File size: 14,494 Bytes
d0cd3b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
import time
import shutil
import sys
import gc
import argparse
import json
import subprocess
from datetime import datetime
from tabulate import tabulate

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(SCRIPT_DIR)
os.chdir(SCRIPT_DIR)

from model_list import models_data
from utils.preedit_config import conf_editor
from utils.download_models import download_model

MODELS_CACHE_DIR = os.path.join(SCRIPT_DIR, "separator", "models_cache")
MODEL_TYPES = ["mel_band_roformer", "bs_roformer", "mdx23c", "scnet", "htdemucs", "bandit", "bandit_v2", "vr", "mdx"]
OUTPUT_FORMATS = ["mp3", "wav", "flac", "ogg", "opus", "m4a", "aac", "aiff"]

class MVSEPLESS:
    def __init__(self):
        self.models_cache_dir = os.path.join(SCRIPT_DIR, "separator", "models_cache")
        self.model_types = MODEL_TYPES
        self.output_formats = OUTPUT_FORMATS

    def get_mt(self):
        return list(models_data.keys())
       
    def get_mn(self, model_type):
        return list(models_data[model_type].keys())
       
    def get_stems(self, model_type, model_name):
        stems = models_data[model_type][model_name]["stems"]
        return stems
    
    def get_tgt_inst(self, model_type, model_name):
        target_instrument = models_data[model_type][model_name]["target_instrument"]
        return target_instrument

    def display_models_info(self, filter: str = None):
        print("\nAvailable Models Information:")
        print("=" * 50)
        
        for model_type in models_data:
            print(f"\nModel Type: {model_type.upper()}")
            print("-" * 50)
            
            table_data = []
            headers = ["Model Name", "Stems", "Target Instrument", "Primary Stem"]
            
            for model_name in models_data[model_type]:
                model_info = models_data[model_type][model_name]
                
                if filter and filter not in model_info.get('stems', []):
                    continue
                    
                stems = "\n".join(model_info.get('stems', [])) if 'stems' in model_info else "N/A"
                target = model_info.get('target_instrument', "N/A")
                primary = model_info.get('primary_stem', "N/A")
                
                table_data.append([model_name, stems, target, primary])
            
            print(tabulate(table_data, headers=headers, tablefmt="grid"))
            print()
            
    def separator(
        self,
        input_file: str = None,
        output_dir: str = None,
        model_type: str = "mel_band_roformer",
        model_name: str = "Mel-Band-Roformer_Vocals_kimberley_jensen",
        ext_inst: bool = False,
        vr_aggr: int = 5,
        output_format: str = "wav",
        output_bitrate: str = "320k",
        template: str = "NAME_(STEM)_MODEL",
        call_method: str = "cli",
        selected_stems: list = None
    ):
        if selected_stems is None:
            selected_stems = []
            
        if not input_file:
            print("Please, input path to input file")
            return [("None", "/none/none.mp3")]
    
        if not os.path.exists(input_file):
            print("Input file not exist")
            return [("None", "/none/none.mp3")]
    
        if "STEM" not in template:
            template = template + "_STEM"
    
        print(f"Starting inference: {model_type}/{model_name}, bitrate={output_bitrate}, method={call_method}, stems={selected_stems}")
        os.makedirs(output_dir, exist_ok=True)
    
        if model_type in ["mel_band_roformer", "bs_roformer", "mdx23c", "scnet", "htdemucs", "bandit", "bandit_v2"]:
            try:
                info = models_data[model_type][model_name]
            except KeyError:
                print("Model not exist")
                return [("None", "/none/none.mp3")]
                
            conf, ckpt = download_model(self.models_cache_dir, model_name, model_type, 
                                      info["checkpoint_url"], info["config_url"])
            if model_type != "htdemucs":
                conf_editor(conf)
    
            if call_method == "cli":
                cmd = ["python", "-m", "separator.msst_separator", f'--input "{input_file}"', 
                      f'--store_dir "{output_dir}"', f'--model_type "{model_type}"', 
                      f'--model_name "{model_name}"', f'--config_path "{conf}"', 
                      f'--start_check_point "{ckpt}"', f'--output_format "{output_format}"', 
                      f'--output_bitrate "{output_bitrate}"', f'--template "{template}"', 
                      "--save_results_info"]
                if ext_inst:
                    cmd.append("--extract_instrumental")
                if selected_stems:
                    instruments = " ".join(f'"{s}"' for s in selected_stems)
                    cmd.append(f'--selected_instruments {instruments}')
                subprocess.run(" ".join(cmd), shell=True, check=True)
    
                results_path = os.path.join(output_dir, "results.json")
                if os.path.exists(results_path):
                    with open(results_path, encoding="utf-8") as f:
                        return json.load(f)
                return [("None", "/none/none.mp3")]
    
            elif call_method == "direct":
                from separator.msst_separator import mvsep_offline
                try:
                    return mvsep_offline(
                        input_path=input_file, store_dir=output_dir, model_type=model_type, 
                        config_path=conf, start_check_point=ckpt, extract_instrumental=ext_inst, 
                        output_format=output_format, output_bitrate=output_bitrate, 
                        model_name=model_name, template=template, selected_instruments=selected_stems
                    )
                except Exception as e:
                    print(e)
                    return [("None", "/none/none.mp3")]
    
        elif model_type in ["vr", "mdx"]:
            try:
                info = models_data[model_type][model_name]
            except KeyError:
                print("Model not exist")
                return [("None", "/none/none.mp3")]
                
            if model_type == "vr" and info.get("custom_vr", False):
                conf, ckpt = download_model(self.models_cache_dir, model_name, model_type, 
                                          info["checkpoint_url"], info["config_url"])
                primary_stem = info["primary_stem"]
    
                if call_method == "cli":
                    cmd = ["python", "-m", "separator.uvr_sep", "custom_vr", 
                          f'--input_file "{input_file}"', f'--ckpt_path "{ckpt}"', 
                          f'--config_path "{conf}"', f'--bitrate "{output_bitrate}"', 
                          f'--model_name "{model_name}"', f'--template "{template}"', 
                          f'--output_format "{output_format}"', f'--primary_stem "{primary_stem}"', 
                          f'--aggression {vr_aggr}', f'--output_dir "{output_dir}"']
                    if selected_stems:
                        instruments = " ".join(f'"{s}"' for s in selected_stems)
                        cmd.append(f'--selected_instruments {instruments}')
                    subprocess.run(" ".join(cmd), shell=True, check=True)
    
                    results_path = os.path.join(output_dir, "results.json")
                    if os.path.exists(results_path):
                        with open(results_path, encoding="utf-8") as f:
                            return json.load(f)
                    return [("None", "/none/none.mp3")]
    
                elif call_method == "direct":
                    from separator.uvr_sep import custom_vr_separate
                    try:
                        return custom_vr_separate(
                            input_file=input_file, ckpt_path=ckpt, config_path=conf, 
                            bitrate=output_bitrate, model_name=model_name, template=template, 
                            output_format=output_format, primary_stem=primary_stem, 
                            aggression=vr_aggr, output_dir=output_dir, 
                            selected_instruments=selected_stems
                        )
                    except Exception as e:
                        print(e)
                        return [("None", "/none/none.mp3")]
            else:
                if call_method == "cli":
                    cmd = ["python", "-m", "separator.uvr_sep", "uvr", 
                          f'--input_file "{input_file}"', f'--output_dir "{output_dir}"', 
                          f'--template "{template}"', f'--bitrate "{output_bitrate}"', 
                          f'--model_dir "{self.models_cache_dir}"', f'--model_type "{model_type}"', 
                          f'--model_name "{model_name}"', f'--output_format "{output_format}"', 
                          f'--aggression {vr_aggr}']
                    if selected_stems:
                        instruments = " ".join(f'"{s}"' for s in selected_stems)
                        cmd.append(f'--selected_instruments {instruments}')
                    subprocess.run(" ".join(cmd), shell=True, check=True)
    
                    results_path = os.path.join(output_dir, "results.json")
                    if os.path.exists(results_path):
                        with open(results_path, encoding="utf-8") as f:
                            return json.load(f)
                    return [("None", "/none/none.mp3")]
    
                elif call_method == "direct":
                    from separator.uvr_sep import non_custom_uvr_inference
                    try:
                        return non_custom_uvr_inference(
                            input_file=input_file, output_dir=output_dir, template=template, 
                            bitrate=output_bitrate, model_dir=self.models_cache_dir, 
                            model_type=model_type, model_name=model_name, 
                            output_format=output_format, aggression=vr_aggr, 
                            selected_instruments=selected_stems
                        )
                    except Exception as e:
                        print(e)
                        return [("None", "/none/none.mp3")]
    
        print("Unsupported model type")
        return [("None", "/none/none.mp3")]

def parse_args():
    parser = argparse.ArgumentParser(description="Multi-inference for separation audio in Google Colab")
    subparsers = parser.add_subparsers(dest='command', required=True, help='Sub-command help')
    
    list_models = subparsers.add_parser('list', help='List of exist models')
    list_models.add_argument("-l_filter", "--list_filter", type=str, default=None, help="Show models in list only with specified stem")

    separate = subparsers.add_parser('separate', help='Separate I/O params')
    separate.add_argument("-i", "--input", type=str, required=True, help="Input file or directory")
    separate.add_argument("-o", "--output", type=str, required=True, help="Output directory")
    separate.add_argument("-mt", "--model_type", type=str, required=True, choices=MODEL_TYPES, help="Model type")
    separate.add_argument("-mn", "--model_name", type=str, required=True, help="Model name")
    separate.add_argument("-inst", "--instrumental", action='store_true', help="Extract instrumental")
    separate.add_argument("-stems", "--stems", nargs="+", help="Select output stems")
    separate.add_argument("-bitrate", "--bitrate", type=str, default="320k", help="Output bitrate")
    separate.add_argument("-of", "--format", type=str, default="mp3", help="Output format")
    separate.add_argument("-vr_aggr", "--vr_arch_aggressive", type=int, default=5, help="Aggression for VR ARCH models")
    separate.add_argument('--template', type=str, default='NAME_STEM', help='Template naming of output files')
    separate.add_argument("-l_out", "--list_output", action='store_true', help="Show list output files")
    
    return parser.parse_args()

if __name__ == "__main__":
    args = parse_args()
    mvsepless = MVSEPLESS()
    
    if args.command == 'list':
        mvsepless.display_models_info(args.list_filter)
        
    elif args.command == 'separate':
        if os.path.isfile(args.input):
            results = mvsepless.separator(
                input_file=args.input,
                output_dir=args.output,
                model_type=args.model_type,
                model_name=args.model_name,
                ext_inst=args.instrumental,
                vr_aggr=args.vr_arch_aggressive,
                output_format=args.format,
                output_bitrate=args.bitrate,
                template=args.template,
                call_method="cli",
                selected_stems=args.stems
            )
            if args.list_output:
                print("Results\n")
                for stem, path in results:
                    print(f"Stem - {stem}\nPath - {path}\n")
                    
        elif os.path.isdir(args.input):
            batch_results = []
            for file in os.listdir(args.input):
                abs_path_file = os.path.join(args.input, file)
                if os.path.isfile(abs_path_file):
                    base_name = os.path.splitext(os.path.basename(abs_path_file))[0]
                    output_subdir = os.path.join(args.output, base_name)
                    
                    results = mvsepless.separator(
                        input_file=abs_path_file,
                        output_dir=output_subdir,
                        model_type=args.model_type,
                        model_name=args.model_name,
                        ext_inst=args.instrumental,
                        vr_aggr=args.vr_arch_aggressive,
                        output_format=args.format,
                        output_bitrate=args.bitrate,
                        template=args.template,
                        call_method="cli",
                        selected_stems=args.stems
                    )
                    batch_results.append((base_name, results))
                    
            if args.list_output:
                print("Results\n")
                for name, stems in batch_results:
                    print(f"Name - {name}")
                    for stem, path in stems:
                        print(f"  Stem - {stem}\n  Path - {path}\n")