Spaces:
Runtime error
Runtime error
Avanzando y traduciendo
Browse files
app.py
CHANGED
|
@@ -9,27 +9,21 @@ def request_pathname(files):
|
|
| 9 |
return [[file.name, file.name.split('/')[-1]] for file in files]
|
| 10 |
|
| 11 |
|
| 12 |
-
def validate_dataset(dataset
|
| 13 |
global docs
|
| 14 |
docs = None # clear it out if dataset is modified
|
| 15 |
docs_ready = dataset.iloc[-1, 0] != ""
|
| 16 |
-
if docs_ready
|
| 17 |
-
return "✨
|
| 18 |
-
elif docs_ready:
|
| 19 |
-
return "⚠️Waiting for key..."
|
| 20 |
-
elif type(openapi) is str and len(openapi) > 0:
|
| 21 |
-
return "⚠️Waiting for documents..."
|
| 22 |
else:
|
| 23 |
-
return "⚠️Waiting for documents
|
| 24 |
|
| 25 |
|
| 26 |
-
def do_ask(question, button,
|
| 27 |
global docs
|
| 28 |
docs_ready = dataset.iloc[-1, 0] != ""
|
| 29 |
-
if button == "✨
|
| 30 |
if docs is None: # don't want to rebuild index if it's already built
|
| 31 |
-
import os
|
| 32 |
-
os.environ['OPENAI_API_KEY'] = openapi.strip()
|
| 33 |
import paperqa
|
| 34 |
docs = paperqa.Docs()
|
| 35 |
# dataset is pandas dataframe
|
|
@@ -40,17 +34,21 @@ def do_ask(question, button, openapi, dataset, progress=gr.Progress()):
|
|
| 40 |
docs.add(row['filepath'], row['citation string'], key=key)
|
| 41 |
else:
|
| 42 |
return ""
|
| 43 |
-
progress(0, "
|
| 44 |
docs._build_faiss_index()
|
| 45 |
-
progress(0.25, "
|
| 46 |
result = docs.query(question)
|
| 47 |
-
progress(1.0, "
|
| 48 |
return result.formatted_answer, result.context
|
| 49 |
|
| 50 |
|
| 51 |
with gr.Blocks() as demo:
|
| 52 |
gr.Markdown("""
|
| 53 |
-
# Document Question and Answer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
This tool will enable asking questions of your uploaded text or PDF documents.
|
| 56 |
It uses OpenAI's GPT models and thus you must enter your API key below. This
|
|
@@ -60,15 +58,13 @@ with gr.Blocks() as demo:
|
|
| 60 |
* [PaperQA](https://github.com/whitead/paper-qa) is the code used to build this tool.
|
| 61 |
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
|
| 62 |
|
| 63 |
-
##
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
""")
|
| 68 |
-
openai_api_key = gr.Textbox(
|
| 69 |
-
label="OpenAI API Key", placeholder="sk-...", type="password")
|
| 70 |
uploaded_files = gr.File(
|
| 71 |
-
label="
|
| 72 |
dataset = gr.Dataframe(
|
| 73 |
headers=["filepath", "citation string"],
|
| 74 |
datatype=["str", "str"],
|
|
@@ -76,23 +72,21 @@ with gr.Blocks() as demo:
|
|
| 76 |
interactive=True,
|
| 77 |
label="Documents and Citations"
|
| 78 |
)
|
| 79 |
-
buildb = gr.Textbox("⚠️
|
| 80 |
label="Status", interactive=False, show_label=True)
|
| 81 |
-
openai_api_key.change(validate_dataset, inputs=[
|
| 82 |
-
dataset, openai_api_key], outputs=[buildb])
|
| 83 |
dataset.change(validate_dataset, inputs=[
|
| 84 |
dataset, openai_api_key], outputs=[buildb])
|
| 85 |
uploaded_files.change(request_pathname, inputs=[
|
| 86 |
uploaded_files], outputs=[dataset])
|
| 87 |
query = gr.Textbox(
|
| 88 |
-
placeholder="
|
| 89 |
-
ask = gr.Button("
|
| 90 |
-
gr.Markdown("##
|
| 91 |
-
answer = gr.Markdown(label="
|
| 92 |
-
with gr.Accordion("
|
| 93 |
gr.Markdown(
|
| 94 |
-
"###
|
| 95 |
-
context = gr.Markdown(label="
|
| 96 |
ask.click(fn=do_ask, inputs=[query, buildb,
|
| 97 |
openai_api_key, dataset], outputs=[answer, context])
|
| 98 |
|
|
|
|
| 9 |
return [[file.name, file.name.split('/')[-1]] for file in files]
|
| 10 |
|
| 11 |
|
| 12 |
+
def validate_dataset(dataset):
|
| 13 |
global docs
|
| 14 |
docs = None # clear it out if dataset is modified
|
| 15 |
docs_ready = dataset.iloc[-1, 0] != ""
|
| 16 |
+
if docs_ready:
|
| 17 |
+
return "✨Listo✨"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
else:
|
| 19 |
+
return "⚠️Waiting for documents..."
|
| 20 |
|
| 21 |
|
| 22 |
+
def do_ask(question, button, dataset, progress=gr.Progress()):
|
| 23 |
global docs
|
| 24 |
docs_ready = dataset.iloc[-1, 0] != ""
|
| 25 |
+
if button == "✨Listo✨" and docs_ready:
|
| 26 |
if docs is None: # don't want to rebuild index if it's already built
|
|
|
|
|
|
|
| 27 |
import paperqa
|
| 28 |
docs = paperqa.Docs()
|
| 29 |
# dataset is pandas dataframe
|
|
|
|
| 34 |
docs.add(row['filepath'], row['citation string'], key=key)
|
| 35 |
else:
|
| 36 |
return ""
|
| 37 |
+
progress(0, "Construyendo índices...")
|
| 38 |
docs._build_faiss_index()
|
| 39 |
+
progress(0.25, "Encolando...")
|
| 40 |
result = docs.query(question)
|
| 41 |
+
progress(1.0, "¡Hecho!")
|
| 42 |
return result.formatted_answer, result.context
|
| 43 |
|
| 44 |
|
| 45 |
with gr.Blocks() as demo:
|
| 46 |
gr.Markdown("""
|
| 47 |
+
# Document Question and Answer adaptado al castellano por Pablo Ascorbe.
|
| 48 |
+
|
| 49 |
+
Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa
|
| 50 |
+
|
| 51 |
+
- Texto original:
|
| 52 |
|
| 53 |
This tool will enable asking questions of your uploaded text or PDF documents.
|
| 54 |
It uses OpenAI's GPT models and thus you must enter your API key below. This
|
|
|
|
| 58 |
* [PaperQA](https://github.com/whitead/paper-qa) is the code used to build this tool.
|
| 59 |
* [langchain](https://github.com/hwchase17/langchain) is the main library this tool utilizes.
|
| 60 |
|
| 61 |
+
## Instrucciones:
|
| 62 |
|
| 63 |
+
Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
|
| 64 |
+
|
| 65 |
""")
|
|
|
|
|
|
|
| 66 |
uploaded_files = gr.File(
|
| 67 |
+
label="Sus documentos subidos (PDF o txt)", file_count="multiple", )
|
| 68 |
dataset = gr.Dataframe(
|
| 69 |
headers=["filepath", "citation string"],
|
| 70 |
datatype=["str", "str"],
|
|
|
|
| 72 |
interactive=True,
|
| 73 |
label="Documents and Citations"
|
| 74 |
)
|
| 75 |
+
buildb = gr.Textbox("⚠️Esperando documentos...",
|
| 76 |
label="Status", interactive=False, show_label=True)
|
|
|
|
|
|
|
| 77 |
dataset.change(validate_dataset, inputs=[
|
| 78 |
dataset, openai_api_key], outputs=[buildb])
|
| 79 |
uploaded_files.change(request_pathname, inputs=[
|
| 80 |
uploaded_files], outputs=[dataset])
|
| 81 |
query = gr.Textbox(
|
| 82 |
+
placeholder="Introduzca su pregunta aquí...", label="Pregunta")
|
| 83 |
+
ask = gr.Button("Pregunte")
|
| 84 |
+
gr.Markdown("## Respuesta")
|
| 85 |
+
answer = gr.Markdown(label="Respuesta")
|
| 86 |
+
with gr.Accordion("Contexto", open=False):
|
| 87 |
gr.Markdown(
|
| 88 |
+
"### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
|
| 89 |
+
context = gr.Markdown(label="Contexto")
|
| 90 |
ask.click(fn=do_ask, inputs=[query, buildb,
|
| 91 |
openai_api_key, dataset], outputs=[answer, context])
|
| 92 |
|