower().endswith('.txt') and os.path.isfile(os.path.join(examples_dir, f))])
|
| 570 |
+
|
| 571 |
+
for txt_file in txt_files:
|
| 572 |
+
file_path = os.path.join(examples_dir, txt_file)
|
| 573 |
+
|
| 574 |
+
import re
|
| 575 |
+
# Check if filename contains a time pattern like "45min", "90min", etc.
|
| 576 |
+
time_pattern = re.search(r'(\d+)min', txt_file.lower())
|
| 577 |
+
if time_pattern:
|
| 578 |
+
minutes = int(time_pattern.group(1))
|
| 579 |
+
if minutes > 15:
|
| 580 |
+
print(f"Skipping {txt_file}: duration {minutes} minutes exceeds 15-minute limit")
|
| 581 |
+
continue
|
| 582 |
+
|
| 583 |
+
try:
|
| 584 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
| 585 |
+
script_content = f.read().strip()
|
| 586 |
+
|
| 587 |
+
# Remove empty lines and lines with only whitespace
|
| 588 |
+
script_content = '\n'.join(line for line in script_content.split('\n') if line.strip())
|
| 589 |
+
|
| 590 |
+
if not script_content:
|
| 591 |
+
continue
|
| 592 |
+
|
| 593 |
+
# Parse the script to determine number of speakers
|
| 594 |
+
num_speakers = self._get_num_speakers_from_script(script_content)
|
| 595 |
+
|
| 596 |
+
# Add to examples list as [num_speakers, script_content]
|
| 597 |
+
self.example_scripts.append([num_speakers, script_content])
|
| 598 |
+
print(f"Loaded example: {txt_file} with {num_speakers} speakers")
|
| 599 |
+
|
| 600 |
+
except Exception as e:
|
| 601 |
+
print(f"Error loading example script {txt_file}: {e}")
|
| 602 |
+
|
| 603 |
+
if self.example_scripts:
|
| 604 |
+
print(f"Successfully loaded {len(self.example_scripts)} example scripts")
|
| 605 |
+
else:
|
| 606 |
+
print("No example scripts were loaded")
|
| 607 |
+
|
| 608 |
+
def _get_num_speakers_from_script(self, script: str) -> int:
|
| 609 |
+
"""Determine the number of unique speakers in a script."""
|
| 610 |
+
import re
|
| 611 |
+
speakers = set()
|
| 612 |
+
|
| 613 |
+
lines = script.strip().split('\n')
|
| 614 |
+
for line in lines:
|
| 615 |
+
# Use regex to find speaker patterns
|
| 616 |
+
match = re.match(r'^Speaker\s+(\d+)\s*:', line.strip(), re.IGNORECASE)
|
| 617 |
+
if match:
|
| 618 |
+
speaker_id = int(match.group(1))
|
| 619 |
+
speakers.add(speaker_id)
|
| 620 |
+
|
| 621 |
+
# If no speakers found, default to 1
|
| 622 |
+
if not speakers:
|
| 623 |
+
return 1
|
| 624 |
+
|
| 625 |
+
# Return the maximum speaker ID + 1 (assuming 0-based indexing)
|
| 626 |
+
# or the count of unique speakers if they're 1-based
|
| 627 |
+
max_speaker = max(speakers)
|
| 628 |
+
min_speaker = min(speakers)
|
| 629 |
+
|
| 630 |
+
if min_speaker == 0:
|
| 631 |
+
return max_speaker + 1
|
| 632 |
+
else:
|
| 633 |
+
# Assume 1-based indexing, return the count
|
| 634 |
+
return len(speakers)
|