Commit
Β·
4629510
1
Parent(s):
0dc87ee
Create handle.py
Browse files
handle.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict
|
| 2 |
+
import librosa
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import pyewts
|
| 6 |
+
import noisereduce as nr
|
| 7 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
| 8 |
+
from num2tib.core import convert
|
| 9 |
+
from num2tib.core import convert2text
|
| 10 |
+
import re
|
| 11 |
+
converter = pyewts.pyewts()
|
| 12 |
+
def replace_numbers_with_convert(sentence, wylie=True):
|
| 13 |
+
pattern = r'\d+(\.\d+)?'
|
| 14 |
+
def replace(match):
|
| 15 |
+
return convert(match.group(), wylie)
|
| 16 |
+
result = re.sub(pattern, replace, sentence)
|
| 17 |
+
|
| 18 |
+
return result
|
| 19 |
+
|
| 20 |
+
def cleanup_text(inputs):
|
| 21 |
+
for src, dst in replacements:
|
| 22 |
+
inputs = inputs.replace(src, dst)
|
| 23 |
+
return inputs
|
| 24 |
+
|
| 25 |
+
speaker_embeddings = {
|
| 26 |
+
"Lhasa(female)": "female_2.npy",
|
| 27 |
+
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
replacements = [
|
| 31 |
+
('_', '_'),
|
| 32 |
+
('*', 'v'),
|
| 33 |
+
('`', ';'),
|
| 34 |
+
('~', ','),
|
| 35 |
+
('+', ','),
|
| 36 |
+
('\\', ';'),
|
| 37 |
+
('|', ';'),
|
| 38 |
+
('β',''),
|
| 39 |
+
('β','')
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
class EndpointHandler():
|
| 47 |
+
def __init__(self, path=""):
|
| 48 |
+
# load the model
|
| 49 |
+
self.processor = SpeechT5Processor.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
|
| 50 |
+
self.model = SpeechT5ForTextToSpeech.from_pretrained("TenzinGayche/TTS_run3_ep20_174k_b")
|
| 51 |
+
self.model.to('cuda')
|
| 52 |
+
self.vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def __call__(self, data: Dict[str]) -> Dict[str, str]:
|
| 56 |
+
"""
|
| 57 |
+
Args:
|
| 58 |
+
data (:obj:):
|
| 59 |
+
includes the deserialized audio file as bytes
|
| 60 |
+
Return:
|
| 61 |
+
A :obj:`dict`:. base64 encoded image
|
| 62 |
+
"""
|
| 63 |
+
# process input
|
| 64 |
+
|
| 65 |
+
if len(text.strip()) == 0:
|
| 66 |
+
return (16000, np.zeros(0).astype(np.int16))
|
| 67 |
+
text = converter.toWylie(text)
|
| 68 |
+
text=cleanup_text(text)
|
| 69 |
+
text=replace_numbers_with_convert(text)
|
| 70 |
+
inputs = self.processor(text=text, return_tensors="pt")
|
| 71 |
+
# limit input length
|
| 72 |
+
input_ids = inputs["input_ids"]
|
| 73 |
+
input_ids = input_ids[..., :self.model.config.max_text_positions]
|
| 74 |
+
speaker_embedding = np.load(speaker_embeddings['Lhasa(female)'])
|
| 75 |
+
speaker_embedding = torch.tensor(speaker_embedding)
|
| 76 |
+
speech = self.model.generate_speech(input_ids.to('cuda'), speaker_embedding.to('cuda'), vocoder=vocoder.to('cuda'))
|
| 77 |
+
speech = nr.reduce_noise(y=speech.to('cpu'), sr=16000)
|
| 78 |
+
return (16000, speech)
|